Oct 24 2007 1:43PM

Herbohy Environmental Inc

(559) 641-7340

p. 1

RECEIVED

1:49 pm, Oct 31, 2007

Alameda County Environmental Health

October 24, 2007

Ms. Donna Drogos
Alameda County
Health Care Services Agency
Environmental Health Services
1131 Harbor Bay Parkway, Ste. 250
Alameda, California 94502-6577

RE: Results of August 2007 Quarterly Groundwater Monitoring

Alaska Gas 6211 San Pablo Avenue Oakland, California

Dear Ms. Drogos:

Attached for your review and comment is the October 24, 2007 Results of August 2007 Quarterly Groundwater Monitoring report prepared by HerSchy Environmental, Incupon my behalf, for the above-referenced site.

As the legally authorized representative of the above-referenced project, I have reviewed the attached report and declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely.

Mr. Pritpaul Sappal

October 24, 2007 Project A51-01

Ms. Donna Drogos Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Ste. 250 Alameda, California 94502-6577

Re: Results of August 2007 Quarterly Groundwater Monitoring

Alaska Gasoline Company 6211 San Pablo Avenue Oakland, California Case #RO0000127

Dear Ms. Drogos:

HerSchy Environmental, Inc. (HerSchy), on behalf of Mr. Pritpaul Sappal of the Alaska Gasoline Company, has prepared this report summarizing the results of the most recent quarterly monitoring event. Also included is a summary of progress with the soil vapor extraction system (SVES), status of on-going permitting, and status of off-site work. The site is located at 6211 San Pablo Avenue, which is on the northwest corner of San Pablo Avenue and 62nd Street in Oakland, Alameda County, California (Figure 1). Groundwater monitoring was performed on August 16, 2007 and September 6, 2007.

METHODS OF INVESTIGATION

Groundwater Sampling Procedures

Groundwater samples were collected from five of the seven monitoring and extraction wells on August 16, 2007. Extraction well EX-1 was found to have free product, and therefore was not sampled. Due to a damaged dual phase interface probe, monitoring well MW-4 was mistakenly reported to contain free product. MW-4 was subsequently sampled on September 6, 2007. Monitoring well MW-1R was replaced on August 9, 2007 and had not been surveyed at the time of sampling.

Monitoring well MW-1R was replaced on August 9, 2007 and was developed during the August 16, 2007 sampling event. The well was purged until well water became relatively clear and after at least 10 casing volumes were removed. At the time of this sampling event, the well had not been surveyed and as such was not used in determining groundwater flow direction or gradient. HerSchy is currently scheduling a licensed surveyor to conduct a survey of MW-1R with reference to mean seal level (MSL.). Details of the well installation are included below (see Well Installation section).

P.O. Box 229 ♦ Bass Lake, CA 93604-0229 ♦ Phone: 559 • 641-7320 ♦ Fax: 559 • 641-7340

All monitoring wells were measured for static water level and total depth using an electric sounder prior to initiating sampling. Depth to groundwater was recorded to the nearest 0.01 feet on field sampling data sheets. The groundwater elevation in the monitoring wells was calculated by subtracting the measured depth to groundwater from the surveyed well elevation. The depth to groundwater, total depth of the well, and well diameter were used to calculate the purge volume.

At least three casing volumes were purged from each well prior to collecting a groundwater sample using a Waterra electric pump and dedicated hoses. All purge water is stored on-site in either 55-gallon drums or the excess water tank attached to the remediation unit. When water levels in storage tanks near capacity, the water is then removed by a licensed hauler and disposed of in a state-approved repository. Physical characteristics (temperature, electrical conductivity, and pH) were measured at the initiation of purging and then again just prior to collection of the groundwater sample. These characteristics were recorded on field sampling data sheets and are presented in Appendix A. One sample from each well was collected and contained in three 40-milliliter vials. Each of the sample containers were filled completely to form a positive meniscus, capped, and checked to ensure no air bubbles were present.

Samples were sealed in a ziplock bag and placed in a cooler chest with either frozen gel packs or ice immediately after sampling. Samples were maintained at, or below, four degrees Celsius until delivered to the laboratory. All groundwater samples are stored, transported, and delivered under proper chain-of-custody documentation and delivered to a California certified laboratory.

SVES Monitoring

Regular monitoring of the SVES, performed on at least a monthly basis, includes measurements of various physical system properties. Samples for laboratory analyses collected from the SVES are taken from influent and effluent air streams. Air samples are collected utilizing a vacuum box and tedlar bags attached to the influent and effluent air stream. Negative pressure created by the vacuum box fills the tedlar bags with process air. Air samples are packed in sealed, unchilled containers for transport immediately following sampling. Air flow readings are taken with a hotwire style velocity meter inserted into the influent air stream. All air samples are stored, transported, and delivered under proper chain-of-custody documentation and delivered to a California certified laboratory.

Monitored parameters include, but are not limited to the following:

- Measurement of influent & effluent concentrations using either a portable organic vapor analyzer (OVA) or laboratory analysis
- Air flow readings into the oxidizer

- System runtime hours
- System temperature levels
- Water production levels
- Vacuum exerted on vapor extraction wells (as needed)
- Currently operating vapor extraction wells

A comprehensive table of field monitoring data is included as Appendix B.

Laboratory Analysis

Vapor and groundwater samples were analyzed for gasoline-range total petroleum hydrocarbons (TPHg) by EPA method 8015M, benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA method 8021B. Groundwater samples were also analyzed for the fuel oxygenates and additives MTBE, di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butanol (TBA), 1,2-dichloroethane (1,2-DCA) and ethylene dibromide (EDB) using EPA method 8260b.

RESULTS OF INVESTIGATION

Groundwater Conditions

Due to the presence of free product in extraction well EX-1, groundwater data from this well was not used in determining the groundwater flow direction or gradient. As a result of a malfunctioning dual-phase interface probe, monitoring well MW-4 was initially found to have free product during this sampling event. It was later discovered that well MW-4 did not have any free product in it. A groundwater sample was collected from MW-4 on September 6, 2007. Because of the elapsed time between sampling dates, data from MW-4 is not used in determining groundwater flow direction or gradient.

Free product was manually removed from well EX-1 using disposable bailers on July 19, 2007 and again on August 13, 2007. Prior to removal efforts, product thickness measured roughly 1.40 feet. After removal of approximately 6 gallons of free product, the remaining thickness was recorded at 0.53 feet. When revisited on August 14, 2007 recharge was essentially non-existent as product thickness was measured at 0.50 feet. An additional 2 gallons of product were subsequently removed by hand bailing. Product thickness upon leave August 14, 2007 was approximately 0.08 feet or roughly 1 inch.

Groundwater was present beneath the site at an average depth of 7.40 feet below the average surveyed well elevation during the August 2007 monitoring event. Groundwater elevation during this quarter averaged 28.27 feet above mean sea level. This represents a decrease in average groundwater

elevation of approximately 0.91 feet since the May 2007 monitoring event. Groundwater flow direction was approximately South 49 degrees West at a gradient of 0.022 on August 16, 2007. Groundwater conditions are summarized in Table 1 and are presented graphically in Figure 2. A comprehensive table of historical groundwater data is included as Appendix C.

		Table 1	
	Groui	ndwater Conditions	
	Alaska	a Gasoline, Oakland	
Well Number	Elevation	Depth to GW	GW Elevation
August 18, 2006	3	· · · · · · · · · · · · · · · · · · ·	
EX-1	33.28	0.69' free product	
MW-1R	36.67	8.58	28.09
MW-2	36.33	8. <i>05</i>	28.28
MW-3	35.12	7.73	27.39
MW-4	34.11	0.46' free product	
MW-5	35.17	6.77	28.40
MW-6	36.07	7.97	28.10
Flow Direction =			20.,0
December 1, 200	06		
EX-1	33.28	0.06' free product	
MW-1R	36.67	6.56	30.11
MW-2	36.33	7.58	28.75
MW-3	35.12	8.51	26.61
MW-4	34.11	0.48' free product	ww
MW-5	35.17	6.47	28.70
MW-6	36.07	7.60	28.47
Flow Direction =			20
February 23, 200)7		
EX-1	33.28	NA	NA
MW-1R	36.67	NA	NA
WW-2	36.33	6.27	30.06
MW-3	35.12	6.15	28.97
VW-4	34.11	0.97' free product	- in
VIW-5	35.17	5.59	29.58
NW-6	36.07	6.78	29.29
Flow Direction = \$			
May 10, 2007			
May 10, 2007 =∨ 1	22.20	A 2' from product	
EX-1	33.28 36.67	0.3' free product	A/A
MW-1R	36.67	NA 6 82	NA 20.50
WW-2	36.33	6.83	29.50
NW-3	35.12	6.54	28.58
NW-4	34.11	0.47' free product	
/IW-5	35.17	5.90	29.27
/W-6	36.07	6.72	29.35
Flow Direction = S	S. 38 W.; Gradier	nt = 0.013	
August 16, 2007			
EX-1	33.28	0.08' free product**	
/IW-1R	<i>36</i> ,67	9.33*	

Table 1 Groundwater Conditions Alaska Gasoline, Oakland

Well Number	Elevation	Depth to GW	GW Elevation		
MW-1R	36.67	9.33*			
MW-2	36.33	7.26	29.07		
MW-3	35.12	7.62	27.50		
MW-4	34.11				
MW-5	35.17	6.79	28.38		
MW-6	36.07	7.94	28.13		
Flow Direction =	S. 49 W.; Gradient	t = 0.022			

Elevations in feet above mean see level (MSL)
* wall not surveyed at time of sampling

NA – Not applicable
** See Groundwater Data Section for details

Based on the data gathered from the site monitoring wells, the groundwater flow direction is toward San Francisco Bay, located approximately 0.75 miles southwest of the site. Regional groundwater flow appears to parallel the surface grade in the area.

Groundwater Quality

Groundwater samples were submitted to the laboratory and analyzed for the above-mentioned fuel constituents. Groundwater samples were not collected from well EX-1 due to the presence of free product as noted in Table 1 above. Groundwater samples from well MW-4 were collected on September 6, 2007. Table 2 summarizes analytical data for the current quarter along with data from the previous six quarters. Certified analytical reports and chain-of-custody documentation for the current quarter are presented in Appendix D.

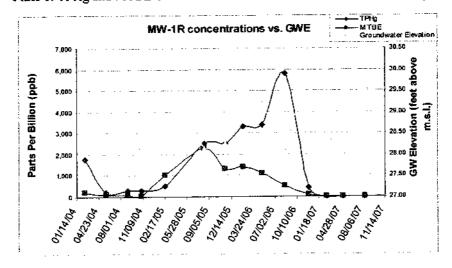
Table 2
Laboratory Analytical Results for Groundwater
Alaska Gasoline, Oakland

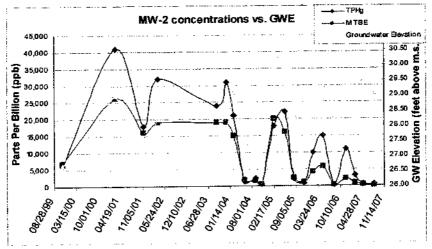
	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA
MW-1R								
February 8, 2006	3,300	100	310	86	470	1,400	130	1,400
May 5, 2006	3,400	170	350	97	550	1,100	100	2,400
August 18, 2006	5,800	190	1,000	230	1,000	490	36	2,900
December 1, 2006	410	1.7	6.3	1.2	47	100	4.7	100
February 23, 2007	ND	ND	0.51	ND	1.4	2.6	NĎ	ND
May 10, 2007	ND	ND	NĐ	ND	2.0	5.9	ND	ND
August 16, 2007	ND	ND	NĐ	ND	ND	ND	ND	ND
MW-2								
February 8, 2006	10,000	1,500	8	660	380	4,300	120	2,800
May 5, 2006	15,000	1,800	ND	1,200	1,200	5,800	150	4,300
August 18, 2006	360	11	ND	13	9.7	160	4.6	600
December 1, 2006	11,000	1,000	ND	990	910	2,100	87	2,000
February 23, 2007	3,200	210	ND	270	85	900	33	1,400
May 10, 2007	590	31	ND	39	22	200	5.9	250
August 16, 2007	650	49	ND	71	49	100	3.5	82
MW-3								
February 8, 2006	470,000	3,800	660	ND	790	490,000	26,000	49,000

Table 2 (continued)											
	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA			
May 5, 2006	400,000	3,300	ND	ND	ND	590,000	21,000	86,000			
August 18, 2006	310,000	1,800	ND	ND	ND	440,000	23,000	79,000			
February 23, 2007	220,000*	ND	ND .	ND	ND	260,000	15,000	33,000			
May 10, 2007	140,000*	NÐ	ND	ND	ND	180,000	7,100	80,000			
August 16, 2007	69,000*	NĐ	ND	ND	ND	85,000	3,400	180,000			
MW-4											
February 8, 2006	NS	NS	NS	NS	NS	NS	NS	NS			
May 5, 2006	NS	NS	NS	NS	NS	NS	NS	NS			
August 18, 2006	NS	NS	NS	NS	NS	NS	N\$	NS			
December 1, 2006	NS	NS	NS	NS	NS	NS	NS	NS			
February 23, 2007	NS	NS	NS	NS	NS	NS	NŞ	NS			
May 10, 2007	NS	NS	NS	NS	NS	NS	NS	NS			
September 6, 2007	49,000	710	840	ND	10,000	3,600	510	32,000			
MW-5											
February 8, 2006	50	ND	ND	ND	ND	1	ND	ND			
May 5, 2006	ND	ND	ND	ND	ND	0.93	ND	ND			
August 18, 2006	ND	ND	ND	ND	ND	f	ND	ND			
December 1, 2006	ND	0.69	ND	ND	0.52	0.97	ND	ND			
February 23, 2007	73	ND	ND	ND	ND	1.7	ND	ND			
May 10, 2007	ND	ND	ND	ND	ND	1.5	ND	ND			
August 16, 2007	ND	ND	ND	ND	ND	1.3	ΝĐ	ND			
MW-6											
February 8, 2006	3,600	220	43	66	160	2,700	180	7,800			
May 5, 2006	1,600	130	21	37	65	1,400	53	3,100			
August 18, 2006	270	27	ND	3	4	240	11	2,400			
December 1, 2006	1,700	ND	ND	ND	ND	1,700	92	800			
February 23, 2007	ND	ND	ND	ND	ND	15	ND	ND			
May 10, 2007	ND	3.0	ND	ND	1.9	26	2	48			
August 16, 2007	ND	ND	ND	ND	ND	1.4	ND	ND			
EX-1 (Only reported v	alues for EX-	1)									
Feb 19-20 ,2004	120,000	9,500	4,300	840	3,900	150,000	NA	NA			

^{* -} Gasoline Value due to MTBE

No DIPE, ETBE, EDB, or 1,2-DCA was reported in groundwater samples during the August 2007 sampling event. Ethanol and methanol were not reported in any of the groundwater samples during the May 2004 monitoring event and are no longer being included in the laboratory analyses. Concentration trends are shown for several constituents in Plates 1 & 2.


⁻ All reported values in parts per billion (ppb)


⁻ NA = not analyzed

⁻ ND = below laboratory detection limits

⁻ NS = not sampled

Plate 1: TPHg and MTBE Concentration Trends for Selected Wells and Analytes

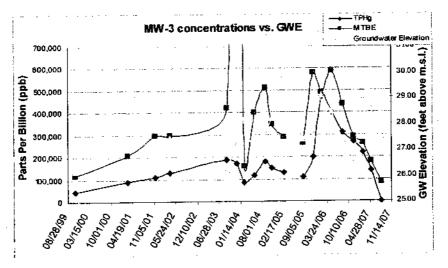


Plate 1 (continued): TPHg and MTBE Concentration Trends for Selected Wells and Analytes

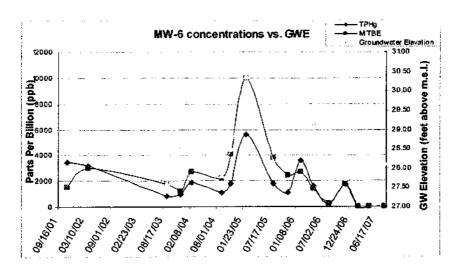
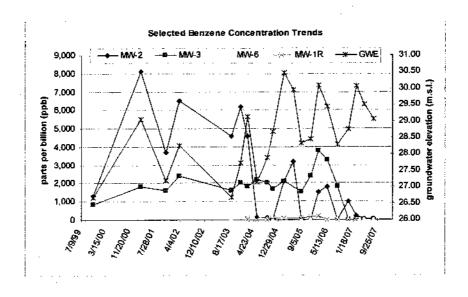



Plate 2: Selected Benzene Concentration Trends

SOIL VAPOR EXTRACTION

The soil vapor extraction system (SVES) has been operating onsite since August 31, 2006. The SVES originally consisted of a thermal oxidizer equipped with a blower capable of producing up to 250 cubic feet per minute air flow and vacuum of up to 10 inches of mercury. The system was modified to

operate in catalytic mode due to low influent hydrocarbon concentrations. SVES activities halted from January 31, 2007 to February 21, 2007 while notifying the Bay Area Air Quality Management District (BAAQMD) of system modifications and startup. SVES activities also halted from April 30, 2007 to May 25, 2007 due to system retrofitting associated with a dual phase extraction test. Aside from those time periods mentioned, system down-time has been short and infrequent, usually related to water production issues. Table 3 presents a summary of the SVES destruction and removal efficiencies based on a combination of periodic field monitoring of influent and effluent airstreams, associated flow rates, and laboratory sample results.

					Та	ble 3				
	ΑΑ	laska Gas	SVES D	estructi	on and	Removal E	fficiency	(Catalytic	Mode)	
Date	Hour Meter	Hours of Operation	Influent (ppm)	Effluent (ppm)	Air Flow (cfm)	Destruction Efficiency (%)	Effluent Release (lbs/day)	VOCs Removed (lbs/day)	Total VOCs Removed (lbs)	Percent Operating
2/21/07	3420.4	0	6.1	0	30.8	100.00	0.000	0.069112	0.000000	0
2/21/07	3421.4	1	0.7	0		100.00	0.000	0.000000	0.000000	100
2/22/07	3445.8	24.4	0.5	o	21.3	100.00	0.000	0.003918	0.003983	102
2/27/07	3563.5	117.7	1.6	0.15	40.5	90.63	0.002	0.023837	0.116899	98
3/21/07	4092.9	529.4	0.3	0	44.2	100.00	0.000	0.004878	0.107594	92
3/29/07	4283.8	190.9	0.4	0	35.2	100	0.000	0.005179	0.041197	99
4/30/07	5046.6	762.8	0.4	0	35.2	100	0.000	0.005179	0.164617	103
	***System	shutdown 4/3	30/07 for D	PE Test						
	***System	restarted 5/2	5/07, Syste	em hours fo	or 5/25 ba	ack calculated t	from 5/29			
5/25/07	5056.2									
5/29/07	5152.2	96	220	0.5	55	99.77	0.010	4.450990	17.803963	100
6/08/07	5392.4	240.2	132	0	79	100.00	0.000	3.835945	38.391413	111
6/18/07	5635.6	243.2	210	0.62	73	99.70	0.017	5.639148	57.143363	101
7/13/07*	6230.9	43.6	80.5	Ð	88.5	100.00	0.000	2.620658	4.760863	91
7/19/07	6372.3	141.4	91	0	90.5	100.00	0.000	3.029432	17.848407	98
8/08/07	6861.9	489.6	35	0	120	100.00	0.000	1.544972	31.517428	107
8/13/07	6998.3	136.4	30.6	0	121	100.00	0.000	1.362003	7.740718	114
9/06/07	7552.0	553.7	33	0	130	100.00	0.000	1.578079	36.40759	100
9/28/07	8083.1	531.1	0	0	93	n/a	0.000	0.000000	0.000000	101

* System down on 6/25/07, restarted 7/11/07

ppmV – parts per million by Volume

cfm – cubic feet per minute

lbs - pounds

According to a combination of field data and laboratory analytical data, since the oxidizer was restarted in catalytic mode, approximately 212.05 lbs or 34 gallons of product have been removed by the system. Approximately 939 lbs of hydrocarbons or 152 gallons of product have been removed since soil vapor extraction began in August 2006. Destruction efficiency has been roughly 99.0 % with no more than 0.170 pounds of hydrocarbon product emitted per day to the atmosphere. A comprehensive table of SVES field data is included as Appendix D.

WELL INSTALLATION

On August 9, 2007 monitoring well MW-1R was destroyed by over-drilling and re-constructing in the same bore-hole in accordance with Alameda County well destruction and construction guidelines. The drilling was conducted by Gregg Drilling and Testing, Inc. of Martinez, CA (C-57 #485165) under Alameda County Public Works Agency – Water Resources Well Permit #W2007-0809 and directed by HerSchy staff under the guidance of a California professional geologist.

Original monitoring well MW-1R was destroyed by over-drilling with 10-inch hollow-stem augers to a total depth of 25 feet below grade (fbg). The boring was then backfilled with 1.5 feet of a sand and bentonite mixture to bring the total boring depth to 23.5 fbg, which is the same depth of original well MW-1R. A bentonite seal was installed from 3 fbg to 1.25 fbg and allowed to cure for at least 30 minutes prior to completing the well with neat Portland cement to approximately 0.5 fbg. Two-inch, 0.010-inch factory slotted schedule 40 PVC casing was installed from 23 fbg to 3 fbg. Blank schedule 40 PVC casing was installed from 23 fbg to 3 fbg. Blank schedule 40 PVC casing was installed from 3 fbg to 0.5 fbg. Well construction and completion details are included in Appendix E.

CONCLUSIONS AND RECOMMENDATIONS

The only reported fuel constituent in wells MW-5 and MW-6 this quarter was MTBE at 1.3 ppb and 1.4 ppb, respectively. Both reported values were below the San Francisco regional water quality control board (SFRWQCB) environmental screening levels (ESLs) for groundwater that is a potential source of drinking water. No fuel constituents were reported in newly replaced monitoring well MW-1R this quarter.

Wells MW-2, MW-3, and MW-4 were reported as impacted with fuel constituents to varying degrees. The highest reported concentrations this quarter were from well MW-3, which has historically contained the highest contaminant concentration, apart from wells with free product. A noted difference this quarter from historical references is that well MW-4, which has contained reported levels of free product, had lower reported hydrocarbon concentrations than well MW-3. It is interesting to note that well MW-4 is both closer to EX-1, which continues to contain free product, and has been reported itself with varying levels of free product. This discrepancy may be due to the inclusion of MW-4 into the vapor extraction system. Further monitoring of all wells is warranted to establish accurate concentration trends. Concentrations of TAME and TBA exist in MW-3 at 3,400 ppb and 180,000 ppb, respectively. Relatively moderate concentrations of TAME and TBA are also present in MW-2 at 3.5 ppb and 82 ppb, respectively. Historically, concentrations in MW-2 have tended to correlate proportionately with groundwater rise and fall.

Relatively high concentrations of petroleum hydrocarbons remain in soil and groundwater beneath the subject site. This is evident by the fact that extraction well EX-1 continues to contain free product. Isoconcentration maps for TPHg and MTBE are attached as Figures 3 and 4, respectively.

In a site update letter dated August 29, 2007, HerSchy detailed some of the progress it had made with previous approved workplans. The completed task items include three of six previously approved direct push soil borings and replacement of damaged well MW-1R. This letter also addressed interest in modifying and amending the previous workplan. To reiterate, the modifications included completing the soil borings by hand auger instead of by direct push to expedite the process and reduce costs. The modifications also included the adjustment of some previously approved boring locations into the city of Oakland right of way and off of private property in order to avoid pain-staking and time-consuming access agreement efforts. After receipt of the soil and groundwater data from the three completed soil borings, it was decided that additional soil borings would be beneficial in helping delineate plume extremities. HerSchy also requested a meeting in order to address on-going issues in person. A site plan with completed, modified, and amended soil boring locations was included in the update letter on August 29, 2007 and is also included as Figure 5 for reference. The locations depicted in Figure 5 are intended to supersede all previously proposed and approved boring locations.

In the May 2007 groundwater monitoring report, HerSchy noted that a surety bond for previously approved permanent wells on Marshall Street would likely be obtained by Mr. Sappal within 30 days of the report date. Since that time, Mr. Sappal has reported continued issues with securing the bonds necessary to complete the permanent wells. Currently, HerSchy believes it is his intention to discuss these matters further when and if we can move forward with our proposed meeting.

In a letter dated June 12, 2007 from the Alameda County Health Care Services (ACHCS) office, modifications for a dual phase extraction (DPE) test were amended and approved. We are currently waiting for groundwater levels to rise to seasonal highs to conduct the DPE test in order to reduce the risk of extending the smear zone beyond its current limits. The DPE test will include monitoring observation wells for induced vacuum, as was done in the previous vapor extraction test and dual phase extraction test, to assess radius-of-influence of vapor extraction. In addition to EX-1, monitoring wells MW-3 and MW-4 will also be included during the extraction test as they continue to be reported with high levels of dissolved contaminants.

While influent concentrations to the SVES were approximately 3,000 parts per million by volume (ppmv) during system startup in September 2006, concentrations are currently almost negligible. The current influent concentration to the SVES also reflects the inclusion of wells containing free product into the extraction system. Alternative active remediation options, including limited excavation and a trench

system for collecting and removing free product, are currently being investigated and, if warranted, will be developed.

As an interim means of increasing remediation efforts with existing equipment, HerSchy would like to propose intermittent operation, or cycling, of the current oxidizer. Currently the unit is operating on a continual 24 hours per day schedule. The cycling of the system on a one week on, one week off or similar basis may allow for removal of any contaminant recharge that may occur. Intermittent operation of the remediation unit would reduce costs associated with greater fuel usage associated with lower influent concentrations. The down cycles (or off cycles) would also allow for fuel constituents to rebound within the effective radius of the vapor extraction wells.

HerSchy has also installed SoakEase™ product specific absorbent socks into extraction well EX-1. The installation of the socks is a relatively passive means of dealing with the continued presence of free product in EX-1. The product socks being used were deemed the cost effective interim measure for dealing with the free product due to the extremely slow recharge rate of the existing free product as documented during the trial use of a product skimmer (September 2006) and again during the manual removal of product with disposable bailers (July & August 2007). To date, one product sock has been found fully saturated with just under 1 gallon of product and was subsequently removed and replaced. Replacement frequency will be monitored along with other remedial unit monitoring activities to ensure that product sock use continues to be cost effective.

SCHEDULE AND CLOSING

The next monitoring and sampling event is scheduled for December 2007. We appreciate the opportunity to work with you on this matter. Please contact Reijo Ratilainen (559) 760-0037 or Scott Jackson (559) 641-7320 with any questions or for additional information.

Sincerely,

HerSchy Environmental, Inc.

Reijo Ratilainen

Project Geologist

Scott A. Jackson No. 7948

Scott Jackson, P.G. #7948 Senior Project Geologist

Figures

1 - Site Plan

2 - Groundwater Elevation Diagram3 - TPHg Isoconcentration Diagram

4 - MTBE Isoconcentration Diagram

5 - Site Plan with Proposed Direct Push Soil Boring Locations

Appendices

A - Groundwater Field Sampling Data Sheets

B - SVES Field Monitoring Data C - Historical Groundwater Data

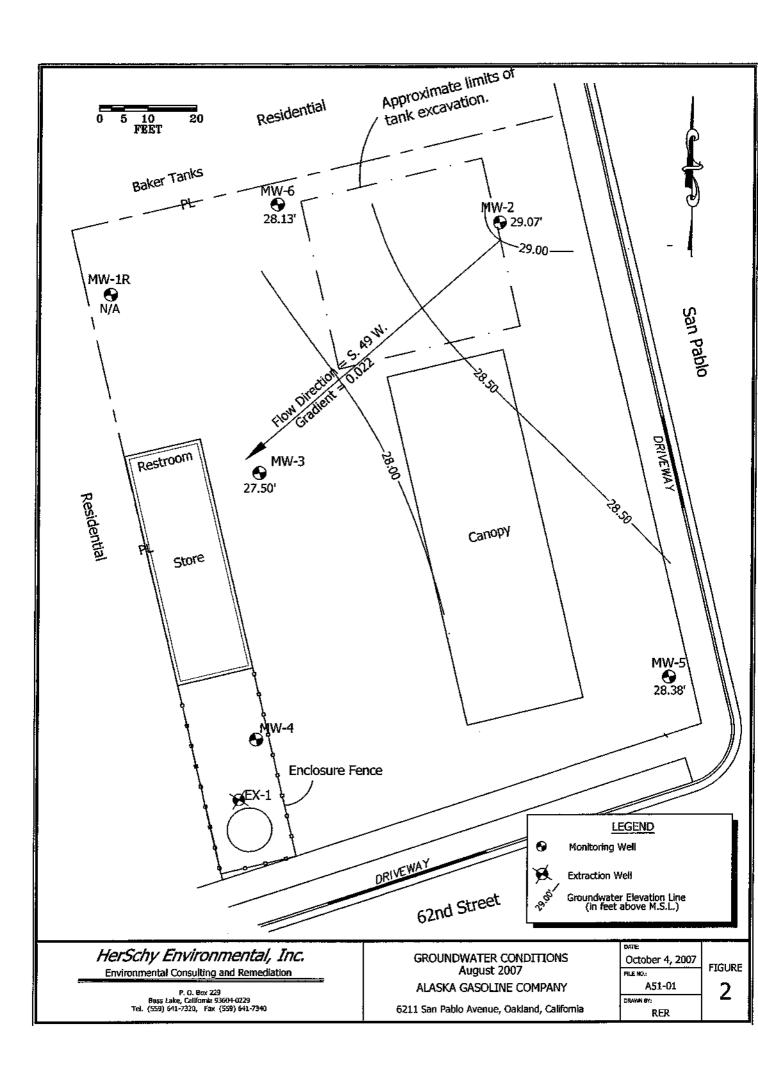
D - Certified Analytical Reports for Groundwater Sampling

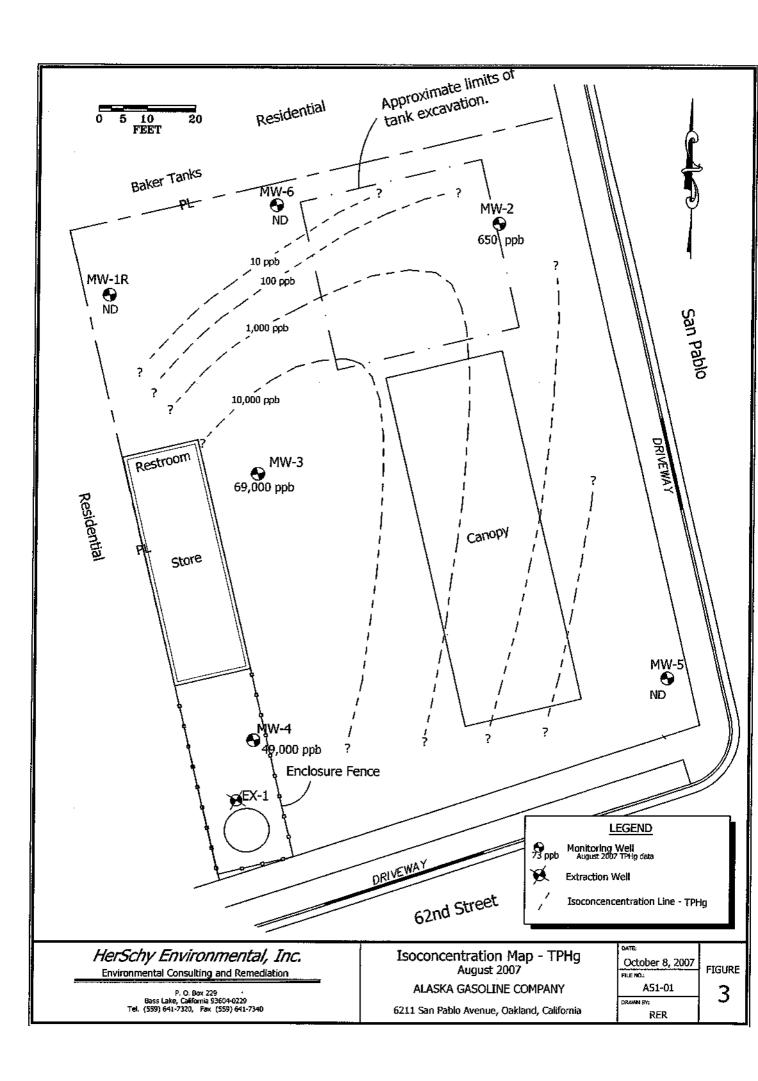
E - Well Construction and Completion Diagram for Well MW-1R

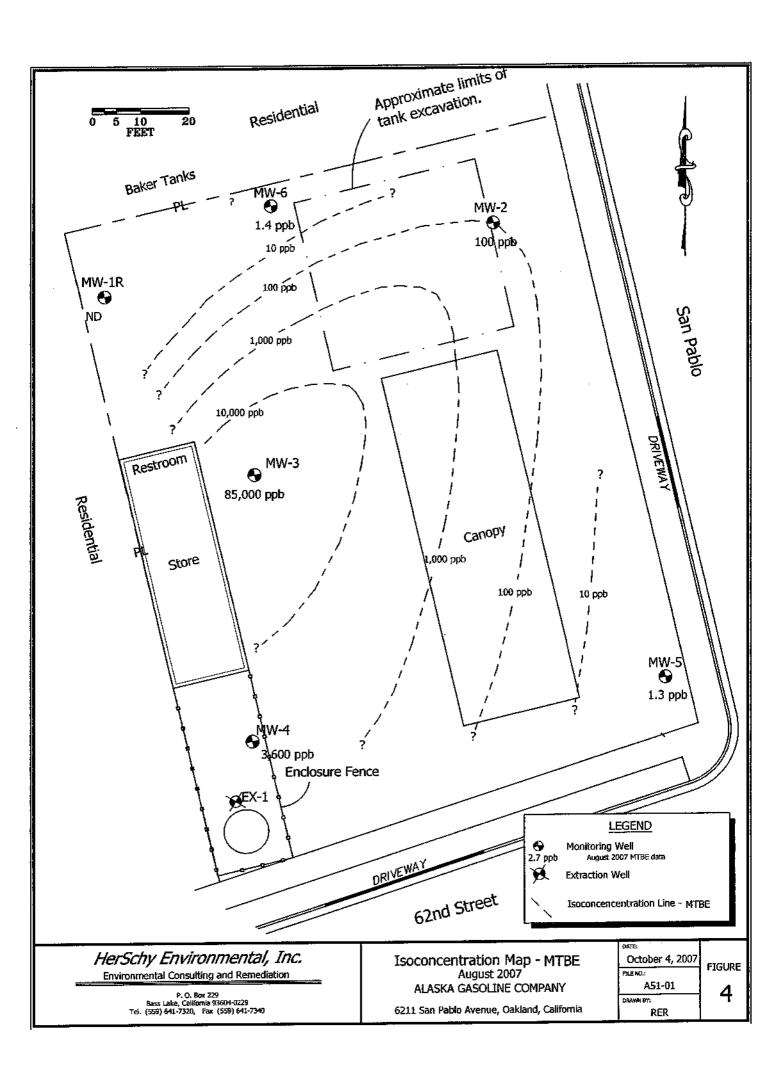
cc: Mr. Pritpaul Sappal

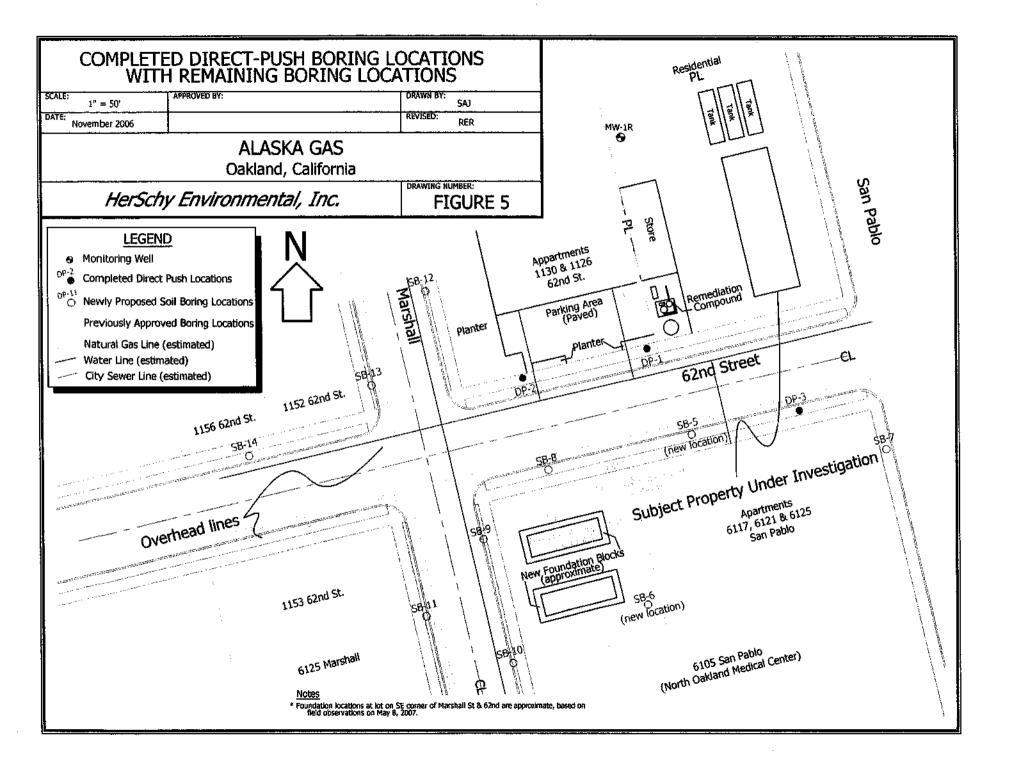
Mr. Hernan Gomez, Oakland Fire Services Agency

Ms. Alyce Sandbach, Deputy District Attorney


HerSchy Environmental, Inc.
Environmental Consulting and Remediation


P. O. Box 229 Bass Lake, California 93604-0229 Tel. (559) 641-7320, Fax (559) 641-7340 SITE LOCATION MAP


ALASKA GASOLINE COMPANY


6211 San Pablo Avenue, Oakland, California

DATE:	
August 2005	FIGURE
FILE NO.:	LIGORE
A51.01	1
ORAWAY BY:	上
WEA	

APPENDIX A Groundwater Field Sampling Data Sheets

HerSchy WATER SAMPLE FIELD DATA SHEET · Environmental

Client Name	: ALASKA	GA-3	Location	1: OAKL	410
Purged By:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Γ .	Sampled	by:	75 T
Sample ID:	MW-IR	Type: Groun	ndwater <u>X</u> St	uface Water	Other
Casing Diam	eter (inches): 2_	<u>×</u> 3	4 5	6C	Other
Casing Eleva	tion (feet/MSL):		Volume i	n Casing (gal.):	
Depth of Wel	II (feet): 22	1.65	Calculate Purge	Volume (gal.): _	
Depth to Wat	er (feet): <u>9.</u>	33	Actual Purge Vol	•	
Date Purged:	08-16-0) '7 .	Date Sampled	: 08-1	6-07 050
TIME	VOLUME	рН	E. C.	TEMP.	TURBIDITY
		·			
					•
					Additional to the second secon
Sheen Y/N?: _			Odor:		
Purging Equipm	nent:	1	·	.	
Sampling Equip	ment:				
Remarks:	pevelopee	WELL	226	PEEP STA	467
	GRAG S	SAMPLE	ONLY	· · · · · · · · · · · · · · · · · · ·	
Sampler's Signat	ure: A	1 S. Was	rl '		· · · · · · · · · · · · · · · · · · ·
/Water Sample Sheet wad			,		

HerSchy WATER SAMPLE FIELD DATA SHEET Environmental

Client Name	: ALASKI	1 GA-3	Location	: OAKL	ANO
Purged By:	WES	7	Sampled	by: <u></u>	73 T
Sample ID:	MW-2	Type: Groun	ndwater 🗶 Su	rface Water	Other
Casing Diame	eter (inches): 2		4 5	6 0	Other
Casing Elevat	ion (feet/MSL).	36.33	Volume ir	ı Casing (gal.):	2,2
	(feet): 20		Calculate Purge V		1 -7
Depth to Wate	er (f ee t):	26	Actual Purge Vol	ıme (gal.):	6.7+
Date Purged:	08-16-	07	Date Sampled:	08-1	6-07 <i>0</i> 8
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY
0837		6.85	698	69.3	Cloupy
0840	2.2	6.91	702	70.7	CLOUDY
0843	4,4	6.90	702	70.5	Cloupy
0846	6,7	6.82	722	69.7	CLOUDY
Sheen Y/N7:	Ν		Odor:	ONE	
Purging Equipme	ent:	,	WATERRA	ı	
Sampling Equipn	nent:		WATERRA WATERAY	<u> -</u>	
					
	$\overline{}$	-8 +	<u> </u>		
ampler's Signatu	re: L/o/u	n S. Will	4		·
iter Sample Sheet wpd			•		

M

HerSchy WATER SAMPLE FIELD DATA SHEET - Environmental

Client Nam	e: ALASKI	4 GA-3	Locatio	n: OAKL	ANO
	WES			i by: <i>ເ</i> ນຣ	3T
Sample ID:	mw-3	Type: Ground	dwater <u>X</u> S	urface Water	Other
	neter (inches): 2				
Casing Eleva	tion (feet/MSL):	33.12	Volume	in Casing (gal.):	2,2
•	II (feet):2	100	Calculate Purge	Volume (gal.):	6,6
Depth to Wat	ter (feet):	162	Actual Purge Vo	lume (gal.):	6,6+
Date Purged:	08-16-	07	Date Sampled	ı: <u>08-/</u>	6-07 063
TIME	VOLUME	рН	E. C.	TEMP.	TURBIDITY
0619		6.51	817	65.0	Cloudy
0621	2,2	6.39	ファフ	67.7	CLOUDY
0624	4.4	6.43	770	68.3	Clouny
0627	6.6	6.50	760	67.8	
Sheen Y/N7: _	υ L	·	Odor:	PETRUCE	N pa
Purging Equipm	ent:	WAT	ELVA		
Sampling Equip	ment:	WAT WA	TERRA		
Remarks:					· · · · · · · · · · · · · · · · · · ·
	-				
Sampler's Signati	ure: L/o/w	n S. Mas	<u> </u>	<u> </u>	•
/Water Sample Sheet.wpd			•		

HerSchy WATER SAMPLE FIELD DATA SHEET - Environmental

Client Nan	ne: ALASKI	7 G1-3	Location	on: <u>O AK</u> L	ANO
Purged By	WES	τ	Sample	d by:	93 T
Sample ID:	mw-5	Туре: Groun	dwater X S	urface Water	Other
Casing Diar	meter (inches): 2	<u>×</u> 3	4 5_	6(Other
Casing Elev	ation (feet/MSL):	35.17	· Volume	in Casing (gal.):	2.9
Depth of We	ell (feet): 2	490	Calculate Purge	Volume (gal.): _	8.9
	ater (feet):		Actual Purge Vo	•	· C1
Date Purged;	08-16-0	7	Date Sample	d: <u>08-1</u>	6-07 0828
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY
0815		6.69	746	66,1	Cloudy
0818	3	6.67	710	67.2	CLOUDY
0822	_6	6,71	703	67.5	Clarpy
0826	9	6.64	704	67,4	Cloupy
Sheen Y/N?: _	N		Odor:	NONE	
Purging Equipr	ment:	WATER	RA		
Sampling Equip	oment:	WATER	RRA	·	
Remarks:		·			,
			· · · · · · · · · · · · · · · · · · ·		
	- /) /	141.	/		
Sampler's Signat	ture:	n S. WIG			•
/Water Sample Sheet,wood			•		

HerSchy WATER SAMPLE FIELD DATA SHEET - Environmental

Client Name	: ALASK	4 GA3	Location	n: <u>0 AK4</u>	410
Purged By:	WES	57 ·	Sampled	I by:	73 T
Sample ID:	mw-6	Type: Grou	ndwater X St	ırface Water	Other
Casing Diam	eter (inches): 2	<u>×</u> 3_	4 5	6 C	Other
Casing Eleva	tion (f ee t/MSL)	36.07	Volume i	n Casing (gal.):	2.4
Depth of Wel	l (feet):	3.10	Calculate Purge	Volume (gal.): _	7.4
Depth to Wate	er (feet):	94	Actual Purge Vo.	lume (gal.):	7.4+
Date Purged:	08-16-	07	Daté Sampled	: _ 08-1	6-07 <i>07</i> 3
TIME	VOLUME	pН	E. C.	TEMP.	TURBIDITY
0719		6.94	559	66.8	CLOUDY
0723	2.4	6.94	556	67.7	Claipy
0726	4.8	6.91	560	67.5	Cloudy
0728	7.4	6.83	561	67.4	Claury
Sheen Y/N?:		<i>)</i>	Odor:	NONE	
Purging Equipme	ent:	u	ATERRA		
Sampling Equipn	nent:	u	ATERRA ATERRA	•	
Remarks:	<u> </u>				·· ·· ·
		1 /			
Sampler's Signatu	ıге: <u> </u>	n S. NJ	<u>s</u>		,
/Water Sample Sheet.wpd			•		

APPENDIX B SVES Field Monitoring Data

Alaska Gas Data Sheet Site Address: 6211 San Pablo Ave., Oakland, CA 94608

				,			TOUR TOUR AVE.,								
Date	(Total Hours	Hours	Flow - pitot (#3) (sofm)	Flow - Manifold (scfm)	Pressure ("-weter)	Recirc Valve (# turns open)	SVE Wells operating	Air Sparge system operation	influent (ppm)	Effluent (ppm)	Water in Tank (approx. gal's)	Temp. Cont.(F)	Dilution Cont. (F)	High Limil (F)	Propane (% full)
Note: sy:	stem down fro	m 1/30/2007	evening until cataly	/tic system star	rt on 2/21/2007 *	nàna.	· · · · · ·				 .				
2/21/2007	3420,4	n/m	31	30.8	n/m	full open	VE-1,2,3,4,5,6,7,12	AS-1,2,4,5	6.1	0.0	220				
	3421.4	n/m	n/m	r√m	n/m	full open	VE-1,2,3,4,5,6,7,12	AS-1,2,4,5	0.7	0.0	220	1262	1002	1001	85
2/22/2007	3445.8	25.3	22	21.3	n/m	full open	VE-1,2,3,4,5,6,7,12	AS-1,2,4,5	0.5	0.0	220	1391	1125	1122	78
2/23/2007	3472.7	52.2	26	n/m	n/m	full open	VE-1,2,3,4,5,6,7,12	olf	n/m	n/m	220	1341	1117	1113	66
**** system e	officiency tests	5 ****													
	(1) with all w	rells open & n	ecirc valve full oper	1											
			n/m	29.2	-31										
	(2) with VE-	1,2,3,4,5,6,7,	12 open & recirc ful	II open											
			n/m	29.3	-31										
	(3) with VE-	1,2,3,4,5,6,7,	12 open & recirc ck	osed 6 turns fro	om full open										
			49	52.5	-60										
	(4) with VE-	1,2,3 open &	recirc closed 5 turn	s from full oper	n (altempt to dev	vater short screen int	ervals)								
	"prior to dos	s e													
			41	42.5	-43										
	*after close														
			19	~10	-56	(H20 in Influent line	=)								
	(5) with VE-	1,2 open and	recirc valve closed	6 turns from fo	ıll open										
			15	over	-88										
	*after 8 minu	des	n/m	n/m	-90	> water being pro	duced slowly (~0.5 cm/5 mi	inutes in visible Infl	uent water pi	pe)					
****System re	eturned to pre	-efficiency te	st stalus - VE-1,2,3	.4,5,6,7,12 ope	en & recirc full op	oen .									
2/27/2007	3563.4	143	39	40.5	-46	full open	VE-1,2,3,4,5,6,7,12	off	n/m *	n/m *	220	992	878	878	72
3/21/2007	4092.9	672.4	-	44.2	~43	6 turns back from full open	All open	off	0.3	0.1	220	953	850	849	72
****System e	officiency tests	****													
			en only & recirc @ ·	6lums closed f	rom full closed										
			0 to -1 (?)	16.2	~ 55				0.0	n/m		1088	_		
			osed 1/2 turn more						4.0	10111		1000		-	-

Alaska Gas Data Sheet (continued) Site Address: 6211 San Pablo Ave., Oakland, CA 94608

					, , <u>,,, ,, , , ,,,,,,,,,,,,,,,,,,,,,,</u>										
Date	Total Hours	Hours	Flow - pitol (#3) (scfm)	Flow - Manifold (scfm)	Pressure ("-waler)	Recirc Valve (# turns open)	SVE, Wells operating	Air Sparge system operation	Influent (ppm)	Effluent (ppm)	Water in Tank (approx. gal's)	Temp. Cont(F)	Dilution Cont. (F)	High Limil (F)	Propen (% full
			13	_	~80							10 9 8	-	-	_
	-after 15 min	utes													
			25	-	~90							1048	-		-
	* Notes: apm	oximately 35	gallons of water pr	oduced; VE-1;	2 appears to be i	n relatively loose soil	as pressure does not hold	when isolated							
	(2) w.wells 1	,2,3,4,5,6,11	open & recirc close	ed 6.25 turns f	rom full open										
			45	P *	-80							950	-	-	-
3/26/2007	4211.9	791.5	35	_	~80	-5.5	VE-1,2,3,4,5,6,11		-	-	990	1086	947	946	-
	* recirculatio	n valve close	ed back to 5.5 turns	closed from fu	ılı open										
			30	29.6	~60										
3/29/2007	4283,6	863.3	~15	21,8	~56	-5.6	VE-1,2,3,4,5,6,11	AS-1,4,5	0,0	ស/ព	0	1145	987	986	79
			emoved in the am,												
	* Air Sparge	system turn	ed on, test AS-1 w/									4000	204	~~4	
	-	-	29	31.4	~85	-6.5			0.0	n/m	-	1036	921	921	
	**** On site	leave, AS-1,	3,4 set on 45 min o	n cycle from 7	am to 8:30pm										
	-	-	37	35.2	~84	-6.5	VE-1,2,3,4,5,6,7,13		0.4	n/m	-	1015	899	899	79
4/18/2007	4763.2	1342.8	31	_		_	VE-1,2,3,4,5,6,7,13	AS-1,4,5	-	-	1485	1165	999	-	-
	4736.7		20		-	full open	all open	off	-	-		1171	981	979	72
4/19/2007	4786.1	1365.6	30	-	_	-	all open	off	-	-	1485	1088	945	-	8
4/30/2007	5046.6	1626,2	33	-	-	full open	all open	off	-	-	D	1147	994	993	
	* System sh	nuldown to pr	repare for dual pha	se extraction to	est										
	• •		uct DPE leat on EX	-											
5/25/2007	•		to Vepor Extraction	n Wells, also t	o include MW-4			_			•	000	885	896	
5/29/2007	5152.2	1731.8	55	-	-	~8.0	all open	off	220	0.5	0	960	000	000	
	-		55	83	-	~6	ali open	off	116	0.2	0	956	895	894	
	***TEST														
	wiell wells	open - flow a	t 53.5 cfm at manif	old											

Alaska Gas Data Sheet (continued) Site Address: 6211 San Pablo Ave., Oakland, CA 94608

Date Total Hours Fiber - sheet Reported Projected Projected Cortin Project	Site Address: 6211 San Pablo Ave., Oakland, CA 94608															
450 7- 1200 7- 1200 7- 1200 7- 1200 7- 1200 7- 7- 1200 7- 7- 7- 7- 7- 7- 7-	Date		Hours (#3) (scfm) Manifold (scfm) Heart Valve (# turns open) SVE Wells opera		SVE Wells operating	Air Sparge system operation				Temp. Cont.(F)	Dilution Cont. (F)	High Limit (F)				
On leave from clare PID influent reading sheady @ -250 ppm 61/2007 \$227.5 \$1807.2 \$37 \$40.1 - \$1.01 cpm all open off 104 1140 1000 9999 70 related AS system - 4fter -5-10 minutes Mover motor appears to be malfunctioning on leave 10 minutes Mover motor appears to be malfunctioning on leave 157 6.0 all open off 150 0 - 945 917 919 64/2007 \$297.1 \$1676.5 \$61		w/weils 10,1	i1,12,13 close	d & recirc full open		•	···· <u>·</u>			1	L	!	1			<u></u>
On leave from clare PID influent reading sheady @ -250 ppm 61/2007 \$227.5 \$1807.2 \$37 \$40.1 - \$1.01 cpm all open off 104 1140 1000 9999 70 related AS system - 4fter -5-10 minutes Mover motor appears to be malfunctioning on leave 10 minutes Mover motor appears to be malfunctioning on leave 157 6.0 all open off 150 0 - 945 917 919 64/2007 \$297.1 \$1676.5 \$61				·						450	_		1200	938	935	
February		on leave (ro	m site PID Infl	luent readings hold	ing steady @ ·	~250 ppm								****	200	
February																
**Restart A8 system - after -5-10 minutes blower motor appears to be malfunctioning - on leave -5 17	6/1/2007	5227.6	1807.2	37	46.1		full open	ail open	off	104	-	-	1140	1000	999	
**Restant A8 system - after -5-10 minutes blower motor appears to be malfunctioning - on leave -> 57																
- on leave —> 57 — — — 6.0 all open off 150 0 — 945 917 919 6442007 5297.1 1876.6 61 — — — 6.0 all open off 135 0 — 909 665 865 82 Individual sine sampling on EX-1 & MM/-1, with regular vacuum EX-1 & MM/-1, w				56	80	-	~6 ,0	all open	off	157	O	-	dropping			
- on leave —> 57 — — — 6.0 all open off 150 0 — 945 917 919 6442007 5297.1 1876.6 61 — — — 6.0 all open off 135 0 — 909 665 865 82 Individual sine sampling on EX-1 & MM/-1, with regular vacuum EX-1 & MM/-1, w		"Restart AS	system - effe	r =5.10 minutes Ne	weer motor and	team to be malfu	Polioci na									
6/4/2007 5297.1 1876.6 81						_ 		eil onen	off	160			045	647	040	
Individual line sampling on EX-1 & MW-4, with regular vacuum EX-1 & G45pm MW-4 @ 610 ppm ***Testing*** widilution control manually opened to approx 85% (normally at 55%) to increase eirflow to burner pitol reads 87 cfm manifold reads 80 cfm widilution control at 90% pitol reads 73 cfm mainfold reads 59.5 cfm sampling of influent points gives influent (post dikilion) @ 85 ppm influent (@ manifold, pre-blower) @ 68 ppm influent (@ manifold, pre-blower) @ 68 ppm ****Oilution control held at 90% for this reading Meet Rob Larson of Meko industries to do efficiency tests on system.									uii	133	·	-	345	917	910	
Individual line sampling on EX-1 & MW-4, with regular vacuum EX-1 @ 645ppm MW-4 @ 610 ppm ***Testing*** widilution control manually opened to approx 85%(normally at 95%) to increase airflow to burner pitot reads 60 cfm widilution control at 90% widilution control at 90% pitot reads 50 cfm aminfold reads 60 cfm wainfold reads 59.5 cfm sampling of influent points gives Influent (post dilution) @ 85 ppm Influent (post dilution) @ 85 ppm \$298.7 1878.2 75 6.0 all open off 124 - 765 750 759 - ***Dilution control held at 90% for this reading Meet Rob Larson of Meko Industries to do efficiency lests on system.	6/4/2007	5297,1	1876.6	61	-	-	~6,0	all open	off	135	0	_	909	865	865	82
w/dilution control manually opened to approx 85% (normally at 95%) to increase eirflow to burner pitot reads 87 c/m manifold reads 60 c/m w/dilution control at 90% pitot reads 73 c/m mainfold reads 95.5 c/m sampling of influent points gives influent (post dilution) @ 85 ppm influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 6.0 all open off 124 785 760 759 - ***Dilution control held at 90% for this reading Meet Rob Larson of Mako industries to do efficiency tests on system.		Individu a l (i	ne sampling o	EX-1 @ 645ppm MW-4 @ 610	th regular vact	nriti										
pitot reads 87 cfm manifold reads 60 cfm w/dilution control at 90% pitot reads 73 cfm mainfold reads 59.5 cfm sampling of influent points gives Influent (post dilution) @ 88 ppm influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open of 124 786 760 759 - ***Dilution control held at 90% for this reading Meet Rob Larson of Mako Industries to do efficiency tests on system.		***Testing**	•													
manifold reads 60 cfm widdlution control at 90% pitot reads 73 cfm mainfold reads 59.5 cfm sampling of influent points gives Influent (post dilution) @ 88 ppm Influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open off 124 786 760 759 ****Dilution control held at 90% for this reading Meet Rob Larson of Mako Industries to do efficiency tests on system.		w/dilution c	ontrol manual)	y opened to approx	85%(normally	y at 95%) to incre	ease airflow to burner	r								
widilution control at 90% pitot reads 73 c/m mainfold reads 59.5 c/m sampling of influent points gives Influent (post dilution) @ 85 ppm Influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open off 124 786 760 759 ***Dilution control held at 90% for this reading Meet Rob Larson of Meko Industries to do efficiency tests on system.					pitot reads t	97 cím										
pitot reads 73 cfm mainfold reads 59.5 cfm sampling of influent points gives Influent (post dilution) @ 85 ppm influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open off 124 786 760 759 ***Dilution control held at 90% for this reading Meet Rob Larson of Mako Industries to do efficiency tests on system.					manifold rea	ads 60 cfm										
mainfold reads 59.5 cfm sampling of influent points gives Influent (post dilution) @ 85 ppm influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open off 124 786 760 759 ****Dilution control held at 90% for this reading Meet Rob Larson of Mako Industries to do efficiency tests on system.		w/dilution o	ontrol at 90%													
sampling of influent points gives Influent (post dilution) @ 88 ppm Influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open off 124 786 760 759 ****Dilution control held at 90% for this reading Meet Rob Larson of Mako Industries to do efficiency tests on system.					•											
Influent (post dilution) @ 85 ppm Influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open off 124 786 760 759 ***Dilution control held at 90% for this reading Meet Rob Larson of Mako Industries to do efficiency tests on system.		sampling of	idfluent solate	: nlves	mainroid rea	ads 59,5 cm										
influent (@ manifold, pre-blower) @ 88 ppm 5298.7 1878.2 75 ~6.0 all open off 124 786 760 759 ***Dilution control held at 90% for this reading Meet Rob Larson of Mako Industries to do efficiency tests on system.		oc. ipinig of	maem pom	- B(400	Influent (ags	st dilution) @ 86	DOM .									
5298.7 1878.2 75 ~6.0 all open off 124 766 760 759 ****Dilution control held at 90% for this reading Meet Rob Larson of Mako industries to do efficiency tests on system.					-	. –	•									
Meet Rob Larson of Mako Industries to do efficiency tests on system.						.,	, 😅									
Meet Rob Larson of Mako Industries to do efficiency tests on system.		5298.7	1878.2	75	-	_	~6.0	all open	off	124	_	_	786	760	759	
·		***Dilution o	control held at	90% for this readin	6											
* note - with access caps to EX-1 and MW-4 cracked to "bleed in" air, PID concentrations spike significantly,		Meet Rob Larson of Mako Industries to do efficiency tests on system.														
		 -	* note - with	access caps to EX	(-1 and MW-4	cracked to "blee	in" air. PID concent	trations spike significantly,								

Alaska Gas Data Sheet (continued) Site Address: 6211 San Pablo Ave., Oakland, CA 94608

Date	Total Hours	Hours	Flow - pilot (#3) (scfm)	Flow – Manifold (scfm)	Pressure ("-wa(er)	Recirc Valve (# turns open)	SVE Wells operating	Air Sparge system operation	influent (ppm)	Effluent (ppm)	Water in Tank (approx. gai's)	Temp. Cont.(F)	Dilution Cont. (F)	High Limit (F)	Propane (% full)
			-possibly due to r	residual produc	ct in transfer lines	s. Or combination of	slight increase in alrilow fr	om highly contaminat	ed wells mo	ving more va	spor phase VOC's		l ,	<u></u>	
6/6/2007	5348.2	1927.8	57	77	-	-	all open	ofi	130	o	-	877	819	819	68
6/9/2007	5392.4	1972	59	79		~6.0	all open	restarted	132	0	-	895	835	832	78%
6/15/2007	5559,1	2138.6	56	74.5	-	-	ali open	AS-1,4,5 AS-1,4,5 AS-1 @ 4 cfm, AS-5 @ 3 cfm	101	0	-	922	850	B5Q	76
6/18/2007	5635.6	2215.2	58	73	-	-	all open	AS-1,4,5 AS-1 @ 4 cfm	93	0	-	891	820	820	-
7/11/2007	6187.3	2766.9 ***Flame ou	133 It on arrival, it appe	- ears it went out	– on June 25, 200	- 7 ~8-9am and did no	all open it shut the system down.		-	-	-	99	88	88	62
		***system n													
			65	87.5	-	-	all open	AS-1,4,5	139	0	-	744 and	688	684	
			65	87		-		AS-5 @ 0 cfm opened to 4 cfm AS-1 @ 4 cfm, AS-4 @ 3 cfm				Rising- 773	730	727	
7/13/2007	6230.9	2810.4	68	88.5	-	-	ell open	AS-1,4,5 AS-1 @ 3,5 cfm, AS 3.5 cfm	80.5 S-5 @	0	-	843	788	787	70
	-on leave-		74	89.5	-		all open		91	O		835	802		
7/19/2007	6372.3	2951.9	66	90.5	-	_	all open	AS-1,4,5 AS-1 @ 4.5 cfm, AS cfm	77 S-5 @ 3	O	_	842	784	783	82
•								AS-4 @ 4 cfm							
		***balled ap	proximately 6 gallo	ns of free prod	luct from EX-1			_							
8/8/2007	6861,9	3441.5	71	120	-	-	all open	AS-1,4,5	35	0	-	803	749	748	-
8/13/2007	6998,3	3577.8	77	121		-	áli open	AS-1,4,5 AS-4 @ 3.5 cfm	30.6	0	_	756	712	711	
		***belled ap	proximately 2 gallo	ns of free grod	uct from EX-1				_						

APPENDIX C Historical Groundwater Data

Laboratory Analytical Results for Groundwater Alaska Gasoline

	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA
MW-1R								
February 19-20, 2004	1,800	95	130	44	200	220	NA	NA
May 24-25, 2004	210	12	10	5.4	23	79	2.1	37
September 3, 2004	300	1.5	7.1	9.4	42	81	1.6	ND
November 2, 2004	290	14	30	9.5	45	45	1.1	ND
	530	3.4	ND	ND	2.6	1000	100	ND
February 17, 2005 May 24 & 26, 2005	NA NA	NA	NA NA	NA NA	NA	NA	610	ND
August 15 & 17, 2005	2,500	64	240	61	210	2,300	210	ND
November 17, 2005	2,500 2,500	66	290	75	290	1,300	110	1,600
February 8, 2006	3,300	100	310	86	470	1,400	130	1,400
May 5, 2006	3,400	170	350	97	550	1,100	100	2,400
August 18, 2006	5,800	190	1,000	230	1,000	490	36	2,900
December 1, 2006	410	1.7	6.3	1.2	47	100	4.7	100
February 23, 2007	ND	ND	0.51	ND	1.4	2.6	ND	ND
May 10, 2007	ND	ND	ND	ND	2.0	5.9	ND	ND
August 16, 2007	ND	ND	МĎ	ND	ND	NĐ		
MW-2								
February 19-20, 2004	21,000	4,600	120	970	2,000	15,000	NA	NA
May 24-25, 2004	1,200	120	3	63	67	1,900	ND	ND
September 3, 2004	2,300	120	ND	51	70	1,700	26	ND
November 2, 2004	530	35	ND	17	30	520	28	100
February 17, 2005	18,000	2,100	31	800	680	20,000	1,000	ND
May 24 & 26, 2005	22,000	3,200	52	1,400	1,700	16,000	NS	NS
August 15 & 17, 2005	2,000	66	ND	46	47	2,400	95	880
November 17, 2005	760	19	0.64	15	13	1000	26	810
February 8, 2006	10,000	1,500	8	660	380	4,300	120	2,800
May 5, 2006	15,000	1,800	ND	1,200	1,200	5,800	150	4,300
August 18, 2006	360	11	ND	13	9.7	160	4.6	600
December 1, 2006	11,000	1,000	ND	990	910	2,100	87	2,000
February 23, 2007	3,200	210	ND	270	85	900	33	1,400
May 10, 2007	590	31	ND	39	22	200	5.9	250
August 16, 2007	650	49	ND	71	49	100	3.5	82
MW-3							4.4.4	***
February 19-20, 2004	86,000	1,800	630	ND	ND	160,000	NA	NA
May 24-25, 2004	120,000	2,200	ND	180	220	400,000	15,000	ND
September 3, 2004	180,000	2,000	ND	ND	ND	510,000	14,000	ND
November 2, 2004	150,000	1,700	ND	ND	ND	350,000	31,000	140,000
February 17, 2005	130,000	2,100	420	210	730	290,000	11,000	ND
May 24 & 26, 2005	NS	NS	N\$	NS 	NS	NS	NS as ass	NS ar aga
August 15 & 17, 2005	110,000	1,500	ND	ND	ND	260,000	21,000	25,000
November 17, 2005	200,000	2,400	ND	ND	ND	580,000	24,000	49,000
February 8, 2006	470,000	3,800	660	ND	790 ND	490,000	26,000	49,000 98 000
May 5, 2006	400,000	3,300	ND ND	ND ND	ND ND	590,000 440,000	21,000 23,000	86,000 79,000
August 18, 2006	310,000	1,800	ND	ND ND		•	-	79,000 90,000
December 1, 2006	270,000	ND	ND	ND	ND	290,000	11,000	90,000 33,000
February 23, 2007	220,000	ND	ND	ND ND	ND	260,000	15,000 7,100	
May 10, 2007	140,000	ND	ΝĎ	ND	ND	180,000	7,100	80,000

August 16, 2007 MW-5	69,000*	ND	ND	ND	ND	85,000	3,400	180,000
February 19-20, 2004	ND	ND	ND	ND	ND	1.5	NA	NA
May 24-25, 2004	ND	ND	ND	ND	ND	0.55	ND	ND
September 3, 2004	100	6.4	ND	ND	0.79	4,2	ND	ND
November 2, 2004	ND	2.6	ND	1.7	0.87	1	ΝĐ	ND
February 17, 2005	51	0.74	ND	0.94	ND	1.5	ND	ND
May 24 & 26, 2005	ND	ND	ND	ND	ND	1	NA	NA
August 15 & 17, 2005	ND	ND	ND	ND	ND	0.88	ND	ND
November 17, 2005	7 1	0.81	ND	1.1	ND	1.4	ND	ND
February 8, 2006	50	ND	ND	ND	ND	1	ND	ND
• .	ND	ND	ND	ND	ND	0.93	ΝĐ	ND
May 5, 2006	ND	ND	ND	ND	ND	1	ND	ND
August 18, 2006	ND	0.69	ND	ND	0.52	0.97	ND	ND
December 1, 2006	73	ND	ND	ND	ND	1.7	ND	ND
February 23, 2007	73 ND	ND	ND	ND	ND	1.5	ND	ND
May 10, 2007		ND ND	ND	ND	ND	1.3	ND	ND
August 16, 2007	ND	ND	ND	ND	ND	1.5	1.0	****
MW-6	4 000	280	58	17	160	2,700	NA	NA
February 19-20, 2004	1,900		NA NA	NA	NA	NA	NA.	NA
May 24-25, 2004	NA 4.400	NA 37	ND ND	14	27	2,200	85	ND
September 3, 2004	1,100	27	ND	5	11	4,100	170	270
November 2, 2004	1,800	32	ND 34	41	110	10,000	780	2,000
February 17, 2005	5,600	190		NA	NA	NA	NA	NA NA
May 24 & 26, 2005	NA 4 000	NA 07	<i>NA</i> ND	7VA 6	23	3,800	300	3,500
August 15 & 17, 2005	1,800	27	ND	4	23 9	2,400	190	9,500
November 17, 2005	1,100	30	43	66	160	2,700	180	7,800
February 8, 2006	3,600	220	43 21	37	65	1,400	53	3,100
May 5, 2006	1,600 270	130 27	ND	3	4	240	11	2,400
August 18, 2006				ND	ND	1,700	92	800
December 1, 2006	1,700	ND	ND		ND	1,700	ND	ND
February 23, 2007	ND	ND	ND	ND		26	2	48
May 10, 2007	ND	3.0	ND	ND	1.9		ND	ND
August 16, 2007	ND	ND	ND	ND	ND	1.4	NU	ND
EX-1			4.000	0.40	1 000	450.000	MA	NA
February 19-20, 2004	120,000	9,500	4,300	840	3,900	150,000	NA	/V/A

⁻ All reported values in parts per billion (ppb)

⁻ NA = not analyzed

⁻ ND = below laboratory detection limits

⁻ NS = not sampled

APPENDIX D

Certified Analytical Reports for Groundwater Sampling

Environmental Testing Services Certificate # 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604

Attn: Red Ratilainen

Client Project ID: Alaska Gas - Oakland

Reference Number: 10382 Sample Description: Water

Sample Prep/Analysis Method: EPA 5030/8015B, 8021B

Lab Numbers: 10382 - 1W, 2W, 3W, 4W, 5W

Sampled: 08-16-07 Received: 08-16-07 Extracted: 08-17-07 Analyzed: 08-17-07

Analyzed: 08-17-07 Reported: 08-24-07

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT (ug/L)	SAMPLE ID MW-1R (ug/L)	SAMPLE ID MW-2 (ug/L)	SAMPLE ID MW-3 (ug/L)	SAMPLE ID MW-5 (ug/L)	SAMPLE ID MW-6 (ug/L)
MTBE	0.50	ND	82	78000	1,3	1.8
BENZENE	0.50	NĐ	49	ND	ND	ND
TOLUENE	0.50 .	ND	ND	ND	ND	ND
ETHYL BENZENE	0.50	ND	71	ND	ND	ND
TOTAL XYLENES	0.50	ND	49	ND	ND	ND
GASOLINE RANGE HYDROCARBONS	50	ND	650	69000*	ND	ND
Report Limit Multiplication Fa Report Limit Multiplication Fa		1	5	200 10000	1	1

*Gasoline value due to MTBE.

Surrogate % Recovery: FID: 80.6% / PID: 82.5% FID: 111% / PID: 104% FID: 80.1% / PID: 105% FID: 91.6% FID: 90.2% / PID: 91.0%

Instrument ID: VAR-GC1 VAR-GC1 VAR-GC1 VAR-GC1 VAR-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

James C. Phillips / Laboratory Director or Clari J. Cone / Laboratory (Manager

Environmental Testing Services

HerSchy Environmental

Bass Lake, CA 93604

Attn: Red Ratilainen

2333 Shuttle Drive, Atwater, CA 95301

Certificate # 2480

₱.O. Box 229

Client Project Name: Alaska Gas - Oakland

Reference Number: 10382 Sample Description: Water Analyst: Jim Phillips Method: EPA 5030/8015M,8020

Phone: (209) 384-2930

Fax: (209) 384-1507

Instrument ID; Var-GC1 Extracted: 08-17-07 Analyzed: 08-17-07 Reported: 08-24-07

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes
Spike Concentration:	280	25.9	2.09	11.2	3.26	17.3
Jnits:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
.CS Batch #:	VW-8177	VW-8177	VW-8177	VW-8177	VW-8177	VW-8177
.CS % Recovery: Surrogate Recovery:	72.7% 97.7%	84.9% 92.9%	92.8% 92.9%	84.9% 92.9%	89.8% 92.9%	62.8% 92.9%
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %
AS/MSD Batch #:	VW-8177	VW-8177	VW-8177	VW-8177	VW-8177	VW-8177
pike Concentration:	280	25.9	2.09	11.2	3.26	17,3
//S % Recovery: Surrogate Recovery:	65.5% 98.1%	85.5% 97.3%	90.8% 97.3%	87.1% 97.3%	91.9% 97.3%	85.2% 97.3%
ISD % Recovery: surrogate Recovery:	71.0% 101%	91.0% 100%	93.8% 100%	89.3% 100%	96.5% 100%	88.9% 100%
telative % Difference:	7.73%	6.11%	3.22%	2.37%	4.84%	4.20%
fethod Blank :	ND	ND	ND	ND	ND	ND
urrogate Recovery:	91.0%	92.4%	92.4%	92.4%	92.4%	92.4%

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

James C. Phillips / Laboratory Director or Clari J. Cone / Laboratory Manager

Environmental Testing Services
Certificate No. 2480

Client Project ID: Alaska Gas - Oakland

Phone: (209) 384-2930
Fax: (209) 384-1507

Sampled: 08-16-07

HerSchy Environmental Client Project ID: Alaska Gas - Oakland Sampled: 08-16-07
P.O. Box 229 Reference Number: 10382 Extracted: 08-21-07
Bass Lake, CA 93604 Sample Description: Water Extracted: 08-21-07
Attn: Red Ratilainen Sample Prep/Analysis Method: EPA 5030/8260B Analyzed: 08-21-07
Lab Numbers: 10382 - 1W, 2W, 3W, 4W, 5W Reported: 08-24-07

GASOLINE ADDITIVES AND SOLVENTS BY EPA METHOD 8260 GC/MS

ANALYTE	REPORTING LIMIT (ug/L)	SAMPLE ID MW-1R (µg/L)	SAMPLE ID MW-2 (µg/L)	SAMPLE ID MW-3 (µg/L)	SAMPLE ID MW-5 (µg/L)	SAMPLE ID MW-6 (µg/L)
	(bgrb)	(1/3/				
FUEL OXYGENATES						
Methyl tert-Butyl Ether (MTBE)	0.50	ND	100	85000	1,3	1.4
Di-isopropyl Ether (DIPE)	0.50	ND	ND	ND	ND	ND
Ethyl tert-Butyl Ether (ETBE)	0.50	ND	ND	ND	ND	ND
tert-Amyl Methyl Ether (TAME)	0.50	ND	3.5	3400	ND	ND
tert-Butanol (TBA)	20	ND	82	180000	ND	ND
AND AND CHALGOLDDONE S	POITAMOG					
VOLATILE HALOCARBONS & A	IKOMA 1103				MD	ND
1,2-Dichloroethane (1,2-DCA)	0.50	ND	NĎ	ND	ND	14.5
Ethylene Dibromide (EDB)	0.50	ND	ND	ИD	ND	ND
Report Limit Multiplication Factor: Report Limit Multiplication Factor	for MTBE:	1	1 5	500* 2000	1	1

* Report limit raised due to matrix interference

		· · · · · · · · · · · · · · · · · · ·		·	
Surrogate Recoveries					
1,2-Dichloroethane-d4 Toluene-d8	112% 97.5%	112% 98.5%	107% 97.4%	105% 92.0%	100% 98.7%

Instrument ID: Varian 2100T

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor (µg/L) = micrograms per liter or parts per billion (ppb)

APPROVED BY:

James C. Phillips / Laboratory Director o Clari J. Cone / Laboratory Manager

Environmental Testing Services

2333 Shuttle Drive, Atwater, CA 95301

Certificate No. 2480

Phone: (209) 384-2930 Fax: (209) 384-1507

HerSchy Environmental P.O. Box 229 Bass Lake, CA 93604

Attn: Red Ratilainen

Client Project ID: Alaska Gas - Oakland

Reference Number: 10382

Matrix: Water

Analyst: Scott Foster

Method: EPA 5030/8260 Instrument ID: Varian 2100T

Prepared: 08-21-07 Analyzed: 08-21-07 Reported: 08-24-07

QUALITY CONTROL DATA REPORT

SPIKE ID:

VWMS-8217v

	Reporting	BLANK	Spiking	Control	%R
	Limit	Result	Level	Spike	Limits
	μg/L	μg/L	μg/L	%R	
COMPOUNDS					
t-Butyl Alcohol (t-BA)	20	ND	75.0	109%	32.4 - 175.3
Methyl t-butyl ether (MTBE)	0.50	ND	2.50	108%	61.2 - 136.4
Diisopropyl ether (DIPE)	0.50	ND	2.50	112%	66.1 - 128.0
Ethyl t-Butyl ether (ETBE)	0.50	ND	2.50	110%	63.4 - 127.3
t-Amyl methyl ether (TAME)	0.50	ND	2.50	111%	53.4 - 133.9
1,2-Dichloroethane (1,2-DCA)	0.50	ND	2.50	94.8%	59.7 - 144.1
Ethylene dibromide (EDB)	0.50	ND	2.50	90.4%	56.7 - 144.1
Surrogates:					
1,2-Dichloroethane-d4	1.00	107%	10.0	96.3%	59.2 - 135
Toluene-d8	1.00	101%	10.0	103%	62.9 - 132

	Spiking Level µg/L	MATRIX SPIKE %R	MATRIX SPIKE DUP %R	%R Limits	%RPD
COMPOUNDS					
t-Butyl Alcohol (t-BA)	75.0	109%	107%	35.7 - 169.9	1.74%
Methyl t-butyl ether (MTBE)	2.50	117%	114%	46.6 - 144.2	2.68%
Dlisopropyl ether (DIPE)	2.50	124%	121%	56.5 - 125.2	2.61%
Ethyl t-Butyl ether (ETBE)	2.50	122%	124%	57.1 - 127.9	1.63%
-Amyl methyl ether (TAME)	2.50	100%	110%	54.9 - 117.2	9.07%
1,2-Dichloroethane (1,2-DCA)	2.50	115%	116%	48.1 - 144.3	1.03%
Ethylene dibromide (EDB)	2.50	102%	104%	53.3 - 132.8	2.25%
Surrogete:					
1,2-Dichloroethane-d4	10.0	114%	104%	59,2 - 135	9.72%
Toluene-d8	10.0	112%	101%	62.9 - 132	10.4%

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

James C. Phillips / Laboratory Director or Clari J. Cone / Laboratory Manager

CHAIN OF CUSTODY

Mailing Address: 2222 Shuttle Drive, Abustes, CA 95301							ابا	emi	icate v	10. 2	480										1 /
Mailing Address: 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 - Fax: (209) 384-1507																				PA	GEOF
																	- 				
Customer: Address:	HU	45K	 	GA	<u>></u>		4		i	 -	_	RE	QUE	STE	D AN	ALY	SES		1	4	Method of Shipment:
City/State/Z	IP: C) A-V J	41	7/			_ [월	e e	× F					9					٦	ERS.	
Phone / FAX		<u> </u>	47 1∼				- ŝ	왕	41R) o	, a				V 8280	l	ĺ			آق آ	CONTAINERS	Notes:
Proj # / P.O.							┧╫	9	E SE	8	1	SE	₹.	¥.	l_				뵱	Š	
Report Atter		िट	ַ כ	<u> </u>	1 /		┧╬	osite	₹€	Ė	MTBE	TPH-DIESEL	TRPH 418.1M	Š	8260				i š	B	
Sampler Sig			_(,	olm	1.10.	214] <u>₹</u>	(c) composite (d) discrete	SAMPLE MATRIX (s) solid (i) liquid (o) other	BTEX/TPH-GAS	•	₹	Ē		 				ŝ	뛺	
Prin	ted:	• • • • • • • • • • • • • • • • • • • •	ريمر	TOHA	J 5.0	WEST	_	ē	<u> </u>	"			ľ	Oxy's / EDB / DCA by					Efectronic Deliverables (EDF)	NUMBER	
Lab ID#		PLE ID		DATE	TIME	DESCRIPTION/LOCATION]					١		i			Ü		OBSERVATIONS/REMARKS
			0	5-16	0806		1	-	_	V	· X	T	П	×	<u> </u>			1		3	
2w	Z	<u>· Z</u>			0850			Ĺ		Ιí	Τi	Γ	П	١				1	-	lí	<u></u>
	mw			<u> </u>	0631			Γ	П	П	П		1	П		<u> </u>		—	† -	\parallel	
			<u> </u>	<u> </u>	0828			Ľ	\prod	П	\prod			Π					ऻ	\parallel	
5w	nw-	6		<u> </u>	0731			1	1	1	1			1					1	T	
			<u> </u>	. <u></u>														1	Τ	Г	
										<u>. </u>									Τ		
			_																		
			_																T		
	·		ļ. <u>.</u>										<u> </u>				-			Г	***
		~·	<u> </u>		_														Г		
										II								Т			-
												-						Т			
	/),		/Sig	nature		Printed Name	27 <u>1</u> 100		Da	te	H	me		6	Септ	mar	y Nar	ie.		15	Total number of containers submitted to the laboratory
Relinquished by: 1344 July John S. WEST					<u> </u>	***************************************	08-1		1		4			C#		7) V		#—	ite: All special requests (e.g.		
Received by: / Clary Con Clari Cone						68-1		1/:	, (aly			qu	ick turn times) must be cleared			
Relinquished by:			-			·/	17.			7 , 3/	120	///	CACLY!	<i>/ (#</i>	4_		rough authorized laboratory				
Received by:							_										1 20	i soimici ,			
Relinquished by:						1		<u> </u>									RE	SULTS DUE :			
Received by:				_												11	VERBAL WRITTEN				

Environmental Testing Services

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Certificate # 2480

HerSchy Environmental

Client Project ID: Alaska Gas-Oakland

Sampled: 09-06-07

P.O. Box 229 Bass Lake, CA 93604 Reference Number: 10461 Sample Description: Water Received: 09-13-07 Extracted: 09-18-07

Attn: Reijo Ratilainen

Sample Prep/Analysis Method: EPA 5030/8015B, 8021B

Analyzed: 09-18-07

Lab Numbers: 10461-1W

Reported: 09-21-07

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID MW-4
	(ug/L)	(ug/L)
MTBE	0.50	2900
BENZENE	0.50	710
TOLUENE	0.50	840
ETHYL BENZENE	0.50	ND
TOTAL XYLENES	0.50	10000
GASOLINE RANGE HYDROCARBONS	50	49000
Report Limit Multiplication I	Factor:	100

Surrogate	%	Recovery:
-----------	---	-----------

FID: 105% / PID: 103%

instrument ID:

VAR-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

James C. Phillips / Labbratory Director or Clari J. Cone / Laboratory Manager

Environmental Testing Services Certificate # 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

HerSchy Environmental

Attn: Reijo Ratilainen

P.O. Box 229 Bass Lake, CA 93604 Client Project Name: Alaska Gas Reference Number: 10461 Sample Description: Water Analyst: Jim Phillips Method: EPA 5030/8015M,8020

Instrument ID: Var-GC1 Extracted: 09-18-07 Analyzed: 09-18-07 Reported: 09-21-07

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes
Spike Concentration:	280	25.9	2.09	11.2	3.26	17.3
Jnits:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
.CS Batch #:	VW-9187	VW-9187	VW-9187	VW-9187	VW-9187	VW-9187
CS % Recovery: Surrogate Recovery:	90.4% 99.5%	99.0% 87.7%	108% 87.7%	94.6% 87.7%	88.2% 87.7%	80.8% 87.7%
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %
IS/MSD Batch #:	VW-9187	VW-9187	VW-9187	VW-9187	VW-9187	VW-9187
pike Concentration:	280	25.9	2.09	11.2	3.26	17.3
/IS % Recovery: Surrogate Recovery:	78.0% 100%	90.3% 89.2%	97. 8 % 89.2%	84.9% 89.2%	86.7% 89.2%	80.6% 89.2%
ISD % Recovery: jurrogate Recovery:	75.2% 100%	96.9% 90.0%	86.9% 90.0%	65.0% 90.0%	85.7% 90.0%	80.7% 90.0%
elative % Difference:	3.45%	7,06%	11.8%	26.4%	1.20%	0.190%
lethod Blank : urrogate Recovery:	№ D 105%	ND 97,2%	ND 97.2%	ND 97.2%	ND 97.2%	ND 97.2%

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

James C. Phillips | Laboratory Director or Clari J. Cone / Laboratory Manager

Environmental Testing Services Certificate No. 2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507	
HerSchy Environmental	Client Project ID: Alaska Gas-Oakland	Sampled: 09-06-07	
P.O. Box 229	Reference Number: 10461	Received: 09-13-07	
Bass Lake, CA 93604	Sample Description; Water	Extracted: 09-14-07	
Attn: Reijo Ratilainen	Sample Prep/Analysis Method: EPA 5030/8260B	Analyzed: 09-14-07	
·	Lab Numbers: 10461-1W	Reported: 09-21-07	

GASOLINE ADDITIVES AND SOLVENTS BY EPA METHOD 8260 GC/MS

ANALYTE	REPORTING LIMIT (µg/L)	SAMPLE ID MW-4 (µg/L)
FUEL OXYGENATES		
Methyl tert-Butyl Ether (MTBE) 0.50	3600
Di-isopropyl Ether (DIPE)	0.50	ND
Ethyl teri-Butyl Ether (ETBE)	0.50	ND
tert-Amyl Methyl Ether (TAME	0.50	510
tert-Butanol (TBA)	20	32000
VOLATILE HALOCARBONS	& AROMATICS	
1,2-Dichloroethane (1,2-DCA)	0.50	ND
Ethylene Dibromide (EDB)	0.50	ND
Report Limit Multiplication Fac Report Limit Multiplication Fac		20° 100

^{*} Report limit raised due to matrix interference

1,2-Dichloroethane-d4 104%	Surrogate Recoveries		
Tokiene-d8 111%	1,2-Dichloroethane-d4	104%	
Total Care Care Care Care Care Care Care Care	Toluene-d8	111%	

Instrument ID: HP 5972 MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit \times Report Limit Multiplication Factor (µg/L) = micrograms per liter or parts per billion (ppb)

APPROVED BY:

James C. Phillips/ Laboratory Director or Clari J. Cone / Laboratory Manager

APPENDIX E

Well Construction and Completion Diagram for Well MW-1R

HerSchy Environmental, Inc. Environmental Consulting and Remediation

P. O. Box 229 Bass Lake, CA 93604-0229 (559) 641-7320

FIELD BOREHOLE LOG

BOREHOLE NO.: MW-1R

TOTAL DEPTH: 25'

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT:

Alaska Gasoline Company DRILLING CO.:

Gregg Drilling

SITE LOCATION:

Oakland

SLOT SIZE:

0.010"

JOB NO.:

A51-01.03

CASING TYPE:

2" Sch. 40 PVC

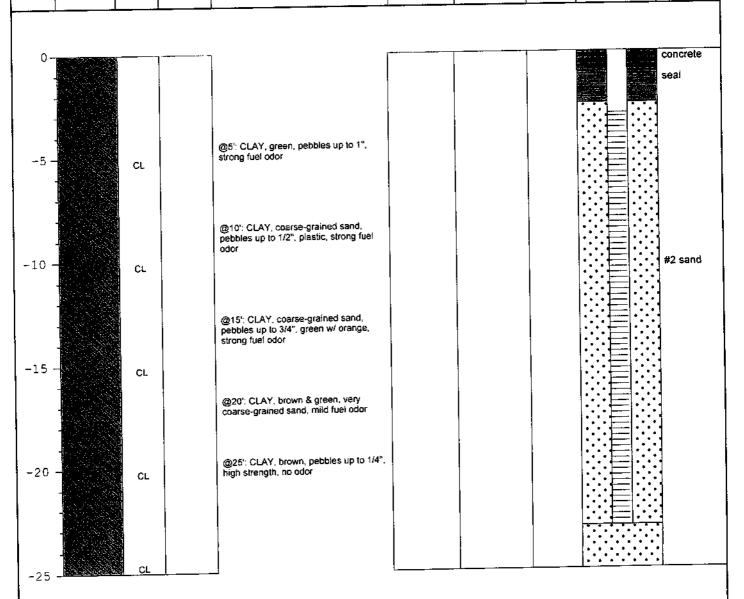
LOGGED BY:

R. Ratilainen

METHOD OF DRILLING: 10" Hollow Stem Auger

California split spoon

PROJECT MANAGER: R. Ratilainen


SAMPLING METHOD: GRAVEL PACK:

#2 Sand

DATES DRILLED:

08/09/07

WELL **BORING** OVA SAMPLE BLOW SOIL MOISTURE SOIL DESCRIPTION COUNTS **DETAILS** USCS DEPTH COMPLETION INTERVAL (PPM) SYMBOLS **PER 6"**

