ALAMEDA COUNTY **HEALTH CARE SERVICES**

COLLEEN CHAWLA, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

May 10, 2018

Mr. Leland Douglas (Sent via e-mail to: lee@douglasparking.com) **Douglas Parking Company** 1330 Broadway, Suite 300 Oakland, CA 94612

NASH-Holland 1721 Webster Investors, LLC 1970 Broadway, Suite 300 Oakland, CA 94612

Attention: Mr. John Wayland (Sent via e-mail to: jwayland@hollandpartnergroup.com)

Subject:

Case Closure for Fuel Leak Case RO0000129 and Geotracker Global ID T0600100140,

Douglas Parking Company, 1721 Webster Street, Oakland, CA 94612

Dear Ladies and Gentlemen:

This letter transmits the enclosed Remedial Action Completion Certificate and Case Closure Summary for the subject leaking underground fuel tank case. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. This Remedial Action Completion Certificate and the case closure summary can also be viewed on the State Water Resources Control Board's GeoTracker website (http://geotracker.waterboards.ca.gov) and the Alameda County Environmental Health website (http://www.acgov.org/aceh/index.htm).

This site is closed with residual contamination that limit future land use to the current commercial land use. Land use restrictions are described in the attached Case Closure Summary.

If you have any questions, please call the Caseworker, Karel Detterman, at (510) 567-6708. Thank you.

Sincerely,

Dilan Roe, P.E.

Chief, Land Water Division

Enclosures:

1. Remedial Action Completion Certification

2. Case Closure Summary

cc with enclosure:

Bob Clark-Riddell, PANGEA, 1710 Franklin Street, Suite 200, Oakland, CA 94612, (Sent via E-mail to: briddell@pangeaenv.com)

Brian McKim, Holland Partnership Group, 4301 Hacienda Drive, Suite 250, Pleasanton, CA 94588 (Sent via E-mail to: bmckim@hollandpartnergroup.com)

Dilan Roe, ACDEH (Sent via e-mail to: dilan.roe@acgov.org)

Karel Detterman, ACDEH (Sent via e-mail to: karel.detterman@acgov.org)

Paresh Khatri, ACDEH (Sent via e-mail to: paresh.khatri@acgov.org)

Case Electronic File, GeoTracker

AGENCY

COLLEEN CHAWLA, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

REMEDIAL ACTION COMPLETION CERTIFICATION

May 10, 2018

Mr. Leland Douglas (Sent via e-mail to: lee@douglasparking.com)
Douglas Parking Company
1330 Broadway, Suite 300
Oakland, CA 94612

NASH-Holland 1721 Webster Investors, LLC 1970 Broadway, Suite 300 Oakland, CA 94612

Attention: Mr. John Wayland (Sent via e-mail to: jwayland@hollandpartnergroup.com)

Subject:

Case Closure for Fuel Leak Case RO0000129 and Geotracker Global ID T0600100140,

Douglas Parking Company, 1721 Webster Street, Oakland, CA 94612

Dear Responsible Parties:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely

Ronald Browder Director d signike

Douglas Parking Company(T0600100140/RO0000129)

1. CASE INFORMATION

A. Facility/Site Address (Case Name & Address)

Project Name	Address
Douglas Parking Company	1721 Webster St. Oakland, CA 94612

B. Case Identification Numbers

Cleanup Oversight Agencies	Case/ID No
Alameda County Local Oversight Program (LOP) - Lead Agency	RO0000129
San Francisco Bay Regional Water Quality Control Board (Region 2)	01-0151
State Water Resources Control Board GeoTracker Global ID	T0600100140

C. Lead Agency Information

Agency Name:	Agency Address:	Agency Phone:	
Alameda County Department of Environmental Health (ACDEH)	1131 Harbor Bay Parkway, Alameda, CA 94502-6577	(510) 567-6700	
Case Worker:	LOP Supervisor: Land Water Division Chief.		
Karel Detterman, PG 5628	Paresh Khatri	Dilan Roe, PE C73703	

D. Responsible Party Information

Responsible Parties:	Address:		
Nash Holland 1721 Webster Investors LLC	1970 Broadway, Suite 300 Oakland, Ca, 94612		
Douglas Motor Service & Douglas Parking Company	1330 Broadway Suite 630, Oakland, Ca 94612-3411		
Leland Douglas, Douglas Motor Service	1721 Webster Street, Oakland, Ca 94612-3411		
Leland Douglas, Douglas Parking Company	1721 Webster Street, Oakland, Ca 94612-3411		

Douglas Parking Company(T0600100140/RO0000129)

2. PROPERTY INFORMATION

A. Assessor Parcel Numbers (APNs)

Current	8-624-6 and 8-624-7
Historic	Not Applicable

B. Alternate Addresses (As per County of Alameda Assessor's Office Property Value System)

Vice por County of Additional Accessor's Office I Toperty	aide Systeili
1711 Webster Street, associated with APN 8-624-7	
1715 Webster Street, associated with APN 8-624-7	
1717 Webster Street, associated with APN 8-624-7	
1721 Webster Street, associated with APN 8-624-7	
1721½ Webster Street, associated with APN 8-624-7	
1723 Webster Street, associated with APN 8-624-7	
1725 Webster Street, associated with APN 8-624-7	
1727 Webster Street, associated with APN 8-624-7	
1731 Webster Street, associated with APN 8-624-6	
1733 Webster Street, , associated with APN 8-624-6	
1737 Webster Street, associated with APN 8-624-6	
1739 Webster Street, associated with APN 8-624-6	

C. Environmental Cases Associated with Property

		1		
Case Type	Lead Oversight Agency	Site ID Geotracker ID/LOP Case No.	Potential Contaminants of Concern	Status (Open/Closed)
LUST ¹	ACDEH	T0600100140/RO0000129	TPHg, BTEX, Naphthalene, Fuel Oxygenates	1993/ May 2018
SCP ¹	ACDEH	T10000011235/RO0003268	TPHg, TPHd, TPHmo, TPHho, BTEX, MTBE, naphthalene, PCBs, metals, chlorinated solvents	Jan 2018/ Present
Other ²	DTSC	Not Applicable	Not Applicable	Not Applicable
Other ³	EPA	Not Applicable	Not Applicable	Not Applicable
Post- Closure ¹	N/A	Not Applicable	Not Applicable	Not Applicable

¹Refer to the State Water Resources Control Board's GeoTracker database for case information: https://geotracker.waterboards.ca.gov

² Refer to the California Department of Toxics Substances Control Board's (DTSC) Envirostor database for case information: http://www.dtsc.ca.gov/sitecleanup/cleanup_sites_index.cfm

³ Refer to the United States Environmental Protection Agency's (EPA) Site Specific National Cleanup Databases for case information: https://www.epa.gov/cleanups/site-specific-national-cleanup-databases

Leaking Underground Storage Tank (LUST) Cleanup Site Case Closure Summary Form Douglas Parking Company(T0600100140/R00000129)

2. PROPERTY INFORMATION

D. Identified Historic Land Use & Operations

Туре	Description			
Residential & Commercial	Historical research documented that the subject property parcels were developed with a residence and a nursery including a greenhouse in the late 1800s, residences in the early 1900s, and by the 1930s with buildings in the approximate configuration of the present day. Site improvements include two slab on-grade buildings constructed in 1930. Vehicle parking and a variety of automotive service operations including painting, auto repairing and fueling were present in at least the 1950s and 1960s until 2017 along with other commercial operations including restaurants, pet food sales, a hair salon and a fitness center. In 1993 Leaking Underground Storage Tank (LUFT) Case No. T0600100140/RO0000129 was opened by ACDEH to investigate an unauthorized release from historic underground storage tanks (USTs) and associated system components.			
Туре	Description			
Residential & Commercial	During a Phase 1 environmental site assessment conducted in 2016 for a property transaction, additional recognized environmental concerns were identified at the site including the presence of three in-ground hydraulic hoists used for historic vehicle servicing operations in the parking garage and it appeared that the hoist equipment had not been removed. No drains, sumps or pits other than the hydraulic equipment pits were observed during site reconnaissance.			
	Soil and groundwater samples were collected in 2016 during a Phase 2 investigation conducted in association with the property transaction to assess environmental concerns indentified during the Phase 1 that had not been investigated as part of the LUFT case. The investigation included collection of soil and groundwater samples from ten soil borings (SB-1 through SB-10) and groundwater from monitoring well MW-1 to assess potential impacts to soil and groundwater from historical operations at and in the vicinity of the site including soil and groundwater conditions in the vicinity of vehicle servicing operations and hydraulic lift area, soil quality in fill areas identified in boring logs and in the dumpster area, and soil and groundwater conditions in the vicinity of the dry cleaner operations located southwest of the property. In 2018 Site Cleanup Program Case No. T10000011235/R00003268 was opened by ACDEH to provide regulatory oversight during redevelopment of the site into a multi-use commercial/residential facility.			

Douglas Parking Company(T0600100140/RO0000129)

3. LUST CASE SUMMARY

A. Reason Case Opened

Leaking Underground Storage Tank (LUST) Cleanup Site Case No. T0600100140/RO0000129 was opened in 1993 by ACDEH to investigate and evaluate impacts to human health and the environment associated with an unauthorized release from three USTs and associated UST system components that were removed from the site in 1992.

Other potential chemicals of concern from historic land use and operations at the site were not evaluated in association with this LUST case.

B. Known UST Systems at the Site

UST System Component	Size / Quantity	Material Stored	Status	URF Filing Date:
Former UST	1,000-gallon	Gasoline	Removed	01/07/1993
Former UST	500-gallon	Gasoline	Removed	01/07/1993
Former UST	500-gallon	Gasoline	Removed	01/07/1993

C. Unauthorized Release Description

In 1992, one 1,000-gallon and two 500-gallon gasoline underground storage tanks (USTs) located in the Webster Street sidewalk, two pumps and associated product lines were removed from the site. None of the tanks had visible holes. Seven soil samples (T-1 through T-7) were collected from beneath the USTs and four soil samples (SW-1 through SW-4) were collected from the sidewalls of the excavations at depths ranging from 7 to 14 feet below ground surface (bgs). Six soil samples (L-1 through L-6) were collected directly beneath the former pipelines and pump locations extending within the site structure at depths ranging from 1.5 to 2 feet bgs. No groundwater was observed in the tank pits. After soil sampling was completed, the excavations were backfilled and resurfaced with concrete. One composite sample (C1) was collected from the excavated soil stockpile. The samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene and xylenes (BTEX). All samples collected from the tank excavations had detectable concentrations of gasoline and BTEX, with up to 1,500 milligrams per kilogram (mg/kg) TPHg, 12 mg/kg benzene, 140 mg/kg toluene, 48 mg/kg of ethylbenzene and 280 mg/kg xylenes. Samples collected from beneath the product lines and pumps had minimal or non-detectable petroleum hydrocarbons. Petroleum hydrocarbon concentrations in confirmation samples collected during UST system removal activities indicated an unauthorized release had occurred at the site.

D. Site Investigations

Site investigation activities associated with the LUFT case were conducted from 1993 to 2017 to evaluate the extent of subsurface impacts to soil, soil vapor and groundwater from the UST system release. The investigations included collection and analysis of (1) soil samples from 21 soil bores (EB-1 through EB-6, SB-A through SB-I, MW-6, CB-1, CB-2, SB-4, SB-5, and SB-7); (2) groundwater samples from seven monitoring wells (MW-1 through MW-7), three air sparging wells (AS-1 through AS-3), and 15 soil bores (SB-A through SB-G, EB-1GWS through EB-6GWS, and SB4, and SB-7); and (3) vapor samples from two soil gas probes (SG-1 and SG-2) and three subslab probes (SS-1 through SS-3).

E. Remediation

In addition to excavation of the UST tank pit, several remedial techniques were implemented at the site between 1998 and 2010 including installation of Oxygen-Reducing Compound (ORC) socks in monitoring well MW-2; addition of hydrogen peroxide to MW-2 and MW-3; and operation of a soil vapor extraction and air sparging system.

Douglas Parking Company(T0600100140/R00000129)

3. LUST CASE SUMMARY (CONTINUED)

F. Constituents Evaluated & Residual Contamination Remaining at Closure

Material	All dated & Nesidual	Sampled,		mamm		Media			
Stored/Dispensed in UST System	Analytes	Residual	S	GW	SW	SV	SS	IA	OA
Engine Fuels		Sampled		×					
☐ Gasoline Fuel	TPH-g ¹	Residual		×		×			
(1, 2, 9, 10, 11, 12, 13, 14)	TD11 42	Sampled							
☐ Diesel Fuel	TPH-d ²	Residual							
(2, 9, 10)	TPH-mo ³	Sampled							
☐ Jet Fuel	(soil only)	Residual							
(1, 2, 4, 9, 10)	TPH-jf ⁴	Sampled							
Heating Oils	1111-31	Residual							
☐ Kerosene	TPH-k ⁵	Sampled							
(2, 5, 9, 10)	1111-K	Residual							
☐ Residential	TPH-ss ⁶	Sampled							
Heating Oils	1111-33	Residual							
(2, 3, 9, 10)	TPH-bo ⁷	Sampled							
☐ Commercial &	111100	Residual							
Industrial Heating	TPH- ho ⁸	Sampled							
Oils (1, 2, 3, 7, 9, 10, 15, 16)	1111-110	Residual							
Other Oils	BTEX ⁹	Sampled	×	×		×	\boxtimes		
		Residual	×	×		×	×		
☐ Waste (Used) Oil (1, 2, 3, 9, 10, 15, 16, 17, 18)	Naphthalene ¹⁰	Sampled		×					
		Residual		×					
☐ Hydraulic Oil (8, 16, 17)	MTBE/TBA ¹¹	Sampled		×		×	×		
(0, 10, 11)		Residual							
☐ Dielectric Oil (2, 3, 10, 16, 17)	EDB/EDC ¹²	Sampled							
(2, 3, 10, 10, 17)		Residual							
Unknown Oil	Organic Lead ¹³	Sampled							
(1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)	(TWE, TEE)	Residual							
	Fuel Oxygenates ¹⁴ (DIPE, TAME, EtOH, ETBE)	Sampled							
Solvents	(DIFE, TAME, EIOH, ETBE)	Residual							
☐ Hydrocarbon	VOCs ¹⁵	Sampled							
Solvents (2, 3, 6, 9, 10)	(full scan)	Residual							
	SVOCs ¹⁶	Sampled							
		Residual							
	PCBs ¹⁷	Sampled							
		Residual							
	Metals ¹⁸ (Cd, Cr, Pb, Ni, Zn)	Sampled							
		Residual							

S = Soil, GW = Groundwater, SW = Surface Water, SV = Soil Vapor, SS = Sub-Slab Vapor, IA = Indoor Air, OA = Outdoor Air

Douglas Parking Company(T0600100140/RO0000129)

3. LUST CASE SUMMARY (CONTINUED)

G. Site Geology & Hydrogeology

The property is underlain primarily by sandy fill material to approximately 3 to 5 feet bgs across a majority of the site. The fill is underlain by a mixture of clay, silt and sand to a depth of approximately 14 feet bgs, underlain by sand and/or silty sand to a depth of 25 to 30 feet bgs.

Unconfined groundwater conditions exist at the site. A shallow water-bearing zone consisting of highly permeable sand is present beneath 14 feet bgs to a depth of 25 to 30 feet bgs, and is underlain by a silty clay layer. Since 1994, the depth to groundwater beneath and surrounding the site has ranged from approximately 13.6 feet bgs to 23.6 feet bgs over twenty-three years of monitoring. Groundwater elevation data indicates the groundwater beneath the site generally flows northwards to eastwards, consistent with the local topography.

H. Dissolved Phase Contaminant Plume

A groundwater monitoring well network consisting of seven monitoring wells (MW-1 through MW-7) and three extraction wells (AS-1 through AS-3) were installed at the site. Results of groundwater monitoring conducted from 1994 to 2017 indicated the dissolved phase contaminant plume is defined both laterally and vertically and has been decreasing over time. At time of case closure the plume length was estimated to be less than 250 feet as defined by analytical results from monitoring well MW-3 and MW-5

Contaminant concentrations are generally highest in source wells MW-2 and MW-3, which are both located near the former USTs, and in offsite wells MW-4 and MW-6 located down/cross gradient from the source area. Benzene concentrations have dramatically decreased in source area well MW-2 subsequent to the commencement of SVE/AS remediation in 2007. TPHg concentrations remain elevated but exhibit a long term declining trend in wells MW-2 and MW-3.

Hydrocarbons detected in wells MW-4 and MW-6 located across the street appear to be in part from an offsite source. Since the USTs were removed in 1992 and because of the lack of confirmed detectable historical MTBE in source wells, and higher MTBE concentrations in off-site wells, MTBE is not considered a compound of concern at this site.

The downgradient extent of TPHg and benzene contamination in groundwater is defined by monitoring well MW-5. The vertical extent of contamination at the site is defined by samples collected from wells AS-1 through AS-3. Wells AS-1 through AS-3 are screened from approximately 27 to 30 feet bgs and did not contain any contaminant concentrations above applicable environmental screeing levels except 10 µg/L benzene in well AS-1. The maximum explored depth at the site is approximately 30 feet bgs. There is a layer of clay at approximately 30 feet bgs near the former USTs that is likely preventing contaminants from migrating into deeper water-bearing zones.

I. Non Aqueous Phase Liquid (NAPL)

Indirect and direct evidence of non-aqueous phase liquid (NAPL) had been observed in soil and groundwater samples collected at the site. Direct evidence of free product includes observations of sheen in the location of the former USTs in boring logs EB-1GWS and EB-3GWS and in groundwater monitoring well MW-3 in 1994. However, no other observations of free product were observed at the site during subsequent groundwater monitoring events and investigations.

Indicators of residual-phase NAPL in soil and groundwater at the site include TPHg concentrations in soil up to 1,500 mg/kg and TPHg and BTEX concentrations in groundwater up to 394,000 micrograms per liter (μ g/L) and greater than 20,000 μ g/L, respectively. Generally, the highest concentrations of contaminants in soil and groundwater were detected during tank removal activities in August 1992 or during early investigations and groundwater monitoring events in 1994. Since 1994 concentrations in soil and groundwater indicate significant biodegradation of the residual NAPL in the vicinity of the former USTs has occurred.

Douglas Parking Company(T0600100140/RO0000129)

3. LUST CASE SUMMARY (CONTINUED)

J. Soil

In 1992, elevated contaminant concentrations were detected in source area soil near the former USTs. In July 1994, elevated contaminant concentrations were detected east and northeast of the USTs at depths of approximately 20 and 20.5 feet bgs in predominately sandy soil. In February and May 1996, soil samples from borings SB-A through SB-I did not contain any contaminant concentrations above applicable environmental screening levels. Additionally, source area confirmation soil borings CB-1 and CB-2, drilled in December 2013 and analyzed for TPHg, BTEX, MTBE and naphthalene did not contain any detectable contaminant concentrations. The extent of soil contamination at the site is well defined by the existing soil sample data.

K. Soil Vapor

To evaluate soil vapor conditions at the site, soil vapor sampling was conducted from two semi-permanent soil gas probe locations (SG-1 and SG-2) installed at a depth of 5 feet bgs and three subslab vapor probes (SS-1, SS-2 and SS-3) installed beneath the slab of the building. Subslab probe SS-1 was installed near the source area in an adjacent retail building. Soil vapor probe SG-1 and subslab probe SS-2 were installed in the driveway near the source area. Soil gas probe SG-2 and subslab probe SS-3 were installed near well MW-2 inside the parking garage near the office. Multiple rounds of soil vapor sampling was conducted. TPHg, benzene, toluene and xylenes were detected in soil vapor however the concentrations were below applicable commercial environmental screening levels. Methane concentrations were detected below the reporting limit of 5,200 micrograms per cubic meter (µg/m³).

L. Preferential Pathways

To evaluate the potential for contaminant migration via preferential pathways, subsurface utilities were surveyed beneath the site and nearby vicinity and compared utility depths to groundwater depth and contaminants in site monitoring wells. The conduit study identified several subsurface utilities at or near the site. The primary conduits of concern were the two 18-inch diameter sanitary sewer lines adjacent to the site, which are the deepest of the identified conduits. Given the historical range of depth to water in site wells of approximately 18 to 22 feet bgs near the USTs and primary impact area, the 18-inch diameter sanitary sewer lines have very limited potential to intersect groundwater. Although the potentiometric surface of groundwater could occasionally be shallower than the bottom of these conduits, groundwater was first encountered at a depth of approximately 20 feet or deeper in site borings near the primary impact area. This information suggests that the sanitary sewer and storm drain lines do not likely act as preferential pathways for significant contaminant migration.

A survey was conducted of the surrounding businesses for subgrade structures to evaluate if basements were present that could potentially act as a preferential pathways for VOCs migration from the residual groundwater plume that could pose a potential vapor intrusion risk. No basements were identified in nearby buildings downgradient (north-northwest) of the site.

Refer to Attachment 13 for additional information on preferential pathways.

Leaking Underground Storage Tank (LUST) Cleanup Site Case Closure Summary Form Douglas Parking Company(T0600100140/RO0000129)

3. LUST CASE SUMMARY (CONTINUED)

M. Sensitive Receptors

A sensitive receptor survey was conducted that included a search for all domestic and municipal wells within ¼ mile radius of the site and identification of the nearest surface water bodies and land usage near the site. The purpose of the sensitive receptor survey was to help determine if site contamination poses risks to human health and the environment.

Commercial properties were identified as dominating both sides of Webster Street and most of the surrounding areas. Residential properties were identified as present above the commercial properties near the site, but were predominantly located northeast to southeast of the site, adjacent to Lake Merritt. The closest surface water body and water supply well were located at a distance greater than 1,000 feet from the site. No other sensitive receptors (e.g., hospitals, day care centers, senior facilities, etc.) were identified within the search area.

Refer to Attachment 5 and Attachment 13 for additional information.

N. Groundwater Beneficial Use

According to the Basin Plan from the San Francisco Bay Regional Water Quality Control Board, the site lies near the northern end of the East Bay Plain Subbasin of the Santa Clara Valley Basin. The existing beneficial uses for this basin include (1) municipal and domestic water supply, (2) industrial process water supply, (3) industrial service water supply and (4) agricultural water supply.

Douglas Parking Company(T0600100140/RO0000129)

4. LUST CASE CLOSURE SUMMARY

A. Low Threat Closure Policy (LTCP) Evaluation

This UST release case has been evaluated for closure consistent with the State Water Resource Control Board's Low-Threat Underground Storage Tank Closure Policy (LTCP) for petroleum related contaminants. ACDEH has determined that the site meets all the LTCP General Criteria and Media Specific Criteria and thus the site poses a low threat to human health and safety and to the environment under current and reasonably anticipated near-term future scenarios.

At the time of case closure the property is being redeveloped with a mixed use commercial/residential facility. The entire site will be excavated to a depth of 16 feet bgs for underground parking and 20 feet bgs to accommodate four elevator pits. Engineering controls will be installed including a vapor mitigation system beneath the building and placement of concrete plugs in the utility trenches as mitigation measures for vapor migration.

Refer to Attachments 4 through 7 for detailed information on the LTCP evaluation.

Well Status (Groundwater)No. of Wells Installed: 10 (MW-1 through MW-7, AS-1 through AS-3) MW-4 and MW-7 paved over in 2015 but located and destroyed in 2017	No. of Wells Lost: 0
No. of Wells Destroyed: 10	No. of Wells Retained: 0

B. Vapor Probe Status

No. of Soil Vapor Probes (VP) Installed: 2 (SV-1, SV-2) No. of Sub-Slab Probes Installed: 3 (SS-1, SS-2, SS-3)	No. of VPs Lost: 3 (SS-1, SS-2, SS-3)
No. of VPs Destroyed: 2 (SV-1, SV-2)	No. of VPs Retained: 0

C. Remediation System Decommissioning

Type of System	Soil Vapor Extraction and Air Sparging System
Remediation System Components Removed	Yes

D. Waste Removal Status

All investigation and remediation derived waste associated with the gasoline UST release was removed from the site.

E. Public Comment

A 60 day public notification period was completed on April 10, 2018. Refer to Attachment 3 for case closure notification information. No comments were received.

Douglas Parking Company(T0600100140/RO0000129)

5. ADMINISTRATIVE, INSTITUTIONAL & ENGINEERING CONTROLS

A. Land Use at Time of Closure

At the time of closure the land use at the site was a construction site where demolition of the existing structures were being demolished to facilitate construction of a planned mixed use commercial-residential building. Due to migration of volatile organic compounds in groundwater beneath the site from offsite sources the building is being constructed with engineering controls including a vapor mitigation system beneath the new foundation and plugs within utility trenches to mitigate vapor migration risks.

B. Administrative Controls

Site Management Requirements: Due to residual petroleum hydrocarbon subsurface contamination, the site has been closed with the following site management requirements. The site management requirements associated with this case are specific to petroleum hydrocarbon contamination related to historic releases from UST systems and do not address other site contamination that may be in the subsurface from historic land use at and in the vicinity of the site.

a. Repair & Maintenance of Existing Site Improvements: Any repair or maintenance activity of existing site improvements in areas of residual contamination requires planning and implementation of appropriate health and safety procedures prior to and during excavation activities. These activities include repair or maintenance of existing foundations, utility lines, hardscape, landscaping or other work occurring beneath the grade level of the existing finished surface. Activities covered under this category do not include modifications or redevelopment activities described below.

Each contractor shall be responsible for the safety of its employees and site visitors and must adhere to a site-specific health and safety plan prepared for the work in accordance with California Occupational Safety and Health Administration requirements and use properly trained personnel in accordance with California Code of Regulations, Title 29, Part 1910.120 Hazardous Waste Operations and Emergency Response (HAZWOPER) standards.

- a. Modifications to Existing Site Improvements: Prior to permitting of any proposed modifications to the existing site improvements that include modifications to the foundation, subsurface utilities and/or hardscape or subsurface work, the property owner and the local building and planning authority with permitting jurisdiction at the site must notify ACDEH as required by Government Code Section 65850.2.2. ACDEH will re-evaluate the site relative to the proposed modifications to assess risk to human health under the proposed changes.
- b. Site Redevelopment. Prior to permitting of any proposed site redevelopment including a change in land use to residential, or other conservative land use, the property owner and the local building and planning authority with permitting jurisdiction at the site must notify ACDEH as required by Government Code Section 65850.2.2. ACDEH will re-evaluate the site relative to the proposed redevelopment to assess risk to human health under the proposed land use scenario from subsurface contamination associated all recognized environmental concerns at the site.

C. Engineering & Institutional Controls

Vapor mitigation engineering controls are being installed as part of the site redevelopment and construction of the planned building. Regulatory oversight of the design, installation and long term monitoring of the vapor mitigation engineering controls is being provided by ACDEH under Site Cleanup Program Case No. T10000011235/RO0003268. Prior to building occupancy a Land Use Covenant will be recorded for the property.

Douglas Parking Company(T0600100140/RO0000129)

6. ADMINISTRATIVE, INSTITUTIONAL & ENGINEERING CONTROLS (CONTINUED)

D. Environmental Due Diligence

ACDEH recommends that during the environmental due diligence process (initiated as part of activities including, but not limited to, property transactions, bank refinancing, and redevelopment) that the site and parcels in the vicinity of the site be evaluated for risk from and exposure to potential chemicals of concern identified at this site.

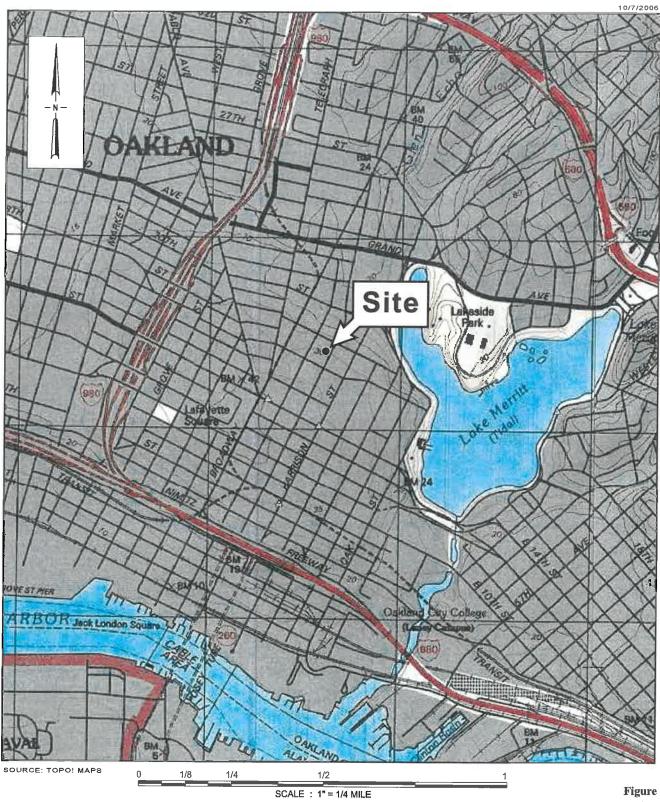
7. LOCAL AGENCY SIGNATURES

Dilan Roe, PE, C73703	Title: Chief, Land Water Division
Signature: Dlu 2	Date: MAY 10, 201 8
Paresh Khatri	LOP Supervisor
Signature: / MWK net	Date: MAY 10, 2018
Karel Detterman, PG 5628	Title: Senior Hazardous Materials Specialist
Signature: Kinel Dette	Date: Man, 10, 2018
•	0

This Case Closure Summary along with the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. Additional information on the case can be viewed in the online case file. Case files can be viewed over the Internet on the Alameda County Department of Environmental Health website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Both databases should be reviewed to obtain a complete history.

Leaking Underground Storage Tank (LUST) Cleanup Site Case Closure Summary Form Douglas Parking Company(T0600100140/RO0000129)

ATTACHMENTS


No.	Description	No. of Pages
1	Site Vicinity and Site Map Figures	5
2	Responsible Party Information	11
3	Case Closure Public Notification Information	1
4	Geotracker LTCP Evaluation Checklist	1
5	LTCP Media Specific Evaluation - Groundwater	2
6	LTCP Media Specific Evaluation - Vapor Intrusion	2
7	LTCP Media Specific Evaluation - Direct Contact	2
8	Figures with Sampling Locations	7
9	Boring Logs	38
10	Groundwater Data	28
11	Soil Data	6
12	Soil Vapor Data	2
13	Sensitive Receptor Data	4

Leaking Underground Storage Tank (LUST) Cleanup Site Case Closure Summary Form Douglas Parking Co.(T0600100140/R00000129)

ACRONYMS

ACDEH APN BTEX EDB	Alameda County Department of Environmental Health Assessor Parcel Number
BTEX EDB	
EDB	honzono toluono ethylhonzona sustania
	benzene, toluene, ethylbenzene, xylenes
FDA	ethylene dibromide or 1,2-dichloroethane (1,2-DCA)
EDC	ethylene dichloride
CEG	Certified Engineering Geologist
Cd	cadmium
Cr	chromium
c/o	care of
DIPE	di-isopropyl ether
DTSC	California Department of Toxic Substances Control
EPA	Environmental Protection Agency
ETBE	Ethyl tert butyl ether
EtOC	ethanol
ft bgs	feet below ground surface
GW	groundwater
IA	indoor Air
ID	Identification
K	1,000
LOP	Local Oversight Program
LTCP	State Water Resources Control Board's Low Threat Closure Policy
LUST	Leaking Underground Storage Tank
MTBE/TBA	methyl tert butyl either/t-Butyl alcohol
Ni	nickel
NA	not analyzed
NR	not required
OA	outdoor air
Pb	lead
PCBs	polychlorinated biphenyls
PE	California Professional Engineer
PG	California Professional Geologist
S	soil
SCP	Site Cleanup Program
SS	sub-slab vapor
SV	soil vapor
SVOCs	semi volatile organic compounds
SW	surface water
TAME	tert amyl methyl ether
TPHbo	total petroleum hydrocarbons as bunker oil
TPHd	total petroleum hydrocarbons as diesel
TPHg	total petroleum hydrocarbons as gasoline
TPHho	total petroleum hydrocarbons as hydraulic oil
TPHjf	total petroleum hydrocarbons as jet fuel
TPHk	total petroleum hydrocarbons as kerosene
TPHmo	total petroleum hydrocarbons as motor oil
TPHss	total petroleum hydrocarbons as stoddard solvent
UST	Underground Storage Tank
VOCs	volatile organic compounds
Zn	zinc
mg/kg	milligrams per kilogram
μg/ L	microgram per liter
μg/m3	microgram per cubic meter
>, <, ≥	greater than, less than, or greater than or equal to
%	percent

ATTACHMENT 1



1

Vicinity Map

Douglas Parking Facility 1721 Webster Street Oakland, California

Source: Google Earth Pro, image dated 10/30/15

Neighboring Properties

- 1 Davan Thai Cuisine, 1803 Webster Street
- 2 Burger Gourmet, 351 19th Street Bar 353, 353 19th Street Parlour Restaurant, 357 19th Street Rotisserie Deli, 361 19th Street
- 3 Mama's Vietnamese Restaurant, 365 19th Street
- 4 The Learnington Building (Former Hotel Now Office Space),1840 Franklin Street
- 5 Franklin Street, David Fong DDS, 1730 Franklin Street Franklin Sequoia Healing Clinic, 1728 Franklin Street CC Kitchen (Juice Bar), 1728A Franklin Street
- 6 Franklin, Mamacitas Café/UPS Store, 1714 Franklin Street
- 7 Franklin unknown, possibly Pangea Emvironmental Services, 1710 Franklin Street Gene Waldman DDS, 1708 Franklin Street
- 8 Le Magic Cleaners, 1706 Franklin Street
- 9 Liba Falafel, 380 17th Street Temple Tatoo, 384 17th Street Oa LA LA Gift & Accessories, 386 17th Street Unknown-Vacant, 388 and 390 17th Street

- 10 Mona's Hair Design & Mimi's Beauty Supply, 350 17th Street
 Regina's Door (Vintage Dress Boutique), 352 17th Street
 Pho 84 (Vietnamese Restaurant), 354 17th Street
 Mimi's Custom Design & Alteration, 360 17th Street
 Beauty Salon, 370 17th Street
 Showcase Wigs, 372 17th Street
 Change Hair Studio, 374 17th Street
 Vacant (former convenience store), 378 17th Street
- 11 Restaurants
- Howden Building (Howden Market/Spice Monkey Restaurant/ Bike Shop/Hamburger Restaurant), 337 17th Street
- 13 American Cancer Society, 1700/1710 Webster Street
- 14 Mentone Apartments, 1732 Webster Street Molcajete Restaurant, 1734 Webster Street
- 15 Douglas Parking

- 16 Former Dai-Ten Japanese Restaurant), 1830 Webster Street 19th Street Station (Bar), 339 19th Street Free Range Studios (Web Design), 343 19th Street Wireless Options (mobile devices), 337 19th Street Field Day Clothing Company, 329 19th Street Vacant (former Burnas Pizza), 325 19th Street
- 17 Franklin Plaza Parking
- 18 First Church of Christ Scientist, 1701 Franklin Street

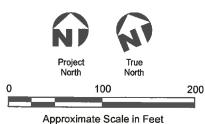


Figure 2
Site Vicinity

1717 Webster St - Google Maps

Gogle Maps 1717 Webster St

Oakland, California

Google, Inc.

Street View - Jun 2011

Cutterfly above. Jun 2013

20, 1721 Webst

2017_0617

2016016

1721 Webster Oakland, CA Holland Partner Group / Solomon Cordwell Buenz

HOLLAND PARTINGS GROUP

ATTACHMENT 2

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

COLLEEN CHAWLA, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

April 26, 2018

Mr. Leland Douglas Douglas Parking Co. 1330 Broadway #630 Oakland, CA 94612

(Sent via e-mail to: lee@douglasparking.com)

Nash Holland 1721 Webster Investors LLC 1970 Broadway, Suite 300 Oakland, CA 94612

Subject:

Updated Notice of Responsibility, Fuel Leak Case RO0000129 and GeoTracker Global ID

T0600100140 Douglas Parking Co, 1721 Webster ST, Oakland, CA 94612

Dear Ladies and Gentlemen:

In a Notice of Requirement to Reimburse dated November 20, 1992, Leland Douglas of the Douglas Motor Service was notified that the above referenced site had been placed in the Local Oversight Program and that they had been named as a Responsible Party for the fuel leak case. Additional parties have been named as Responsible Parties for the fuel leak case in the attached updated NOR as defined under 23 C.C.R Sec. 2720. Please see Attachment A — Responsible Parties Data Sheet, which identifies all Responsible Parties and provides background on the unauthorized release and Responsible Party Identification.

Should you have any questions, please contact me at (510) 567–6708 or send me an e-mail message at karel.detterman@acgov.org.

Sincerely,

Karel Detterman, P.G.

Senior Hazardous Materials Specialist

Enclosures:

Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

Attachment A – Responsible Parties Data Sheet-Notice of Responsibility (NOR)

CC:

Dilan Roe (sent via electronic mail to: dilan.roe@acgov.org)

Paresh Khatri (sent via electronic mail to: paresh.khatri@acgov.org)

Karel Detterman, ACEH, (sent via electronic mail to: karel.detterman@acgov.org)

Case Electronic File, GeoTracker

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY COLLEEN CHAWLA, Director

DEPARTMENT OF ENVIRONMENTAL HEALTH
OFFICE OF THE DIRECTOR
1131 HARBOR BAY PARKWAY
ALAMEDA, CA 94502
(510) 567-6777

Certified Mail #: 7011 3500 0003 1934 9013

April 26, 2018

NOTICE OF RESPONSIBILITY

Site Name & Address

Douglas Parking Company 1721 Webster Street Oakland, CA 94612 Local ID: RO0000129
Related ID: STID 4070
RWQCB ID: 01-0150
Global ID: T0600100140

Responsible Party:

NASH HOLLAND 1721 WEBSTER INVESTORS LLC 1970 BROADWAY, SUITE 300 OAKLAND, CA, 94612 Date First Reported: 1/7/1993

Substance:

8006619-Gasoline-Automotive,

Funding for Oversight: LOPs LOP State Fund

Multiple RPs? Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified NASH HOLLAND 1721 WEBSTER INVESTORS LLC as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker Karel Detterman at this office at 510-567-6708 if you have any questions regarding your site.

RONALD BROWDER, Director Contract Project Director Action: ADD

Reason: UPDATE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY COLLEEN CHAWLA, Director

DEPARTMENT OF ENVIRONMENTAL HEALTH
OFFICE OF THE DIRECTOR
1131 HARBOR BAY PARKWAY
ALAMEDA, CA 94502
(510) 567-6777

Certified Mail #:

April 26, 2018

NOTICE OF RESPONSIBILITY

Site Name & Address

Douglas Parking Company 1721 Webster Street Oakland, CA 94612

Responsible Party:

DOUGLAS MOTOR SERVICE & DOUGLAS PARKING COMPANY 1721 WEBSTER ST OAKLAND, CA 94612-3411 Local ID: RO0000129
Related ID: STID 4070
RWQCB ID: 01-0150
Global ID: T0600100140

Date First Reported: 1/7/1993

Substance:

8006619-Gasoline-Automotive,

Funding for Oversight: LOPs LOP State Fund

Multiple RPs? Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified DOUGLAS MOTOR SERVICE & DOUGLAS PARKING COMPANY as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker Karel Detterman at this office at 510-567-6708 if you have any questions regarding your site.

	Date:	Action: ADD
RONALD BROWDER, Director		Reason: UPDATE

ALAMEDA COUNTY DEPARTMENT OF ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

4/26/2018

Site Name & Address:

Douglas Parking Co 1721 Webster St. Oakland, CA 94612 Local ID: R00000129

Related ID: STID 4070

RWQCB ID: 01-0150

Global ID: T0600100140

All Responsible Parties

RP has been named a Primary RP –NASH HOLLAND 1721 WEBSTER INVESTORS LLC 1970 BROADWAY, SUITE 300 | Oakland, CA 94612 | No Phone Number Listed

RP has been named a Primary RP — DOUGLAS MOTOR SERVICE & DOUGLAS PARKING COMPANY 1330 Broadway #630 | OAKLAND, CA 94612-3411 | No Phone Number Listed

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET (Continued)

4/26/2018

Responsible Party Identification Background

Alameda County Department of Environmental Health (ACDEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party four ways. An RP can be:

- 1. "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET (Continued)

4/26/2018

Existence of Unauthorized Release

On August 3 and 6, 1992 one 1,000-gallon gasoline and two 500-gallon gasoline underground storage tanks (USTs) from the subject site. Up to 1,500 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and up to 12 mg/kg benzene were detected in the soil samples collected from the UST excavation. These data indicate that an unauthorized release from the USTs had occurred at the site.

Responsible Party Identification

APN 8-624-6 and APN 8-624-7

DOUGLAS MOTOR SERVICE & DOUGLAS PARKING COMPANY purchased or acquired the property in 12/22/1977. **DOUGLAS MOTOR SERVICE & DOUGLAS PARKING COMPANY** is a Responsible Party for the site because it owned or operated an underground storage tank used for the storage of any hazardous substance (Definition 1), it owned or operated the underground storage tank immediately before the discontinuation of its use (Definition 2), it owned the property where an unauthorized release of a hazardous substance from an underground storage tank has occurred (Definition 3), and it had control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance (Definition 4).

NASH HOLLAND 1721 WEBSTER INVESTORS LLC purchased or acquired the property in 11/07/2017. NASH HOLLAND 1721 WEBSTER INVESTORS LLC is a Responsible Party for the site because it owns the property where an unauthorized release of a hazardous substance from an underground storage tank has occurred (Definition 3).

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

RAFAT A. SHAHID, ASST. AGENCY DIRECTOR

DEPARTMENT OF ENVIRONMENTAL HEALTH
State Water Resources Control Board
Division of Clean Water Programs
UST Local Oversight Program
80 Swan Way, Rm 200
Qakland, CA 94621

(510) 271-4530

Certified Mail # P 113 815 231

11/20/92 STID# 4070

Notice of Requirement to Reimburse

Leland Douglas Douglas Motor Service 1721 Webster St. Oakland, Ca 94612

Douglas Parking Co. 1721 Webster St. Oakland , CA 94612 Responsible Party Property Owner

Date First Reported 08/12/92 SITE Substance: Gasoline

Substance: Gasoline Petroleum: (X) Yes

The federal Petroleum Leaking Underground Storage Tank Trust Fund (Federal Trust Fund) provides funding to pay the local and state agency administrative and oversight costs associated with the cleanup of releases from underground storage tanks. The legislature has authorized funds to pay the local and state agency administrative and oversight costs associated with the cleanup of releases from underground storage tanks. The direct and indirect costs of site investigation or remedial action at the above site are funded, in whole or in part, from the Federal Trust Fund. The above individual(s) or entity(ies) have been indentified as the party or parties responsible for investigation and cleanup of the above site. YOU ARE HEREBY NOTIFIED that pursuant to Title 42 of the United States Code, Section 6991b(h)(6) and Sections 25297.1 and 25360 of the California Health and Safety Code, the above Responsible Party or Parties must reimburse the State Water Resources Control Board not more than 150 percent of the total amount of site specific oversight costs actually incurred while overseeing the cleanup of the above underground storage tank site, and the above Responsible Party or Parties must make full payment of such costs within 30 days of receipt of a detailed invoice from the State Water Resources Control Board.

Please contact Tom PEACOCK, Supervising Hazardous Materials Specialist at this office if you have any questions concerning this matter.

Edgar B. Howell, III, Chief Contract Project Director

cc: Sandra Malos, SWRCB

SWRCB Use:

Add: X Reason: New Case

P 113 815 231

Receipt for Certified Mail No Insurance Coverage Provided

(TP)	#4070 (See Reverse)	nternational Mail					
	Leland Douglas Street and No. 1721 Webster Street						
	P.O., State and ZIP Code Oakland CA 94	4612					
	Postage	\$	ĺ				
	Certified Fea						
	Special De very Fee						
	Restricted Delivery Fed						
99.1	Return Receipt Showing to Whom & Date Delivered						
ine 1	Return Receipt Showing to Whom. Date, and Addressee's Address						
ر ر	TOTAL Postage & Facs	\$					
380	Postmark or Date						
PS Form 3800, June 1991			-				

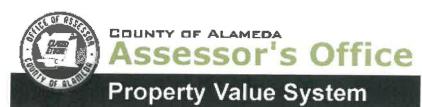
on the reverse side?	Complete items 1 and/or 2 for additional services. Complete items 3, and 4e & b. Print your name and address on the reverse of this form so the return this card to you. Attach this form to the front of the malipiace, or on the back it does not permit. Write "Return Receipt Requested" on the malipiace below the article was delivered at delivered.	f space icle number.	i also wish to receive the following services (for an extra fee): 1. Addressee's Address 2. Restricted Delivery Consult postmester for fee.
BYOWN METURN ADDRESS completed o	3. Article Addressed to: (TO) #4070 Leland Douglas Douglas Motor Service 1721 Webster Street Oakland CA 94612 5. Signature (Addresse) 6. Signature (Addresse) 7. Signature (Addresse)	P 1 4b. Sen Regis Gerti Bloom 7. Date 8. Addr and	cle Number 13 815 231 vice Type stered

ASSESSOR'S Office
Property Value System

Help

New Query

History Va	lue	Transfer Map	Glos	sary		
Parcel Number: 8-624-6 INVESTORS LLC Property Address: 1739 WE	Inactive:I		Owner: N	ASH HOLLAND	1721 WEBST	ER
Mailing Name			Document Date	Document Number	Value Parce From Coun Trans Tax	
NASH HOLLAND 1721 WEBSTER INVESTORS LLC	<u>List</u> <u>Owners</u>	1111 MAIN ST STE 700, VANCOUVER, WA 98660- 2970		'2017- 246331	2	8400
DOUGLAS MOTOR SERVICE & DOUGLAS PARKING COMPANY	<u>List</u> <u>Owners</u>	1721 WEBSTER ST , OAKLAND, CA 94612-3411		1977- 251658	<u>2</u>	8400
BIRD WILLIAM H	<u>List</u> Owners	1739 WEBSTER ST , OAKLAND, CA 94612-3411		1971- 33194	1	8400
TRANSAMERICA TITLE INSURANCE COMPANY	<u>List</u>	1739 WEBSTER ST , OAKLAND, CA 94612-3411	04/23/1969	1969- 44959	1	8400


All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the

Assessor's knowledge of each property. Caution is advised for use other than its intended purpose.

The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later.

Click <u>here</u> for more information regarding supported browsers.

Copyright © 2001 Alameda County

Help

New Query

	The state of the s				7
- 1	History	Value	Transfer	Man	Glassami
	Instory	value ;	Hallolel	Map	Glossary

Parallal 2 204 F at a Carte May Clossary

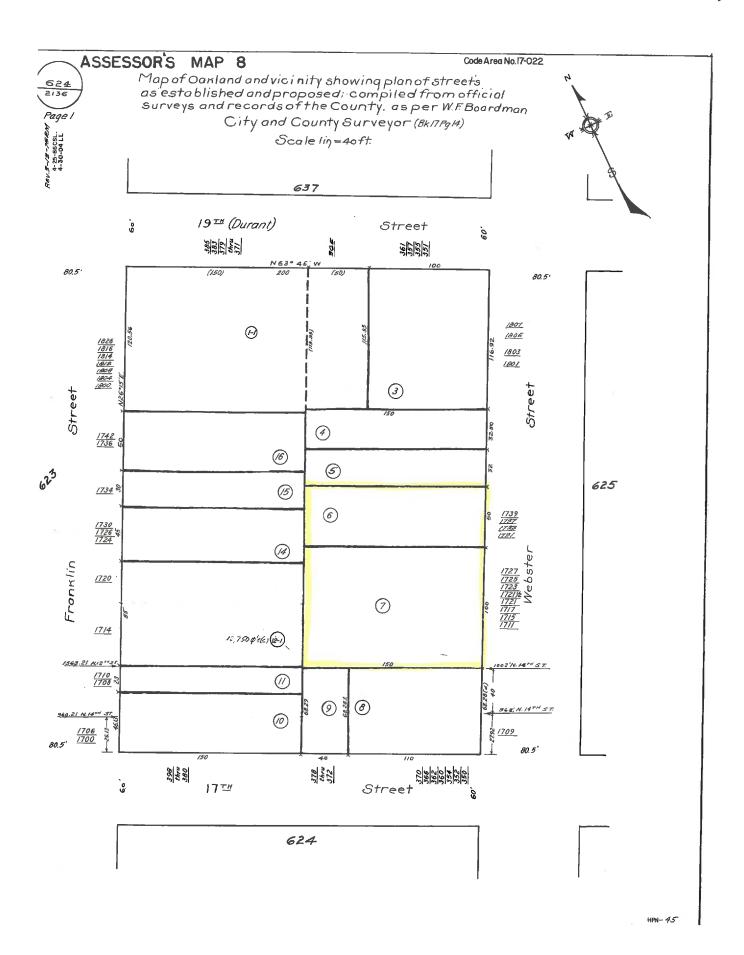
Parcel Number: 8-624-7 INVESTORS LLC

Inactive:N Lien Date:01/01/2017

Owner: NASH HOLLAND 1721 WEBSTER

Property Address: 1717 WEBSTER ST, OAKLAND, CA 94612-3411

Mailing Name		Historical Mailing Address	Document Date	Document Number	Value From Trans Tax		
NASH HOLLAND 1721 WEBSTER INVESTORS LLC	<u>List</u> <u>Owners</u>	1111 MAIN ST STE 700, VANCOUVER, WA 98660- 2970	11/07/2017	72017- 246331		2	8400
DOUGLAS MOTOR SERVICE & DOUGLAS PARKING COMPANY	<u>List</u> <u>Owners</u>	1721 WEBSTER ST , OAKLAND, CA 94612-3411		' 1977- 251658		2	8400
BIRD WILLIAM H	<u>List</u> <u>Owners</u>	1717 WEBSTER ST., OAKLAND, CA 94612-3411	03/24/1971	1971- 33195		1	8400
TRANSAMERICA TITLE INSURANCE COMPANY	<u>List</u> <u>Owners</u>	1717 WEBSTER ST , OAKLAND, CA 94612-3411		1969- 50865		1	8400


All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the

Assessor's knowledge of each property. Caution is advised for use other than its intended purpose.

The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later.

Click <u>here</u> for more information regarding supported browsers.

Copyright © 2001 Alameda County

ATTACHMENT 3

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

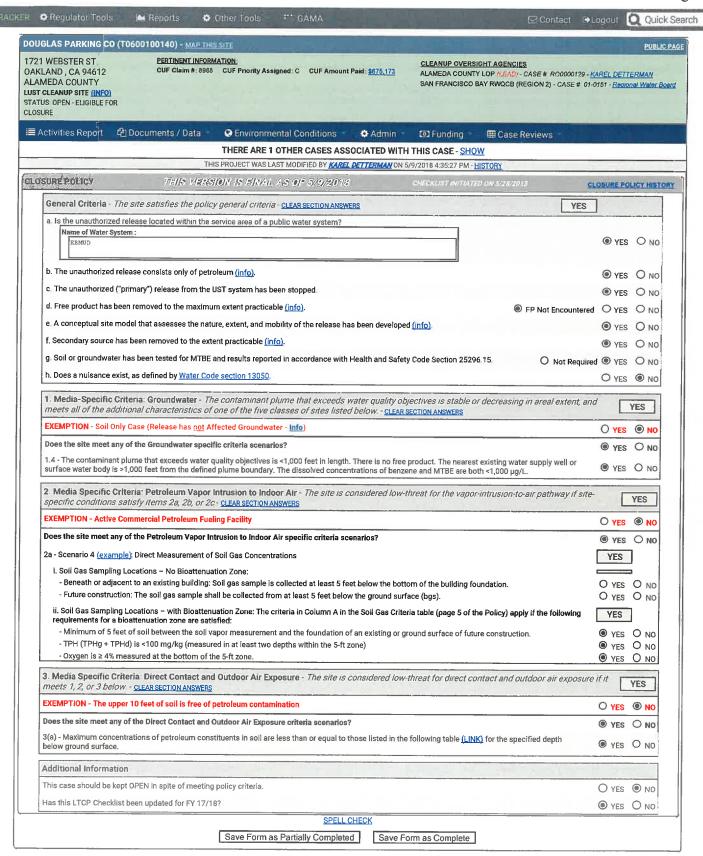
COLLEEN CHAWLA, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

<u>INVITATION TO COMMENT – POTENTIAL CASE CLOSURE</u>

Douglas Parking Company
1721 Webster Street
Oakland, CA 94612
FUEL LEAK CASE RO0000129
GEOTRACKER GLOBAL ID T0600100140

February 9, 2018


The above referenced site is a fuel leak case that is under the regulatory oversight of the Alameda County Department of Environmental Health (ACDEH) Local Oversight Program for the investigation and cleanup of a release of petroleum hydrocarbons from an underground storage tank system. Site investigation and cleanup activities have been completed and the site has been evaluated in accordance with the State Water Resources Control Board Low-Threat Closure Policy. The site appears to meet all of the criteria in the Low-Threat Closure Policy. Therefore, ACDEH is considering closure of the fuel leak case. Due to the residual contamination on site, the site would be closed to existing use with site management requirements that require further evaluation if the site is to be redeveloped in the future.

This notice is being sent to the current landowner in compliance with Health and Safety Code Section 25295.40. It is also being sent to the current occupants and landowners of adjacent properties and known interested parties for this site.

The public is invited to review and comment on the potential closure of the fuel leak case. The entire case file can be viewed over the Internet on the ACDEH website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Please send written comments to Ms. Karel Detterman at the address below; all comments will be forwarded to the responsible parties. Comments received by April 10, 2018 will be considered and responded to prior to a final determination on the proposed case closure.

If you have comments or questions regarding this site, please contact the ACDEH caseworker, Karel Detterman at 510-567-6708 or by email at karel.detterman@acgov.org. Please refer to ACDEH case RO0000129 in any correspondence.

ATTACHMENT 4

ATTACHMENT 5

Attachment 5: LTCP Media Specific Evaluation - Groundwater

LTCP MEDIA SPECIFIC CRITERIA - GROUNDWATER									
		Closure So	cenario						
 □ Exemption - Site has not affected groundwater; □ Scenario 1 - Short stabilized contaminant plume; ☑ Scenario 2, □ Scenario 3 - Moderate stabilized contaminant plumes; ☑ Scenario 4 - Long stabilized contaminant plumes; □ Scenario 5 - Site specific conditions demonstrate that the contaminant plume poses a low threat to the human health and the environment 									
Evaluation Criteria									
Key: Shading	j = site specific data	T		ched box indicates n					
Element	Site Specific	Short Plume Scenario		rate Plume cenario	Long Plume Scenario				
Evaluated	Data	□ 1	⊠ 2	□ 3	⊠ 4				
Plume Length (feet)	□ <100 ⋈ <250 □ <1,000 □ ≥1,000	□ <100	⊠ <250	⊠ <250	⊠ <1,000				
Free Product	☒ No FP☐ FP Onsite☐ FP Offsite☐ Removed to☐ Max Extent	⊠ No FP	⊠ No FP	☐ Removed to max extent onsite; ☐ Does not extend offsite	⊠ No FP				
Plume Stability	Image: StableImage: Image: StableImage: Image: Image: StableImage: Image: Imag	☑ Stable or decreasing	⊠ Stable or decreasing	✓ Stable or decreasing for ≥ 5 years	⊠ Stable or decreasing				
Distance to Nearest Water Supply Well from Plume Boundary (feet)	□ <250 □ >250 ⊠ >1,000	⊠ >250	⊠ >1,000	⊠ >1,000	⊠ >1,000				
Distance to Nearest Surface Water Body from Plume Boundary (feet)	□ >250 ⊠ >1,000	□ >250		⊠ >1,000	⊠ >1,000				
Maximum Benzene Concentrations (μg/l)	Historic Max: 10,000 Current Max: 120		⊠ <3,000		⊠ <1,000				
Maximum MTBE Concentrations (μg/l)	Historic Max: 560 Current Max: 260		⊠ <1,000		⊠ <1,000				
Property Owner Willing to Accept a Land Use Restriction	Not Required			□ Yes					

Attachment 5: LTCP Media Specific Evaluation - Groundwater

	LTCP MEDIA SPECIFIC CRITERIA - GROUNDWATER (CONTINUED)
Element	Analysis
Plume Length	The dissolved phase contaminant plume in groundwater is less than 250 feet.
Free Product	Free product has not been detected at the site since 1994.
Plume Stability	Twenty- three years of groundwater monitoring data indicates the dissolved phase groundwater plume concentrations are decreasing and/or stable.
Water Supply Wells	A search of the Department of Water Resources (DWR), Alameda County Public Works Agency (ACPWA) and State Water Resources Control Board GeoTracker Groundwater Ambient Monitoring Assessment (GAMA) databases indicated that the closest permitted water supply wells are irrigation wells located at a distance of 1,080 feet cross-gradient and 1,360 feet downgradient from the site. Thirteen additional permitted well locations were identified within the ¼ mile radius search of the site using DWR/ACPWA information. Seven of the thirteen locations were listed as groundwater monitoring wells and 6 were listed as test wells for the City of Oakland Redevelopment Agency. A review of the GAMA database indicated that two sites with groundwater monitoring wells were identified on Geotracker within a ¼ mile of the site. The identified monitoring wells were across Webster Street from the subject site and were associated with environmental cleanup cases at 1700-1710 Webster Street and 1750 Webster Street.
Surface Water Bodies	The closest surface water body is Lake Merritt, located approximately 1,276 feet cross gradient and east-northeast of the site and greater than 1,000 feet from the edge of the contaminant plume.

ATTACHMENT 6

Attachment 6: LTCP Media Specific Evaluation - Vapor Intrusion

	LTCP MEDIA SPECIFIC CRITERIA - VAPOR INTRUSION TO INDOOR AIR								
Closure Scenario									
□ Exemption - Active fueling station exempt from vapor specific criteria; □ Scenario 1 – Unweathered free phase LNAPL on groundwater; □ Scenario 2 – Unweathered residual LNAPL in soil; □ Scenario 3a, □ Scenario 3b, ☒ Scenario 3c – Dissolved phase benzene concentrations in groundwater; □ Scenario 4a - Soil vapor concentrations without bioattenuation zone; ☒ Scenario 4b - Soil vapor concentrations with bioattenuation zone; □ Site specific risk assessment demonstrates human health is protected; □ Exposure controlled through use of mitigation measures or institutional or engineering controls									
			luation Criteri						
Element	/: Shading = site specific Site Specific	High Conc Source Scenarios		Low Conc			narios		
Evaluated	Data	Unweathered	Disso	lved Phase Be	enzene				
		NAPL		in Groundwat					
	Highest Historic Water	☐ 1 or ☐ 2	□ 3a	☐ 3b	⊠ 3c	⊠ 4a	⊠ 4b		
Groundwater	Level (ft bgs): >13.6 ⊠ WT; □ SC; □ C								
⊠ WT □ SC □ C	Max Current Benzene Concentration (µg/L): 120 (offsite well MW-6) 2.7 (onsite well MW-2)	□ ≥3,000	⊠ <100	□ ≥100 & <1,000	⊠ <1,000				
NAPL □ W □ UW	☑ No NAPL☐ NAPL in Soil☐ NAPL on GW	□ UW in Soil or □ UW on GW	⊠ No UW in	Soil or GW					
Foundations ⊠ Existing □ Proposed □ None	Type: Slab Depth: Unknown								
Bioattenuation Zone Beneath:	Thickness (ft): □ <5; □ ≥5; ⊠ ≥10; □ ≥30	□ ≥30	⊠ ≥5	⊠ ≥10	⊠ ≥5	□ <5;	⊠ ≥ 5		
☐ Existing Foundations	TPHg+d Conc (mg/kg): 1.21	□ <100	⊠ <100	⊠ <100	⊠ <100	□ ≥100; or	⊠ <100 (at 2 depths)		
☐ Existing Grade	Oxygen Conc (%); ☐ <4; ⊠ ≥4; ☐ No data		□ No data or □ <4	□ No data or □ <4	⊠ ≥4	G □< 4	⊠ ≥4 (at bottom)		
Soil Vapor (Current Conditions)	Sample Depth (ft bgs): Subslab = 0.5 Soil Gas = 5					⊠ ≥5	⊠ ≥5		
☐ Soil Vapor ☐ Subslab	Benz Conc (μg/m³): 12 Ethylb Conc (μg/m³):					☒ R< 85☒ C<280☒ R<1,100	☑ C<85K☑ C<280K☑ R<1,100K		
Vapor ☐ No Samples Collected	<4.4 Napht Conc (μg/m³): <5.3					☑ C<3,600☑ R<93☑ R<310	✓ C<3,600K✓ R<93K✓ C<310K		

GW = Groundwater WT = Water Table SC = Semi-Confined C = Confined W= Weathered UW = Unweathered

Attachment 6: LTCP Media Specific Evaluation - Vapor Intrusion

	LTCP MEDIA SPECIFIC CRITERIA - VAPOR INTRUSION TO INDOOR AIR (CONTINUED)									
Location	Analysis									
Onsite	ACDEH evaluated the site for vapor intrusion risk under two scenarios: (1) the existing parking garage with commercial spaces; and (2) the proposed mixed use redevelopment building project. Under the existing configuration as a slab on grade structure the site met Scenario 3c, 4a and 4c of the Media Specific Criteria for Vapor Intrusion to Indoor Air. The foundation of the proposed mixed use redevelopment building will be 16 to 20 feet bgs to accommodate underground parking garage and four elevator pits. Although residual petroleum hydrocarbons in soil will be removed from the site, the new foundation will be in contact with residual contamination in groundwater beneath the site from both onsite and offsite sources. Therefore, the new building will be constructed with a vapor mitigation system to protect against potential vapor intrusion to indoor air. Trench plugs will also be installed within utility trenches where they enter the property on Webster Street in the location of the former tank pit to mitigate vapor migration along the utility corridor.									
Offsite	The groundwater plume is less than 250 feet in length and dissolved phase petroleum hydrocarbon volatile organic compounds from the historic UST release at the site are below concentrations that would pose an offsite vapor intrusion risk to buildings located over the residual groundwater plume under existing conditions.									

ATTACHMENT 7

Attachment 7 - Direct Contact Evaluation and Data

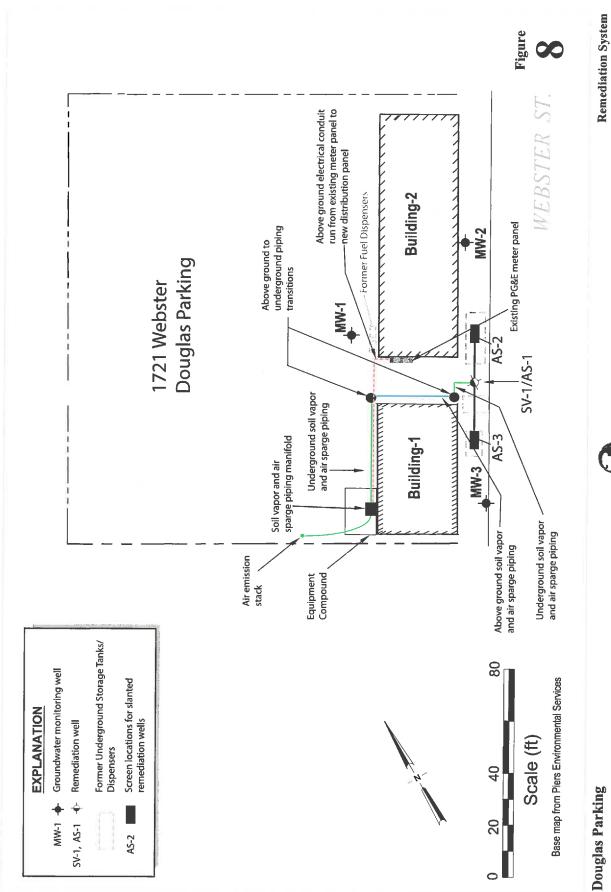
LTCP MEDIA SPECIFIC CRITERIA - DIRECT CONTACT AND OUTDOOR AIR EXPOSURE **Closure Scenario** ☐ Exemption (no petroleum hydrocarbons in upper 10 feet); Maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1 below; ☐ Maximum concentrations of petroleum constituents are less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health; □ Concentrations of petroleum in soil will have no significant risk of adversely affecting human health as a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls; ☐ This case should be closed in spite of not meeting the direct contact and outdoor air specific media criteria. **Evaluation Criteria** Green shading is site specific data; checked box indicates type of date or criteria met; hatched box indicates no criteria Residential Commercial/Industrial All Scenarios X X \boxtimes Constituent Direct Volatilization Direct Volatilization Construction (LTCP Criteria & Site Contact to Outdoor Contact to Outdoor Air or Utility Worker Maximum) Air 0 to 5 ft bgs 5 to 10 ft bgs 0 to 5 ft bgs 5 to 10 ft bgs 0 to 10 ft bgs (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Analysis Required For All Tanks Current < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 Site Max Benzene LTCP Criteria ⊠ ≤1.9 **⊠** ≤2.8 ⊠ ≤8.2 ⊠ ≤12 ⊠ ≤14 Current < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 Site Max Ethylbenzene LTCP Criteria ⊠ ≤21 ⊠ ≤32 ⊠ ≤89 ⊠ ≤134 ⊠ ≤314 Current < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 Site Max Naphthalene LTCP Criteria ⊠ ≤9.7 ⊠ ≤9.7 ⊠ ≤45 ⊠ ≤45 ⊠ ≤219 Analysis Required For Tanks with Waste Oil, Bunker C Fuel or Unknown Contents Current NR NR NR NR NR Site Max PAHs1 LTCP Criteria □ ≤0.063 □ ≤0.68 □ ≤4.5

NR = Not Required NA = Not Analyzed

Notes:

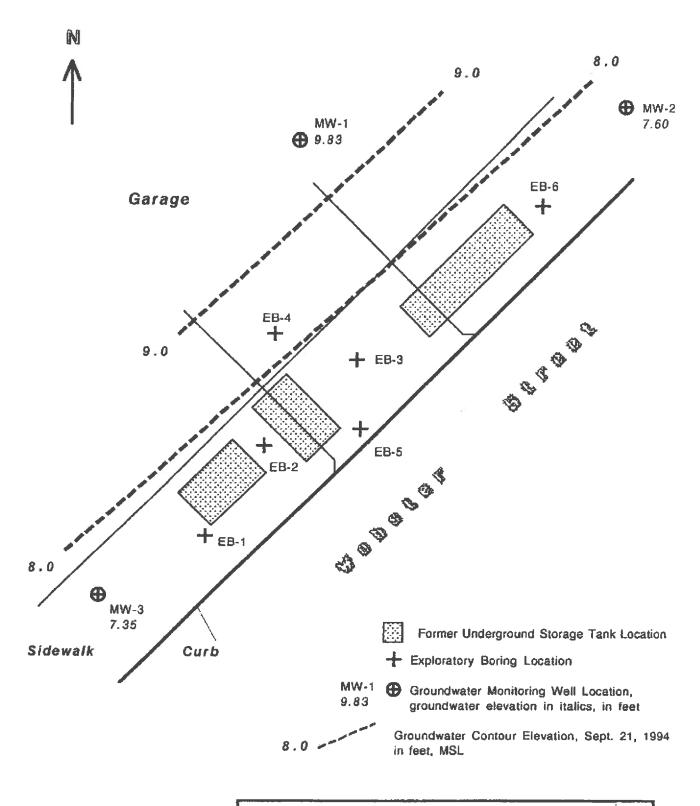
- 1. Based on the seven carcinogenic poly-aromatic hydrocarbons (PAHs) as benzo(a)pyrene toxicity equivalent (BaPe).
- 2. The area of impacted soil where a particular exposure occurs is ≤ 82 by 82 feet

Attachment 7 - Direct Contact Evaluation and Data

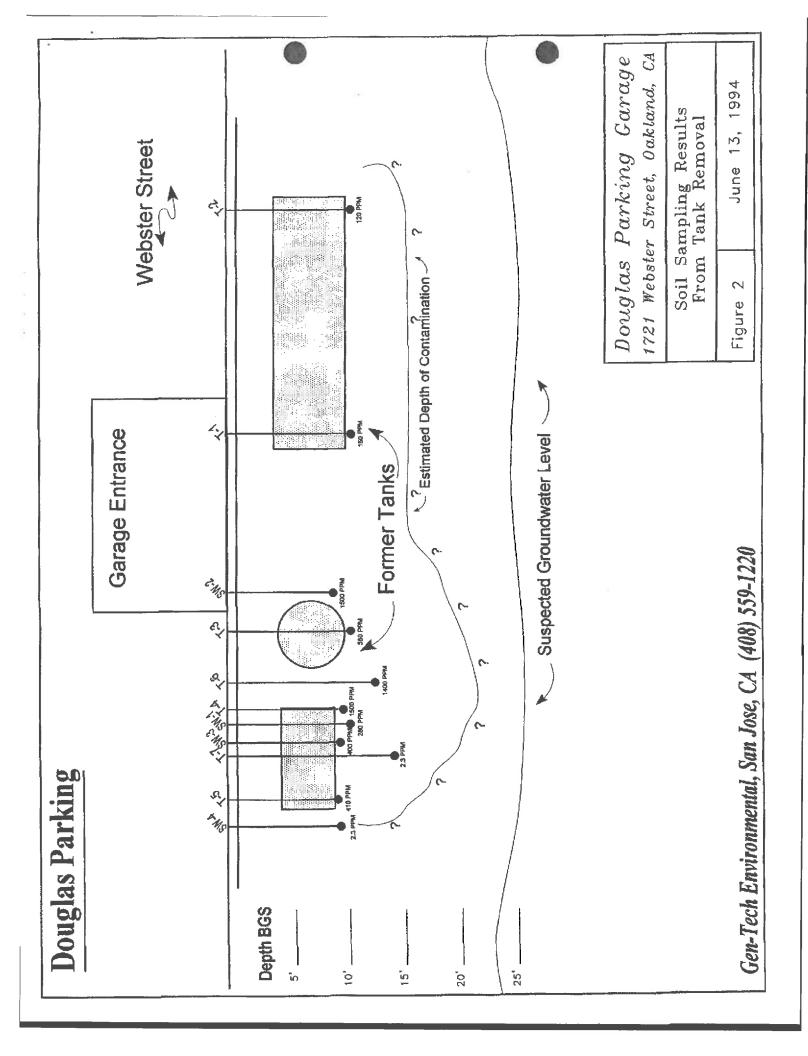

Location	Analysis
Onsite	The current maximum concentrations of hydrocarbons in soil within the 0 to 10 foot interval are less than the concentrations in Table 1 for residential, commercial and construction worker exposure as defined by confirmation borings CB-1 and CB-2 collected in the source area after remediation activities were conducted
Offsite	Residual source material may remain in the 0 to 10 foot interval in the vicinity of the former UST pit areas beneath the sidewalk. Sidewall samples collected in 1992 had maximum concentrations of 5.7 mg/kg benzene and 18 mg/kg ethylbenzene, however these concentrations are below the construction/utility worker concentrations in Table 1.

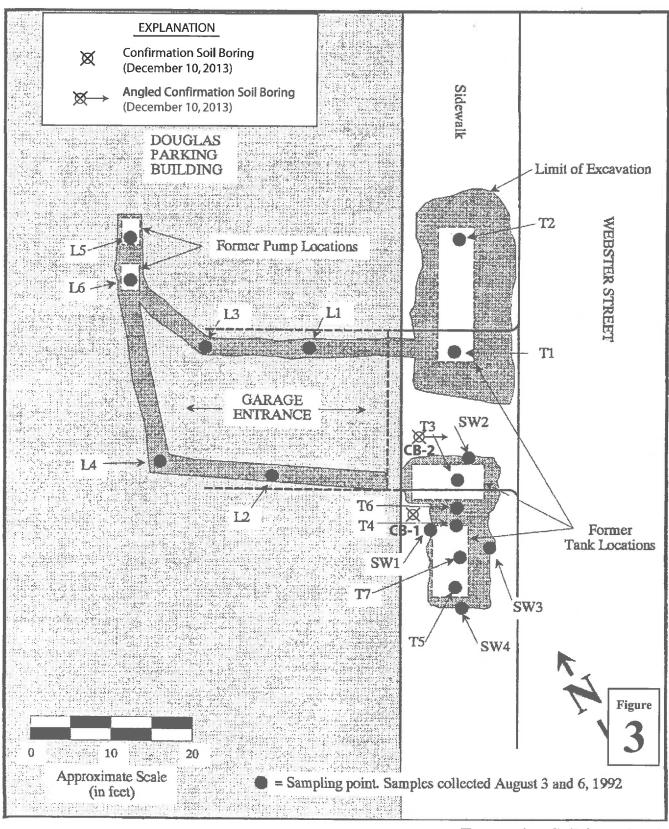
ATTACHMENT 8

Site Map


Douglas Parking 1721 Webster Street Oakland, California

Layout

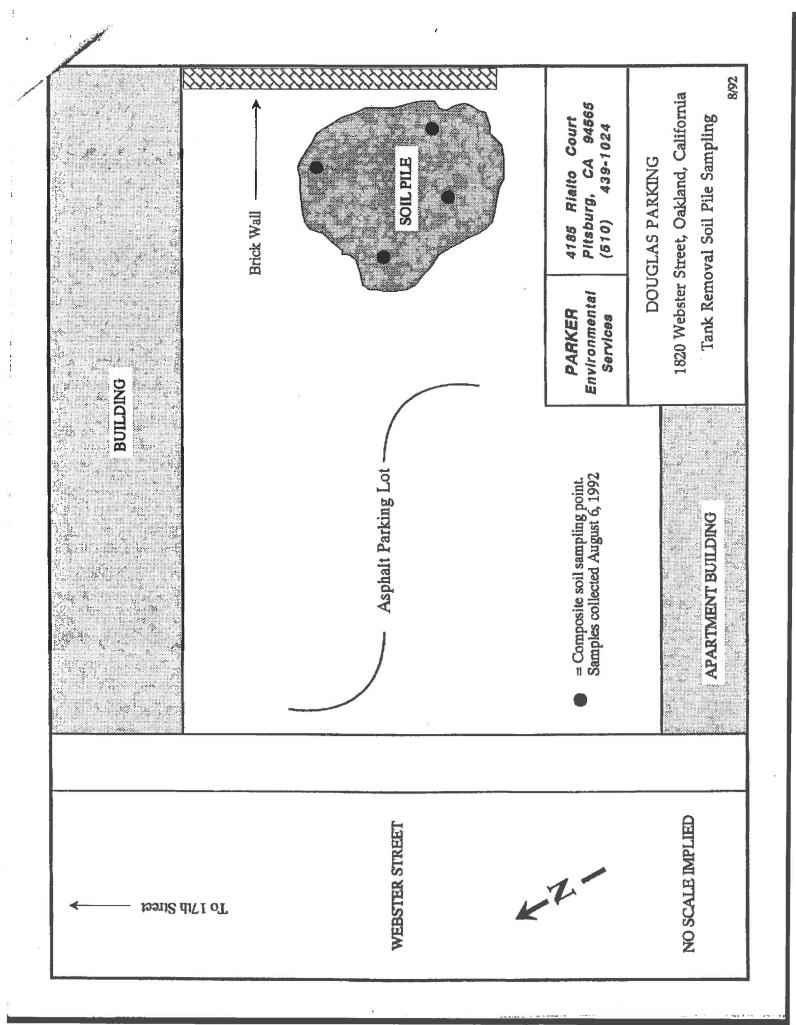

Oakland, California



GEN TECH ENVIRONMENTAL, INC. SAN JOSE, CA Site Plan and Groundwater Contour Map Douglas Parking 1721 Webster Street Oakland, CA

Project No. 9432 Scale: 1" = 100' Date: Dec., 1994

FIGURE 1



Douglas Parking 1721 Webster Street Oakland, California

Excavation Soil Samples & Confirmation Borings Map

ATTACHMENT 9

Project No. 9432 Boring/Well No. MW-1

Client: Douglas Parking Date Drilled: Sept. 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstern Permit: Zone 7 #94501

Water Levels: 1st Enc:23' Static: 21.7

Exploratory Boring Log

Borehole Completion

Well Installed: 2"dia. Sch 40 PVC

Total Depth: 30.5' Casing Depth: 30.5'

Screen Length: 10' 0.020" Blank Length: 20.5' Top Sand Pack: 16.5' Top Bentonite: 15.5

Grout Seal:15.5" to 0.5' vault box

_			4		Grout Seat:15.5" to 0.5' yau Top of Casing Elev. 29.25' M:	
Samp No.	OV	Blow Count	Sampl	Depth		Well Detail/ Backfill
					Concrete Surface	
	*	grab		- 5 -	SM-SC - Silty SAND to CLayey SAND, olive brown to dark olive brown 2.5Y3/3 to 4/4, drills loose to medium dense damp Clay content increases with depth	
@sc. 	-	24		- 10	Same as above, oxidation mottles, few burrows, medium dense, damp.	
₩W-1	*	53		- 15 -	SM - Silty SAND, olive brown 2.5Y4/4, fine to med. grained, 20% silt, very dense, damp.	
⊕20' MW-t	20	73		- 20	SP - SAND, dark greenish gray 5GY(4/1), fine to med. grained, very dense, moist.	
₩W-1	*	40		- 25	Same as above, dark grayish brown 2.5Y(4/2), very dense, saturated, flowing conditions.	
MW-1 @30*	:€	44		- 30	CL - Silty CLAY, pale olive 5Y(6/3), 15% silt, med. to higly plastic, hard, damp.	
					Bottom of Boring = 30.5 feet	
	·		· l		Cun cecisor	

Project No. 9432 Boring/Well No. MW-2 Client: Douglas Parking Date Drilled: Sept. 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstem Permit: Zone 7 #94501

Water Levels: 1st Enc. 24' Static: 20.1'

Exploratory Boring Log

Borehole Completion

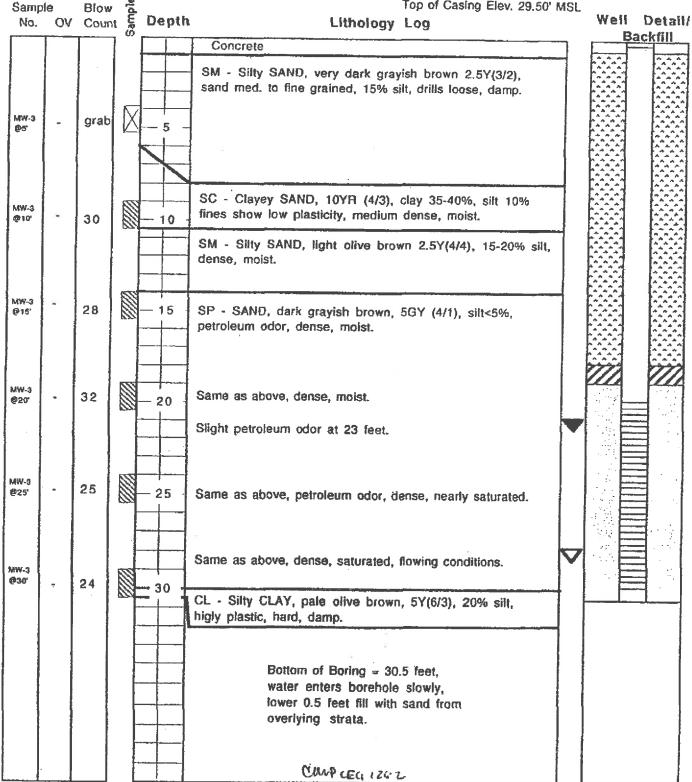
Well Installed: 2"dia. Sch 40 PVC Total Depth:30.5 Casing Depth: 29.5

Screen Length: 10' 0.020" Blank Length: 19.5 Top Sand Pack: 18.5' Top Bentonite: 17.5'

Grout Seal:17.5' to 0.5' vault box

Samp	ile	Blow		•	Top of Casing Elev. 27.10' MS	L	
No.	Han	Blow Coun	t Ş	Depth	Lithology Log	Well	Detail/
	T	Ι] ຶ		Concrete	Ba	ckfill
62. NM-5	-	grab	X	-5 -	SM - Silty SAND, very dark grayish brown 2.5Y(3/2), sand med. to fine grained, 15% silt, drills loose, damp.		
@10° MW-2	æ	27		- 10	SC - Clayey SAND, 10YR (4/3), clay 35-40%, silt 10% fines show low plasticity, medium dense, moist. SM - Silty SAND, light olive brown 2.5Y(4/4), 15-20% silt,		
MW-2 @15'	500 ppm	31		15	SP - SAND, dark grayish brown, 5GY (4/1), silt<5%,		
@20" @WW-2	4 0	34		— 20 ·	petroleum odor, dense, moist. Same as above, dense, moist.		222
₩W-2	•	38		- 25	Same as above, dense nearly saturated.		
MW-2 ⊕30'	-	44		30	Same as above, dense nearly saturated, flowing conditions. CL - Silty CLAY, pale olive brown, 5Y(6/3), 20% silt, higly plastic, hard, damp.		
					Bottom of Boring = 30.5 feet		
					Han- Hanby Field Analytical Chemical Colometric Test, in parts per million OIMP CEG 1262	E	
			L.	! !	- TO VERI LEVE	L	

Project No. 9432 Boring/Well No. MW-3 Client: Douglas Parking Date Drilled: Sept. 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstem Permit: Zone 7 #94501 Water Levels: 1st Enc. 28.20' Static: 21.60'

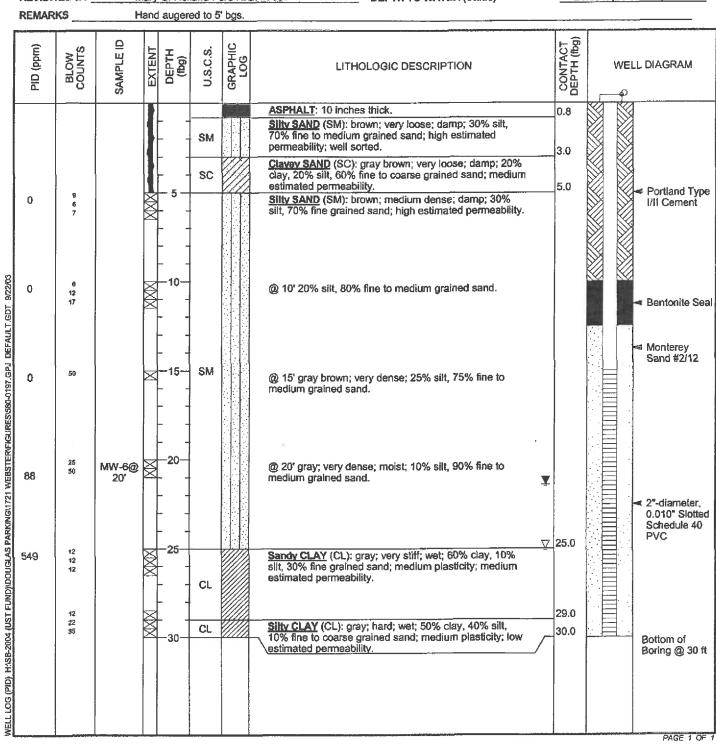

Exploratory Boring Log

Borehole Completion
Well Installed: 2"dia, Sch 40 PVC

Total Depth: 30.5' Casing Depth: 30' Screen Length: 10' 0.020" Blank Length: 20'

Top Sand Pack: 19' Top Bentonite: 18'

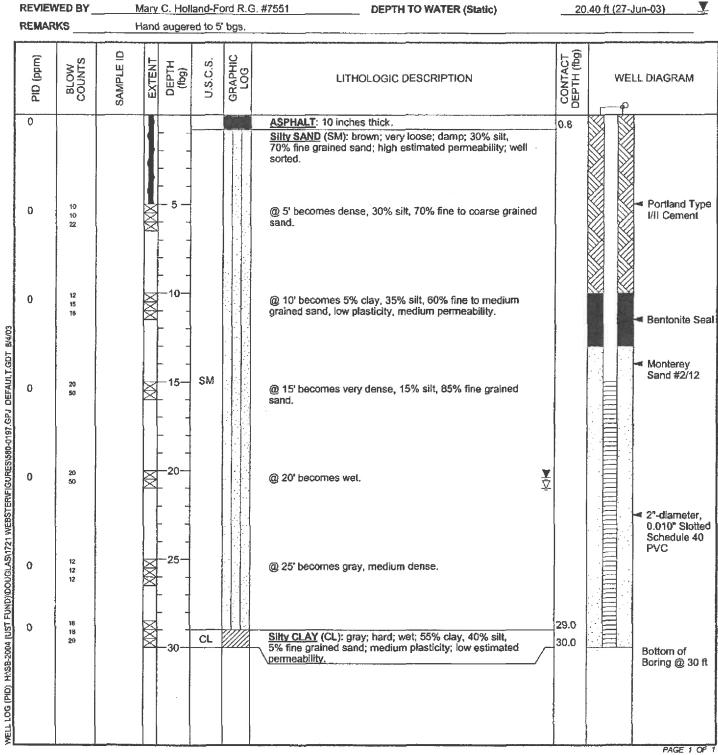
Grout Seal:18' to 0.5' vault box Top of Casing Elev. 29.50' MSL


DOUG INC. LOC											
Client: Douglas Parking Company							Well ID MW-4 Boring ID SB-H				
								Location 1721 Webster Street			
Project No: 58-197 Phase					Task02	Surfa	ce Elev. 2	25.64 ft,		Page 1 of 1	
SE	Blow	alc	ē		Lithologic		50€	. <u>2</u>	Well	ء عا	Well
Depth (feet)		Sample	Interval		•		TPHg (ppm)	Graphic Log	Construction	Depth (feet)	Construction
	Count	Sa	三		Description	į.	F @	<u>6</u>	Graphics	ŏ =	Details
-		┿	- `				 			+	
	j		1						ļ		T.O.C, Elev, 25.29
0	Ground Surface	8							RITTERTITE	0	
	-	17		ASPHALT	************		, 	2 0		-	
	}		ĺ	CONCRETE			1			ļ.	1
-			1	FILE: (ML); F	light brown; da silt, 30% fine to	mp; 10%		******		ļ.	
1			į	grained sand	d; low plasticity	y; low]	\bowtie		F	
5 -				estimated p	агтеариту	/				5	·.
1	2	M	ı	CILL CAND	(SM); brown; i		- 1			Ė	
]	11			dense: damo	p: 30% silt. 70	9% fine to				· ‡ ·	-
1 3				estimated pe	ined sand; mod ermeability	lerat o				F	
10	l				•			村相		F	
<u>'``</u>	6	H		†						10	
]	-11			1		ļ					
]	ĺ					*****		11.11		<u> </u>	
1				SAND: (SP);	brown; mediur	m dense;				F	
15	l <u></u>	H		damp; 5% si	ilt, 95% mediu stimated perme	m grained				15	
4	15	1		Sano, mgn o.	aguisten heure	ability				-	
7										<u> </u>	
]										-	
]			,			14				-	: [
20	12			grey; wet						20	
	24				***********		1			E	
	. !		1	ĺ	a					E	
]	1		1				-			F	
25		\Box		1.						25	
1	3	M		loose						E	
1										- 1	
7				Clavey SILT	(MI): grev: yer	ru etiff.				-	
-				wet; 20% cl;	(ML); grey; ver ay; 50% silt, 30	0%				F	
	6	4		plasticity; lov	ned sand; medion we stimated per	meability				30	
- ‡	12 10	4		~~~~~~			nd			[]	
			1	1					1	-	Bottom of well
3	ļ									F	
35			ļ		18				ļ	35	
Dell	eee Inc		-		Ta Tanana	27 12 016			1	2140	01
	Driller SES, Inc. Development Yield 01						- 1		_ Bentonite Seal		
Log	Logged By JME Well Casing 0.39 gpm						a. <u>O'</u>	to <u>15'</u>	_ Sand Pack	Mo	nterey Sand
Drilling Started 5/3/96 Casing Type Sched						Schedule	40 P	/C	Sand Pack Typ	ne <u>#2</u>	/16
Drift	ling Completed	5/	3/96		Well Screen 2	2* Di:	a.15'	to 30'	_ Static Water L	evel 1	6.98 ft Depth
	struction Comp			/96	Screen Type				_	_	5/10/96
							40 1	<u> </u>			
Dev	elopment Comp	iete	d <u>5/6</u>	/96	Slot Size	0.010"	•	Notes: Webster Street in #1 lane			
Wat	ter Bearing Zone	es .	NA		Drilling Mud	NA			62'northea	ist of I	WW-2
Grout Type Portle						Portland	Type I				

DRILLING LOG						Luz-II II	D. BATAL E		. 10	CD I		
Clie	nt: Douglas	Pa					Well ID MW-5 Boring ID SB-I Location 1721 Webster Street					
1	ect No: 58-1 9				- '					eet		
Proj	ect No: 30-13			Phase	Task0	2	Surfac	se Elev. 2	2.22 ft,		Page 1 of 1	
57	Blow	Sample	<u> </u>		Lithologic		o ∻	Graphic Log	Well	£ 0	Well	
Depth (feet)		E	Interval		_		TPHg (ppm)	5 G	Construction	Depth (feet)	Construction	
	Count	S	트		Description		F-9	[Gir	Graphics	a =	Details	
								<u> </u>			T.O.C. Elev. 21.97	
	Ground Surface											
	1			ASPHALT						0		
				CONCRETE		/		******		F		
	1							\bowtie		-		
	-		·	FIL: (ML); N	ight brown; damp; 10 ilt, 30% fime to med d; low plasticity; low	0% ium				-		
5	}			estimated p	ameability	/				5	».	
	# 51									-		
				SAND; (SP); damp: 5 % s	brown; very dense; it, 95% fine to medi	tum						
-				grained sand	1: high estimated					_		
	1			housemith						-		
10							İ		55 24 24 E	10		
-	6 28	M		1		ŀ	[- 10		
]	26	/-					ļ					
-										_		
1				Į		ł	- 1			:		
15							1			- 42		
-	8	V		moist to wet	ı					15		
-	26 28	Д				. [nd :			:]		
_						- 1				_		
	1									:	\$	
20					8							
-	3	V								20		
1	4	A		Clavery SH T	(MI): gray to brown		ŀ					
1		11		medium stiff	(ML); grey to brown; ; wet; 20% clay; 50%	%						
. :				medium plas	dium grained sand; ticity; low estimated							
2				permeability								
25	6	\forall								25		
1	10 18	7					nd					
Ė							""				Bottom of well	
							İ		F			
-							.		F			
30					Ä			ļ	-	30		
	ler <u>SES, Inc</u>		··-		Development Yield	010			Bentonite Seal	8'to	9'	
Logged By JME Well				Well Casing 0.52 g	ge mDia	. <u>0'</u>	to 10'	Sand Pack	Mo	nterey Sand		
Dril	Drilling Started 5/3/96 Casing T					edule	40 P\	/C	Sand Pack Typ	e <u>#2/</u>	16	
Dril	ling Completed	5/	3/96		Well Screen 2"	Dia	.10'	to <u>25'</u>	Static Water Le	vel 14	4.60 ft Depth	
Cor	Construction Completed 5/3/98 Screen Type Sched					edule	40 PV	/C	Da		5/10/96	
Dev	elopment Comp	olete	d 5/6	/96		10"					treet in #4 lane	
-	ter Bearing Zone				Drilling Mud NA				near 19th 5			
	Soming Eulit		. 40.7				Trans + B	/H	11201 137113	-ucet	UI UOS YF GIR	
					Grout Type Portland Type I/II				O.	9		

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Douglas Parking Company	BORING/WELL NAME MW-6	
JOB/SITE NAME	Webster	DRILLING STARTED 27-Jun-03	
LOCATION	1721 Webster Street, Oakland, CA.	DRILLING COMPLETED 27-Jun-03	
PROJECT NUMBER	580-0197	WELL DEVELOPMENT DATE (YIELD)	30-Jun-03 (6 gallons)
DRILLER	Woodward Drilling	GROUND SURFACE ELEVATION	31 ft above msl
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION 30.99	ft above msl
BORING DIAMETER	6"	SCREENED INTERVAL 15 to 3	30 ft bgs
LOGGED BY	R. Fennell	DEPTH TO WATER (First Encountered	a) 25.0 ft (27-Jun-03)
REVIEWED BY	Mary C. Holland-Ford R.G. #7551	DEPTH TO WATER (Static)	21.40 ft (30-Jun-03)



Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

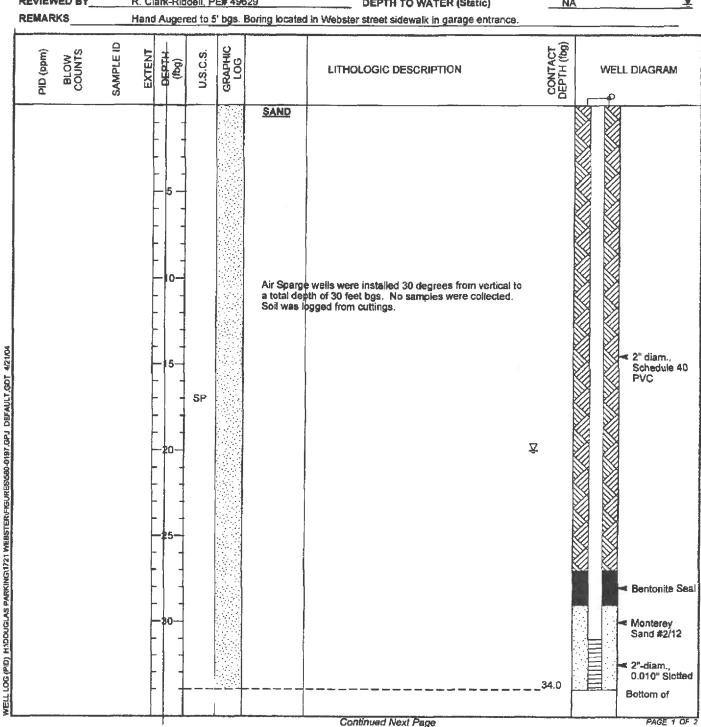
CLIENT NAME			Doug	las Pai	king C	ompan	51	BORING/WELL NAME MW-7				
JOB/\$I	TE NAME	_	Webs	ster				DRILLING STARTED	27-Jun-03			
LOCAT	ION	_	1721	Webst	er Stre	et, Oak	land, CA.	DRILLING COMPLETED 27-Jun-03				
PROJECT NUMBER 580-0197								WELL DEVELOPMENT DA	ATE (YIELD)_	30-Ju	n-03 (10 gallons)	
DRILLE	DRILLER Woodward Drilling							GROUND SURFACE ELEVATION Not Surveyed				
DRILLING METHOD Hollow-stem auger				TOP OF CASING ELEVATION NA								
BORING	G DIAMETE!	R	8"					SCREENED INTERVAL 15 to 30 ft bgs				
LOGGE	D BY		R. Fennell					DEPTH TO WATER (First Encountered) 21.0 ft (27-Jun-03)				
REVIEW	VED BY		Mary	C. Holl	and-F	ord R.G	. #7551	DEPTH TO WATER (Static	:)	20.	.40 ft (27-Jun-03)	
REMAR	KS		Hand	augere	ed to 5	bgs.			·			
(mgd)	OW INTS	LE ID	ENT	PTH 2g)	.C.S.	PHIC	LITH	OLOGIC DESCRIPTION		TACT H (fbg)	WELL DIAGRAM	

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Douglas Parking Company	BORING/WELL NAME AS-1	
JOB/SITE NAME	Webster	DRILLING STARTED 04-Mar-00	
LOCATION	1721 Webster Street, Oakland, CA.	DRILLING COMPLETED 04-Mar-00	
PROJECT NUMBER	580-0197	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD	Hollow-stem auger Limited Access Rhino	TOP OF CASING ELEVATION NA	
BORING DIAMETER	8"	SCREENED INTERVAL 31 to 34	ft bgs
LOGGED BY	J. Riggi	DEPTH TO WATER (First Encountered)	20.0 ft (04-Mar-00)
REVIEWED BY	R. Clark-Riddell, PE# 49629	· · · · · · · · · · · · · · · · · · ·	NA ¥
REMARKS	Hand Augered to 5' has. Boring located in Webste	r street sidewalk in garage entrance	

CONTACT DEPTH (# bgs) TPHg (mg/kg) SAMPLE ID BLOW GRAPHIC LOG U.S.C.S. EXTENT DEPTH (ft bgs) LITHOLOGIC DESCRIPTION **WELL DIAGRAM** SAND Air Sparge wells were installed 30 degrees from vertical to a total depth of 30 feet bgs. No samples were collected. Soil was logged from cuttings. 2" diam., Schedule 40 PVC WELL LOG (TPH-G) HISB-2004/DOUGLAS/1721/WE-1/FIGURES/580-0197.GPJ DEFAULT.GDT 3/27/00 SP $\bar{\Delta}$ Bentonite Seal Monterey Sand #2/12 a 2"-diam., 0.010" Slotted 34.0 Bottom of Boring @ 34 ft PAGE 1 OF 1

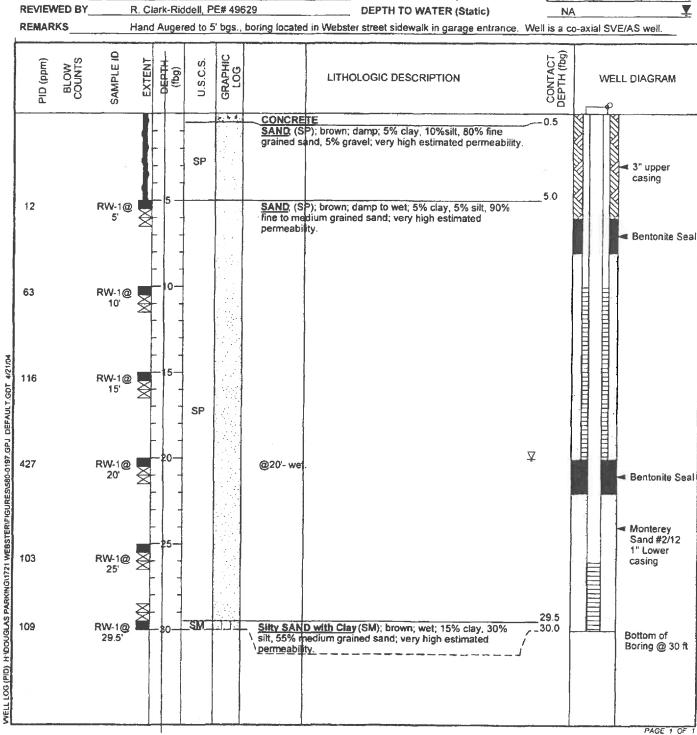
Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170


CLIENT NAME AS-2 Douglas Parking Company _____ BORING/WELL NAME **JOB/SITE NAME** Webster DRILLING STARTED 04-Mar-00 LOCATION 1721 Webster Street, Oakland, CA. DRILLING COMPLETED ___04-Mar-00 PROJECT NUMBER ___ 580-0197 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** Not Surveyed DRILLING METHOD Hollow-stem auger Limited Access Rhino TOP OF CASING ELEVATION NA 8" BORING DIAMETER SCREENED INTERVAL 31 to 34 ft bgs LOGGED BY J. Riggi DEPTH TO WATER (First Encountered) 20.0 ft (04-Mar-00) REVIEWED BY ___ R. Clark-Riddell, PE# 49629 **DEPTH TO WATER (Static)** NA

REMARKS Hand Augered to 5' bgs. Boring located in Webster street sidewalk in garage entrance. CONTACT DEPTH (# bgs) TPHg (mg/kg) GRAPHIC LOG BLOW EXTENT DEPTH (ft bgs) U.S.C.S. SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM SAND Air Sparge wells were installed 30 degrees from vertical to a total depth of 30 feet bgs. No samples were collected. Soil was logged from cuttings. 2" diam., Schedule 40 **PVC** WELL LOG (TPH-G) H:\SB-2004\DOUGLAS\\722\WE-\\F\GURES\580-0\97.GPJ DEFAULT\GDT 327X0 SP ∇ Bentonite Seal Monterey Sand #2/12 € 2"-dlam.. 0.010" Slotted 34.0 Bottom of Boring @ 34 ft PAGE 1 OF

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME Douglas Parking Company BORING/WELL NAME AS-3 (formerly AS-2) JOB/SITE NAME Webster DRILLING STARTED 04-Mar-00 1721 Webster Street, Oakland, CA. LOCATION DRILLING COMPLETED 04-Mar-00 PROJECT NUMBER 580-0197 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Greag Drilling GROUND SURFACE ELEVATION Not Surveyed DRILLING METHOD Hollow-stern auger Limited Access Rhino TOP OF CASING ELEVATION NA BORING DIAMETER 8" SCREENED INTERVAL _ 31 to 34 ft bgs LOGGED BY J. Riggi DEPTH TO WATER (First Encountered) 20.0 ft (04-Mar-00) REVIEWED BY R. Clark-Riddell, PE# 49629 **DEPTH TO WATER (Static)**



Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME Douglas Parking Company **BORING/WELL NAME** SV-1/AS-1 (formerly RW-1) JOB/SITE NAME Webster DRILLING STARTED 04-Mar-00 DRILLING COMPLETED 04-Mar-00 **LOCATION** 1721 Webster Street, Oakland, CA. **PROJECT NUMBER** 580-0197 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** Not Surveyed **DRILLING METHOD** Hollow-stem auger Limited Access Rhino **TOP OF CASING ELEVATION NA BORING DIAMETER** SCREENED INTERVAL LOGGED BY J. Riggi **DEPTH TO WATER (First Encountered)** 20.0 ft (04-Mar-00) REVIEWED BY R. Clark-Riddell, PE# 49629 **DEPTH TO WATER (Static)** NA **REMARKS** Hand Augered to 5' bgs., boring located in Webster street sidewalk in garage entrance. Well is a co-axial SVE/AS well.

Project No. 9432 Boring/Well No. EB-1

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstem Permit: Zone 7 borings

Water Levels: 1st Enc. 24' Static: 21.5'

Exploratory Boring Log

Borehole Completion

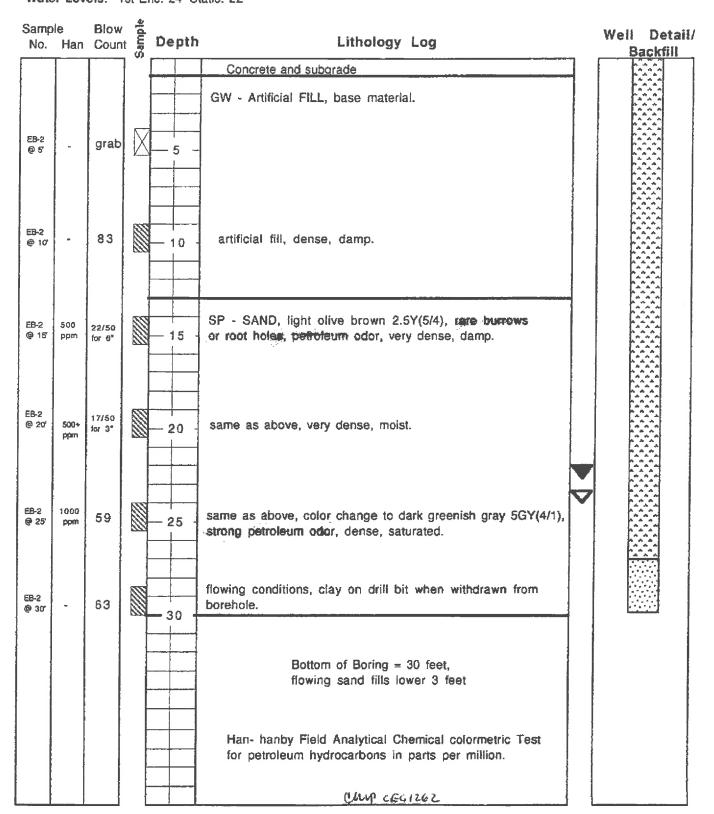
Well Installed: No Total Depth: 30.5 feet Grout Seal: 30' to surface

Samp		Blow	Sample	Depth	Lithology Lag	Well Detail/			
			-		Concrete and subgrade				
			Fr.#7		SM - Silty SAND, very dark grayish brown 10YR(3/2), up to 5% fine gravel to coarse sand, drills dense, damp.				
EB-1 @ 5		-	grab	grab	grab	X	5 -	color change to dark yellowish brown 10YR4/6, 15% clay, 20% silt, drills dense, damp.	
					driller calls change at 8 feet.				
EB-1 ⊘ 10′	•	50 tor 6"		10	CL - Sandy CLAY, dark yellowish brown 10YR(4/6), 15% silt 25% sand, low-med. plasticity, rare burrows, oxidation mottling, hard, damp.				
EB-1 @ 15	-	82	82	82	— 15				
					SP - SAND, light olive brown 2.5Y(5/4), very fine to med. grained, very dense, damp to moist.				
EB-1 @ 20"	-	50 for 6*		20	color change to dark greenish gray discoloration 2.5Y(5/4), slight petroleum odor, very dense, moist.				
€B-1			555		driller calls water at 24 feet.				
@ 25'	٠	60		_ 25	same as above, sheen on water, very dense, saturated.				
EB-1 @ 30*	-	24/50 for 6"		_ 30 _	same as above, flowing conditions.				
					CL - Silty CLAY, light olive brown 2.5Y(5/4), 15% silt, 20% fine to med grained sand, low-med. plasticity,				
			ŀ		contaminants not observed, hard, damp.				
					Bottom of Boring = 30.5 feet, sand flows into lower 0.5 feet.				
			E		CAMP CECITZE Z				

Project No. 9432 Boring/Well No. EB-2

Client: Douglas Parking Date Drilled: July 8, 1994

Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstem Permit: Zone 7 borings


Water Levels: 1st Enc: 24' Static: 22'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 27' to surface

Project No. 9432 Boring/Well No. EB-3

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstem Permit: Zone 7 borings

Water Levels: 1st Enc. 24' Static: 22'

Exploratory Boring Log

Borehole Completion

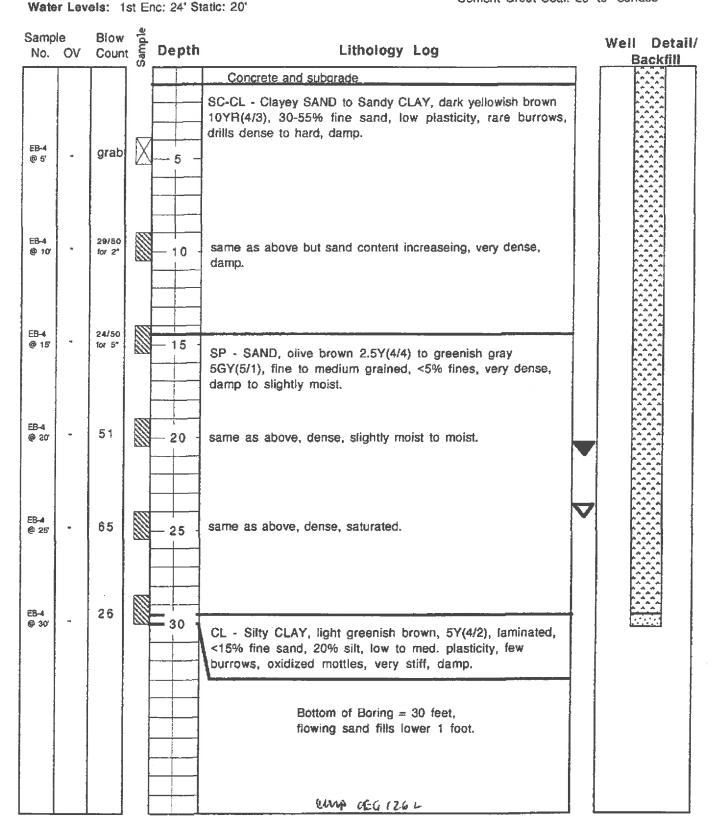
Weil Installed: No Total Depth: 30'

Cement Grout Seal: 26' to surface

Samp No.	le Han	Blow	Sample	Depth	Lithology Log	Well Detail/ Backfill
					Concrete and subgrade	
EB-3 @ 5	-	grab	X	-5-	CL - Sandy CLAY, olive 5Y(4/4), low plasticity, slight petroleum odor, drills soft, damp.	
E8-3 @ 10*	ſ	46		- 10 -	sand interbed, 1.5' thick, slight petroleum odor,	
EB-3 @ 15	læ<	54		— 15 — 15	SP - SAND, dark yellowish brown 10YR(4/6), fine to med. grained, fines<5%, dense, moist.	
EB-3 ⊕ 20°	100 ppm	76		_ 20	same as above, moderate petroleum odor, dense, moist.	
£8-3 ⊕ 25		70		- 25	same as above, sheen on water, very dense, saturated.	
25-3 @ 30*	2	53		30	CL - Slity CLAY, light clive brown 2.5Y(5/4), 40% silt, <5% sand, med. plasticity, laminated, some burrows, hard, damp.	
					Bottom of Boring = 30 feet, flowing sand fills lower 4 feet	
					Han- Hanby Field Analytical Chemical Colormetric Test for petroleum hydrocarbons in parts per million.	
			Į	_ : _ 1	Chritcher, 126L	

Project No. 9432 Boring/Well No. EB-4

Client: Douglas Parking Date Drilled: July 8, 1994
Location:1721 Webster St., Oakland, CA Logged by: EL


Drilling Method: Hollowstem Permit: Zone 7 borings

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 29' to surface

Project No. 9432 Boring/Well No. EB-5

Client: Douglas Parking Date Drilled: July 8, 1994

Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstem Permit: Zone 7 borings

Water Levels: 1st Enc: 24' Static: 18'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 29' to surface

Sampi No.	le Han	Blow Count	Sample	Depth	Lithology Log	Well Deta Backfill
					Concrete and subgrade	2222
E9-5	1000		\square		CL - Sandy CLAY, dark yellowish brown 10YR(3/6), 15% silt. 20% sand, low to med. plasticity, drills firm, damp.	
@ 5'	ppm	grab		-5 -	same as above, moderate petroleum odor, damp.	
EB-5 @ 10"	800 ppm	50		- 10 -	same as above, 15% coarse sand, hard, slightly moist.	
EB-5	1000					
2 15	ppm	60 for 6*		15	SP - SAND, clive brown 2.5Y(4/4), fine to medium grained, strong petroleum odor, very dense, moist.	
EB-5 @ 20'	500 ppm	24/50 for 5"		- 20 -	same as above, dark greenish gray 5GY(4/2), clay up to 35% disseminated, very dense, moist.	
B-5 P 25'	-	33		- 25	same as above, clay <5%, strong petroleum hydrocarbon, dense, saturated.	
B-5 9 30	€.	32		30	CL - Silty CLAY, light oilve brown 5Y(6/2), 30% silt, med. to higily plastic, hard, damp.	
			}. 		Bottom of Boring = 30 feet, flowing sand fills lower 1 foot	
			-		Han- Hanby Field Analytical Chemical Colormetric Test for petroleum hydrocarbons in parts per million.	

Project No. 9432 Boring/Well No. EB-6

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstem Permit: Zone 7 borings

Water Levels: 1st Enc. 24' Static: 21.50'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 28' to surface

Samp No.	le Han	Blow Count	Sample	Depth	Lithology Log	Well Detail/
			0,		Concrete and subgrade	2000
EB-6 @ 5	÷	grab		-5-	CL - Sandy CLAY, dark yellowish brown 10YR(4/4), 35% sand, med. plasticity, drills firm, damp.	
EB-5 @ 10	· ·	42/50 for 3*		_ 10 -	same as above, color darkens to dark olive gray, slight petroleum odor, hard, damp.	
EB-6 @ 15	-	50		— 15 ·	SP - SAND, olive 5Y(4/3), fine to med. grained, slight- patroleum ador, dense to very dense, damp.	
EB-6	1000 ppm	57/50 for 5°		_ 20	same as above, stained dark bluish gray, strong petroleum odor, very dense, moist.	
EB-6 @ 25'	-	48		— 25 ·	same as above, strong petroleum odor, dense, saturated, flowing conditions.	
EB-6 @ 30°	×	51		30	CL - Silty CLAY, pale olive, 5Y(6/3), laminated, 15% silt, highly plastic, hard, damp.	
					Bottom of Boring = 30 feet, flowing sand fills lower 2 feet	
					Han-Hanby Field Analytical Chemical Colometric Test for petroleum hydrocarbons in parts per million.	
				!	Chip of 1262	

, BORING LOG			Boring		SB-A
Client: *Douglas Parking Company Project No: 58-197 Phase	Task 02	Location 172 Surface Elev. N	:1 Webster Str IA ft,	eet	Page 1 of 1
Depth Count Sample Sample Monda	Lithologic Description	TPHg (ppm) Graphic Log	Boring Completion Graphics	Depth Feet	Additional Comments
Ground Surface ASPHALT Silty SAND damp to medium gra estimated p	; (SM); grey to brown; bist; 30% silt, 70% fine to send; moderate semeability grey to brown; moist; 3% medium grained sand; ted permeability	nd	Notes: Wet	30	Settom of boring
Logged By JME	Drilling Completed 2/22				
Water-Bearing Zones NA	Grout Type Portland		near site e	urance	

Clie	nt: Douglas	Do		ORING LOG	, , , , , , , , , , , , , , , , , , , ,			-	Borin		SB-B
	ect No: 58-1 9		rking C	Phase	Task	02		ion 172 ce Elev.	21 Webster Sti NA fr	reet	Page 1 of 1
Depth Feet			Interval		Lithologic Description		TPHg (ppm)	13	Boring Completion Graphics	Depth	
5	Ground Surfac	CÊ		ASPHALT Silty SAND; silt, 70% fin sand; moder permeability	(SM); brown; damp; e to medium grained ate estimated	30%				5	
10				moist	1.					10	
75				SAND; (SP); 90% medium estimated per	brown; damp; 10% : grained sand; high rmeability	silt,				15	
20				grey; wet			580.00			20	Bottom of boring
25					ec.					25	
30										30	
Drill	er <u>Vironex</u>				Drilling Started 2/	22/96	;		Notes: Web	ster S	treet in #2 lane
Log	ged By <u>JME</u>				Drilling Completed	2/22	/96		near site er	ntranc	9
Wat	er-Bearing Zone										

	1		DRING LOG					Borin	g ID	SB-C
	nt: Douglas P				00			11 Webster Str	eet	
Proje	ect No: 58-197		Phase	Tesk	02	Surfac	e Elev. I	VA π,	1	Page 1 of 1
Depth	Blow	Sample		Lithologic		TPHg (ppm)	Graphic Log	Boring Completion	Depth	Additional
Q.E.	Count	<u> </u>	i	Description		투호	Gra	Graphics	Q T	Comments
										the first personnel and the state of the sta
٥	Ground Surface								0	
			ASPHALT						F	
		1							-	
		i	sitty SAND; sitt, 70% fine	(SM); brown; moist; e to medium grained ate estimated	30%				E	[
5			permeability	are estanoted					- 5	
		-0-	4						-	
-									-	
		800							_	
10									10	
			wet						10	
7									-	
=							المالا		-	
]			SAND: (SP);	brown; moist; 10% grained sand; high	silt,				-	
15			estimated per	grained sand; high meability					15	
1										
		4				-			-	
20			grey; wet			1.40			20	
-						Ī		XZXXXXXXX	-	Bottom of boring
~~						İ			-	
25										
]									-	
-		.				Ì			-	
30									30	
Drill	Driller Vironex Drilling Started 2/22/9					3		Notes: Wel	oster S	Street in #4 lane,
Log	Logged By JME Drilling Completed 2/22						34' northe			
Wat	ter-Bearing Zones	NA		Grout Type Pol			/11			

T - L	- i	_	BO	ORING LOG						60.5
Clie	nt: Douglas	Pa					171	Borin 21 Webster Str		SB-D
Į.	ect No: 58-19			Phase	Task 02		ce Elev.		eet	Page 1 of 1
Depth	Blow Count	Sample	Interval		Lithologic Description	TPHg (ppm)	Graphic	Boring Completion Graphics	Depth	Additional Comments
0	Ground Surfac	æ		ASPHALT					0	
5					(SM); brown; damp; 30 a to medium grained ate estimated	%			5	
10									10	
15				SAND; (SP); I 90% medium estimated per	brown; damp; 10% silt, grained sand; high meability	*			15	
20				grey; wet	,	860.00				
25									25	Bottom af boring
30			•						30	
Dri	ller Vironex	_			Drilling Started 2/22	2/96		Notes: We	bster S	Street in #4 lane,
Los	gged By JME				Drilling Completed 2	/22/96		62' northe		
	ter-Bearing Zone		NA		Grout Type Portla		1/31			

	1		В	ORING LOG					Borin	ı ID	SB-E
Clie	nt: Douglas	Pa	rking C	ompany			Locati	on 172	1 Webster Str		
Proj	ect No: 58-19	7		Phase	Task	02		e Elev. N			Page 1 of 1
Depth Feet	Blow Count	Sample	interval	1	Lithologic Description		TPHg (mdd)	Graphic Log	Boring Completion Graphics	Depth Feet	
0	Ground Surfac	9		ASPHALT						0	
- -	79			Sitty SAND: (silt, 70% fine sand; modera permeability	SM); brown; damp; to medium grained ite estimated	30%				- - - - -	A _{mp}
5		-		r						5	
10										10	×
15				SAND; (SP); t 90% medium estimated per	orown; damp; 10% s grained sand; high meability	ilt,				15	
20				grey; wet	Ø				***************************************	20	
25							nd			- 25	Bottom of boring
-			. [8]						`	-	
30										30	
Los	lier Vironex gged By JME		NA		Drilling Started 2/2 Drilling Completed Grout Type Port	2/23	/98	<u> </u>	Notes: Wel		MW-2

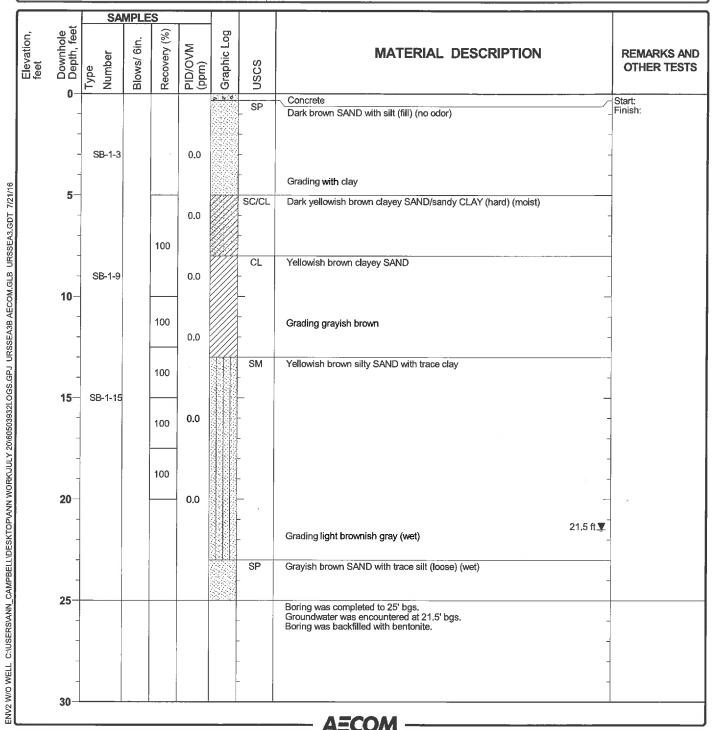
			ВС	ORING LOG		Boring ID SB-F					
Clier	nt: Douglas i		rking C	ompany Phase	Tack	02		ion 172 ce Elev. f	.1 Webster St		
Depth Feet	1	7	Interval		Lithologic Description	. 02	TPHg (ppm)		Boring Completion Graphics	Depth	Additional Comments
0	Ground Surfac	9		ASPHALT						0	
5			•	Silty SAND; silt, 70% fin sand; moder; permeability	(SM); brown; mois e to medium graine ate estimated	t; 30% ad				5	
10										10	
15				SAND; (SP); 90% medium estimated per	brown; moist; 10% grained sand; higi meability	á silt,				15	
20				wet			nd			20	#I
-											Bottom of boring
25							π			25	
30										30	
Driller Vironex Drilling Started 2/					2/23/0	3		Notes: We	hgter (Street in #2 lane	
	ged By JME				Drilling Complete		24				crosswalk
Wat	ter-Bearing Zone	ŅA		Grout Type Portland Type I/II							

				ORING LOG				Boring	J ID	SB-G
Clier Proje	nt: Douglas ect No: 58-19		rking C	ompany Phase	Task 02		ion 172 ce Elev. I	11 Webster Str VA ft,	eet	Page 1 of 1
Depth Feet	Blow Count	Sample	Interval		Lithologic Description	TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth Feet	
0	Ground Surfac	e		ASPHALT	•••		, in production		0	
5				Sity SAND; silt, 80% find sand; modern permeability	(SM); brown; damp; 20% e to medium grained ate to high estimated				5	
10									10	
15	·			SAND: (SP); 90% medium estimated per	brown; moist; 10% silt, n grained sand; high rmeability				15	
20				wet	e	nd			20	٠.
25				E					25	Bottom of boring
30			-				- The state of the		30	
	ler Vironex liged By JME ter-Bearing Zone		NA		Drilling Started 2/23/ Drilling Completed 2/2 Grout Type Portlan	23/96	1/11			Street in #4 lane crosswalk

PANGEA **BORING NUMBER CB-1** Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 CLIENT Douglas Parking PROJECT NAME Douglas Parking PROJECT NUMBER PROJECT LOCATION 1721 Webster Street DATE STARTED 12/10/13 COMPLETED 12/10/13 GROUND ELEVATION _____ HOLE SIZE 3.25" DRILLING CONTRACTOR Confluence Environmental **GROUND WATER LEVELS:** DRILLING METHOD Hand Auger AT TIME OF DRILLING — LOGGED BY Morgan Gillies CHECKED BY Bob Clark-Riddell AT END OF DRILLING ___ AFTER DRILLING ____ SAMPLE TYPE NUMBER PID (ppm) GRAPHIC LOG U.S.C.S. DEPTH (ft bgs) MATERIAL DESCRIPTION **BORING DIAGRAM** 0 Concrete. Sand (SP); brown; 100% fine to medium sand; moist. SP Silty Clay (CL); brown and grey; 100% medium plasticity fines; CB-1-4 CL CB-1-8 Clayey Sand (SC); grey and brown; 80-90% fine to medium sand; 10-20% medium plasticity fines; moist. 10 SC CB-1-12 Bottom of hole at 12.0 feet. BH COPY DOUGLAS CB-1.GPJ GINT US.GDT 1/24/14

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

BORING NUMBER CB-2 PAGE 1 OF 1


CLIEN	T Douglas P	arking				PROJECT NAME Douglas Parking	
PROJI	ECT NUMBER					PROJECT LOCATION 1721 Webster	
DRILLI DRILLI LOGG	ING CONTRAC ING METHOD ED BY <u>Morga</u>	CTOR Hand	Cont d Auge es	fluence Enver	ironmental CKED BY Bob Clark-Riddell	GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING St (SE)AFTER DRILLING	
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	МАТІ	ERIAL DESCRIPTION	BORING DIAGRAM
				0.5	Concrete.		
-					Fill Material.		
-			SP	3.0	Sand (SP); brown; 100% fi	ne to medium sand; moist.	
				9.3	Sandy Clay (CL); brown; 70 fine sand; moist.	0-80% medium plasticity fines; 20-30%	
5	CB-2-4						
			CL				
	CB-2-8						
10			i	10,0			
	CB-2-10			/////10.0	Boring Drilled at 25 degree approximately 10% deeper a Botto	angle from vertical. Depths shown are than vertical depth bgs.) m of hole at 10.0 feet.	

Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-1

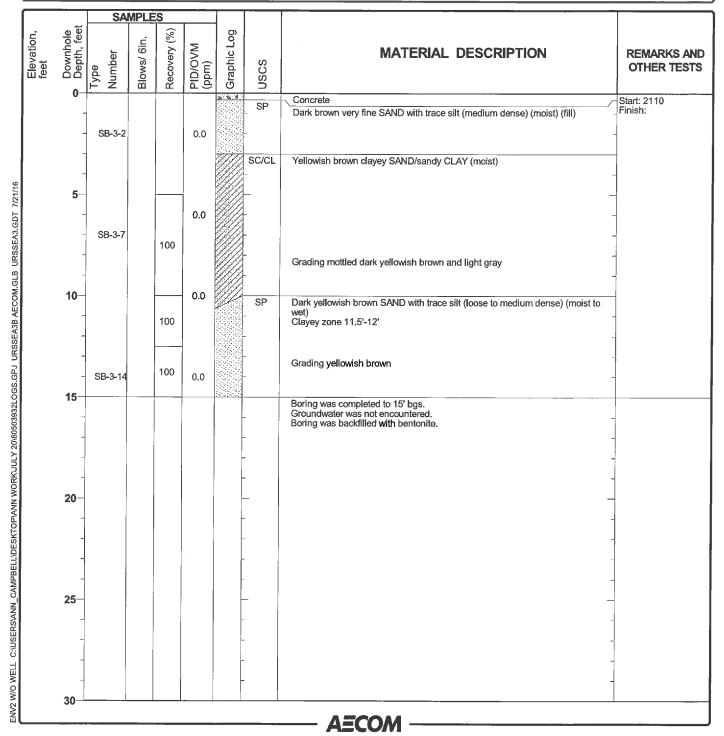
Date(s) 7/12/16 Drilled	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 25 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs) 21.5	Sampling Acetate Sleeve	Hammer Data
Borehole Backfill	Location	

Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-2

Date(s) Drilled 7/11/16	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 25 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs) 21.5	Sampling Method Acetate Sleeve	Hammer Data
Borehole Backfill	Location	

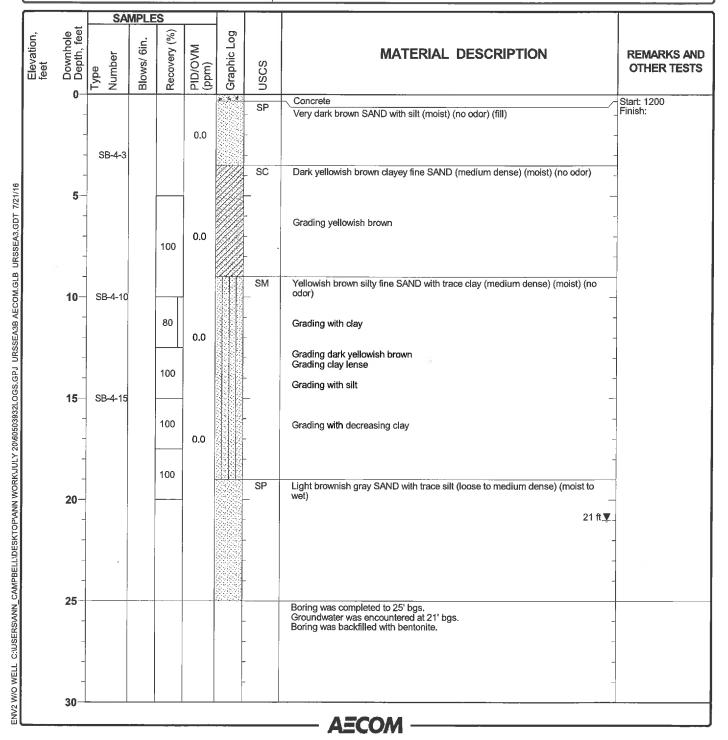

		SA	MPLE	S					
Elevation, feet	Downhole Depth, feet	Type Number	Blows/ 6in.	Recovery (%)	PID/OVM (ppm)	Graphic Log	nscs	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
		_			0.0	p 5 0	SP	Concrete Dark brown fine SAND with silt (medium dense) (moist) (no odor) (fill)	Strat: 1810 Finish: 1945
		SB-2-4				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	Grading yellowish brown	
OT 7/21/16	5				0.0		SC - -	Dark yellowish brown clayey fine to very fine SAND (medium dense to dense) (moist)	1820
URSSEA3.GE	-			100	0.0			Grading yellowish brown	
COM.GLB	10-	SB-2-10			0.0		-	Grading mottled yellowish brown and light gray clayey SAND (very dense to dense) (moist) (no odor)	1905
SEA3B AE	-			100			SM	Mottled yellowish brown and light gray silty SAND with clay (very dense) (moist) Grading with increasing clay to clayey sand	1300
S.GPJ URS	-			100	0.0		SM -	Yellowish brown silty fine to very fine SAND with trace clay (dense to very dense) (moist)	
0\60503932LOG	15- -	SB-2-15		100	0.0		SP	Yellowish brown SAND with silt and trace clay (medium dense) (moist) (no odor)	
I WORKJULY 2	- - 20 -	100		100	0.0		-	Grading brown	
DESKTOPANN	-			100			-	Grading (wet)	
«MPBELL\	-			100			CL	Yellowish brown CLAY with trace silt (medium stiff to stiff) (moist) (no odor)	
ENV2 W/O WELL C:USERSIANN_CAMPBELLIDESKTOPVANN WORKJULY 20160503932LOGS.GPJ URSSEA3B AECOM.GLB URSSEA3.GDT 7721/16	25						SP	Yellowish brown SAND with silt and trace clay (medium dense) (wet) Boring was completed to 25' bgs. Groundwater was encountered at 21.5' bgs. Boring was backfilled with bentonite.	
IV2 W/O WELL C	30								
ш								— AECOM —————	

Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-3

Date(s) 7/12/16 Drilled	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 15 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs)	Sampling Method Acetate Sleeve	Hammer Data
Borehole Backfill	Location	

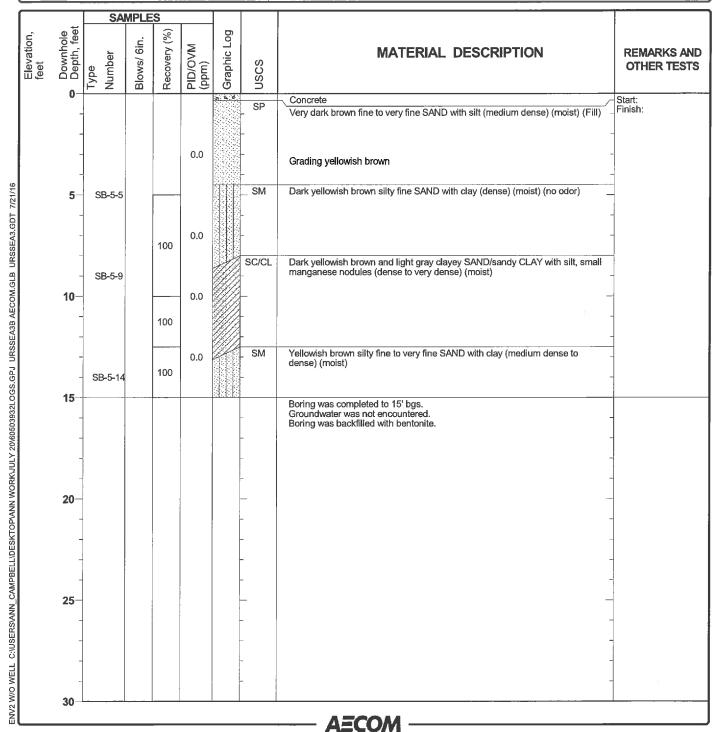


Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-4

Date(s) 7/12/16	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 25 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs) 21	Sampling Method Acetate Sleeve	Hammer Data
Borehole Backfill	Location	

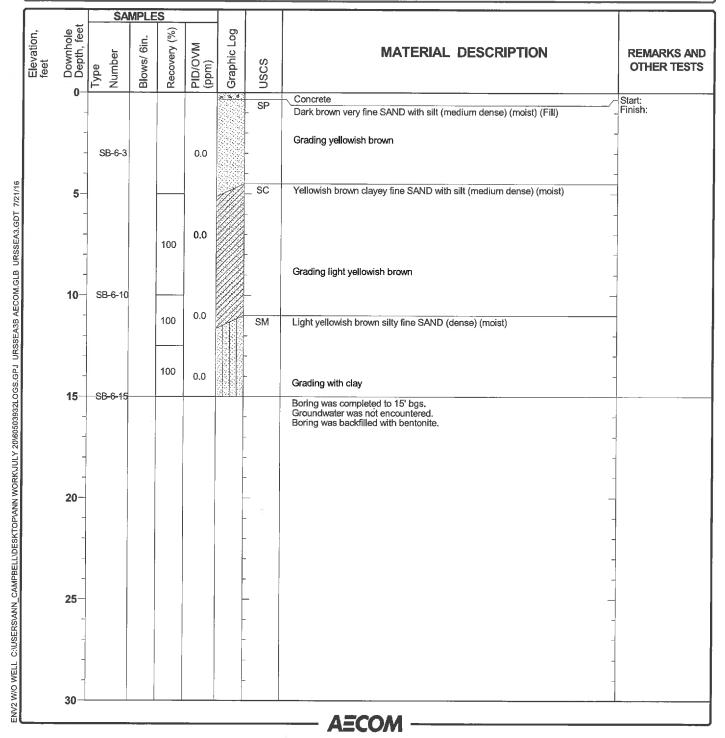


Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-5

Date(s) 7/12/16 Drilled 7/12/16	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 15 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs)	Sampling Acetate Sleeve	Hammer Data
Borehole Backfill	Location	ii.

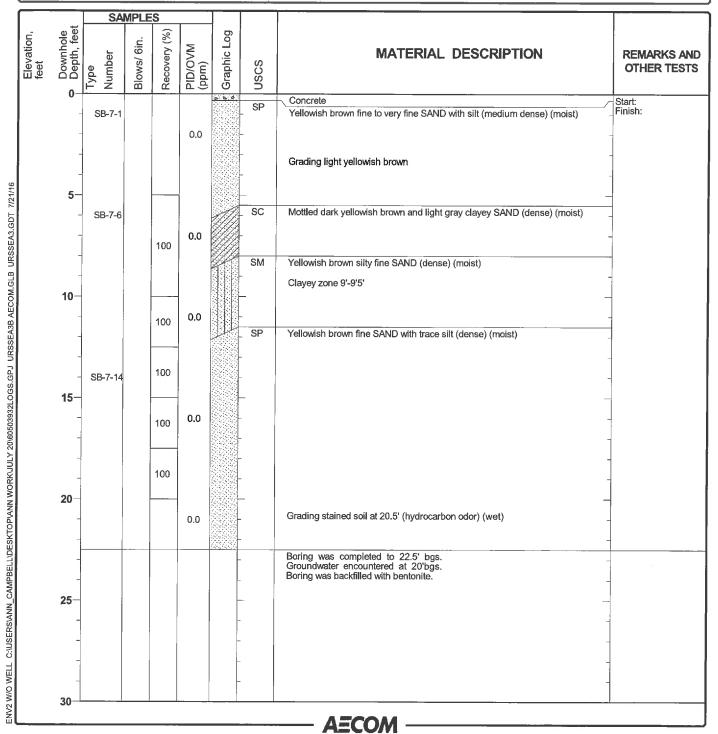

Project Location: 1721 Webster Street, Oakland, CA

Project Number:

60503932

Log of Boring SB-6

Date(s) Drilled 7/12/16	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 15 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs)	Sampling Acetate Sleeve	Hammer Data
Borehole Backfill	Location	

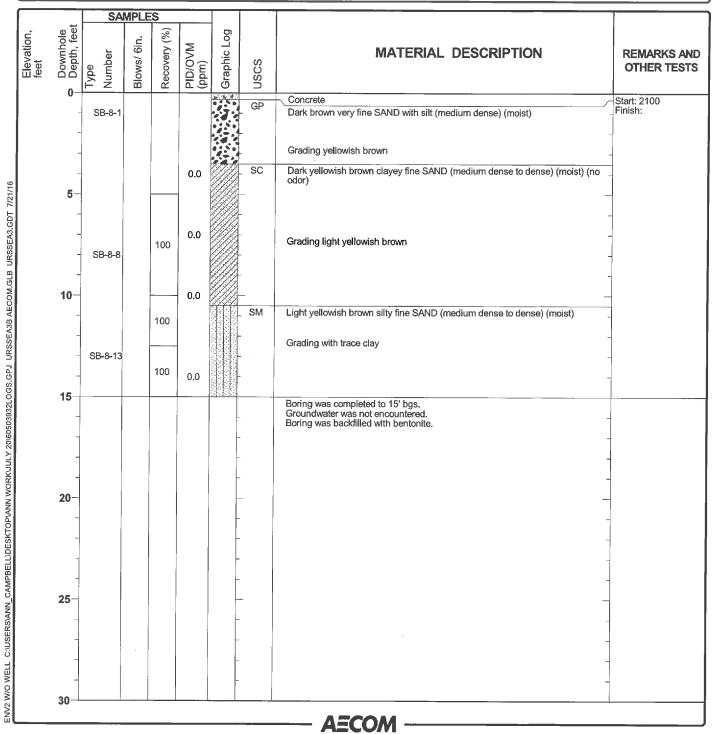


Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-7

Date(s) Drilled 7/12/16	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 22.5 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs)	Sampling Acetate Sleeve	Hammer Data
Borehole Backfill	Location	



Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-8

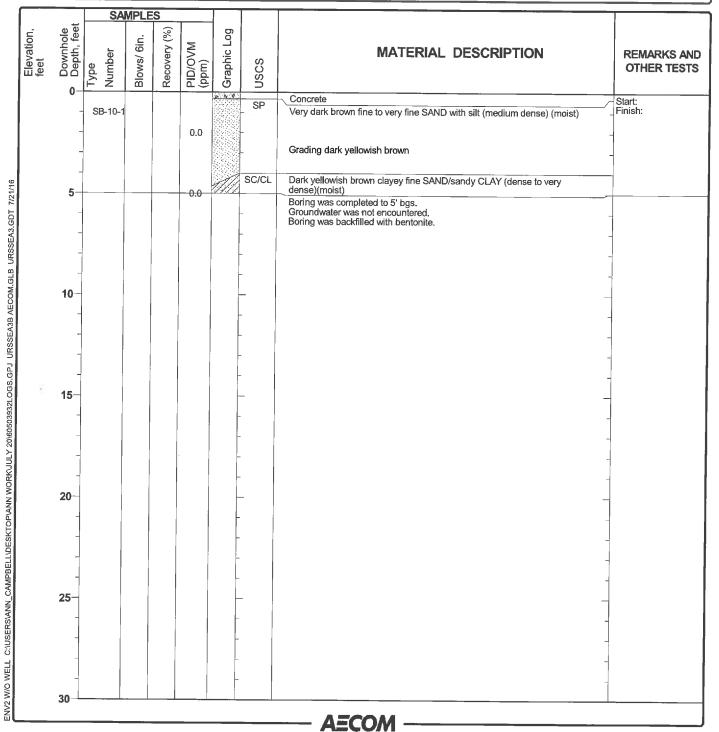
Date(s) 7/11/16 Drilled 7/11/16	Logged By E. :	Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor Per	neCore Drilling	Total Depth of Borehole 15 feet bgs
Drill Rig Type	Drill Bit Size/Type	=	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs)	Sampling Ace	etate Sleeve	Hammer Data
Borehole Backfill	Location		

Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-9

Date(s) 7/11/16	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth of Borehole 25 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs) 22	Sampling Method Acetate Sleeve	Hammer Data
Borehole Backfill	Location	


			SA	MPLE	S					
Flevation	feet feet	Downhole Depth, feet	Type Number	Blows/ 6in.	Recovery (%)	PID/OVM (ppm)	Graphic Log	nscs	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
		U					p 5 4	SP	Concrete	- Start: 2230
		-						<u></u> 0.	Very dark brown very fine SAND with silt (medium dense) (moist)	_Finish:
		-	SB-9-2					_	Grading yellowish brown (no odor)	<u>.</u>
1/16		5-				0.0		_ SM	Brownish yellow silty fine to very fine SAND with trace clay (medium dense)	
772			SB-9-6						(moist)	
SSEA3.GD		-	35-9-0		100	0.0		-		
GLB UF								SC	Mottled yellowish brown and light gray clayey fine SAND (dense to very dense) (moist)	
CO.M.		10-		ŀ	-			- '	-	_
B AE		-			100	0.0		-		_
SEA3		4						-		
ENV2 W/O WELL C:USERSYANN_CAMPBELL/DESKTOP/ANN WORK/JULY 20/60503932LOGS.GPJ URSSEA3B AECOM.GLB URSSEA3.GDT 7/2/1/16		-	SB-9-14		100	0.0		SM	Light yellowish brown silty fine SAND (dense) (moist) (no odor)	
932LO0		15		İ				-	Grading with clay	
(60503		4			100	0.0				
Z0			İ	ŀ		0.0			Grading trace day	
WORKUU		20-			100				Grading yellowish brown, no clay	
NAN NA		20						-	-	
ğ					100				20.6	
DEST		1	1	-		1			Grading (wet), some small clayey zones 1"-2" thick 22'-25'	
MPBELL		-			100				- -	
ပ် z		25						-	Boring was completed to 25' bgs.	
USERSYAN		-					-		Groundwater was encountered at 22' bgs. Boring was backfilled with bentonite.	
급		}					-		_	
//O WE		+					-		-	
\ \ \ \		30—								
Ä \Bigg								_	— AECOM ————	

Project Location: 1721 Webster Street, Oakland, CA

Project Number: 60503932

Log of Boring SB-10

Date(s) Drilled 7/12/16	Logged By E. Skov	Checked By D. Raubvogel
Drilling Method DPT - Dual Tube	Drilling Contractor PeneCore Drilling	Total Depth 5 feet bgs
Drill Rig Type	Drill Bit Size/Type	Ground Surface Elevation (feet MSL)
Groundwater Level (feet bgs)	Sampling Method Acetate Sleeve	Hammer Data
Borehole Backfill	Location	

Client: Osuglas Parking

Project:

Address: 1721 Willister St. Outlad

BORING LOG

Boring No. - 56-1

Page: 1 of 1

Drilling Start Date: 9 8 //
Drilling End Date: 9 8 //
Drilling Company: Confluence

Drilling Method: Hand Anger
Drilling Equipment: Hand Auger

Onller: Select

Logged By: Lanving

Boring Depth (ft):

Boring Diameter (in): 3511

Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft):

Ground Surface Elev. (ft): -

Location (X,Y):

			z			LEC	Ţ		MEAS	SURE	
DEPTH (ft)	LITHOLOGY	WATER LEVEL	BORING	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm)	Lab Sample	DEPTH (ft)
5				, Di	A S			Concrete Dark brown sand purly greded no story dry Brown sandy silt I hooder dry Lo Bring terminated Shi Construction I feet sand a pry bentonte Hydrated bent to surface Lydrated bent to surface "" (0.17110) Tellon teming "I sciren L' well box I middle of sand pack.			- 5 - 10 - 15
NO	OTES:							×			

Client: Douglas Darking

Project:

Address: 1721 Webster St. Daklad

BORING LOG

Boring No. - SG-2

Page:

1 of 1

Drilling Start Date:

Drilling End Date:

Drilling Company:

Drilling Method:

Drilling Equipment:

Drilling Equipment:

Drilling Equipment:

Drilling Start Date:

Boring Depth (ft):

Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft):

Ground Surface Elev. (ft):

Location (X,Y):

Start Date:

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

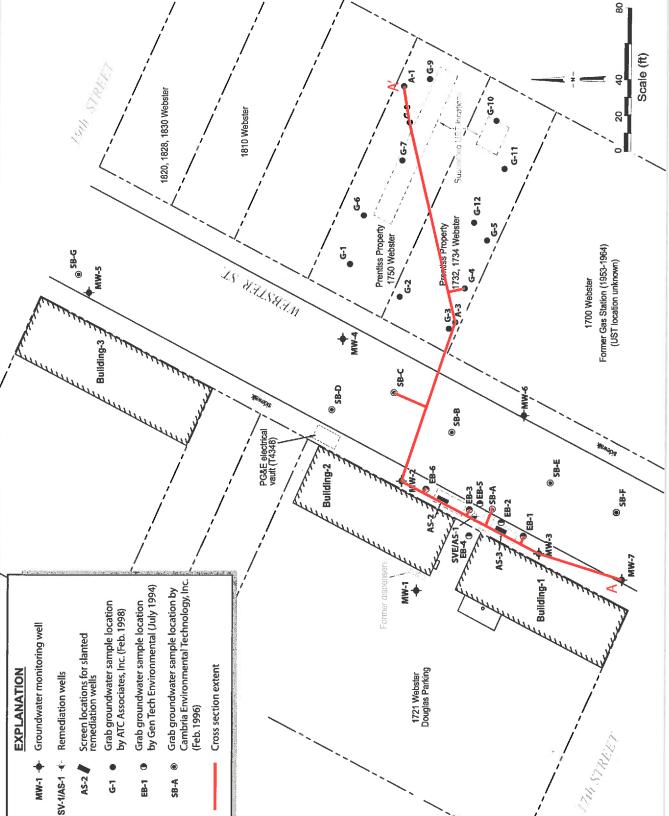
Boring Depth (ft):

Boring Depth (ft):

Boring Depth (ft):

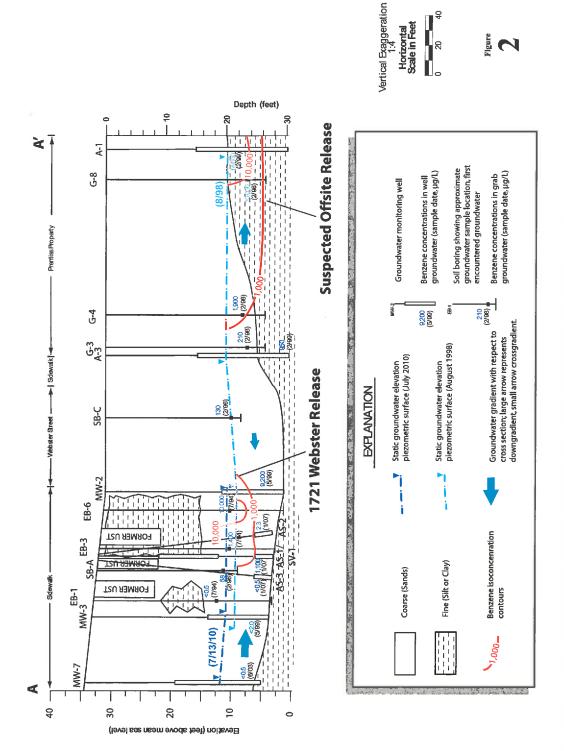
Boring Depth (ft):

Boring Depth (ft):

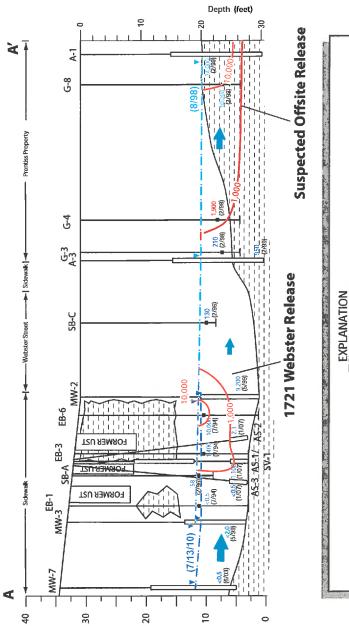

DTW During Drilling (ft):

DTW After Drilling (ft):

Location (X,Y):


İ			_		COL	LEC	T		MEAS	SURE	
DEPTH (ft)	LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm)	Lab Sample	ОЕРТН (#)
10 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	OTES:		少少大		h t i bui	wt		Concrete Concrete Construction Sin 2 Construction 3 "diameter 1 = Sand 5 - 6 "ory Bentonile (45 - 5') Hadrated bent to surface - by Construction The surface bent to surface - by Control tellon tobing - 1" servened probe tip - 6" well box to match surface play probe to set at 55 bys (maddle of sand pack)			- 5

ATTACHMENT 10



Douglas Parking 1721 Webster Street Oakland, California

Figure

Elevation (feet above mean sea level)

Geologic Cross Section A-A' Showing Benzene Distribution in Groundwater and Adjusted Groundwater Elevation

Figure

Benzene concentrations in grab groundwater (sample date, µg/L)

Soil boring showing approximate groundwater sample location, first

4 9,200 (5/99)

Static groundwater elevation piezometric surface (August 1998)

Fine (Silt or Clay)

Static groundwater elevation piezometric surface (July 2010)

Coarse (Sands)

encountered groundwater

(2/98)

cross section; large arrow represents downgradlent, small arrow crossgradient.

Groundwater gradient with respect to

Benzene isoconcenration contours

groundwater (sample date, µg/L)

Benzene concentrations in well Groundwater monitoring well

Table 1 - Groundwater Monitoring Program

Douglas Parking Company, 1721 Webster Street, Oakland, CA.

Well ID	Well Type	Screened Interval (ft bgs)	Well Location for Monitoring	Casing Diam. (in)	Gauge Frequency	Sample Frequency	TPHg/BTEX/ MTBE	TAME/TBA/ DIPE/ETBE/ MTBE
Onsite Monitor	ing and Remediation	Wells						
MW-1	Mon	17-30	Source Area	2	1st, 3rd	1st	1st	
MW-2	Mon	19.5-29.5	Downgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
MW-3	Mon	20-30	Upgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
AS-1	Rem	27-30	Source Area	1				
AS-2	Rem	27-30	Source Area	2				
AS-3	Rem	27-30	Source Area	2				
Offsite Monitor	ing Wells							
MW-4	Mon	15-30	Mid-Downgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
MW-5	Mon	10-25	Downgradient	2	1st, 3rd	1st	1st	
MW-6	Mon	15-30	Crossgradient	2	1st, 3rd	1st, 3rd	1st, 3rd	
MW-7	Mon	15-30	Upgradient	2	1st, 3rd	1st	1st	

Notes and Abbreviations:

1st = Sampled during the 1st quarter, typically January

1st, 3rd =Sampled during the 1st and 3rd quarters, typically January and July

Mon = Groundwater Monitoring Only

Rem= Remediation Well Only

--- = None or not applicable

AS-1 = Air Sparging Well

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	МТВ
TOC		(ft)	(ft amsl)	←		——— (µ	ıg/L) ————		\longrightarrow
onitoring \	Wells								
MW-1	12/2/1994	19.42	9.83	ND	ND	ND	ND	NID	
29.25	3/6/1995	20.69	9.04	ND	ND			ND	5
29.73	7/11/1995	20.65	9.16	ND	ND	ND ND	ND ND	ND ND	
29.81	5/10/1996	20.80	9.01	ND	ND				_
29.01	10/2/1996	21.35	8.46	-	- ND	ND	ND	ND	*
	2/28/1997	20.57	9.24	82		(m) (w)	-	-	-
	9/16/1997	21.50	8.31		-				-
	2/5/1998	20.91	8.90		-		-	-	-
	8/11/1998	20.51	9.31	-	-		-	-	-
	2/8/1999	21.42	9.31 8.39		-	•	-		-
	2/8/1999	22.99	6.82	-	-			-	-
	3/3/1999			37	-	-	(<u>#</u>)	# 	
		20.84	8.97	-	-	•	•	•	-
	3/10/1999	20.89	8.92	(-)	-	:= 2	120	2	-
	3/17/1999	20.84	8.97	-	#	(*)	(*)	-	-
	5/4/1999	20.80	9.01	-	•	-	2 7 7.	-	-
	7/20/1999	21.25	8.56	-	2		-	•	
	10/5/1999	21.37	8.44	-	-) = (3₩ (0	*	
	1/7/2000	21.65	8.16		=	-	(#2)	7:	35
	4/6/2000	21.05	8.76	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/31/2000	21.13	8.68	-	-	-	-	-	
	10/3/2000	21.69	8.12	-	-	-	-	M	
	1/12/2001	22.00	7.81	-	-	-	-	(*)	
	4/11/2001	22.16	7.65	(*)	-	-	-	-	
	7/6/2001	22.57	7.24	(·	-			300	
	10/25/2001	22.71	7.10	0	-	-		132	100
	3/4/2002	22.53	7.28	-	-	2	-	-	
	4/18/2002	22.81	7.00	3 = 20	-	-	-	(e)	
	7/9/2002	22.95	6.86	÷.,	1.5		-	2.70	100
	10/4/2002	23.13	6.68	20	-	æ	2	873	370
	1/12/2003	22.05	7.76	-	_	2	-	-	-
	4/21/2003	21.17	8.64	-	3.40	14	14	-	-
32.75	7/21/2003	21.39	11.36	-	3.5	-	i o	Set	360
	10/2/2003	21.64	11.11	-	*	ş	-	•	
	1/15/2004	21.10	11.65	-	534	-	2	-	
	4/5/2004	21.20	11.55	-		~	*	-	_
	8/9/2004	22.97	9.78	9	-	-	¥	22.1	
	10/7/2004	23.55	9.20	-	_	-	2	28	= <u>2</u> 0
	2/7/2005	20.90	11.85	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/5/2005	20.60	12.15	_	-	-	_	_	_
	7/6/2005	20,66	12.09	-	-	_	-	_	_
	10/10/2005	21.16	11.59	-	-	-	-	_	-
	1/26/2006	20.73	12.02	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	4/10/2006	20.05	12.70	-	-	-	-	-	-
	7/6/2006	20.90	11.85	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0
	10/26/2006	21.80	10.95	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/19/2007	22.02	10.73		-	-	-	-	-5.0
	4/17/2007	22.13	10.62	_	_	_	_	_	
	7/6/2007	21.83	10.92	_	_	_	_	_	_
	10/15/2007	22.28	10.47	_	_	_	_	_	_
	1/17/2008	22.33	10.42	<50	- <0.5	<0.5	<0.5	<0.5	<5.0
	1/1/2000	22.33	10.72	~20	~v.J	~0.5	C.U~	~v.J	∖ J.0

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	<			(μg/L)		\longrightarrow
N 6737 1	# / # / # / # / # / # / # / # / # / # /								
MW-1	7/17/2008	22.50	10.25	_	-		_	-	_
(cont'd)	10/27/2008	22.75	10.00	-	_	_	_	_	_
	1/9/2009	22.89	9.86	<50	< 0.5	<0.5	<0.5	< 0.5	< 5.0
	4/27/2009	22.40	10.35	_	_	_	-	_	_
	7/9/2009	22.55	10,20	_	_	_		-	_
	2/3/2010	22.08	10.67	<50	<0.5	< 0.5	<0.5	< 0.5	< 5.0
	7/13/2010	21.20	11.55	_				_	
	1/17/2011					naccessible			
	7/12/2011	20.72	12.03			-	_	-	_
	1/11/2012	21.33	11.42	<50	<0.5	<0.5	<0.5	<0.5	< 5.0
	7/25/2012	20.94	11.81			-0.5	-	-	
	1/25/2013	21.41	11.34	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	7/29/2013	22.14	10.61	-	-		-	-	_
	1/28/2014	22.75	10.00	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0
	7/24/2014	22.84	9.91		-				
	1/22/2015	22.45	10.30	<50	<0.5	<0.5	< 0.5	<1.5	<5.0
	7/20/2015	22.87	9.88	-	-		-	_	-
	8/3/2016	22.27	10.48	<50	<0.5	< 0.5	< 0.5	<1.5	<5.0
	1/20/2017	21.83	10.92	<50	<0.5	<0.5	<0.5	<1.5	<5.0
MW-2	12/2/1994	19.50	7.60	61,300	2 000	2.000	160	4.500	
27.10	3/6/1995	18.49			3,000	3,900	160	4,500	-
27.10	7/11/1995	18.45	8.61	98,000	8,400	16,000	2,000	2,600	-
27.40	5/10/1996	18.43	8.95 8.84	38,000	3,100	7,500	940	3,700	-
	10/2/1996	19.15	8.25	63,000	7,400	16,000	1,500	6,000	753
	2/28/1997	18.43	8.23 8.97	21,000	2,200	3,400	430	1,600	- NID
	9/16/1997	19.26	8.14	39,000 29,000	4,700	9,600	950	4,200	ND
	2/5/1998	18.66	8.74	10,000	3,300 1,000	5,800	690 170	2,900 860	<620 <330
	8/11/1998	18.41	8.99	12,000	1,000	2,000		1,400	300
	2/8/1999	19.84	7.56	5,500	740	2,300 1,200	260 150	780	60
	2/17/1999	18.94	8.46	3,300	740	1,200		-	
	2/24/1999	20.76	6.64	-			- -	· ·	•
	3/3/1999	18.55	8.85	-	-		-	-	
	3/10/1999	20.74	6.66	-	-	9	2	572	983
	3/17/1999	18.57	8.83	2	_	8		-	: - :
	5/4/1999	18.55	8.85	90,000	9,200	21,000	1,600	10,000	560
	7/20/1999	18.98	8.42	28,000	2,100	3,700	900	4,200	<860
	10/5/1999	19.10	8.30	11,000	870	180	30	1,400	<110
	1/7/2000	19.41	7.99	15,000	1,300	2,100	440	1,800	<14
	4/6/2000	18.80	8.60	17,000	1,800	3,100	500	2,200	<50
	7/31/2000	18.87	8.53	17,000	1,500	2,700	430	2,100	<200
	10/3/2000	19.45	7.95	27,000	2,500	4,000	660	2,900	<50
	1/12/2001	19.80	7.60	25,000	2,700	4,100	670	3,000	<200
	4/11/2001	20.03	7.37	97,000	9,500	21,000	2,200	7,900	<200
	7/6/2001	20.19	7.21	3,500	500	150	11	420	<5.0
	10/25/2001	20.35	7.05	3,800	620	230	70	400	<50
	3/4/2002	20.37	7.03	46,000	7,300	12,000	870	3,200	<500
	4/18/2002	20.15	7.25	68,000	5,100	8,900	1,100	4,000	<1,000
	7/9/2002	21.09	6.31	1,000	200	8.9	0.67	82	<10
	10/4/2002	21.28	6.12	270	100	3.4	0.53	10	< 5.0
	1/12/2003	20.59	6.81	67,000	7,600	13,000	1,400	5,600	<500
	4/21/2003	19.98	7.42	78,000	7,700	12,000	1,900	6,900	<500
30.40	7/21/2003	20.08	10.32	1,800	360	16	<5.0	190	<50
	10/2/2003	20.41	9.99	4,000	790	110	60	350	<50
				,	- · · ·	- • •			

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
TOC		(ft)	(ft amsl)	\leftarrow			(μg/L) ————		\longrightarrow
MW-2	1/15/2004	19.93	10.47	8,100	6.1	23	44	530	<50
(cont'd)	4/5/2004	18.99	11.41	14,000	1,600	2,100	550	2,500	<500
(*********)	8/9/2004	19.79	10.61	1,200	210	16	14	100	<20
	10/7/2004	20.26	10.14	1,100	2.3	9,8	2.9	36	<5.0
	2/7/2005	18.80	11.60	45,000	4,400	4,800	1,400	5,800	<200
	4/5/2005	18.40	12.00	34,000	3,700	3,600	1,200	5,300	<500 (<5.0)
	7/6/2005	18.48	11.92	24,000	1,600	1,700	570	2,800	<500
	10/10/2005	19.00	11.40	25,000	1,700	2,100	710	3,200	<500
	1/26/2006	18.58	11.82	60,000	4,600	7,200	1,600	6,900	<1,000
	4/10/2006	17.84	12.56	56,000	4,900	7,500	1,200	7,400	<500
	7/6/2006	18.76	11.64	28,000	1,900	1,700	720	2,900	<500
	10/26/2006	19.60	10.80	43,000	2,800	2,500	1,700	7,600	<500
	1/19/2007	19.84	10.56	31,000	2,700	2,400	1,400	5,800	<150
	4/17/2007	19.90	10.50	37,000	3,200	2,900	1,600	6,400	<400
	7/6/2007	19.63	10.77	30,000	3,200	2,000	1,500	5,200	<250
	10/15/2007	20.11	10.29	20,000	1,200	990	650	2,300	<500
	1/17/2008	20.10	10,30	38,000	2,900	5,100	1,200	5,000	<210
	4/9/2008	20.12	10.28	51,000	3,000	6,400	1,700	6,500	<250
	7/17/2008	20.01	10.39	22,000	180	500	660	2,100	<250
	10/27/2008	20.61	9.79	26,000	570	2,100	670	3,400	<50
	1/9/2009	20.80	9.60	16,000	240	680	460	3,000	<100
	4/27/2009	20.17	10.23	16,000	130	660	570	3,600	<500
	7/9/2009	20.36	10.04	8,500	30	110	250	1,400	<100
	2/3/2010	19.84	10.56	22,000	47	140	500	3,000	<100
	7/13/2010	19.08	11.32	1,900	3.5	5.8	38	110	<5.0
	1/17/2011	19.02	11.38	17,000	23	100	330	2,200	<100
	7/12/2011	18.52	11.88	15,000	22	30	190	740	<50
	1/12/2011	19,18	11.22	20,000	17	47	250	2,100	<84
	7/25/2012	18.83	11.57	440	<0.5	2.2	1.0	39	<5.0
	1/25/2013	19,21	11.19	8,300	17	11	140	510	<50
	7/29/2013	19.94	10.46	8,000	13	13	200	100	<25
	1/28/2014	20.56	9.84	5,900	10	7.3	100	80	<50
	7/24/2014	20.61	9.79	2,100	1.5	3.1	21	37	< 5.0
	1/22/2015	20.24	10.16	1,700	3.3	3.0	8.0	25	<10
	7/20/2015	20.66	9.74	770	0.57	0.69	9.2	10	< 5.0
	8/3/2016	20.03	10.37	980	0.9	1.9	9.4	9.9	<5.0
	1/20/2017	19.49	10.91	3,000	2.7	3.7	19	29	<5.0
MW-3	12/2/1994	22.15	7.35	394,000	1,200	ND	1,800	4,000	_
29.50	3/6/1995	20.09	9.16	21,000	400	150	24	62	£50
29.25	7/11/1995	19.99	9.57	12,000	ND	10	16	99	2
29.56	5/10/1996	20.24	9.32	8,600	ND	7.6	16	84	-
	10/2/1996	20.90	8.66	11,000	ND	7.4	19	92	-
	2/28/1997	20.12	9.44	6,000	ND	4.4	17	88	50
	9/16/1997	20.97	8.59	6,500	< 0.5	0.69	1.2	6.7	<5.0
	2/5/1998	20.39	9.17	5,400	< 0.5	6.3	15	86	<63
	8/11/1998	19.95	9.61	2,700	<0.5	3.5	3.2	12	<10
	2/8/1999	20.58	8.98	6,100	<0.5	8.1	18	80	<140
	2/17/1999	20.53	9.03		-	-	-	-	-
	2/24/1999	22.53	7.03		-	-	T	350	-
	3/3/1999	20,28	9.28	2	-	-	¥	-	-
	3/10/1999	22.45	7.11	: :	1 - 1	-	-	380	(*)
	3/17/1999	20.26	9.30		-	-	-	-	-
	5/4/1999	20.24	9.32	11,000	<2	<2	9,8	140	<10

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
TOC		(ft)	(ft amsl)	\leftarrow		(μg/L)		\rightarrow
MW-3	7/20/1999	20.68	8.88	11,000	< 0.5	3.1	13	88	<80
(cont'd)	10/5/1999	20.81	8.75	31,000	62	< 0.5	21	170	<90
	1/7/2000	21.09	8.47	13,000	<0.5	<2	21	140	<80
	4/6/2000	20.48	9.08	5,300	1.5	1.4	9.8	60	<30
	7/31/2000	20.62	8.94	7,100	3.5	1.0	12	66	< 5.0
	10/3/2000	21.13	8.43	8,000	< 0.5	3.3	11	70	<40
	1/12/2001	21.45	8.11	11,000	4.3	6.7	11	73	<70
	4/11/2001	21.69	7.87	10,000	< 0.5	< 0.5	11	65	<10
	7/6/2001	21.60	7.96	13,000	5.3	1.6	11	58	< 5.0
	10/25/2001	21.70	7.86	11,000	< 0.5	3.0	15	70	<10
	3/4/2002	21.65	7.91	1,900	1.3	0.8	< 0.5	15	< 5.0
	4/18/2002	21.77	7.79	1,500	1.0	0.97	1.3	5.8	<5
	7/9/2002	22.03	7.53	13,000	6.8	5.7	13	59	<90
	10/4/2002	22.15	7.41	8,400	<10	<10	<10	42	<100
	1/12/2003	21.13	8.43	9,000	9.5	5.1	8.5	46	<90
	4/21/2003	20.63	8.93	10,000	< 5.0	< 5.0	8.5	32	<50
32.56	7/21/2003	20.68	11.88	9,600	<2.5	<2.5	7.4	39	48 (<1.0)
	10/2/2003	20.99	11.57	12,000	< 5.0	< 5.0	10	40	<90
	1/15/2004	20.74	11.82	13,000	37	41	78	930	<50
	4/5/2004	20,59	11.97	4,500	<1.7	<1.7	<1.7	12	<17
	8/9/2004	22.18	10.38	2,100	<1.0	3.7	<1.0	8.1	<10
	10/7/2004	22.79	9.77	2,400	6.5	26	7.5	89	<15
	2/7/2005	20.35	12.21	6,800	2.2	5.6	2.0	12	<30
	4/5/2005	19.95	12.61	6,100	2.3	2.6	1.3	8.3	<45 (<0.5)
	7/6/2005	19.93	12.63	4,500	<1.0	1.5	1.0	8.3	<10
	10/10/2005	20.45	12.11	3,800	0.73	<0.5	0.98	5.7	<15
	1/26/2006	20.05	12.51	5,100	<0.5	1.1	<0.5	6.6	<15
	4/10/2006	19.39	13.17	1,900	0.55	1.6	0.51	4.1	<10
	7/6/2006	20.25	12.31	5,600	<1.0	2.3	<1.0	6.4	<20
	10/26/2006	21.07	11.49	8,000	2.5	1.0	2.3	12	<35
	1/19/2007	21.38	11.18	77,000	19	40	9.5	130	<300
	4/17/2007	21,45	11.11	7,400	2.7	6.6	1.1	12	<40
	7/6/2007	21.29	11.27	7,100	2.4	5.6	0.85	10	<30
	10/15/2007	21.62	10.94	10,000	<5.0	<5.0	<5.0	14	<50
	1/17/2008	21.68	10.88	6,400	1.8	<0.5	1.0	8.4	23
	4/9/2008	21.42	11.14	4,700	1.7	2.2	<0.5	3.8	<18
	7/17/2008	22.10	10.46	7,700	2.9	3.1	1.4	11	<60
	10/27/2008	22.13	10.43	9,700	<1.7	1.8	2.3	11	<17
	1/9/2009	22.27	10.29	9,800	1.7	2.0	3.0	14	<17
	4/27/2009	21.74	10.82	8,700	1.7	3.3	<1.7	11	<50
	7/9/2009	21.74	10.64	10,000	<2.5	4.1	2.6		<60
	2/3/2010	21.55	11.01	5,300	1.5	2.3	<0.5	11	
	7/13/2010	21.33	11.25	4,400	<2.5	9.0		2.7	<25
	1/17/2011	20.75	11.23				<2.5	4.6	<25
	7/12/2011	20.73	12.42	4,100 4,500	1.2 2.4	1.8	< 0.5	2.7	<20
	1/11/2012	20.14	12.42			2.8	<0.5	5.0	<25
	7/25/2012			3,000	1.1	1.6	< 0.5	1.9	<15
	1/25/2012	20.44	12.12	5,400	<1.7	<1.7	<1.7	4.1	<17
		20.84	11.72	4,900	<1.7	2.7	<1.7	3.5	<17
	7/29/2013	21.48	11.08	9,700	<2.5	<2.5	<2.5	<2.5	<25
	1/28/2014	22.08	10.48	12,000	2.8	2.8	<2.5	4.6	<25
	7/24/2014	22.15	10.41	6,700	2.2	<1.7	1.9	5.2	<35
	1/22/2015	21.76	10.80	8,900	<5.0	<5.0	<5.0	<5.0	<50

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

MW-3	Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
	TOC		(ft)	(ft amsl)	\leftarrow			(μg/L)		
MW-4 \$7101996 16.98 8.31 14,000 \$2.5 \$5.0 \$2.5 \$7.5 \$2.5 \$2.5 \$3.0 \$3.100 \$-3.239 \$1.021996 16.98 8.31 14,000 ND 12,000 \$7.0 \$3.100 \$-3.2200										
MW-4	(cont'd)									
23.29		1/20/2017	21.15	11.41	4,200	<2.5	5.0	<2.5	<7.5	<25
23.29	MW-4	5/10/1996	16 98	8 31	14 000	ND	1 200	720	3 100	
					-					
9 17 1997 1793 7.36 13,000 <2.5 820 750 2,900 <190 225 1998 16.78 8.51 13,000 <1.0 690 690 2,900 <170 8/11/1998 16.89 8.70 15,000 <5 360 520 1,900 220 300 228/1999 17,10 8.19 9,800 <5 680 770 2,200 300 302/14/1999 16.86 8.49 -										
25/1998										
									-	
28/1099		8/11/1998	16.59	8.70						
3/10/1999		2/8/1999	17.10	8.19	9,800	<5				
3/10/1999		2/24/1999	18.95	6.34	_	-	-	5344	-	
31/17/1999		3/3/1999	16.80	8.49	-	-	-	(*	-	-
SAM1999		3/10/1999	16.86	8.43	-	-	-	-	-	-
1720/1999		3/17/1999	16.82	8.47	-	-	-	-	-	-
10/5/1999		5/4/1999	16.86	8.43	11,000	46	600	620	1,900	<100
1/7/2000		7/20/1999	17.30	7.99	13,000	<0.5	470	7.0	2,000	<150
46/2000		10/5/1999	17.43	7.86	18,000	4.4	720	800	2,100	<120
1731/2000		1/7/2000	17.78	7.51	18,000	<2	930	990	2,700	<30
10/3/2000					8,000		390	530	1,300	<10
1/12/2001		7/31/2000			6,200		170	460	850	<10
4/11/2001 18.31 6.98 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0										
7/6/2001									<0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
3/4/2002										
4/18/2002										
7/9/2002 19.50 5.79 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <50 <0.5 <0.5										
10/4/2002										
1/12/2003										
4/21/2003										
28.29 7/21/2003 18.81 9.48 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5										
10/2/2003	28.20									
1/15/2004 18.68 9.61 <50	20.29									
4/5/2004 17.41 10.88 6,200 29 250 450 730 <100										
8/9/2004 19.07 9.22 <50										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
2/7/2005 17.21 11.08 8,700 48 340 550 720 <100										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4/5/2005								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10/10/2005	17.59		6,300					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/26/2006	17.08	11.21	5,600	41	68			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4/10/2006	16.27	12.02	2,900	39	32	200	140	<60
1/19/2007 18.29 10.00 7,100 140 35 520 150 <200		7/6/2006	17.20	11.09	5,400	65	59	340	150	
4/17/2007 18.30 9.99 4,900 90 32 290 89 <110		10/26/2006	18.06	10.23	7,200	72	46	460	200	<150
7/6/2007 18.00 10.29 4,600 91 30 210 55 <90		1/19/2007	18.29	10.00	7,100	140	35	520	150	<200
10/15/2007 18.52 9.77 8,600 200 62 480 110 <210		4/17/2007		9.99	4,900	90	32	290	89	<110
1/17/2008 18.46 9.83 820 15 3.7 25 9.3 <10		7/6/2007	18.00			91	30	210	55	<90
4/9/2008 18.23 10.06 3,600 55 20 160 64 <60		10/15/2007	18.52		8,600	200	62	480	110	<210
7/17/2008 18.72 9.57 6,500 210 47 510 180 <180							3.7	25	9.3	<10
,										
					-					
10/27/2008 19.07 9.22 7,700 200 28 450 87 <150		10/27/2008	19.07	9.22	7,700	200	28	450	87	<150

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)				(μg/L)		\longrightarrow
MW-4	1/9/2009	19.12	9.17	4,400	180	34	180	93	<150
(cont'd)	4/27/2009	18.52	9.77	2,500	110	24	190	69	<150
	7/9/2009	18.78	9.51	5,600	150	34	270	83	<250
	2/3/2010	18.24	10.05	2,900	38	20	69	54	<50
	7/13/2010	17.59	10.70	1,100	20	7.6	43	26	<60
	1/17/2011	17.42	10.87	2,900	16	43	60	99	<15
	7/12/2011	17.01	11.28	<50	<0.5	0.56	0.52	0.93	<5.0
	1/11/2012	17.68	10.61	4,100	52	52	49	130	<90
	7/25/2012	17.26	11.03	100	1.2	< 0.5	<0.5	< 0.5	<5.0
	1/25/2013	17.58	10.71	3,500	33	20	23	65	<35
	7/29/2013	18.34	9.95	97	4.7	<0.5	<0.5	0.70	<10
	1/28/2014	18.99	9.30	<50	1.2	< 0.5	<0.5	<0.5	<5.0
	7/24/2014	19.05	9.24	4,200	83	19	40	32	<50
	1/22/2015	18.57	9.72	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	7/20/2015	-	_				paved over-		
	8/3/2016	-	_				paved over-		
	1/20/2017					well	paved over-		
MW-5	5/10/1996	14.60	7.37	ND	ND	ND	ND	ND	
21.97	10/2/1996	15.25	6.72	ND	ND	ND	ND	ND	2
	2/28/1997	14.31	7.66	ND	ND	ND	ND	ND	ND
	9/17/1997	15.18	6.79	<0.5	<0.5	< 0.5	<0.5	< 0.5	<5.0
	2/5/1998	13.64	8.33	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	8/11/1998	13.92	8.05	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	2/8/1999	14.19	7.78	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	2/24/1999	16.18	5.79	_	-	-	-	5	-
	3/3/1999	14.23	7.74	_	_	_	_	2	_
	3/10/1999	14.32	7.65	-	-	_	_	-	_
	3/17/1999	14.25	7.72	-	_	-	-	-	_
	5/4/1999	14.41	7.56	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/20/1999	14.44	7.53	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/5/1999	14.79	7.18	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/7/2000*	15.23	6.74	-	-	-	-	-	-
	4/6/2000	14.74	7.23	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/31/2000	14.52	7.45	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/3/2000	15.37	6.60	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/12/2001	15.70	6.27	6,400	13	290	450	1,100	<40
	4/11/2001	15.78	6.19	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	7/6/2001	15.97	6.00	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	10/25/2001	16.05	5.92	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	3/4/2002	16.21	5.76	<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0
	4/18/2002	16.59	5.38	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
	7/9/2002	16.94	5.03	170	1.0	0.65	2.1	4.0	<15
	10/4/2002	17.14	4.83	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/12/2003	16.58	5.39	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	4/21/2003	15.90	6.07	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	7/21/2003	16.03	8.96	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
24.99	10/2/2003	16.33	8.66	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0
	1/15/2004	16.21	8.78	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	4/5/2004	15.01	9.98	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	8/9/2004	16.85	8.14	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	10/7/2004	17.48	7.51	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	2/7/2005	16.52	8.47	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	4/5/2005	14.45	10.54	<50	<0.5	<0.5	<0.5	<0.5	<5.0 (<0.5)

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)	\leftarrow		—— (h	ıg/L)		\longrightarrow
MW-5	7/6/2005	14.85	10.14	~50	<0.5	40.5	-0.5	10.5	-5.0
(cont'd)	10/10/2005	15.44	10. 14 9.55	<50 <50	<0.5 <0.5	< 0.5	<0.5	<0.5	<5.0
(com u)	1/26/2006	14.96	10.03	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0
	4/10/2006	14.90	10.03	<50 <50		< 0.5	<0.5	< 0.5	<5.0
	7/6/2006	15.17	9.82	<50	<0.5 <0.5	< 0.5	< 0.5	<0.5	<5.0
	10/26/2006	15.17	9.05	<50	<0.5 <0.5	< 0.5	<0.5	<0.5	<5.0
	1/19/2007	16.05	8.94	<50	<0.5	<0.5	< 0.5	< 0.5	<5.0
	4/17/2007	15,99	9.00	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	7/6/2007	15.50	9.49	<50	<0.5 <0.5	<0.5	<0.5	< 0.5	<5.0
	10/15/2007	16.27	9.49 8.72	<50		< 0.5	<0.5	< 0.5	<5.0
	1/17/2008	15.10	9.89	<50 <50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	4/9/2008	15.10		<50 <50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/17/2008	16.44	9.03		<0.5	< 0.5	<0.5	<0.5	<5.0
	10/27/2008	16.44	8.55	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/9/2009	16.78	8.21	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/27/2009		8.24	<50	<0.5	<0.5	<0.5	<0.5	<5.0
		16.21	8.78	_		_	_	-	_
	7/9/2009	16.48	8.51			-			
	2/3/2010	15.77	9.22	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	7/13/2010	15.34	9.65					_	_
	1/17/2011	14.93	10.06	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	7/12/2011	14.81	10.18	-			_		_
	1/11/2012	15.44	9.55	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/25/2012	14.79	10.20				-		_
	1/25/2013	15.21	9.78	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	7/29/2013	16.03	8.96	-	-	_	_		_
	1/28/2014	16.65	8.34	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/24/2014	16.75	8.24	-	-	_		-	_
	1/22/2015	16.25	8.74	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/20/2015	16.82	8.17	_	_	_	_	-	_
	8/3/2016	16.23	8.76	<50	<0.5	<0.5	<0.5	<1.5	<5.0
	1/20/2017	14.98	10.01	<50	<0.5	<0.5	<0.5	<1.5	<5.0
MW-6	6/30/2003	19.60	11.39	68,000	950	6,000	2,400	10,000	<1,000
30.99	7/21/2003	19.67	11.32	120,000	170	1,400	1,100	10,000	<1,000
	10/2/2003	19.97	11.02	16,000	7.6	200	38	1,800	<100
	1/15/2004	19.55	11.44	14,000	48	51	94	1,100	< 50
	4/5/2004	19.17	11.82	24,000	180	900	430	1,800	< 500
	8/9/2004	20.98	10.01	5,300	6.4	25	5.3	69	<17 (<0.5)
	10/7/2004	21.52	9.47	5,600	11	58	18	210	<50 (<0.5)
	2/7/2005	19.00	11.99	31,000	120	620	310	1,200	<500
	4/5/2005	18.60	12.39	21,000	170	1,100	350	1,300	<500 (<5.0)
	7/6/2005	18.56	12.43	26,000	130	920	320	1,200	<500
	10/10/2005	19.99	11.00	19,000	140	840	250	980	<500
	1/26/2006	18.70	12.29	10,000	140	1,100	270	1,200	<170
	4/10/2006	18.04	12.95	13,000	140	1,000	280	1,000	<250
	7/6/2006	18.80	12.19	17,000	150	1,000	290	1,000	<250
	10/26/2006	19.62	11.37	23,000	230	660	470	1,500	<500
	1/19/2007	19.92	11.07	18,000	190	620	350	1,100	<150
	4/17/2007	19.97	11.02	23,000	380	1,400	590	2,000	<450
	7/6/2007	19.81	11.18	28,000	600	3,000	900	2,700	<500
	10/15/2007	20.15	10.84	25,000	290	680	410	1,100	<250
	10/15/2007	20.15	10.84	25,000	290	680	410	1,100	<250
	1/17/2007	20.22	10.77	16,000	200	130	130	460	<150
	4/9/2008	19.86	11.13	18,000	320	870		1,500	

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Dete	Depth to	Groundwater	mp. i					
	Date	Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
TOC		(ft)	(ft amsl)				(μg/L) ————		\longrightarrow
MW-6	7/17/2008	20.36	10.63	18,000	320	510	420	1,200	<500
(cont'd)	10/27/2008	20.69	10.30	31,000	320	320	410	990	<350
(50/11/4)	1/9/2009	20.83	10.16	22,000	340	390	560		<250
	4/27/2009	20.27	10.72	13,000	110	97	380	1,400	
	7/9/2009	20.43	10.72	18,000	250	520	470	1,100	<350
	2/3/2010	20.14	10.85	6,200	82			1,300	<450
	7/13/2010	19.29	11.70	12,000	260	180	190	550	<150
	1/17/2011	19.29		4,900	70	420	480	1,600	<450
	7/12/2011	18.73	11.68	-		52	210	500	<50
			12.26	1,400	20	8.5	64	130	<30
	1/11/2012	19.39	11.60	6,000	100	38	310	700	<210
	7/25/2012	19.02	11.97	2,800	31	13	140	240	<75
	1/25/2013	19.35	11.64	5,400	86	34	310	620	<100
	7/29/2013	19.97	11.02	82	1.2	<0.5	<0.5	<0.5	<5.0
	1/28/2014	20.60	10.39	2,600	36	11	52	53	<50
	7/24/2014	20.70	10.29	9,600	160	53	410	590	<70
	1/22/2015	20.31	10.68	7,600	25	13	53	86	<50
	7/20/2015	20.68	10.31	12,000	160	73	540	650	<450
	8/3/2016	20.02	10.97	12,000	710	67	3,800	3,100	450
	1/20/2017	19.56	11.43	13,000	120	71	760	760	260
MW-7	6/30/2003	21.40	11.71	170	< 0.5	2.1	2.0	8.7	<5.0
33.11	7/21/2003	21.44	11.67	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	10/2/2003	21.73	11.38	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/15/2004	21.57	11.54	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/5/2004	20.84	12.27	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	8/9/2004	22.68	10.43	<50	<0.5	<0.5	<0.5	<0.5	<5.0 <5.0
	10/7/2004	23.27	9.84	<50	<0.5	<0.5	<0.5		
	2/7/2005	20.60	12.51	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<5.0 <5.0
	4/5/2005	20.22	12.89	<50	<0.5	0.75	<0.5		
	7/6/2005	20.25	12.86	< 5 0	<0.5	<0.5		<0.5	<5.0 (<0.5)
	10/10/2005	20.70	12.41	<50	<0.5		<0.5	<0.5	<5.0
	1/26/2006	20.70	12.41			<0.5	<0.5	< 0.5	<5.0
	4/10/2006	19.62	13.49	<50 <50	<0.5	< 0.5	<0.5	< 0.5	<5.0
	7/6/2006	20.47	12.64		<0.5	<0.5	<0.5	<0.5	<5.0
	10/26/2006	21.30		<50	<0.5	< 0.5	<0.5	<0.5	<5.0
			11.81	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	1/19/2007	21.62	11.49	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/17/2007	21.50	11.49	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	7/6/2007	21.59	11.52	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	10/15/2007	21.85	11.26	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	1/17/2007	21.90	11.21	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0
	4/9/2008	21.61	11.50	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	7/17/2008	22.09	11.02	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/27/2008	22.39	10.72	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	1/9/2009	22.52	10.59	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	4/27/2009	21.98	11.13	-		ere.	_	-	_
	7/9/2009	22.18	10.93				***		-
	2/3/2010	21.87	11.24	<50	< 0.5	<0.5	< 0.5	<0.5	<5.0
	7/13/2010	21.01	12.10	_	_		_	_	_
	1/17/2011	21.07	12.04	<50	<0.5	< 0.5	<0.5	< 0.5	< 5.0
	7/12/2011	20.72	12.39	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	1/11/2012	21.13	11.98	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0

Table 3 - Groundwater Elevation and Analytical Data.Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID	Date	Depth to Water	Groundwater Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
TOC		(ft)	(ft amsl)	←	·	()	μg/L)		\longrightarrow
Nav a	= 10 = 10 0 1 0	-0							
MW-7	7/25/2012	20.75	12.36	_	_	_	-		_
(cont'd)	1/25/2013	21.10	12.01	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	7/29/2013	21.70	11.41	_		_			
	1/28/2014	22.34	10.77	< 50	< 0.5	<0.5	<0.5	<0.5	<5.0
	7/24/2014	22.41	10.70	_		_	_		-
	1/22/2015	21.99	11.12	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0
	7/20/2015	_	_				aved over-		
	8/3/2016	_	_			–well p	aved over-		
	1/20/2017	_				well p	aved over		
AS-1	7/6/2006	19.53	_	18,000	2,700	570	700	1,900	<500
	10/26/2006	20.33		15,000	1,900	340	360	1,400	<250
	1/19/2007	20.64		5,700	1,100	110	88	630	<50
	1/19/2007	20.64	_	5,700	1,100	110	88	630	<50
	4/17/2007	20.71	-	=:		_	_	==	_
	7/16/2007	-	_	_					-
	10/15/2007	-	_						
	1/17/2008	1753	-	-			-		-
	4/9/2008	State .	_			-	5 — 5		
	1/25/2013	-	_	70	10	<0.5	<0.5	< 0.5	<5.0
	1120/2015			70	10	-0.5	10.5	10,5	-3.0
AS-2	7/6/2006	22.26	9 00 0	2,100	6.1	<0.5	33	200	<20
	10/26/2006	23.25	==	280	1.1	<0.5	< 0.5	6.0	<15
	1/19/2007	23.61		2,100	2.3	<0.5	96	310	<35
	4/17/2007	23.70	_		-	-	\$ ***	14- 5	-
	7/16/2007	_		_			200	200 2	77.5
	10/15/2007	-	-	-	-	-	-		
	1/17/2008	_		_	421	744	-	220	***
	4/9/2008	_							_
	1/25/2013	22.02	_	<50	<0.5	<0.5	<0.5	<0.5	<5.0
AS-3	7/6/2006	21.77	***	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/26/2006	22.66		<50	<0.5	<0.5	<0.5	<0.5	< 5.0
	1/19/2007	22.97	=	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	4/17/2007	23.06	_	_	_	-	-	-	-
	7/16/2007		_	_		_	_		
	10/15/2007		-	-	-	_			_
	1/17/2008					_		_	
	4/9/2008							_	
	1/25/2013	22.60	_	<50	<0.5	< 0.5	0.55	<0.5	<5.0
				_					
Trip Blank	01/12/01	9.00		<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0
	4/11/2001		-	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/6/2001	-	-	<50	<0.5	<0.5	<0.5	< 0.5	<5.0
	3/4/2002	-		<50	<0.5	<0.5	<0.5	<0.5	< 5.0
	10/2/2003	-	-	<50	<0.5	<0.5	<0.5	<0.5	< 5.0
	10/15/2007	_				_	_		_

Table 3 - Groundwater Elevation and Analytical Data.

Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring / Well ID TOC	Date	Depth to Water (ft)	Groundwater Elevation (ft amsl)	TPHg	Benzene	Toluene	Ethylbenzene (µg/L)	Xylenes	MTBE
Grab Ground	dwater								
SB-A	2/22/1996	-	_	16,000	38	16	180	620	_
SB-B	2/22/1996	_	_	20,000	100	29	320	590	_
SB-C	2/22/1996	-	340	1,200	130	100	68	230	_
SB-D	2/22/1996	-	===	7,400	550	110	160	89	_
SB-E	2/23/1996	_	-	16,000	31	160	390	1,400	_
SB-F	2/23/1996		_	<50	< 0.5	1.4	< 0.5	2.3	_
SB-G	2/23/1996	-	-	5,200	1.3	<0.5	0.7	<0.5	110
EB-1GWS	7/8/1994	_		62,000	<0.5	26	850.0	8,900	
EB-2GWS	7/8/1994	_		160,000	5,300	20,000	2,100	17,000	48
EB-3GWS	7/8/1994	. 		87,000	1,400	21,000	1,700	19,000	-
EB-4GWS	7/8/1994	_		350,000	290	1,300	3,200	31,000	
EB-5GWS	7/8/1994	_	***	120,000	2,100.0	13,000	1,300.0	16,000	
EB-6GWS	7/8/1994	-	55.5	230,000	10,000	34,000	2,300	16,000	-

Notes and Abbreviations:

TOC = Top of casing elevations in feet above mean sea level.

ft amsl = Measured in feet above mean sea level

 μ g/L = Micrograms per liter.

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015C.

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B.

MTBE = Methyl tertiary butyl ether by EPA Method 8021B, and by EPA Method 8260 in parenthesis.

 \leq 0.5 = Concentration not detected above specific laboratory reporting limit.

-- = Not analyzed, not sampled, or not applicable.

ND = Not detected.

Data prior to 7/11/95 from Gen Tech and Piers Environmental Quarterly Groundwater Monitoring Reports dated December 2, 1994 and March 6, 1995, respectively

On July 31, 2003, Virgil Chavez Land Surveying of Vallejo, California surveyed monitoring wells using a benchmark in the top of the curb near the SW return of the NW corner of 34th and Broadway.

TABLE 1. SOIL CHEMICAL DATA

Sample	TPHG	В	Ŧ	Ε	X
No.	mg/kg	# 100 100 to see and was does all \$16 age 46 10	all	ug/kg -	
EB-1@20'	ND	ND	ND	ND	ND
EB-2@20'	300	200	1,700	260	3,000
EB-3@20'	51	39	560	320	2,900
EB-4@20'	ND	ND	ND	ND	ND
EB-5@20'	650	170%	5,200	4,40	48,000
EB-6@20'	68	ND	22,000	4,30	23,000

TABLE 2. GROUNDWATER CHEMICAL DATA

Sample	TPHG	В	Т	E	X
No.		*	ug/i		
EB-1GWS Theen	62,000	ND	26	850	8,900
EB-2GWS	160,000	5,300	20,000	2,100	17,000
EB-3GWS shee	27,000	1,400	21,000	1,700	19,000
EB-4GWS	350,000	290	1,300	3,200	31,000
EB-5GW\$	120,000	2,100	13,000	1,300	16,000
EB-6GWS	230,000	10,000	_ 34,000	2,300	16,000
MW-1	ND	ND	ND	NO	ND
MW-2	61,300	3,000	3,900	160	4,500
MW-3 sheen	394,000	1,200	ND	1,800	4,000

ND - Not Detected mg/kg - milligram per kilogram ug/l - microgram per liter ug/kg - microgram per kilogram

Discussion

Soil samples collected from the borehole indicate that the contaminants are present in the capillary fringe in the vicinity of the former tank locations. Excavation in the tank areas has apparently removed the contaminated soil to the limit accessible. Overall site groundwater movement is easterly under a gentle gradient. The chemical data indicate that TPHG and BTEX contaminants occur on-site. Contaminant occurrence infer capillary migration in soil as well as groundwater. Currently, migration in water appears to be slow, toward the east.

Table I Sample Location Rationale 1721 Webster Street Oakland, CA

			Media				Analytical l	Analytical Parameters			
Boring ID	Rationale	= 0				Soil			Grou	Groundwater	
		III	Crommwater	ТРН-g/ТРН-d/ТРН-mo	VOCs	Metals	PCBs	Pesticides	ТРН-g/ТРН-d/ТРН-mo	vocs	Metals
SB-1	Assess potential impacts from dry cleaner operations southwest of subject property	3	1	3	3	3	1		-	1	2
SB-2 & SB-3	Assess potential impacts from historical site use (Automobile Servicing)	9	1	9	9	9	2	2	-	1	2
SB-4, SB-5, & SB-7	Assess extent of contamination associated with former USTs	6	2	6	6	6	т	en	7	7	4
SB-6	Assess baseline soil conditions on subject property	6	0	3	3	3	-	-	G	0	0
SB-8 & SB-9	Assess soil and groundwater conditions adjacent to inground hydraulic lifts	9	1	9	9	9	2	2		-	. 2
SB-10	Assess shallow soil quality in dumpster area		0	1	1	1	-	-	0	0	0
MW-1	Assess current groundwater quality to include chlorinated VOCs	0	1	0	0	0	0	0	-	1	7

Notes:

TPH-g = Total Petroleum Hydrocarbons as Gasoline (EPA Method 8260B); TPH-d = Total Petroleum Hydrocarbons as diesel (EPA Method 8015B)

TPH-mo = Total Petroleum Hydrocarbons as motor oil (EPA Method 8015B); TPH-ho = Total Petroleum Hydrocarbons as hydraulic oil (EPA Method 8015B)

VOCs = volatile organic compounds (EPA Method 8260B)

Metals = Title 22 Metals (EPA Method 6010B and 7470/7471)

PCBs = Polychlorinated Biphenyls (EPA Method 8082)

Pesticides= Organochhlorine pesticides (EPA Method 8081)

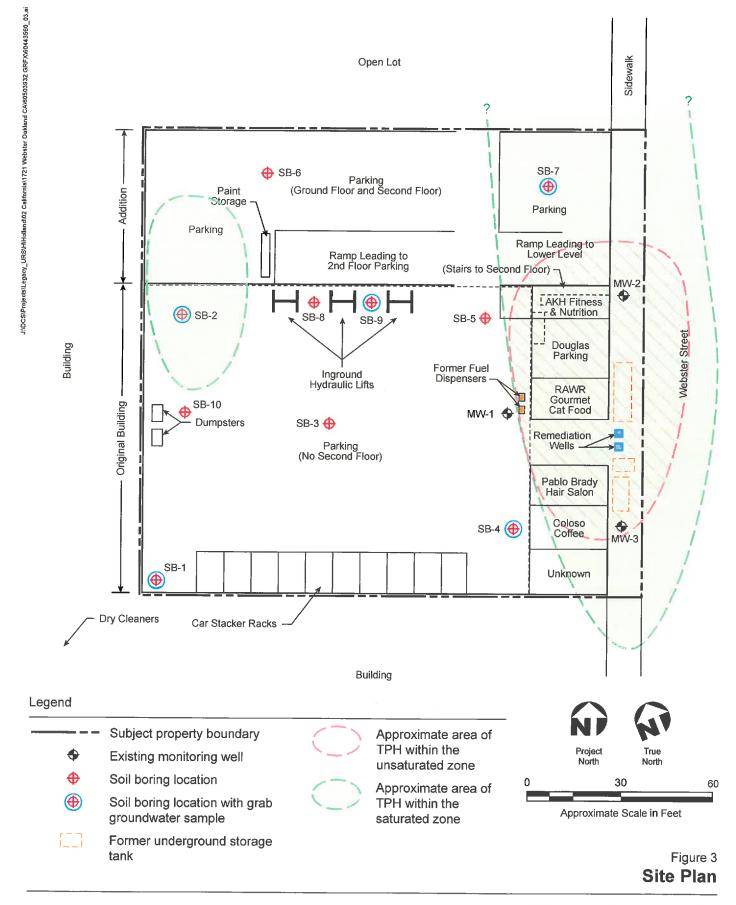


Table 4 Groundwater Analytical Results - Organics 1721 Webster St Oakland, CA

		_	_	_	_	_	_	_		_	
	senelyX lstoT		1.0 U	1.0 U	ľ	L	2	1.0 U	600	000'1	90
	enertheoroldɔhT	1	0.50 U	0.50 U	l	l	5	0.50 U	0	6.5	ç
	eneuloT	1	0.50	0.50 U	0.50	l	1	0.50	4 300	1,000	450
	enedleoroldasileT	3	١	0.50 U	2.4	0.84	5	0.1	3.7		9
	ouezueql\dou_d-u	ı		1.0 U	1.0 U	ı	ı	2	2		ΔN
(000)	enelsrüriqsN	l	1	1.0	1.0 U	33	40	0.1	25		0.12
Vol. a Co.	euezuedlyqordosi	0 20	Ì	0.50 U	0.50 U	26	0 50	30.0	2		2
	Eftrylbenzene	0.50	1	ı	0.50 U	7.8	050	2000	16.0		rc.
	Сһююбот	28	ı	1	1.0 U	1.0	l		2.8		0.23
	eneznedl/juß-het	10	۱	0.	1.0	2.7	l		≩		ž
	гес-Виђурелгеле	10	,	0.1	1.0 U	2.3	1.0	l	N		ž
	n-Butylbenzene	1.0 U	l	1	1.0	3.2	1.0		N		Ņ
	egnsЯ-liO voloM	100	l	1	100	100 U	100 U	l	N		NA 2
ng/L)	egnsЯ-liC Oil-Range	,	טטכ	ľ	n De	ı	100		Ñ		ž
TPH (ug/L)	egns:Я-leseiG	52 U	140	2	0	, 500	52 U		N		150
	egnsA-eniloesĐ	20	50		000	830	20 C		2		220
	Sample Date	7/12/2016	7/11/2016	7/19/9046	11 2/2016	7/12/2016	7/11/2016	WQCB Groundwater Vapor Intrusion Human	l (ug/L) ¹		RWQCB Direct Exposure Human Health RBSL
	Sample Location	SB-1	SB-2	ZB.A	1 1		SB-9	RWQCB Groundwater	Health Screening Level (ug/L		RWQCB Direct Expos

Nobe:
1. THY THE COE BLY REQUEND WHAT CLIBITY CONTROL Board Environmental Screening Levels. Table GW. 3. Groundwater Visor Intrusion Human Health Risk Screening Levels. Shallow Groundwater, Sand Screening, Recidental Land Use, February 2016 Edition.
1. THY motor of in orr soulde. THY motor of identifications is water most likely and particulates of less likely NAPL. If the detections are degraders, and TPH motor oil and TPH desal results and compare to TPH desal criterion. See User's Guide Chapter 8 for further information.
2. Pathem profile does not recemble the desast standard pathen.

Abbreviations and Symbols:

NV = no value

The = the behalves the unit of the subcretory reporting limit shown

U = microgram pet files

VOC = value of growing compound

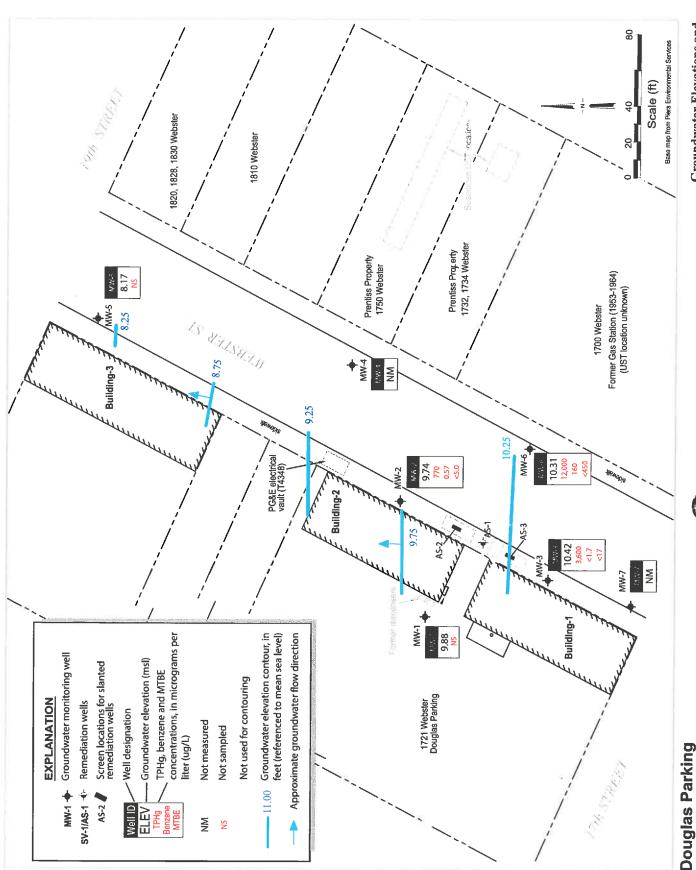
CI = Detection above taborationy reporting limits in exceedance of the RWQCB Groundwater Vapor Intrusion Human Health Rick Screening Level or Maximum Contaminant Level

GICGIT

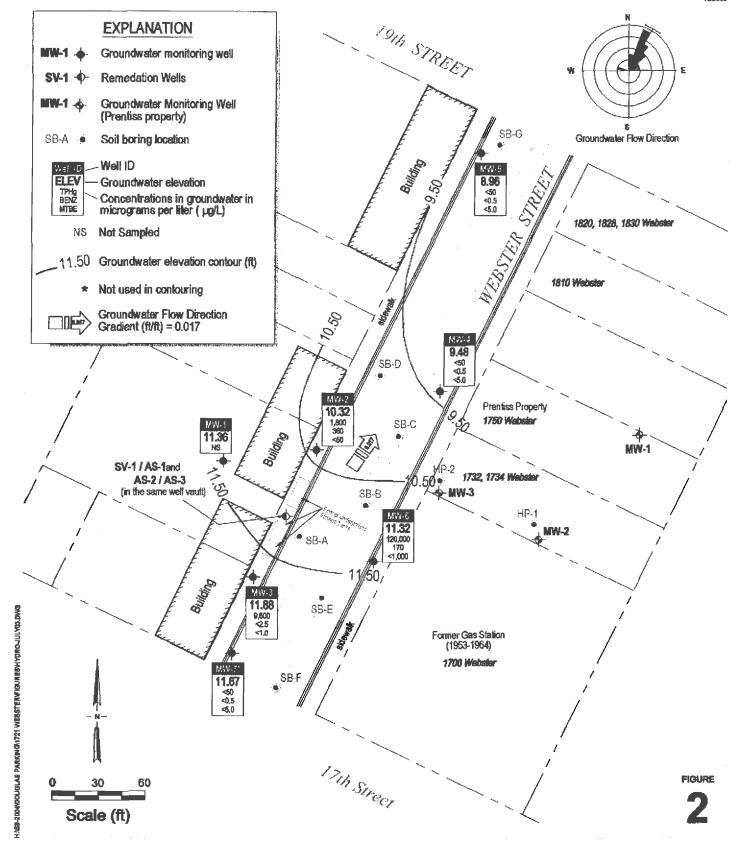
CONTAMINATION OF THE CONTAMINATION OF TH

Table 5 Groundwater Analytical Results - Metals 1721 Webster St Oakland, CA

(sA) oinestA
0.010 U 0.057
0.010 U 0.052
0.010 U 0.062
0.014 0.054
0.010 U 0.055
0.010 1.0
0.010 1.0


Notes: 1. San Francisco Bay Regional Water Quality Control Board, Tier 1 Environmental Screening Levels for Groundwater, February 2016 Edition.

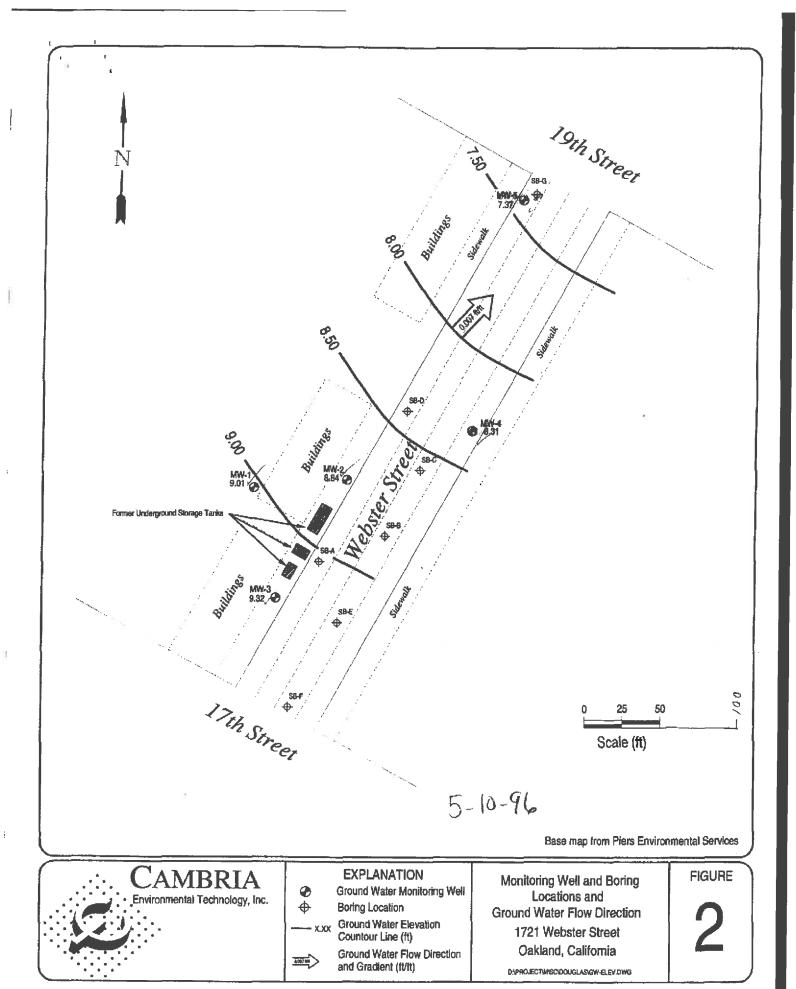
= miligram per liter = not described at or above the laboratory reporting limit shown = Detection above laboratory reporting limits in exceedance of the RWQCB Groundwater Screening Level or Maximum Contaminant Level


Abbreviations and Symbols: mg/L U

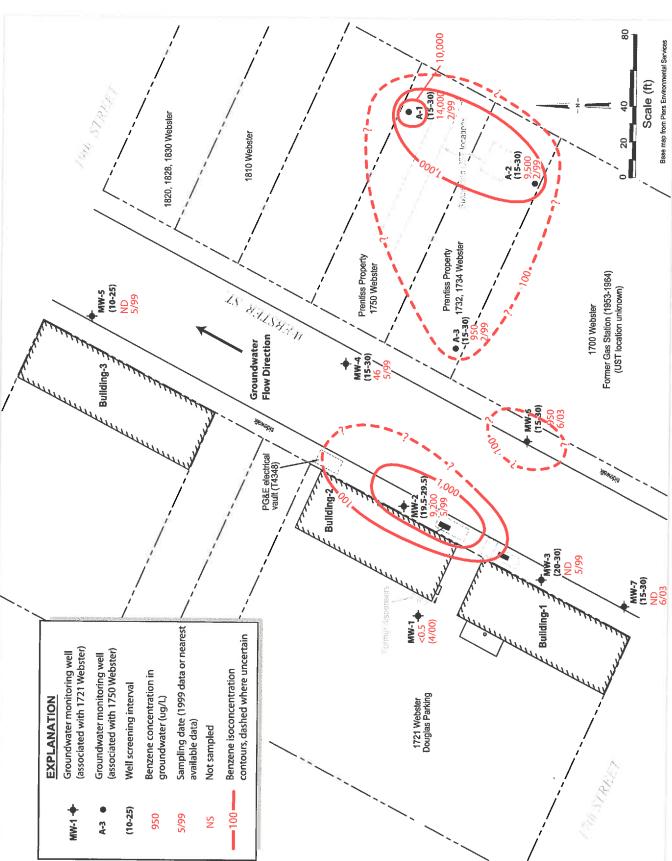
1721 Webster Street Oakland, California

July 20, 2015 Hydrocarbon Concentration Map Groundwater Elevations and

Douglas Parking Facility

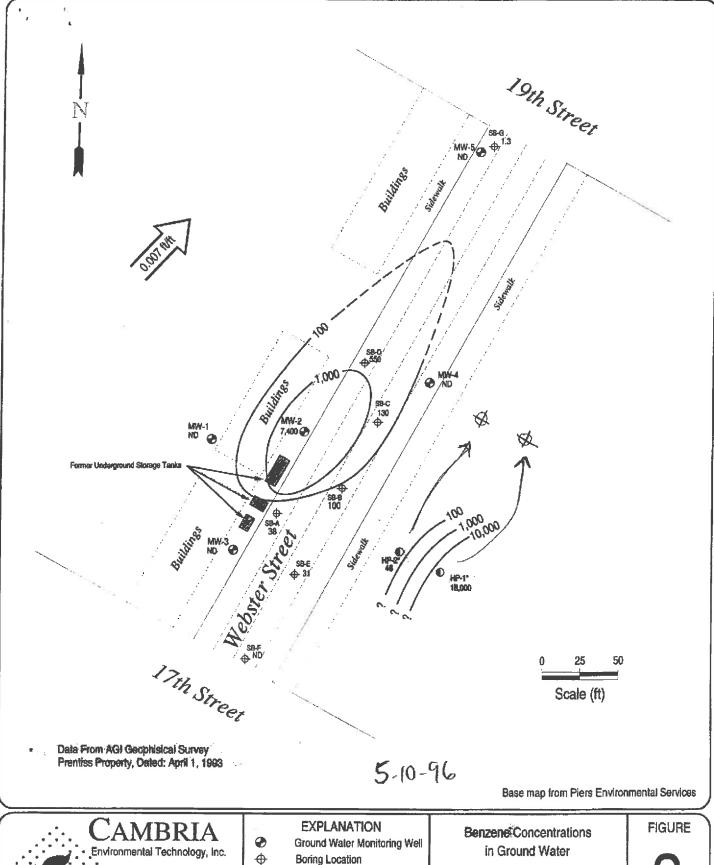

1721 Webster Street Oakland, California

Groundwater Elevation Contours and Hydrocarbon Concentration Map


July 21, 2003

CAMBRIA

Benzene Isoconcentration Map - Well Data 1999



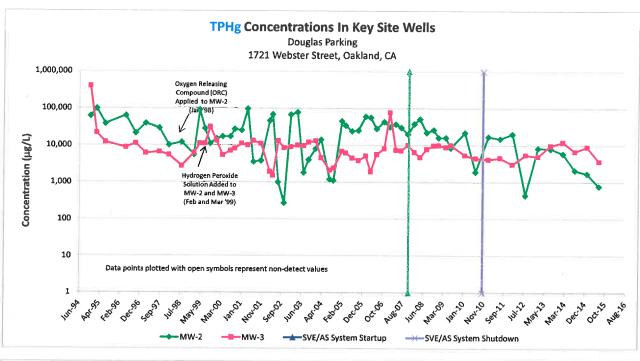
Douglas Parking 1721 Webster Street

Oakland, California

PANGEA

Benzene Isoconcentration Map - Grab Sampling Data July 1994 to February 1998

Boring Location


Benzene Concentration Contour (ppb)

- T

Ground Water Flow Direction and Gradient (ft/ft)

1721 Webster Street Oakland, California

D:PROJECTWISCIDOUGLAS/BENZ.DWG

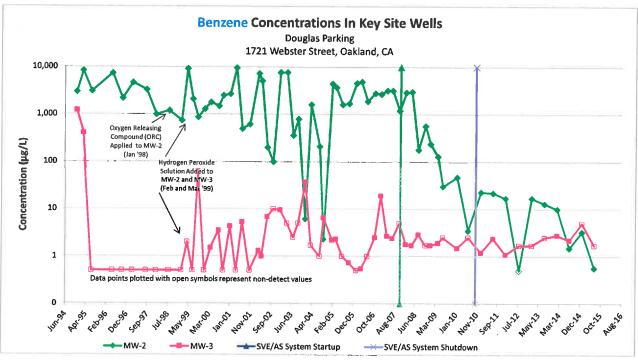
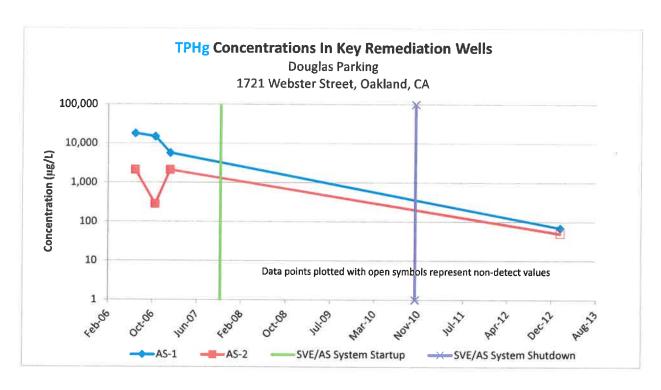



Figure 3 - TPHg and Benzene Trends in Key Onsite Wells

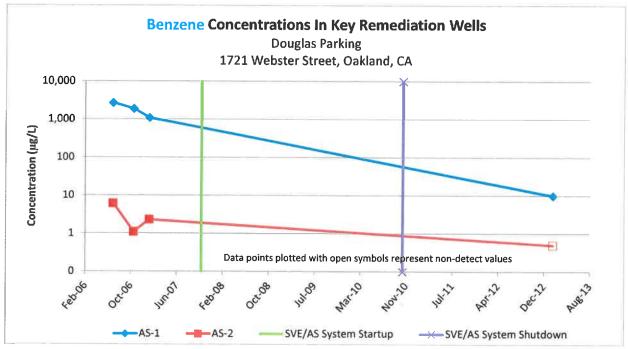
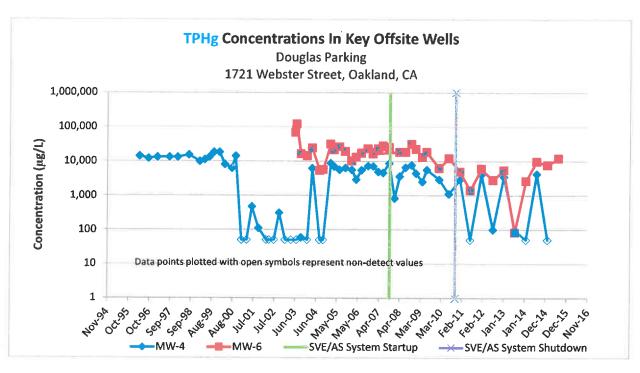



Figure 5 - TPHg and Benzene Trends in Key Remediation Wells

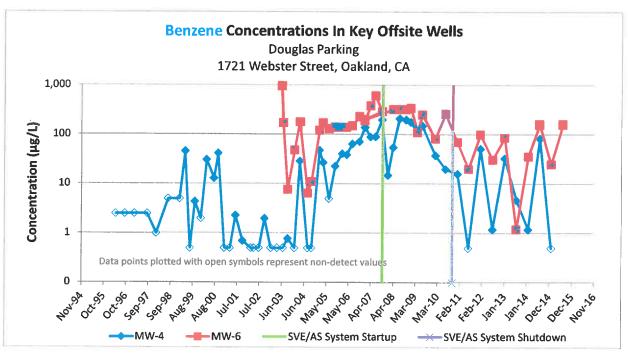


Figure 4 - TPHg and Benzene Trends in Key Offsite Wells

ATTACHMENT 11

Pangea

Table 1. Soil Analytical Data: Petroleum Hydrocarbons - 1721 Webster Street, Oakland, California

Sample ID	Date Sampled	Sample Depth (ft)	TPHg ←	Benzene	Toluene	Ethylbenzene mg/kg —	Xylenes	MTBE	Naphthanlene	Notes
Residential ESL for	shallow soil dw(<3	m bgs):	100	0.044	2.9	2.9	2.3	0.023	1.2	
Residential ESL for	deep soil dw(>3 m	bgs):	580	0.044	2.9	3.3	2.3	0.023	1.2	
Residential ESL for	shallow soil non-dv	w(<3 m bgs):	100	0.54	9.3	2.9	11	8.4	3.1	
Residential ESL for	deep soil non-dw(>	-3 m bgs):	1,800	1.2	9.3	4.7	11	8.4	4.8	
Commercial ESL fo	r shallow soil non-d	lw (<3 m bgs):	500	1,2	9.3	4.7	11	8.4	4.8	
Commercial ESL fo	deep soil non-dw	(>3 m bgs):	1,800	1.2	9.3	4.7	11	8.4	4.8	
Residential LTCP o	utdoor air criteria (0 to 5 ft bgs):	_	1.9		21	_		9.7	
Residential LTCP o	utdoor air criteria (:	5 to 10 ft bgs):		2.8		32			9.7	
Commercial LTCP	outdoor air criteria ((0 to 5 ft bgs):		8.2		89			45	
Commercial LTCP	outdoor air criteria ((5 to 10 ft bgs):	-	12		134	_		219	

Parker Environmental - 1992

Beneath UST	Samples									
T-1	8/3/1992	9.0	150	2.2	2.9	1.8	13	_		
T-2	8/3/1992	9.0	120	0.62	0.56	0.87	2.2			
T-3	8/6/1992	8.0	580	1.7	5.9	5.6	43		-	Overexcavated
T-4	8/6/1992	8.0	1,500	11	140	48	280	1775		Overexcavated
T-5	8/6/1992	8.0	410	6.7	22	6.2	35	***	**	Overexcavated
T-6	8/6/1992	12.0	1,400	12	70	29	150	-	-	
T-7	8/6/1992	14.0	2.3	0.11	0.19	0.05	0.31			
South Excava	tion Sidewall Sample	es .								
SW1	8/6/1992	9.5	280	2.9	5.8	3.2	15	-	· · ·	
SW2	8/6/1992	7.0	1,500	5.7	40	18	150	200	22	
SW3	8/6/1992	8.0	400	2.7	5.8	4.0	21	***	**	
SW4	8/6/1992	9.0	2.3	0,42	0.028	0.077	0.18	-	**	
Piping and Dis	spenser Samples									
L-1	8/3/1992	1.5	2.6	< 0.005	0.01	< 0.005	0.03		***	
L-2	8/3/1992	1.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	***	**	
L-3	8/3/1992	1.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005		-	
L-4	8/3/1992	1.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	277.5	777	
L-5	8/3/1992	2.0	8.2	0.01	0.02	0.012	0.092	-		
L-6	8/3/1992	2.0	<1.0	< 0.005	0.007	< 0.005	< 0.034			
Stockpile Sam	ples									
C 1	8/6/1992	1.5	560	<0.1	5.0	3.1	24	-	_	

Notes, Abbreviations and Methods:

mg/kg = Milligrams per kilogram, approximately equivalent to parts per million (ppm).

 $TPHd = Total \ petroleum \ hydrocarbons \ as \ diesel \ by \ modified \ EPA \ Method \ 8015.$

TPHg = Total petroleum hydrocarbons by EPA Method 8015.

BTEX = Benzen, toluene, ethylbenzene, xylenes by EPA Method 8020/8021.

MTBE = Methyl tertiary-butyl ether by EPA Method 8020.

ESL = Environmental Screening Levels for shallow soil with commercial/industrial land use where groundwater is a current or potential drinking water resource

from Table A-2, established by the SFBRWQCB, Interim Final - November 2007 (Revised May 2013).

LTCP = Low Threat Closure Policy

Bold = Concentration above ESLs for Commercial Land Use, groundwater is not a current or potential source of drinking water.

-= Not available or not analyzed.

< n = Chemical not present at a concentration in excess of detection limit shown,

* Boring installed at 25° angle from vertical. Listed and calculated sample depth is rounded to the nearest 0.5 ft.

Pangea

Table 1. Soil Analytical Data: Petroleum Hydrocarbons - 1721 Webster Street, Oakland, California

Sample ID	Date Sampled	Sample Depth (ft)	TPHg ←	Benzene	Toluene	Ethylbenzene mg/kg —	Xylenes	МТВЕ	Naphthanlene	Notes
Residential ESL for			100	0.044	2.9	2.9	2.3	0.023	1.2	·
Residential ESL for	deep soil dw(>3 m	bgs):	580	0.044	2.9	3.3	2.3	0.023	1.2	
Residential ESL for	shallow soil non-d	w(<3 m bgs):	100	0.54	9.3	2.9	11	8.4	3.1	
Residential ESL for	deep soil non-dw(>3 m bgs):	1,800	1.2	9.3	4.7	11	8.4	4.8	
Commercial ESL for	shallow soil non-	lw (<3 m bgs):	500	1,2	9.3	4.7	11	8.4	4.8	
Commercial ESL for	deep soil non-dw	(>3 m bgs):	1,800	1,2	9.3	4.7	11	8.4	4.8	
Residential LTCP or	ıtdoor air criteria (0 to 5 ft bgs):	_	1.9	_	21	_	_	9.7	
Residential LTCP or	atdoor air criteria (5 to 10 ft bgs):		2.8		32	_	-	9.7	
Commercial LTCP of	outdoor air criteria	(0 to 5 ft bgs):		8.2		89	-		45	
Commercial LTCP of	outdoor air criteria	(5 to 10 ft bgs):		12		134		_	219	

Confirmation Soi	l Borings								
CB-1-4	12/10/2013	4.0	<1.0	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
CB-1-8	12/10/2013	8.0	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
CB-1-12	12/10/2013	12.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
CB-2-4	12/10/2013	3,5 - 4.0*	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
CB-2-8	12/10/2013	7.0 - 7.5*	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
CB-2-10	12/10/2013	8.5 - 9.0*	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Cambria Enviro	onmental Tech	nology, Inc 20	003						
MW-6	6/27/2003	20.0	220	<0.10	0.14	<0.10	0.35	<1.0	=
Cambria Enviro	onmental Tech	nology, Inc 19	996						
SB-A	2/22/1996	19.5	<1.0	<0.005	0.007	<0.005	<0.005	-	100
SB-B	2/22/1996	20,5	580	< 0.3	1.3	1.8	4.2	**	100
SB-C	2/22/1996	19.5	1,4	< 0.005	0.013	0.027	0.12	-35	-
SB-D	2/22/1996	20.5	660	< 0.2	2.3	<0.2	5.2		
SB-E	2/23/1996	20.5	<1.0	< 0.005	0.009	< 0.005	< 0.005		-
SB-F	2/23/1996	20.0	<1.0	< 0.005	0.006	< 0.005	< 0.005		
SB-G	2/23/1996	20.0	<1.0	< 0.005	0.009	<0.005	<0.005	-22	-
SB-H	5/3/1996	20.5	1.2	<0.005	0.006	0.025	0.038	-	-
(MW-4)	5/3/1996	31.0	<1.0	<0.005	<0.005	<0.005	<0.005	; 25 2	-
SB-I	5/3/1996	15.5	<1.0	<0.005	<0.005	<0.005	<0.005		155
(MW-5)	5/3/1996	26.0	<1.0	<0.005	<0.005	<0.005	<0.005	-	24
Gen-Tech Envi	ronmental - 19	94							
EB-1@20	7/8/1994	20.0	<1.0	<0.005	< 0.005	<0.005	<0.005	-	
EB-2@20	7/8/1994	20.0	300	0.2	17	0.26	3.0	722	22
EB-3@20	7/8/1994	20.0	51	0.039	0.56	0.32	2.9		225
EB-4@20	7/8/1994	20.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	-	-
EB-5@20	7/8/1994	20.0	650	0.17	5.2	4.4	48		
EB-6@20	7/8/1994	20.0	68	<0.005	22	4.3	23		

Site Plan

Table 1 Sample Location Rationale 1721 Webster Street Oakland, CA

			Media				Analytical	Analytical Parameters			
Boring ID	Rationale	Soil	Croundwater			Soil			Grou	Groundwater	
		100	Commenses	трн-в/трн-ф/трн-то	SOOA	Metals	PCBs	Pesticides	TPH-g/TPH-d/TPH-mo	VOCs	Metals
SB-1	Assess potential impacts from dry cleaner operations southwest of subject property	3	1	3	3		-	-	_	_	2
SB-2 & SB-3	Assess potential impacts from historical site use (Automobile Servicing)	9	1	9	9	9	2	2	-	-	2
SB-4, SB-5, & SB-7	Assess extent of contamination associated with former USTs	6	2	6	6	6	æ	۳	2	2	4
SB-6	Assess baseline soil conditions on subject property	3	0	ေ	3	£	1	-	0	0	0
SB-8 & SB-9	Assess soil and groundwater conditions adjacent to inground hydraulic lifts	9	1	9	9	9	2	2	-	-	2
SB-10	Assess shallow soil quality in dumpster area	ŧ.	0	1	1	-		_	0	0	0
MW-1	Assess current groundwater quality to include chlorinated VOCs	0	1	0	0	0	0	0	-	_	2

TPH-g = Total Petroleum Hydrocarbons as Gasoline (EPA Method 8260B); TPH-d = Total Petroleum Hydrocarbons as diesel (EPA Method 8015B)

TPH-nn = Total Petroleum Hydrocarbons as motor oil (EPA Method 8015B); TPH-ho = Total Petroleum Hydrocarbons as hydraulic oil (EPA Method 8015B)

VOCs = volatile organic compounds (EPA Method 8260B)

Metals = Title 22 Metals (EPA Method 6010B and 7470/7471)

PCBs = Polychlorinated Biphenyls (EPA Method 8082)

Pesticides= Organoclihlorine pesticides (EPA Method 8081)

Table 2 Soil Analytical Results - Organics 1721 Webster St Oakdand, CA

_					TPH (mg/kg)	(6)				
= 25.	Sample Depth (ft bgs)	Sample Date	egneЯ-əniloesව		Diesel-Range	Motor Oll-Range	YOCs (ug/kg)	Pesticides (ug/kg)	ЬCB≈ (nðұkĝ)	թ. թ. թ. թ. թ. թ. թ. թ. թ. թ. թ. թ. թ. թ
	3	7/12/2016	0.210	5	0.99	D 08	Q	QV	QN	Q
	6	7/12/2016	0.190	5	0.99	OS O	Q	ı	. 1	
	15	7/12/2016	0.180	5	1.0	n 20 n	9	,	1	1
	4	7/11/2016	0.220	5	0.99	J 49 U	L	QV		1
	10	7/11/2016	0.180	5	0.99	n 20 n			ı	Q
	15	7/11/2016	0.180	Э	1.0	O 20	L	1	QN	
	2	7/12/2016	0.200	5	1.0	n 09 n	Q	Q	QN	QN
	7	7/12/2016		Э		U 50 Ū		:		;
	14	7/12/2016	0.180	Э		U 50 U		1	1	;
	8	7/12/2016	0.180	<u></u>		n eo n	QN	QN		:
	10	7/12/2016	0.170	Б		U 50 U	L		1	Q
	15	7/12/2016	0.180	n	0.99			-	1	
	5	7/12/2016	0.200	n		n 20 n	QN	QN		QN
	6	7/12/2016	0.160	n		U 49 U		-	1	
	14	7/12/2016	0.180	Э	0.99	n 230 n	DN		_	**
	3	7/13/2016	0.230	÷	1.0	n 20 n	QN	QN	QN	:
	10	7/13/2016	0.180	D	0.99	U 49 U		1	_	**
	15	7/13/2016	0.190	ח		n 80 u	Ц	:	-	-
	1	7/12/2016	0.220	n		U 50 U	QN	QN	QN	-
	9	7/12/2016	0.180	_	1.3	49 U		1		N
	12	7/12/2016	0.210	5	1.0	n 20 n		1	:	1
	1	7/11/2016	0.250	n	2.8	OS 0	Ц	QN	-	QN
	80	7/11/2016	0.170		0.99	D 09 D	Q	1	Q	1
	13	7/11/2016	0.200	5	1.0	90 n		1	1	ı
	2	7/11/2016	0.220	n	6.2	20 N	L	Q	ı	1
	6	7/11/2016	0.170	o		U 50 U		1	:	1
	14	7/11/2016	0.190	5		U 49 U	QN	1	QN	QN
	_	7/13/2016	0.220	5	2.6	n 09		QN	QN	QN
	ESL Residential Land Use (Shallow Soll)	oli) '	740	Г	230	11,000	various	various	various	various

1. San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, Table 8-1; Shallow Solls, Residential Land Use, February 2010 Edition.

Abbreviations and Symbols:

in feet below ground surface

In miligram per klogram

In the lace of a robove the laboratory reporting limit,

In polycyclis aromatic hydrocarbon

I total petroleum hydrocarbon

I not detected at or above the laboratory reporting limit shown

I microgram per klogram

I voitale organic compound

I not analyzed ft bgs
mg/kg
ND
PAH
TPH
U
ug/kg
VOC

AECOM

Table 3 Soil Analytical Results - Metals 1721 Webster St Oakland, CA

								Metals (mg/kg)					
Sample Location	Sample Depth (ff bgs)	Sample Date	(eA) SinestA	(68) muits8	Beryllium (Be)	Chromlum (Cr)	Cobatt (Co)	Copper (Cu)	Lead (Pb)	Мегсигу (Н9)	Nickel (Ni)	(V) muibsnsV	(nZ) oniZ
	3	7/12/2016	2.5 U	48	0.25 U	31	2.8	7.0	5.4	0.029	15	20	22
SB-1	6	7/12/2016	5.4	23	0.30 U	49	=	12	3.6	0.051	46	88	32
	15	7/12/2016		62	0.36 U	62	6.8	6.8	1.9	0.032	44	31	23
	2	7/12/2016	2.7 U	62	0.27 U	31	3.2	6.8	2.8	0:030	14	21	16
SB-3	7	7/12/2016	2.8 U	100	0.28 U	\$	5.8	13	3.8	0.052	96	32	28
	14	7/12/2016	3.4	43	0.23 U	49	0.9	2.0	1.6	0.023	88	31	-61
	3	7/12/2016	3.8	68	0.25 U	37	26	7.8	2.9	0.033	27	40	14
SB-4	10	7/12/2016	2.9	96	0.27 U	28	6.9	12	3.6	0.045	37	38	27
	15	7/12/2016	3.4 U	47	0.34 U	09	6.2	5.6	1.7 U	0.028	44	35	20
	5	7/12/2016	3.4	59	0:30	45	7.3	9.5	3.2	0:030	42	32	22
SB-5	6	7/12/2016	2.9	86	0.24	09	7.1	13	3.5	0.048	42	88	8
	14	7/12/2016		46	1	48	5.2	5.2 U	1.7	0.022	98	30	18
	9	7/13/2016	3.5 U	22	0.35 U	35	2.4	5.3 U	3.4	0.024	13	21	13
SB-6	10	7/13/2016	3.4	87	0.30	45	12	12	3.8	0.057	4	37	29
	15	7/13/2016		42		20	6.9	5.6 ∪	1.9 U	0.019	45	31	22
	-	7/12/2016	3.4 U	52	0.34	37	4.9	7.7	3.9	0.024	15	24	19
SB-7	9	7/12/2016	3.9	87	0.32	61	25	13	4.6	0.034	20	41	29
	12	7/12/2016		48			6.2	5.3	1.7 U	0.072	42	32	21
	-	7/11/2016		120	0.33 U		8.2	9.1	20	0.072	16	24	34
SB-8	89	7/11/2016		76			7.2	13	3.4	0.14	49	78	56
	13	7/11/2016	1	32		22	6.8	5.3	1.8	0.022	46	35	21
	2	7/11/2016	3.4 U	73	0.34 U	æ	3.4	8.3	7.9	0.021	15	50	17
SB-9	9	7/11/2016	2.9 U	71			9.9	8.4	2.7	0.031	41	31	20
	14	7/11/2016	3.5 U	46			5.9	5.2 U	1.7 U	0.018	34	30	18
SB-10	-	7/13/2016	3.2 U	66	0.32 U	32	4.4	11	33	0.11	18	22	37
ESL Residential Land Use (Shallow Soil)	Use (Shallow Soil)		0.067	15,000	150	N	23	3,100	80	13	820	140,000	23,000
Soluble Threshold Lim	Soluble Threshold Limit Concentration (STLC) 2 mg/	C) 2 mg/L	5.0	100	0.75	5.0	80	25	5.0	0.2	20	24	250
Total Threshold Limit	Fotal Threshold Limit Concentration (TTLC) 2 mg/kg	² mg/kg	200	10,000	75	2,500	8,000	2,500	1,000	20	2,000	2,400	5,000

Notes:
1. San Francisco Bey Regional Welan Quality Control Board, Environmental Sonsening Lewels, Table S-1; Shallow Soils, Residential Land Use, February 2016 Edition.
2. STLC and TTLC, State of California, Chapter 11, Article 3, July 2005 Edition.

= feet below ground surface
= miligram peer kilogram
= no value
= nol delected at or above the laboratory reporting limit shown Abbreviations and Symbols:

It bgs
mg/kg

= Detection above laboratory reporting limits in exceedance of the RWQCB ESL

Green

ATTACHMENT 12

Table 1. Subslab/Soil Gas Analytical Data - Douglas Parking, 1721 Webster Street, Oakland, California

	- -	³ U ₃ ZU ₅	ənən _l o	3ZU3QIAQI	Nenes	Joseo Ha	BEL	noledirkq [©]	iou _{edordo}	^{ənen}	nuile	49861	_
Sampled Sampled	Sample Depth	8	ш	Ш	¥	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-11	v		ш	74 8	ó s	Notes
	(202 1 1)	48	160,000	560	52,000	50,000	5,400	41	,			1	For SG/SS samples
Residential ESL for subslab/soil gas; VI Human Health Risk:	Health Risk:	48	160,000	260	52,000	300,000	5,400	41		,		١	For SG/SS samples
Commercial ESL for subslab/soil gas; VI Human Health Risk:	Thealth Risk:	420	1,300,000	4,900	440,000	2,500,000	47,000	360	ı	1	,		For SG/SS samples
No Bio-Attenuation Zone, Residential (LTCP)		85	1	1,100		ı	1	93	ı	,	ı	١	
No Bio-Attenuation Zone, Commercial (LTCP)		280	,	3,600	1	,	ı	310	1	1	1		
With Bio-Attenuation Zone, Residential (LTCP)		85,000	,	1,100,000	١	1	,	93,000	;	1	ı	ı	
With Bio-Attenuation Zone, Commercial (LTCP)	P)	280,000	-	3,600,000	;	ı	,	310,000	1	ı	1	ı	
9/23/2016	5-6	₫3	5.7	4.4	13.6	<7,170	43.7	ı	<13	<5,100	1	17.7	
9/23/2016	5-6	12	8.	4.4	23.9	<7,170	<3.7	н	<u><13</u>	<5,100	Œ.	19.8	
Subslab Gas Samples													
11/14/2013	0.5-0.7	<1.6	<1.9	<2.2	9.9>	2,300	<1.8	€,3	1	- 1	0.13	17	For other VOC detections see the lab report.
6/23/2015	0.5 - 0.7					-floor refi	-floor refinished, probe covered-	covered-					
11/13/2013	0.5-0.7	28	2.7	<2.2	9.9>	2,000	<1.8	<5.3	ı	ı	0.48	16	For other VOC detections see the lab report.
6/23/2015	0.5-0.7	<1.6	3.7	2.3	14	<720	<1.8	<5.3	05>	ı	ı	i	For other VOC detections see the lab report.
9/23/2016	0.5-0.7	<3.3	%. ₹3.8	4.4	<13.2	<7,170	43.7	ı	style="background-color: blue;" 13	<5,400	ı	20.4	
11/13/2013	0.8 - 1.0	71	2.6	<2.2	9.9>	1,400	<1.8	<5.3	ı	!	0.12	17	For other VOC detections see the lab report.
6/23/2015	0.8 - 1.0	<1.6	3.3	<2.2	13	1,100	<1.8	<5.3	<\$0	1	1	1	For other VOC detections see the lab report.
9/23/2016	08-10	233	4.0	<4.4	13	07177	7		7	75,000		300	

Abbreviations:

SG-1 = Soil Gas Sample

SS-1 = Subslab Sample

ug/m3 = Micrograms per cubic meter of air results calculated by laboratory from parts per billion results using normal temperature and pressure (NPT).

ft - ft bgs = Depth interval below ground surface (bgs) in feet.

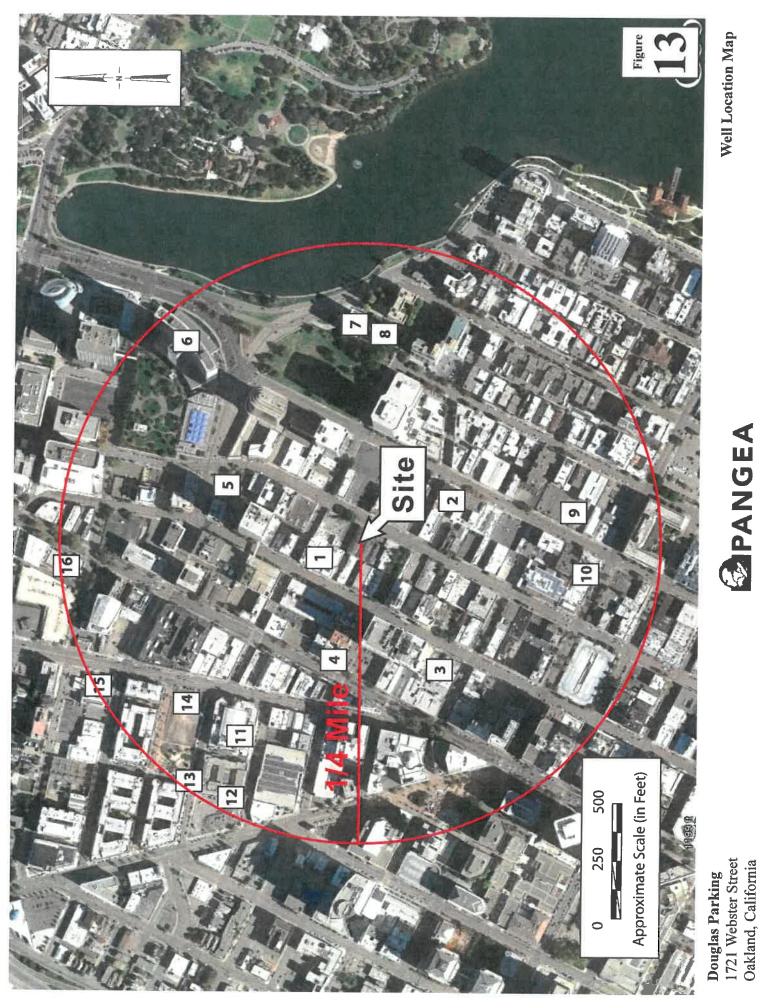
^{% =} Percent of total sample volume.

Volatile organic compounds (VOCs) by EPA Method TO-15 (partial list), uses GC/MS scan.

Oxygen by Modified ASTM Method D-1946, uses GC/TCD scan.

< n = Chemical not present at a concentration in excess of detection limit shown.

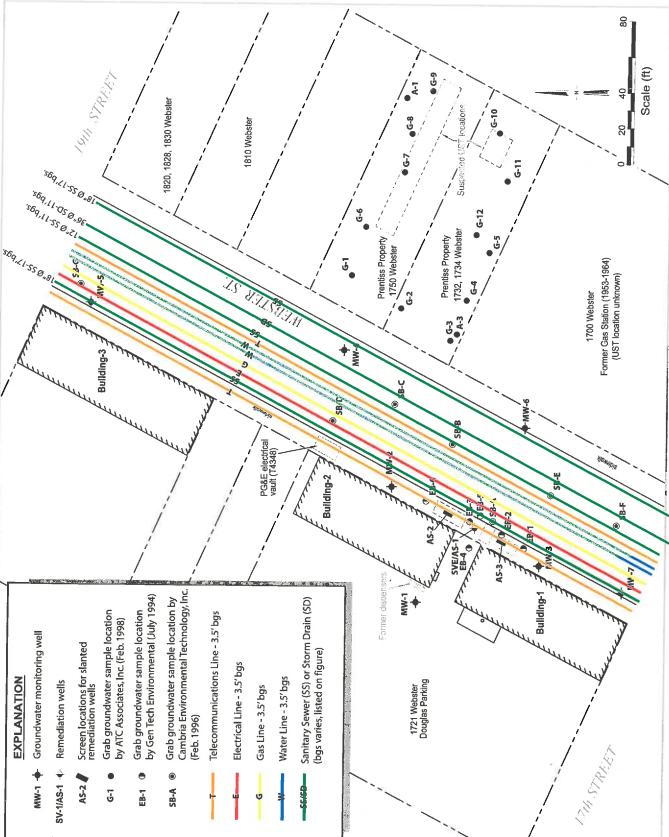
MRL = Method reporting limit. Laboratory reporting limit based on parts per billion on volume to volume basis (ppbv/v) and converted to ug/m3.
ESL = Environmental Screening Level, from California Regional Water Quality Control Board - San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Revised February 2016 (Revision 3).


LTCP = Low Threat Closure Policy

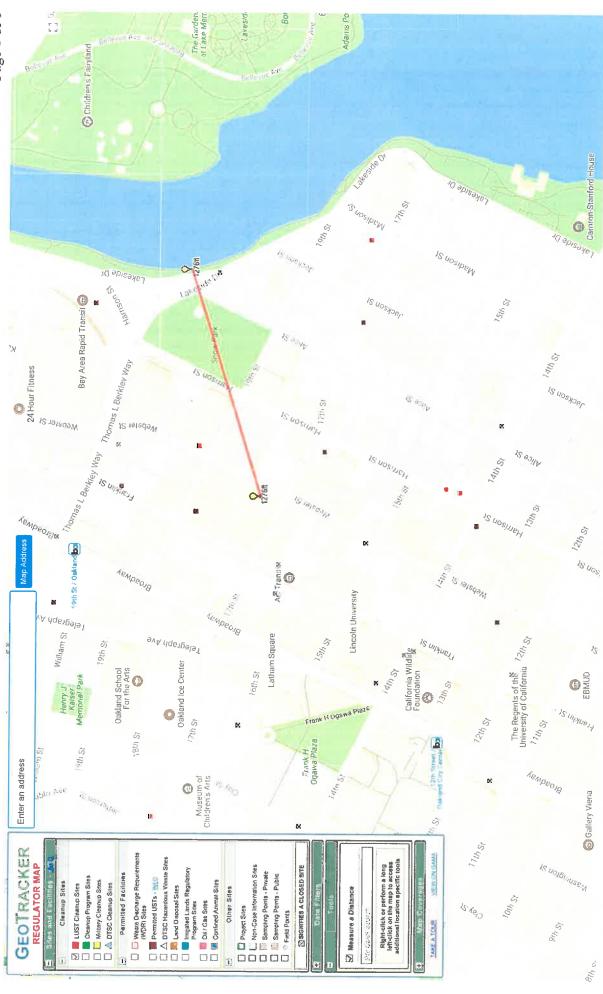
Site Map

Douglas Parking 1721 Webster Street Oakland, California

ATTACHMENT 13



COMMENTS																										MW1 MW2	CAAL										T																										T	T		T	
ACK			1		MICE TOOTOE	WCR-790701	WCR-2	W/CB-790702	W/CR-790702	AUCD TOOTON	WCn-750704	WCH-03Z1087														445222-225 h			1450571																						1												+		İ		
I	NOW	NO	202	NOW NOW	ı	ı	ĺ	l	ı	ı	1		2 12	3 1	i i	ES	2 TES	165	MON	4 MON	MON	GEO*	MON	Mod	ž.	MON DES	4	NOW	921	MOM	BOR*	MON	MON	MON	MON	BOK	NOM	MON	4-MON	NOM	NOM	MON	MON	BOR	NOW	NOM	9 BOR	MON	4 MON	MON	MON	NOM	NOM	RR	SEO.	MON	gg	BOR	BOR	NOM	MON	NON	NOM	NON	MON	BOR*	
	1	1	1		1	1	2	^	1		1	1	1	1	1	7	2	2	4	4	4	٥	4	2	9		2	1	30.	2	0	4	4	4	4	9 6	1	2	4	4	4	7	2	20 0	7 ~	2 2	6	4	4	4	4	1	1	2 9		4	6	6	6	2	2	2 6	7 -	1 2	2	6	
1	2 2	=	1 2	1 2	2	a	0	6	-	-	,	2	2 2	3 4	2	â	21	20	15	15	15	٥	_	٥	3		0	ő	3	6	12	9	_	5	۰	9	192	19	20	20	52	2 1	2 3	19 24	21 22	1 17	22	22	22	2	2 6	3 5	21	30	à	ıs	22	22	22	0	0	- [7 4	10	212	24	
c	3 00	22	3 8	3 2	2 2	52	25	25	22	22	28	3 52	2	25	25	24	82	26	24	27	21	0	52	290	2		13	35	280	31	30	19	12	82 5	91 19	2 26	32	28	25	32	52	8 8	R E	0 8	27	. R	24	37	×.	8 2	75 65	28	27	95	0	14	23	23	23	52 5	5 53	2 2	¥ ¥	35	35	c	,
																	l																																		İ																
٥	-	24	36	23 23	٥	٥	0	0	٥	٥	C	0	0	Ó	٥	٥	0	0	0	٥	٥	٥	0	0	3		٥	0		0	٥	80	on 6	0 0	2	23	20	20	٥	٥	٥	R) F	2 0	0	٥	0	٥	٥	0	0 0	0	0	0	0	0	٥	٥	0	0	0	0 0	2 14	22	0	0	0	
No.47R	Nov-88				Jun-06	90-unf	2002	Jun-06	90-unr	Jun-06	Dec-07	Mar-88					l						1	1		Aug-94			16/	Dec-91			\dagger	+	+	+	-		Oct-38	Oct-38	Oct-88	Dec-92	Dec-92	06-unr	Jun-90	Jun-90	Apr-89	Apr-69	Apr-89	Apr-69	Apr-89	Oct-91	Oct-91				Apr-89	Apr-89	Apr-89	96-150	96-10		+	H		Dec-89	
		6/93	Γ				118/2007				_	\vdash	Γ				П				Ĭ		1	3/81	T		1/91	Γ				T	5/92	T	Ī	T	3/92	П	+	+	+	+		-				+	+	t		-		111	~	5/91		+	+	+	+	96/5	5/96	4/95	9/95		
орак	OOAK	OOAK	O OAK	O OAK	OAK	OAK	OAK	OAK	OAK	OAK	ğ	0 OAK	0 OAK	O OAK	0 OAK	0 DAK	0 DAK	D OAK	D DAK	o DAK	0 OAK	o DAK	ODAK	OOK		OAK	OOAK	OOK	ANO	O OAK	OAK	OOAK	0 0 A	2 2	200	0 OAK	0 OAK	0 OAK	0 OAK	D DAK	O O O	S C	N AC	OOAK	O DAK	o OAK	OOAK	O STE	2 2	2 2	O SLE	0 DAK	O OAK	OOAK	OCAK	O OAK	٥	0	0 0	100	O O	O OAK	OOAK	0 OAK	0 OAK	0 OAK	
2494	2496	D	0	0			L	_	H			2495	1697	1698	1699	1700	1701	1702	o	0	0	2493	1,700	1623			1082	1737		7325	7896	7892	7004	7005	27.67	7972	7973	7974	2604	2605	9097	9	200	908	906	206	2601	2607	2608	2610	2611	7346	7347	2603	2602	1821	6922	6923	4764	3 6	0	0	0	0	0	266	
1S/4W 26d	15/4W 26C	4W 26C	15/4W 26C	4W 26C	4W 26Q	15/4W 26Q	15/4W 26Q	4W 26Q	4W 26Q	4W 26Q	4W 26Q	4W 26C	4W 26C	4W 26C	4W 26q	4W 26C	4W 26C	4W 26C	4W 26C	4W 26G	4W 26C	4W 260	AW ZON	0 15/4W 26R		4W 26R	15/4W 26R	4W 26R	15/4W 26R	4W 26R	4W 26R	4W 26R	15/4W 26R	doc was	AW 26R	4W ZER	4W 26R	4W 25R	4W 35A	4W 35A	4W 350	4W 35 A	4W 35A	15/4W 35A	4W 35A	4W 35A	4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	15/4W 35A	4W 35A	4W 35P	4V 25B	1W 35B	1W 35B	\$W 35B	15/4W 35B	4V 95B	1W 35B	
8 15	8 15,	1 15,	115	1 15	15,	15,	15,	15,	15,	15/	15/	0 15/	0 15/	0 15/	3 15/	0 15/	0 15/	0 15/	1 15/	1 15/	1 15/	8 15/	2 2	0 15/		15/	8 15/	8 15/	15/	1 15/	115/	115/	115/	1 14	1 15/	1 15/	1 15/	1 15/	9 15/	9 15/	115/	/31 1	0 15/	0 15/	0 15/	0.15/	9 15/	9 15/	9 15/	9 15/	9 15/	1 15/	1 15/	2 15/	2 15/	3 15/	9 15/	9 15/	115/	1 14	115/	1 15/	1 15/	1 15/	1 15/4W	0 15/4W	
37809700 8 15/4W	37810600	37809130	37809130	37809130				_				37809130	37807300	37809021	37808900	37809207	37810200	37808183	37810451	37810451	37810451	3/80/900	27010004	37810004			37808352	37808352		37809366	37808698	37808734	37808784	7808734	7810174	37810205	17810205	17810205	7805914	7005014	37805/322	37805432	37805408	37805408	37805408	37805408	37805914	37805914	37805914 87805914	37805914	37805914	37805838	37806045	37806953	37801950	37806500	0	0	37804500	7804500	7804500	7806443	7806443	37807044	7805828	37807300	
	1.22E+08		ı	1.22E+08								1.22E+08	'	ı		4	_	_	_	1	4	1.22E+08	Ļ	L	L	- 1	1.22E+08			_	ł	П	1.22E+08		22E+08	22E+08	1.22E+08	- 1	1.22E+08		1	┸	L	Ц	Ш	Ц	4	4	1 226+08	┸	L	22E+08	_	4	1.22E+08	1.22E+08	0	0	22F408	1	1	1		1.22E+08		1.22E+08	ı
12/12/1984		8/13/1997	13/1997	8/13/1997	9/206	/2006	/2002/	9002/	/2006	/2006	2/2002/c	6/1/1988	12/1991	12/1991 1	12/1991					9/11/1997 1	1 1000/11/6	2/12/1984	-		_	4/14/2010	2/27/1991 1	26/1991	26/2010	1/2/1992						9/23/1992	23/1992	23/1992 1	15/1989 1	6/15/1909 1	-			-	9/11/1990 1	11/1990 1	11/6/1989 1	11/6/1589 1	/6/1989 1	11/6/1989	/6/1989 1	/9/1992 1	3/9/1992 1.		12/12/1984 1.		1	+	26/1997	26/1997	26/1997	22/1997 1.	22/1997 1.	7/18/1997 1.	/4/1998	7/13/1990 1.	
17	9	8	8	\vdash	410 06/1	410 6/19	010	410 6/19	410 6/19	410 6/19	410 12/20		9	/9	/9	6/	9	·9	6	/6	9	4 9		4		4	7	-	9/	100	6	7 2	6 6	9	8	6	6	9,	9 2	6 0	9 4	4	/6	6	/6	/6	# ;	= =	1=	п	11	8	6	127	12/	<u> </u>	1		12/2	12/	12/	3/2	./8	1/2	2	1/2	
ð	ERICA	y Hale	y Hale	y Hale	35 Market Street,CA 9410	Forest City-785 Market Street, CA 9410	35 Market Street,CA 9	35 Market Street,CA 9	35 Market Street, CA 9.	35 Market Street, CA 9	35 Market Street, CA 9	NEY-HALE	City of Oakland Redvipmnt	City of Oakland Redvipmnt	City of Oakland Redvipmnt	City of Oakland Redvipmnt	City of Oakland Redvipmnt	od Redvipmnt	Goodyear Tire & Rubber Co	Goodyear life & Kubber Co	e & Kubber Co	Abranges Comme Day 8414 3	mmercial Dulm	Ahmanson Commercial Dv/pt		Ahmanson Commercial Dvlpt				-	H	П		L	2	ш	- 1	ing MW-3			Chevron Products MW-15	Chevron Products MW-16									~		Chevron, USA MW14	P (BECHTEL)		Society			Alvin H. Bacharach and Ba	Afvin H. Bacharach and Ba	Afvin H. Bacharach and Ba	Douglas Parking Company	ig Company	c		Portfolio Praparties	
SANK AMERI	BANK OF AMERIC	Jarter Hawle	Carter Hawley Hale	arter Hawle	orest City-7	orest City-7	orest City-7	orest City-7	orest City-72	orest City-78	orest Chy-72	CARTER-HAWLEY-HALE	ity of Oaklar	ity of Oaklar	ity of Oaklar	ity of Oaklar	ity of Oaklar	City of Oakland Redvipmr	oodyear Tir	Goodyear life & Kubber	oodyear Hr	hannen	hmanson	hmanson Co		hmanson Co	(aiser Center	aiser Center	aiser Center	alser Center	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Mohil #04-077	Mabil #04-07	Mobil #04-07	Ordway Building	Ordway Building	Ordway Building	Ordway Building	CHEVRON	CHEVRON	hevron Prod	hevron Prod	Chevron USA	Chevron USA	Chevron USA	hevron USA	HEVRON US	HEVRON US	HEVRON US	HEVRON US	HEVRON US	hevron, USA	hevron, USA	ADESIDE CO	T. & T BLDG	U.S. Geological Society			Vin H. Bachi	Vin H. Bacha	bin H. Bachi	ouglas Parki	Douglas Parking Company	John Toothman	Pacific Bell	ortfolio Prap	A 40 10 10 10 10 10 10 10 10 10 10 10 10 10
	Oakland	- 1		1 1					- 1		. ,		Oakland	П	╗	Ţ	Т	Т	т	Cakland	Т	т	Т	ı		Oakland	- 1	- f		- 1	- 1	1		П	П	П	П	т			Oakland	П	гт	Oakland	akland	akland	San Leandrd CHEVRON USA	T reandro	San Leandrd CHEVRON USA	in Leandrd C	in Leandre C	akland	akland	o puelye	kland	akland	1	t	т	Oakland A	П	П	П	П	- 1		1 - 11 - 0
Ĭ	Ĭ	Ĭ	Ĭ										٦		١					1				0			٦	٥	Ö				, 0	0	0		٩			l		0	٥	a			-		l	П	1	0	0	0	٩	٩		l	0	0	0	0	٥				
& 20 ST	ADWAY	abh Av	abh Av	abh Av	1911 Telegraph Ave-MW-22	1911 Telegraph Ave-MW-23	1911 Telegraph Ave-MW-23	1911 Telegraph Ave-MW-24	1911 Telegraph Ave-MW-25	aph Ave-MW	1911 Telegraph Ave-MW-23A	RAPH AVE	vewbeo	eet	19th St & Telegraph Ave		20th St. & Telegraph Ave		Dh Av	W 4.	IN CT	250	n Street	n Street		n Street	Drive	Drive	Drive	Drive		100	25.50	rr 50				1 Kaiser Plaza	17TH AND HARRISON NW	17TH AND HARRISON NW	ON WY	ON WY	n St.	n St.	žį.	n St.	17TH ST. EHARRISON ST.	SISON ST	IISON ST.	SISON ST.	ARRISON ST.		S.			Snow Park			& 15th St	& 15th St	& 15th St	rSt	ış.	55	1519 Franklin St	Вгоастия	340
BROADWAY		1911 Telegraph Av	1911 Telegraph Av	1911 Telegraph Av	1911 Telegra	1911 Telegra	1911 Telegra	1911 Telegra	1911 Telegra	1911 Telegra	1911 Telegra	1911 TELEGRAPH AVE	17th St & Broadway	557 19th Street	19th St & Te	552 19th St.	20th St. & Te	513 18th St	2025 Telegraph Av	2023 Leiegiapir Av	19 & FRANKLIN CT	2100 Harriso	2100 Harriso	2100 Harrison Street		2100 Harrison Street	300 Lakeside Drive	300 Lakeside	SCO Lakesida	SOO Laxeside Drive	1075 Mohotos De	1975 Webster St	1975 Webster St	1975 Webster St	1 Kaiser Plaza	1 Kaiser Plaza	1 Kaiser Plaza	1 Kaiser Plaza	TH AND H	LTH AND H	1633 HARRIS	1633 HARRISON WY	1633 Harrison St.	1633 Harrison St.	1633 Harrison St	1633 Harriso	TTU ST. E.U	TH & HAR	TTH & HAR	TTH & HAR	TH ST. 8H	1633 Harrison	1633 HARRISON	244 LAKESIDE	ALICE ST	19th & Alice (Snow Park)			Harrison St && 15th St	Harrison St && 15th St	Harrison St && 15th St	1721 Webster St	1721 Webster St	1736 Franklin St	519 Franklin	7th Street or	The Party of the P
١	260,4	7	T	7	7	T	T	1	26020	Т	٦	Т	7	Ť	Ť	260.8	T	Τ	Ť	26016	Т	1	26R 2	H		ZER	-			Т	,	1	T		26R 1	7	7	T	35A 4	Τ	Г		П		35A13	ı	35A 1	354.7	П	iΙ	- 1	7	35A16	T		35A	ACC OF A	35A	2	П	П	358 3 1	Т		_	358	
15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	1S/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/4W	15/7/1	15/4W	15/4W	15/4W	15/4W		15/4W		1		15/4W	WA / 21	Γ	1S/4W		15/4W	15/4W	Т	Т	Т	Γ	1		П	15/4W	T	Т	15/4W	Т		П	T	Т		Т	15/4W	Τ	Т	Т	Π.	1S/4W	П		П		Т	15/4W	
					W2006-0596	W2006-0597	W2007-1181	- 1	W2006-0599	W2005-0500	W2007-1225											92121				94484		-	91202						Ī																			Ī						П			1	7	95619		
+	16				1	1	1			+				60	2	4.	1	+	\dagger	+		r	-				+	+		+	\dagger	-		H	H	+	+	+	T	H				1	+	1	+				+	+			+		-	+	H			+	+	\dagger	\dagger	+	
	7													13	15	1	A ?	1								1	١	"	41	"	ľ	"	2	en.							2	2	2	2	1	2	1	1	2	2	2	7	7		6	٥			6	6	6			1	n 5	4	


Subsurface Utility

Map

1721 Webster Street **Douglas Parking**

Oakland, California

https://geotracker.waterboards.ca.gov/map/defaultreg.asp?global_id=T0600100140&from=screens&site_type=LUFT

5/8/2018

Map Report a map error

E SITES CUR Go gle