reviewed the attached report and declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the

best of my knowledge.

Mr. Pritpaul Sappal

Sincerely,

January 16, 2008 Project A51-01

Ms. Donna Drogos Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Ste. 250 Alameda, California 94502-6577

Re: Results of November 2007 Quarterly Groundwater Monitoring

Alaska Gasoline Company 6211 San Pablo Avenue Oakland, California Case #RO0000127

Dear Ms. Drogos:

HerSchy Environmental, Inc. (HerSchy), on behalf of Mr. Pritpaul Sappal of the Alaska Gasoline Company, has prepared this report summarizing the results of the most recent quarterly monitoring event. Also included is a summary of progress with the soil vapor extraction system (SVES), status of on-going permitting, and status of off-site work. The site is located at 6211 San Pablo Avenue, which is on the northwest corner of San Pablo Avenue and 62nd Street in Oakland, Alameda County, California (Figure 1). Groundwater monitoring was performed on November 8, 2007.

METHODS OF INVESTIGATION

Groundwater Sampling Procedures

Groundwater samples were collected from six of the seven monitoring and extraction wells on November 8, 2007. Extraction well EX-1 was found to have low levels of free product, and therefore was not sampled.

All monitoring wells were measured for static water level and total depth using an electric sounder prior to initiating sampling. Depth to groundwater was recorded to the nearest 0.01 feet on field sampling data sheets. The groundwater elevation in the monitoring wells was calculated by subtracting the measured depth to groundwater from the surveyed well elevation. The depth to groundwater, total depth of the well, and well diameter were used to calculate the purge volume.

At least three casing volumes were purged from each well prior to collecting a groundwater sample using a Waterra electric pump and dedicated hoses. All purge water is stored on-site in either

P.O. Box 229 ◆ Bass Lake, CA 93604-0229 ◆ Phone: 559 • 641-7320 ◆ Fax: 559 • 641-7340

55-gallon drums or the excess water tank attached to the remediation unit. When water levels in storage tanks near capacity, the water is then removed by a licensed hauler and disposed of in a state-approved repository. Physical characteristics (temperature, electrical conductivity, and pH) were measured at the initiation of purging and at each purged well volume. These characteristics were recorded on field sampling data sheets and are presented in Appendix A. One sample from each well was collected and contained in three 40-milliliter vials. Each of the sample containers were filled completely to form a positive meniscus, capped, and checked to ensure no air bubbles were present.

Samples were sealed in a ziplock bag and placed in a cooler chest with either frozen gel packs or ice immediately after sampling. Samples were maintained at, or below, four degrees Celsius until delivered to the laboratory. All groundwater samples are stored, transported, and delivered under proper chain-of-custody documentation and delivered to a California certified laboratory.

SVES Monitoring

The SVES was shutdown on November 19, 2007 due to low productivity in terms of a costeffective remediation effort. Further discussion of SVES activities is included below. Prior to shutdown,
regular monitoring of the SVES included measurements of various physical system properties and was
performed on at least a monthly basis. Samples for laboratory analyses collected from the SVES are
taken from influent and effluent air streams. Air samples are collected utilizing a vacuum box and tedlar
bags attached to the influent and effluent air stream. Negative pressure created by the vacuum box fills
the tedlar bags with process air. Air samples are packed in sealed, unchilled containers for transport
immediately following sampling. Air flow readings are taken with a hotwire style velocity meter inserted
into the influent air stream. All air samples are stored, transported, and delivered under proper chain-ofcustody documentation and delivered to a California certified laboratory.

Monitored parameters include, but are not limited to the following:

- Measurement of influent & effluent concentrations using either a portable organic vapor analyzer (OVA) or laboratory analysis
- · Air flow readings into the oxidizer
- System runtime hours
- System temperature levels
- Water production levels
- Vacuum exerted on vapor extraction wells (as needed)
- · Currently operating vapor extraction wells

A comprehensive table of field monitoring data is included as Appendix B.

Laboratory Analysis

Vapor and groundwater samples were analyzed for gasoline-range total petroleum hydrocarbons (TPHg) by EPA method 8015M, benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA method 8021B. Groundwater samples were also analyzed for the fuel oxygenates and additives MTBE, di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butanol (TBA), 1,2-dichloroethane (1,2-DCA) and ethylene dibromide (EDB) using EPA method 8260b.

RESULTS OF INVESTIGATION

Groundwater Conditions

SoakEase[™] absorbent product socks are currently being utilized in well EX-1 where free product has been a recurrent issue. Product levels in socks have been monitored in concert with SVES monitoring activities and are replaced as needed. Since September 28, 2007, approximately 2 gallons have been removed through the use of the product-specific socks. Product thickness in EX-1, during the November sampling event, was recorded at ¼-inch.

Groundwater was present beneath the site at an average depth of 7.48 feet below the average surveyed well elevation during the November 2007 monitoring event. Groundwater elevation during this quarter averaged 28.12 feet above mean sea level. This represents a decrease in average groundwater elevation of approximately 0.15 feet since the August 2007 monitoring event. It should also be noted here that wells MW-1R and MW-4, which have been excluded from past groundwater data calculations, are included this quarter. Groundwater flow direction was approximately South 65 degrees West at a gradient of 0.012 on November 8, 2007. Groundwater conditions are summarized in Table 1 and are presented graphically in Figure 2. A comprehensive table of historical groundwater data is included as Appendix C.

Table 1 <u>Groundwater Conditions</u>								
Alaska Gasoline, Oakland								
Well Number	Elevation	Depth to GW	GW Elevation					
December 1, 2006								
EX-1	33.28	1/16 inch free product	*****					
MW-IR	36.67	6.56	30.11					
MW-2	36.33	7.58	28.75					
MW-3	35.12	8.51	26.61					
MW-4	34.11	0.48' free product						
MW-5	35.17	6.47	28.7					
MW-6	36.07	7.6	28.47					
Flow Direction	= S. 9 W.; (Gradient = 0.03						

		ole 1 (continued)						
Groundwater Conditions								
Alaska Gasofine, Oakland								
Well Number	Elevation	Depth to GW	GW Elevation					
February 23,		3.70						
EX-1	33.28	NS						
MW-1R	36.67	NA	NA					
MW-2	36.33	6.27	30.06					
MW-3	35.12	6.15	28.97					
MW-4	34.11	0.97' free product						
MW-5	35.17	5.59	29.58					
MW-6	36.07	6.78	29.29					
Flow Direction	i = S. 39 W.;	Gradient = 0.012						
May 10, 2007								
EX-1	33.28	0.30' free product						
MW-1R	36.67	6.39*						
MW-2	36.33	6.83	29.50					
MW-3	35.12	6.54	28.58					
MW-4	34.11	0.47' free product						
MW-5	35.17	5.9	29.27					
MW-6	36.07	6,72	29.35					
Flow Direction		Gradient = 0.012						
August 16, 200	97							
EX-1	33.28	0.08' free product						
MW-1R	36.67	9.33*						
MW-2	36.33	7.26	29.07					
MW-3	35.12	7.62	27.50					
MW-4	34.11	NM						
MW-5	35.17	6.79	28.38					
MW-6	36.07	7.94	28.13					
		Gradient = 0.022	20.15					
November 8, 2		0.011.6 3 :						
EX-1	33.28	0.01' free product						
MW-IR	36.81	8.83	27.98					
MW-2	36.33	7.81	28.52					
MW-3	35.12	7.52	27.60					
MW-4	34.11	6.60	27.51					
MW-5	35.17	6.43	28.74					
MW-6	36.07	7.71	28.36					
Flow Direction	= S 65 W; G	radient = 0.012						

Elevations in feet above mean sea level (MSL) * well not surveyed at time of sampling

NA - Not applicable

** See Groundwater Data Section for details

Based on the data gathered from the site monitoring wells, the groundwater flow direction is toward San Francisco Bay, located approximately 0.75 miles southwest of the site. Regional groundwater flow appears to parallel the surface grade in the area.

Groundwater Quality

Groundwater samples were submitted to the laboratory and analyzed for the above-mentioned fuel constituents. Groundwater samples were not collected from well EX-1 due to the presence of free product as noted in Table 1 above. Table 2 summarizes analytical data for the current quarter along with data from the previous six quarters. Certified analytical reports and chain-of-custody documentation for the current quarter are presented in Appendix D.

Table 2

<u>Laboratory Analytical Results for Groundwater</u>

Alaska Gasoline

			78144511	a Gasonne				
	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	. TBA
MW-1R					•			
August 18, 2006	5,800	190	1,000	230	1,000	490	36	2,900
December 1, 2006	410	1.7	6.3	1.2	47	100	4.7	100
February 23, 2007	ND	ND	0.51	ND	1.4	2.6	ND	ND
May 10, 2007	ND	ND	ND	ND	2.0	5.9	ND	ND
August 16, 2007	ND	ND	ND	ND	ND	ND		•
November 8, 2007	1,300	11	82	54	270	1.4	ND	ND
MW-2	-							
August 18, 2006	360	11	ND	13	9.7	160	4.6	600
December 1, 2006	11,000	1,000	ND	990	910	2,100	87	2,000
February 23, 2007	3,200	210	ND	270	85	900	33	1,400
May 10, 2007	590	31	ND	39	22	200	5.9	250
August 16, 2007	650	49	ND	71	49	100	3.5	82
November 8, 2007	110	1.6	ND	1.9	1.5	23	0.64	48
MW-3								
August 18, 2006	310,000	1,800	ND	ND	ND	440,000	23,000	79,000
December 1, 2006	270,000	ND	ND	ND	ND	290,000	11,000	90,000
February 23, 2007	220,000	ND	ND	ND	ND	260,000	15,000	33,000
May 10, 2007	140,000	ND	ND	ND	ND	180,000	7,100	80,000
August 16, 2007	69,000*	ND	ND	ND	ND	85,000	3,400	180,000
November 8, 2007	34,000*	ND	ND	ND	ND	38,000	1,400	140,000
MW-4								
August 18, 2006	N A	NA	NA	NA	NA	NA	NA	NA
December 1, 2006	NA	NA	NA	NA	NA	NA	NA	NA
February 23, 2007	NA	NA	NA	NA	NA	NA	NA	NA
May 10, 2007	NA	NA	NA.	NA	NA	NA	NA	NA
September 6, 2007	49,000	710	840	ND	10,000	3,600	510	32,000
November 8, 2007	64,000	1,300	2,600	1,000	8,500	1,500	360	14,000
MW-5	. ND	ND	ND	ND	NID	1		
August 18, 2006		ND			ND	1	ND	ND
December 1, 2006	ND	0.69	ND	ND	0.52	0.97	ND	ND
February 23, 2007	73	ND	ND	ND	ND	1.7	ND	ND
May 10, 2007	ND	ND	ND	ND	ND	1.5	ND	ND
August 16, 2007	ND	ND	ND	ND	ND	1.3	ND	ND
November 8, 2007	ND	ND	ND	ND	ND	1.5	ND_	ND

Table 2 (continued)
Laboratory Analytical Results for Groundwater
Alaska Casaline

			Alask	a Gasoniic		<u> </u>		
·	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA
MW-6								
August 18, 2006	270	27	ND	3	4	240	11	2,400
December 1, 2006	1,700	ND	ND	ND	ND	1,700	92	800
February 23, 2007	ND	ND	ND	ND	ND	15	ND	ND
May 10, 2007	ND	3.0	ND	ND	1.9	26	2	48
August 16, 2007	ND	ND	ND	ND	ND	1.4	ND	ND
November 8, 2007	ND	ND	ND	ND	ND	5.3	ND	ND
EX-1								
February 19-20, 2004	120,000	9,500	4,300	840	3,900	150,000	NA	NA

⁻ All reported values in parts per billion (ppb)

No DIPE, ETBE, EDB, or 1,2-DCA was reported in groundwater samples during the November 2007 sampling event. Ethanol and methanol were not reported in any of the groundwater samples during the May 2004 monitoring event and are no longer being included in the laboratory analyses. Concentration trend graphs are included in Appendix E and are shown for several constituents in Plates 1 & 2.

SOIL VAPOR EXTRACTION SYSTEM

On November 19, 2007, the soil vapor extraction system (SVES) was shut-down due to a substantial drop in cost-effectiveness; the unit simply cost too much to operate without providing sufficient results. HerSchy had been continually evaluating the operating efficiency of the SVES unit throughout its operation, and recent findings suggest that there is a diminishing ability to mobilize contaminants remaining in soil. These findings are based on influent vapor levels that are exhibiting asymptotic trends near zero while hydrocarbon concentrations in groundwater samples remain at relatively high levels. After consideration of both the operational costs and the declining effectiveness, of the current configuration of the remediation unit, the decision was made to de-activate the SVES. Your office was notified shortly after in a letter dated November 21, 2007.

The SVES, in its current configuration, operated between August 31, 2006 and November 19, 2007. The SVES originally consisted of a thermal oxidizer equipped with a blower capable of producing up to 250 cubic feet per minute air flow and vacuum of up to 10 inches of mercury. The system was modified to operate in catalytic mode due to relatively low influent hydrocarbon concentrations. SVES activities halted from January 31, 2007 to February 21, 2007 while notifying the Bay Area Air Quality Management District (BAAQMD) of system modifications and startup. SVES activities also halted from April 30, 2007 to May 25, 2007 due to system retrofitting associated with a dual phase extraction test. Aside from those time periods mentioned, system down-time has been short and infrequent, usually

⁻ ND = below laboratory detection limits - NS = not sampled - NA = not analyzed

related to water production issues. Table 3 presents a summary of the SVES destruction and removal efficiencies based on a combination of periodic field monitoring of influent and effluent airstreams, associated flow rates, and laboratory sample results.

					Ta	ble 3				
	А	laska Gas	SVES D	estructi	on and	Removal E	fficiency	(Catalytic	Mode)	
	Hour	Hours of	Influent	Effluent	Air	Destruction	Effluent	VOCs	Total VOCs	Percent
Date	Meter	Operation	(ppm)	(ppm)	Flow	Efficiency	Release	Removed	Removed	Operating
					(cfm)	(%)	(lbs/day)	(lbs/day)	(lbs)	
2/21/07	3420.4	0	6.1	0	30.8	100.00	0.000	0.069112	0.000000	0
2/21/07	3421.4	1	0.7	0		100.00	0.000	0.000000	0.000000	100
2/22/07	3445.8	24.4	0.5	0	21.3	100.00	0.000	0.003918	0.003983	102
2/27/07	3563.5	117.7	1.6	0.15	40.5	90.63	0.002	0.023837	0.116899	98 .
3/21/07	4092.9	529.4	0.3	0	44.2	100.00	0.000	0.004878	0.107594	92
3/29/07	4283.8	190.9	0.4	0	35.2	100	0.000	0.005179	0.041197	99
4/30/07	5046.6	762.8	0.4	0	35.2	100	0.000	0.005179	0.164617	103
	***System	shutdown 4/	30/07 for D	PE Test						
	***System	restarted 5/2	5/07, Syst	em hours fo	or 5/25 ba	ack calculated t	from 5/29			
5/25/07	5056.2									
5/29/07	5152.2	96	220	0.5	55	99.77	0.010	4.450990	17.803963	100
6/08/07	5392.4	240.2	132	0	79	100.00	0.000	3.835945	38.391413	111
6/18/07	5635.6	243.2	210	0.62	73	99.70	0.017	5.639148	57.143363	101
7/13/07*	6230.9	43.6	80.5	0	88.5	100.00	0.000	2.620658	4.760863	91
7/19/07	6372.3	141.4	91	0	90.5	100.00	0.000	3.029432	17.848407	98
8/08/07	6861.9	489.6	35	0	120	100.00	0.000	1.544972	31.517428	107
8/13/07	6998.3	136.4	30.6	0	121	100.00	0.000	1.362003	7.740718	114
9/06/07	7552.0	553.7	33	0	130	100.00	0.000	1.578079	36.40759	100
9/28/07	8083.1	531.1	0	0	93	n/a	0.000	0.0000	0.0000000	101
10/16/07	8515.0	431.9	0	0	80	100.00	0.000	0.0000	0.0000000	100
10/24/07	8707.2	192.2	0	0	89	100.00	0.000	0.0000	0.0000000	100
10/29/07	8825.1	117.9	0	0	105	100.00	0.000	0.0000	0.0000000	98
11/8/07	9062.8	237.7	O	0	114	100.00	0.000	0.0000	0.0000000	110
11/19/07**	9329.3	266.5	7	0	75	100.00	0.000	0.193122	2.144453	101

System down on 6/25/07, restarted 7/11/07

ppmV – parts per million by Volume

lbs - pounds

System shutdown until further notice

cfm -- cubic feet per minute

According to a combination of field data and laboratory analytical data, since the oxidizer was restarted in catalytic mode, approximately 214.19 lbs or 34.66 gallons of product have been removed by the system. Approximately 940.65 lbs of hydrocarbons or 152 gallons of product have been removed since soil vapor extraction began in August 2006. Destruction efficiency has been roughly 99.53 % with no more than 0.170 pounds of hydrocarbon product emitted per day to the atmosphere. A comprehensive table of SVES field data is included as Appendix D.

CONCLUSIONS AND RECOMMENDATIONS

The only reported fuel constituent in wells MW-5 and MW-6 this quarter was MTBE at 1.5 ppb and 5.3 ppb, respectively. Both reported values were below the San Francisco regional water quality control board (SFRWQCB) environmental screening levels (ESLs) for groundwater that is a potential source of drinking water.

Wells MW-1R and MW-2 through MW-4 were reported as impacted with fuel constituents to varying degrees. Aside from TPHg in MW-4, the highest reported dissolved concentrations this quarter were from well MW-3, which has historically contained the highest contaminant concentration, apart from wells with free product. TPHg was reported in wells MW-1R and MW-2 through MW-4, with the highest reported concentration in MW-4 at 64,000 ppb. MTBE was reported in all sampled wells this quarter, with the highest reported concentration in well MW-3 at 38,000 ppb. Concentrations of TAME and TBA were reported in wells MW-2 through MW- 4 this quarter, with the highest concentrations existing in well MW-3. TAME and TBA were reported in MW-3 at 1,400 ppb and 140,000 ppb, respectively. Historically, concentrations in wells MW-2 and MW-6 have tended to correlate proportionately with groundwater rise and fall, while concentration trends in other site wells have not.

Relatively high concentrations of petroleum hydrocarbons remain in soil and groundwater beneath the subject site. This is evident by the fact that extraction well EX-1 continues to contain free product. Isoconcentration maps for TPHg and MTBE are attached as Figures 3 and 4, respectively.

After completion of three previously approved direct push borings, HerSchy submitted a request to Alameda County Health Care Services (ACHCS) staff for a modification of the remaining previously approved locations along with a proposal for additional sampling points based on preliminary results. At this time, we are waiting to proceed with the modified and added locations until approval from the Alameda County Health Care Services (ACHCS). Two previously approved and permitted permanent monitoring wells on Marshall Street remain uninstalled at this time due to continued insurance and/or surety bond issues with the City of Oakland. It is our understanding at this time, that the property owner, Mr. Sappal, is currently awaiting consultation with ACHCS staff to discuss his difficulties at obtaining insurance and/or surety bonds for the proposed permanent wells on Marshall Street.

HerSchy continues its attempts at moving forward with establishing access agreements with the City of Oakland Housing Authority (HA) and is currently awaiting a formal response to our access agreement request or issuance of said agreement. At this time, HerSchy has temporarily halted pursuing a request for access to Mr. Wang's property to the southwest of the subject property. This is due to several factors which include unreturned written access agreement requests and refusal of verbal requests as well as modification of the property use. During the time since first contact was made regarding this property up to its present condition, the property has changed from an undeveloped and vacant lot to being

occupied by two, two-story apartment buildings complete with landscaping, fencing, and paving. In light of the difficulties obtaining the agreement, the new structures on site, and HerSchy's proposal for modified boring locations, pursuance of this agreement has been placed on hold until approval or consultation with ACHCS staff.

In a letter dated June 12, 2007 from the ACHCS office, modifications for a dual phase extraction (DPE) test were amended and approved. We are currently waiting for groundwater levels to rise to seasonal highs to conduct the DPE test in order to reduce the risk of extending the smear zone beyond its current limits. The DPE test will include monitoring observation wells for induced vacuum to assess radius-of-influence of dual phase extraction. In addition to EX-1, monitoring wells MW-3 and MW-4 will also be included during the extraction test as they continue to be reported with high levels of dissolved contaminants. Based on historical groundwater data, seasonal highs for groundwater elevations typically occur during the first quarter on or near the month of February.

As mentioned previously, the soil vapor extraction system (SVES) was shutdown November 19, 2007 due to several factors. A review of recent operations suggested that either the ability to mobilize contaminants had diminished or the affected soil was depleted of available hydrocarbon contaminants within the effective radii of the SVES. These findings are based on influent vapor levels that are exhibiting asymptotic trends near zero while hydrocarbon concentrations in groundwater samples remain at relatively high levels. After consideration of the declining effectiveness of the current configuration of the remediation unit, the decision was made to de-activate the SVES. In the Results of August 2007 Quarterly MonitoringReport, HerSchy proposed intermittent operation, or cycling, of the existing oxidizer as a means to increase cost-effectiveness. HerSchy continues to await a response to this proposal.

Alternate or modified remediation options have been under review by HerSchy staff and include limited excavation, installation of a "trench-and-gate" system, cycling of the existing SVES operation, dual phase extraction, additional in-well or in-situ vapor stripping, and others. HerSchy is currently employing SoakEaseTM product socks in well EX-1 to address the presence of free product. To date, two product socks have been utilized and subsequently removed after saturation. A third sock is currently installed in well EX-1. Replacement frequency continues to be monitored to ensure that product sock use continues to be a cost effective remedial option.

HerSchy continues to request a meeting to discuss the more aggressive remedial options with ACHCS staff to determine the most prudent and efficient method permissible.

SCHEDULE AND CLOSING

The next monitoring and sampling event is scheduled for February 2008. We appreciate the opportunity to work with you on this matter. Please contact Reijo Ratilainen (559) 760-0037 or Scott Jackson (559) 641-7320 with any questions or for additional information.

Sincerely,

HerSchy Environmental, Inc.

Reijo Ratilainen Project Geologist Scott Jackson, P.G. #794 Senior Project Geologist Scott A. Jackson No. 7948

Figures

1 - Site Plan

2 - Groundwater Elevation Diagram
3 - TPHg Isoconcentration Diagram
4 - MTBE Isoconcentration Diagram
5 - TBA Isoconcentration Diagram

Appendices

A - Groundwater Field Sampling Data Sheets

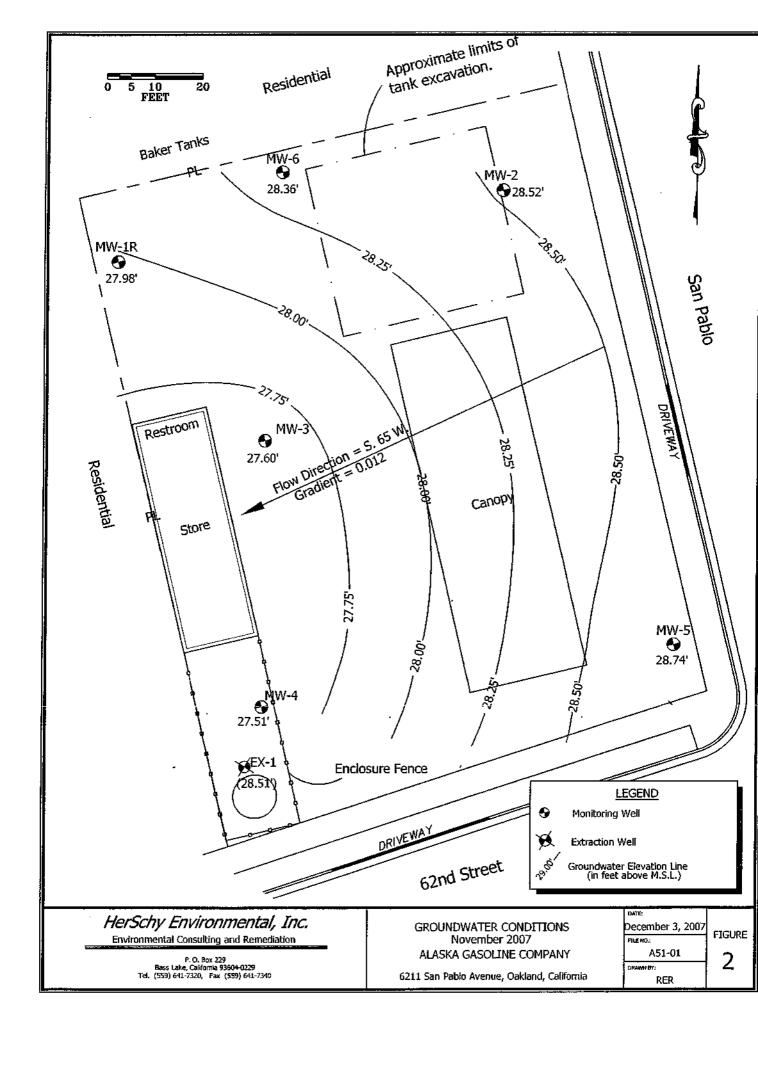
B - SVES Field Monitoring Data C - Historical Groundwater Data

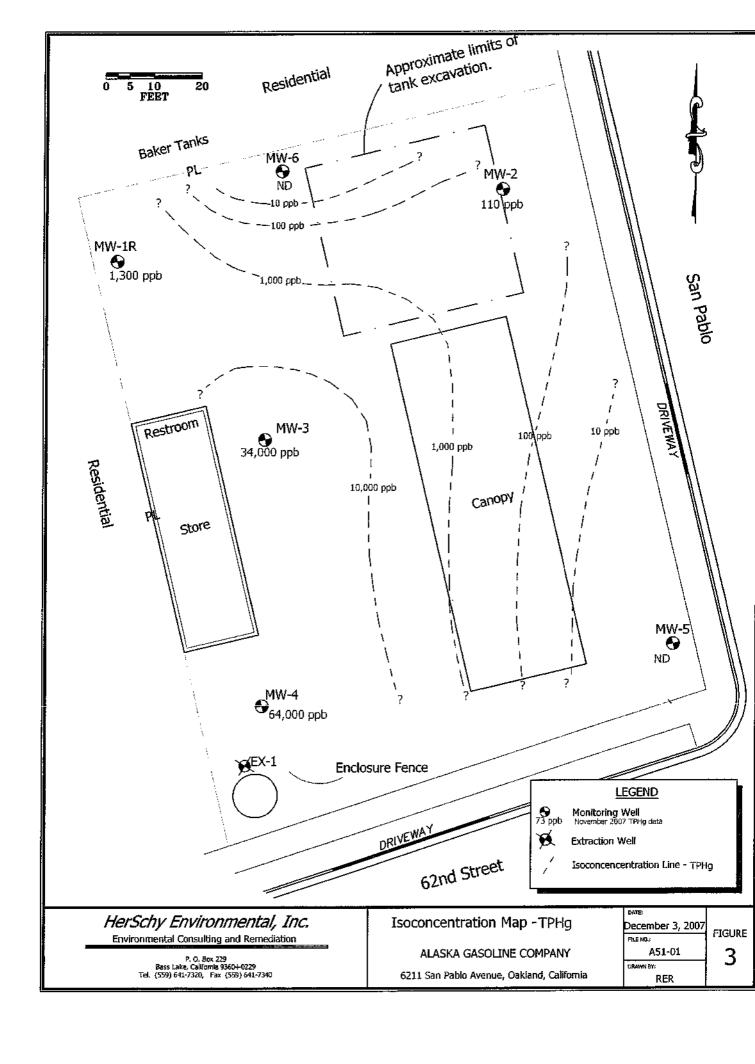
D - Certified Analytical Reports for Groundwater Sampling

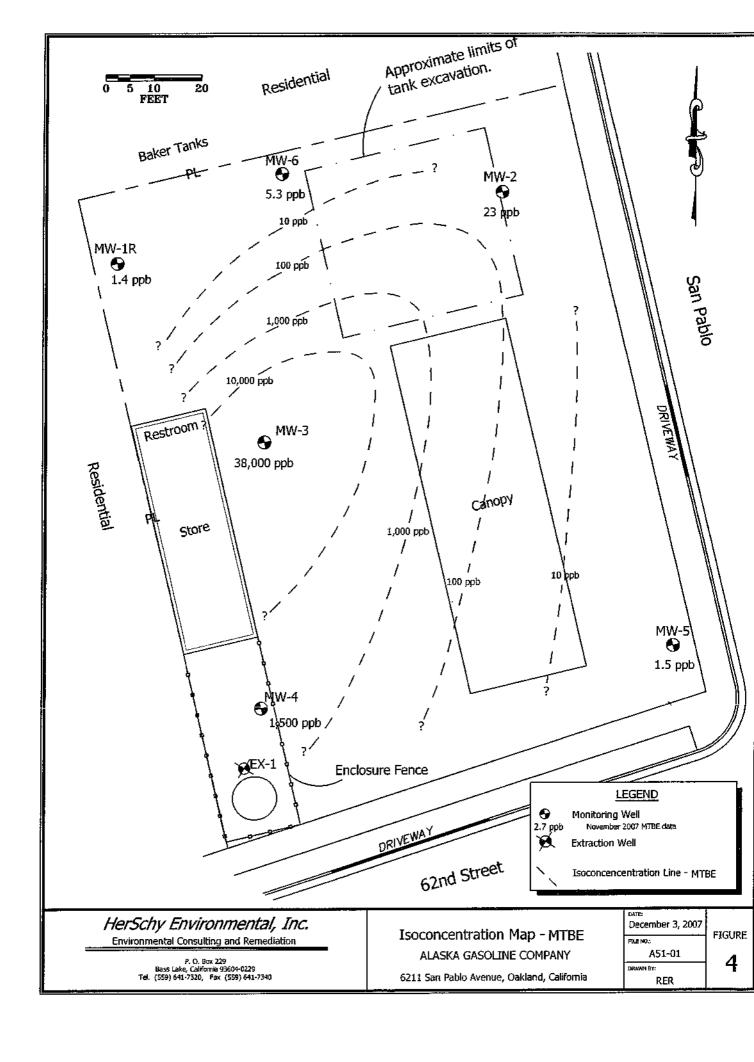
E - Concentration Trend Graphs

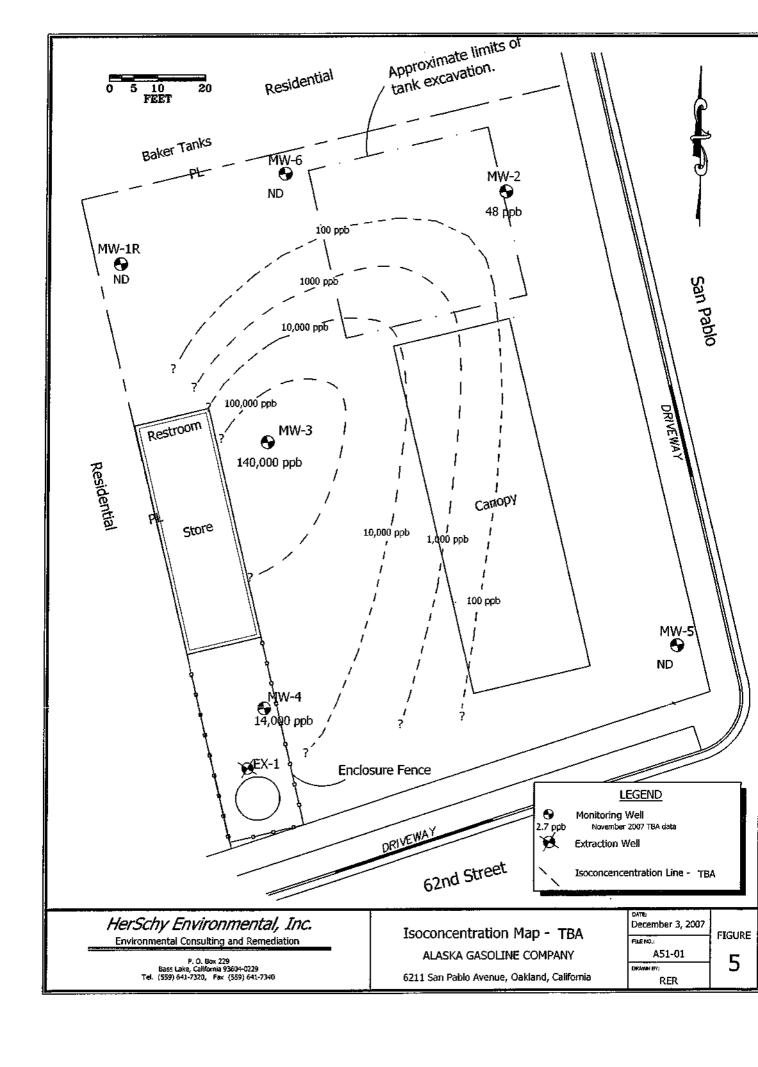
cc: Mr. Pritpaul Sappal

Mr. Hernan Gomez, Oakland Fire Services Agency Ms. Alyce Sandbach, Deputy District Attorney


HerSchy Environmental, Inc.
Environmental Consulting and Remediation


P. O. Box 229 Bass Lafke, California 93604-0229 Tel. (559) 641-7320, Fax (559) 641-7340 SITE LOCATION MAP


ALASKA GASOLINE COMPANY


6211 San Pablo Avenue, Oakland, California

DATE	
August 2005	FTCURE
FILE NO.:	FIGURE
A51.01	1
DRAWN BY:	1 +
WEA	

APPENDIX A

Groundwater Field Sampling Data Sheets

Client Name	: ALASKA	GAS	Location:	_ OAKG	AND
Purged By:	WE	ST	Sampled I	oy: WES	T
Sample ID:	EX-	Type: Ground	water 🗴 Sur	face Water	Other
Casing Diame	eter (inches): 2	5 3	_ 4 <u>X</u> _ 5	6 Ot	her
Casing Elevat	ion (feet/MSL):		Volume in	Casing (gal.): _	13,2
Depth of Well	(feet): <u>2</u>	8.68	Calculate Purge V	olume (gal.):	39.6
Depth to Wate	er (feet): <u>5</u> .	10 A	Actual Purge Volu	me (gal.):	40+
Date Purged:	11-08	-07	Date Sampled:	11-08	-07 1001
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY
0916		7.58	£15	63.8	CLOUDY
0923	/3,2	7.63	786	67.5	CLOUDY
0930	26.4	7.47	806	68.7	BLACK
0938		7.48		68.7	CLOUDY
	1/4"	PRODUCT 1	_	-	
Sheen Y/N7:	M. H	- .	Odor: PE	TRULEUM	<i>1</i> .
Purging Equipme	ent:		ONSOON PO	mp	
Sampling Equipm	nent:		BAILER		
Remarks: <u>NO</u>		TROLEUM LSO FEEL	SMELLS LIKE OIL		PIPE
PER RES.	2.0		1 DEEP. WI	IEN SOYNAII	
Sampler's Signatu	re: John	n S. Kles	4	,	
/Water Spenie Sheet and	/		•		

Client Name	ALASKA	GAS	Location	OAKC	400
Purged By:	WE	ST	Sampled	by: <u> </u>	57
Sample ID:	MW-IR	Туре: Ground	dwater X Sur	face Water	Other
Casing Diame	eter (inches): 2	<u></u>	45	6 C	ther
Casing Elevat	ion (feet/MSL):		Volume in	Casing (gal.):	2.2
Depth of Well	(feet): <u>22</u>	.65	Calculate Purge V	olume (gal.): _	6.7
Depth to Wate	er (f ee t): & _,	83	Actual Purge Volu	me (gal.):	6.7+
Date Purged:	11-08-0	7	Date Sampled:	11-05	07 0645
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY
0627		7.08	419	66.3	CHAR
0631	2.2	694	446	69.0	Cloudy
0636	4.4	7.00	504	68.9	_ C1040
0642	6.7	7,22	542	68.6	Clouby
Sheen Y/N?:	A	<u> </u>	Odor:	NOWE	
Purging Equipme	enf:	. [-	BAILER		
Sampling Equipm	nent:		BAILER		
Remarks:	· · · · · · · · · · · · · · · · · · ·				·
		· ^			
Sampler's Signatu	re: John	n S. We	14		,
/Water Sample Sheet.wpd			•		

Client Name	: ALASKA	GA-S	Location	OAK	400	
Purged By:	We	57	Sampled	by: <i>LU&</i>	<u> 57</u>	
Sample ID:	mw-2	Type: Ground	dwater 🗴 🔝 Sui	face Water	Other	
Casing Diame	eter (inches): 2	<u> </u>	4 5	6 6	Other	
Casing Elevat	ion (feet/MSL):	36,33	Volume in	Casing (gal.):	2.1	- .
Depth of Well	(feet):	0.90	Calculate Purge V	olume (gal.): _	6.4	
	er (feet):		Actual Purge Volu	me (gal.):	6,4 _t	•
Date Purged:	11-08-0	7	Date Sampled:	11-0	08-07 67	51
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY	
0739		7.16	632	67.4	CLOUDY	
6742	2,1	7,22	654	69.4	CLOUD	>
0745	4.2	7.24	686	70.0	Clour	
6748	6,4	7,19	660	69.5	Cloudy	
Sheen Y/N?:		<u>/</u>	Odor: N	ONE	·	
Purging Equipme	nt:		ATERRA		·	
Sampling Equipm			UNTERMA			
Remarks:					•	
	1):1	0 11/	11-			
Sampler's Signatur	re: SOM	n S. HUEL	H		<u> </u>	
/Water Sample Sheet.wpd			•			

Client Name:	ALASKIA	G45	Location:	OAK	CAND
Purged By:	WE	ST	Sampled l	y: <i>W≅</i>	5-7
Sample ID:	$m\omega$ -3	Type: Groun	dwater 🗴 Sur	face Water	Other
Casing Diame	eter (inches): 2	<u></u>	4 5	6 (Other
Casing Elevati	ion (feet/MSL):	33.12	Volume in	Casing (gal.):	2.2
•	(feet): 2				·
	er (fæt):		Actual Purge Volu		<u>.</u> .
Date Purged:	11-08-0	7	Date Sampled:	11-0	8-07 0715
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY
0701		6.83	638	65.8	Clouby
0705	2,2	6.68	636	67.8	Clairy
0708	44	6,95	653	69.0	CLOUDY
0712	6.7	7,03	668	68.8	CLOUDY
Sheen Y/N?: _5	sually Heen -p	 -	Odor:	PETRULEI	1 m
Purging Equipme	unt:	WAT	ERRA		
Sampling Equipm	ent:	W	ATERDA		
Remarks:					•
Sampler's Signatu	re: John	n S. We	14		
Vater Sample Sheet wpd					

Client Name: ALASK	'A GAS	Location:	OAK	AND
Purged By:	UEST	Sampled I	y: <u>WE.</u>	57
Sample ID: <u>MW-4</u>	Туре: Groun	dwater <u>×</u> Sur	face Water	Other
Casing Diameter (inches)	r 2 <u> </u>	45	6 C	ther
Casing Elevation (feet/M	SL):	Volume in	Casing (gal.):	2,1
Depth of Well (feet):	19.70	Calculate Purge V	olume (gal.): _	6.4
Depth to Water (feet):	6.60	Actual Purge Volu	me (gal.):	6.4+
Date Purged://-	-08-07	Date Sampled:	11-0	08-07 0450
TIME VOLUM	Œ pH	E. C.	TEMP.	TURBIDITY
0828	7.82	928	65.6	CLOUDY
0834 2.1	7.84	883	67,3	CLOUDY
0839 4.2	7.16	892	68.0	Cloury
0844 6.4	7.75	893	68.0	Claroy
Sheen Y/N?:		Odor:	PETRULEU	Mı
Purging Equipment:	•	BAILE		
Sampling Equipment:		12 4 4		
Remarks:				•
	<u> </u>			
Sampler's Signature:	Am S. We	14-		,
/Water Sample Sheet.wpd		•		

Client Nam	e: ALASKA	GAS	Locatio	on: OAK	44100
Purged By:	We	3T	Sample	d by: <i>WE</i>	57
Sample ID:	MW-5	Туре: Стои	ndwater <u>X</u> S	urface Water	Other
				6 (
Casing Eleva	tion (feet/MSL):	35.17	Volume	in Casing (gal.):	3,0
Depth of Wel	ll (feet):2	4.90	Calculate Purge	Volume (gal.): _	9,6
Depth to Wat	er (feet):	2.43	Actual Purge Vo	hume (gal.):	9+
Date Purged:	11-08-0	7	Date Sample	t: <u>11-08-</u> 0	0815
TIME	VOLUME	pН	E . C .	TEMP.	TURBIDITY
6802		7.24	765	67.4	Clour
0805	3	7.21	733	68,2	Cloupy
0808	6	7,26	731	68,7	Cloudy
0811	9	7,29	725	68.6	CLOUDY
Sheen Y/N?:	N	, 	Odor:	NONE	,
Purging Equipm	ent:		WAT	ERPA	
Sampling Equip	nent:		WA	TERRO	······································
Remarks:	· · · · · · · · · · · · · · · · · · ·				
Sampler's Signatu	are: John	n S. Wi	WA-		,
/Water Somple Sheat word			•		

Client Name	: ALASKA	GAS	Locatio	n: <u>OA</u> K	LAND
Purged By:	W	>5T	Sampleo	1 by: <i>W≥</i>	57
Sample ID:	mw-6	Type: Groun	ndwater × St	urface Water	Other
Casing Diam	eter (inches): 2	<u> </u>	4 5	6 (Other
Casing Eleva	tion (feet/MSL):	36.07	Volume i	n Casing (gal.):	2.5
Depth of Wel	l (feet): 2	3.10	Calculate Purge	Volume (gal.): _	7,5
Depth to Wat	er (feet):	7.71	Actual Purge Vol	lume (gal.):	7,5+
Date Purged:	_//-08-	07	Date Sampled	: 11-0	18-07 0733
TIME	VOLUME	ρΉ	E. C.	TEMP.	TURBIDITY
0722		7.45	567	67.4	CLOUDY
0724	2.5	7.46	593	67.1	CLOUDY
0721	5	7.31	599	67.1	Cloudy
0730	7.5	7,31	599	669	CLOUDY
Sheen Y/N?:	L	<u> </u>	Odor:	NONE	·
Purging Equipme	ent:	<u> </u>	IATERRO		
Sampling Equipa	nent:		WATERLE	1	
Remarks:	- <u> </u>				-
Sampler's Signatu	re: John	n S. Wes	14		

APPENDIX B SVES Field Monitoring Data

Alaska Gas Data Sheet

Site Address: 6211 San Pablo Ave., Oakland, CA 94608

Date	Total Hours	Hours	Flow - pitot (#3) (scfm)	Flow - Manifold (scfm)	Pressure ("-water)	Recirc Valve (# turns open)	SVE Wells operating	Air Sparge system operation	Influent (ppm)	Effluent (ppm)	Water in Tank (approx. gal's)	Temp. Cont.(F)	Dilution Cont. (F)	High Limit (F)	Propa (% fu
*** Note: syst	em down fron	n 1/30/2007 (evening until catalytic s	system start on 2/	21/2007										
2/21/2007	3420.4	n/m	31	30.8	n/m	full open	VE-1,2,3,4,5,6,7,12	AS-1,2,4,5	6.1	0.0	220				
	3421.4	n/m	n/m	n/m	n/m	full open	VE-1,2,3,4,5,6,7,12	AS-1,2,4,5	0.7	0.0	220	1262	1002	1001	85
2/22/2007	3445.8	25.3	22	21.3	n/m	full open	VE-1,2,3,4,5,6,7,12	AS-1,2,4,5	0.5	0.0	220	1391	1125	1122	78
2/23/2007	3472.7	52.2	26	n/m	n/m	full open	VE-1,2,3,4,5,6,7,12	off	n/m	n/m	220	1341	1117	1113	66
** system ef	ficiency tests	****													
	(1) with all v	vells open &	recirc valve full open												
			n/m	29.2	-31										
	(2) with VE-	1,2,3,4,5,6,7	,12 open & recirc full o	pen											
			n/m	29.3	-31										
	(3) with VE-	1,2,3,4,5,6,7	,12 open & recirc close	ed 6 turns from fu	il open										
			49	52 .5	-60										
	(4) with VE-	1,2,3 open 8	i recirc closed 5 turns (from full open (atl	empt to dewaler :	short screen into	ervals)								
	*prior to cla	90													
			41	42.5	-43										
	*after close														
			19	~10	-56	(H20 in Influ	ent line)								
	(5) with VE	-1,2 open an	d rectro valve closed 6	turns from full op	en										
			15	over	-86										
	*after 8 min	ules	n/m	n/m	-90	-> water be	ing produced slowly (~0	.5 cm/5 minutes in visible influent	t water pipe)						
****\$yslem re	sturned to pre	-efficiency te	st status - VE-1,2,3,4,5	5,6,7,12 open & r	ecira full apen										
2/27/2007	3563.4	143	39	40.5	-46	full open	VE-1,2,3,4,5,6,7,12	off	n/m *	n/m *	220	992	878	878	72
3/21/2007	4092.9	672.4	••	44.2	~43	6 turns back from full open	Ali open	off	0,3	D. 1	220	953	850	849	72
****System e	fficiency tests	****													
	(1) w/wells	1,2,3,4,5,6	open only & recirc @ 6	turns closed from	full closed										
			0 to -1 (?)	16.2	~55				0.0	n/m		1088			

Alaska Gas Data Sheet (continued) Site Address: 6211 San Pablo Ave., Oakland, CA 94808

Date	Total Hours	Hours	Flow - pitot (#3) (scfm)	Flow - Manifold (scfm)	Pressure ("-water)	Recirc Valve (# turns open)	SVE Wells operating	Air Sparge system operation	Influent (ppm)	Efficient (ppm)	Water in Tank (approx. gal's)	Temp. Cont.(F)	Dilution Cont. (F)	High Limit (F)	Propar (% ful
	-after 5 minu	ules, recirc d	osed 1/2 turn more after	er readings taken							yars/		<u> </u>		!
			13	***	~80							1098		_	_
	-after 15 mir	nules													
			25	-	~90							1048	-	-	_
						ively loose soil :	as pressure does not hol	d when isolated							
	(2) w.wells 1	1,2,3,4,5,6,11	open & recirc closed (6.25 lums from fu	li open										
			45	-	~80							950	-	-	-
3/26/2007	4211,9	791.5	35	_	~80	-5.5	VE-1,2,3,4,5,6,11		~	_	990	1086	947	946	
	* recirculatio	on valve close	ed back to 5.5 turns do	sed from full oper	ה						330	1000	547	940	_
			30	29.6	~60										
3/29/2007	4283.8	863.3	-15	21.8	~56	~5.5	VE-1,2,3,4,5,6,11	AS-1,4,5	0.0	n/m	0	1145	987	986	79
	* 1,100 gallo	ons of water i	emoved in the am, pric	or to site readings	•										,-
	* Air Sparge	system turn	ed on, lest AS-1 w/VE-	-1, 2,3 ,4,5,6,7,13 c	pen (AS-1 @ 5 s	cfm)									
	-		29	31.4	~85	-6.5			0.0	n/m	-	1036	921	921	
	***** On sile	leave, AS-1,	3,4 set on 45 min on cy	/cle from 7am to 8	1:30pm										
	-	-	37	35.2	~84	-6.5	VE-1,2,3,4,5,6,7,13		0.4	n/m	-	1015	899	899	7 9
4/18/2007	4763.2	1342.8	31		_	-	VE-1,2,3,4,5,6,7,13	A8-1,4,5	who	_	1485	1165	999		_
	4736.7		20	-	_	full open	all open	off	_	-		1171	981	979	72
4/19/2007	4786.1	1365.6	30	-	_	-	ali open	off	_	_	1485	1088	945	_	81
4/30/2007	5046.6	1626.2	33	-	~	full open	all open	off	_	-	0	1147	994	993	
	* System sh	utdown to pr	epare for dual phase e	xtraction test											
			ct DPE test on EX-1, d												
5/25/2007	*system hoo	oked back up	to Vapor Extraction W	fells, also to includ	le MW-4 and EX-	1									
5/29/2007	5152.2	1731.8	55	_		~6.0	all open	off	220	0.5	0	960	885	886	
	_	_	55	83		~6	alf open	off	116	0.2	o	956	895	894	

Alaska Gas Data Sheet (continued) Site Address: 6211 San Pablo Ave., Oakland, CA 94608

Date	Total Hours	Hours	Flow - pitot (#3) (scfm)	Flow - Manifold (scfm)	Pressure ("-water)	Recirc Valve (# turns open)	SVE Wells operating	Air Sparge system operation	Influent (ppm)	Effluent (ppm)	Water in Tank (approx. gal's)	Temp. Cont.(F)	Dilution Cont. (F)	High Limit (F)	Propa (% fu
	TEST								<u></u>	•		·		l <u></u>	
	w/all wells o	pen - flow at	53,5 cfm at manifold												
	w/wells 10,	11,12,13 close	ed & recirc full open												
	on leave fro	ım site PID in	iluent readings holding	steady @ −250 ¡	mqc				450		-	1200	938	935	
6/1/2007	5227.6	1807.2	37	46.1	-	full open	all open	off	104	_	-	1140	1000	999	
			56	80		~6.0	all open	off	157	0		dropping			
	*Restart AS	system - afte	er ~5-10 minutes blowe	r motor appears	to be malfunction	ing									
	- on leave -	->	5 7	-	-	~6.0	ali open	off	150	0	-	945	917	918	
6/4/2007	5297.1	1976.6	61	-	-	-6.0	all open	off	135	0	-	909	865	865	
	Individual lia	ne sampling o	in EX-1 & MW-4, with i	regular vacuum											
			EX-1 @ 645ppm												
	***Testing**		MW-4 @ 610 ppm												
	_		ly opened to approx 85	5%(normelly at 95	5%) to increase ai	dlow to burner		•							
				pitot reads 87											
				manifold reads	s 60 cfm										
	w/dilution c	onirol at 90%													
				pitol reads 73	cím										
				mainfold reads	s 59.5 c/m										
	sampling of	influent point	s gíves												
				-	tilution) @ 86 ppr										
				Influent (@ ma	anifold, pre-blowe	r) @ 88 ppm									
	5298.7	1878.2	75	-	_	~6.0	all open	off	124		_	766	760	759	_
	™Dijution o	control held el	90% for this reading				_								

Alaska Gas Data Sheet (continued)

E/B/2007 5392.4 1972 59 786.0 all open restarted 132 0 695 835 832 77 AS-1,4,5 2/15/2007 5559.1 2138.6 56 74.5 all open AS-1,4,5 101 0 - 922 850 850 7 AS-1 @ 4 cfm AS-5 @ 3 cfm 2/15/2007 5635.6 2215.2 56 73 all open AS-1,4,5 83 0 - 891 820 820 AS-1 @ 4 cfm B 99 88 88 (Date	Total Hours	Hours	Flow - pitot (#3) (scfm)	Flow - Manifold (scfm)	Pressure ("-water)	Recirc Valve (# turns open)	SVE Wells operating	Air Sparge system operation	Influent (ppm)	Effluent (ppm)	Water in Tank (approx. gal's)	Temp. Cont.(F)	Dilution Cont. (F)	High Limit (F)	Prop (% f
**************************************		Meet Rob La	arson of Mak	o Industries to do effici	iency lests on sys	tlem										
### Part Part		,					ir PID concepte	ntinon eniko nimalfinant	de.							
86/2007 5348.2 1927.9 57 77			1				-		*							
6892007 5392.4 1972 59 796.0 all open restarted 132 0 - 895 835 832 77 AS-1,4,5 9715/2007 5395.1 2138.6 56 74.5 all open AS-1,4,5 101 0 - 922 850 650 7 AS-1,4,5 83 0 - 891 820 820 820 821 820 820 820 820 820 820 820 820 820 820				posicity see to real	and product fro	, , , , , , , , , , , , , , , , , , ,	ombinadon çı şır		IION INGINY CONTENTINEERO WERS THE	унд тоге уар	or phase voc s	•				
AS-1,4,5 2/15/2007 5559.1 2138.6 56 74.5 all open AS-1,4,5 101 0 - 922 650 650 7 AS-1,4,5 94 cfm, AS-6,2;3 cfm AS-1,4,5 83 0 - 691 820 820 AS-1,4,5 83 0 - 744 688 684 AS-1,4,5 139 0 - 744 688 684 AS-1,4,5 60.5 0 - 843 788 787 AS-1,4,5 60.5 0 - 842 784 783 486 AS-1,4,5 60.5 0 - 843 786 AS-1,4,5 60.5 0 - 842 784 783 486 AS-1,4,5 60.5 0 - 842 784 784 AS-1,4,5 60.5 0 - 842 784 784 AS-1,4,5 60.5 0 - 842 784 AS-1,4,5 60.	6/6/2007	5348.2	1927.8	57	77	-	_	all open	off	130	0	-	877	819	819	68
### 2132.07 5559.1 2138.6 56 74.5 - - all open	6/8/2007	5392.4	1972	59	79	_	~6 .0	all open	restarted	132	0	-	895	835	832	78'
AS-1 @ 4 cfm, AS-5 @ 3 cfm AS-1 @ 4 cfm BS BB B									AS-1,4,5							
SHALOOF 5635.6 2215.2 58 79 ail open AS-1,4,5 93 0 - 691 620 620 AS-1 @ 4 cfm 7/11/2007 6187.2 2766.9 133 Ail open - AS-1,4,5 139 0 - 698 68 68 ***Flame out on arrival, it appears it want out on June 25, 2007 ~9-9am and did not shut the system down. ****System restanted *** 65 87.5 Ail open AS-1,4,5 139 0 - 744 698 684 AS-5 @ 0 cfm	6/15/2007	55 59 .1	2138.6	56	74.5	-	_	all open	AS-1,4,5	101	0	-	922	850	850	76
AS-1 @ 4 cfm 7/11/2007 6187.3 2766.9 133									AS-1 @ 4 cfm, AS-5 @ 3 cfm							
7/11/2007 6187.3	6/18/2007	5635.6	2215.2	58	73	-	-	all open	AS-1,4,5	93	O	-	891	820	820	-
Flame out on arrival, it appears it went out on June 25, 2007 *8-9am and did not shut the system down. *System restarted **** 65 87.5 all open AS-1,4,5 139 0 - 744 698 684 AS-5 @ 0 cfmand Rising- opened to 4 cfm 65 87 AS-1 @ 4 cfm, AS-4 @ 3 cfm 7/13/2007 6230.9 2810.4 68 88.5 all open AS-1,4,5 80.6 0 - 843 788 787 AS-1 @ 3.5 cfm, AS-5 @ 3.5 cfm -on leave- 74 89.5 all open AS-1,4,5 77 0 - 835 802 - 7/19/2007 6372.3 2951.9 66 90.5 all open AS-1,4,5 77 0 - 842 784 783 AS-1 @ 4.5 cfm, AS-5 @ 3 cfm									AS-1 @ 4 cfm							
**************************************	7/11/2007	6187.3								-	-	-	88	88	88	8
65 67.5 - all open AS-1,4,5 139 0 - 744 668 684 AS-5 @ 0 cfm and Rising- opened to 4 cfm 773 730 727					rs if meut onf ou 1	une 25, 2007 ~8-	9am and did not	shut the system down	l.							
AS-5 @ 0 cfmand Rising- opened to 4 cfm 65 87 all open AS-1 @ 4 cfm, AS-4 @ 3 cfm -					87.5	***	_	all open	AS-1,4,5	139	O	_	744	688	684	_
65 87 A8-1 @ 4 cfm, AS-4 @ 3 cfm								·	AS-5 @ 0 cfm							
7/13/2007 6230.9 2610.4 66 88.5 all open AS-1,4,5 60.5 0 843 788 787 : AS-1 @ 3.5 cfm, AS-5 @ 3.5 cfm -on leave- 74 89.5 all open AS-1,4,5 77 0 842 784 783 (AS-1 @ 4.5 cfm, AS-5 @ 3 cfm AS-1 @ 4.5 cfm, AS-5 @ 3 cfm AS-4 @ 4 cfm									opened to 4 cfm							
AS-1 @ 3.5 cfm, AS-5 @ 3.5 cfm -on leave- 74 89.5 all open 91 0 - 835 802 7/19/2007 6372.3 2951.9 66 90.5 all open AS-1,4,5 77 0 842 784 783 (AS-1 @ 4.5 cfm, AS-5 @ 3 cfm AS-4 @ 4 cfm				65	87	-	-		AS-1 @ 4 cfm, AS-4 @ 3 cfm				773	730	727	
AS-1 @ 3.5 cfm, AS-5 @ 3.5 cfm -on leave- 74 89.5 all open 91 0 - 835 802 7/19/2007 6372.3 2951.9 66 90.5 all open AS-1,4,5 77 0 842 784 783 (AS-1 @ 4.5 cfm, AS-5 @ 3 cfm AS-4 @ 4 cfm	7/13/2007	6230.9	2810,4	68	88.5	-	-	all open	AS-1,4,5	80.6	0	_	843	788	787	71
7/19/2007 6372.3 2951.9 66 90.5 — alf open AS-1,4,5 77 0 842 784 783 (AS-1 @ 4.5 cfm, AS-5 @ 3 cfm AS-4 @ 4 cfm									AS-1 @ 3.5 cfm, AS-5 @ 3,5 cf	im						
AS-1 @ 4.5 cfm, AS-5 @ 3 cfm AS-4 @ 4 cfm		-on leave-		74	89.5	-	-	all open		91	0	_	835	802	_	
AS-1 @ 4.5 cfm, AS-5 @ 3 cfm AS-4 @ 4 cfm	7/19/2007	6372.3	2951.9	66	90.5	_		all open	AS-1,4,5	77	o	_	842	784	783	8:
								•			_			7		_
***bailed approximately 6 gallons of free product from EX-1									AS-4 @ 4 cfm							
			***bailed a	approximately 6 gallon:	s of free product f	rom EX-1										

Alaska Gas Data Sheet (continued) Site Address: 6211 San Pablo Ave., Oakland, CA 94608

Date	Total Hours	Hours	Flow - pitot (#3) (scfm)	Flow - Manifold (scfm)	Pressure ("-water)	Recirc Valve (# turns open)	SVE Wells operating	Air Sparge system operation	Influent (ppm)	Effluent (ppm)	Water in Tank (approx. gal's)	Temp. Cont.(F)	Ditution Cont. (F)	High Limit (F)	Propai (% ful
8/13/2007	6998.3	3577.8	77	121	-	-	ail open	AS-1,4,5 AS-4 @ 3.5 c/m	30.6	o	<u>-</u>	766	712	711	
8/16/2007			approximately 2 gallons arge system found to b	,		ewly installed we	II MW-1R, Air sparge :	system left off until proper evaluati	ion can take pla	œ.					
9/6/2007	7552.0	4131,5	83	130+	-	;-	all open	off	33	0	~25 gallons	718	681	681	82
9/28/2007	8083.1	4662.7	93	-		-	all open	off	. 0	0	~25 gallons	677	642	642	75
		**** nstall	4" Soakese product so	ck into EX-1 to re	cover free produc	l passively									
10/16/2007	9515	5094.5	80	-	_	-	all open	ffo	0	0	-	746	696	696	72
10/17/2007		****SoakE	ase product sock full a	nd replaced											
10/24/2007	8707.2	5286.7	89	-	-	-	alt open	off	0	0	-	694	655	655	
		*****produc	t sock replaced at 80%	full or so											
10/29/2007	8825.1	5404.6	86	105	-		ail open	off	0	0	_	700	661	660	
		****Air Spa	arge line lest conducter	d this day (See te	st data tab for fur	ther results)									
11/8/2007	9062.8	5642.4	81	114	-	-	all open	AS-1,2,3,5 now in cycle	-	-	-	727	685	685	
11/19/2007	9329.3	5908.9	75	-	-		all open	AS-1	7	0	-	767	718	717	
		****System	n shuldown after review	v of system opera	tions and NOV re	ceived by Mr. S	annai	AS-1@3.0 cfm							

APPENDIX C Historical Groundwater Data

Groundwater Analytical Results

Alaska Gasoline	
6744 Con Doblo Avenue	

						Maska Gas 11 San Pablo						
						oakland, Cal						
	TPHg	Benzene	Toluene	Ethylbenzer		MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB
MW-1	_			-								
November 7, 1999	5,700	170	59	22	85	20,000	NA.	NΑ	NA	NA	NA	NA
March 8, 2001	17,000	480	160	62	170	38,000	NA	NA	NA	NA	N/A	NA
November 17, 2001	10,000	230	210	60 ND	250	22,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
March 31, 2002 September 9, 2003	12,000 19000	61 ND	NID NID	ND ND	29 ND	35,000 50000	NA NA	NA.	NA	NA	NA.	MA
December 9, 2003	22000	150	ND	ND	ND	66,000	NA	NA	ALA.	NA	NA	NA
2,000		140		,		,						
MW-1R												
November 17, 2001	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Morch 31, 2002	NA	MA	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA
September 9, 2003	NA	NA	NA	NA	NA ***	NA	NA	NA	NA NA	NA MA	ala Na	NA NA
December 9, 2003	NA 4 Phr	NA	NA	NA.	NA TOTA	NA 220	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
February 19-20, 2004 May 24-25, 2004	1,800 210	95 12	130 10	44 5.4	200 23	79	ND	ND	2.1	37	ND	ND
Saplember 3, 2004	300	1.5	7.1	9,4	42	81	ND	ND	1,6	ND	ND	ND
November 2, 2004	290	14	30	9.6	45	45	ND	ND	1.1	NO	NA	NA
February 17, 2005	530	3.4	ND	ND	2.6	1900	ND	ND	100	ND	NA	MA
May 24 & 26, 2005	NA	NA	NA	NA	NA	NA	ND	ND	613	ND	ND	ND
August 15 & 17, 2005	2,500	64	240	61	210	2,300	ND	ND	210	ND	ND	ND
November 17, 2005	2,500	66	290	76	290	1,300	ND	ND	110	1,600	ND	ND
February 8, 2006	3,300	100	310	65	470	1,400	ND	ND	130	1,40D	ND	NO
May 5, 2006	3,40D	170	350	97	560	1,100	ND	ND	100	2,400	ND	ND
August 16, 2006	5,800	190	1,000	230	1,000	490	WD	WD	36	2,900 400	ND	ND ND
December 1, 2006	410 ND	1.7 ND	6.3 0.51	1.2 ND	47 1.4	190 2.6	ND ND	ND ND	4.7 ND	100 ND	ND ND	ND
February 23, 2007 May 10, 2007	ND	ďΑ	ND	ND	2.0	5.9	ND	ND	ND	ND	ND	ND
August 16, 2007	ND	ND	ND	ND	ND	ND	ND	NO.	ND	ND	ND	ND
November 8, 2007	1,300	f1	92	64	270	1.4	ND	ND	ND	ND	ND	ND
MVV-2												
November 7, 1999	6,000	1,300	92	50	400	6,800	MA	NA	NA	NA	NA	NA
March K, 2001	41,000	9,100	870	2,00D	4,100	26,000	NA	NA	MA	MΑ	NA	NA
November 17, 2001	16,000	3,700	160	610	640	16000	NA	NA	NA	NA	NA	N/A
Murch 31, 2002	32,000	6,500	270	1700	2700	19000	NA	NA.	NA 414	NA NA	NA NA	NA NA
September 9, 2003	24,000 31990	4600 6200	ND 170	120D 180D	440 2700	19000 19000	NA NA	NA NA	NA NA	NA NA	NA	NA.
December 9, 2003 February 19-20, 2004	21,000	4,600	120	970	2,000	16,000	NA	NA.	NA	NA	NΑ	NA.
May 24-25, 2004	1,200	120	3	63	67	1,900	ND	NO	ND	ND	ND	ND
Saplembar 3, 2004	2,300	120	ND	51	70	1,700	ND	ND	26	ND	ND	ND
November 2, 2004	530	35	ND	17	30	\$20	NO	ND	28	100	MA	NA
February 17, 2005	18,900	2,10D	31	800	680	20,000	ND	ND	1,000	ND	NA	NA
May 24 & 26, 2005	22,000	3,200	52	1,400	1,700	16,900	ND	ND	NS	NS	ND	ND
August 15 & 17, 2005	2,000	66	ND	46	47	2,400	ND	ND	98	880	ND	ND
November 17, 2005	760	19 1,6 0 0	0.64	15	13 380	1000	ND ND	ND ND	26 120	\$10 2,600	ND ND	ND ND
February 6, 2006 May 5, 2005	\$0,000 \$5,000	1,800	8 N2D	660 1,200	1,200	4,300 6,800	ND	ND	150	4,300	ND	NED.
August 18, 2008	36D	11	ND	13	9.7	160	ND	ND	4.6	600	ND	ND
December 1, 2006	11,000	1,090	NÖ	990	910	2,100	ND	ND	87	2,000	ND	ND
February 23, 2007	3,200	210	ND	270	as	900	NĎ	ND	33	1,400	ND	ND
May 10, 2007	590	31	ND	39	22	200	N₽	ND	5.9	250	ND	ND
August 16, 2007	650	49	ND	71	49	100	ND	ND	3,5	62	NED	ND
November 6, 2007	110	1.6	ND	1.9	1.6	23	ND	ND	0.64	48	NO	ND
Sensy o												
MW-3 November 7, 1999	43,005	860	70	ND	85	120,000	NA	NA	NA.	ŅΑ	NA	NA
Mural 8, 2001	90,000	1600	ND	ND	ND	210,000	NA	NA	NA	NA	NA	NA
November 17, 2001	110,000	160D	ND	ND	ND	300,000	NA	NA	NA	NA	NA	NA
March 31, 2002	130,000	2400	670	300	390	300,000	NA	NA	NA	NA	NA	NA
September 9, 2003	19000D	1600	ND	ND	ND	420000	N.A	NA	MA	NA	NA	NΑ
December 9, 2003	170000	2000	ΝD	ND	ND	4,600,000	M.A	NA	NA	NA	NA	NA
February 19-20, 2004	86,000	1,800	630	ND	ND	160,000	NA	NA.	NA	NA	NA	NA
May 24-25, 2004	120,600	2,200	ИD	160	220	400,000	ND	ND	15,000	ND	ND	ND
September 3, 2004	180,006	2,000	ND	ND	ND	510,000	ND	ND	14,000	ND	ND	ND
November 2, 2004	150,000	1,700	ND.	ND	ND	360,000	ND	ND	31,000	140,000	NA NA	NA NA
February 17, 2005	130,000	2,100 NS	420 NS	210 NS	730 NS	290,000 NS	ND NS	ND NS	11,000 NS	ND NS	NS	NS
May 24 & 26, 2005 August 15 & 17, 2005	NS \$10,000	1,500	ND ND	NED NED	ND	266,000	ND	ND	21,600	25,000	ND	ND
November 17, 2005	200,000	2,400	ND	ND ND	ND	680,000	ND	NĐ	24,000	49,000	ND	ND
February 8, 2006	470,000	3,800	660	ND	79D	490,000	ND	ND	26,000	49,000	ND	ND
May 5, 2008	400,000	3,300	NO	ND	ND	590,000	ND	ND	21,000	86,000	ND	ND
August 18, 2006	310,000	1,800	ND	ND	ND	440,000	ND	ND	23,00D	79,000	ND	ND
December 1, 2006	270,000	ND	ND	ND	ND	290,000	ND	ND	11,000	90,000	ΝD	ND
February 23, 2007	220,000	ND	ND	ND	ND	260,000	ND	ND	15,000	33,000	ND	ND
May 10, 2007	140,000	ND	ND	ND	ND	180,000	ND	ND	7,100	80,000	ND	ND
August 16, 2007	69,000*	ND	ND	ND	ND	86,000	ND	ND	3,480	180,000	NO	ND
November 8, 2007	34,000*	ND	ND	ND	ΝÞ	38,000	ND	ND	1,400	140,000	ND	ND
	*Gesoline val	JE DUB ID NOT	DC.									

Groundwater Analytical Results Alaska Gasoline

						Alaska Gas							
						11 San Pablo							
			-	=		Oakland, Cal			T 4 1 4 1 2	tos	40004	FOR	_
MW-4	TPHg	Benzene	Toluena	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	
	64,000	960	1400	360	1600	140,000	NA	NA	NA	NA	NA	NA	
November 17, 2001 March 31, 2002	76,000	4,400	4,700	690	2,700	150,000	NA.	NA	NA NA	NA NA	NA.	NA	
September 9, 2003	NA	NA NA	NA.	NA NA	2,700 NA	NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	
Desember 9, 2003	NA	NA.	NA	NA	N/A	NA.	NA.	N/A	NA	NA	NA	NA	
February 19-20, 2004	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	
May 24-25, 2004	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	N/A	NA	NA	
September 3, 2004	NΑ	NA	NA	NA.	NA	NΑ	NA	NA	NA	NA	NA	NA	
November 2, 2004	NA	NA	NA	NA.	MA	NA	NA	NA	NA	NA	NA	NA	
February 17, 2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	
May 24 & 26, 2005	NA	NA	NA	ŅΑ	NA	NA	NA	NA	NA	NA	NA	NA	
August 15 & 17, 2005	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	N/A	NA	
November 17, 2005	NA	NA	NA	NA	NA	ŅΑ	NA	NA	NΑ	NA	NA	NA	
February 8, 2006	NA	NA	NA	NA	MA	NA	MA	NA	NA	NA	MA	NA	
May 5, 2006	NA	MA	NA	NA	N/A	NA.	NA	NA	NA	NA	NA	NA	
August 18, 2006	NA	NA	N/A	NA	NA	NA	NLA	NA	NA	NA	NA	NA	
December 1, 2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
February 23, 2007	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	
May 10, 2007	NA	NA	NΑ	N/A	NA	NA	N A	NA	NA	NA	NA	NA	
September 6, 2007	49,000	710	840	ND	10,000	3,600	ND	ND	510	32,000	NĎ	ND	
November B, 2007	64,000	1,300	2,600	1,000	8,500	1,500	ND	ND	360	14,000	ND	ND	
MW-5													
November 17, 2001	210	15	12	11	23	4.8	ŊΑ	NA	MA	NA	NA	NA	
March 31, 2002	120	13	7.4	6.1	16	4.2	NA	NA	NA	NA	NA	NA	
September 9, 2003	ND	1.5	ND	140	ND	1.7	ŊĄ	NA	NA	NA	NΑ	NA	
December 9, 2003	130	32	ND	2.6	0.57	5	NΑ	NA	NA	NA	N/A	NA	
February 19-20, 2004	ND	ND	NO	ND	ND	1.5	NA	NA	NA	NA	NA.	NA	
May 24-25, 2004	ND	NO	NO	ND	ND	0.55	ND	ND	ND	ND	ND	ND ON	
September 3, 2004	100 NO	6.4 2.6	ND ND	ND 1.7	0.79 0.87	4.2	ND ND	ND ND	ND ND	ND ND	ND DN	ND	
November 2, 2004		0.74	ND ND	1.r 0.94	ND	1 1.5	ND	ND ND	ND	ND	ND	ND	
February 17, 2005	81 ND			0.00		1.0			***		ON IAD	ND	
May 24 & 26, 2005 August 15 & 17, 2005	ND ND	ND ND	ND ND	ND ON	ND OM	0.58	ND ND	ND ND	NA ND	nia Ne	ND	ND	
November 17, 2005	71	0.81	ND	1.1	ND	1.4	ND	140	ND	ND	NO NO	ND	
February 8, 2006	50	NO.	NO	NO	ND	1	ND	ND	ND	ND	ND	ND	
May 5, 2006	ND	NED	NID	ND	ND	0.93	ND	ND	ND	ND	ND	ND	
August 18, 2006	ND	ND	ND	NO	ND	1	ND	NID	ND	ND	ND	NO	
December 1, 2006	ND	0.69	NO	ND	0.92	0.97	ND	ND	ND	ND	ND	ND	
February 23, 2007	73	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	
May 10, 2007	ND	ND	ND	ND	,ND	1.5	ND	ND	ND	ND	MD	ND	
August 16, 2007	ND	ND	ND	ND	ND	1.3	ND	ND	ND	NE	ND	ND	
November 8, 2007	ND	ND	ND	ND	ND	1.5	ND	ND	ND	NO	ND	ND	
MW-6													
November 17, 2001	3500	160	260	95	420	1500	NA	NA	NA	NA	NA	NA	
Mureb 31, 2002	3200	410	170	82	260	3000	MA	MA	NA	NA	NA	NA	
September 9, 2003	800	49	ND	7.4	ND	1700	NA	NA	NA	NA	NA	NA	
December 9, 2003	970	153	9.9	31	83	1200	NA	NA	NA	NA	NA	λl4	
February 19-20, 2004	2,900	280	26	17	260	2,700	NΑ	NA	NA	NA	NA	NA	
May 24-25, 2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA	
September 3, 2004	1,100	27	NĐ	14	27	2,290	ND	ND	65	ND	ND	ND	
November 2, 2004	1,800	32	ND	5	11	4,100	ND	ND	170	270	ND	ND	
February 17, 2005	5,600	190	34	41	110	10,000	ND	ND	780	2,000	ND	ND	
May 24 & 26, 2005	NA	NA	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	
August 15 & 17, 2005	1,600	27	ND	6	23	3,500	ND	ND	300	3,60D	ND	NĐ	
November 17, 2005	t,100	3D	ND	4	9	2,400	ND	ND	190	9,500	ND	ND	
ebruary 8, 2006	3,600	220	43	66	160	2,700	ND	NO	160	7,800	ND	ND	
day 5, 2006	1,60D	130	21	37	65	1,400	ND	ND	53	3,100	ND	ND	
Adgust 18, 2006	270	27	ND	3	4	240	ND:	ND	11	2,400	ND:	ND	
December 1, 2006	1,700	ND	ND	ND	ND	1,700	ND	ND	92	BOD	ND	ND	
ebruary 23, 2007	ND	ND	ΝD	ND	ND	15	ND	ND	NO	ND	ND	ND	
May 10, 2007	ND	3.0	ND	ND	1.9	26	ND	ND	2	48	МĎ	ND	
August 16, 2007	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	NĐ	ND	
Vovember B, 2007	ND	ND	ND	ND	ND	5.3	ND	ΝĎ	ND	ND	ND	ND	

Groundwater Analytical Results
Alaska Gasoline
6211 San Pablo Avenue

		Oakland, California											
	TPHg	Benzene	Toluene	Ethylberizene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	
EX-1													
Fabruary 19-20, 2004	120,000	9,600	4,300	840	3,900	150,000	NA	NA	NA	NA	NA	NA	
May 24-25, 2004	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	
September 3, 2004	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	
November 2, 2004	NA	λſΑ	NA	NA	N/A	NA	NA	NA	NA	NA	NΑ	N/A	
February 17, 2005	MA	NA	NA	NA.	NA	NA	NA	HA	NA	NA	NA	NA	
May 24 & 28, 2005	NA	ŅΑ	N/A	NA	NA	NA	ND	ND	NS	NS	E/A	NS	
August 15 & 17, 2005	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	
November 17, 2005	NA	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	
February 8, 2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
May 5, 2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
August 18, 2006	NA	NA	NA	NA	NA	NA	ŊA	NA	NA	NA	NA	NA	
December 1, 2008	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	NA	
February 23, 2007	NA	NA	NA	NA	NA	ALA.	NA	ŅΑ	NΑ	NA	NA	NΑ	
May 10, 2007	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
August 16, 2007	NA	NA	NA	NA	NΑ	NA.	NA	NA	NA	NA	NA	ηų	
November 8, 2007	NA	NA	NA	NA	NA	NA .	NA	NA	ŅΑ	NA	ALA.	NA	

APPENDIX D

Certified Analytical Reports for Groundwater Sampling

Environmental Testing Services Certificate # 2480

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604 Attn: Red Ratilainen

Client Project ID: Alaska Gas - Oakland

Reference Number: 10630 Sample Description: Water

Sample Prep/Analysis Method: EPA 5030/6015B, 8021B Lab Numbers: 10630-2W, 3W, 4W, 5W, 6W

Sampled: 11-08-07 Received: 11-08-07 Extracted: 11-09-07 Analyzed: 11-09-07

Reported:11-16-07

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID MW-1R (ug/L)	SAMPLE ID NW-2 (ug/L)	SAMPLE ID MW-3 (ug/L)	SAMPLE IO MW-4 (ug/L)	SAMPLE ID MW-5 (ug/L)
MTBE	0,50	ND	27	31000	1100	1.5
BENZENE	0.50	11	1.6	ND	1300	ND
TOLUENE	0.50	82	ND	ND	2600	ND
ETHYL BENZENE	0.50	54	1.9	ND	1000	ND
TOTAL XYLENES	0.50	270	1.5	ND	8500	ND
GASOLINE RANGE HYDROCARBONS	50	1300	110	34000*	64000	ND
Report Limit Multiplication Fac Report Limit Multiplication Fac	5	1	200 10000	100	. 1	

*Gasoline value due to MTBE.						
Surragate % Recovery:	FaD; 186% / PID; 106%	FID: 100% / PID; KG3%	FID: 98.1%/ PID: 98.4%	FID: 622% / PID: 189%	F/D: 100% / PID; 122%	
Instrument ID:	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

James C. Phillips / Laboratory Director or Clar J. Cone / Laboratory Manager

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate # 2480 Fax: (209) 384-1507 HerSchy Environmental Client Project ID: Alaska Gas - Oakland Sampled: 11-08-07 P.O. Box 229 Reference Number: 10630 Received: 11-08-07 Bass Lake, CA 93604 Attn: Red Ratilainen Sample Description: Water Extracted: 11-09-07 Sample Prep/Analysis Method: EPA 5030/8015B, 8021B Analyzed: 11-09-07 Lab Numbers: 10630-7W Reported: 11-16-07

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID	
	(ug/L)	(ug/L)	.,,
MTBE	0.50	4.0	
BENZENE	0.50	ND	
TOLUENE	0.50	ND	
ETHYL BENZENE	0.50	ND	
TOTAL XYLENES	0.50	ND	
GASOLINE RANGE HYDROCARBONS	50	ND	
teport Limit Multiplication Facto	or:	1	

	<u>shown in Ma</u>	
Surrogate % Recovery:	FRD: 98.1%/ PIO; 811%	
Instrument iO:	VAR-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

James C. Philips / Laboratory Director or Clari J. Cone / Laboratory Manager

Environmental Testing Services Certificate # 2480

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

HerSchy Environmental

P.O. Box 229 Bass Lake, CA 93604 Attn: Red Ratilainen

Client Project ID: Alaska Gas - Oakhurst

Reference Number: 10630 Sample Description: Water Analyst: Jim Phillips

Method: EPA 5030/8015M,8020

Instrument ID: Var-GC1 Extracted: 11-09-07 Analyzed: 11-09-07 Reported: 11-16-07

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes		
Spike Concentration:	220	3.68	2.64	19.4	4.04	23.2		
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
LCS Batch #:	VW-N097	VVV-N097	VW-N097	VW-N097	VW-N097	VVV-N097		
LCS % Recovery: Surrogate Recovery:	87.2% 99.2%	84.8% 101%	94.4% 101%	95.3% 101%	87.2% 101%	87.8% 101%		
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %		
MS/MSD Batch #:	V-N097	VW-N097	VV-N097	VW-N097	VW-N097	VW-N097		
Spike Concentration:	220	3.68	2.64	19.4	4.04	23.2		
MS % Recovery: Surrogate Recovery:	85,0% 104%	72.8% 105%	85.8% 105%	85.0% 105%	90.3% 105%	90.6% 105%		
MSD % Recovery: Surrogate Recovery:	79.4% 104%	71.6% 106%	79.0% 106%	83.3% 106%	87.3% 106%	84.9% 106%		
Relative % Difference:	6.35%	1.41%	8.22%	2.11%	3.33%	6.48%		
Method Blank : Surrogate Recovery:	ND 101%	ND 111%	ND 111%	ND 111%	ND 111%	ND 111%		

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

James G. Phillips / Laboratory Director or

Clari J. Cone / Laboratory Manager

Environmental Testing Services Certificate No. 2480	2333 Shuttie Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
HerSchy Environmental	Cilent Project ID: Alaska Gas - Oakland	Sampled: 11-08-07
P.O. Box 229	Reference Number: 10630	Received: 11-08-07
Bass Lake, CA 93604	Sample Description: Water	Extracted: 11-09-07
Attn: Red Ratillainen	Sample Prep/Analysis Method: EPA 5030/8260B	Analyzed: 11-09-07

GASOLINE ADDITIVES AND SOLVENTS BY EPA METHOD 8260 GC/MS

Lab Numbers: 10630-2W, 3W, 4W, 5W, 6W

ANALYTE	REPORTING LIMIT (µg/L)	SAMPLE ID MW-1R (µg/L)	SAMPLE ID MW-2 (µg/L)	SAMPLE (D MW-3 (µg/L)	SAMPLE ID MW-4 (µg/L)	SAMPLE ID MW-5 (µg/L)
FUEL OXYGENATES						
Methyl tert-Bulyl Ether (MTBE)	0.50	1.4	23	38000	1500	1.5
Di-isopropyl Ether (DIPE)	0.50	ND	ND	ND	ND	NO
Ethyl tert-Butyl Ether (ETBE)	0.50	ND	ND	ND	ND	ND
tert-Amyl Methyl Ether (TAME)	0.50	ND	0.64	1400	360	ND
tert-Butanol (TBA)	20	ďИ	48	140000	14000	ND
VOLATILE HALOCARBONS & A	ROMATICS					
1,2-Dichloroethane (1,2-DCA)	0.50	ND	ND	ND	ND	ND
Ethylene Dibromide (EDB)	0.50	ND	ND	ND	ND	ND
Report Limit Multiplication Factor: Report Limit Multiplication Factor f	or MTBE:	1	1	100* 10000	20* 200	1

^{*} Report limit raised due to matrix interference

1,2-Dichloroethane-d4 91.8% 82.4% 98.1% 98.5% 113% Toluene-d8 92.0% 94.2% 91.6% 92.0% 97.0%	Surrogate Recoveries			
	1 **	 		

Instrument ID: HP 5972 MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor (µg/L) = micrograms per liter or parts per billion (ppb)

APPROVED BY:

James C. Phillips / Laboratory Director or Clari J. Cone / Laboratory Manager

Reported: 11-16-07

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate No. 2480 Fax: (209) 384-1507

HerSchy Environmental Client Project ID: Alaska Gas - Oakland Sampled: 11-08-07
P.O. Box 229 Reference Number: 10630 Received: 11-08-07
Bass Lake, CA 93604 Sample Description: Water Extracted: 11-09-07
Altn: Red Ratillainen Sample Prep/Analysis Method: EPA 5030/8260B Analyzed: 11-09-07
Lab Numbers: 10630-7W Reported: 11-16-07

GASOLINE ADDITIVES AND SOLVENTS BY EPA METHOD 8260 GC/IVIS

ANALYTE	REPORTING LIMIT (#9/L)	SAMPLE ID MW-6 (µg/L)
FUEL OXYGENATES		
Methyl tert-Butyl Ether (MTBE)	0.50	5 .3
Di-isopropyl Ether (DIPE)	0.50	ND
Ethyl tert-Butyl Ether (ETBE)	0.50	ND
tert-Amyl Methyl Ether (TAME)	0.50	ИD
tert-Butanoi (TBA)	20	ND
VOLATILE HALOCARBONS & A	ROMATICS	
1,2-Dichloroethane (1,2-DCA)	0.50	ND
Ethylene Dibromide (EDB)	0.50	ND
Report Limit Multiplication Factor:		1

Surrogate Recoveries		
1,2-Dichloroethane-d4 Toluene-d8	93.6% 86.9%	

Instrument ID: HP 5872 MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor (pg/L) = micrograms per liter or parts per billion (pp%)

APPROVED BY:

James C/ Philips / Laboratory Director or Clari J/Cone / Laboratory Manager

Environmental Testing Services Certificate No. 2480 2333 Shuttle Drive, Atwaler, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604

Attn: Red Ratillainen

Client Project ID: Alaska Gas - Oakland

Reference Number: 10630

Matrix: Water Analyst: Scott Foster Method: EPA 5030/8260 Instrument ID: HP 5972 MS

Prepared: 11-09-07 Analyzed: 11-09-07 Reported: 11-16-07

QUALITY CONTROL DATA REPORT

SPIKE ID:

VWMS-N097

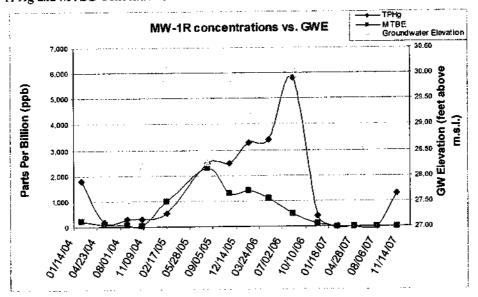
	Reporting	BLANK	Spiking	Control	%R
	Limit	Result	Level	Spike	Limits
	μg/L.	μg/L_	μg/L	%R	İ
COMPOUNDS					
t-Butyl Alcohol (t-BA)	20	ND	75.0	109%	27.2 - 178.4
Methyl t-butyl ether (MTBE)	0,50	ND	2.50	110%	59.7 - 153.0
Diisopropyl ether (DIPE)	0,50	ND	2.50	85.6%	72.1 - 129.6
Ethyl t-Butyl ether (ETBE)	0.50	ND	2,50	103%	68.1 - 130.8
t-Amyl methyl ether (TAME)	0.50	ND	2.50	105%	60.2 - 137.1
1,2-Dichloroethane (1,2-DCA)	0.50	ND	2.50	111%	91.2 - 137.6
Ethylene dibromide (EDB)	0.50	ND	2.50	113%	69.5 - 128.9
Surrogates:					
1,2-Dichlorcethane-d4	1.00	101%	10.0	10 2%	81.7 - 125.4
Toluene-d8	1.00	94.3%	10.0	91.1%	90.3 - 112.6

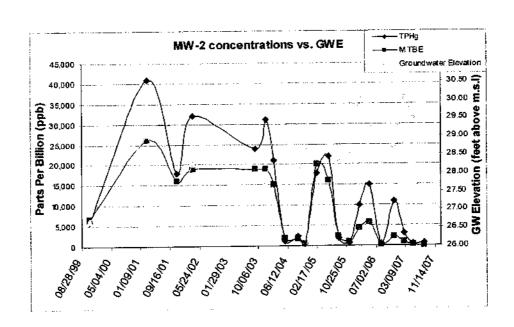
	Spiking	MATRIX	MATRIX	%R	%RPD
	Level	SPIKE	SPIKE DUP	Limits	
	µg/L	%R	%R		
COMPOUNDS					
t-Butyl Alcohol (t-BA)	75.0	103%	107%	45.1 - 151.2	3.81%
Methyl t-butyl ether (MTBE)	2.50	111%	118%	70,9 - 144,1	5.56%
Diisopropyl ether (DIPE)	2,50	86.8%	92.0%	73.6 - 126,5	5.82%
Ethyl t-Butyl ether (ETBE)	2.50	103%	105%	74.8 - 128.1	1.54%
t-Amyl methyl ether (TAME)	2.50	96.8%	96,0%	62.5 - 118.6	0.823%
1,2-Dichioroethane (1,2-DCA)	2.50	106%	110%	85.4 - 144.6	3.94%
Ethylene dibromide (EDB)	2.50	96.0%	104%	73.3 - 125.1	8.38%
Surrogate:					
1,2-Dichloroethane-d4	10.0	105%	110%	80.2 - 126.9	4.94%
Tokiene-d8	10.0	87.6%	82.6%	82.6 - 114.9	5.88%

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

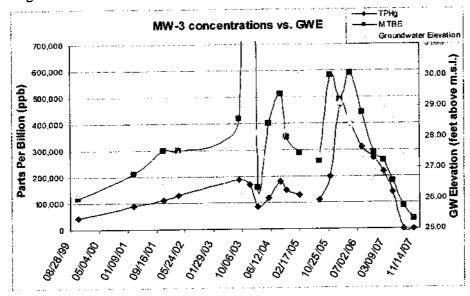
APPROVED BY:

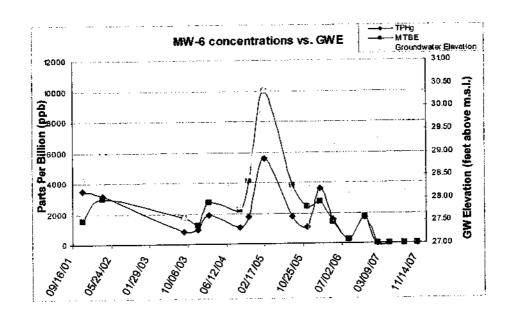
James C. Phillips / Laboratory Director or Clari J. Cone / Laboratory Manager

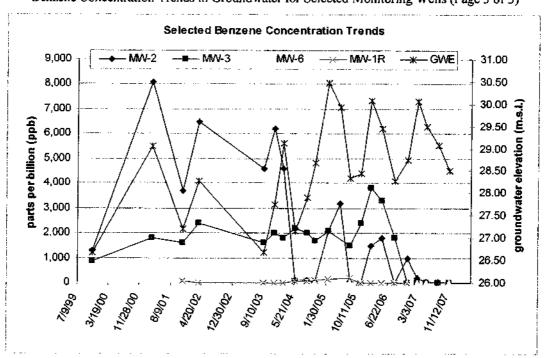

CHAIN OF CUSTODY


Location: 2333 Shuttle Drive, Bldg 908/909, Atwater, CA 95301						Cer	tificate	No.	248	30									
Mailing Address: 2333 Shuttle Drive, Atwater, CA 95301																		PA	GEOF
Phone: (209) 384-2930	- Fax: (2	09) 38	34-150	7															
Customer: H	A-SIZA		6	}_ S			T	T			REC)UES	STEE) AN	ALYSES			Т	Method of Shipment;
Address:						, ۾ ۲	.	┈╟	T.	T I		<u> </u>			3.1	<u> </u>	\top	<u>ي</u>	on on princing
	OAK	CAI	JA			SAMPLE TYPE (g) grab	SAMPLE MATRIX	E		ŀ			8		Batul grates		18	5	ht-h
Phone / FAX:						T S 4	E .	<u> </u>	2	i	ا ـ	-	ě				8	<u>\$</u>	Notes:
Proj#/P.O.#:						֓֞֞֞֓֞֞֓֓֓֓֓֞֞֓֓֓֓֓֓֓֓֓֡֓֓֓֡֡֓֓֡֡֡֡֡֡֡֓֓֡֡֡֡֡֡	, <u> </u>		Ž	ᇤᅵ	ESE		ğ	0	3		養	ខ្ល	
Report Attention:	<u> Vcc</u>			1 / 100 P][4]		≩ {		MTBE	TPH-DIESEL	TRPH 418.1M	2	8260	100		1.5	ğ	
Sampler Signature:	}	101	_	Mac		-[돌년	3 S	o) purbu (i) pups (Ĕ	1	8		+ 16		I 을	₩	
Printed:			011	N 2	WEST	93	₽ :	፼ ˈ					Oxy's / EDB / DCA by 8260		11/2		Electronic Deliverables (EDF)	NUMBER OF CONTAINERS	
	PLE ID		ATE	TIME	DESCRIPTION/LOCATION	<u> </u>			- 1	Ì	-		۲۱		#621		đ		OBSERVATIONS/REMARKS
10630-10 EX		<u> </u>	08	1001		G	-7		X	¥			×				1	3	Hold as per feijo
	-1 R			0645			ţ	Т	П	1			ì			 	†	ĬŤ	W-131 12()
13W MW				0751			17	7	П	71			7/1			ऻऻ॑॑	†	$\ \ $	
- Hu mw	-3			0715		77	77		П	77			1				T	╁┼	
mw'	-4			0845		1	77	1	H	\top			$\dagger \dagger$	_			T	╫	
MW MW	- <u>5</u>	П		0815		\Box	11	_	Ħ	Ħ	_	一	1		1	 	╁┈	╂┼╴	
MW	-6	प		0733		17	14	1	[]	77	_		4				T	忕	,
EX-	1 - Produce	Į.		-		╅	1	╁	┰	寸	寸	\neg	一		\		+	╬	HIID
				·		 		-		_	_†	7			^		╫	╫┈	11011/
常是在了一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个						1		┪	十	_	_	7					十	╫┈	·
The second secon						\top	- 	┪	十	寸							+	┢	
ANTIC COMPANY CONTROL OF THE PROPERTY OF THE P					· · · · · · · · · · · · · · · · · · ·	1		┪	╅	┰┼	寸	寸	\neg				╁┈	┢	7.2
"是"						1	_	╫	十			7					+	╫┈	
A CONTRACTOR OF THE PROPERTY O	. ,,,,,,,					 	+	╼╠╴	十	-	\dashv	\dashv	一			 	╁╌	╫─	
明显表現							┪┈	╼╢╴	十	-	-	-					╫	╫┈	
	A	Sion	iatur		Printed Name	F.	2 # T	ate	3 1	Tin	4.6	<u>.</u>	c		and area of		Vij.	╢	Total number of containers submitted to
Relinquished by:	m &	h	A.F	·	JOHN S. WE	57		-01		140		7.			pany N	iame: じん		i Na	the leboratory te: All special requests (e.g.
Received by:	MA	Ż	7		Dianna Vang			08		lij t		(10	<u>, (C)</u>		Lay		<u> </u>	j çu	rick turn times) must be cleared
Relinquished by:	/ \ \	, ,	5		1)	-	<u>v</u>	1	14.	'	<u> </u>		V		·			rough authorized laboratory
Received by:									┪	_								1″ື	rearret,
Relinquished by:									\dashv									RF	SULTS DUE :
Received by:																		-	VERBAL WRITTEN

APPENDIX E


Concentration Trend Graphs


TPHg and MTBE Concentration Trends in Groundwater for Selected Wells (Page 1 of 3)



TPHg and MTBE Concentration Trends in Groundwater for Selected Wells (Page 2 of 3)

Benzene Concentration Trends in Groundwater for Selected Monitoring Wells (Page 3 of 3)

