SUBSURFACE INVESTIGATION REPORT

for Chevron Service Station #9-9708 5910 MacArthur Boulevard Oakland, California

Report No. 6395.01-1

Prepared for:

Mr. Phil Briggs
Chevron Products Company
P.O. Box 6004
San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

Barbara Sieminski

Project Geologist

Stephen J. Carter Senior Geologist

R.G. 5577

June 27, 1997

No. 5577

E OF CALIFO

TABLE OF CONTENTS

EXECUTIVE	SUMMARY	j
1.0 INTROD	DUCTION	
	ESCRIPTION	
	general	
	eology and Hydrogeology	
3.0 FIELD V		
	Orilling Activities	and the second s
	Vell Development and Sampling	
	Vellhead Survey	
	aboratory Analysis	
	TS	· ·
	ubsurface Condition	
	oil Analytical Results	
	Froundwater Analytical Results	
	USIONS	
6.0 REFERE	ENCES	
•		
÷		•
	TABLES	
Table 1:	Water Level Data and Groundwater Analytical Results	
Table 2:	Soil Analytical Results	•
	PICHDEC	
	FIGURES	•
Eigen 1	Visinity Man	
Figure 1. Figure 2.	Vicinity Map Potentiometric Map	
riguie 2.	Potentionietre Map	the second second
		e
	APPENDICES	
	AII ENDICES	
Appendix A:	GR Field Methods and Procedures	
	Well Installation Permit and Boring Logs	
	Well Development and Sampling Field Data Sheets	-
Appendix D:	Wellhead Survey Report	
	weimead Survey Report	

EXECUTIVE SUMMARY

Gettler-Ryan Inc. (GR) presents this report for a well installation at Chevron Service Station #9-9708 located at 5910 MacArthur Boulevard in Oakland, California. Three on-site soil borings were drilled and groundwater monitoring wells MW-1 through MW-3 were installed in these borings. The purpose of this work was to assess whether soil and groundwater beneath the site have been impacted by petroleum hydrocarbons.

Soil encountered in borings MW-1 through MW-3 consisted predominantly of clay and silt interbedded with clayey to silty sand and clayey gravel to the total depth explored of 41.5 feet below ground surface (bgs). Free groundwater was not encountered in the borings during drilling. However, groundwater was present in the wells at depths ranging from 11.28 to 12.95 feet bgs on June 4, 1997. Based on the groundwater monitoring data collected on that date, shallow groundwater beneath the site appears to flow to the west at an approximate gradient of 0.03.

Based on analytical results from soil samples collected and analyzed during this investigation, it appears that petroleum hydrocarbons are present in soil beneath the site only at depths between 11 and 16 feet bgs. Soil in the vicinity of wells MW-1 and MW-2 has been impacted by Total Petroleum Hydrocarbons as gasoline (TPHg), benzene, and Methyl t-Butyl Ether (MTBE) at concentrations up to 140 parts per million (ppm), 0.027 ppm, and 1.3 ppm, respectively. Soil in the vicinity of well MW-3 has been impacted by Total Oil and Grease (TOG) at concentrations up to 1,000 ppm, but has not been impacted by TPHg, benzene, MTBE, Total Petroleum Hydrocarbons as diesel (TPHd), Volatile Organics (VOs), or Semivolatile Organics (SVOs).

Analytical results from groundwater samples collected during this investigation indicate that groundwater in the vicinity of wells MW-1 and MW-2 has been impacted by TPHg, benzene, and MTBE at concentrations up to 1,600 parts per billion (ppb), 120 ppb, and 2,100 ppb, respectively. Groundwater in the vicinity of well MW-3 has been impacted by TPHd (1,200 ppb) and 1,2-Dichloroethane (1.0 ppb) but has not been impacted by any other VOs, or TPHg, benzene, MTBE, TOG, or SVOs.

SUBSURFACE INVESTIGATION REPORT

for Chevron Service Station #9-9708 5910 MacArthur Boulevard Oakland, California

Report No. 6395.01-1

1.0 INTRODUCTION

This report summarizes the results of a well installation performed at Chevron Station #9-9708, located at 5910 MacArthur Boulevard in Oakland, California. The work was performed at the request of Chevron Products Company (Chevron) to evaluate whether soil and groundwater beneath the subject site had been impacted by petroleum hydrocarbons, and was initiated due to the proposed sale of the property. The scope of work included: obtaining the required well installation permits; installing three on-site groundwater monitoring wells (MW-1 through MW-3); collecting soil samples for chemical analysis; developing and sampling the wells; surveying wellhead elevations; arranging for Chevron's contractor to dispose of the waste materials; and preparing a report documenting the work.

2.0 SITE DESCRIPTION

2.1 General

The subject site is an operating service station situated on the eastern corner of the intersection of MacArthur Boulevard and Seminary Avenue (Figure 1). Aboveground station facilities consist of a station building and four dispenser islands. Three fuel underground storage tanks (USTs) are located in the common pit immediately northwest of the southern service islands. A former waste oil UST was located behind the station building in the eastern corner of the property. Pertinent site features are shown on Figure 2.

2.2 Geology and Hydrogeology

The subject site is located on the eastern margin of the East Bay Plain at the western edge of the Berkeley Hills, approximately 2 miles northeast of San Leandro Bay. The site is a relatively flat asphalt and concrete covered lot at an elevation of approximately 100 feet above mean sea level. As mapped by Helley and others (1979), soil in the site vicinity consists of late Pleistocene alluvium consisting of weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand, and gravel. The nearest surface water is Arroyo Viejo creek located approximately 1 mile southeast of the site. Based on the site topography, the regional groundwater flow in the vicinity of the site is inferred to be toward southwest.

3.0 FIELD WORK

Field work was conducted in accordance with GR's Field Methods and Procedures (Appendix A) and the Site Safety Plan dated May 21, 1997. A well installation permit (#97302) was obtained from the Zone 7 Water Agency, and Underground Service Alert was notified prior to drilling at the site. A copy of the permit is included in Appendix B.

3.1 Drilling Activities

On May 22 and 23, 1997, a GR geologist observed Bay Area Exploration Services, Inc. (C57 #522125) install three on-site groundwater monitoring wells (MW-1 through MW-3) at the locations shown on Figure 2. Well borings were drilled to 41.5 feet bgs using 8-inch hollow-stem augers driven by a truck-mounted CME-55 drill rig. Soil samples were collected every 5 feet. The GR geologist prepared logs of each boring and screened the soil samples in the field for the presence of volatile organic compounds. Screening data are presented on the boring logs (Appendix B).

Free groundwater was not encountered in the borings during drilling, therefore, the borings were left open for approximately 24 hours to allow for the possible entry of groundwater. Groundwater was not present in the borings on May 23, 1997. Therefore, the borings were backfilled with bentonite to 20 feet bgs, and then a shallow groundwater monitoring well was constructed in each boring using 10 feet of two-inch diameter, 0.020-inch machine-slotted Schedule 40 PVC screen. Lonestar #3 graded sand was placed in each well across the entire screen interval and extended approximately 1 foot above the top of the screen. Each well was then sealed with 1 foot of hydrated bentonite chips followed by neat cement. Well construction details are presented on the boring logs in Appendix B.

Drill cuttings were placed on and covered with plastic sheeting and stored on-site pending disposal. After completion of drilling, four samples for disposal characterization were collected from the drill cuttings and submitted to the laboratory for compositing and analysis as sample SP-A through SP-D. On June 6, 1997, the drill cuttings were removed from the site and transported to the BFI Landfill in Livermore by Integrated Wastestream Management (IWM).

3.2 Well Development and Sampling

On May 29, 1997, GR personnel inspected wells MW-1 through MW-3 for the presence of groundwater. Groundwater was present in all wells. On June 4, 1997, groundwater monitoring wells MW-1 through MW-3 were developed by GR personnel using a vented surge block and hand-bailing. Depth to water was measured in the wells prior to well development. Upon completion of well development, groundwater samples were collected from the

2

wells. Water purged during well development and sampling was transported to McKittrick Waste Management by IWM. Groundwater monitoring data are presented in Table 1, and copies of the GR Well Development and Sampling Field Data Sheets are included in Appendix C.

3.3 Wellhead Survey

On June 18, 1997, wells MW-1 through MW-3 were surveyed relative to mean sea level by Virgil Chavez, a California licensed land surveyor (#6323). A copy of the survey report is included in Appendix D, and the survey data is summarized in Table 1.

3.4 Laboratory Analysis

Soil and groundwater samples were analyzed by GTEL Environmental Laboratories, Inc, (GTEL) of Wichita, Kansas (ELAP #2147). Soil samples from the borings and groundwater samples were analyzed for TPHg, BTEX, and MTBE by Environmental Protection Agency (EPA) Methods 8015/8020. In addition the soil sample collected from boring MW-3 at 11 feet bgs and the groundwater sample from well MW-3 were analyzed for TPHd using EPA Method 8015, TOG using Standard Method 5520F, VOs using EPA Method 8240B (soil) or 8010B (water), and SVOs using EPA Method 8270B. The soil sample collected from boring MW-3 at 16 feet bgs was also analyzed for TOG. The soil sample collected from boring MW-3 at 11 feet bgs was analyzed for metals cadmium, chromium, lead, zinc, and nickel using EPA Method 6010. The composite sample from the drill cuttings was analyzed for TPHg and BTEX. Copies of the laboratory analytical reports and chain-of-custody records are included in Appendix E.

4.0 RESULTS

4.1 Subsurface Conditions

Soil encountered in borings MW-1 through MW-3 consisted predominantly of clay and silt interbedded with clayey to silty sand and clayey gravel to the total depth explored of 41.5 feet. Detailed descriptions of the subsurface materials encountered during drilling are presented on the boring logs in Appendix B. Free groundwater was not encountered in the borings during drilling, therefore, the borings were left open for approximately 24 hours to allow for the possible entry of groundwater. Heavy rain (unusual for this time of the year) occurred in the site vicinity during the night of May 22 and morning of May 23, 1997, but no groundwater was present in the borings before well installation or in newly installed wells MW-1 through MW-3 on that day. However, groundwater was present in all wells at depths ranging from 11.28 to 13.06 feet on May 29 and June 4, 1997. Based on the groundwater monitoring data collected on June 4, 1997, shallow groundwater beneath the site appears to flow to the west at an approximate gradient of 0.03 (Figure 2).

6395.01-1

4.2 Soil Analytical Results

TPHg and benzene were detected in the soil samples collected from boring MW-1 at 11 feet bgs (7.1 ppm and 0.0062 ppm, respectively) and 15.5 feet bgs (1.6 ppm and 0.027 ppm, respectively). TPHg were also detected in the soil sample collected from boring MW-2 at 11 feet bgs at a concentration of 140 ppm. MTBE was detected in the soil sample collected from boring MW-1 at 15.5 feet bgs (0.015 ppm), and in the soil samples collected from boring MW-2 at 15.5 feet bgs (0.680 ppm) and 16 feet bgs (1.3). TPHg or benzene were not detected in any other soil samples collected and analyzed from borings MW-1 through MW-3. TOG was detected in the soil samples collected from boring MW-3 at 11 and 16 feet bgs at concentrations of 170 ppm and 1,000 ppm, respectively. Chromium (46 ppm), nickel (120 ppm), lead (11 ppm), and zinc (110 ppm) were detected in the soil sample collected from boring MW-3 at 11 feet bgs. TPHd, SVOs or cadmium were not detected in this sample. VOs were not detected in this sample except 11 ppm of methylene chloride, which is a common laboratory contaminant, therefore, could be introduced in the laboratory.

The composite stockpile sample did not contain TPHg or BTEX. Soil chemical analytical data are summarized in Table 2.

4.3 Groundwater Analytical Results

TPHg, benzene, and MTBE were detected in the groundwater samples collected from wells MW-1 (380 ppb, 58 ppb, and 85 ppb respectively) and MW-2 (1,600 ppb, 120 ppb, and 2,100 ppb, respectively). The groundwater sample collected from well MW-3 did not contain TPHg, benzene or MTBE. However, this sample contained TPHd (1,200 ppb) and 1,2-dichloroethane (1.0 ppb). Other VOs or SVOs were not detected in this sample. Groundwater analytical data are summarized in Table 1.

5.0 CONCLUSIONS

Petroleum hydrocarbons appear to be present in soil beneath the site only at depths between 11 and 16 feet bgs. Soil in the vicinity of wells MW-1 and MW-2 has been impacted by TPHg, benzene and MTBE with the highest concentrations of 140 ppm, 0.027 ppm, and 1.3 ppm, respectively. Soil in the vicinity of well MW-3 has been impacted by TOG (up to 1,000 ppm) and has not been impacted by TPHg, benzene, MTBE, TPHd, VOs or SVOs.

Groundwater in the vicinity of wells MW-1 and MW-2 has been impacted by TPHg, benzene, and MTBE at concentrations up to 1,600 ppb, 120 ppb, and 2,100 ppb, respectively. Groundwater in the vicinity of well MW-3 has been impacted by TPHd (1,200 ppb) and 1,2-dichloroethane (1.0 ppb) but has not been impacted by any other VOs, or TPHg, benzene, MTBE, TOG, or SVOs.

6395.01-1

6.0 REFERENCES

E. J. Helley and others, 1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943.

Gettler-Ryan Inc., May 21, 1997, Site Safety Plan for Chevron Service Station #9-9708, 5910 MacArthur Boulevard, Oakland, California, Job No. 6395.01.

Table 1. Water Level Data and Groundwater Analytical Results - Chevron Service Station #9-9708, 5910 MacArthur Boulevard, Oakland, California.

Well ID/ TOC (feet)	Date	DTW (feet)	GWE (msl)	Product Thickness (feet)	TPHg <	TPHd	Benzene	Toluene	Ethylbenzene ——ppb	Xylenes	мтве	TOG	VOs	SVOs >
MW-1/	05/29/97	12.20	84.41	0	- .		_	_	_	_	_		-	_
96.61	06/04/97	12.21	84.40	0	380	-	58	1.2	5.4	40	85		-	_
MW-2/	05/29/97	13.06	83.85	0	_		_	-	-	-	_			_
96.91	06/04/97	12.95	83.96	0	1,600	-	120	5.9	32	15	2,100		-	_
MW-3/	05/29/97	11.45	86.41	0	_	_	_	_	_	_	_	_	_	•••
97.86	06/04/97	11.28	86.58	0	< 50	1,200	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 5,000	1.01	ND
Trip Blank TBLB	06/04/97	_	-	- -	< 50	_	<0.5	< 0.50	< 0.50	< 0.50	< 5.0	-	_	_

EXPLANATION:

DTW - Depth to water

TOC - Top of casing elevation

GWE - Groundwater elevation

TPHg - Total Petroleum Hydrocarbons as gasoline

TPHd - Total Petroleum Hydrocarbons as diesel

MTBE = Methyl t-Butyl Ether

TOG - Total Oil and Grease

VOs - Volatile Organics

SVOs - Semivolatile Organics

msl - Measurements referenced relative to mean sea level

ppb = Parts per billion

— - Not analyzed/Not applicable

ANALYTICAL METHODS:

TPHg, benzene, toluene, ethylbenzene, xylenes, MTBE - EPA Methods 8015/8020

TPHd - EPA Method 3510

TOG - Standard Method 5520F

VOs - EPA Method 8010B

SVOs - EPA Method 8270B

ANALYTICAL LABORATORY:

GTEL Environmental Laboratories, Inc. (ELAP #2147)

NOTES:

Wells MW-1 through MW-3 were surveyed on June 18, 1997, by Virgil Chavez of Vallejo, California (PLS 6323).

^{1 -} All compounds analyzed were not detected except 1 ppm of 1,2-Dichloloethane

Table 2. Soil Analytical Results - Chevron Service Station #9-9708, 5910 MacArthur Boulevard, Oakland, California.

Sample Name	Depth (ft)	Date	TPHg <	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE <i>ppm</i>	TPHd	TOG	VOs	SVO ₅	Cadmium	Chromiu	m Nickel	Lead	Zinc >
MW1-11	11.0	05/22/97	7.1	0.0062	0.014	< 0.011	< 0.011	< 0.021			_	_	_	_		_	_
MW1-15.5		05/22/97	1.6	0.0270	< 0.0050	0.032	0.074	0.015	_	_		_	_	_	_	_	
MW1-16	16.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	_	<u>-</u>			_	_			-
MW1-21	21.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		_	_	_	_	_	_	_	
MW1-31	31.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	· 		_		-	_		-	_
MW1-41	41.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	_	,—	-	-	_	-	-	-	_
MW2-11	11.0	05/22/97	140	< 0.05	0.16	0.27	0.58	< 1.0	_		_						_
MW2-15.5		05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.680				-	•••	-			
MW2-16	16.0	05/22/97	< 2.8	< 0.014	< 0.014	< 0.014	< 0.014	1.3	_	_		_	_	_	_	_	_
MW2-21	21.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	_		_	-		***			_
MW2-31	31.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		-	-	_	-	_			-
MW2-41	41.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	_	-	-	-	-	_	-	-	_
MW3-11	11.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 10	170	0.011 ¹	ND	< 2.0	46	120	11	110
MW3-16	16.0	05/22/97	< 1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	· —	1,000	_	_	_	_	_	_	_
MW3-21	21.0	05/22/97	< 1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	_	_		_	_	_	_	_	_
MW3-31	31.0	05/22/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	_	_	_	_	_	_	_	—	_
MW3-41	41.0	05/23/97	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	_	-	-	_	_	_	_	_	_
SP-A throug	gh SP-D	05/23/97	1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	_	_	_	_	-	_	_	_	_	_

EXPLANATION:

TPHg - Total Petroleum Hydrocarbons as gasoline

MTBE - Methyl t-Butyl Ether

TPHd - Total Petroleum Hydrocarbons as diesel

TOG - Total Oil and Grease

VOs - Volatile Organics

SVOs - Semivolatile Organics

ppm - Parts per million

ND - Not detected

- - Not analyzed/not applicable

ANALYTICAL METHODS:

TPHg, benzene, toluene, ethylbenzene, xylenes, MTBE - EPA Methods 8015/8020

TPHd = EPA Method 3550

TOG - Standard Method 5520F

VOs - EPA Method 82408

SVOs - EPA Method 8270B

Metals - EPA Method 6010

ANALYTICAL LABORATORY:

GTEL Environmental Laboratories, Inc. (ELAP #2147)

All compounds analyzed were not detected except 0.011 ppm of methylene chloride which is a common laboratory contaminant.

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568 (510) 551-7555

VICINITY MAP
Chevron Service Station No. 9-9708
5910 Mac Arthur Boulevard
Oakland, California

. /07 REVISED DATE

JOB NUMBER 6395

REVIEWED BY

DATE 06/97

Gettler - Ryan Inc.

6747 Sierro Ct., Suite J Oublin, CA 94568

(510) 551-7555

Chevron Service Station No. 9-9708 5910 Mac Arthur Boulevard Oakland, California

DATE 06/97 REVISED DATE

JOB NUMBER 6395

REVIEWED BY

GETTLER - RYAN FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan, Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the of these plans contents prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Exploratory soil borings are drilled by a California-licensed well driller. A GR geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples are collected from the exploratory soil boring with a split-barrel sampler or other appropriate sampling device fitted with clean brass or stainless steel liners. The sampling device is driven approximately 18 inches with a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler each successive 6 inches is recorded on the boring log. The encountered soil is described using the Unified Soil Classification System (ASTM 2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Samples are selected for chemical analysis based on:

- a. depth relative to underground storage tanks and existing ground surface
- b. depth relative to known or suspected groundwater
- c. presence or absence of contaminant migration pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- f. presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing some soil from one of the sample tubes not retained for chemical analysis and immediately covering the end of the tube with a plastic cap. The PID probe is inserted into the headspace inside the tube through a hole in the plastic cap. Head-space screening results are recorded on the boring log.

Head-space screening procedures are performed and results recorded as reconnaissance data. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Stockpile Sampling

Stockpile samples consist of four individual sample liners collected from each 100 cubic yards (yd³) of stockpiled soil material. Four arbitrary points on the stockpiled material are chosen, and discrete soil sample is collected at each of these points. Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless steel or brass tube into the stockpiled material with a wooden mallet or hand driven soil sampling device. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled, placed in the cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Construction of Monitoring Wells

Monitoring wells are constructed in the exploratory borings with Schedule 40 polyvinyl Chloride (PVC) casing. All joints are thread-joined; no glues, cements, or solvents are used in well construction. The screened interval is constructed of machine-slotted PVC well screen which generally extends from the total well depth to a point above the groundwater. An appropriately-sized sorted sand is placed in the annular space adjacent to the entire screened interval. A bentonite transition seal is placed in the annular space above the sand, and the remaining annular space is sealed with neat cement or cement grout.

Wellheads are protected with water-resistant traffic rated vault boxes placed flush with the ground surface. The top of the well casing is sealed with a locking cap. A lock is placed on the well cap to prevent vandalism and unintentional introduction of materials into the well.

Storing and Sampling of Drill Cuttings

Drill cuttings are stockpiled on plastic sheeting or stored in drums depending on site conditions and regulatory requirements. Stockpile samples are collected and analyzed on the basis of one composite sample per 50 cubic yards of soil. Stockpile samples are composed of four discrete soil samples, each collected from an arbitrary location on the stockpile. The four discrete samples are then composited in the laboratory prior to analysis.

Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless or brass sample tube into the stockpiled material with a hand, mallet, or drive sampler. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice

G-R Field Methods and Procedures

for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Wellhead Survey

The top of the newly-installed well casing is surveyed by a California-licensed Land Surveyor to mean sea level (MSL).

Well Development

The purpose of well development is to improve hydraulic communication between the well and surrounding aquifer. Prior to development, each well is monitored for the presence of separate-phase hydrocarbons and the depth-to-water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Groundwater Monitoring and Sampling

Decontamination Procedures

All physical parameter measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

Water-Level Measurements

Prior to sampling each well, the static water level is measured using an electric sounder and/or calibrated portable oil-water interface probe. Both static water-level and separate-phase product thickness are measured to the nearest ± 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest ± 0.01 foot with a decimal scale tape. The monofilament line used to lower the bailer is replaced between borings with new line to preclude the possibility of cross-contamination. Field observations (e.g. product color, turbidity, water color, odors, etc.) are noted. Water-levels are measured in wells with known or suspected lowest dissolved chemical concentrations to the highest dissolved concentrations.

G-R Field Methods and Procedures

Sample Collection and Labeling

A temporary PVC screen is installed in the boring to facilitate a grab groundwater sample collection. Samples of groundwater are collected from the surface of the water in each well or boring using the teflon bailer or a pump. The water samples are then gently poured into laboratory-cleaned containers and sealed with teflon-lined caps, and inspected for air bubbles to check for headspace. The samples are then labeled by an adhesive label, noted in permanent ink, and promptly placed in an ice storage. A Chain-of-Custody Record is initiated and updated throughout handling of the samples, and accompanies the samples to the laboratory certified by the State of California for analyses requested.

ZONE A ANAGEMENT

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE

Stephens laiter RG Date 5/2/97

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

91992

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
Ockland, CA	PERMIT NUMBER 97302 LOCATION NUMBER
CLIENT Viame Chevron Products Company Iddress P.O. Box 6004 Voice (510) 842 - 9136 Ity San Ramon, Cd 9888 Zip 94583	PERMIT CONDITIONS Circled Permit Requirements Apply
APPLICANT Islame Gettler - Ryan Inc. Sheve Carter Fax (916) 631-1317 Idress 364 Gold Camp Or #240 Sity Rancho Cordova, CA Zip 95670 TYPE OF PROJECT Well Construction Cathodic Protection Water Supply Monitoring (3) PROPOSED WATER SUPPLY WELL USE Domestic Industrial Other DRILLING METHOD: Mud Rotary Air Rotary Auger X Cable Other DRILLER'S LICENSE NO. C57 - 522125 WELL PROJECTS Drill Hole Diameter 8 in. Maximum Casing Diameter 2 in. Depth 23 ft. Surface Seal Deoth 7 ft. Number 3	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of cement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by tremie. E. WELL DESTRUCTION. See attached.
Surface Seal Depth 7 ft. Number 3 EOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth ft.	
ESTIMATED STARTING DATE STIMATED COMPLETION DATE 6/1/97 I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Approved Wyman Hong Date 13 May 97

	MAJOR DIVIS	SIONS			TYPICAL NAMES
Ä		CLEAN GRAVELS	GW		WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
, 200 SIEVE	GRAVELS	WITH LITTLE OR NO FINES	GP		POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
D SOILS THAN NO	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM		SILTY GRAVELS, SILTY GRAVELS WITH SAND
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO.		OVER 15% FINES	GC		CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
OARSE-		CLEAN SANDS WITH LITTLE	sw		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
C E THAN I	SANDS MORE THAN HALF	OR NO FINES	SP		POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
MOR	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 15% FINES	sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE	. *		ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
ILS 1 NO, 200		ND CLAYS 50% OR LESS	CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
NED SOI			OL	11 1 1 11 1 1	ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
IE-GRAII			МН		INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO, 200 SIEVE		ND CLAYS - LEATER THAN 50%	СН		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE			ОН		ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY OR	GANIC SOILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS

Щ - Liquid Limit (%) Ρi - Plastic Index (%) PID - Volatile Vapors in ppm MA - Particle Size Analysis Soil Color according to Munsell Soil Color Charts (1975 Edition) 2.5 YR 6/2

5 GY 5/2 - GSA Rock Color Chart \square - No Soil Sample Recovered - "Undisturbed" Sample - Bulk or Classification Sample - First Encountered Ground Water Level - Piezometric Ground Water Level

Sample drive hammer weight - 140 pounds falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs

Unified Soil Classification - ASTM D 2488-85 , and Key to Test Data

Penetration

Gettler-Ryan, Inc.					an,	Inc.		Log of Boring MW-1					
PRO	PROJECT: Chevron SS# 9-9708							LOCATION: 5910 MacArthur Boulevard, Oakland, CA					
			IO.: <i>639</i>					SURFACE ELEVATION: 96.61 feet /					
DAT	E STA	RTED	: 05/22/	/97				WL (ft. bgs): DATE:	TIME:				
DAT	E FINI	SHE	D: <i>05/23</i>	/97	_	·		WL (ft. bgs): 12.21 DATE: 06/04/97	TIME: 13:00				
DRIL	LING	METH	IOD: 8 in.	. Ho	llow S	tem A	uger	TOTAL DEPTH: 41.5 Feet					
DRIL	LING	COMP	ANY: <i>Ba</i>	y A	rea E	xplora.	tion, Inc.	GEOLOGIST: Barbara Sieminski	-				
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM				
-				-		CL	ASPHALT		<u> </u>				
5-	o ·	36	· MW1-6			GC	damp, stiff, low p coarse sand, tra CLAYEY GRAVEL	L) - very dark brown (10YR 2/2), blasticity; 70% clay, 30% fine to ce gravel. (GC) - dark brown (7.5YR 4/2), % angular to subrounded gravel, 20%	2" machine slotted pvc (0.02 inch) 1				
10-	23	34	MWI11				I.	- -	' machine slott				
15-	215 171	19 19	MW1-15.5 MW1-16			CL	Color changes to SANDY CLAY (C moist, very stiff, coarse sand, tra						
20-	9	17	MW1-21				CLAY (CL) - pal	e brown (10YR 6/3), damp, very sticity; 100% clay.					
25- -	39	21	MW1-25	7					THE REPORT OF THE PROPERTY OF				
30-	7	14	MWI-31				Color changes to at 30 feet.	brown (10YR 5/3); becomes moist	Dentonite -				
35-	0	22	MWI-38			SC	CLAYEY SAND (SC) - brown (10YR 5/3), moist,	THE TAX AND				
40- -	12	36	MW1-41			SW	medium dense; 60 SAND WITH GRAY	0% fine to coarse sand, 40% clay. VEL (SW) - brown (10YR 5/3), moist, to coarse sand, 30% angular to well					
45- -				-			(* = converted blows/ft.)	to equivalent standard penetration					
- - -			6395.01						Page 1 of				

	Gettler-Ryan, Inc.						Log of Boring MW-2				
PRO	PROJECT: Chevron SS# 9~9708						LOCATION: 5910 MacArthur Boulevard, Oakland, CA				
G-R	PROJE	ECT N	۱0. : <i>639</i>	5.01			SURFACE ELEVATION: 96.91 feet	MSL			
DAT	E STA	RTE	D: <i>05/22,</i>	/97			WL (ft. bgs): DATE:	TIME:			
DAT	E FIN	ISHE	D: <i>05/23</i>	/97			WL (ft. bgs): 12.95 DATE: 06/04/97	TIME: 13:00			
DRI	LING	METH	10D: 8 in	. Hollow St	em Auge	er	TOTAL DEPTH: 41.5 Feet				
DRI	LING	COMP		y Area Exp	oloratio	n, Inc.	GEOLOGIST: Barbara Sieminski				
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM			
				1///	CL.	ASPHALT OVER E	BASEROCK	T (1)			
5-	0	3	MW26		CL \	damp, stiff, low p coarse sand, trai CLAY (CL) - dark stiff, medium plas	L) - very dark brown (10YR 2/2), lasticity; 70% clay, 30% fine to ce fine gravel. k yellowish brown (10YR 4/6), damp, ticity; 80% clay, 15% fine to coarse	yor (0.02 inch) yank PVC Sch. 40 - neat cement			
10-	12	4	MW2-11			SANDY CLAY (CL 4/8), moist, soft,	ded to well rounded fine gravel. .) - dark yellowish brown (10YR low plasticity; 60% clay, 30% fine to subrounded to well rounded fine to	machine slotted pvc (0.02 1 2 plank PVC			
15-	226 68	29 29	MW2-15.5 MW2-16		CL CL	mottled reddish b clayey sand; with CLAYEY GRAVEL brown (2.5Y 4/2)	wrown (5YR 4/4); with lenses of wood pieces. WITH SAND (GC) - dark graylsh moist, medium dense; 40% angular	Cap (** ** ** ** ** ** ** ** ** ** ** ** **			
20 -	16	13	MW2-21			SANDY CLAY (CL stiff, low plasticit	y; 70% clay, 30% fine sand.				
25-	22	22	MW2-26			stiff, medium plas water in the hole. Color changes to brown (7.5YR 5/8	brown (iOYR 5/3) mottled strong 3) at 20 feet.				
7 30 7 7 1	67	86	MW2-31		GC	CLAYEY GRAVEL (10YR 5/4), damp	WITH SAND (GC) ~ yellowish brown b, very dense; 40% angular to to coarse gravel, 40% fine to	bentonite -			
35	0	51	MW2-36		SM	moist, very dense) - yellowish brown (10YR 5/4), ; 70% fine sand, 30% silt, trace eli rounded fine gravel.				
10-	0	24	MW2-41			CLAY (CL) - yell stiff, low plasticit	owish brown (10YR 5/4), damp, very y; 90% clay, 10% fine sand.				
45				1 1		(* = converted t blows/ft.)	to equivalent standard penetration				
JOB	NUMB	ER:	6395.01				<u> </u>	Page 1 of			

Gettler-Ryan, Inc.					an,	Inc.		Log of Boring MW-3					
PROJECT: Chevron SS# 9-9708								LOCATION: 5910 MacArthur Boulevard, Oakland, CA					
G-R	PROJE	CT N	10. : <i>639</i>	5.01)			SURFACE ELEVATION: 97.86 feet					
DAT	E STA	RTED	: 05/22/	/97				WL (ft. bgs): DATE:	TIME:				
DAT	E FINI	SHEC	D: <i>05/23</i>	/97	-			WL (ft. bgs): 11.28 DATE: 06/04/97	TIME: 13:00				
DRIL	LING	METH	OD: 8 in.	. Ho	llow S	tem A	uger	TOTAL DEPTH: 41.5 Feet					
DRIL	LING	COMP	ANY: Ba	y Ai	rea E	plora	tion, Inc.	GEOLOGIST: Barbara Sieminski					
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM				
-				-		CL	ASPHALT						
5-	0	4	MW3-6			SC	stiff, low plastici sand, trace fine CLAYEY SAND (I loose; 50% fine t	y dark brown (10YR 2/2), damp, ty; 85% clay, 15% fine to coarse gravel. SC) – dark brown (10YR 3/3), moist, o coarse sand, 45% clay, 5% ell rounded fine gravel.	machine slotted pvc (0.02 inch) 1 2" blank PVC Sch. 40				
10-	17	27	MW3-11			CL	(10YR 3/3), mois	FH GRAVEL (CL) – dark brown t, very stiff , low plasticity; 65% coarse sand, 5% subrounded to well coarse gravel.	achine slottee				
15	35	24	MW3-16			GC	brown 92.5Y 4/2 medium dense; 40	WITH SAND (GC) – dark grayish), moist to saturated (clay matrix), 0% angular to subrounded fine to 0% fine to coarse sand, 30% clay; nole.	#3 sank				
20-	0	14	MW3-21			CL	plasticity; 100% o	of augers and waited 20 minutes -					
25 25	0	10	MW3-26										
30-	27	28	MW3-31			ML		.) – light yellowish brown (10YR se; 55% silt, 40% fine sand, 5% well svel.	bentonite –				
- - 35- - -	6.7	44	MW3-38			SM	damp, very dens lenses (up to 1 i	4) - light olive brown (2.5Y 5/6), e; 70% fine sand, 30% slit; with nch thick) of fine to coarse sand to well rounded fine gravel.					
10- 10-	102	43	MW3~41			ML	SANDY SILT (MI moist, low lasticit	.) – light olive brown (2.5Y 5/8), ty, hard; 80% silt, 40% fine sand.	TITLE OF THE PARTY				
45—				-			(* = converted blows/ft.)	to equivalent standard penetration					
]					:				

SAMPLER	F, Chne		DATE	64	
ADDRESS	5910 Mac	Arther Bloc	JOB#	Q39	5,85
CITY	Oatland	CH	SS#	9-9	708
Well ID	MW-1	Well Condition	<u> </u>	Fay	
Well Location Descrip	tion 9 11 —	-			
Well Diameter	in Sin	Hydrocarbon Thickn	iess —		
Total Depth	20,2 ft	Volume	2" = 0.17	6" = 1.50	12" = 5.80
Depth to Liquid	12.21 tt	Factor	3° = 0.38		
# of casing Volume	7,99 ×	(VF) .x(V	4" = 0.66 'F) // #E	stimated /	3 5 gal.
Purge Equipment	Bailer.	_Sampling Equipmen	Ball	Volume	
Did well dewater	NIC -	If yes, Time	Volume		
Starting Time Sampling Time	1300	Purging Flow Rate			gpm.
Time 3CZ 3C7 31L 1318,	7,35 2,63 2,44 -7,43	Conductivity 350 350 387	Temperatu 2/13 2/13 2/13 2/10	Clear Bown Brow 7047	Volume CA S CA G
132/	<u></u>	390	21.0	7an	12
-					
Weather Conditions	Chi	av Wav	m · ·		
Water Color: Sediment Description	_Brown - 19	M 1941 51/7	Odor: /	<u>Alon</u>	<u> </u>
	LABO	RATORY INFORMAT	TON		
Sample ID	Container Refri	g Preservative Ty			Analysis
/VIW -]	3×40m/11/A 7	Ha	6181	Coas	BIXE MAI
Comments	5/1/2	0/			
	21176	Dail S	gmple	. (/ -	

SAMPLER	t. Cline	<u> </u>	DATE	- Cory
ADDRESS	5910 M	ac Avthir Blie	J08#	9395181
CITY	Ca [t]	and CA	SS#	9-9708
Well ID	NNW-Z	Well Condition	O.	ray
Well Location Descri	iption a // —	** *** <u>*</u>	·	
Well Diameter	<u>2" in</u>	Hydrocarbon Thick	ness (
Total Depth	_201/ ft	Volume	2" = 0.17 6"	= 1.50 12" = 5.80
Depth to Liquid	12.95 ft	Factor ·	3° = 0.38	
# of casing	7115 x	(VF) 	4" = 0.66 VF) / / #Estin	
Valume Purge Equipment	to Suction	Sampling Equipmer	n / - Va	ourge ilume
Did well dewater	No -	If yes, Time	Volume	
Starting Time Sampling Time	13.30	Purging Flow Rate		gpm
Cambining time				1
/Time / ママケ	7,30	Conductivity	Temperature	Color Volume (
1391	2147	197	1818	Brown U.S
1349	$\frac{717.3}{2173}$	<u> 199</u>	1812	6 712 A
				Tan Gila C
		- 700		Charle C
1332	1176	210	19:00	har Hig c
Weather Conditions	- lec	/ Wav		
Water Color:	- Class	cun,	Odor:	Mon.
Sediment Descriptio		Cught 51/1	Odor:	
		ORATORY INFORMA		
Sample ID	Container Ref	rig Preservative To	vpa Lab 6713.1	Analysis (OU) BIXI
	7 7017/10/11/7	177	1120	45,172
Comments			;	,
,	Sluces	Bail	Sample	•

SAMPLER	Fichn		DATE	<u> </u>	
ADDRESS	5910 Mac)	Arther Blod	// JOB #	G3951	ارر
CITY	<u>Oaklan</u>		SS#	9-970	8
Well ID	MW-3	Well Condition		tay	
Well Location Descrip	otion	****		/	
Well Diameter	2 in_	Hydrocarbon Thick	ness .	6	·
Total Depth	20.1 ft	Valume		6" = 1.50 12"	° = 5.80
Depth to Liquid	11.28 ft	Factor	3" = 0.38	0 = 1.20	- 3.80
# of casing Volume	_818Z x	(VF) x(,	timated /5	gai.
Purge Equipment	Bailer	Sampling Equipme	nt Bailer	Volume	
Did well dewater	Alc -	If yes, Time	Volume	•	,
Starting Time	12:24	Purging Flow Rate	·		
Sampling Time	1245	ruiging riow hate	• • • • • • • • • • • • • • • • • • • •	•	gpm.
Time	PH (Conductivity	· Temperature	e colegir volu	ume C
1200	<u>(e13)</u>	<u> 279</u>	22.5	Mon 3	
1221		$-\frac{267}{303}$	20.8	<u> </u>	
1234	7/0/0	794	$\frac{1200}{200}$	- 1 - 12	
1237	7.6%	300	21.2	-1 -15	•
	7.63	299	2/12		
1245	7.64	<u> </u>	2019	160	
•					·
					<u>. </u>
Weather Conditions	C/rav	a)qum	٠.	•	
Water Color:	Char		· Odor:	nla	
Sediment Description	•	More			
	LAB	ORATORY INFORMA	TION		
Sample ID	Container Ref	•	Type Lab	Ana	lysis'
MW3	3xyanlucA y	Hec	GTBL	GUSB1X	Z MI
	3x4cm ve4	- HC		80/0	2
	X Inv	Mone		TPHNE	se/80
·	y river 14			<i></i>	. 6
Comments					
		41 1 .	a	/1 / 4	
	-5415C	- 13ar 1 -	4 59my	14 c	

Virgil Chavez Land Surveying

312 Georgia Street, Suite 200 Vallejo, California 94590 (707) 553-2476

June 23, 1997 Project No. 1104-68

Barbara Sieminski Gettler-Ryan, Inc. 6747 Sierra Ct. Suite J Dublin, Ca. 94568

Subject: Monitoring Well Survey Chevron SS # 9-9708 5910 MacArthur Blvd. Oakland, Ca.

Dear Barbara:

This is to confirm that we have proceeded at your request to survey the monitoring wells at the above referenced location. Our findings are shown in the tables below. The survey was performed on June 18, 1997. The benchmark for the survey was the top of curb at the southerly end of the return at the easterly corner of MacArthur Blvd. and Seminary Avenue. Measurement locations were marked at the approximate north side of top of box. The second table is for top of casing locations, using the back of sidewalk on MacArthur Blvd. as reference line, beginning at the return described above. Benchmark Elevation 95.88 feet, MSL.

Well No.	Rim Elevation	TOC Elevation
MW - 1 MW - 2	96.96′ 97.15′	96.61'
MW - 3	98.04	96.91' 97.86'
Well No.	<u>Station</u>	Offset
MW - 1	0+59.46	-14.28(Lt.)
MW - 2	0+12.34	-61.57(Lt.)
MM - 3	1+10.73	-106.62(Lt.)
BSW Ret. MacArthur	0+00.00	0.00
BSW-MacArthur Blvd.		0.00

Sincerely,

No. 6323

Virgil B. Chavez, PLS 6329

Midwest Region

4211 May Avenue Wichita, KS 67209 (316) 945-2624 (800) 633-7936 (316) 945-0506 (FAX)

June 12, 1997

Barbara Sieminski GETTLER-RYAN 6747 Sierra Ct. Suite J Dublin, CA 94568

RE: NEI/GTEL Client ID:

Login Number:

GTR01CHV08

W7050411

Project ID (number):

6395.01

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Dear Barbara Sieminski:

Enclosed please find the analytical results for the samples received by NEI/GTEL Environmental Laboratories. Inc. on 05/28/97.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by NEI/GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This report is to be reproduced only in full.

NEI/GTEL is certified by the California Department of Health Service under Certification Number 2147.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Project Coordinator.

Sincerely,

NEI/GTEL Environmental Laboratories, Inc.

Terrý R. Loucks

Laboratory Director

ANALYTICAL RESULTS

Total Petroleum Hydrocarbons By GC

NEI/GTEL-Client ID: GTR01CHV08

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: GC

Matrix: Solids

		_		
NEI/GTEL Sample Number	W7050411-28			
Client ID	MW3-11	- •	4.6	
Date Sampled	05/22/97			••
Date Prepared	06/10/97			
Date Analyzed	06/11/97		- •	••
Dilution Factor	1.00		• •	••

Reporting

Analyte	Limit	Units	Cor	centration:Wet	Weight	
TPH as Diesel	10	mg/kg	< 10.			
Percent Solids		*	81.4			

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

Extraction by EPA Method 3550 (sonication). ASTM Method D3328(modified) is used for qualitative identification of fuel patterns. The method has been modified to include quantitation by applying calibration and quality assurance guidelines outlined in "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846. Third Edition including promulgated Update 1. This method is equivalent to the California LUFT manual CHS method for diesel fuel.

W7050411-28:

Chromatographic data indicates the presence of material, which is heavier than diesel fuel, in this sample. Sample was extracted outside of the method recommended holding time.

NEI/GTEL Wichita, KS W7050411

Login Number:

W7050411

Total Petroleum Hydrocarbons By GC

Project ID (number): 6395.01

Method:

GC Solids

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Project ID (name):

Matrix:

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT. WC)
		4-5	NA
Initial Calibration		• • 	
Continuing Calibration Surrogate Recovery	 -	<u></u> v	
	 	X	NA +
Method Accuracy		X	••
Method Precision		*	
Blank Contamination		X	

Comments:

Acceptability limits are derived from statistical analysis of laboratory samples.

QUALITY CONTROL RESULTS

Login Number:

W7050411

Total Petroleum Hydrocarbons By GC

Method:

GC

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

Solids

Surrogate Results

QC Batch No.	Reference	Sample ID	OTP			
Method: GC	#	Acceptability Limit:	s: 43.7-111%			
061097TPHS-1	BS061097TPH	Method Blank Soil	83.5			
061097TPHS-2	LS061097TPH	Laboratory contro	1 72.8			
061097TPHS-3	LSD061097TPH	H LCS Soil Duplicate	e 65.3			
061097TPHS-4	MS05041128	Matrix Spike	69.7	******************	 ***************************************	er e
061097TPHS-5	MD05041128	Matrix Spike Dupl	i 64.5			
	05041128	MW3-11	72.5			Control of the Contro

Notes:

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary. Acceptability limits are derived from statistical analysis of laboratory samples.

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8020A

Matrix: Low Soil

Calibration Verification Sample Summary

	Spik	e Check Sample	QC Percent	Acceptability Limits	
Analyte	Amoun	t <u>Concentration</u>	Recovery	Recovery	· · · · · · · · · · · · · · · · · · ·
EPA 8020A	Units:ug/L Q	C Batch: 053097GC4-1			
Benzene	20	.0 18.4	92.0	2. Control	
Toluene	20	.0 18.0	90.0	77.5-122.5%	
Ethy1benzene	20	.0 18.2	91.0	63-137%	
Xylenes (Tota		.0 54.4	90.7	85-115%	
TPH as Gasolin	The second section of the second seco	0. 475.	95.0	80-120%	

Notes:

QC check source: Supelco #LA12389

QUALITY CONTROL RESULTS

Login Number:

W7050411

Volatile Organics Method: EPA 8020A

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Low Soil

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

GTEL Sample Analysis Dat	ID:W7050411-04 te: 30-MAY-97	MS II	30-MAY-97	MSD	ID:MD0504 30-MAY				
Units: ug/kg	Sample	Spikes Added	MS	MS	MSD	MSD		Acceptabi	lity Limits
Analyte	Conc.	MS MSD	Conc.	% Rec.	Conc.	% Rec.	RPD	RPD	%Rec.
Benzene	< 5.0 (0.000)	76.3 80.3	59.5	78.0	62.9	78.3	0.400	22,6 61	.1-125.9
Toluene	< 5.0 (0.000)	76.3 80.3	58.0	76.0	60.8	75.7	0.400	27.5 59).B-124.6
Ethy/Ibenzene	< 5.0 (0,000)	76.3 80.3	57.7	75.6	60.4	75.2	0,500	26.4	57,5-138
Xylenes (Total)	< 5.0 (0.000)	229. 241.	171.	74.7	179.	74.3	0.500	26.7	54.3-137
TPH as Gasoline	< 1000(23.1)	553, 562,	769.	135	807,	139	2.90	40	60-140

Values in parentheses in the sample concentration column are used for % recovery calculations.

HM3-16	NOT RUL
P.O. BOX 5004 Son Ratinon, CA 94583 FAX (415)842-9591 Canadiant Hame Gattler-Ryan Laboratory Hame Gattler-Ryan Laboratory Hame Gattler-Ryan Laboratory Hame Gattler-Ryan Addition 5747 Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Ste J., Dublin 94568 Simple Calacted by (15mm) Davelora, Sierra Ct., Sie	NOT RUL
Son Retrion, CA 94563 FAX (415)842-9591 Adhere 6747 Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Project Conduct (1970) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin 94568 Somption Conducted by (Mams) Barboaro, Sierra Ct. Ste J., Dublin	NOT RUL
FXX (415)842-9591 Minor Content (1900) Barbara Ct, Ste J, Dublin 94568 Project Content 1900 Project Con	NOT RUL
Project Content (1979) Darboaro, 57(7) Darboaro, 55(7) Dar	NOT RUL
Martin M	NOT BILL LB ANALY:
Analyses To the Preference Do	NOT BILL
Hu3-g 1 1000 X X X X X X X X X	NOT BILL LB ANALY:
HW3-E	
HW3-G HW3-16 I 1 1 10000 X X X X X X X X X X X X X X X X X X	
HW3-G PHW3-H 1 9:50 X X X X X X X X X X X X X X X X X X X	
HW3-G HW3-16 1 1 1 10000	-
MW3-16	Remarke
HW3-16 1 10:00 X X A A A A A A A A A A A A A A A A A	
HW3-21 1 1000 X X X X X X X X X	DAY TUNN
Hw3-26 I No:40 Hw3-31 J I No:55 Hw3-46 O I IIIDO Hw2-11 I IIIDO Hw2-15,5 M I IIIIC Hw2-15,5 M I IIIIC Hw2-16 O I IIIC Hw2-16 O I IIIC Hw2-17,5 M I IIIC Hw2-16 O I IIC Hw2-16 O IIC	
HW3-26 HW3-31 1 1 10:30 X	OA
Hω2-96 0 1 12:00 X Creved 1.3 1 12:10 X (πH-Dese 1443-11) Not 12:10 X (πH-Dese 1443-11) Not 12:15 X (πω2-16) 1 12:15 X (πω2-16) 1 12:15 X (πω2-16) 1 12:15 X	Ward
$H_{12}-11$ I_{210} $I_$	muici
HW2-15,5 1 12:15 X 5500 - mws-16 W 51.7 12:15 X 12:15	
$\frac{102-15.5}{102-16}$ $\frac{1}{102-16}$	
KW2-16 1 12:15 X	117
	0
HW2-26 7 1 13:15	
	<u> </u>
HW2-31 1 13:30 X	
5Hu9-3() 1 \/ N (13:5H) \/ ()	
Reliestation By (Signoture) Commission Deta/Time Reserved By (Signoture) Commission Deta/Time Turn Around Time (Circle	(Cholae)
Refrigilated by (Signature) Organization Date/Time Resolved Dr (Charles)	
(4) Jin.	
Relicipational By (Signature) Organization Date/Simo Haclaved For Laboratory By (Signature) Duke/Simo An Contracted	
AN CONTRACTO	

•	rax cop	γοιι	.ab	9 tep	ort	an @	UUU LU	•:	dyro	ı u	lituo	נ נע	1 🖜)		•				· OUS	lour necoi
ſ			Chevn			52	97.01 C	7-0	170	\$ ³				Chevron (Contact ((Name)	Ph	il 1	3230	9136	
	Chevron U.S	A Inc		Fadil	ity Addra	29	10 rache	Hue	<u>r Hiv</u>	i, Da	بلدلي	nd_	-	Laborator		(Phone)) <u>- [</u>	10/0	42.	7130	
	P.O. BOX 5	1	Consu	itlant Pi	roject Nu	mbor 6	395.01					<u>-</u>	Ι.			- March	Let 90	1645	04	, ZZO	2760
	San Ramon, C				451.7	A	_ ^ ~ C+~	ch cha i Nublin 94568								L by (N	ame)	2 ω $+\ell$	אינייני.	Siew	11115K1
i	FAX (415)84	2-9591		ddraes_		11	Barbara	- 1.	Collection	Date	05,	122	197								
ŀ			P	roject u	ontact f	Phone) 5	51-7555	3arbara Sikminski 51-7555 (Fax Number) 551-7888							Z	ملكم	ind				
ŀ					1										To B						DO NOT BILL
ı			₽ .	Air Chorcool	و ۾		, s		H		T -	2000	rtice.	7 7	is						TB-LB ANALYSI
	, ·	Number	Container	1 1	Grab Composite	· .	Z dg	or No	LM/w:		L L	locar	Ĕ	g or	Orgai	¥.0]			į	
	ζ L L		ઇ ઇ	رن الإ_	L I I		1 1	გ გ	BTB.	3	ξm	*~	- in		able (or At					
1	Semple Number	Sample	Number	ar Xata	000		Sample Preservation	lced (Yes	TPH Ges + BTEX W/MTBE	TPH Diesed (8015)	01 and Grass (5520) 巨体F	Purgeable Halocarbons (8010)	Purgeable Aromatica (8020)	Purgeable Organica (8240)	Extractable Organics (8270)	Metals Cd,Cr,Pb,Zn,Ni (ICAP or AA)			ļ		Remarks
ļ	s E	ĝ	Z Co	Motute S 1 *	<u>\$</u>	H _m	· 3	8	Ē	E C	80	4	ď.,	α.	ω ·	≆ 0 ⊂					
ł	Mw3-G	01	_	ς	D	9:45		Yea						_	ļ			140	LD		* 5 DAYTAT
ŀ	14W3-11	<u>ده</u>			17	9:50		1	$\exists \times$		X	X			X	X					01 JD#MW3-11
1	MW3-16	03				10:00					<u> </u>						<u> </u>				Analysis
1	MW3-21	<u>ુ</u> ૦૫				10:05		·	Π×		<u> </u>	<u> </u>			<u> </u>		 				For 5520
		05				10:40						<u> </u>			<u> </u>		<u> </u>	170	<u> </u>		includes silica
1	HW3-26 HW3-31	700				10:53	5			۷		.			<u> </u>		ļ				gel clan-up.
1	HW3-16	0 07			1	12:0	0 .					<u> </u>		_		ļ		Ho	·D	_	
	Hw2-11	1/ 08			11	12:10			7	<		<u> </u>			ļ	<u> </u>	<u> </u>		<u> </u>		Contracted
	HW2-15.5		1.			12:15					_			_			ļ	 -		·	TATonall
	MW2-16	1-1	l i			12:14	5		_ >			<u> </u>	<u> </u>								other Analysis
	HW2-21	7 1	1			13:00	5		_ >	<u> </u>		<u> </u>	<u> </u>		-	<u> </u>	 	<u> </u>			
	MW2-26	3 13	T			13:1	7				_	<u> </u>			-	ļ	 -	HOL	P		
	HW2-31	13	1			13.3			_ >	<u> </u>	_	_		- -	-		 	1	_		
Ę	MW2-36	14	777		V U	13:5		<u>\</u>			<u> </u>		┸			1-00	ite/Tlme	1030		Turn Around	Time (Circle Choice)
91/1	Relinquished By	(Signature)	1,	. 4	rganizatio	"	Date/Time 10			By (Sig		0.0		Organiza نامار	CITE	l _	-2 <u>7-</u>				24 Brs.
5/63	Tarbon		lu		G-	<u> </u>	05/27/9 Dole/Time /6			By (Sla		<u> </u>		Organize			ite/Tlme				46 Hrs.
Ď	£ 1000004 = 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					5/27/9	W ₁	ω_{\parallel}										10 Days			
ģ	Relinquished By	on	Date/Time	ne Replayed For Laboratory By (Signature					ngture))	1	Ox	110/11mo 12/52	18-45		As Contracted					
•									7.7	See.	Hon					7	VIF				

,	•	-		•				A == -1	9	170		·	<u> </u>	-9-	Chevron (•	Dh	····	Bai		•			
1			Chev	ron Fac	lilly Nu	imbei	<u>, (-)</u> 50.	45.01 O MacA	9 - 0	r Ric	ما. ()ole	 مَسنت\	<u>, </u>	Chevron	Contact	(Name) (Phone)	<u></u> (S)((U) X	342-	913	6			
	Chevron U.S	.A. Inc.	^	Faci	illy Ad	dress Numi	. <u> </u>	345.0		. 17 - 3	-)				_aborator		1	-							
	P.O. BOX					•	A++ 6	> r → K ∨ A B	yanlı								Laboratory Name GTEL Laboratory Release Number 9064504 720276 Samplee Collected by (Name) Bushum Sikunuslu Collection Date 05/22-23/97								
	San Ramon, C				674	7 S	ierra	a Ct, Ste J, Dublin 94568 s								Collecte	d by (N	ome)	100	150	40 C	zieu	uuslin		
	FAX (415)84	-Z-a2a1	F	roject (Contac	i (Hp	m.)	o) Babara Silminski 510 (Fax Number) 551-7888 s								Dote	<u>05 20</u>	22-2	2 5						
-						(Ph	one) 5	51-7555	(Fax	Number)_55	1-700		ئـــــــــــــــــــــــــــــــــــــ									1		
				8								r .	1		Analye	• To B	• Perfor	med		T		Ţ——	DO NOT BILL		
		¥	19 C	Zhareool		Discrete		ļ ģ		TBE		1	Tod:	office	Į į	8						1	TB-LB ANALYS		
	¥	Sample Number	Container	JŢ ≺υ	ę			Sample Preservation	Ŷ	TPH G≠+ BTEX w/MTBE (8015) (8020)		8	Purgeoble Holocarbors (8010)	Purgeable Aromatics (8020)	Organica	Extractable Organica (8270)	 දී උ				}				
	Sample Number	<u>.</u>	र्ष		H	1 1		F d	8	111	700	Oil and Greate (5520)	4 4 5 H	1 4 C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36	Metals Cd,Cr,Pb,Zn,Ni (ICAP or AA)	1							
	ှိ ရှိ		Number	Metric S = Soll K = Water	9	,	*	Profes	Iced (Yes	10.0	1PH Dissel (8015)	1 and (5520)	0.03 0.03 0.03	802	Purgedble (8240)	(827)	18 4 3 18 4 3						Remarks		
	ę,	Ê	ž	₹υ¥	\$		Ē	· &	<u> </u>	F E	1 1	ö	4	ă.	Δ.	, ш	100	<u> </u>		ļ	-	<u> </u>	Nonce		
ł	HW2-41	15	1	5	1	5	14:10		Yeu	X						<u> </u>	<u> </u>	ļ	ļ	.	<u>.</u>	.			
ł	MW1-6	اسا اما	1	1	1		15:10		(<u> </u>	ļ	<u> </u>	OL	Þ _	_				
ł	HW1-11	17	<u> </u>				15/25			X						<u> </u>		<u> </u>		ļ	<u> </u>				
	HW1 -15,5	18	<u>,</u>		11		15:35	 		X															
	MW1-16	<u>≥19</u>	7		11		15:35			X						<u> </u>									
	MW1-21	- 	$\frac{\cdot}{I}$		_		15:45	1		1×						Ţ <u>.</u>				_	_				
			$\dot{\tau}$		-		15:55		 - -	1 /-	-	-						H	DLI	<u> </u>	<u> </u>				
	HW1-25	2) AL		1 +	-		16:10	ļ	 	V	1				1							ļ 			
	MW1-31	0 22			-		620	<u> </u>	┤┤╴	- - / - >	-		1	1				Ita	DLI	3					
	MW1-36	+ 23	,	╁╌┼	-	-	16:40		╁┼		-	·		 	1										
	MW1-41	224	1		-	-				- -^-		 	-	 	-	-		140	LD	<u> </u>	_		Collected 127		
	HW3-35,5					-	11:35	- 1	11,		-		-	-	-		 					-	Jon 05/23/97		
	MM3- 41	علا		1		<u>\</u>	11:45		V	- -^	-	-	-	 	-		-		- 						
		<u> </u>		<u> </u>			<u> </u>	-	_	-	-			1		-		-	1						
Ę		<u> </u>		<u> </u>	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	Date/Time	<u> </u>	oolyod (By (Slan	ature)		1	Organiza	allon	Dot	lo/Time	10:3c	<u>, </u>	Turn A	round T	ime (Circle Choles)		
2 9 1	Relinquished By		, ,	A	rgonize	ation —Q		05/27/9		Dole		2000	•		Nei/	/	ـــا	27-9	• -			2	4 Bru		
#G/0	Relinquished By	(Slanature)	uçi	14 0	rganizo) Don		Date/Time/6		eceived I	<u> </u>		!		Organiza			le/Time					8 Hre. Daye		
Q.	Doe v				Vei/	67		5/27/93	<u> </u>								- -			-		î	Doys .		
8	Relinquished Dy				(Goniz			Date/Time		eoleved i	For Lab	oralory	By (Slgn	atur•)		4	Dol	le/¶me 3/37	OP	15	(₩ 0	ontraot+d		
											ZZ.	-/2					4-7		-g /						

Login Number: W7050411 QUALITY CONTROL RESULTS

Total Petroleum Hydrocarbons By GC

Method:

GC

Project ID (number): 6395.01 Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

Solids

Method Blank Results

QC Batch No:

061097TPHS-1

Date Analyzed:

11-JUN-97

Analyte

Method:GC

Concentration: mg/kg

Diesel Range Organics

< 10.0

Notes:

NEI/GTEL Client ID:

GTR01CHV08

QUALITY CONTROL RESULTS

Login Number:

W7050411

.

Total Petroleum Hydrocarbons By GC

Method:

GC Solids

Project ID (number): 6395.01 Project ID (name): CHEVRON

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

nati ix.

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

GTEL Sample	ID:W7050411-28		MS I	D:MS05041128	MSQ	ID:MD0504	1128			
Analysis Date	e: 11-JUN-97			11-JUN-97		11-JUN	I-97			
Units: ug/ml	Sample	Spikes	Added	MS	MS	MSD	M\$D		Acceptabi	lity Limits
Analyte	Conc.	MS	MSD	Conc.	# Rec.	Conc.	% Rec.	RPD	RPD	₹Rec.
Diesel Range Organic	s 14.7 (14.7)	65.7	65.2	88.8	113	45.4	47.1	82.3*	29,2	34.3-121

Notes:

Values in parentheses in the sample concentration column are used for % recovery calculations.

Acceptability limits are derived from statistical analysis of laboratory samples.

061097TPHS-4: This value differs from the reported diesel value due to the inclusion of all the material in the diesel range.

061097TPHS-4: :Sample spike duplicate RPD is outside of acceptability limits due to sample inhomogeneity. Blank spike RPD is within acceptability limits. therefore demonstrating method precision.

W7050411

QUALITY CONTROL RESULTS

Login Number:

Total Petroleum Hydrocarbons By GC

GC

Project ID (number): 6395.01

Method:

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

Solids

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

Diesel Range Organics 66.7 47.5 71.4 55.5 84.5 16.8 30.4 39.8-115%

Spike

LCS Duplicate LCS Duplicate

Acceptability Limits

Analyte

Amount Concentration Recovery, % Concentration

Recovery. %

Units: mg/kg

QC Batch:061097TPHS-3

LCS

Recovery. % RPD. %

Acceptability limits are derived from statistical analysis of laboratory samples.

Tilename: AD021284 Oderator: NAC Amount: 30.100 vuits ter are not by decreasing the are M. CC

ANALYTICAL RESULTS

NEI/GTEL Client ID: GTR01CHV08

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 6010A

Matrix: Solids

NEI/GTEL Sample Number	W7050411-02			••
Client ID	MW3-11			• •
Date Sampled	05/22/97		• •	••
Date Prepared	05/29/97			
Date Analyzed	06/02/97	• •	• •	+ ₩
Dilution Factor	1.00	• •	••	

Reporting

Analyte	Limit	Units	Concentration:Wet Weight
Cadmium	2.0	mg/kg	< 2.0
Chromium	3.0	mg/kg	46
Lead	7.0	mg/kg	11,
Nickel	4.0	mg/kg	120
Zinc	2.0	mg/kg	110
Percent Solids		*	81.4

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 6010A:

Digestion by EPA Method 3050A. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including Update 2.

The recovery limits were exceeded for ZINC in the matrix spike due to sample matrix interferences.

NEI/GTEL Wichita, KS W7050411

Page: 1

Project Number: 6395.01

Project Name: Chevron #9-9708

5910 MacArthur Blvd.

Oakland, CA

Work Order Number: W7-05-0411 Date Reported: 06-10-97

QA NONCONFORMANCE SUMMARY

Sample Handling 1.0

1.1 Sample handling and holding time criteria were not met for zero samples.

2.0 Initial Calibration Verification

The validity for the calibration verification was exceeded for zero samples as shown in Table

Method Blanks 3.0

3.1 Zero target elements were found in the method blank as shown in Table 3.

4.0 Matrix Spike (MS) Accuracy

- The recovery limits were exceeded in the matrix and matrix spike duplicate for one element as shown in Tables 4A and 4B.
- 4.2 The recovery limits were exceeded for zinc in the matrix spike due to matrix interferences.

5.0 Sample Duplicate Precision

The maximum percent difference (RPD) was exceeded for zero elements in the matrix spike and matrix spike duplicate samples as shown in Tables 4A and 4B.

6.0 Laboratory Control Sample

The recovery limits were not met for zero elements for the laboratory control samples as shown in Table 5.

Project Number: 6395.01 Project Name: Chevron #9-9708 5910 MacArthur Blvd.

Work Order Number: W7-05-0411 Date Reported: 06-10-97

Table 2
INITIAL CALIBRATION VERIFICATION QC CHECK SAMPLE REPORT Metals in Soil

Analyte	Expected Result, mg/L	Observed Result, mg/L	Recovery, %	Acceptability Limits, % ^a
Cadmium	1.00	1.01	101	90-110
Chromium	1.00	1.01	101	90-110
Lead	1.00	1.03	103	90-110
Nickel	1.00	1.02	102	90-110
Zinc	1.00	1.01	101	90-110

Acceptability limits as per EPA Contract Laboratory Program а

> Table 3 **BLANK REPORT** Metals in Soil

Analyte	Initial Calibration Blank, mg/L	Preparation Blank, mg/Kg
Cadmium	<0.020	<2.00
Chromium	< 0.030	<3.00
Lead	<0.070	<7.00
Nickel	<0.040	<4.00
Zinc	< 0.020	<2.00

Not detected at the indicated detection limit (#)

Project Number: 6395.01 Project Name: Chevron #9-9708

5910 MacArthur Blvd.

Oakland, CA

Work Order Number: W7-05-0411

Date Reported: 06-10-97

Table 4A MATRIX SPIKE AND MATRIX SPIKE DUPLICATE SUMMARY Metals in Soil

Sample Spiked: W7050411-02

Analyte	Spike Added, mg/Kg	Sample Concentration, mg/Kg	MS Concentration, mg/Kg	MS Percent Recovery	Acceptability Limits, %a
Cadmium	84.2	<2.00	79.1	93.8	80-120
Chromium	167	46.0	201	92.8	80-120
Lead	167	10.7	171	89.6	80-120
Nickel	167	122	271	89.5	75-125
Zinc	167	106	234	76.4b	80-120

- Acceptability limits as per EPA Contract Laboratory Program. а
- þ Value is outside of acceptability limits.
- NA Not applicable; sample result greater than four times spike amount.

Table 4B MATRIX SPIKE AND MATRIX SPIKE DUPLICATE SUMMARY Metals in Soil

Analyte	Spike Added, mg/Kg	MSD Concentration, mg/Kg	MSD Percent Recovery	RPD %	Acceptability Limits, %a	
				,	RPD	% Recovery
Cadmium	90.2	87.7	97.2	3.56	20.0	80-120
Chromium	179	227	101	8.46	20.0	80-120
Lead	179	191	101	12.0	20.0	80-120
Nickel	179	303	101	12.0	20.0	75-125
Zinc	179	262	87.2	13.2	20.0	80-120

- Acceptability limits as per EPA Contract Laboratory Program. а
- NA Not applicable; sample result greater than four times spike amount.

Project Number: 6395.01
Project Name: Chevron #9-9708
5910 MacArthur Blvd.
Oakland, CA
Work Order Number: W7-05-0411
Date Reported: 06-10-97

Table 5

LABORATORY CONTROL SAMPLE RESULTS Metals in Soil

Analyte	Expected Result, mg/Kg	Observed Result, mg/Kg	Recovery, %	Acceptability Limits, % ^a
Cadmium	101	93.3	92.4	80-120
Chromium	200	190	95.2	80-120
Lead	200	188	93.8	80-120
Nickel	200	190	94.8	75-125
Zinc	200	187	93.3	80-120

Acceptability limits established by laboratory practice а

ANALYTICAL RESULTS Total Petroleum Hydrocarbons

NEI/GTEL Client ID: GTR01CHV08

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: SM 5520F

Matrix: Solids

NEI/GTEL Sample Number	W7050411-02			
Client ID	MW3-11			••
Date Sampled	05/22/97	••	• •	
Date Prepared	06/02/97			
Date Analyzed	06/03/97	••	• •	
Dilution Factor	1.00		• •	••

Reporting

Analyte	Limit	Units	Conc	entration:Wet	Weight	
Total Petroleum Hydrocar	rbons 10.		170			
Percent Solids		%	81.4			

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

SM 5520F:

This method is equivalent to method 5520CF. Standard Methods For The Examination Of Wastewater, 18th edition, 1992. "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, USEPA EMSL. Cincinnati, OH, Revised, March 1983.

Login Number: Project ID (number): 6395.01

W7050411

QUALITY CONTROL RESULTS

Semivolatile Organics Method: EPA 8270B

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Solids

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item		Semi-Volatile Organics	Inorganics (MT, WC)
GC/MS Tune			NA
Initial Calibration	~ -		
Continuing Calibration			-
Surrogate Recovery		X	NA NA
Holding Time		χ	. T
Method Accuracy		X	
Method Precision	 -	χ	
Blank Contamination	• •	X	

Comments:

ANALYTICAL RESULTS Total Petroleum Hydrocarbons

NEI/GTEL Client ID: GTR01CHV08

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: SM 5520F

Matrix: Solids

NET (APRIL 4 1 A)				
NEI/GTEL Sample Number	W7050411-29		••	••
Client ID	MW3-16		••	
Date Sampled	05/22/97			
Date Prepared	06/05/97			
Date Analyzed	: 06/05/97	• -	••	
Dilution Factor	1.00			

Reporting

Analyte	Limit	Units		Concentration:Wet W	leight	
Total Petroleum Hydrocarbor	ns 10	mg/kg	1000			
Percent Solids		X	92.1			

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

SM 5520F:

This method is equivalent to method 5520CF. Standard Methods For The Examination Of Wastewater. 18th edition. 1992. "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, USEPA EMSL, Cincinnati, OH, Revised, March 1983.

NEI/GTEL Wichita, KS W7050411

Page: 1

QUALITY CONTROL RESULTS

Login Number:

W7050411

Total Petroleum Hydrocarbons

Method:

SM 5520F

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

Solids

Method Blank Results

QC Batch No:

060597IRSA-1

Date Analyzed:

05 JUN 97

Analyte

Method:SM 5520F

Concentration: mg/kg

Total Petroleum Hydrocarbons

5.40*

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Total Petroleum Hydrocarbons

Method: SM 5520F

Matrix:

Solids

Calibration Verification Sample Summary

Spike Check Sample QC Percent Acceptability Limits <u>Analyte</u> Amount Concentration Recovery Recovery SM 5520F Units:mg/L QC Batch: 060597IRSA-6 Total Petroleum Hydrocarbons 5.00 5.10 102. 90-110%

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Total Petroleum Hydrocarbons

Method: Matrix:

SM 5520F Solids

Project ID (number): 6395.01 Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

GTEL Sample	ID:W7050411-29		MS :	ID:MS05	041129	MSD	ID:MD050	41129			-
Analysis Dat	e:_05-JUN-97			05-J	UN-97		05-JU	N-97			
Units: mg/kg	Sample	Spikes	Added	<u>-</u>	MS	MS	MSD	MSD		Acceptabi	lity Limits
Analyte	Conc.	MS	MSD		Conc.	% Rec.	Conc.	% Rec.	RPD	RPD	*Rec
Total Petroleum Hydr	ocarbons1000 (1020)	15	0. 150.		3030	1340*	1670	433.*	102.*	50	42-141

Notes:

Values in parentheses in the sample concentration column are used for % recovery calculations.

The spike recovery data may not be representative of the accuracy of the method or demonstrate true matrix interferences due to the ratio of background to spike amount.

The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil.

060597IRSA-4: Sample spike recovery is outside of acceptability limits due to high sample concentration. Blank spike recovery is within acceptability limits, therefore demonstrating method accuracy.

060597IRSA-5: Sample duplicate spike recovery and RPD are outside of acceptability limits due to high sample concentration. Blank spike recovery and RPD are within acceptability limits, therefore demonstrating method accuracy and precision.

QUALITY CONTROL RESULTS

Login Number:

W7050411

Total Petroleum Hydrocarbons

SM 5520F

Solids

Project ID (number): 6395.01

Method:

Matrix:

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Calibration Verification Sample Summary

Spike

Check Sample

QC Percent

Acceptability Limits

Analyte

Amount

Concentration

Recovery

Recovery

SM 5520F

Units:mg/L

QC Batch:060297IRSA-6

99.2

Total Petroleum Hydrocarbons

5.00 4.96

90-110%

Notes:

W7050411

QUALITY CONTROL RESULTS

Login Number:

Project ID (name):

Total Petroleum Hydrocarbons SM 5520F

Project ID (number): 6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method:

Matrix:

Solids |

Method Blank Results

QC Batch No:

060297IRSA-1

Date Analyzed:

03-JUN-97

Method:SM 5520F

Concentration: mg/kg

Total Petroleum Hydrocarbons

< 10.0

Notes:

Analyte

QUALITY CONTROL RESULTS

Login Number:

W7050411

Method:

Total Petroleum Hydrocarbons SM 5520F

Project ID (number): 6395.01 Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Solids

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

GTEL Sample	ID:W7050431-05		MS I	D:MS05043105	MSD	ID:MD05043	105			····
Analysis Date	e: 03-JUN-97			03-JUN-97		03-JUN-	97			
Units: mg/kg	Sample	Spikes	Added	MS	MS	MSD	CZM		Acceptabi	lity Limits
Analyte	Conc.	MS	MSD	Conc.	% Rec.	Conc.	≵ Rec.	RPD	RPD	%Rec.
Total Petroleum Hydr	ocarbons< 10. (9.03)	15	0. 150.	169.	107	154	96.6	10.2	50	42-141

Notes:

Values in parentheses in the sample concentration column are used for \boldsymbol{x} recovery calculations.

The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil.

QUALITY CONTROL RESULTS

Login Number:

W7050411

Total Petroleum Hydrocarbons

Project ID (number): 6395.01

Method:

SM 5520F Solids

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

Spike

LCS

LCS Duplicate LCS Duplicate

Acceptability Limits

Analyte

LCS

Amount Concentration Recovery % Concentration Recovery % RPD %

RPD, & Recovery, %

SM 5520F

Units: mg/kg

QC Batch:060297IRSA-3

Total Petroleum Hydrocarbons 150 152. 101.

151.

101

42-141%

Notes:

The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil.

NEI/GTEL Wichita, KS W7050411:5

QUALITY CONTROL RESULTS

Login Number:

W7050411

Total Petroleum Hydrocarbons

Project ID (number): 6395.01

Method: SM 5520F

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Solids

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)	
GC/MS Tune	1 m 1/21 121 F		NA NA	
Initial Calibration			- -	
Continuing Calibration				3 32541 1686 (C.)
Surrogate Recovery		~ ~	NA	
Holding Time				
Method Accuracy		X		
Method Precision		X		
Blank Contamination		X		

Comments:

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: GTR01CHV08

Login Number:

W7050411

Project ID (number): 6395.01 Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8020A

Matrix: Solids

NEI/GTEL Sample Number	W7050411-08	••	- +	• •
Client ID	MW2-11	- •	• •	
Date Sampled	05/22/97	• •	• •	
Date Analyzed	05/30/97			••
Dilution Factor	1.00		••	

	Reporting					
Analyte	Limit	Units	Conc	<u>entration:Wet We</u>	ight	
MTBE	1.0	mg/kg	< 10			
Benzene	0.05	mg/kg	< 0.05			
Toluene	0.10	mg/kg	0.16			••
Ethylbenzene	0.10	mg/kg	0.27			
Xylenes (total)	0.20	mg/kg	0.58		4-	••
BTEX (total)		mg/kg	1.0			
TPH as Gasoline	10.	mg/kg	140			
Percent Solids		*	76.4			••

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846. Third Edition including promulgated Update II.

Methanol extraction necessary due to high levels of target or non-target analytes.

NEI/GTEL Wichita, KS W7050411

Page: 1

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: GTR01CHV08

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8020A

Matrix: Low Soil

NEI/GTEL Sample Number	W7050411-02	W7050411-03	W7050411-04	W7050411-06
Client ID	MW3-11	MW3-16	MW3-21	MW3-31
Date Sampled	05/22/97	05/22/97	05/22/97	05/22/97
Date Analyzed	05/30/97	05/30/97	05/30/97	05/30/97
Dilution Factor -	1.00	1.00	1.00	1.00

Reporting					
Limit	Units	Co	oncentration:Wet	Weight	
10.	ug/kg	< 10.	< 10.	< 10.	< 10.
5.0	ug/kg	< 5.0	< 5.0	< 5.0	< 5.0
5.0	ug/kg	< 5.0	< 5.0	< 5.0	< 5.0
5.0	ug/kg	< 5.0	< 5.0	< 5.0	< 5.0
5.0	ug/kg	< 5.0	< 5.0	< 5.0	< 5.0
	ug/kg	• •	• •		**
1000	ug/kg	< 1000	< 1000	< 1000	< 1000
	*	81.4	92.1	77.9	84.1
	Limit 10. 5.0 5.0 5.0 5.0 1000	Limit Units 10. ug/kg 5.0 ug/kg 5.0 ug/kg 5.0 ug/kg 5.0 ug/kg ug/kg 1000 ug/kg	Limit Units Co 10 ug/kg < 10 5.0 ug/kg < 5.0 ug/kg 1000 ug/kg < 1000	Limit Units Concentration: Wet 10. ug/kg < 10. < 10. 5.0 ug/kg < 5.0 < 5.0 ug/kg 1000 ug/kg < 1000 < 1000	Limit Units Concentration: Wet Weight 10. ug/kg < 10. < 10. < 10. < 10. 5.0 ug/kg < 5.0 < 5.0 < 5.0 1000 ug/kg < 1000 < 1000 < 1000

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8020A:

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846, Third Edition including promulgated Update II.

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7050411

Project ID (number): 6395.01
Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8020A

Matrix: Low Soil

NEI/GTEL Sample Number	W7050411-09	W7050411-10	W7050411-11	W7050411-13
Client ID	MW2-15.5	MW2-16	MW2-21	MW2-31
Date Sampled	05/22/97	05/22/97	05/22/97	05/22/97
Date Analyzed	05/30/97	05/31/97	05/30/97	05/30/97
Dilution Factor	1.00	1.00	1.00	1.00

	Reporting					
Analyte	Limit	Units	Coi	ncentration:Wet	Weight	
MTBE	10.	ug/kg	680	1300	< 10.	< 10.
Benzene	5.0	ug/kg	< 5.0	< 14.	< 5.0	< 5.0
Toluene	5.0	ug/kg	< 5.0	< 14.	< 5.0	< 5.0
Ethylbenzene	5.0	ug/kg	< 5.0	< 14.	< 5.0	< 5,0
(ylenes (total)	5.0	ug/kg	< 5.0	< 14.	< 5.0	< 5.0
STEX (total)		ug/kg	**			
TPH as Gasoline	1000	ug/kg	< 1000	< 2800	< 1000	< 1000
Percent Solids		*	85.6	77.5	83.8	91.3

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8020A:

Gasoline range hydrocarbons (TPH) quantitated by GC/FIO with purge and trap and modified EPA Method 8015. "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846, Third Edition including promulgated Update II.

W7050411-10:

The < value exceeds the reporting limit as a reduced sample amount was necessary for analysis to overcome matrix interferences.

NEI/GTEL Wichita, KS W7050411

Page: 2

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7050411

Login Number: W7050411 Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8020A

Matrix: Low Soil

NEI/GTEL Sample Number	W7050411-15	W7050411-17	W7050411-18	W7050411-19
Client ID	MW2-41	MW1-11	MW1-15.5	MW1-16
Date Sampled	05/22/97	05/22/97	05/22/97	05/22/97
Date Analyzed	05/30/97	05/30/97	05/30/97	05/30/97
Dilution Factor	1.00	1.00	1.00	1.00

	Reporting					
Analyte	Limit	Units		<u>oncentration:Wet </u>	Weight	
MTBE	10.	ug/kg	< 10.	< 21.	15.	< 10.
Benzene	5.0	ug/kg	< 5.0	6.2	27.	< 5.0
Toluene	5.0	ug/kg	< 5.0	14.	< 5.0	< 5.0
Ethy1benzene	5.0	ug/kg	< 5.0	< 11.	32.	< 5.0
Xylenes (total)	5.0	ug/kg	< 5.0	< 11.	74.	< 5.0
BTEX (total)	- - •	ug/kg		20.	130	• •
TPH as Gasoline	1000	ug/kg	< 1000	7100	1600	< 1000
Percent Solids		%	82.3	85.8	86.2	86.0

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution,

FPA 8020A:

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846. Third Edition including promulgated Update II.

W7050411-17:

The < value exceeds the reporting limit as a reduced sample amount was necessary for analysis to overcome matrix interferences.

NEI/GTEL Wichita, KS W7050411

Page: 3

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8020A Matrix: Low Soil

NEI/GTEL Sample Number	W7050411-20	W7050411-22	W7050411-24	W7050411-26
Client ID	MW1-21	MW1-31	MW1-41	MW3-41
Date Sampled	05/22/97	05/22/97	05/22/97	05/23/97
Date Analyzed	05/30/97	05/30/97	05/30/97	05/30/97
Dilution Factor	1.00	1.00	1.00	1.00

	Reporting					
Analyte	Limit	Units		Concentration:Wet	Weight	
MTBE	10.	ug/kg	< 10.	< 10.	< 10.	< 10.
Benzene	5.0	ug/kg	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	5.0	ug/kg	< 5.0	< 5.0	< 5.0	< 5.0
Ethylbenzene	5:0	ug/kg	< 5.0	< 5,0	< 5.0	< 5.0
Xylenes (total)	5.0	ug/kg	< 5.0	< 5.0	< 5.0	< 5.0
BTEX (total)		ug/kg			••	
TPH as Gasoline	1000	ug/kg	< 1000	< 1000	- < 1000	< 1000
Percent Solids		3	81.6	80.8	88.2	90.1

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8020A:

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. "Test Methods for Evaluating Solid Waste. - Physical/Chemical Methods", SW-846, Third Edition including promulgated Update II.

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8020A

Matrix:

Solids

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item		Semi-Volatile Organics	Inorganics (MT, WC)
GC/MS Tune	Section 1994		NA .
Initial Calibration			
Continuing Calibration	χ		
Surrogate Recovery	Χ		NA
Holding Time	χ	-	
Method Accuracy	χ		
Method Precision			
Blank Contamination	X		

Comments:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01 Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8020A

Matrix: Solids

Surrogate Results

QC Batch No.	Reference	Sample ID	TFT	
Method: EPA 80	020A	Acceptability Limits:	43-136%	
053097GC14-1	CV05309720	14 Calibration Verifi	104.	
053097GC14-10	LS05309714		106.	
053097GC14-11	LSD0530971	4 LCS Soil Duplicate	105	
053097GC14-9	BS05309714	Method Blank Soil	99.2	
	05041108	MW2-11	98.4	

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

QUALITY CONTROL RESULTS

Login Number: Project ID (number): 6395.01

W7050411

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8020A

Matrix: Solids

Method Blank Results

QC Batch No:

053097GC14-9

Date Analyzed:

30-MAY-97

	Date Allai yzeu.	30"I'MI"37	
Analyte		Method:EPA 8020A	Concentration: mg/kg
MTBE		< 1.00	
Benzene		< 0.0500	
Taluene		< 0.100	
Ethylbenzene		< 0.100	
Xylenes (Tota	1)	< 0.200	
TPH as Gasoli	ne	< 10.0	

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8020A

Solids Matrix:

Calibration Verification Sample Summary

		Spike	Check Sample	QC Percent	Acceptability Limits	
Analyte		Amount	Concentration	Recovery	Recovery	
EPA 8020A	Units:ug/L	QC Bato	:h:053097GC14-1			
Benzene		20.0	18.5	92.5	77-123%	
Toluene		20.0	20.7	104.	77.5-122.5%	
Ethylbenzene		20.0	17.9	89.5	63-137%	
Xylenes (Tota	1)	60.0	59.5	99.2	85-115%	
TPH as Gasoli	ne	500.	590:	118.	80-120%	

QC check source: Supelco #LA12389

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Volatile Organics Method: EPA 8020A

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Solids

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

	Spike	LCS	LCS	LCS Duplicate	LCS Duplicate	Acce	tabi 1	lity Limits
Analyte	Amount	Concentratio	n Recovery. %	Concentration	Recovery. % RPD	, % RPD		Recovery. %
EPA 8020A	Units: mg/kg	QC Batch:	053097GC14	-11				
Benzene	5.00	4.10	82.0	4.20	84.0 2.	11 28	3	39-150%
Toluene	5.00	4.77	95. 4	4.89	97.8 2.	18 30		46-148%
Ethylbenzene	500	4.34	86.8	4.46	89.2 2.	73 30		32-160%
Xylenes (Total) 15.0	13.5	90.0	13.7	91.3 1.	43 <u>30</u>		41-155%

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01 Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Volatile Organics

Method: EPA 8020A

Matrix: Low Soil

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)	
GC/MS Tune			NA NA	
Initial Calibration				
Continuing Calibration	Х		- -	
Surrogate Recovery	X		NA	ara cala :
Holding Time	Х			
Method Accuracy	X			
Method Precision	Х			
Blank Contamination	X			

Comments:

NEI/GTEL Client ID: GTR01CHV08 QUALITY CONTROL RESULTS

Login Number: W7050411
Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8020A

Matrix: Low Soil

Surrogate Results

QC Batch No. F	Reference	Sample ID	TFT	
Method: EPA 8020	Accep	stability Limits:	43-1362	
		ibration Verifi	73.9	
	3L0530974 Met	chod blanks low	75.2	
		crix Spike	69.2	
47 (47 (47 (47 (47 (47 (47 (47 (47 (47 (trix Spike Dupli	68.5	
	05041102 MW3	3-11	69.0	
6 x 260 x 60 x 60 x 60 x 60 x 60 x 60 x	05041103 MW3	3-16	65.5	
ge.	05041104 MW	3-21	70.4	
	05041106 MW	3-31	70.5	
**	05041109 MW	2-15.5	71.6	
	05041110 MW	2-16	70.8	
	05041111 MW	2-21	66.9	
	05041113 MW	2-31	65.3	
4.0	05041115 MW	2-41	71.0	
	05041117 MW	1-11	77.2	
	05041118 MW	1-15,5	91.1	
	05041119 MW	1-16	70.6	
	05041120 MW	1-21	71.9	
## # All Ministrational properties on any particle	05041122 MW	1-31	69.8	
4 -	05041124 MW	1-41	72.3	
= =	05041126 MW	3-41	<u>79.7</u>	

Notes:

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

QUALITY CONTROL RESULTS

Login Number: Project ID (number): 6395.01

W7050411

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8020A

Matrix: Low Soil

Method Blank Results

QC Batch No:

053097GC4-3

30-MAY-97

	Date Analyzed:	30-MAY-9/	
Analyte		Method:EPA 8020A	Concentration: ug/kg
MTBE		< 10.0	
Benzene		< 1.00	
Toluene		< 2.00	
Ethylbenzene		< 2.00	
Xylenes (Total)		< 4.00	
TPH as Gasoline		< 100.	

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Project ID (name):

Total Petroleum Hydrocarbons

Method:

SM 5520F

Solids Matrix:

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments

-- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)
GC/MS Tune			NA
Initial Calibration		. 	La companya di santana
Continuing Calibration		X X	
Surrogate Recovery			NA.
Holding Time		X	
Mothod Accuracy		*	
Method Precision		***************************************	
Blank Contamination		*	_

Comments:

The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil. The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil.

Project ID (name):

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01 CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Total Petroleum Hydrocarbons

Method: SM 5520F

Matrix:

Solids

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

142.

LCS Duplicate LCS Duplicate

Acceptability Limits

Analyte

Amount Concentration Recovery. % Concentration

86.0

LCS

Recovery. % RPD,

RPD. % Recovery. %

SM 5520F

Units: mg/kg Total Petroleum Hydrocarbons 150. 129.

QC Batch: 060597IRSA-3

9.63

50

42-141%

The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil.

ANALYTICAL RESULTS . Semivolatile Organics

W7060090-02

MW-3

. -

. .

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7060090

Method: EPA 8270B

NEI/GTEL Sample Number

Client ID

Project ID (number): 6395.01
Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Matrix: Aqueous

	N-±-	C1-4	C-M1			
	Date Sampled Date Prepared		06/04/97		• •	
			•			
		nal yzed	06/12/97		• • •	••
	<u>Di</u> lution	Factor	1.00		••	
	Reporting					
Analyte	Limit	Units	Conc	entration:		-
Phenol	10	ug/L	< 10.	.enc. ac1011.		
is(2-Chloroethyl) ether	10.	ug/L	< 10.			
-Chlorophenol	10	ug/L	< 10			Mai la sanaho di Laborda mes
,3-Dichlorobenzene	10.	ug/L	< 10.			- -
,4-Dichlorobenzene	10.	ug/L	< 10.			_4
enzyl alcohol	20.	ug/L	< 20.	- -		e e successiva de contrata de la compansión de la contrata de la contrata de la contrata de la contrata de la c El contrata de la contrata del contrata de la contrata de la contrata del contrata de la contrata del contrata de la contrata de la contrata de la contrata del contrata de la contrata del contrata del contrata de la contrata de la contrata de la contrata del contrata del contrata de la contrata del contrata de
,2-Dichlorobenzene	10.	ug/L	< 10			
-Methylphenol	10.	ug/L	< 10.		in in the second of the second	
is(2-Chloroisopropyl) ether	10.	ug/L	< 10.			
-Methylphenol	10.	ug/L	< 10.			
-Nitrosodi-n-propylamine	10.	ug/L	< 10	ee		
exachloroethane	10.	ug/L	< 10.			
itrobenzene	10.	ug/L	< 10.			
sophorone	10.	ug/L	< 10.			
-Nitrophenol	10.	ug/L	< 10.			
.4-Dimethylphenol	10.	ug/L	< 10.			
enzoic acid	50.	ug/L	< 50.			
is(2-Chloroethoxy)methane	10.	ug/L	< 10.		•	# #
.4-Dichlorophenol	10.	ug/L	< 10.		<u> </u>	
,2,4-Trichlorobenzene	10.	ug/L	< 10.			
aphthalene	10.	ug/L	< 10.			
-Chloroaniline	20.	ug/L	< 20.	* 4		±=
exachlorobutadiene	10.	ug/L	< 10.	3 3 4 3 5		
-Chloro-3-methylphenol	10.	ug/L	< 10.			
-Methylnaphthalene	10.	ug/L	< 10.	2		
exachlorocyclopentadiene	10.	ug/L	< 20.	••		
.4.6-Trichlorophenol	10.	ug/L	< 10.	22	# <u>-</u>	
.4.5-Trichlorophenol	10.	ug/L	< 10.		# #	. = =
-Chloronaphthalene	10.	ug/L	< 10.			
-Nitroaniline	50.	ug/L	< 50.		and the state of t	
imethyl phthalate	10,	ug/L	< 10.			
cenaphthylene	10.	ug/L	< 10.		 235 / 40명(154 / 11 년 / 1	= = A sa ar degel - 1 dg art -1011
.6-Dinitrotoluene	10.	ug/L	< 10.			
-Nitroaniline	50.	ug/L	< 50.			e mag
cenaphthene	10.	ug/L	< 10			
.4-Dinitrophenol	50.	ug/L	< 50.	 ed:::::::::::::::::::::::::::::::::::	uprigges (1990) 50 Per (1991) 1991	
-Nitrophenol	50.	ug/L	< 50.			
ibenzofuran	10.	ug/L	< 10.			
EI/GTEL Wichita. KS		_				
w7060090		,	Page: 1			

W7060090

Page: 1

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01 Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Total Petroleum Hydrocarbons By GC

Method:

Aqueous

Matrix:

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT. WC)
GC/MS Tune			NA NA
Initial Calibration			
Continuing Calibration			 -
Surrogate Recovery		X	NA
Holding Time		Χ	
Method Accuracy		X	
Method Precision		χ	++
Blank Contamination		X	••

Comments:

Acceptability limits are derived from statistical analysis of laboratory samples.

ANALYTICAL RESULTS Total Petroleum Hydrocarbons By GC

Login Number:

NEI/GTEL Client ID: GTR01CHV08 W7060090

Project ID (number): 6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Project ID (name):

Method: GC

Matrix: Aqueous

NET CTEL Comple Mush on	- 1/70/0000 00	-		
NEI/GTEL Sample Number	r W7060090-02			••
Client I	D MW-3	••		
Date Sample	d 06/04/97	••	••	
Date Prepared	d 06/09/97			
Date Analyze	d 06/10/97			
Dilution Factor	r 1.00		••	••

Reporting

	• -		
Analyte	Limit Uni	its Concentration:	
Fr. 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1181 - 1			_
TPH as Diesel	50. ug		ä

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

GC:

Extraction by EPA Method 3510 (liquid/liquid). ASTM Method D3328(modified) is used for qualitative identification of fuel patterns. The method has been modified to include quantitation by applying calibration and quality assurance guidelines outlined in "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846. Third Edition including promulgated Update 1. This method is equivalent to the California LUFT manual DHS method for diesel fuel.

W7060090-02:

The material present is qualitatively uncertain. Therefore, all material in the C9 to C22 range was quantitated against diesel fuel without respect to pattern. Chromatographic data indicates the presence of material, which is heavier than diesel fuel, in this sample.

NEI/GTEL Wichita, KS W7060090

Login Number: W7060090

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8020A

Matrix: Aqueous

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item		Semi-Volatile Organics	Inorganics (MT. WC)
GC/MS Tune			NA.
Initial Calibration			
Continuing Calibration			
Surrogate Recovery	X		NA .
Holding Time	X		
Method Accuracy	Х	-	
Method Precision	Х		÷-
Blank Contamination	X	San Maria Talanda Maria Ma	

ANALYTICAL RESULTS Semivolatile Organics

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7050411 Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8270B Matrix: Solids

NEI/GTEL Sample Number	W7050411-02			* *
Client ID	MW3-11		••	• •
Date Sampled	05/22/97		••	••
Date Prepared	05/30/97			
Date Analyzed	06/04/97	••	••	• •
Dilution Factor	1.00	• •		••

	Reporting		
Analyte	Limit	Units	Concentration:Wet Weight
Pheno1	330	ug/kg	< 330
bis(2-Chloroethyl) ether	330	ug/kg	< 330
2-Chlorophenol	330	ug/kg	< 330
1,3-Dichlorobenzene	330	ug/kg	< 330
1.4-Dichlorobenzene	330	ug/kg	< 330
Benzyl alcohol	670	ug/kg	< 670
1.2-Dichlorobenzene	330	ug/kg	< 330
2-Methylphenol	330	ug/kg	< 330
bis(2-Chloroisopropyl) ether	330	ug/kg	< 330
4-Methylphenol	330	ug/kg	< 330
N-Nitrosodi-n-propylamine	330	ug/kg	< 330
Hexachloroethane	330	ug/kg	< 330
Mitrobenzene	330	ug/kg	< 330
Isophorone	330	ug/kg	< 330
2-Nitrophenol	330	ug/kg	< 330
2,4-Dimethylphenol	330	ug/kg	< 330
Benzoic acid	1700	ug/kg	< 1700
bis(2-Chloroethoxy)methane	330	ug/kg	< 330
2,4-Dichlorophenol	330	ug/kg	< 330
1,2,4-Trichlorobenzene	330	ug/kg	< 330
Naphthalene	330	ug/kg	< 330
4-Chloroaniline	330	ug/kg	< 330
Hexachlorobutadiene	330	ug/kg	< 330
4-Chloro-3-methylphenol	330	ug/kg	< 330
2-Methylnaphthalene	330	ug/kg	< 330
Hexachlorocyclopentadiene	330	ug/kg	< 330
2,4,6-Trichlorophenol	330	ug/kg	< 330
2,4,5-Trichlorophenol	330	ug/kg	< 330
2-Chloronaphthalene	330	ug/kg	< 330
2-Nitroaniline	1700	ug/kg	< 1700
Dimethyl phthalate	330	ug/kg	< 330
Acenaphthylene	330	ug/kg	< 330 ,
2,6-Dinitrotoluene	330	ug/kg	< 330
3-Nitroaniline	1700	ug/kg	< 1700
Acenaphthene	330	u g/k g	< 330
2.4-Dinitrophenol	1700	ug/kg	< 1700
4-Nitrophenol	1700	ug/kg	< 1700
Dibenzofuran	330	ug/kg	< 330

NEI/GTEL Wichita. KS

W7050411

Page: 1

ANALYTICAL RESULTS Semivolatile Organics

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8270B

Matrix: Solids

NEI/GTEL Samp	e Number	W7050411-02			• •
(Client ID	MW3-11	••	• •	••
Date	Sampled	05/22/97	• •	• -	
Date	Prepared	05/30/97			
Date	Analyzed	06/04/97	••	• •	••
	n Factor	1.00			

	Reporting		
Analyte	Limit	Units	Concentration:Wet Weight
2.4-Dinitrotoluene	330	ug/kg	< 330
Diethyl phthalate	330	ug/kg	< 330
4-Chlorophenyl phenyl ether	330	ug/kg	< 330
Fluorene	330	ug/kg	< 330
4-Nitroaniline	1700	.ug/kg	< 1700
4,6-Dinitro-2-methylphenol	1700	ug/kg	< 1700
N-Nitrosodiphenylamine	330	ug/kg	< 330
4-Bromophenyl phenyl ether	330	ug/kg	< 330
Hexachlorobenzene	330	ug/kg	< 330
Pentachlorophenol	1700	ug/kg	< 1700
Phenanthrene	330	ug/kg	< 330
Anthracene	330	ug/kg	< 330
Carbazole	330	ug/kg	< 330
Di-n-butyl phthalate	330	ug/kg	< 330
Fluoranthene	330	ug/kg	< 330
Pyrene	330	ug/kg	< 330
Butyl benzyl phthalate	330	ug/kg	< 330
3,3'-Dichlorobenzidine	670	ug/kg	< 670
Benzo(a)anthracene	330	ug/kg	< 330
Chrysene	330	ug/kg	< 330
bis(2-Ethylhexyl) phthalate	330	ug/kg	< 330
Di-n-octyl phthalate	330	ug/kg	< 330
Benzo(b)fluoranthene	330	ug/kg	< 330
Benzo(k)fluoranthene	330	ug/kg	< 330
Benzo(a)pyrene	330	ug/kg	< 330
Indeno(1,2,3-cd)pyrene	330	ug/kg	< 330
Dibenz(a,h)anthracene	330	ug/kg	< 330
Benzo(g,h,i)perylene	330	ug/kg	< 330
Percent Solids	——	8	81.4

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8270B:

Extraction by EPA METHOD 3550 (sonication). "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including Update 2.

W7050411-02:

GC/MS Data indicates the presence of non-target compounds.

NEI/GTEL Wichita, KS

W7050411

Page: 2

W7050411

QUALITY CONTROL RESULTS

Login Number:

W/UDV411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics

Method: EPA 8270B

Matrix: Solids

Method Blank Results

QC Batch No:

053097BNAS-1

Date Analyzed:

04-JUN-97

	04-JUN-9/	
Analyte	Method:EPA 8270B	Concentration: ug/kg
Phenol	< 330.	
bis(2-Chloroethyl) ether	< 330.	
2-Chlorophenol	< 330.	
1,3-Dichlorobenzene	< 330.	
1,4-Dichlorobenzene	< 330.	
Benzyl alcohol	< 670.	
1,2-Dichlorobenzene	< 330.	
2-Methylphenol	< 330.	
bis(2-Chloroisopropyl) ether	< 330.	
4-Methylphenol	< 330.	
N-Nitrosodi-n-propylamine	< 330.	
Hexachloroethane	< 330.	
Ni trobenzene	< 330.	
Isophorone	< 330.	
2-Nitrophenol	< 330.	
2,4-Dimethylphenol	< 330.	
Benzoic acid	< 1700	
bis(2-Chlorethoxy)methane	< 330.	
2,4-Dichlorophenol	< 330.	
1,2,4-Trichlorobenzene	< 330.	
Naphthalene	< 330.	
4-Chloroaniline	< 670.	
Hexachlorobutadiene	< 330.	
4-Chloro-3-methylphenol	< 670.	
2-Methylnaphthalene	< 330.	
Hexachlorocyclopentadiene	< 330.	
2,4,6-Trichlorophenol	< 330.	
2,4,5-Trichlorophenol	< 330:	
2-Chloronaphthalene	< 330.	
2-Nitroaniline	< 1700	
Dimethyl phthalate	< 330.	
Acenaphthylene	< 330.	
2.6-Dinitrotoluene	< 330.	
3-Nitroaniline	< 1700	
Acenaphthene	< 330.	
2.4-Dinitrophenol	< 1700	
4-Nitraphenol	< 1700	
Dibenzofuran	< 330.	
2,4-Dinitrotoluene	< 330.	
Diethyl phthalate	< 330.	
4-Chlorophenyl phenyl ether	< 330.	
Fluorene	< 330.	
4-Nitroaniline	< 1700	
4.6-Dinitro-2-methylphenol	< 1700	

QUALITY CONTROL RESULTS

Login Number:

W7050411 Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics Method: EPA 8270B

Matrix: Solids

Method Blank Results

	< 330
4-Bromophenyl phenyl ether	< 330.
Hexach Lorobenzene	< 330,
Pentachlorophenol	< 1700
Phenanthrene	< 330
Anthracene	< 330.
Carbazole	< 330.
Di-n-butyl phthalate	< 330.
Fluoranthene	< 330.
Pyrene	< 330.
Butyl benzyl phthalate	< 330.
3,3'-Dichlorobenzidine	< 670.
Benzo[a]anthracene	< 330
Chrysene	< 330.
	< 330.
Di-n-octyl phthalate	< 330.
, - 100000000000000000000000000000000000	< 330.
Benzo[k]fluoranthene	< 330.
Benzo[a]pyrene	< 330.
<pre>Indeno[1,2,3-cd]pyrene</pre>	< 330.
**************************************	< 330.
Benzo[g,h,i]perylene	< 330.

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics

Method: EPA 8270B

Matrix: Solids

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

GTEL Sample ID:	W7050411-02		MS ID:MS0504	1102 M	SD ID:MD05	041102	•		
Analysis Date:	04-JUN-97		04-JUN	-97	04-J	UN-97			
Units: ug/kg	Sample	Spikes	Added	MS MS	MSD	MSD		Acceptabl	ility Limits
Analyte	Conc.	MS	MSD C	onc. % Rec.	. Conc.	% Rec.	RPD	RPD	%Rec.
Pheno1	< 330.(0.000)	6520	6480 5	200 79.8	3 4630	71.5	11.0	35	26-90
2-Chlorophenol	< 330.(0.000)	6520	6480 4	520 70.9	4090	63.1	11.6	50	25-102
1,4-Dichlorobenzene	< 330,(0.000)	3260	3240 2	180 66,5	2000	61.7	8,10	27	28-104
N-Nitrosodi-n-propylamin	e< 330.(0.000)	3260	3240 2	360 72.4	2190	67.6	6.90	38	41-126
1.2.4-Trichlorobenzene	< 330.(0.000)	3260	3240 2	490 76.4	ł 2 200	67.9	11,8	23	38-107
4-Chloro-3-methylphenol	< 330,(0.000)	6520	6480 5	140 78.8	3 4660	71.9	9.20	33	26-103
Acenaphthene	< 330 (0.000)	3260	3240 2	510 77.0	J 2360	72.8	5.60	19	31-137
4-Nitrophenol	< 1700(120.)	.6520	6480 4	950 74.1	L 5250	79.2	6.70	50	11-114
2.4-Dinitrotoluene	< 330 (0.000)	3260	3240 2	360 72.4	1 2200	67.9	6,40	47	28-89
Pentachlorophenol	< 1700(0.000)	6520	6480 - 5	370 82.4	5290	81.6	1.00	47	17-109
Pyrene	< 330. (42.9)	3260	3240 2	660 80.,	3 2350	71,2	12.0	36	35-142

Values in parentheses in the sample concentration column are used for % recovery calculations.

Acceptability limits are derived from USEPA Contract Laboratory Program (CLP) requirements; Statement of Work (SOW) for organic analysis OLM02.0 and OLM02.1.

QUALITY CONTROL RESULTS

Login Number:

W7050411

Semivolatile Organics

Project ID (number): 6395.01

Method: EPA 8270B

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Project ID (name):

Matrix: Solids

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

	Spike	ıcs	rcz	LCS Duplicate	LCS Duplica	te		Acceptabi	lity Limits
Analyte	Amount	Concentration	Recovery, %	Concentration	Recovery, %	RPD,	ž.	RPD. %	Recovery, %
EPA 8270B Units: ug.	/kg	QC Batch:0	53097BNAS-	3					
Pheno1	6670	5320	80.0	4990	76.1	5.00)	35	26- 90%
2-Chlorophenol	6670	4790	72.0	4300	65.5	9.45	5	50	25-102%
1,4-Dichlorobenzene	3330	2370	71.2	2150	65.5	8.34	4	27	28-104%
N-Nitrosodi-n-propylamine	3330	2490	74.8	2320	70.7	5.64	4	38	41-126%
1.2.4-Trichlorobenzene	3330	2470	74.2	2240	68.3	8.28	8	23	38-107%
4-Chloro-3-methylphenol	6670	4960	74.6	4810	73.3	1.76	6	33	26-103%
Acenaphthene	3330	2540	76.3	2370	72.3	5.38	8	19	31-137%
4-Nitrophenol	6670	5070	76.2	4460	68.0	11.4	4	50	11-114%
2.4-Dinitrotoluene	3330	2430	73.0	2410	73.5	0.68	83	47	28- 89%
Pentachlorophenol	6670	5340	80.3	5200	79.3	1.29	5	47	17-109%
Pyrrene	3330	2210	66.4	2140	65.2	1.8	2	36	35-142%

Acceptability limits are derived from USEPA Contract Laboratory Program (CLP) requirements; Statement of Work (SOW) for organic analysis OLM02.0 and OLM02.1.

ANALYTICAL RESULTS Volatile Organics

W7050411-02

MW3-11 05/22/97

05/31/97

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7050411

W7050411

Project ID (number): 6395.01 Method: EPA 8240B

Project ID (name):	CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA	Matrix: Low Soil

NEI/GTEL Sample Number

Client ID

Date Sampled Date Analyzed

	Dilution	Factor	1.00		**	
	Reporting	Hadk -	^		la i alab	
Analyte	Limit	Units na/ka	Conc < 10.	<u>:entration:Wet W</u>	ergnt	
Chloromethane	10.	ug/kg	< 10.			
Promomethane	10.	ug/kg	< 10.			
tinyl chloride	10.	ug/kg	< 10.			
Chloroethane	10.	ug/kg	11.			
Methylene chloride	10.	ug/kg	< 20.			
Acetone Carbon disulfide	20. 5. 0	ug/kg	< 5.0			
A STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR AND A STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR AND A ST	5.0 5.0	ug/kg	< 5.0			
l.1-Dichloroethene	5.0 5.0	ug/kg	< 5.0 < 5.0			
.1-Dichloroethane	5.0	ug/kg ug/kg	< 5.0			
cis-1.2-Dichloroethene	5.0 5.0	ug/kg ug/kg	< 5.0			
rans-1,2-Dichloroethene	5.0 5.0	ug/kg ug/kg	< 5.0			
Chloroform	5.0 5.0		< 5.0			w e
1,2-Dichloroethane	20.	ug/kg ug/kg	< 20.		••	
2-Butanone	20. 5.0		< 5.0			
L.1.1-Trichloroethane	5.0 5.0	ug/kg ug/kg	< 5.0			==
Carbon tetrachloride	20.	ug/kg	< 20.			
/inyl acetate Bromodichloromethane	5.0	ug/kg ug/kg	< 5.0			
	5.0 5.0	ug/kg ug/kg	< 5.0			= -#
2-Dichloropropane	5.0	ug/kg	< 5.0			
is-1.3-Dichloropropene	5.0 5.0	ug/kg ug/kg	< 5.0			
richloroethene	5.0 5.0	ug/kg ug/kg	< 5.0			
oibromochloromethane	5.0 5.0	ug/kg ug/kg	< 5.0 < 5.0	-		
1.2-Trichloroethane	5.0 5.0	ug/kg	< 5.0			
Benzene	5.0 10.	ug/kg ug/kg	< 10.			
2-Chloroethylvinyl ether	5.0	ug/kg	< 5.0			
rans-1.3-Dichloropropene	5.0 5.0	ug/kg ug/kg	< 5.0 < 5.0		440000	
Bromoform	20.	ug/kg ug/kg	< 20.			= =
1-Methyl-2-pentanone	20. 20.	ug/kg ug/kg	< 20.			•
2-Hexanone Tetrachloroethene	20. 5.0	ug/kg	< 5.0			
	5.0 5.0	ug/kg ug/kg	< 5.0		22	
1,1,2,2-Tetrachloroethane	5.0 5.0	ug/kg ug/kg	< 5.0			
Coluene Chlorobenzene	5.0 5.0	ug/kg ug/kg	< 5.0	-		e.
	5.0	ug/kg ug/kg	< 5.0		aseri. 1 — refrie‱ere 1. ——	
Ethylbenzene Styrene	5.0 5.0	ug/kg ug/kg	< 5.0			+-
Styrene Xylenes (total)	5.0	ug/kg	< 5.0	**************************************	y 65900 (5000 y 1000 y 1000 000 000 000 000 o 1000 o 1 ■ ■	
	10	ug/kg	< 10.	La company		
1,2-Dichlorobenzene 1,3-Dichlorobenzene	10.	ug/kg	< 10.			==
1,4-Dichlorobenzene	10.	ug/kg ug/kg	< 10.			
NEI/GTEL Wichita, KS	TO THE STATE OF TH	na(va	#####################################	percentanta estructorio (1919-1919).	5 (150, 120, 110)	n de la company de la comp
NEI/GIEL WICHILD, NO	•		Dago. 1			the second of the second

Page: 1

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: GTR01CHV08

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8240B

Matrix: Low Soil

NEI/GTEL Sample Number	W7050411-02		• •	
Client ID	MW3-11	• •	• •	
Date Sampled	05/22/97	••		• •
Date Analyzed	05/31/97	• •		••
Dilution Factor	1.00			••

	Reporting					
Analyte	Limit	Units		Concentration:Wet 1	Weight	
Percent Solids		%	81.4			

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 82408:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update II. W7050411-02:

Methylene chloride is a common laboratory contaminant.

QUALITY CONTROL RESULTS

Login Number:

Project ID (name):

W7050411

Project ID (number): 6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8240B Matrix: Low Soil

Surrogate Results

QC Batch No.	Reference	Sample ID	DCA-D4	TOL-D8	4-BFB	
Method: EPA 82	240B	Acceptability Limits:	70-121%	81-117%	74-121%	
053097JK-1	BL053097AFN	I Method blanks low	95.7	88.1	97.1	
053097JK-2	LS053097AFN	1 Laboratory control	102.	96.6	105.	
053097JK-3	LSD053097FN	1 LCS Soil Duplicate	98.7	96.4	103.	
053097JK-4	MS05039305	Matrix Spike	104.	97.7	103.	
053097JK-5	MD05039305	Matrix Spike Dupli	97.9	96.9	104.	
	05041102	MW3-11	97.3	88.0	90.1	

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

NEI/GTEL Client ID: GTR01CHV08 QUALITY CONTROL RESULTS

Login Number: W7050411 Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 82408 Matrix: Low Soil

Method Blank Results

QC Batch No: Date Analyzed: 053097JK-1 30-MAY-97

Chloromethane	Date_Analyzed:	30-MAY-97	
Bromomethane	Analyte	Method:EPA 8240B	Concentration: ug/kg
Vinyl chloride			
Chloroethane			
Methylene chloride	Vinyl chloride		
Acetone			
Carbon disulfide	Methylene chloride		
1.1-Dichloroethane			
1,1-0ichloroethane			
cis-1, 2-Dichloroethene < 5.00 trans-1, 2-Dichloroethene < 5.00 Chloroform < 5.00 1, 2-Dichloroethane < 5.00 2-Butanone < 20.0 1, 1-Trichloroethane < 5.00 Carbon tetrachloride < 5.00 Vinyl acetate < 20.0 Bromodichloromethane < 5.00 1, 2-Dichloropropene < 5.00 cis-1, 3-Dichloropropene < 5.00 Trichloroethene < 5.00 Dibromochloromethane < 5.00 1,1,2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene	•		
trans-1, 2-Dichloroethene			
Chloroform			
1.2-Dichloroethane			
2-Butanone			
1.1.1-Trichloroethane			
Carbon tetrachloride < 5.00 Vinyl acetate < 20.0 Bromodichloromethane < 5.00 1,2-Dichloropropane < 5.00 cis-1,3-Dichloropropene < 5.00 Trichloroethene < 5.00 Dibromochloromethane < 5.00 1.1,2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Teteachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0			
Vinyl acetate < 20.0 Bromodichloromethane < 5.00 1,2-Dichloropropane < 5.00 cis-1.3-Dichloropropene < 5.00 Trichloroethene < 5.00 Dibromochloromethane < 5.00 1.1.2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1.2.2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Bromodichloromethane			
1,2-Dichloropropane < 5.00 cis-1.3-Dichloropropene < 5.00 Trichloroethene < 5.00 Dibromochloromethane < 5.00 1.1.2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
cis-1,3-Dichloropropene < 5.00 Trichloroethene < 5.00 Dibromochloromethane < 5.00 1.1,2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Trichloroethene < 5.00 Dibromochloromethane < 5.00 1.1.2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0	. 300 300 600 600 600 600 600 600 600 600		
Dibromochloromethane < 5.00 1.1.2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,2.2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
1.1.2-Trichloroethane < 5.00 Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Benzene < 5.00 2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
2-Chloroethyl vinyl ether < 10.0 trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0	200 Y STANCE AND A SERVICE CONTRACTOR OF CONTRACTOR AND A SERVICE AND A		
trans-1,3-Dichloropropene < 5.00 Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Bromoform < 5.00 4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
4-Methyl-2-pentanone < 20.0 2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
2-Hexanone < 20.0 Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Tetrachloroethene < 5.00 1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
1,1,2,2-Tetrachloroethane < 5.00 Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0	 Children St. Co., The Control of Control o	e taranta taranta taranta taranta da aranta da baranta da baranta da baranta da baranta da baranta da baranta d	
Toluene < 5.00 Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Chlorobenzene < 5.00 Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Ethylbenzene < 5.00 Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			
Styrene < 5.00 Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0			A
<pre>Xylenes (Total) < 5.00 1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0</pre>			
1,2-Dichlorobenzene < 10.0 1,3-Dichlorobenzene < 10.0		tyje tyytjalgat teatis teatis kantat oost tooloolooloo tooloo kalooloo	
1,3-Dichlorobenzene < 10.0			
1,4-Uichlorobenzene	1.4-Dichlorobenzene	< 10.0	

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01 Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8240B

Matrix: Low Soil

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

GTEL Sample IC Analysis Date:			MS	ID:MS05039305 30-MAY-97	MSD	ID:MD0503 30-MAY				
Units: ug/kg	Sample	Spikes	Added	MS	MS	MSD	MSD		Acceptabi	lity Limits
Analyte	Conc.	MS	MSD	Conc.	ቹ Rec.	Conc.	% Rec.	RPD	RPD	≇Rec.
1,1-Dichloroethene	< 5.0 (0.000)	50.0	50.0	50,8	102.	46.9	93.8	8.40	24	59-172
Trichloroethene	< 5.0 (4.41)	50.0	50.0	56.8	105.	53.0	97.2	7.70	22	62-137
Benzene	< 5.0 (0.000)	50.0	50.0	54.3	109.	53.9	108.	0.900	21	66-142
Toluene	< 5.0 (0.114)	50.0	50.0	51.1	102.	52.3	104.	1.90	21	59-139
Chlorobenzene	< 5.0 (0,000)	50.0	50.0	52.2	104	52.1	104	0.00	21	60-133

Notes:

Values in parentheses in the sample concentration column are used for % recovery calculations.

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8240B

Matrix: Low Soil

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

		Spike	LCS	LCS	LCS Duplicate	ECS Duplica	te	Acceptat	oility Limits
Analyte		Amount	Concentratio	n Recovery,	2 Concentration	Recovery. %	RPD. %	RPD, %	Recovery, な
EPA 8240B	Units:	mg/kg	QC Batch:	053097JK-3	3			• •	
1,1-Dichloroet	iene	50.0	49.0	98.0	47.3	94.6	3.53	22	59-172%
Trichloroethene	2	50.0	50.8	102.	50.4	101.	0.985	24	62-137%
Benzene		50.0	51.7	103.	52.3	105.	1.92	2 1	66-142%
Toluene		50.0	52.8	106.	52.2	104.	1.90	21	59-139%
Chlorobenzene	9 (56) 30) 46) 46) 5 (6) 15 (7) 16 (8) 5 (8) 7 (6) 15 (8) 16 (8) 6 (8)	50.0	51.8	104.	52.4	105.	0.957	21	60-133%

QUALITY CONTROL RESULTS

Login Number: W7050411 Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8240B Matrix: Low Soil

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)	
GC/MS Tune		2 7	NA NA	1000 KG
Initial Calibration				
Continuing Calibration	44	÷+		
Surrogate Recovery	X	- -	NA NA	
Holding Time	X			
Method Accuracy	X			
Method Precision	X			\$200000 \$200000
Blank Contamination	*			annoncor.

Comments:

QUALITY CONTROL RESULTS

Login Number:

W7050411

Project ID (number): 6395.01

Semivolatile Organics Method: EPA 82708

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Solids

Surrogate Results

QC Batch No.	Reference	Sample ID		2FP	PHL	NBZ	FBP	TBP	TPH
Method: EPA 82	270B	Acceptability Lir	mits: 25-1	21% 24-	113% 2	3-120%	30-115%	19-122%	18-137%
053097BNAS-1	BS053097BN	A Method Blank So	oil 72.	4 79	.9	70.0	58.2	74.8	74.7
053097BNAS-2	LS053097BN	A Laboratory conf	trol 79.	3 77	. 3	74.8	66.6	92.4	82.1
053097BNAS-3	LSD053097B	NA LCS Soil Duplic	cate 86.	4 80	.5	78.7	70.2	93.3	82.5
053097BNAS-4	MS05041102	Matrix Spike	85.	6 81	.3	77.9	70.0	93.1	93.3
053097BNAS-5	MD05041102	Matrix Spike D	upli 76.	3 75	.1	70.7	62.6	85.6	85.7
	05041102	MW3-11	76.	6 81	.1	73.9	67.3	84.5	94.4

Notes:

Acceptability limits are derived from USEPA Contract Laboratory Program (CLP) requirements; Statement of Work (SOW) for organic analysis OLM02.0 and OLM02.1.

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

Midwest Region

4211 May Avenue Wichita, KS 67209 (316) 945-2624 (800) 633-7936 (316) 945-0506 (FAX)

June 13, 1997

Barbara Sieminski **GETTLER-RYAN** 6747 Sierra Ct. Suite J Dublin, CA 94568

RE: NEI/GTEL Client ID:

Login Number:

GTR01CHV08

W7060090

Project ID (number):

Project ID (name):

6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

s, Project Coordinator for

Dear Barbara Sieminski:

Enclosed please find the analytical results for the samples received by NEI/GTEL Environmental Laboratories, Inc. on 06/06/97.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by NEI/GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This report is to be reproduced only in full.

NEI/GTEL is certified by the California Department of Health Service under Certification Number 2147.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

NEI/GTEL Environmental Laboratories, Inc.

Terry R. Loucks Laboratory Director

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID:

GTR01CHV08

Login Number:

W7060090

Project ID (number): 6395.01 Project ID (name): CHEVRON

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8020A

Matrix: Aqueous

NEI/GTEL Sample Number	W7060090-01	W7060090-02	W7060090-03	W7060090-04
Client ID	TBLB	MW-3	MW-1	MW-2
Date Sampled		06/04/97	06/04/97	06/04/97
Date Analyzed	06/12/97	06/12/97	06/12/97	06/12/97
Dilution Factor	1.00	1.00	1.00	5.00

	Reporting					· ·
Analyte	Limit	Units	Co	ncentration:		
MTBE	5.0	ug/L	< 5.0	< 5.0	85.	2100
Benzene	0.5	ug/L	< 0.5	< 0.5	58.	120
Toluene	0.5	ug/L	< 0.5	< 0.5	1.2	5.9
Ethylbenzene	0.5	ug/L	< 0.5	≤ 0.5	5.4	32.
Xylenes (total)	0.5	ug/L	< 0.5	< 0.5	40.	15.
BTEX (total)		ug/L	••-	• •	100	170
TPH as Gasoline	50	ug/t	< 50	< 50	380	1600

Notes

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8020A:

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. Analyte list modified to include additional compounds. "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update II.

W7060090-03:

The TPH as Gasoline value was 460~ug/L which was attributed to the presence of MTBE. W7060090-04:

The TPH as Gasoline value was 3600 ug/L which was attributed to the presence of MTBE.

NEI/GTEL Wichita. KS W7060090

Page: 1

QUALITY CONTROL RESULTS

Login Number:

W7060090

Method: EPA 8270B

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Aqueous

Semivolatile Organics

Surrogate Results

QC Batch No.	Reference	Sample ID	2FP	PHL	NBZ	FBP	TBP	ТРН
Method: EPA 82	?70B	Acceptability Limits:	21-100%	10- 94%	35-114%	43-116%	10-123%	33-141%
061097625W-1	BW06109762	Method Blank Water	60.7	42.0	85.8	73.4	88.7	89.8
061097625W-2	LW061097629		59.6	42.0	85.0	76.2	106	110.
061097625W-3	LWD0610976;	25 LCS Water Duplicat	56.8	41.5	87.8	75.6	105	109.
061097625W-4	MS06008802	Matrix Spike	73.2	58.2	88.1	77.0	121.	107
061097625W-5	MD06008802	Matrix Spike Dupli	77.4	59.3	91 1	80.1	123.	106
	06009002	MW-3	44.1	38.6	63.8	63.3	110.	49.0

Notes:

^{*:} Indicates values outside of acceptability limits. See Monconformance Summary. Acceptability limits are derived from USEPA Contract Laboratory Program (CLP) requirements: Statement of Work (SCW) for organic analysis OLM02.0 and OLM02.1,

NEI/GTEL Client ID: GTR01CHV08 QUALITY CONTROL RESULTS

Login Number: Project ID (number): 6395.01

W7060090

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics

Method: EPA 8270B Aqueous

Matrix:

Method Blank Results

QC Batch No: 061097625W-1 Date Analyzed: 12-JUN-97

Analyte	Method:EPA 8270B	Concentration: ug/L
Pheno l	< 10.0	
bis(2-Chloroethyl) ether	< 10.0	
2-Chlorophenol	< 10.0	
1,3-Dichlorobenzene	< 10.0	
1.4-Dichlorobenzene	< 10.0	
Benzyl alcohol	< 20.0	
1,2-Dichlorobenzene	< 10.0	
2-Methylphenol	< 10.0	
bis(2-Chlorotsopropyl) ether	< 10.0	
4-Methylphenol	< 10.0	
N-Nitrosodi-n-propylamine	< 10.0	
Hexachloroethane	< 10.0	
Nitrobenzene	< 10.0	
Isophorone	< 10.0	
2-Nitrophenal	< 10.0	
2.4-Dimethylphenol	< 10.0	
Benzoic acid	< 50.0	
bis(2-Chlorethoxy)methane	< 10.0	
2,4-Dichlorophenol	< 10.0	
1.2,4-Trichlorobenzene	< 10.0	
Naphthalene	< 10.0	
4-Chloroaniline	< 20.0	
Hexachlorobutadiene 4-Chloro-3-methylphenol	< 10.0	
2-Methylnaphthalene	< 20.0	
Hexachlorocyclopentadiene	< 10.0	
2.4.6-Trichlorophengl	< 20.0 < 10.0	
2,4,5-Trichlorophenol	< 10.0	
2-Chloronaphthalene	< 10.0	
2-Nitroaniline	< 50.0	
Dimethyl phthalate	< 10.0	
Acenaphthylene	< 10.0	
2.6-Dinitrotoluene	< 10.0	
3-Nitroaniline	< 50.0	
Acenaphthene	< 10.0	
2,4-Dinitrophenol	< 50.0	
4-Nitrophenol	residentes la companya de la companya del la companya de la compan	
Dibenzofuran	< 10.0	
2.4-Dinitrotoluene	< 10.0	
Diethyl phthalate	< 10.0	
4-Chlorophenyl phenyl ether	< 10.0	
Fluorene	< 10.0	The second of th
4-Nitroaniline	< 50.0	
4.6-Dinitro-2-methylphenol	< 50.0	

QUALITY CONTROL RESULTS

NEI/GTEL Client ID: GTR01CHV08 Login Number: Project ID (number): 6395.01

W7060090

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics

Method: EPA 8270B

Matrix: Aqueous

Method Blank Results

N-Nitrosodiphenylamine	< 10.0
4-Bromophenyl phenyl ether	< 10.0
Hexachiorobenzene	< 10.0
Pentachlorophenol	< 50.0
Phenanthrene	< 10 · 0
Anthracene	< 10.0
Di-n-butyl phthalate	< 10 0
Fluoranthene	< 10.0
Pyrene	< 10.0
Butyl benzyl phthalate	< 10.0
3,3°-Dichlorobenzidine Benzo[a]anthracene	< 20.0
Chrysene	< 10.0
bis(2-Ethyl hexyl) phthalate	< 10.0
Di-n-octyl phthalate	< 10.0
Benzo[b]fluoranthene	< 10.0 < 10.0
Benzo[k]fluoranthene	< 10.0 < 10.0
Benzo[a]pyrene	< 10.0
Indeno[1.2.3-cd]pyrene	< 10.0
Dibenzo[a,h]anthracene	< 10.0
Benzo[g.h.i]perylene	< 10.0

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7060090 Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics Method: EPA 8270B

Matrix:

Aqueous

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

GTEL Sample ID: Analysis Date:	W/060088-02 12-JUN-97		MS	ID:MS06008802 I2-JUN-97	MSI	D ID:MD0600			-	
Units: ug/L	Sample	Spikes	Adriad	MS	NC.	12-JU				
<u>Analyte</u>	Conc.		MSD		MS	WZD	MSD		Acceptab	ility Limits
Pheno I	< 10.0(0.000)		400	Conc.	% Rec.	Conc.	% Rec.	RPD	RPD	åRec.
1 At -	< 10.0(0.000)	courses vissely footbook	400.	84.2	21.1	85.3	21.3	0.900	42	12-110
Property and the second of the	< 10.0(0.000)	23/18328/49/49/1922	400. 200.	138.	34.5	142.	35 .5	2.90	40	27-123
-Nitrosodi-n-propylamine		a. 2.1,17.1000000000000000000000000000000000	200	140	70.0	134,	67.0	4,40	28	36-97
	< 10.0(0.000)	No. 288 888 94 886 988	200. 200.	150.	75,0	161.	80.5	7.10	38	41-116
A-1	< 10.0(0.000)	secure and AMANA STREET GOOD GOOD	400.	152.	76.0	151.	75.5	0.700	28	39-98
\$2000000000000000000000000000000000000	< 10.0(0.000)	0.0000000000000000000000000000000000000	400. 200	140.	35.0	148.	37_0	5.60	42	23-97
****	< 50.0(0.000)	000000000000000000000000000000000000000	400.	174	87.0	179.	89.5	2.80	31	46-118
	< 10.0(0.000)	80000000000000000000000000000000000000	9000540×40×4	90.4	22.6	87.9	22.0	2.70	50	10-80
	< 50.0(0.000)	000000000000000000000000000000000000000	200. 100	189.	94.5	190.	95.0	0.500	38	24-96
	10.0(0.000)	200	NASOLOGIA PA	112.	28.0	114.	28.5	1.80	50	9-103
		cuu .	UU.	176	88.0	179	89.5	1.70	31	26-127

Notes:

Values in parentheses in the sample concentration column are used for % recovery calculations. Acceptability limits are derived from USEPA Contract Laboratory Program (CLP) requirements; Statement of Work (SOW) for organic analysis NEI/GTEL Client ID:

Project ID (name):

GTR01CHV08

QUALITY CONTROL RESULTS

Login Number:

W7060090 Project ID (number): 6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8010B

Matrix: Aqueous

Matrix Spike(MS) Results

GTEL Sample ID:V	√7050459-04		MS ID:MS050459	04	
Analysis Date:	10-JUN-97		11-JUN-9	7	
Units: ug/L	Sample	Spike	MS	MS	Acceptability Limits
Analyte	Conc.	Added	Conc.	% Rec.	%Rec
Dichlorodifluoromethane	< 5.0 (0.000)	20.0	28.7	144.	40-160
Chloromethane	< 2.0 (0.000)	20.0	27.3	137.	10-193
Vinyl chloride	< 0.80(0.000)	20.0	28.3	142.	28-163
Bromomethane	< 1.2 (0.000)	20.0	32.4	162.*	10-144
Chloroethane	< 0.80(0.000)	20.0	28.5	143.*	46-137
Trichlorofluoromethane	< 0.50(0.000)	20.0	23.5	118.	21-156
1.1-Dichloroethene	< 0.50(0.0800)	20 0	30.3	151.	28-167
Methylene chloride	< 0.80(0.000)	20.0	20.2	101.	25-162
trans-1.2-Dichloroethene	< 0.50(0,000)	20.0	21.3	107.	± 38 - 155
1.1-Dichloroethane	< 0.50(0.000)	20.0	22.7	114.	47-132
cis-1,2-Dichloroethene	< 0,50(0,000)	20.0	22.5	113	38-155
Chloroform	< 0.50(0.000)	20.0	23.9	120.	49-133
1,1,1-Trichloroethane	< 0.50(0.000)	20.0	23.3	117.	41-138
Carbon tetrachloride	< 0.50(0.000)	20.0	23.8	119.	43-143
1.2-Dichloroethane	< 0.50(0.000)	20.0	23.5	118	51-147
Trichloroethene	2.8 (2.82)	20.0	30.8	140.	35-146
1.2-Dichloropropane	< 0.50(0.000)	20_0	23.1	116.	44-156
Bromodichloromethane	< 0.50(0.000)	20.0	27.3	137.	42-172
2-Chloroethyl vinyl ethe	r< 1.0 (0.000)	20.0	20.9	105.	14-186
cis-1,3-Dichloropropene	< 0.50(0.000)	20.0	20.7	104.	22-178
trans-1.3-Dichloropropen	e< 0.50(0.000)	20.0	21.1	106.	22-178
1,1,2-Trichloroethane	< 0.50(0.000)	20.0	22.3	112.	39-136
Tetrachloroethene	< 0.50(0.000)	20.0	24.5	123.	26-162
Dibromochloromethane	< 0.50(0.000)	20.0	26.6	133	24-191
Chlorobenzene	< 0,50(0,000)	20,0	29.9	150.	38-150
Bromoform	< 1.2 (0.000)	20.0	29.5	148.	13-159
1,1,2,2-Tetrachloroethan	e< 0.50(0.000)	20.0	11.9	59.5	10-184
1,3-Dichlorobenzene	< 0.80(0.000)	20.0	22.6	113.	10-187
1,4-Dichlorobenzene	< 0.80(0.000)	20.0	21.4	107.	42-143
1,2-Dichlorobenzene	< 0.80(0.000) +	20.0	19.7	98.5	10-208

Values in parentheses in the sample concentration column are used for a recovery calculations.

061097GC11-5: Matrix spike results were outside the acceptibility limits for Bromomethane and Chloroethane.

061097GC11-5: : As the analytes were not present in any of the analyzed samples and instrument sensitivity was sufficient for detection of the analyte at the reporting limit, the reported data is valid.

--- Yllename: 13821261 -Channel: GC138-81G B Sample: 06009002 Acousted: 10-JUN-97 13:22 Method: J:\GCDATA\GC13\TPHACQUZ Amount: 1.000 ij - 1 f::

Operator: NAC

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7060090

Project ID (number): 6395.01
Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8010B

Matrix: Aqueous

NEI/GTEL Sample Number	W7060090-02		• •	• •
Client ID	MW-3			••
Date Sampled	06/04/97			
Date Analyzed	06/10/97	••	••	• •
Dilution Factor	1.00			

_			
Re	^ ^ '		nn
	, 14 71	1. 1	114

	report 1119		•	
Analyte	Limit	Units	Concentration:	
Dichlorodifluoromethane	5.0	ug/L	< 5.0	
Chloromethane	2.0	ug/L	< 2.0	
Vinyl chloride	0.8	ug/L	< 0.8	
Bromomethane	1.2	ug/L	< 1.2	
Chloroethane	8.0	tig/L	< 0.8 **	
Trichlorofluoromethane	0.5	ug/L	< 0.5	
1.1-Dichlaraethene	0.5	ug/Ł	< 0.5	
Methylene chloride	0.8	ug/L	< 0.8	
trans-1.2-Dichloroethene	0.5	ug/L	< 0.5	
1.1-Dichloroethane	0.5	ug/L	< 0.5	
cis-1,2-Dichloroethene	0.5	ug/L	< 0.5	
Chloroform	0.5	ug/L	< 0.5	
1,1,1-Trichloroethane	0.5	ug/L	< 0.5	
Carbon tetrachloride	0.5	ug/L	< 0.5	
1,2-Dichloroethane	0.5	ug/L	1.0	
Trichloroethene	0.5	ug/L	< 0.5	
1.2-Dichloropropane	0,5	ug/L	< 0.5	
Bromodichloromethane	0.5	ug/L	< 0.5	
2-Chloroethylvinyl ether	1.0	ug/L	< 1.0	
cis-1,3-Dichloropropene	0.5	ug/L	< 0.5	
trans-1,3-Dichloropropene	0.5	ug/L	< 0.5	
1,1,2-Trichloroethane	0.5	ug/L	< 0.5	
Tetrachloroethene	0.5	ug/t	< 0.5	
Dibromochloromethane	0.5	ug/L	< 0.5	
Chlorobenzene	0.5	ug/L	< 0.5	
Bromoform	1.2	ug/L	< 1.2	
1,1,2,2-Tetrachloroethane	0.5	ug/L	< 0.5	
1,3-Dichlorobenzene	0.8	ug/L	< 0.8	
1.4-Dichlorobenzene	8.0	ug/L	< 0.8	÷*
1.2-Dichlorobenzene	0.8_	ug/L	< 0.8	

Notes:

Dilution Eactors

Dilution factor indicates the adjustments made for sample dilution.

EPA 80108:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update II.

NEI/GTEL Wichita, KS W7060090

Page: 1

- QUALITY CONTROL RESULTS

Login Number:

W7060090

Volatile Organics

Project ID (number): 6395.01

Method: EPA 8010B

Matrix:

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments

-- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)
GC/MS Tune			NA NA
Initial Calibration	• •		
Continuing Calibration			
Surrogate Recovery	Х		NA
Holding Time			57
Method Accuracy	*		
Method Precision			
Blank Contamination	X		<u></u>

Login Number: W7060090

Project ID (number): 6395.01

Project ID (name): 0177777

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8010B

Matrix: Aqueous

Volatile Organics

Surrogate Results

QC Batch No.	Reference	Sample ID	BFB ELCD	BFB PID	
Method: EPA 80)10B	Acceptability Limits:	52.8-144%	77.3-129%	
061097GC11-1	CV06109720	ll Calibration Verifi	116.	96.6	
061097GC11-2	BW06109711	Method Blank Water	135.	94.0	
061097GC11-4	DP05045903	Duplicate	119	92.0	
061097GC11-5	MS05045904	Matrix Spike	126.	95.6	
	06009002	MW-3	122.	92.6	

^{*:} Indicates values outside of acceptability limits. See Monconformance Summary.

QUALITY CONTROL RESULTS

Login Number: Project ID (number): 6395.01 Project ID (name):

W7060090

Volatile Organics

Method: EPA 8010B

Matrix:

Aqueous

Method Blank Results

QC Batch No:

061097GC11-2

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Date Analyzed:

10-JUN-97

Analyte	Method: EPA 8010B	Concentration: ug/L
Dichlorodifluoromethane:	< 5.00	
Chloromethane	< 2.00	
Vinyl chloride	< 1.00	
Bromomethane	< 2.00	
Chloroethane	< 1.00	
Trichlorofluoromethane	< 1.00	
1.1-Dichloroethene	< 1.00	
Methylene chloride	< 1.00	
trans-1.2-Dichloroethene	< 1.00	
1,1-Dichloroethane	< 1.00	
cis-1.2-Dichloroethene	< 1.00	
Chloroform	< 1.00	
1.1.1-Trichloroethane	< 1.00	
Carbon tetrachloride	< 1.00	
1,2-Dichloroethane	< 1.00	
Trichloroethene	< 1.00	
1.2-Dichloropropane	< 1.00	
Bromodichloromethane	< 1.00	
2-Chloroethyl vinyl ether	< 1.00	
cis-1.3-Dichloropropene	< 1.00	
trans-1.3-Dichloropropene	< 1.00	
1,1.2-Trichloroethane	< 1.00	
Tetrachloroethene	< 1.00	
Dibromochloromethane	< 1.00	
Chlorobenzene	< 1.00	
Bromoform	< 2.00	
1.1.2.2-Tetrachloroethane	< 1.00	
1,3-Dichlorobenzene	< 1.00	
1,4-Dichlorobenzene	< 1.00	
1,2-Dichlorobenzene	< 1.00	

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7060090

Total Petroleum Hydrocarbons By GC

GĈ

Project ID (number): 6395.01 Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: Matrix:

Aqueous

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

Analysis Date: 10-JUN-97 11-JUN-97 11-JUN-97	7
the second of th	
Units: ug/L Sample Spikes Added MS MS MSD	MSD Acceptability Limits
Analyte Conc. MS MSO Conc. % Rec. Conc.	% Rec. RPD RPD %Rec.

Notes:

Values in parentheses in the sample concentration column are used for x recovery calculations.

Acceptability limits are derived from statistical analysis of laboratory samples.

060997TPMW-4: This diesel value differs from the reported concentration due to the inclusion of all the material in the diesel range.

Project ID (name):

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Total Petroleum Hydrocarbons By GC

Method:

Matrix: Aqueous

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

Spike

LCS

LCS Duplicate LCS Duplicate

Acceptability Limits

Analyte

Amount Concentration Recovery, % Concentration

Recovery, % RPD, %

RPD. % Recovery, %

Units: ug/L

QC Batch:060997TPHW-3

LCS

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Diesel Range Organics 2000 1330 66.5 1270 63.5 4.62 25.4 34.5-105*

Notes:

Acceptability limits are derived from statistical analysis of laboratory samples.

QUALITY CONTROL RESULTS

Login Number:

W7060090

Total Petroleum Hydrocarbons

Project ID (number): 6395.01

Method: SM 5520F

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

<u>Matrix</u>: Aqueous

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)
GC/MS Tune			NA
Initial Calibration			
Continuing Calibration		X	
Surrogate Recovery	. 		NA
Holding Time		X	
Method Accuracy		Х	
Method Precision		X	
Blank Contamination		Х	

Comments:

ANALYTICAL RESULTS Semivolatile Organics

NEI/GTEL Client ID: GTR01CHV08 Login Number: W7060090

Project ID (number): 6395.01
Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8270B Matrix: Aqueous

NEI/GTEL Sample Number	W7060090-02		••	
Client ID	MW-3	• •		• •
Date Sampled	06/04/97	••	••	••
Date Prepared	06/10/97			
Date Analyzed	06/12/97	••	••	
Dilution Factor	1.00		••	

Re	porting		
Analyte	Limit	Units	Concentration:
2.4-Dinitrotoluene	10	ug/L	< 10
Diethyl phthalate	10,	ug/L	< 10
4-Chlorophenyl phenyl ether	10.	ug/L	< 10
Fluorene	10.	ug/L	< 10
4-Nitroaniline	50	ug/L	< 50,
4.6-Dinitro-2-methylphenol	50.	ug/L	< 50.
N-Nitrosodiphenylamine	10.	ug/L	< 10
4-Bromophenyl phenyl ether	10.	ug/L	< 10
Hexach] orobenzene	10.	ug/L	< 10
Pentachlorophenol	50.	ug/L	< 50
Phenanthrene	10.	ug/L	< 10
Anthracene	10.	ug/L	< 10.
Di-n-butyl phthalate	10.	ug/L	< 10,
Fluoranthene	10.	ug/L	< 10.
Pyrene	10.	ug/L	< 10,
Butyl benzyl phthalate	10.	ug/L	< 10.
3.3'-Dichlorobenzidine	20.	ug/L	< 20
Benzo(a)anthracene	10.	ug/L	< 10.
Chrysene	10.	ug/L	< 10
bis(2-Ethylhexyl) phthalate	10.	ug/L	< 10.
Di-n-octyl phthalate Benzo(b)fluoranthene	10	ug/L	< 10.
	10.	ug/L	< 10
Benzo(k)fluoranthene	10.	ug/L	< 10,
Benzo(a)pyrene	10.	ug/L	< 10
Indeno(1,2,3-cd)pyrene Dibenz(a.h)anthracene	10.	ug/L	< 10.
Benzo(g.h.i)perylene	10.	ug/L	< 10
Notes	10.	ug/L	< 10

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8270B:

Extraction by EPA Method 3510 (liquid/liquid). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods". SW-846, Third Edition including Update 2.

W7060090-02:

GC/MS Data indicates the presence of non-target compounds. The reporting limit for hexachlorocyclopentadiene is elevated because of column conditioning effects.

NEI/GTEL Wichita. KS W7060090

Page: 2

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics

Method: EPA 8270B

Matrix: Aqueous

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)	
GC/MS Tune		- -	NA	2000 - Poses -
Initial Calibration				
Continuing Calibration		÷+		tar the elec-
Surrogate Recovery		X	NA	
Holding Time		X		
Method Accuracy	- -	X		
Method Precision		Χ		
Blank Contamination		X		

Comments:

QUALITY CONTROL RESULTS

Login Number: W7060090 Project ID (number): 6395.01

Volatile Organics Method: EPA 8020A

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Aqueous

Surrogate Results

QC Batch No.	Reference	Sample ID	TFT		·
Method: EPA	8020A /	Acceptability Limits:	43-136%		
061197GC14-1	CV0611972014	4 Calibration Verifi	102		
061197GC14-3	BW06119714	Method Blank Water	95.3		The state of the s
061197GC14-7	MS06007502	Matrix Spike	103.		
061197GC14-8	DP06007508	Duplicate	111.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	06009001	TBLB	90.1		
	06009002	MW-3	90.9		
	06009003	MW-1.	100.		
	06009004	MW-2	97.2	= 1	

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

QUALITY CONTROL RESULTS

Login Number:

W7060090

Total Petroleum Hydrocarbons

Method: SM 5520F

Project ID (number): 6395.01 Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

Aqueous

Calibration Verification Sample Summary

Spike

Check Sample

QC Percent

Acceptability Limits

Analyte

Amount

Concentration

Recovery

QC Batch: 061197IRWA-6

Recovery

SM 5520F

Units:mg/L Total Petroleum Hydrocarbons

5.00

- 106.

90-110%

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Total Petroleum Hydrocarbons

Method:

SM 5520F Aqueous

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix:

Duplicate Sample Results

Original

Duplicate

Acceptability

Analyte

Concentration

Concentration

RPD. % Limits. ኔ

SM 5520F

Units: mg/L QC Batch: 061197IRWA-5

GTEL Sample ID: W7060059-01

Total Petroleum Hydrocarbons

4.17

4.67

11.3

Client ID: Batch QC

Notes:

NA: Not Applicable: % RPD is not calculated when sample values are less than ten (10) times the reporting limit.

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Total Petroleum Hydrocarbons Method: SM 5520F

Method: Matrix:

Aqueous

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix Spike(MS) Results

GTEL Sample ID:W7060108-01		<u> </u>	S ID:MS06010		
Analysis Date: 11-JUN-97			11-JUN-		
Units: mg/L	Sample	Spike	MS	MS	Acceptability Limits
Analyte	Conc.	Added	Conc.	% Rec.	%Rec.
Total Petroleum Hydr	rocarbons< 0.5 (0.0545)	5.10	5.2	101.	66-136

Notes:

Values in parentheses in the sample concentration column are used for % recovery calculations.

The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil.

QUALITY CONTROL RESULTS

Login Number:

W7060090

Total Petroleum Hydrocarbons

Method: SM 5520F

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

LCS

Matrix:

Aqueous

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

Spike

LCS

LCS Duplicate LCS Duplicate

Acceptability Limits

Analyte

Amount Concentration Recovery, %

Concentration Recovery, % RPD. %

RPD, % Recovery, %

SM 5520F

Units: mg/L

QC Batch:061197IRWA-3 Total Petroleum Hydrocarbons 5.00 4.94 98.8 4.79

95.8

3.08

66-136%

Notes:

The accuracy limits are for a fuel oil #2 spike when the calibration is based on the standard reference oil.

NEI/GTEL Wichita, KS W7060090:6

ANALYTICAL RESULTS Total Petroleum Hydrocarbons

NEI/GTEL Client ID: GTR01CHV08

Project ID (name):

Login Number:

W7060090

Project ID (number): 6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: SM 5520F

Matrix: Aqueous

NEI/GTEL Sample Number	W7060090-02	••		
Client ID	MW-3	• •		
Date Sampled	06/04/97	••	••	
Date Prepared	06/11/97			
Date Analyzed	06/11/97	••	••	••
Dilution Factor	1.00			• •

Reporting

Analyte	Limit Units	Concentration:	
Total Petroleum Hydrocarb		< 5.0	

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

SM 5520F:

This method is equivalent to method 5520CF. Standard Methods For The Examination Of Wastewater, 18th edition, 1992. "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, USEPA EMSL, Cincinnati, CH, Revised, March 1983.

NEI/GTEL Wichita, KS W7060090

Page: 1

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Total Petroleum Hydrocarbons

Method:

SM 5520F

Matrix:

Aqueous

Method Blank Results

QC Batch No:

061197IRWA-1

Date Analyzed:

11-JUN-97

Analyte_

Method:SM 5520F Concentration: mg/L

Total Petroleum Hydrocarbons

< 0.500

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Volatile Organics Method: EPA 8020A

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Aqueous

Calibration Verification Sample Summary

		Spike	Check Sample	QC Percent	Acceptability Limits
Analyte		Amount	Concentration	Recovery	Recovery
EPA 8020A	Units:ug/L	QC B	latch: 061197GC14-1		
Benzene		20.0	1. 17.7	. 88.5	77-123%
Toluene		20.0	20.0	100.	77.5-122.5%
Ethylbenzene		20.0	17.8	89.0	63-137%
Xylenes (Total)	60.0	57.6	96.0	85-115%
TPH as Gasolir	ne <u> </u>	500.	538	108	80-120%

QC check source: Supelco #LA12389

Project ID (Number): 6395.01 Project ID (Name): Chevron SS #9-9708

5910 MacArthur Blvd.

Oakland, CA Work Order Number: W7060090

Date Reported: 06-13-97

METHOD BLANK REPORT

Volatile Organics in Water EPA Method 8020A

Date of Analysis:

11-JUN-97

QC Batch No:

061197GC14-3

Analyte	Concentration, ug/L.
MTBE	
Benzene	<0.5
Toluene	<0.5
Ethylbenzene	<0.5
Xylene (total)	<0.5
TPH as Gasoline	<50

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Volatile Organics Method: EPA 8020A

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Aqueous

Duplicate Sample Results

	Original	Ouplicate		Acceptability	
Analyte	Concentration	Concentration	RPD. %	Limits, %	
EPA 8020A Units: ug/L	QC Batch: 061	197GC14-8 GTE	L Sample ID: 1	W7060075-08	Client ID: Batch QC
Benzene	69.3	67.2	3,08	23.9	
Toluene	292.	286.	2.08	27.2	***
Ethylbenzene	240.	218.	9,61	21.6	
Xylenes (Total)	9970	10000	0.300	22.0	

Notes:

NA - The concentration of the analyte is less than the reporting limit.

NEI/GTEL Client ID: GTR01CHV08 QUALITY CONTROL RESULTS

Login Number: W7060090 Volatile Organics
Project ID (number): 6395.01 Method: EPA 8020A

Project ID (number): 6395.01 Method: EPA 8020A
Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Matrix: Aqueous

Matrix Spike(MS) Results

GTEL Sar	mple ID:W7060075-02	-	MS ID:MS060075	02	
Analysi:	s Date: 11-JUN-97		11-JUN-9	7	
Units: ug/L	Sample	Spike	MS	MS	Acceptability Limits
Analyte	Conc.	Added	Conc.	% Rec.	%Rec.
Benzene	< 0.5 (0.000)	20.0	18.7	93.5	67-110
Toluene	< 0.5 (0.370)	20.0	17.0	83.2	68-115
Ethylbenzene	< 0.5 (0.000)	20.0	17.0	85.0	65-120
Xylenes (Total)	< 0.5 (0.490)	60.0	55.7	92.0	62-119

Notes

Values in parentheses in the sample concentration column are used for % recovery calculations.

Project ID (name):

QUALITY CONTROL RESULTS

Login Number:

W7060090

Total Petroleum Hydrocarbons By GC

Project ID (number): 6395.01

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: Matrix:

Aqueous

Surrogate Results

QC Batch No.	Reference	Sample ID	OTP	
Method: GC		Acceptability Limits:	50.2-115%	
060997TPHW-1	BW060997TPH	Method Blank Water	70.4	
060997TPHW-2	LW060997TPH	Laboratory Control	74.3	
060997TPHW-3	LWD060997TPI	H LCS Water Duplicat	75.8	
060997TPHW-4	MS06009002	Matrix Spike	66.8	
060997TPHW-5	MD06009002	Matrix Spike Dupli	79.4	
	06009002	MW-3	79.7	

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary. Acceptability limits are derived from statistical analysis of laboratory samples.

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Total Petroleum Hydrocarbons By GC

Method:

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Aqueous

Method Blank Results

QC Batch No:

060997TPHW-1

Date Analyzed:

10-JUN-97

Method:GC

Concentration: ug/ml

Analyte Diesel Range Organics

< 50.0

Notes:

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01 CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA Project ID (name):

Volatile Organics Method: EPA 8010B

Matrix:

Aqueous

Calibration Verification Sample Summary

	Spike	Check Sample	QC Percent	Acceptability Limits	
Analyte	Amount	Cancentration	Recovery	Recovery	
EPA 8010B Units:ug/L	-	ch:061097GC11-1			
Dichlorodifluoromethane	20.0	15.3	76.5	40-160%	
Chloromethane	20.0	19.3	96.5	59.5-140.5%	
Vinyl chloride	20_0	20.5	103	68.5-131.5%	
Bromomethane	20.0	27.5	138.	58.5-141.5%	
Chl oroethane	20.0	24.2	121	77-123%	
Trichlorofluoromethane	20.0	18.9	94.5	66.5-133.5%	
1,1-Dichloroethene	20.0	27.3	137.	63-137%	
Methylene chloride	20.0	18.9	94.5	77.5-122.5%	:
trans-1.2-Dichloroethene	20.0	20.2	101.	64-136%	Æ
1.1-Dichloroethane	20.0	22.1	111.	71.5-116%	
cis-1.2-Dichloroethene	20.0	21.2	106.	64-1163	.51.55
Chloroform	20.0	21.4	107	75-125%	
1,1.1-Trichloroethane	20.0	21.1	106.	71-129%	:
Carbon tetrachloride	20.0	21.1	106.	68.5-131.5%	
1,2-Dichloroethane	20.0	23.1	116.	71.5-128.5%	
Trichloroethene	20.0	21.7	109.	77-123%	
1,2-Dichloropropane	20.0	21.4	107	74~126%	:
Bromodichloromethane	20.0	22.0	110.	76-124%	:
2-Chloroethyl vinyl ether	20.0	20.8	104,	60-140%	;
cis-1.3-Dichloropropene	20.0	22.0	110.	64-136%	
trans-1.3-Dichloropropene	20.0	22.4	112.	64-136%	:
1,1.2-Trichloroethane	20.0	22.2	111.	78.5-121.5%	,
Tetrachloroethene	20.0	22.2	111.	70-130%	:
Dibromochloromethane	20.0	24.6	123.	65.5-134.5%	
Chlorobenzene	20.0	21.4	107.	72-128%	:
Bromoform	20.0	26.5	133.*	73.5-126.5%	5
1,1,2.2-Tetrachloroethane	20.0	21.1	106.	49-151%	;
1.3-Dichlorobenzene	20.0	22.0	110.	49.5-150.5%	÷
1.4-Dichlorobenzene	20.0	20.5	103.	69.5-130.5%	Ė
1,2-Dichlorobenzene	20.0	20,3	102	70-130%	_

061097GC11-1: OC check results were outside the acceptibility limits for Bromomethane.

061097GC11-1: :As the analyte was not present in any of the analyzed samples and instrument sensitivity was sufficient for detection of the analyte at the reporting limit, the reported data is valid.

QUALITY CONTROL RESULTS

Login Number: W7060090

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics Method: EPA 8010B Matrix:

Aqueous

Duplicate Sample Results

	Original	Duplicate		Acceptability	
Analyte	Concentration	Concentration	RPD. %	Limits, %	
EPA 8010B Units: ug/L	QC Batch: 061	097GC11-4 GTEL	Sample ID: W7		Client ID: Batch QC
Dichlorodifluoromethane	< 50.0	< 50.0	NA	35.4	
Chloromethane	< 20.0	< 20.0	NA	24.2	
Vinyl chloride	< 10.0	< 10.0	NA	18.6	
Bromomethane	< 20.0	< 20.0	NA .	24.8	
Chloroethane	< 10.0	< 10.0	NA	14.4	
Trichlorofluoromethane	< 10.0	< 10.0	NA	19.6	
1,1-Dichloroethene	221.	198.	11.0	21.6	
Methylene chloride	< 10.0	< 10.0	NA	13.1	
trans-1.2-Dichloroethene	< 10.0	< 10.0	NA .	20.9	
1,1-Dichloroethane	49.2	48.6	1.23	10.5	
cīs-1,2-Dichloroethene	108.	110.	1,83	20.9	
Chloroform	< 10.0	< 10.0	NA -	- 14.7	
1,1,1-Trichloroethane	162.	166	2.44	16	
Carbon tetrachloride	< 10.0	< 10.0	NA	18.3	
1.2-Dichloroethane	< 10.0	< 10.0	NA	17	
Trichloroethene	2120	2060	2.87	13.7	
1,2-Dichloropropane	< 10.0	< 10.0	NA	17	
Bromodichloromethane	< 10.0	< 10.0	NA	13.1	
2-Chloroethyl vinyl ether	< 10.0	≤ 10.0	NA	27.1	
cis-1,3-Dichloropropene	< 10.0	< 10.0	NA	23.8	
trans-1.3-Dichloropropene	< 10.0	< 10.0	NA .	23.8	
1.1.2-Trichloroethane	< 10.0	< 10.0	NA	12.8	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	< 10.0	< 10.0	NA	17.7	
Dibromochloromethane	< 10.0	< 10.0	NA	20.6	
Chlorobenzene	< 10.0	< 10.0	NA.	16.4	
Bromoform	< 20.0	< 20.0	NA	15.4	
1.1.2.2-Tetrachloroethane	< 10.0	< 10.0	NA.	30	
1,3-Dichlorobenzene	< 10.0	< 10.0	NA :	29.7	
1.4-Dichlorobenzene	< 10.0	< 10.0	NA.	18	
1.2-Dichlorobenzene	< 10 <u>.0</u>	< 10.0	NA NA	18	

NA - The concentration of the analyte is less than the reporting limit.

NEI/GTEL Wichita, KS W7060090:5

QUALITY CONTROL RESULTS

Login Number:

W7060090

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Semivolatile Organics

Method: EPA 8270B

Matrix: Aqueous

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

Analyte EPA 8270B Units: u	Spike Amount g/L	LCS Concentration QC Batch:(LCS Duplicate Recovery, % R	PD. 3	Acceptabil	lity Limits Recovery, %
Phenol 2-Chlorophenol	200. 200.	30.4	15.2	27.6	and the contract of the contra	1.66	42	12-110%
1,4-Dichlorobenzene	100.	69.8 68.6	34.9 68.6	67.6 66.7	A CONTRACTOR OF THE CONTRACTOR	3.20 3.81	40	27-123%
N-Nitrosodi-n-propylamin 1,2,4-Trichlorobenzene	Acces and a second and a second	80.7	80.7	74.6	n or navorance construction and conditional	.o. '.86	28 38	36- 97% 41-116%
4-Chloro-3-methylphenol	100. 200.	75.8 73.1	75.8 36.6	70.4 65.2		.39	28	39- 98%
Acenaphthene	100.	87.2	87.2	81.5	Carron Navanana and Carron Car	1.6 .76	42 31	23- 97% 46-118%
4-Nitrophenol 2.4-Dinitrotoluene	200. 100.	23.3 91.9	11.7 91.9	21.6	ANAMANAKA MATERIA MATERIA AND AND AND AND AND AND AND AND AND AN	.00	50	10- 80%
Pentachlorophenol	200.	49.0	24.5	83.7 49.6	A A A A A A A A A A A A A A A A A A A	.34 .22	38 50	24- 96% 9-103%
Pyrene	_100	92.1	92,1	90.6	esanda processor e e e e e e e e e e e e e e e e e e e	64	31	26-127%

Acceptability limits are derived from USEPA Contract Laboratory Program (CLP) requirements; Statement of Work (SOW) for organic analysis OLM02.0 and OLM02.1,

1 dx	cepy o	of L	ab●R	epor	t aif	d COC	to [©] C	hevi	on (Cont	act·		li Cu No		•	_	•			•
Chevron P.O. BO San Ramo	U.S.A. In DX 5004 on, CA 9458 5)842–959	10. 0	Chovron (F Consultant Consultant Address	Facility Ni Facility Ad Project Name	umberdressi Number Get 7 Sie	9-970 5910 AN 639 tler-Ryan rra Ct. S	28 ac A / 2101	Thur	<i>O</i>	a Klav	1d C	B	Chevro Labora Labora	itory Ni tory Se	Pho meemeervice	0781 Order	510	- 842 - 90	51 - 91 Servi 7645	ustody—Recor 1995 36 ce Code: zzoz760
			Project	Contact	(Phone)	• Deanna 551-7555	Hardi	ng 🛧	alp	(a	Sien	<u>hs</u> e	Collecti Collecti	on Dat	cled by	(Nome)	A	-499	ine	
							()	Fox Nun	nber) 5	21-70	008		Signatu	r•			-7			
Sample Number	Lab Sample Number	Number of Container	Metrix S = Soll A = Air W = Water C = Cherron	g E	l	Sample Preservation	Iced (Yes or No.)	TPH Gas + BTEX WIMTBE	TPH Diesed (8015)	Oil and Gream (5520)	Purpeable Holocarbons (8010)	Purgeable Aramatics (8020)	Purgedble Organica S (8240)		Metals C4.Cr.Pb.Zn.Ki (ICAP or AA)					DO NOT BILL TB-LB ANALYSIS
MN-3	 	2	w	TB		HC	V	X	-	-	-		-	"	30 €	-				Remarks
MW-Z	\$ 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	V	6		Hel Ike	3	444	8	<i>\(\)</i>	8			X						
	0.90.																			Fax Results
	3																			TO Kalbara Sieminski
				-							_	-					-			5:DAY Turnaround
Relinquished by 18		<u>-</u> -	Organi G-R Organia	Inc.	6	te/Ilmo 597 080 e/Jimo, 132	_1	16	(Fignatur	Um	· ·	1	nizelion		Doto/11	1/228	100	Turn Aro		(Circie Choloe)
Relinquiehed By (5	Male ilgnature) www.	der	Organiz	<u>-R</u>	Dod	16/47 1/1mo 1630 15/97	()	od For	(Signatur - We Laborator	Qua _l	Ignature)	Ne.	i/CoT	T I	Doyle/Ty			<	24 1 48 F 5 Do 10 Do As Contr	ro.

Midwest Region

4211 May Avenue Wichita, KS 67209 (316) 945-2624 (800) 633-7936 (316) 945-0506 (FAX)

May 29, 1997

Barbara Sieminski **GETTLER-RYAN** 6747 Sierra Ct. Suite J Dublin, CA 94568

RE: NEI/GTEL Client ID:

Login Number:

GTR01CHV08 W7050413

Project ID (number):

6395.01

Project ID (name):

CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Dear Barbara Sieminski:

Enclosed please find the analytical results for the samples received by NEI/GTEL Environmental Laboratories, Inc. on 05/28/97.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by NEI/GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This report is to be reproduced only in full.

NEI/GTEL is certified by the California Department of Health Service under Certification Number 2147.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

NEI/GTEL Environmental Laboratories, Inc.

Terry R. Loucks Laboratory Director

ANALYTICAL RESULTS Volatile Organics

NEI/GTEL Client ID: _GTR01CHV08

Login Number: W7050413

Project ID (number): 6395.01
Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Method: EPA 8020A Matrix: Low Soil

NEI/GTEL Sample Number	W7050413-01		- +	
Client ID	SP-A THRU SP-D			
Date Sampled	05/23/97			
Date Analyzed	05/29/97	• •		.
Dilution Factor	1.00	<u>•</u> -	••	••

Reporting

Analyte	Limit	Units	Concentration:We	et Weight	
Benzene	5:0	ug/kg	< 5.0		
Toluene	5.0	ug/kg	< 5.0		
Ethylbenzene	5.0	ug/kg	< 5.0		
Xylenes (total)	5.0	ug/kg	< 5.0		
BTEX (total)		ug/ka		iditamanian ne <u>r</u> ganan T	
TPH as Gasoline	1000—	ug/ka	THE 1000 P. LEWIS CO. L.	227413755	
Percent Solids	••		85.8		
Notes					***

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8020A:

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846. Third Edition including promulgated Update II.

Login Number: W7050413

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8020A

Matrix: Low Soil

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments -- = Not Required

NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)
GC/MS Tune			N/A
Initial Calibration	— -		
Continuing Calibration	χ		<u>4</u> 2
Surrogate Recovery	Х		NΔ
- 30000/APPA 05/00/00/00/00/00/00/00/00/00/00/00/00/0	X		NO 8-2
Method Accuracy	X		
Method Precision	Х	<u></u>	44
Blank Contamination	1		
The same of the sa			The second secon

QUALITY CONTROL RESULTS

Login Number: W7050413

Volatile Organics

Project ID (number): 6395.01

Method: EPA 8020A

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Low Soil

Surrogate Results

QC Batch No. Refe	erence Sample ID	TFT	
Method: EPA 8020A	Acceptability Li	mits: 43-136%	
052997GC4-1 CV05	52997204 Calibration Ve	rifi 76.9	
052997GC4-3 BL05	529974 Method blanks	low 77.6	
052997GC4-4 MS05	5041301 Matrix Spike	60.9	
052997GC4-5 MD05	5041301 Matrix Spike D		
0504	<u> 1301 SP-A THRU SP-D</u>	76.4	

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

NEI/GTEL Client ID: GTR01CHV08 QUALITY CONTROL RESULTS

Login Number: W7050413

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8020A

Matrix: Low Soil

Method Blank Results

QC Batch No:

052997GC4-3

Date Analyzed:

29-MAY-97

	ce Andryzeu. 29-MAT+9/	
Analyte	Method:EPA 8020A	Concentration: ug/kg
Benzene		
Toluene	< 2.00	
Ethylbenzene		
Xylenes (Total)	< 4.00	
TPH as Gasoline		
CONTRACTOR		

W7050413

QUALITY CONTROL RESULTS

Login Number:

Project ID (number): 6395.01

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Volatile Organics

Method: EPA 8020A

Matrix: Low Soil

Calibration Verification Sample Summary

	Spike	Check Sample	QC Percent	Acceptability Limits	
Analyte	Amount	Concentration	Recovery	Recovery	
EPA 8020A	Units:ug/L QC	Batch: 052997GC4-1			
Benzene	20.	0 18.5	92.5	77-123%	
Toluene	20.	0 17.9	89.5	77.5-122.5%	
Ethy1benzene	20.	0 18.1	90.5	A	
Xylenes (Tota	1) 60.	0 53.9	89.8	85-115%	
TPH as Gasoli	ne 500	. 455.	91.0	80-120%	

Login Number:

W7050413

QUALITY CONTROL RESULTS

Project ID (number): 6395.01

Volatile Organics Method: EPA 8020A

Project ID (name): CHEVRON/9-9708/5910 MACARTHUR BLVD/OAKLAND/CA

Matrix: Low Soil

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

	ID:W7050413-01 te: 29-MAY-97		MS .	ID:MS05041301 29-MAY-97	MSD	ID:MD0504 29-MAY			<u> </u>	
Units: ug/kg	Sample	Spikes	Added	MS	MS	MSD	MSD		Acceptabi	lity Limits
Analyte	Conc.	MS	MSD	Conc.	% Rec.	Conc.	% Rec.	RPD	RPD	₹Rec.
Benzene	< 5.0 (0.981)	83,7	81.1	64.8	76.2	65.1	79.1	3.70	22.6 61	.1-125 9
Toluene	< 5.0 (0.165)	83.7	81.1	62.8	74.8	62.8	77.2	3.20	27.5 59	NG 6 NG NG 10 0000000000000000
Ethylbenzene	< 5.0 (0.832)	83.7	81.1	60,4	71.2	58.6	71,2	0_00	26,4	57 5-138
Xylenes (Total)	< 5.0 (0.177)	251.	243.	182.	72.4	177.	72.8	0.600	26.7	54.3-137

Chevron U.S. P.O. BOX 5 Son Ramon, CA FAX (415)842	004 A 94583	Cons	Faol suitant P suitant N Address_	roject Nu leme 6747	mber Gett Sier	6395.0 10 MacAr 6395.0 ler-Ryan ra Ct, Ste Barbary 551-7555	thur ! ! J, [np11	1,00	68		- L - L - S	aborator aborator amples allection	ry Name ry Releas	(Phone G Numi d by (N) (S TEL bor 9 lamo) 23/	0645 Bar	30099 12-912 -04 -601-0	22	02760 luinski
Sample Number	Lob Sample Number	Number of Containers	Metrix S - Soll A - Air W - Water C - Charcool	Type G = Grab C = Composite D = Discrete	1	Sample Preservation	Iced (Yes or No.)	TPH G≥+ BTEX ************************************	TPH Diesed (8015)	Oil and Grease (5520)	Puryaable Halocarbons (8010)	Purgeable Aromatics (8020)	1 3 3	Extractable Organics of (8270)		Γ .				DO NOT B TB-LB AN
5P-A72	.2 7 -	i	5	G	17:0	<u> </u>	Yen	Х								×				Analyze
SP-B/B		1			15:04		 -	メ	<u> </u>			2				*			<u> </u>	FOR TPHI
- 0	~	i			15:00			X				. [1				\$ BTEX O
	7				7		₩	-/							· · · · · · · · · · · · · · · · · · ·	1				
	٥										····	.		•						
	හ <u>ු</u>		!									- 1								
	0-				ļ				-			1								
	74				<u> </u>			ļ				1 4								
	<u>ع </u>					<u> </u>	·					<u> </u>								
•			<u>.</u>											-					_	F 4 4 4
		-	_			-		 			<u>-</u>	3.1					! 		-	- 1
							·								,					1
Bellinguished By (Sig	gngture)	اـا ء	Orga	nization		Date/Time 10 ?	30 R00	elyed By	(Signal	lure)		Ore	genizetje	מי	Pate	· ∕Ilme k	730	Turz	Around	Time (Circle Choice)
Persone A Railingulahad By (Sig	Alem	irl;	Orga	-R Inization 21-G7	ξ.	05/27/9 Date/11me 163 5/27/97) Reo		<u>ر لا</u>)0[De	પ	V		MEL	ι	17	•	*	- (24 Hrs. 48 Hrs. 5 Days
Relinguished By (Si				nization		Date/Time	Reo	leved Fo			(Signatur	•)		,	Date/	'Ilmo	495			10 Days Contracted