RECEIVED

By Alameda County Environmental Health at 10:07 am, Mar 19, 2015

Ms. Karel Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Alaska Gas Service Station, 6211 San Pablo Avenue, Oakland, California (Fuel Leak Case No. RO0000127)

Dear Ms. Detterman:

Stratus Environmental, Inc. (Stratus) has recently prepared a report entitled *Groundwater Monitoring and Sampling Results Report, First Quarter 2015* on my behalf. The report was prepared in regards to Alameda County Fuel Leak Case No. RO0000127, Alaska Gas Service Station, 6211 San Pablo Avenue, Oakland, California.

I have reviewed a copy of this report, sent to me by representatives of Stratus, and "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge."

Sincerely,

Pritpaul Sappal

for Scooperf

March 17, 2015 Project No. 2192-6211-01

Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Groundwater Monitoring and Sampling Results Report, First Quarter 2015

Alaska Gas Service Station

6211 San Pablo Avenue, Oakland, California

Fuel Leak Case No. RO0000127

Dear Ms. Detterman:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, on behalf of Pritpaul Sappal, for the Alaska Gas Service Station underground storage tank fuel leak case, located at 6211 San Pablo Avenue, Oakland, California. This report presents a summary of recent groundwater monitoring and sampling activities performed at the subject property. This report has been prepared in compliance with Alameda County Environmental Health Department and California Regional Water Quality Control Board (CRWQCB) requirements for underground storage tank (UST) investigations.

If you have any question, parding this report, please contact Scott Bittinger at (530) 676-2062 or via email at sbit. The single contact Scott Bittinger at (530) 676-2062 or via email at sbit.

Sincerely,

STRATUS ENVIRONMENTAL, INC

Scott G. Bitting

Scott G. Bittinger, P.G.

Project Manager

Gowri S. Kowtha, P.E.

Principal Engineer

Attachment: Groundwater Monitoring and Sampling Results Report, First Quarter 2015

cc: Mr. Pritpaul Sappal, Alaska Gas Service Station

ALASKA GAS SERVICE STATION GROUNDWATER MONITORING AND SAMPLING RESULTS REPORT

Facility Address: 6211 San Pablo Avenue, Oakland, California

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Scott Bittinger, P.G.

Consultant Project No: 2192-6211-01

Ms. Karel Detterman, Alameda County Environmental Health Primary Agency/Regulatory ID No:

Department (ACEHD), Fuel Leak Case No. RO0000127

WORK PERFORMED THIS PERIOD (Fourth Quarter 2014 and First Quarter 2015):

Stratus conducted a groundwater monitoring and sampling event on January 28, 2015. At this time 10 wells were gauged for depth to groundwater levels. Purge groundwater samples were collected from these wells and submitted to a state-certified analytical aboratory for chemical analysis.

Stratus researched information requested by ACEHD and prepared and submitted a report titled 2. Additional Information to Support Environmental Case Closure Review, dated February 18, 2015.

WORK PROPOSED FOR NEXT PERIOD (Second and Third Quarter 2015):

Activities performed during the second and third quarter 2015 will depend upon ACEHD's review of the site's environmental case for closure. If the site is deemed eligible for closure, Stratus anticipates soliciting public comments from nearby properties regarding the pending closure and pending approval, proceeding with destruction of the site's well network.

Current Phase of Project:	Verification Monitoring (VM), Potential Environmental Case Closure
Frequency of Groundwater Monitoring:	All monitoring wells = Semi-annually (1 st & 3 rd quarters)
Frequency of Groundwater Sampling:	All monitoring wells = Semi-annually (1 st & 3 rd quarters)
Groundwater Sampling Date:	January 28, 2015
Are Free Phase Petroleum Hydrocarbons Present:	Yes, free product was not measureable at well MW-7, but was observed during well purging
Depth to Groundwater:	3.87 to 8.86 feet below the top of the well casing
Groundwater Flow Direction :	West-southwest
Groundwater Gradient :	0.008 to 0.02 ft/ft

Stratus conducted first quarter 2015 groundwater monitoring and sampling activities on January 28, 2015. During this event, wells MW-1R, MW-2, MW-3R, MW-4R, and MW-5 through MW-10 were gauged for depth to groundwater and evaluated for the presence of free phase petroleum hydrocarbons (free product). After well gauging, purge groundwater samples were collected from the site's monitoring wells (including well MW-7, with observable but not measureable product). Table 1 presents a summary of information pertaining to construction of the site's monitoring well network.

Groundwater samples were forwarded to a state-certified analytical laboratory to be analyzed for gasoline range organics (GRO) by EPA Method SW8015B/SW8260B, for benzene, toluene, ethylbenzene, and xylene (BTEX compounds), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), and tertiary butyl alcohol (TBA) using EPA Method SW8260B. Table 2 provides depth to water measurements and groundwater elevations. Table 3 presents a summary of groundwater analytical data collected for

the site's monitoring well network.

Field data sheets documenting measurements and observations collected by Stratus personnel are provided in Appendix A. A description of sampling and analysis procedures used by Stratus/laboratory personnel are provided in Appendix B. Certified analytical results provided by the analyzing laboratory (Alpha Analytical, Inc.) are presented in Appendix C. Analytical results of sampled wells and depth to groundwater measurements have been uploaded to the State of California's GeoTracker database. Documentation of these data uploads is attached in Appendix D.

FINDINGS:

Groundwater levels beneath the property are relatively shallow, ranging from 3.87 to 8.86 feet below the top of the well casing on January 28, 2015. Using the available data, groundwater levels were corrected to elevation mean sea level and used to prepare a groundwater elevation contour map (Figure 3). On January 28, 2015, west-southwest groundwater flow, at gradients ranging from approximately 0.008 to 0.02 ft/ft, were observed.

Figure 4 presents a summary of GRO, benzene, MTBE, and TBA concentrations in shallow groundwater using the January 2015 well sampling results. GRO was detected in three onsite well samples, at concentrations ranging from 90 micrograms per liter (μ g/L) to 1,900 μ g/L. Free phase petroleum hydrocarbons were observed at offsite well MW-7, chemical analysis of the sample indicated the presence of GRO and benzene at concentrations of 28,000 μ g/L and 140 μ g/L, respectively. Benzene was detected in two onsite well samples, at a maximum level of 6.4 μ g/L. MTBE was detected in 8 of the 10 well samples; offsite concentrations ranged from 23 μ g/L to 93 μ g/L and onsite MTBE concentrations ranged from 1.0 μ g/L to 23 μ g/L. TBA was detected in five of the ten well samples, at a maximum concentration of 15,000 μ g/L (well MW-8). TAME was detected in samples collected from well MW-3R (4.1 μ g/L), MW-4R (1.4 μ g/L), MW-6 (1.0 μ g/L), and MW-9 (1.0 μ g/L).

ATTACHMENTS:

•	Table 1	Monitoring Well Construction Detail Summary	
•	Table 2	Groundwater Elevation Data	
•	Table 3	Groundwater Analytical Data	
•	Figure 1	Site Location Map	
•	Figure 2	Site Vicinity Map	
•	Figure 3	Groundwater Elevation Contour Map, First Quarter 2015	
•	Figure 4	Groundwater Analytical Summary, First Quarter 2015	
•	Appendix A	Field Data Sheets	

Appendix B Sampling and Analyses Procedures
 Appendix C Laboratory Analytical Reports and Chain-of-Custody Documentation

Appendix D GeoTracker Electronic Submittal Confirmations

TABLE 1 MONITORING WELL CONSTRUCTION DETAIL SUMMARY

Alaska Gas Service Station 6211 San Pablo Avenue, Oakland, CA

Well I.D.	Installation Date	Well Diameter (inches)	Well Depth (feet)	Screen Interval (feet bgs)
MW-1*	Oct-1999	2	23	3-23
MW-IR	Jan-2004	2	23	3-23
MW-2	Oct-1999	2	21	6-21
MW-3**	Oct-1999	2	21	6-21
MW-3R	June-2011	2	15	5-15
MW-4**	Nov-2001	2	20	5-20
MW-4R	June-2011	2	15	5-15
MW-5	Nov-2001	2	25	5-25
MW-6	Nov-2001	2	25	5-25
MW-7	Feb-2010	2	16	6-16
MW-8	Feb-2010	2	15	5-15
MW-9	Feb-2010	2	15	5-15
MW-10	Feb-2010	2	15	5-15
EX-1**	Jan-2004	4	30	5-30

Notes:

bgs = below ground surface

Information from the AEI Consultants, Remedial Action Report / Groundwater Monitoring Report - 2nd Semester 2011, dated October 6, 2011.

^{* =} Monitoring well destroyed approximately 2004

^{** =} Monitoring well was destroyed on May 17, 2011

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-1	11/07/99	34.70	8.53	26.17
	03/08/01		6.32	28.38
	11/17/01		8.09	26.61
	03/31/02		7.18	27.52
	09/09/03		8.54	26.16
	12/09/03		7.50	27.20
		Well Destroy	ved May 17, 2011	
MW-1R	02/19/04	36.67	5.45	31.22
	05/24/04		8.58	28.09
	09/03/04		9.15	27.52
	02/17/05		6.57	30.10
	08/15/05		8.55	28.12
:	11/17/05		8.41	28.26
	02/08/06		6.81	29.86
	05/05/06		7.46	29.21
	08/18/06		8.58	28.09
	12/01/06		6.56	30.11
	08/16/07		9.33	27.34
	11/08/07		8.83	27.84
	02/14/08		6.89	29.78
	05/15/08		8.53	28.14
	09/10/08		9.36	27.31
	11/18/08		8.82	27.85
	02/17/09		5.67	31.00
	05/15/09		7.79	28.88
	08/13/09		9.20	27.47
	02/23/10		6.67	30.00
	08/12/10		8.74	27.93
	02/17/11		6.51	30.16
	08/17/11		8.78	27.89
	03/28/14		8.18	28.49
	08/14/14		9.70	26.97
	01/28/15		8.86	27.81

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-2	11/07/99	34.94	8.26	26.68
	03/08/01		5.89	29.05
	11/17/01		7.75	27.19
	03/31/02		6.68	28.26
	09/09/03		8.26	26.68
	12/09/03		7.20	27.74
	02/19/04		5.81	29.13
	05/24/04		7.79	27.15
	09/03/04		8.43	26.51
	11/02/04		7.65	27.29
	02/17/05		5.86	29.08
	05/26/05		6.39	28.55
	08/17/05		7.99	26.95
	11/17/05		7.88	27.06
	02/08/06		6.24	28.70
	05/05/06		6.89	28.05
	08/18/06		8.05	26.89
	12/01/06		7.58	27.36
	08/16/07		7.26	27.68
	11/08/07		7.81	27.13
	02/14/08		5.90	29.04
	05/15/08	36.33	7.63	28.70
	09/10/08		8.43	27.90
	11/18/08		7.83	28.50
	02/17/09		4.92	31.41
	05/15/09		6.81	29.52
	08/13/09		8.23	28.10
	02/23/10		6.06	30.27
	08/12/10		7.70	28.63
	02/17/11		6.16	30.17
	08/17/11		7.16	29.17
	03/28/14		7.60	28.73
	08/14/14		8.72	27.61
	01/28/15		7.97	28.36

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-3	11/07/99	33.74	7.55	26.19
	03/08/01		5.36	28.38
	11/17/01		7.18	26.56
	03/31/02		6.27	27.47
	09/09/03		7.52	26.22
	12/09/03		6.45	27.29
	02/19/04		5.56	28.18
	05/24/04		6.99	26.75
	09/03/04		7.53	26.21
	11/02/04		6.88	26.86
	02/17/05		5.01	28.73
	08/15/05		7.71	26.03
	11/17/05		7.56	26.18
	02/08/06		6.00	27.74
	05/05/06		6.65	27.09
	08/18/06		7.73	26.01
	12/01/06		8.51	25.23
	08/16/07		7.62	26.12
	11/08/07		7.52	26.22
	02/14/08		5.60	28.14
	05/15/08	35.12	7.23	27.89
	09/10/08		8.08	27.04
	11/18/08		7.52	27.60
	02/17/09		4.36	30.76
	05/15/09		6.50	28.62
	08/13/09		7.96	27.16
	02/23/10		5.10	30.02
	08/12/10		7.40	27.72
		Well Destroy	ved May 17, 2011	
MW-3R	07/14/11		7.01	
	08/17/11		7.48	
	3828/14		7.68	
	08/14/14		8.98	
	01/28/15		8.15	

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-4	11/17/01	32.38	5.75	26.63
	03/31/02		5.40	26.98
	12/09/03			
	09/09/03			
	05/24/04*		5.70	26.91
	02/19/04*		3.56	29.00
	05/05/06		5.60	26.78
	08/18/06		6.45	25.93
	12/01/06		5.95	26.43
	11/18/07		6.60	25.78
	02/14/08		4.28	28.10
	05/15/08	34.11	5.43	28.68
	09/10/08		7.26	26.85
	11/18/08		5.84	28.27
	02/17/09		2.67	31.44
	05/15/09		4.90	29.21
	08/13/09		6.02	28.09
	02/23/10		3.84	30.27
	08/12/10		5.65	28.46
	02/17/11		3.19	30.92
		Well Destroy	ved May 17, 2011	
MW-4R	07/14/11		5.31	
	08/17/11		5.78	40 40
	03/28/14		5.90	
	08/14/14		7.28	
	01/28/15		6.46	

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-5	11/17/01	33.75	6.22	27.53
	03/31/02		6.35	27.40
:	09/09/03		7.08	26.67
	12/09/03		6.13	27.62
	02/19/04		5.11	28.64
	05/24/04		6.57	27.18
	09/03/04		7.01	26.74
	11/02/04		6.43	27.32
	05/24/05		6.02	27.73
	08/17/05		6.75	27.00
	11/17/05		6.47	27.28
	02/08/06		5.53	28.22
	05/05/06		6.10	27.65
	08/18/06		6.77	26.98
	12/01/06		6.47	27.28
	08/16/07		6.79	26.96
	11/08/07		6.43	27.32
	02/14/08		5.31	28.44
	05/15/08	35.17	6.29	28.88
	09/10/08		6.99	28.18
	11/18/08		6.41	28.76
	02/17/09		4.07	31.10
	05/15/09		5.59	29.58
	08/13/09		6.81	28.36
	02/23/10		5.05	30.12
	08/12/10		6.61	28.56
	02/17/11		5.03	30.14
	08/17/11		6.59	28.58
	03/28/14		6.97	28.20
	08/14/14		8.32	26.85
	01/28/15		7.62	27.55

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)
MW-6	11/17/01	34.68	7.19	27.49
	03/31/02		6.58	28.10
	09/09/03		8.21	26.47
	12/09/03		7.11	27.57
	02/19/04		5.61	29.07
	05/24/04			
	09/03/04		8.25	26.43
	11/02/04		7.57	27.11
	02/17/05		5.70	28.98
	08/15/05		7.91	26.77
	11/17/05		7.80	26.88
	02/08/06		6.16	28.52
	05/05/06		6.81	27.87
	08/18/06		7.97	26.71
	12/01/06		7.60	27.08
	08/16/07		7.94	26.74
	11/08/07		7.71	26.97
	02/14/08		5.83	28.85
	05/15/08	36.07	7.51	28.56
	09/10/08		8.32	27.75
	11/18/08		7.73	28.34
	02/17/09		4.64	31.43
	05/15/09		6.89	29.18
	08/13/09		8.26	27.81
	02/23/10		5.76	30.31
	08/12/10		7.71	28.36
	02/17/11		4.89	31.18
	08/17/11		7.78	28.29
	03/28/14		7.20	28.87
	08/14/14		8.67	27.40
	01/28/15		7.88	28.19

Alaska Gas Service Station

Well ID	Date of Measurement	Well Casing Elevation (feet-MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet-MSL)		
MW-7	02/23/10	31.16	2.09	29.07		
	08/12/10		4.14	27.02		
	02/17/11		1.68	29.48		
	08/17/11		4.01	27.15		
	03/28/14		4.48	26.70*		
	05/28/14		5.07	26.10*		
	08/14/14		5.54	25.62		
	01/28/15		4.95	26.21		
MW-8	02/23/10	30.92	2.66	28.26		
	08/12/10		4.16	26.76		
	02/17/11		1.01	29.91		
	08/17/11		4.41	26.51		
	03/28/14		3.87	27.05		
	08/14/14		5.41	25.51		
	01/28/15		4.70	26.22		
MW-9	02/23/10	28.90	2.84	26.06		
	08/12/10		4.53	24.37		
	02/17/11		1.93	26.97		
	08/17/11		4.82	24.08		
	03/28/14		4.65	24.25		
	08/14/14		6.67	22.23		
	01/28/15		5.96	22.94		
MW-10	02/23/10	30.28	0.98	29.30		
	08/12/10		3.47	26.81		
	02/17/11		0.95	29.33		
	08/17/11		3.39	26.89		
	03/28/14		2.50	27.78		
	08/14/14		4.65	25.63		
	01/28/15		3.87	26.41		

Alaska Gas Service Station

6211 San Pablo Avenue, Oakland, CA

Well ID	Date of Measurement	Elevation Groundwat		Groundwater Elevation (feet-MSL)
EX-1	02/19/04	33.28	3.96	29.32
	05/24/04*		5.56	28.25
	02/08/06		4.92	28.36
	05/05/06		5.15	28.13
•	08/18/06		5.85	27.43
	12/01/06		4.96	28.32
	11/08/07		5.10	28.18
	02/14/08		3.51	29.77
	05/15/08		4.69	28.59
	09/10/08		5.46	27.82
	11/18/08		4.79	28.49
	02/17/09		1.86	31.42
	05/15/09		4.16	29.12
	08/13/09		8.36	24.92
	02/23/10		3.09	30.19
	08/12/10		4.91	28.37
	02/17/11		2.53	30.75
		Well Destroy	ved May 17, 2011	

Notes:

-- = Not measured or Not Available

MSL = mean sea level

bgs = below ground surface

Information prior to February 2014, taken from the AEI Consultants, *Remedial Action Report / Groundwater Monitoring Report - 2nd Semester 2011*, dated October 6, 2011.

^{* =} Corrected for the presence of free phase petroleum hydrocarbons by the following formula: casing elevation - depth to water + (0.7 * free phase petroleum hydrocarbon thickness)

TABLE 3
GROUNDWATER ANALYTICAL DATA

					0211 Sall 1	'ablo Aven	ue, Oakiai	iu, CA					
Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
							μg/L	,					
MW-1	11/07/99	5,700	170	59	22	85	20,000						
	03/08/01	17,000	480	150	52	170	38,000						
	11/17/01	10,000	230	210	60	250	22,000						
	03/31/02	12,000	61	ND	ND	29	35,000						
	11/09/03	19,000	ND	ND	ND	ND	50,000						
1	12/09/03	22,000	150	ND	ND	ND	66,000						
						Well Destroy		2011					
MW-1R	11/17/01												
	03/31/02												
	09/09/03												
	12/09/03												
	02/19/04	1,800	95	130	44	200	220					-	
	05/24/04	210	12	10	5.4	23	79	ND	ND	2.1	37	ND	ND
	09/03/04	300	1.5	7.1	9.4	42	81	ND	ND	1.6	ND	ND	ND
	11/02/04	290	14	30	9.5	45	45	ND	ND	1.1	ND		
	02/17/05	530	3.4	ND	ND	2.6	1,000	ND	ND	100	ND		
	05/24/05							ND	ND	610	ND	ND	ND
	08/15/05	2,500	64	240	61	210	2,300	ND	ND	210	ND	ND	ND
	11/17/05	2,500	66	290	75	290	1,300	ND	ND	110	1,600	ND	ND
	02/08/06	3,300	100	310	86	470	1,400	ND	ND	130	1,400	ND	ND
	05/05/06	3,400	170	350	97	550	1,100	ND	ND	100	2,400	ND	ND
	08/18/06	5,800	190	1,000	230	1,000	490	ND	ND	36	2,900	ND	ND
	12/01/06	410	1.7	6.3	1.2	47	100	ND	ND	4.7	100	ND	ND
	02/23/07	ND	ND	0.51	ND	1.4	3	ND	ND	ND	ND	ND	ND
	05/10/07	ND	ND	ND	ND	2.0	5.9	ND	ND	ND	ND	ND	ND
	08/16/07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/08/07	1,300	11	82	54	270	1.4	ND	ND	ND	ND	ND	ND
	02/14/08	800	7.6	31	23	150	1.7	ND	ND	ND	ND	ND	ND
	05/15/08	3,200	20	200	110	550	4.2	< 0.50	< 0.50	1.0	< 20	< 0.50	< 0.50
	09/10/08	1,000	6.5	22	19	120	2.3	< 0.50	< 0.50	< 0.50	4.0	< 0.50	< 0.50
	11/18/08	430	4.1	18	12	100	1.8	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	< 0.50
	02/17/09	220	3.6	6.1	2.0	41	1.3	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	< 0.50
	05/15/09	890	6.0	17	27	110	1.8	< 0.50	< 0.50	< 0.50	3.9	< 0.50	< 0.50
	08/13/09	2,000	17	23	73	350	2.1	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	< 0.50
	02/23/10	3,200	31	77	120	810	3.9	<1.7	<1.7	<1.7	< 6.7	<1.7	<1.7
	08/12/10	1,300	13	16	40	280	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0
	02/17/11	210	4.0	1.7	13	21	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5
	08/17/11	670	6.1	13	26	200	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5
<u></u>	=												

TABLE 3
GROUNDWATER ANALYTICAL DATA

							ue, Oaklai	,					
Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
							μg/L	,					
MW-1R	03/28/14	1,200	3.7	11	34	299	1.2			<2.0[1]	<20		
Cont.	08/14/14	560	1.9	0.83	3.9	20	0.79			<1.0	<10		
	01/28/15	1,900	6.4	9.3	36	285	1.0			<2.0[1]	<20[1]		
MW-2	11/07/99	6,000	1,300	92	50	400	6,800						
	03/08/01	41,000	8,100	870	2,000	4,100	26,000						
	11/17/01	18,000	3,700	180	610	640	16,000						
	03/31/02	32,000	6,500	270	1,700	2,700	19,000						
	09/09/03	24,000	4,600	ND	1,200	440	19,000						
	12/09/03	31,000	6,200	170	1,600	2,700	19,000						
	02/19/04	21,000	4,600	120	970	2,000	15,000						
	05/24/04	1,200	120	3	63	67	1,900	ND	ND	ND	ND	ND	ND
	09/03/04	2,300	120	ND	51	70	1,700	ND	ND	26	ND	ND	ND
	11/02/04	530	35	ND	17	30	520	ND	ND	28	100		
	02/17/05	18,000	2,100	31	800	680	20,000	ND	ND	1,000	ND		
	05/24/05	22,000	3,200	52	1,400	1,700	16,000	ND	ND			ND	ND
	08/15/05	2,000	66	ND	46	47	2,400	ND	ND	95	880	ND	ND
	11/17/05	760	19	0.64	15	13	1,000	ND	ND	26	810	ND	ND
	02/08/06	10,000	1,500	8	660	380	4,300	ND	ND	120	2,800	ND	ND
	05/05/06	15,000	1,800	ND	1,200	1,200	5,800	ND	ND	150	4,300	ND	ND
	08/18/06	360	11	ND	13	9.7	160	ND	ND	4.6	-		ND
	12/01/06	11,000	1,000	ND	990	910	2,100	ND ND			600	ND	
	02/23/07	3,200	210	ND	270	85	900	ND	ND ND	87	2,000	ND	ND
	05/10/07	590	31	ND	39	22	200		ND ND	33	1,400	ND	ND
	08/16/07	650	49	ND	71	49	100	ND		5.9	250	ND	ND
	11/08/07	110	1.6	ND ND				ND	ND	3.5	82	ND	ND
	02/14/08	350		ND ND	1.9	1.6	23	ND	ND	0.64	48	ND	ND
		81	24		12	5.9	190	ND	ND	7.7	320	ND	ND
	05/15/08		0.59	< 0.50	0.71	0.66	38	< 0.50	< 0.50	1.4	54	< 0.50	< 0.50
	09/10/08	150	6.4	< 0.50	8.4	5.1	14	< 0.50	< 0.50	0.55	38	< 0.50	< 0.50
	11/18/08	420	25	0.70	46	47	29	< 0.50	< 0.50	1.3	60	< 0.50	< 0.50
	02/17/09	460	23	0.96	51	37	26	< 0.50	< 0.50	1.4	61	< 0.50	< 0.50
	05/15/09	220	13	0.93	26	13	21	< 0.50	< 0.50	0.87	60	< 0.50	< 0.50
	08/13/09	110	7.0	< 0.50	13	5.0	7.7	< 0.50	< 0.50	< 0.50	26	< 0.50	< 0.50
	02/23/10	170	9.4	0.65	27	5.6	14	< 0.50	< 0.50	< 0.50	36	< 0.50	< 0.50
	08/12/10	<50	1.1	< 0.50	1.8	0.63	3.7	< 0.50	< 0.50	< 0.50	6.3	< 0.50	< 0.50
	02/17/11	<50	< 0.5	< 0.5	< 0.5	< 0.5	8.3	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	< 0.50
	08/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	150	<2.5	<2.5	<2.5	<10	<2.5	< 2.5
	03/28/14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.51			<1.0	<10		
	08/14/14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50			<1.0	<10		
	01/28/15	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50			<1.0	<10		

TABLE 3
GROUNDWATER ANALYTICAL DATA

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ETBE	TAME	ТВА	1,2 - DCA	EDB
	 						μg/L						
MW-3	11/07/99	43,000	860	70	NID		400.000						
1V1 VV -3	03/08/01	90,000	1,800	ND	ND ND	65 ND	120,000						
	11/17/01	110,000	1,600	ND	ND	ND	210,000						
	03/31/02	130,000	2,400	670	300	390	300,000 300,000	/ 					
	09/09/03	190,000	1,600	ND	ND	ND	420,000						
	12/09/03	170,000	2,000	ND	ND	ND	4,500,000						
-	02/19/04	86,000	1,800	630	ND	ND	160,000						
II.	05/24/04	120,000	2,200	ND	180	220	400,000	ND	ND.	15,000	NID.		
	09/03/04	180,000	2,000	ND	ND	ND			ND	15,000	ND	ND	ND
	11/02/04	150,000	1,700	ND	ND	ND	510,000 350,000	ND ND	ND ND	14,000	ND	ND	ND
	02/17/05	130,000	2,100	420	210	730	290,000	ND ND	ND	31,000	140,000		
	05/24/05		2,100		210		290,000		ND	11,000	ND		
	08/15/05	110,000	1,500	ND	ND	ND	260,000	NID.	NID.	21.000	25.000	•• •••	
į.	11/17/05	200,000	2,400	ND	ND	ND ND	,	ND	ND	21,000	25,000	ND	ND
İ	02/08/06	470,000	3,800	660	ND	790	580,000	ND	ND	24,000	49,000	ND	ND
	05/05/06	400,000	3,300	ND	ND ND	ND	490,000	ND	ND	26,000	49,000	ND	ND
	08/18/06	310,000	1,800	ND	ND	ND	590,000	ND	ND	21,000	86,000	ND	ND
	12/01/06	270,000	ND	ND	ND	ND	440,000 290,000	ND	ND	23,000	79,000	ND	ND
	02/23/07	220,000	ND	ND	ND	ND	260,000	ND	ND	11,000	90,000	ND	ND
	05/10/07	140,000	ND	ND	ND	ND	180,000	ND ND	ND	15,000	33,000	ND	ND
	08/16/07	69,000	ND	ND	ND	ND ND	85,000	ND ND	ND	7,100	80,000	ND	ND
	11/08/07	34,000	ND	ND	ND	ND	38,000		ND	3,400	180,000	ND	ND
	02/14/08	41,000	ND	ND	ND	ND	44,000	ND	ND	1,400	140,000	ND	ND
	05/15/08	43,000	<100	<100	<100	<100	62,000	ND <100	ND <100	1,900	110,000	ND	ND
1	09/10/08	1,600	14	8.6	7.7	23	21,000	<1,000		1,100	200,000	<100	<100
	11/18/08	4,500	86	150	100	590	29,000		<1,000	<1,000	290,000	<1,000	<1,000
	02/17/09	2,500	45	53	35	160	16,000	<1,000	<1,000	<1,000	290,000	<1,000	<1,000
	05/15/09	2,000	15	21	13	35	13,000	<1,000	<1,000	<1,000	190,000	<1,000	<1,000
	08/13/09	1,300	10	11	4.1	33 14	7,900	<1,000	<1,000	<1,000	260,000	<1,000	<1,000
	02/23/10	1,700	22	21	11	38	,	<1,200	<1,200	<1,200	250,000	<1,200	<1,200
	08/12/10	1,600	5.8	16	5.8	38 16	4,700 4,200	<1,700	<1,700	<1,700	260,000	<1,700	<1,700
	03/12/10	290	1.0	5.5	5.8 6.5	8.1	4,200 73	<1,200	<1,200 <50	<1,200	250,000	<1,200	<1,200
	02/1//11	270	1.0	٠.٦				<50	<30	<50	8,500	< 50	<50
						n eu Destroj	yed May 17,	2011					
MW-3R	07/14/11	130	3.2	0.97	< 0.5	1.2	1,200	<250	<250	<250	35,000	<250	<250
	08/17/11	64	< 0.5	< 0.5	< 0.5	< 0.5	260	<50	<50	<50	3,800	<50	<50
	03/28/14	<200[1]	<1.0[1]	<1.0[1]	<1.0[1]	<1.0[1]	28			5.3	1,400	<30 	
	08/14/14	<800[1]	<4.0[1]	<4.0[1]	<4.0[1]	<4.0[1]	5.2			<8.0[1]	5,200		
	01/28/15	140	< 0.50	< 0.50	< 0.50	< 0.50	23			√8.0[1] 4.1	6,500		
	01/28/15	140	<0.50	<0.50	<0.50	<0.50	23			4.1	6,500		

TABLE 3
GROUNDWATER ANALYTICAL DATA

					Dan San I	abio Aven	ue, Oaklar	iu, CA					
Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
							μg/L						
MW-4	11/17/01	64,000	960	1,400	360	1,600	140,000						
	03/31/02	78,000	4,400	4,700	690	2,700	150,000						
	09/06/07	49,000	710	840	ND	10,000	3,600	ND	ND	510	32,000	ND	ND
	11/08/07	64,000	1,300	2,600	1,000	8,500	1,500	ND	ND	360	14,000	ND	ND
	02/14/08	60,000	390	460	230	2,000	52,000	ND	ND	2,000	58,000	ND	ND
	05/15/08	22,000	670	130	740	2,700	3,300	< 5.0	< 5.0	340	35,000	< 5.0	< 5.0
	09/10/08	16,000	500	150	730	2,500	2,000	<250	<250	<250	65,000	<250	<250
	11/18/08	24,000	820	190	1,200	5,000	1,400	< 50	< 50	260	9,300	< 50	< 50
	02/17/09	17,000	350	170	620	2,600	360	<10	<10	82	2,100	<10	<10
	05/15/09	32,000	300	190	880	3,200	470	<10	<10	95	380	<10	<10
	08/13/09	29,000	320	250	980	3,400	350	< 50	< 50	61	10,000	< 50	< 50
	02/23/10	15,000	250	77	580	2,200	180	< 5.0	< 5.0	41	400	< 5.0	<5.0
	08/12/10	17,000	200	47	580	1,400	150	<10	<10	28	1,800	<10	<10
	02/17/11	7,600	190	15	260	440	130	< 5.0	< 5.0	29	790	< 5.0	< 5.0
						Well Destroj	ved May 17,	2011					
MW-4R	07/14/11	1,000	210	3.6	<2.5	32	7,800	<200	<200	390	41,000	<200	<200
	08/17/11	840	9.1	< 5.0	< 5.0	< 5.0	4,500	<250	<250	310	26,000	<250	<250
	03/28/14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.6			<1.0	110		
	08/14/14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	4.7			<1.0	<10		
	01/28/15	<100[2]	< 0.50	< 0.50	< 0.50	< 0.50	8.8			1.4	190		

TABLE 3
GROUNDWATER ANALYTICAL DATA

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
							μg/L						
MW-5	11/17/01	210	15	12	11	23	4.8						
	03/31/02	120	11	7.4	6.1	16	4.2						
	09/09/03	ND	1.5	ND	ND	ND	1.7						122
	12/09/03	130	32	ND	2.6	0.57	5						
	02/19/04	ND	ND	ND	ND	ND	1.5						
	05/24/04	ND	ND	ND	ND	ND	0.55	ND	ND	ND	ND	ND	ND
	09/03/04	100	6.4	ND	ND	0.79	4.2	ND	ND	ND	ND	ND	ND
	11/02/04	ND	2.6	ND	1.7	0.87	1	ND	ND	ND	ND	ND	ND
	02/17/05	51	0.74	ND	0.94	ND	1.5	ND	ND	ND	ND	ND	ND
	05/24/05	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	08/15/05	ND	ND	ND	ND	ND	0.88	ND	ND	ND	ND	ND	ND
	11/17/05	71	0.81	ND	1.1	ND	1.4	ND	ND	ND	ND	ND	ND
	02/08/06	50	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	05/05/06	ND	ND	ND	ND	ND	0.93	ND	ND	ND	ND	ND	ND
	08/18/06	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
	12/01/06	ND	0.69	ND	ND	0.52	0.97	ND	ND	ND	ND	ND	ND
	02/23/07	73	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND
	05/10/07	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
	08/16/07	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	11/08/07	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND
	02/14/08	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
	05/15/08	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	< 0.50	< 0.50	< 0.50	<20	< 0.50	< 0.50
	09/10/08	480	17	1.8	2.7	0.59	12	< 0.50	< 0.50	< 0.50	4.4	< 0.50	< 0.50
	11/18/08	130	2.3	1.6	< 0.50	< 0.50	7.3	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	< 0.50
	02/17/09	170	< 0.50	2.7	< 0.50	< 0.50	4.2	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	< 0.50
	05/15/09	< 50	< 0.50	< 0.50	< 0.50	< 0.50	7.6	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	<0.50
	08/13/09	380	19	2.1	3.8	0.88	11	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	<0.50
	02/23/10	< 50	< 0.50	0.87	< 0.50	< 0.50	1.9	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	<0.50
	08/12/10	120	1.5	2.9	0.74	3.5	13	< 0.50	< 0.50	< 0.50	3.0	< 0.50	<0.50
	02/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.7	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	<0.5
	08/17/11	160	2.3	1.1	< 0.5	< 0.5	5.4	< 0.5	< 0.5	< 0.5	<2.0	<0.5	<0.5
	03/28/14	77	0.52	< 0.50	< 0.50	< 0.50	5.2			<1.0	<10		-0.5
	08/14/14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.7			<1.0	<10		
	01/28/15	< 50	< 0.50	< 0.50	< 0.50	< 0.50	16			2.8	57		

TABLE 3
GROUNDWATER ANALYTICAL DATA
Alaska Gas Service Station

Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB
							μg/L					· · · · · · · · · · · · · · · · · · ·	
MW-6	11/17/01	3,500	160	260	95	420	1,500						
	03/31/02	3,200	410	170	82	280	3,000						
	09/09/03	800	49	ND	7.4	ND	1,700						
	12/09/03	970	150	9.9	31	83	1,200						
	02/19/04	1,900	280	58	17	160	2,700				-		
	09/03/04	1,100	27	ND	14	27	2,200	ND	ND	85	ND	ND	ND
	11/02/04	1,800	32	ND	5	11	4,100	ND	ND	170	270	ND	ND
	02/17/05	5,600	190	34	41	110	10,000	ND	ND	780	2,000	ND	ND
	08/15/05	1,800	27	ND	6	23	3,800	ND	ND	300	3,500	ND	ND
	11/17/05	1,100	30	ND	4	9	2,400	ND	ND	190	9,500	ND	ND
	02/08/06	3,600	220	43	66	160	2,700	ND	ND	180	7,800	ND	ND
	05/05/06	1,600	130	21	37	65	1,400	ND	ND	53	3,100	ND	ND
	08/18/06	270	27	ND	3	4	240	ND	ND	11	2,400	ND	ND
	12/01/06	1,700	ND	ND	ND	ND	1,700	ND	ND	92	800	ND	ND
	02/23/07	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	ND
	05/10/07	ND	3.0	ND	ND	1.9	26	ND	ND	2	48	ND	ND
	08/16/07	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND
	11/08/07	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND
	02/14/08	ND	ND	ND	ND	ND	11	ND	ND	0.94	220	ND	ND
	05/15/08	< 50	< 0.50	< 0.50	< 0.50	< 0.50	13	< 0.50	< 0.50	1.0	130	< 0.50	< 0.50
	09/10/08	78	1.4	0.60	0.94	1.3	71	<1.0	<1.0	6.2	160	<1.0	<1.0
	11/18/08	< 50	2.4	< 0.50	< 0.50	0.70	72	<1.2	<1.2	7.2	180	<1.2	<1.2
	02/17/09	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0	< 0.50	< 0.50
	05/15/09	53	3.2	< 0.50	< 0.50	1.7	44	<1.0	<1.0	4.3	89	<1.0	<1.0
	08/13/09	74	5.9	0.57	0.97	5.0	27	< 0.50	< 0.50	2.2	140	< 0.50	< 0.50
	02/23/10	< 50	0.66	< 0.50	< 0.50	0.57	5.7	< 0.50	< 0.50	< 0.50	15	< 0.50	< 0.50
	08/12/10	92	7.5	0.94	< 0.50	1.0	32	<1.0	<1.0	2.7	180	<1.0	<1.0
	02/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5
	08/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	73	<1.2	<1.2	7.7	130	<1.2	<1.2
	03/28/14	110	6.0	< 0.50	2.2	1.1	14			2.0	36		
	08/14/14	< 50	0.56	< 0.50	< 0.50	< 0.50	1.5			<1.0	14		
	01/28/15	90	4.6	< 0.50	3.0	0.88	5.5			1.0	12		

TABLE 3
GROUNDWATER ANALYTICAL DATA
Alaska Gas Service Station

		T-i			211 San 1	abio Aven	uc, Oakiai	iu, CA				·	
Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
							μg/L	,				·	
MW-7	02/23/10	29,000	410	380	2,100	6,100	410	<10	<10	19	1,500	<10	<10
	08/12/10	2,000	26	17	140	250	2,400	< 50	< 50	75	9,600	< 50	< 50
	02/17/11	2,400	35	17	160	190	670	<10	<10	24	1,300	<10	<10
	08/17/11	320	4.3	4.0	5.7	11	3.0	< 0.5	< 0.5	< 0.5	110	< 0.5	< 0.5
	03/28/14												
	05/28/14	8,300	43	8.5	520	490	340			9.7	420		
	08/14/14	8,800	25	<5.0[1]	400	460	99			<10[1]	1,200		
	01/28/15	28,000	140	<40[1]	1,600	1,542	<40[1]			<80[1]	<800[1]	••	
MW-8	02/23/10	690	3.5	2.8	29	40	1,600	<100	<100	<100	24,000	<100	<100
	08/12/10	260	4.1	1.4	6.9	7.2	2,100	<170	<170	<170	25,000	<170	<170
	02/17/11	500	3.6	5.1	7.8	2.1	1,300	<100	<100	<100	25,000	<100	<100
	08/17/11	3,000	30	23	96	85	320	<100	<100	<100	19,000	<100	<100
	03/28/14	<4,000[1]	<20[1]	<20[1]	<20[1]	<20[1]	200			<40[1]	33,000		
	08/14/14	<3,000[1]	<15[1]	<15[1]	<15[1]	<15[1]	160			<30[1]	20,000		
	01/28/15	<2,000[1]	<10[1]	<10[1]	<10[1]	<10[1]	93			<20[1]	15,000		
MW-9	02/23/10	< 50	< 0.50	0.70	< 0.50	< 0.50	260	<10	<10	<10	1,600	<10	<10
	08/12/10	< 50	< 0.50	1.6	< 0.50	< 0.50	85	<10	<10	<10	880	<10	<10
	02/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	160	< 5.0	< 5.0	< 5.0	1,300	< 5.0	< 5.0
	08/17/11	170	< 0.5	7.0	< 0.5	< 0.5	10	< 5.0	< 5.0	< 5.0	650	< 5.0	< 5.0
	03/28/14	55	< 0.50	< 0.50	< 0.50	< 0.50	74			<1.0	15		
	08/14/14	64	< 0.50	< 0.50	< 0.50	< 0.50	130			3.5	<10		
	01/28/15	< 50	< 0.50	< 0.50	< 0.50	< 0.50	62			1.0	<10		
MW-10	02/23/10	1,300	< 0.50	11	3.1	2.6	2.8	< 0.50	< 0.50	< 0.50	<2.0	< 0.50	< 0.50
	08/12/10	61	< 0.50	0.72	< 0.50	< 0.50	39	< 0.50	< 0.50	1.8	< 2.0	< 0.50	< 0.50
	02/17/11	150	< 0.5	1.6	< 0.5	< 0.5	6.9	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	< 0.5
	08/17/11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	6.9	< 0.5	< 0.5	< 0.5	<2.0	< 0.5	< 0.5
	03/28/14	95	< 0.50	< 0.50	< 0.50	< 0.50	24			<1.0	<10		
	08/14/14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	21			<1.0	<10		
	01/28/15	<50	< 0.50	< 0.50	< 0.50	< 0.50	23			<1.0	<10		

TABLE 3 GROUNDWATER ANALYTICAL DATA

Alaska Gas Service Station 6211 San Pablo Avenue, Oakland, CA

r-					DETT OWN I	HOTO TRYCH	uc, Oakian	iu, OII					
Well ID	Date Collected	GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
							μg/L						
EX-1	02/19/04	120,000	9,500	4,300	840	3,900	150,000						
	02/14/08	84,000	2,300	4,900	1,800	14,000	3,900	ND	ND	ND	ND	ND	ND
	05/15/08	24,000	2,100	750	640	2,100	1,800	< 0.50	< 0.50	610	10,000	< 0.50	< 0.50
	09/10/08	9,200	1,000	160	300	1,000	780	<100	<100	380	11,000	<100	<100
	11/18/08	8,900	1,400	290	360	1,300	840	<100	<100	180	22,000	<100	<100
	02/17/09	70,000	2,700	3,600	1,900	13,000	1,400	<25	<25	230	20,000	<25	<25
	05/15/09	18,000	1,400	250	530	1,700	640	<25	<25	480	1,500	<25	<25
	08/13/09	10,000	1,100	150	410	940	520	<25	<25	200	5,500	<25	<25
	02/23/10	39,000	1,300	1,100	1,100	7,700	880	<25	<25	120	5,200	<25	<25
	08/12/10	12,000	1,000	160	470	1,200	660	<17	<17	250	670	<17	<17
	02/17/11	33,000	1,700	600	1,100	6,500	720	<12	<12	160	1,000	<12	<12
						Well Destro	ved May 17,	2011					
-													

Notes:

μg/L = Micrograms per liter

GRO = Gasoline Range Organics (C4-C13)

MTBE = Methyl Tertiary Butyl Ether

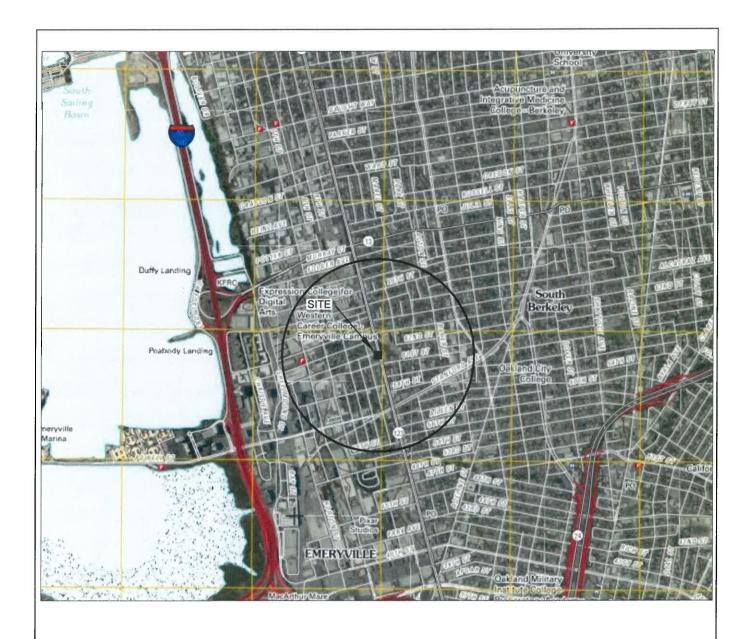
TAME= Tertiary Amyl Methyl Ether

DIPE= Di-Isopropyl Ether

TBA = Tertiary Butyl Alcohol 1,2-DCA= 1,2-Dichloroethane

EDB = Ethylene dibromide

ETBE= Ethyl Tertiary Butyl Ether


Analytical Methods:

GRO by EPA Method SW8015B/SW8260B All other analytes by EPA Method SW8260B.

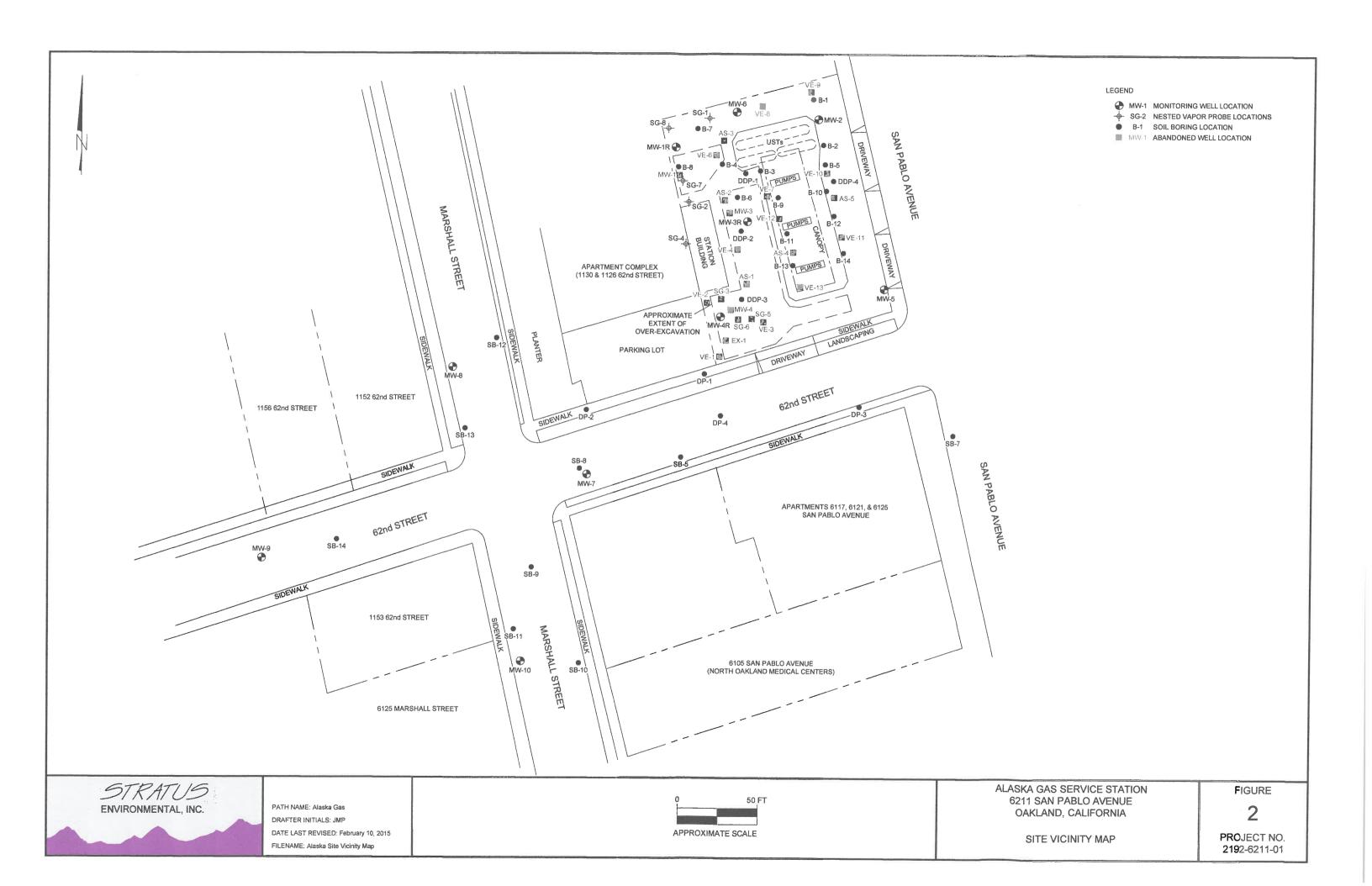
- 1 = Reporting limits were increased due to high concentrations of target analytes.
- 2 = Reporting limits were increased due to sample foaming.

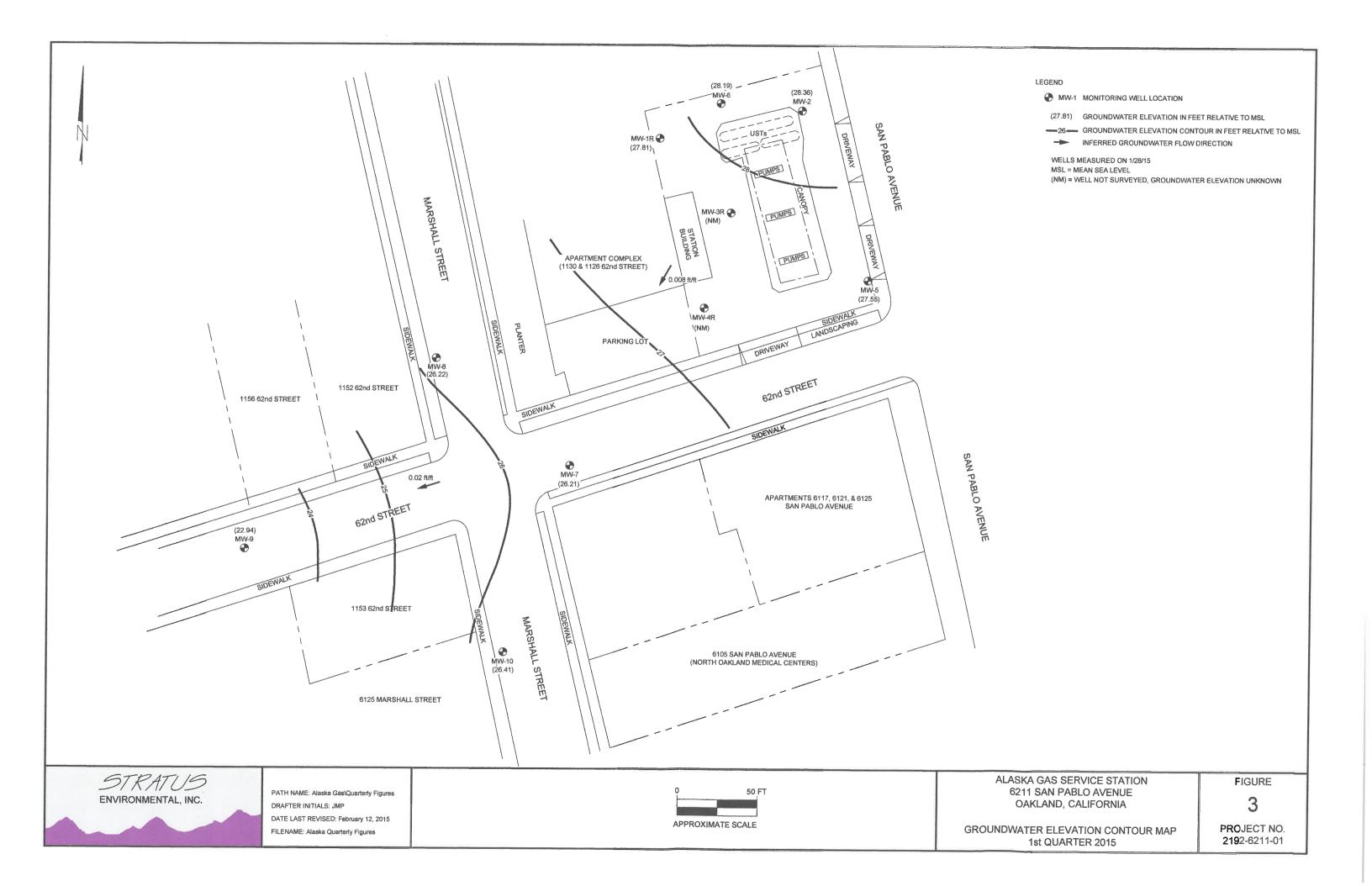
Information prior to February 2014, taken from the AEI Consultants, Remedial Action Report

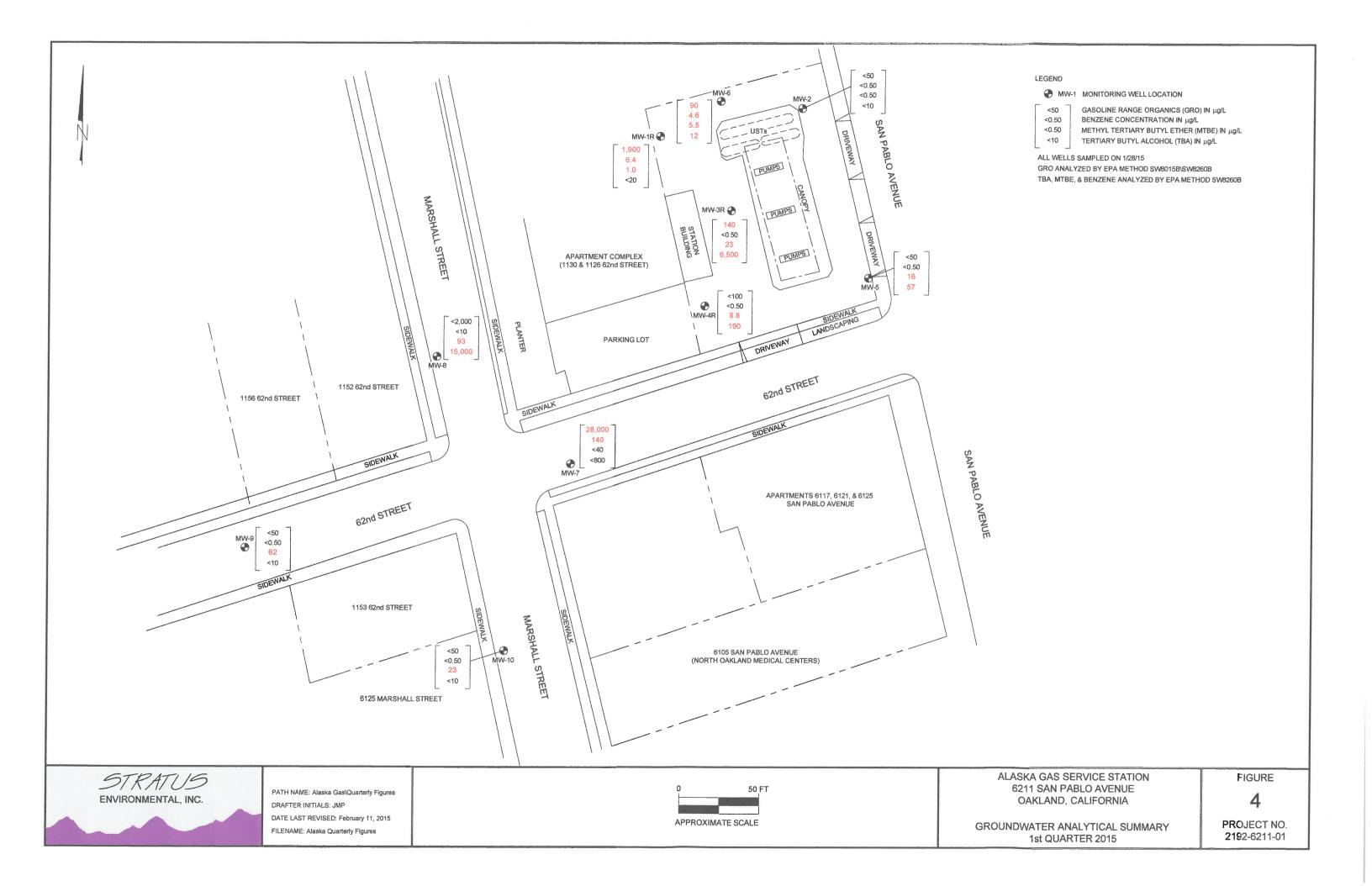
Groundwater Monitoring Report - 2nd Semester 2011, dated October 6, 2011

GENERAL NOTES: BASE MAP FROM U.S.G.S. OAKLAND WEST, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 2012

STRATUS ENVIRONMENTAL, INC.


ALASKA GAS SERVICE STATION 6211 SAN PABLO AVENUE OAKLAND, CALIFORNIA


SITE LOCATION MAP


FIGURE

1

PROJECT NO. 2192-6211-01

APPENDIX A FIELD DATA SHEETS

Site Address 62	11 SAN Publo Aux
City Sampled by:	Elone
Signature	PHIL

Site Number
Project Number
Project PM
DATE

1.25-15

		ater Level D				Purge v	olume Calc	ulations			Purgo	Metho	d			= = = = = = = = = = = = = = = = = = = =	
Weli ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged	No Purge		Pump		DTW at sample time	Sample I.D	Cample	DO (math)
WIR			8.86	27.71	13.85	Z	5	7	(gallons)		X			(feet)			(mg/L)
	0422	-	7.97	20.57	12.55	Z	,5 ,5	V	6		X			8.92	MUIR	0542	1.63
W 3K	0427		8.15	14.87	6.70	2	15	3	3	-	X			8.03		0622	1.77
MW 5	0428		7.42	14.43	8-17	2	15	4	Н		X			V-70		0520	200
	0423		7.88	24.11	16.49	2	رق	8	8		X			7.81		0448	2.10
mu 7	0650		4.95	15.74	18.79	2	15	8	6		X			7.15		Ovou	1.40
	0627		4.70	14.75	10.05	2	15	5	5		<u>y</u>					0700	-
	0704		5.96	14.57	899	2	12	U	7		X			4.82	MW 8	UVY	1.88
MW 10	0728		3.87	14.90	11.03	2	13	5	4		X			5.98	pur 9	רורס	1.47
														4.02	mk 10	0743	2.01
		3															
			•														
						- '											
											-						
ultiplier						T											

Multiplier 2" = 0.5 3" = 1.0 4" = 2.0 6" = 4.4

Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10 DO Meter - Oakton 300 Series (DO is always measured before purge)

		_
CA	LIBRATION DATE	_
pH	1.27-13	_
Conductivity		_
DO)	_
		_

Site Address 621 SAW Poly
City Ontology
Site Sampled by CALLS

Site Number Alaska GHS
Project No.
Project PM SU//
Date Sampled 1.2515

								-				
Well ID M	W5				8 Wei	IID	MK	·HR				
purge start tir	ne .			di	purg	e sta	art time					No
	Temp	C pH	cor	nd gall	ons			Temp	C	ρН	cond	ga
time 043	2 16.3	8.00	28	3 8	time	04.	56	17.3	, St.	3.0	1512	
time 04(3)	7 17,7	8.03	185	6 H	time	04	58	1724	8	לע	151.0	12
time & 44 3	18.2	8.11	1020	18	time	03	00	17.3	81	12	146.8	1
time					time							
purge stop tim		Do	2.	59m	> pugre	stop	time 3	Z.00 }	70		Z	86
Well ID M/	V 312			3	Well I	D N	NWIR					
purge start time	e			W	purge	star	t time				C	rdu
	Temp C	рН	cond		ns.			Temp (C pl	4	cond	gall
time 0510	17.2	7.69	148.2		time C			165		2 2	321	8
time 0512	17.2		144,9	1.5	time 0			17,(7.3	1/-	31.6	3
ime@515	17,4	7.63	14410	3	time O	530	/	17.5	7.2	8 1	27.3	
ime			·		time		1.					
ourge stop time	2.00 R	1	2	91	purge :	stop	time i	1.630	0		3	23
Vell ID WW	6			G	Well ID	m	WZ					6
urge start time				NO	purge s	tart t	time			,	N	2
CO	Temp C	рН	cond	gallons		17		Temp C	Hq			allo
me 0550	1615		22(82	time 🗸			7.0	6.75		70	D
ne 9954	10- /	- ()	17.3	.,	time O		· ·	7.6	6.80		7,2	3
ne <i>0(3)</i>	17-2	7.071	18, 2	8	time O	60	7 1	8.5	6-94	2 14	1.3	
ne	11.200				time			-7 77	,			15
rge stop time			30		purge st			1100			، ک	13
ell ID MW	<u> </u>			440	Well ID							>
rge start time			T		ourge sta	art tin				1		
M171	Temp C		_	allons				emp C	рН	co		llons #
e 0430	17.3 /	77 1	20.3		ime	-	rock	CY			_ -	3
0137 0135			- 4		ime ·							
	178 (1/ 01/	3.0	-	me						-	
9	1.88 DO		32		me							
ge stop time	1 4 4 1 1 1 1 1 1		2"		urge sto							1

Site Address 124 Sun Pably the
City Oakland
Site Sampled by 1514

Project Projec

Site Number Alaska GAS
Project No.
Project PM Sult
Sale Sampled 1-28-15

Well ID M	w 9				4	Well ID M	v	10				
purge start tim	ie			14	1	purge start tir	me					M
	Temp	C pH	.co		llon:			Temp (Н	conc	ga
time 6708	1615	62		21 8	2	time 073	0	14.3		54 1	08.8	3 8
time 071(17. (1.8	3 11.	8 3	_	time 0735		19.2	6-7		172.	3
time 0714	17.8	6.97	1/8	(4		time 0 7 39	3	15.4	10.2	9//	12.2	5
time						time						
purge stop time	1.4	7		310	7	pugre stop tim	e 2	.0100				370
Well ID						Well ID						
purge start time						purge start tim	e		21			
	Temp C	pH	con	d gallo	ons			Temp C	рН	(cond	gallo
time		1				time						
time			4.			time						
time						time						
time						time						
purge stop time						ourge stop time						
Well ID						Well ID						
ourge start time						ourge start time		,	=			
	Temp C	рН	cond	gallor	is		T	emp C	рН	CC	ond	gallor
ime					ti	me	_					
me				<u> </u>	tii	me .	1_					
me					<u> tir</u>	me	-					
me					$\neg \vdash$	ne						
urge stop time					pu	urge stop time						
/ell ID				· · · · · · · · · · · · · · · · · · ·	W	ell ID		*		=		
urge start time	1				pu	rge start time				1		
	Temp C	рН	cond	gallons	_		Te	mp C	рН	cor	nd g	allons
ne					tim	ne ,						
ne					tim	e				•		
ne					tim	e			.			
e					tim	e						
rge stop time					pur	ge stop time						

Company: Attn: Address: City, State, Zip: Phone Number:

Alpha Analytical, Inc.

Main Laboratory: 255 Glendale Ave, Suite 21 Sparks, NV 89431

Satellite Service Centers:

Northern CA: 9891 Horn Road, Suite C, Rancho Cordova, CA 95827 Southern CA: 1007 E. Dominguez St., Suite O, Carson, CA 90746 Northern NV: 1250 Lamoille Hwy., #310, Elko, NV 89801 Southern NV: 6255 McLeod Ave, Suite 24, Las Vegas, NV 89120

Phone: 775-355-1044

Phone: 916-366-9089

Phone: 714-386-2901

Phone: 775-388-7043

Phone: 702-281-4848

Fax: 775-355-0406

	8						8-NE-21																11111111111111111111111111111111111111
Company: Job # Job and Purchase Order Info:										Report Attention/Project Manager:						Annua.	QC Deliverable Info: EDD Required? Yes / No EDF Required? Yes / No						
Address City, State,	_			Jo	b Name:	HIL	Stell	(SH)	7	Email Ad								EDD Kequir	ear res	/ NO	1 <i>11</i> 1	DF Required?	Yes / No
					0.#:					Phone #: Cell #:								Global ID:		16	JU	UIC	11
Samples	Collect	ed from which	ch State? (circle one)	AR C	Укѕ	NV OR	WA	DOD Site	Other	GOII W.						H		Data Valida	tion Packa	ges:	III	or IV	-
						×				Ŷ				Analy	/sis Requ	ested				.		Rema	rks
,										Belo													
*										(See Key Below)	_												
,											tered			W	17	-							
Time	Date	Matrix*								ainers	Field Filtered?	3	12	150	2	184							
Sampled (HHMM)	Sampled (MM/DD)	(See Key Below)	Lab ID Number (For Lab I	Jse Only)		Sample [Description		TAT	#Containers**	Yes No	GRO	SEX SEX	MESS	YAME	7							
2542	178	PR			mw	IR			STD	3	X	X	入	14	X	1/L							
ON ZZ	1				mh	2			1	3	1	1	1		1	-							
1520	1				MW				1	3	115	1											
2505						48				3	17												
0448					Mr.	5			17	3)							-	
0604	1	//			MW	Section			1/	3		1		1	/								
0760	1				me	7			1	3				/									
OUAL					mw	8			1	3				1)								
750	-	1			MW	9				3		1	1	7	1								
0713	128	AZ			Mu	10			SID	3	1	- X	1	X	L	X					\dashv		
ADDITION	IAL INSTRU	CTIONS:																					
l (field sa		t to the validity	and authenticity of this san	ple(s). I am av	vare that tam	ering with o	r intention	ally mislabeling	the sample	location,	date or tin	ne of colle	ction is co	onsidered	fraud and	l may be gr	rounds fo	r legal acti	on. NAC	45.0636 (d	;) (2).		
Relinquis	ed by (819	ature/Affiliation)	1	Date:		Time:	150	Rece	eived by: (Sig	nature/Affi	liation):	-						1	Date:		_	Time:	
Refiliquished by: (Signature/Affiliation): Date:					8-15 1040 P				eived by: (Sig	MUSSA T red by: (Signature/Affiliation):								1-28-15 10-10 Date: Time:					
Relinquished by: (Signature/Affillation): Date:					Time																		
Date:					Time:			Kec	Received by: (Signature/Affiliation):										Date:			Time:	
			* Key: AQ - Aqueous	WA-		OT - Other	So-			V - VOA		oil Jar	O - Ort		- Tedlar	B - Bra		P - Plastic	с ОТ	- Other			
NOTE: Sa received b	amples are y the labora	discarded 60 days tory with this CO	s after sample receipt unless C. The liability of the laborato	other arrangerr ry is limited to t	nents are mad he amount pai	e. Hazardous d for the repo	samples v	vill be returned t	o client or dis	sposed of a	t client exp	oense. Th	e report fo	r the analy	sis of the a	above samp	ples is ap	plicable only	y to those	amples			

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSES PROCEDURES

The sampling and analyses procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time, the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use of spiked samples, duplicate samples, split samples, use of reference blanks, and check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical instrument performance, a quality check sample, which is prepared independently of the calibration standards and contains the constituents of interest, is analyzed to confirm that measurements were performed accurately.

• Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported
 and stored with the samples and analyzed to assess the impact of sample transport
 and storage for data quality. In the event that any analyte is detected in the field
 blank, a trip blank will be included in the subsequent groundwater sampling
 event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Scott Bittinger
Phone: (530) 676-2062
Fax: (530) 676-6005

Date Received: 01/29/15

Job: Alaska Gas

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentrat	ion	Reporting Limit	Date Extracted	Date Analyzed
Client ID:	MW-1R						
Lab ID:	STR15012943-01A	TPH-P (GRO)	1,900		200 μg/L	02/03/15	02/03/15
Date Sampled	01/28/15 05:42	Tertiary Butyl Alcohol (TBA)	ND	V	20 μg/L	02/03/15	02/03/15
		Methyl tert-butyl ether (MTBE)	1.0		1.0 μg/L	02/03/15	02/03/15
		Benzene	6.4		1.0 μg/L	02/03/15	02/03/15
		Tertiary Amyl Methyl Ether (TAME)	ND	V	2.0 μg/L	02/03/15	02/03/15
		Toluene	9.3		1.0 µg/L	02/03/15	02/03/15
		Ethylbenzene	36		1.0 µg/L	02/03/15	02/03/15
		m,p-Xylene	220		1.0 μg/L	02/03/15	02/03/15
		o-Xylene	65		1.0 µg/L	02/03/15	02/03/15
Client ID:	MW-2						
Lab ID:	STR15012943-02A	TPH-P (GRO)	ND		50 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 06:22	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	02/02/15	02/02/15
		Methyl tert-butyl ether (MTBE)	ND		0.50 μg/L	02/02/15	02/02/15
		Benzene	ND		0.50 μg/L	02/02/15	02/02/15
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 µg/L	02/02/15	02/02/15
		Toluene	ND		0.50 μg/L	02/02/15	02/02/15
		Ethylbenzene	ND		0.50 μg/L	02/02/15	02/02/15
	ā	m,p-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
		o-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
Client ID:	MW-3R						
Lab ID:	STR15012943-03A	TPH-P (GRO)	140		100 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 05:20	Tertiary Butyl Alcohol (TBA)	6,500		10 μg/L	02/02/15	02/02/15
		Methyl tert-butyl ether (MTBE)	23		0.50 μg/L	02/02/15	02/02/15
		Benzene	ND ·		0.50 μg/L	02/02/15	02/02/15
		Tertiary Amyl Methyl Ether (TAME)	4.1		1.0 μg/L	02/02/15	02/02/15
		Toluene	ND		0.50 μg/L	02/02/15	02/02/15
		Ethylbenzene	ND		0.50 μg/L	02/02/15	02/02/15
		m,p-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
		o-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
Client ID:	MW-4R					00/00/15	02/02/15
Lab ID:	STR15012943-04A	TPH-P (GRO)	ND	0	100 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 05:05	Tertiary Butyl Alcohol (TBA)	190		10 μg/L	02/02/15	02/02/15
		Methyl tert-butyl ether (MTBE)	8.8		0.50 μg/L	02/02/15	02/02/15
		Benzene	ND		0.50 μg/L	02/02/15	02/02/15 02/02/15
		Tertiary Amyl Methyl Ether (TAME)	1.4		1.0 μg/L	02/02/15	
		Toluene	ND		0.50 μg/L	02/02/15	02/02/15 02/02/15
		Ethylbenzene	ND		0.50 μg/L	02/02/15 02/02/15	02/02/15
		m,p-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
		o-Xylene	ND		0.50 μg/L	UZ/UZ/13	020213

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	MW-5					00/00/15	02/02/15
Lab ID:	STR15012943-05A	TPH-P (GRO)	ND		50 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 04:48	Tertiary Butyl Alcohol (TBA)	57		10 μg/L	02/02/15	02/02/15
		Methyl tert-butyl ether (MTBE)	16		0.50 μg/L	02/02/15	02/02/15
		Benzene	ND		0.50 μg/L	02/02/15	02/02/15
		Tertiary Amyl Methyl Ether (TAME)	2.8		1.0 μg/L	02/02/15	02/02/15
		Toluene	ND		0.50 μg/L	02/02/15	02/02/15
		Ethylbenzene	ND		0.50 μg/L	02/02/15	02/02/15
		m,p-Xylene	ND		0.50 μg/ L	02/02/15	02/02/15
		o-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
Client ID:	MW-6						
Lab ID:	STR15012943-06A	TPH-P (GRO)	90		50 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 06:04	Tertiary Butyl Alcohol (TBA)	12		10 μg/L	02/02/15	02/02/15
		Methyl tert-butyl ether (MTBE)	5.5		$0.50~\mu g/L$	02/02/15	02/02/15
		Benzene	4.6		0.50 μg/L	02/02/15	02/02/15
		Tertiary Amyl Methyl Ether (TAME)	1.0		1.0 µg/L	02/02/15	02/02/15
		Toluene	ND		0.50 μg/L	02/02/15	02/02/15
		Ethylbenzene	3.0		0.50 μg/L	02/02/15	02/02/15
		m,p-Xylene	0.88		0.50 μg/L	02/02/15	02/02/15
		o-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
Client ID:	MW-7						
Lab ID:	STR15012943-07A	TPH-P (GRO)	28,000		8,000 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 07:00	Tertiary Butyl Alcohol (TBA)	ND	V	800 μg/L	02/02/15	02/02/15
		Methyl tert-butyl ether (MTBE)	ND	V	40 μg/L	02/02/15	02/02/15
		Benzene	140		40 μg/L	02/02/15	02/02/15
		Tertiary Amyl Methyl Ether (TAME)	ND	V	80 μg/L	02/02/15	02/02/15
		Toluene	ND	V	40 μg/L	02/02/15	02/02/15
		Ethylbenzene	1,600		40 μg/L	02/02/15	02/02/15
		m,p-Xylene	1,500		40 μg/L	02/02/15	02/02/15
		o-Xylene	42		40 μg/L	02/02/15	02/02/15
Client ID:	MW-8	-					
Lab ID:	STR15012943-08A	TPH-P (GRO)	ND	V	2,000 µg/L	02/03/15	02/03/15
Date Sampled	01/28/15 06:41	Tertiary Butyl Alcohol (TBA)	15,000		200 μg/L	02/03/15	02/03/15
•		Methyl tert-butyl ether (MTBE)	93		10 μg/L	02/03/15	02/03/15
		Benzene	ND	V	10 μg/L	02/03/15	02/03/15
		Tertiary Amyl Methyl Ether (TAME)	ND	V	20 μg/L	02/03/15	02/03/15
		Toluene	ND	V	10 μg/L	02/03/15	02/03/15
		Ethylbenzene	ND	V	10 μg/L	02/03/15	02/03/15
		m,p-Xylene	ND	V	10 μg/L	02/03/15	02/03/15
		o-Xylene	ND	V	10 μg/L	02/03/15	02/03/15
Client ID:	MW-9	•					
Lab ID:	STR15012943-09A	TPH-P (GRO)	ND		50 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 07:17	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	02/02/15	02/02/15
_		Methyl tert-butyl ether (MTBE)	62		0.50 μg/L	02/02/15	02/02/15
		Benzene	ND		0.50 μg/L	02/02/15	02/02/15
		Tertiary Amyl Methyl Ether (TAME)	1.0		1.0 μg/L	02/02/15	02/02/15
		Toluene	ND		0.50 μg/L	02/02/15	02/02/15
		Ethylbenzene	ND		0.50 μg/L	02/02/15	02/02/15
		m,p-Xylene	ND		0.50 μg/L	02/02/15	02/02/15
		o-Xylene	ND		0.50 μg/L	02/02/15	02/02/15

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	MW-10					
Lab ID:	STR15012943-10A	TPH-P (GRO)	ND	50 μg/L	02/02/15	02/02/15
Date Sampled	01/28/15 07:43	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	02/02/15	02/02/15
-		Methyl tert-butyl ether (MTBE)	23	0.50 µg/L	02/02/15	02/02/15
		Benzene	ND	0.50 µg/L	02/02/15	02/02/15
		Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L	02/02/15	02/02/15
		Toluene	ND	0.50 µg/L	02/02/15	02/02/15
		Ethylbenzene	ND	0.50 μg/L	02/02/15	02/02/15
		m,p-Xylene	ND	$0.50~\mu g/L$	02/02/15	02/02/15
		o-Xylene	ND	$0.50~\mu g/L$	02/02/15	02/02/15

Gasoline Range Organics (GRO) C4-C13

O = Reporting Limits were increased due to sample foaming.

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

ACLASS

ACCHEDITED

DOD ELAP

Roger Scholl Kandy Soulm

Dalter Hirihow

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

2/5/15

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR15012943

Job: Alaska Gas

Alpha's Sample ID	Client's Sample ID	Matrix	pН
	MW-1R	Aqueous	2
15012943-01A			2
15012943-02A	MW-2	Aqueous	2
15012943-03A	MW-3R	Aqueous	2
15012943-04A	MW-4R	Aqueous	2
15012943-05A	MW-5	Aqueous	2
15012943-06A	MW-6	Aqueous	2
15012943-07A	MW-7	Aqueous	2
15012943-08A	MW-8	Aqueous	2
15012943-09A	MW-9	Aqueous	2
15012943-10A	MW-10	Aqueous	2

2/5/15

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 04-Feb-15	QC Summary Report												
Method Blank File ID: 15020204.D		Type N		est Code: EPA									
Sample ID: MBLK MS08W0202B	Units : µg/L			etch ID: MS08V		Prep Date:	02/02/2015 12:37						
Analyte	Result	PQL		SD_08_150202		Prep Date. (i) UCL(ME) RPDRef		Qual					
TPH-P (GRO)	ND	50		Sprice val 761	VEC FOR(INIT	OCE(INE) KEDINE	Val /OINE (LIMIL)	Quai					
Surr: 1,2-Dichloroethane-d4	9.04	50	10		90 70	130							
Surr: Toluene-d8	10.7		10		107 70	130							
Surr: 4-Bromofluorobenzene	9.27	,	10	!	93 70	130							
Laboratory Control Spike		Type L				3015B/C / SW8260E							
File ID: 15020203.D				atch ID: MS08V			02/02/2015 12:07						
Sample ID: GLCS MS08W0202B	Units : µg/L			SD_08_150202		Prep Date:	02/02/2015 12:07						
Analyte	Result	PQL	SpkVal	SpkRefVal %I	REC LCL(ME) UCL(ME) RPDRef	Val %RPD(Limit)	Qual					
TPH-P (GRO)	346	50			86 70	130							
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	8.76		10		88 70	130							
Surr: 4-Bromofluorobenzene	10.3 9.64		10		103 70 96 70	130 130							
Sample Matrix Spike		Type N	IS Te	est Code: EPA	Method SW8	8015B/C / SW8260B		-					
File ID: 15020213.D			Ва	atch ID: MS08V	W0202B	Analysis Date:	02/02/2015 16:23						
Sample ID: 15012943-02AGS	Units : µg/L		Run ID: MS	SD_08_150202	2A	Prep Date:	02/02/2015 16:23						
Analyte	Result	PQL	SpkVal	SpkRefVal %I	REC LCL(ME) UCL(ME) RPDRef	Val %RPD(Limit)	Qual					
TPH-P (GRO)	1820	250	2000	0 9	91 54	143							
Surr. 1,2-Dichloroethane-d4	44.3		50		89 70	130							
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	49.7		50		99 70	130							
	48		50		96 70	130		\$					
Sample Matrix Spike Duplicate		Type N				015B/C / SW8260B							
File ID: 15020214.D				tch ID: MS08V		•	02/02/2015 18:47						
Sample ID: 15012943-02AGSD	Units : µg/L			SD_08_150202		Prep Date:	02/02/2015 16:47						
Analyte	Result	PQL	SpkVal	SpkRefVal %F	REC LCL(ME) UCL(ME) RPDRef	Val %RPD(Limit)	Qual					
TPH-P (GRO)	1790	250		7 7	B9 54	143 182	1 1.8(23)						
Surr: 1,2-Dichloroethane-d4	44.3		50		89 70	130							
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	50.1 48.2		50 50		00 70 96 70	130 130							
Cuit. 7-Diomonicolopanzana	40.2		50	,	90 /0	130	9						

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 04-Feb-15	(QC Sur	nmary	Repor	t			· · · · · · · · · · · · · · · · · · ·	Work Orde 15012943	
Method Blank File ID: 15020204.D		Туре МВ		st Code: EF				s Date: 0)2/02/2015 12:37	-
Sample ID: MBLK MS08W0202A	Units: µg/L	R		SD_08_1502			Prep D)2/02/2015 12:37	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRefVa	al %RPD(Limit)	Qual
Tertiary Butyl Alcohol (TBA)	ND	10								
Methyl tert-butyl ether (MTBE)	ND	0.5								
Benzene Tertiary Amyl Methyl Ether (TAME)	ND ND	0.5 1								
Toluene	ND	0.5								
Ethylbenzene	ND	0.5								
m,p-Xylene	ND	0.5								
o-Xylene	ND 0.04	0.5	10		90	70	130			
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	9.04 10.7		10		107	70	130			
Surr: 4-Bromofluorobenzene	9.27		10		93	70	130			
Laboratory Control Spike		Type LC	S Te	st Code: El	PA Met	hod 624/8	260			
File ID: 15020202.D				tch ID: MS0)8W02(02A	Analysi	is Date: (02/02/2015 11:30	
Sample ID: LCS MS08W0202A	Units : µg/L	R	un ID: MS	SD 08 1502	202A		Prep D	ate: (02/02/2015 11:30	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRefVa	al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	9.08	0.5	10		91	63	137			
Benzene	9.31	0.5	10		93	70	130			
Toluene	9.56	0.5	10		96	80	120			
Ethylbenzene	9.47	0.5	10		95	80	120			
m,p-Xylene	10.3	0.5	10		103	65 70	139 130			
o-Xylene Surr: 1,2-Dichloroethane-d4	10.4 8.57	0.5	10 10		104 86	70	130			
Surr: Toluene-d8	10.3		10		103	70	130			
Surr: 4-Bromofluorobenzene	10		10		100	70	130			
Sample Matrix Spike		Type MS	Te	st Code: El	PA Met	hod 624/8	260			
File ID: 15020211.D			Ва	itch ID: MS(08W02	02A	Analys	is Date: (02/02/2015 15:35	
Sample ID: 15012943-02AMS	Units : µg/L	R	un ID: MS	SD_08_150	202A		Prep D	ate: (02/02/2015 15:35	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRefVa	al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	48.5	1.3	50	0	97	56	140			
Benzene	47.1	1.3	50	0	94	67	134			
Toluene	47.3	1.3	50	0	95	38 70	130 130			
Ethylbenzene m.p-Xylene	45.6 50	1.3 1.3	50 50	0	91 99.9	65	139			
o-Xvlene	50.6	1.3	50	0	101	69	130			
Surr: 1,2-Dichloroethane-d4	44.2		50		88	70	130			
Surr: Toluene-d8	50.6		50		101	70	130			
Surr: 4-Bromofluorobenzene	48.1		50		96	70	130			
Sample Matrix Spike Duplicate		Type MS		est Code: El						
File ID: 15020212.D				itch ID: MS		02A	-		02/02/2015 15:59	
Sample ID: 15012943-02AMSD	Units : µg/L		tun ID: MS	SD_08_150	202A		Prep D		02/02/2015 15:59	O =1
Analyte	Result	PQL	SpkVal	SpkRefVal					al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	52.1	1.3	50	0		56	140	48.53	7.2(40)	
Benzene	51.3	1.3	50	0	103	67 38	134 130	47.11 47.34	8.5(21) 6.8(20)	
Toluene	50.7 49.7	1.3 1.3	50 50	0	101 99	38 70	130	45.61	8.6(20)	
Ethylbenzene m,p-Xylene	49.7 53.5	1.3	50	0	107	65	139	49.97	6.9(20)	
o-Xylene	54	1.3	50	ō	108	69	130	50.61	6.4(20)	
Surr: 1,2-Dichloroethane-d4	43.3		50		87	70	130			
Surr: Toluene-d8	50.4		50		101	70	130			
Surr: 4-Bromofluorobenzene	47.6		50		95	70	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 04-Feb-15

QC Summary Report

Work Order: 15012943

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Billing	Inform	ation	:
---------	--------	-------	---

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Stratus Environmental
3330 Cameron Park Drive

Suite 550

Cameron Park, CA 95682-8861

Report Attention Phone Number EMail Address
Scott Bittinger (530) 676-2062 x sbittinger@stratusinc.net

EDD Required: Yes

Sampled by : C. Hill

WorkOrder: STR15012943

Report Due By: 5:00 PM On: 05-Feb-15

PO:

Client:

Client's COC #: 16873

Job: Alaska Gas

Cooler Temp

Samples Received 29-Jan-15 Date Printed 29-Jan-15

Date/Time

1050

Page: 1 of 1

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

									Reque	sted Tests			
Alpha	Client		Collection	No. of	Bottles	•	TPH/P_W	VOC_W		T	T		
Sample ID	Sample ID	Matri	x Date	Alpha	Sub	TAT							Sample Remarks
STR15012943-01A	MW-1R	AQ	01/28/15 05:42	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-02A	MW-2	AQ	01/28/15 06:22	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-03A	MW-3R	AQ	01/28/15 05:20	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-04A	MW-4R	AQ	01/28/15 05:05	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-05A	MW-5	AQ	01/28/15 04:48	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-06A	MW-6	AQ	01/28/15 06:04	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-07A	MW-7	AQ	01/28/15 07:00	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-08A	MW-8	AQ	01/28/15 06:41	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-09A	MW-9	AQ	01/28/15 07:17	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					
STR15012943-10A	MVV-10	AQ	01/28/15 07:43	3	0	5	GAS-C	BTEX/TAM E/TBA/M_C					

Co		

Security seals intact. Frozen ice.:

Logged in by:

Signature

Print Name

Company

Alpha Analytical, Inc.

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

	Billing Information:
Company:	2714107
Attn:	SLOTT
Address:	3330 Camera Ph CK
City, State, Zip:	Charever Mr
Phone Number:	5304766864 Fax 630676 1805

Main Laboratory: 255 Glendale Ave, Suite 21 Sparks, NV 89431

Satellite Service Centers:

Northern CA: 9891 Horn Road, Suite C, Rancho Cordova, CA 95827 Southern CA: 1007 E. Dominguez St., Suite O, Carson, CA 90746 Northern NV: 1250 Lamoille Hwy., #310, Elko, NV 89801 Southern NV: 6255 McLeod Ave, Suite 24, Las Vegas, NV 89120

Phone: 775-355-1044 Fax: 775-355-0406 Phone: 916-366-9089

Phone: 714-386-2901

Phone: 775-388-7043

Phone: 702-281-4848

16873
Page# _____ of _____

1500										Turk Section	7.55x	·法 >;·	沙司和													
	Co	regitant/C	light info:				b and Purch	nase Orde	er Info:			Report A	Attention	Project	Manager	:			QC Deliverable Info:							
Company: Address:	-	IVW	107			ob# ob Name:	#12	5 Cu	BUL	Report Attention/Project/Manager: Name: Email Address:								EDD Req	uired? Ye	s / No		EDF Requir	red? Yes / No			
City, State,	Zip:				_	P.O. #:					Phone #:								Global ID: 10600 10804							
Samples	Collecte	d from wh	nich State? (d	ircle one)	AR KS NV OR WA DOD Site				Other	Cell #:									Data Validation Packages: III or IV							
SASTINGS.			ASSESSED FOR		HETE		HISTORY)		Sign Cold Taylor	(tyles)	TEN INC				Analy	sis Requ	ested		Remarks							
											low)															
1											Key Below)															
	}		_								See K	4	1		16	Ju.										
) *s	Field Filtered?	0	بح	7	77	4									
Time	Date	Matrix									taine	율	K	器	Ĩ,	AM	8	l								
Sampled (HHMM)	Sampled (MM/DD)	(See Key Below)	Lab ID Num	ber (For Lab U	se Only)		Sample	Description		TAT	#Cont	Yes No	GRO	100	MTBE	7	1									
0542	178	All	STR 150	12948	-OLA	mu	IR			STI		X	X	人	X	X	L									
DUZZ	1	^			_07A	mn	Z			(3		1	1		1	1									
0520				S 11 11 11 1	024	Mu	3R			+1	3	1	+(-	1	-	-			 							
0505		1	64		NA A		HR			+	3	1 1	+ }			1										
0448		 				mu				+	13	+ 1	+	1		-			-							
	-				- N.A					+/	3		+}-	\rightarrow	 	/	-	-		-						
0604	/		e e e e e e e e e e e e e e e e e e e			Mu				-/-		++1	H	/	/_		-	-	ļ		ļ					
0700	-				014	mu				-	3	+	Ц_	/				<u> </u>								
0641	1				-08h	mw	8			1	3															
750	l				- 09A	MW	9				3			Y	1	('									
0743	128	AR	١.	y .	401-	Mu	10			STD	3	1	- X	4	X	X	X									
				17																						
ADDITION	AL INSTRUC	TIONS:								11		1		'												
								_	4																	
i (field san	pler) attest	to the validit	y and authenticit	y of this samp	ile(s). I am av	ware that tan	pering with o	or Intention	ally mislabelin	g the samp	e location,	date or tin	ne of colle	ction is co	nsidered (raud and	may be g	rounds f	or legal ac	tion. NAC	445.0636	(c) {2}.				
Sampled E	y (2)	Affiliation	1		I Date:		Times		In	-hd (0)							<u> </u>									
12	JA		w Xus	•	1.29	8-15	Time:	40		eived by: (Si		lation):	- (XX						Date:	28-1	5	Time: 10-1	'		
relinquishe	d by: (Signa	ture/Affiliation	1):		Date:		Time:		Rec	eived by: (S	nature/Aff	iation):	0	\mathcal{U}^{\wedge})				A	Date:	,		Time:			
Relinquishe	d by: (Signa	ture/Affiliation	1):		Date:		Time:		Rec	eived by: (Si	onature/Affi	iation):			<u></u>					Date:	29/	15	102	<u>。</u>		
											d		(J						Date.			: ::110.			
NOTE 6				- Aqueous	WA -		OT - Other			- Liter	V - VOA		oil Jar	O - Orb	o T-	Tedlar	B - Br	ass	P - Plast	tic O	T - Other					
received by	riples are dis	carded 60 da	nys after sample re	eceipt unless of	ner arrangen	nents are ma	se. Hazardous	s samples w	ill be returned	to client or d	sposed of a	t client exp	ense. The	report for	the analys	is of the a	bove sam	ples is ap	plicable on	ly to those	samples			-		

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF

Report Title:

1st Quarter 2015 GW Monitoring Lab Results

Report Type:

Monitoring Report - Semi-Annually

Facility Global ID:

T0600101804

Facility Name:

ALASKA GASOLINE

File Name:

15012943 EDF.zip

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:

50.192.223.97

Submittal Date/Time:

2/11/2015 2:01:21 PM

Confirmation Number:

1593757390

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2015 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO_WELL

Report Title:

1st Quarter 2015 Geo Well

Facility Global ID:

T0600101804

Facility Name:

ALASKA GASOLINE

File Name:

GEO WELL.zip

Organization Name:

Stratus Environmental, Inc.

Username:

STRATUS NOCAL

IP Address:

50.192.223.97

Submittal Date/Time:

2/11/2015 2:01:49 PM

Confirmation Number:

8377128362

Copyright © 2015 State of California