March 31, 2000

QUARTERLY GROUNDWATER MONITORING REPORT MARCH 2000 GROUNDWATER SAMPLING ASE JOB NO. 3540

a t Oakland Truck Stop 8255 San Leandro Street Oakland, California

X 203 R.K.

Prepared for: Mr. Nissan Saidian 5733 Medallion Court Castro Valley, CA 94522

Prepared by: AQUA SCIENCE ENGINEERS, INC. 208 W. El Pintado Danville, CA 94526 (925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1
Oakland Truck Stop
8255 San Leandro Street
Oakland, California

Responsible Party
Mr. Nissan Saidian
5733 Medallion Court
Castro Valley, CA 94522

Environmental Consulting Firm
Aqua Science Engineers, Inc. (ASE)
208 West El Pintado
Danville, CA 94526
Contact: Robert Kitay, Senior Geologist
(925) 820-9391

Agency Review
Mr. Barney Chan
Alameda County Health Care Services Agency (ACHCSA)
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502

Mr. Chuck Headlee California Regional Water Quality Control Board (RWQCB) San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, CA 94612

The following is a report detailing the methods and findings of the March 2000 quarterly groundwater sampling at the above-referenced site. This sampling was conducted as required by the ACHCSA and RWQCB. ASE has prepared this report on behalf of Mr. Nissan Saidian, owner of the property.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On March 8, 2000, ASE associate geologist Ian Reed measured the depth to water in each site groundwater monitoring well using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen with a product thickness bailer. Monitoring well MW-1 contained 0.21-feet of free-floating hydrocarbons believed to be diesel. No free-floating hydrocarbons or sheen were observed in any of the remaining site monitoring wells. Groundwater elevation data is presented as Table One.

A groundwater potentiometric surface map for March 8, 2000 is presented as Figure 2. Groundwater beneath the site has flow components to the south, southeast, and southwest with a gradient of between approximately 0.025 and 0.053-feet/foot. The water table beneath the site has risen an average of 1.0-feet since last quarter.

3.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Prior to sampling, monitoring wells MW-2 through MW-6 were purged of four well casing volumes of groundwater using dedicated polyethylene bailers. Petroleum hydrocarbon odors were present during the purging and sampling of all site groundwater monitoring wells. The parameters pH, temperature and conductivity were monitored during the well purging. Samples were not collected until these parameters stabilized. Groundwater samples were collected from each well using dedicated polyethylene bailers. Since free-floating hydrocarbons were present in monitoring well MW-1, monitoring well MW-1 was not sampled.

The samples to be analyzed for volatile compounds were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid, and sealed without headspace. The samples to be analyzed for non-volatile compounds were contained in 1-liter amber glass containers. The samples collected from monitoring well MW-3 that were analyzed for dissolved lead were contained in 250-ml plastic bottles and filtered immediately upon arrival at the laboratory. All of the samples were labeled and placed in coolers with wet ice for transport to Chromalab, Inc. of Pleasanton, California (ELAP #1094) under appropriate chain-of-custody documentation. Well sampling field logs are presented in Appendix A.

The well purge water was placed in 55-gallon steel drums, labeled, and left on-site for temporary storage.

The groundwater samples from monitoring wells MW-2, MW-3, MW-4, MW-5, and MW-6 were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) by EPA Method 5030/8015M, total petroleum hydrocarbons as diesel (TPH-D) and motor oil (TPH-MO) by EPA Method 3550/8015M, benzene, toluene, ethylbenzene and total xylenes (collectively known as BTEX) by EPA Method 8020 and methyl tertiary butyl ether (MTBE) by EPA Method 8020. The groundwater samples from monitoring well MW-3 were also analyzed for dissolved lead by EPA Method 6010B. The analytical results are presented in Tables Two and Three. The certified analytical report and chain-of-custody documentation are included as Appendix B.

4.0 CONCLUSIONS

Monitoring well MW-1 contained 0.21-feet of free-floating hydrocarbons believed to be diesel. The groundwater samples collected from monitoring well MW-2 contained 1,600 parts per billion (ppb) TPH-G, 530 ppb TPH-D, 9.7 ppb benzene, 2.7 ppb ethyl benzene, and 27 ppb MTBE. The groundwater samples collected from monitoring well MW-3 contained 22,000 ppb TPH-G, 4,500 ppb TPH-D, 11,000 ppb benzene, 72 ppb toluene, 1,100 ppb ethyl benzene, 130 ppb total xylenes, and 3,400 ppb MTBE. The groundwater samples collected from monitoring well MW-4 contained 220 ppb TPH-D and 130 ppb MTBE. The groundwater samples collected from monitoring well MW-5 contained 51 ppb TPH-G, 530 ppb TPH-D, and 84 ppb MTBE. The groundwater samples collected from monitoring well MW-6 contained 4,600 ppb TPH-D, 230 ppb benzene, 26 ppb toluene, 18 ppb ethyl benzene, 39 ppb total xylenes, and 12,000 ppb MTBE.

The benzene detected in groundwater samples collected from monitoring wells MW-2, MW-3, and MW-6 exceeded the California Department of Health Services (DHS) maximum contaminant level (MCL) for drinking water. The ethyl benzene detected in groundwater samples collected from monitoring well MW-3 exceeded the DHS MCL for drinking water. The MTBE detected in groundwater samples collected from all five monitoring wells sampled exceeded the DHS MCL for drinking water. There was no dissolved lead detected above the laboratory reporting limits in the groundwater samples collected from monitoring well MW-3.

Overall, the sample results from this quarter were similar to previous sampling results, with the exception of a significant increase in MTBE concentration in the groundwater samples collected from monitoring well MW-6.

5.0 RECOMMENDATIONS

Based on the presence of free-floating hydrocarbons in monitoring well MW-1, ASE will continue the measuring of the thickness of these hydrocarbons every two weeks. ASE recommends that this site remain on a quarterly sampling schedule. As requested by the ACHCSA, an additional soil and groundwater assessment will be performed during the next quarter to further define the extent of soil and groundwater contamination beneath the site.

on up as yet (5/11/00)
6.0 REPORT LIMITATIONS

The results of this report represent the conditions at the time of the groundwater sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services for this project, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Ian T. Reed

Associate Geologist

Robert E. Kitay, R.G., R.E.A.

Senior Geologist

half C. Kita

Attachments: Table One through Three

Figures 1 and 2 Appendices A and B

cc: Mr. Nissan Saidian

Mr. Barney Chan, ACHCSA

Mr. Chuck Headlee, RWQCB, San Francisco Bay Region

TABLES

TABLE ONEGroundwater Elevation Data

Well I.D.	Top of Casing Elevation (msl)	Depth to Water Measurement (feet)	Free-Floating Hydrocarbon Thickness (feet)	Groundwater Elevation (msl)
· · · · · · · · · · · · · · · · · · ·				
<u>MW-1</u>				
8-16-99	97.12	Unknown	> 1.0	Unknown
8-27-99		6.90	0.36	90.51*
9-10-99		6.85	0.18	90.41*
9-24-99		6.65	0.08	90.53*
10-08-99		6.87	0.28	90.47*
10-22-99		6.81	0.23	90.49*
11-02-99		6.94	0.31	90.43*
11-19-99		6.91	0.12	90.31*
12-06-99		6.93	0.12	90.29*
3-08-00		5.93	0.21	91.36*
<u>MW-2</u>				
8-16-99	96.82	6.30		90.52
12-06-99	90.02	8,46		88.36
3-08-00		9.12		87.70
<u>MW-3</u>				
8-16-99	96.43	5.85		90.58
12-06-99		5.70		90.73
3-08-00		5.32		91.11
MW-4				
8-16-99	96.60	6.12	- 4	90,48
12-06-99	70.00	5.98		90.62
3-08-00		4.32		92.28
5-00-00				/ 2.2 0
<u>MW-5</u>				
12-06-99	96.30	5.94		90.36
3-08-00		4.06	= #	92.24
<u>MW-6</u>	0.6 80	# OO		00.00
12-06-99	96.79	5.80		90.99
3-08-00		4.10		92.69

Notes:

^{* =} Groundwater elevation adjusted for the presence of free-floating hydrocarbons by the equation: Adjusted groundwater elevation = Top of casing elevation - depth to groundwater + (0.8 x free-floating hydrocarbon thickness)

TABLE TWO

Summary of Chemical Analysis of GROUNDWATER Samples Petroleum Hydrocarbons

All results are in parts per billion

n .	TPH	TPH	TPH	Dangana	Toluone	Ethyl Benzene	Total Xylenes	MTDE
Boring	Gasoline	Diesel	Motor Oil	Benzene	Toluene	Denzene	Aylenes	MTBE
MW-1								
8-16-99		Not S	Sampled Due	to Free-Fl	oating Hydi	rocarbons		
12-06-99			Sampled Due					
3-08-00		Not	•				ocarbons	
<u>MW-2</u>				_			_	
8-16-99		970*	< 500	3.8	< 2.0	3.0	< 4.0	< 20
12-06-99		400*	< 500	16	< 0.5	1.5	< 0.5	5.2
3-08-00	1,600*	530*	. < 500	9.7	< 0.5	2.7	< 0.5	2 7
MW-3								
8-16-99	56,000	10,000**	< 500	17,000	2,600	2,600	1,200	6,100
12-06-99		9,100*	< 500	16,000	140	1,800	100	2,200/
	•	·						4,000#
3 - 0 8 - 0 0	22,000	4,500*	< 500	11,000	7 2	1,100	130	3,400
3 4337 4								
<u>MW-4</u>	/1***	1,100*	< 500	< 0.5	< 0.5	< 0.5	< 1.0	86
8-16-99 12-06-99	61*** 130***	220*	< 500	< 0.3 < 1.0	< 1.0	< 0.3 < 1.0	< 1.0	130
3-08-00		220*	< 500	< 0.5	< 0.5	< 0.5	< 0.5	130
5-00-00	, \ 50	220	2 500	` '010	V 010	\ 0.0	1 010	100
<u>MW-5</u>								
12-06-99	450***	2,000*	< 500	< 1.0	< 1.0	< 1.0	< 1.0	2 1
3-08-00) 51***	530*	< 500	< 0.5	< 0.5	< 0.5	<0.5	8 4
<u>MW-6</u>								
	13,000	< 50	< 500	180	21	11	24	< 100
3 - 0 8 - 0 0	0< 10,000	4,600*	< 500	230	2 6	1 8	3 9	12,000

37 .

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit.

DHS MCL³³ NE NE NE 1.0 150 700 1,750 13

Detectable concentrations are in bold.

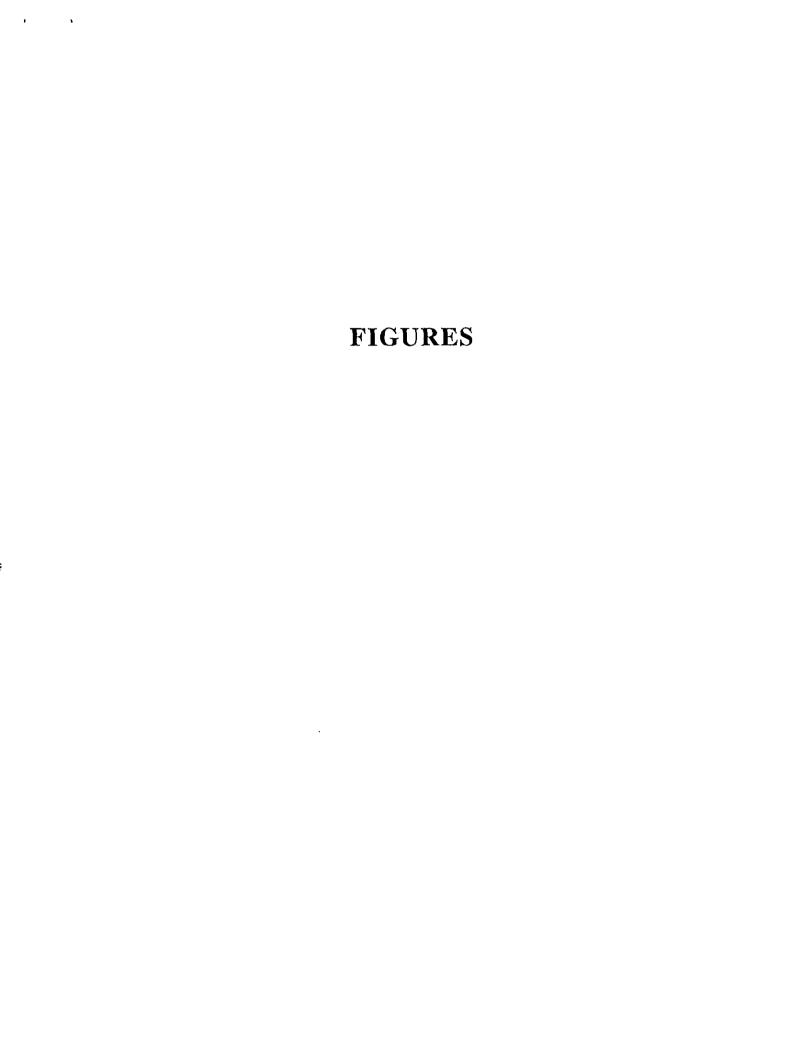
DHS MCL is the California Department of Health Services maximum contaminant level for drinking water.

NE = DHS MCLs are not established.

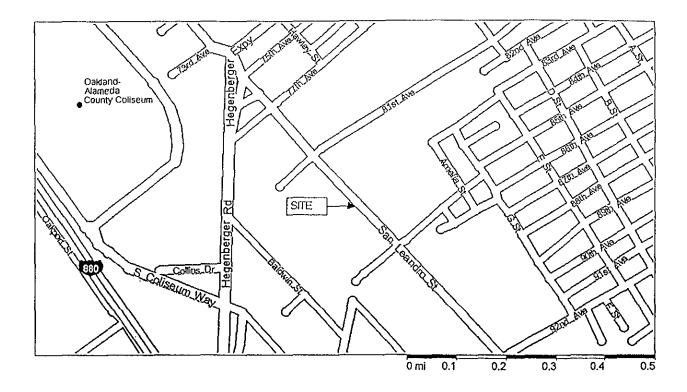
- * = Non-typical diesel pattern, hydrocarbons in early diesel range.
- ** = Estimated concentration due to overlapping fuel patterns in the sample.
- *** = Non-typical gasoline pattern.
- # = MTBE concentration by EPA Method 8260

TABLE THREE
Summary of Chemical Analysis of GROUNDWATER Samples
HVOCs, SVOCs, PCBs and LUFT 5 Metals
All results are in parts per billion

Boring	Isoproyl- benzene	Other VOCs	SVOCs	PCBs	Cd	Cr	Рb	Ni	Zn
MW-2					* - * - 		7		
8-16-99	1 1	ND	ND	ND	< 2.0	9.0	< 5.0	19	< 10
MW-4									
8-16-99	< 0.5	ND	ND	ND	2.7	4 5	260	5 5	3 2 0
12-06-99)						< 5		
MCL	NE	Various	Various	0.5	5	50	1 5	100	5,000

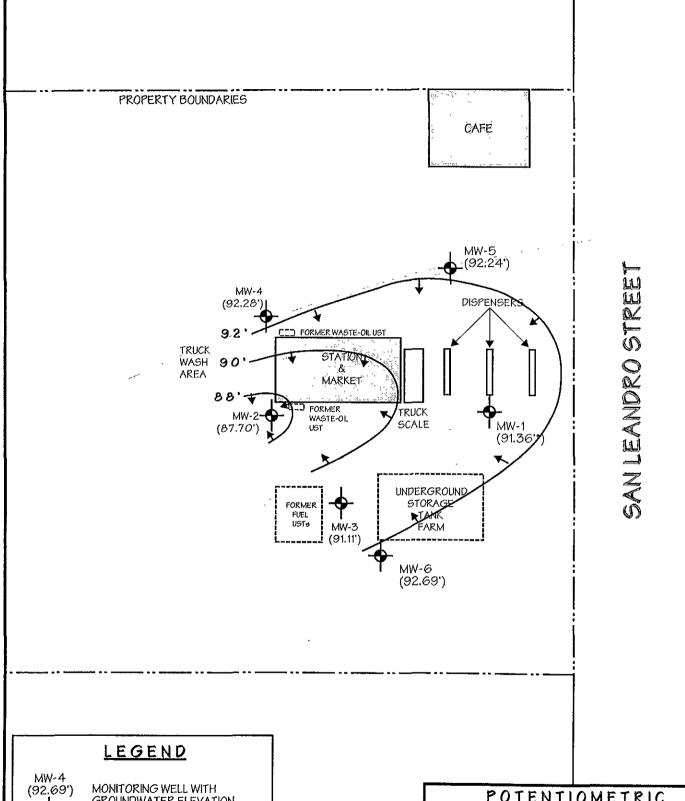

Notes:

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit or are indicated by ND if various detection limits are used for multiple compounds. Please see the original reports for detection limits for these compounds.


Detectable concentrations are in bold.

MCL is the California Department of Health Services maximum contaminant level for drinking water.

NE = Not established



LOCATION MAP

OAKLAND TRUCK STOP 8255 SAN LEANDRO STREET OAKLAND, CALIFORNIA

AQUA SCIENCE ENGINEERS, INC.

GROUNDWATER ELEVATION IN FEET, ABOVE MEAN SEA LEVEL

(91.361*)

GROUNDWATER ELEVATION ADJUSTED FOR FREE-FLOATING HYDROCARBON THICKNESS

POTENTIOMETRIC SURFACE CONTOUR

NORTH

<u>SCALE</u> 1" = 50'

POTENTIOMETRIC SURFACE CONTOUR MAP 8, 2000 MARCH

OAKLAND TRUCK STOP 8255 SAN LEANDRO STREET OAKLAND, CALIFORNIA

AQUA SCIENCE ENGINEERS, INC.

Figure 2

APPENDIX A

Well Sampling Field Logs

DAVIONA TRACK Stop	
Project Name and Address: Our lang 11 11 2 2610	
Job #: Date of sampling Date of sampling Date of sampling Date of sampling.	
Well Name: Sampled by	
Depth to water at time of sampling: Percent recovery at time of sampling: Samples collected with: Sample color: Description of sediment in sample: CHEMICAL DATA	
Depth to water before sampling (feet): 2,72,73	
Thickness of floating product if any: 0.21	
Depth of well casing in water (feet):	
Equipment used to purge the well:	
Time Evacuation Began: Time Evacuation Finished:	
Approximate volume of groundwater purged:	
Did the well go dry?: \ After how many gallons:	
Time samples were collected:	
Depth to water at time of sampling:	
Percent recovery at time of sampling: 7	
Samples collected with:	
Sample color: Todor:	
Description of sediment in sample:	
$\mathcal{P}_{\mathcal{L}}$	
CHEMICAL DATA	
Volume Purged Temp pH Conductivity	
SAMPLES COLLECTED \	
Sample # of containers Volume & type container Pres Iced? Analysis	

Project Name and Address: Job #:3540	Dakland Truck Stop Date of sampling: 3-8-00				
Well Name: Mw-Z	Sampled by:ITX				
Total depth of well (feet):	5.50 Well diameter (inches): 2"				
Depth to water before sampling	(feet): 9.12				
Thickness of floating product if	well diameter (inches): 2" pth to water before sampling (feet): 9.12 pth to water before sampling (feet): 9.12 pth of well casing product if any: pth of well casing in water (feet): 6.38 mber of gallons per well casing volume (gallons): 1.08 mber of well casing volumes to be removed: 4 pth volume of groundwater to be purged before sampling (gallons): 4.3 nipment used to purge the well: dedicated tailer ne Evacuation Began: 10.30 Time Evacuation Finished: 10.45 I the well go dry?: No After how many gallons: - ne samples were collected: 10.50 pth to water at time of sampling: 9.20 cent recovery at time of sampling: 9.20 cent recove				
Depth of well casing in water (f	eet): 6.38				
Number of gallons per well casi	ng volume (gallons): 1.08				
Number of well casing volumes	to be removed: 4				
Equipment used to purge the we	ell: <u>dedicated</u> bailer				
Time Evacuation Began: 1030	Time Evacuation Finished: 1045				
Approximate volume of grounds	vater purged: 4.5				
Did the well go dry?: NO	After how many gallons: -				
Time samples were collected:	1050				
Depth to water at time of sample	ling:9,20				
Percent recovery at time of sam	opling: 98%.				
Samples collected with:	dodicated bailer				
Sample color: clear/gray	Odor: Slight HC andar				
Description of sediment in samp	ile:- Little silt (fine)				
CHEMICAL DATA	<i></i>				
Volume Purged Temp	pH Conductivity				
<u> 69.7</u> 2	6.38 621				
	u. 74 732				
<u> </u>	6.53 781				
4 4 4!9	6.82 _ 703				
SAMPLES COLLECTED					
Sample # of containers Volume & typ NN-Z 3 40m1 Vo 2 1-like An					

Project Name and Address Job #:3540	Ţ	Date of sam	ınling:	ruek ST2 3-8-00	b
Well Name: Mu:3		Sampled by:	:	ITR	
Total depth of well (feet); 15°,	5 W	ell diamete	r (inches):	24
Depth to water before s					
Thickness of floating pro	oduct if any	•		(sheen)	
Thickness of floating pro Depth of well casing in	water (feet)	•	10.18		
Number of gallons per v				1,7	
Number of well casing	-	. •	•	44	-
Req'd volume of ground				· 	7
Equipment used to purg	e the well:_	de	d. bailer		
Time Evacuation Began:	1140	Time	Evacuation	Finished:	1158
Approximate volume of	groundwate	r purged: _		7	
Did the well go dry?:	ND	After	how many	gallons:	
Time samples were coll	ected:	12	.00		
			<i>\$</i> 5.38		
Percent recovery at time	e of samplin	ıg:	99/.		
Samples collected with:		ded,	bailer		
Samples collected with: Sample color:	1904	Odor:_	slignt	HC odor	
Description of sediment	in sample:_		fine silf		
CHEMICAL DATA					
	-		Conductivity		
		1.78	<u> 1098 </u>		
		5,21	1124		
		5,23	1087		
	1.2	<u>5.14</u>	1113		
					
SAMPLES COLLECTED					
Sample # of containers Voi	lume & type co 40 MI VA 1-1,14-Ar		Iced? Ana	lysis	
	·				

Project Name and Address: Joh #: 3540	Oakland Date of samplin	Thuck Step g: 3-8-00
Job #:	Sampled by:	ine
Total depth of well (feet):	15.0' Well	diameter (inches): Z"
Total depth of well (feet): Depth to water before sampling	ng (feet):	1,32'
Thickness of floating product	if any:	
Thickness of floating product Depth of well casing in water	(feet):	10.108
Number of gallons per well c	asing volume (gallons	1.8
Number of well casing volume	es to be removed:)
Req'd volume of groundwater		
Equipment used to purge the	well: Add	baikr
Time Evacuation Began: 1200	Time Evac	cuation Finished: 1218
Approximate volume of ground		
Did the well go dry? \nd	After how	many gallone:
Did the well go dry?: NO Time samples were collected:	1220	many ganons.
Depth to water at time of sar	nnling: 4.38	5
Percent recovery at time of s	ampling: 99'	/,
Samples collected with:		
Sample color: Body groy	Odor	slight HC oder
Description of sediment in sa	mple:	ine Sift
-		
CHEMICAL DATA	,	
Volume Purged Temp		uctivity
69,9		978
7 70.4		769
<u> </u>		175
70.9	<u>4.70</u> 9	81
SAMPLES COLLECTED		
Sample # of containers Volume & HW4 3 96M1 2 Hyk 2 25M1	ir Ame U	Analysis

Project Name and A	ddress:			Oaklad Tr	ciel Stro
Joh #: 3540		Date of	sampling:	3-8-00	
Well Name: Fime Total depth of well (-5	Sample	d by:	ITR	
Total depth of well (feet):	13.7	_ Well dia	meter (inches): _	2 4
Total depth of well (Depth to water before Thickness of floating	re sampling	(feet):	4,06		
Thickness of floating	product if	any:	4	9.64	
Thickness of floating Depth of well casing	in water (f	feet):		9,69	
Number of gallons p				4 1,	6
Number of well casi		_	· ·	• 11	
Req'd volume of gro					6.6
Equipment used to p	ourge the w	ell:	ded, baile	شور	
Time Evacuation Beg	gan: 1230		ime Evacua	ation Finished:	1248
Approximate volume	of ground	– water purg	ged:	6.6	
Did the well go dry?					-
Time samples were	collected:		1250		
Danth to wester of ti	ma of some	1:	GJ2		
Percent recovery at Samples collected w Sample color:	time of san	npling:	981		
Samples collected w	ith:	d	od, baile	<u> </u>	
Sample color:	ar I gray	(dor:	light HC oder	
Description of sedim	ent in sam	ole:	fine s	117	
CHEMICAL DATA					
Volume Purged	Temp.	<u>pH</u>	Conduct	ivity	
<u> </u>	<u>69.8</u>	4,36	} } 8	2	
2	689	491		14	
3	69,4	<u> 4.83</u>	7		
4	67.6	<u>4,90</u>	8:10	<u>2</u>	
				·	
SAMPLES COLLECT	CED				
Sample # of containers		pe container	Pres Iced?	<u>Analysis</u>	
Mb.5 3	40 MI		<u> </u>		
<i>_</i>	1-117	er Amba	<u>V</u>		
Build Street Street Street Street Street	· · · · · · · · · · · · · · · · · · ·				

Project Name and Address:	Oakland Truck Stap
Ioh #: 3540	Daklona Truck Step Date of sampling: 3-8-00
Well Name: Mw-6	Sampled by:
Total depth of well (feet):	14.0' Well diameter (inches): 2"
Depth to water before sampling	(feet): 4.1
Thickness of floating product if	onvi
Depth of well casing in water (
Number of gallons per well cas	
Number of well casing volumes	
	be purged before sampling (gallons): 1.7
Equipment used to purge the w	vell: ded. bailer
Time Evacuation Began: 1165	Time Evacuation Finished: 1115
Approximate volume of ground	water purged: 7.0
Did the well go dry?: No	After how many gallons:
Time samples were collected:	1120
Depth to water at time of samp	oling: 4,24
Percent recovery at time of sar	npling:
Samples collected with:	del. bailer
Sample color: chologoy	Odor: stight trado
Description of sediment in sam	oling: 4,24 npling: 48% del. bailes Odor: stight theodo ple: L. silt (fire)
CHEMICAL DATA	
Volume Purged Temp	pH Conductivity
76.9	5,79 516
7 (,0,0	6.29 587
3 7.0.4	6.29 58+
	4.32 589
SAMPLES COLLECTED	
Sample # of containers Volume & tv	
HV-6 3 46ml	
MV-4 2 1-1	ik Ame

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

Date: March 20, 2000

Aqua Science Engineers, Inc. 208 West El Pintado Road Danville, CA 94526

Attn.: Mr. Ian T. Reed

Project: 3540

OAKLAND TRUCK STOP

Dear Mr. Reed,

Attached is our report for your samples received on Thursday March 9, 2000 This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after April 8, 2000 unless you have requested otherwise. We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919. You can also contact me via email. My email address is: vvancil@chromalab.com

Sincerely,

Vincent Vancil

CHROMALAB, INC.

Environmental Services (SDB)

(CDD)

Gas/BTEX and MTBE

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Submission #: 2000-03-0148

Project #: 3540

Project: OAKLAND TRUCK STOP

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-2	Water	03/08/2000 10:50	1
MW-3	Water	03/08/2000 10:50	2
MW-4	Water	03/08/2000 10:50	3
MW-5	Water	03/08/2000 10:50	4
MW-6	Water	03/08/2000 10:50	5

Printed on: 03/20/2000 17:10 Page 1 of 13

CHROMALAB, INC.

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M

8020

Attn.: Ian T. Reed

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-2

Lab Sample ID: 2000-03-0148-001

Project:

Received:

03/09/2000 11:55

3540

OAKLAND TRUCK STOP

107.4

Extracted:

03/16/2000 15:56

Sampled:

03/08/2000 10:50

QC-Batch:

1.00

2000/03/16-01.04

03/16/2000 15:56

Matrix:

Water

4-Bromofluorobenzene-FID

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	1600	50	ug/L	1.00	03/16/2000 15:56	g
Benzene	9.7	0.50	ug/L	1.00	03/16/2000 15:56	
Toluene	ND	0.50	ug/L.	1.00	03/16/2000 15:56	
Ethyl benzene	2.7	0.50	ug/L	1.00	03/16/2000 15:56	
Xylene(s)	D D	0.50	ug/L	1.00	03/16/2000 15:56	
MTBE	27	5.0	ug/L	1.00	03/16/2000 15:56	
Surrogate(s) Trifluorotoluene	122.7	58-124	%	1.00	03/16/2000 15:56	

50-150

%

CHROMALAB, INC.

Submission #: 2000-03-0148

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M 8020

Prep Method:

5030

Attn.: lan T. Reed

Gas/BTEX and MTBE

MW-3 Sample ID:

Lab Sample ID: 2000-03-0148-002

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

Extracted:

03/16/2000 15:00

Sampled:

03/08/2000 10:50

QC-Batch:

2000/03/16-01.04

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	22000	2500	ug/L	50.00	03/16/2000 15:00	
Benzene	11000	130	ug/L	250.00	03/17/2000 11:46	
Toluene	72	25	ug/L	50.00	03/16/2000 15:00	
Ethyl benzene	1100	25	ug/L	50.00	03/16/2000 15:00	
Xylene(s)	130	25	ug/L	50.00	03/16/2000 15:00	
MTBE	3400	250	ug/L	50.00	03/16/2000 15:00	
Surrogate(s)						
Trifluorotoluene	71.1	58-124	%	1.00	03/16/2000 15:00	
4-Bromofluorobenzene-FID	81.9	50-150	%	1.00	03/16/2000 15:00	

CHROMALAB, INC.

Submission #: 2000-03-0148

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M 8020

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

Attn.: Ian T. Reed

MW-4

Lab Sample ID: 2000-03-0148-003

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

Extracted:

03/16/2000 14:31

Sampled:

03/08/2000 10:50

QC-Batch:

2000/03/16-01.04

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	ND	50	ug/L	1.00	03/16/2000 14:31	
Benzene	ND	0.50	ug/L	1.00	03/16/2000 14:31	
Toluene	ND	0.50	ug/L	1.00	03/16/2000 14:31	
Ethyl benzene	ND	0.50	ug/L	1.00	03/16/2000 14:31	
Xylene(s)	ND	0.50	ug/L	1.00	03/16/2000 14:31	
MTBE	130	5.0	ug/L	1.00	03/16/2000 14:31	
Surrogate(s)						
Trifluorotoluene	85.1	58-124	%	1.00	03/16/2000 14:31	
4-Bromofluorobenzene-FID	85.9	50-150	%	1.00	03/16/2000 14:31	

CHROMALAB, INC.

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M

8020 5030

Attn.: Ian T. Reed

Prep Method:

Gas/BTEX and MTBE

Sample ID:

MW-5

Lab Sample ID: 2000-03-0148-004

Project:

Received:

03/09/2000 11:55

3540

OAKLAND TRUCK STOP

Extracted:

03/17/2000 16:16

Sampled:

03/08/2000 10:50

QC-Batch:

2000/03/17-01.01

Matrix:

Water

Compound	Result Rep.Limit		Units	Dilution	Analyzed	Flag
Gasoline	51	50	ug/L.	1.00	03/17/2000 16:16	g
Benzene	ND	0.50	ug/L	1.00	03/17/2000 16:16	
Toluene	ND	0.50	ug/L	1.00	03/17/2000 16:16	
Ethyl benzene	ND	0.50	ug/L	1.00	03/17/2000 16:16	
Xylene(s)	ND	0.50	ug/L	1.00	03/17/2000 16:16	
MTBE	84	5.0	ug/L	1.00	03/17/2000 16:16	
Surrogate(s) Trifluorotoluene	72.0	58-124	%	1.00	03/17/2000 16:16	
4-Bromofluorobenzene-FID	68.6	50-150	%	1.00	03/17/2000 16:16	

Page 5 of 13

CHROMALAB, INC.

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M

8020

Attn.: Ian T. Reed

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-6

Lab Sample ID: 2000-03-0148-005

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

Extracted:

03/16/2000 15:28

Sampled:

03/08/2000 10:50

QC-Batch:

2000/03/16-01.04

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	ND	10000	ug/L	200.00	03/16/2000 15:28	
Benzene	230	10	ug/L	20.00	03/19/2000 19:36	
Toluene	26	10	ug/L	20.00	03/19/2000 19:36	
Ethyl benzene	18	10	ug/L	20.00	03/19/2000 19:36	
Xylene(s)	39	10	ug/L	20.00	03/19/2000 19:36	
MTBE	12000	1000	ug/L	200.00	03/19/2000 19:36	
Surrogate(s)						
Trifluorotoluene	86.1	58-124	%	1.00	03/19/2000 19:36	
4-Bromofluorobenzene-FID	85.6	50-150	%	1.00	03/16/2000 15:28	

CHROMALAB, INC.
Environmental Services (SDB)

Submission #: 2000-03-0148

To: Aqua Science Engineers, Inc. Test Method:

8015M

8020

Prep Method:

5030

Batch QC Report Gas/BTEX and MTBE- -

Method Blank

Attn.: Ian T. Reed

Water

QC Batch # 2000/03/16-01.04

MB:

2000/03/16-01.04-001

Date Extracted: 03/16/2000 13:55

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Gasoline	ND	50	ug/L	03/16/2000 13:55	
Benzene	ND	0.5	ug/L	03/16/2000 13:55	
Toluene	ИD	0.5	ug/L	03/16/2000 13:55	
Ethyl benzene	ND	0.5	ug/L	03/16/2000 13:55	
Xylene(s)	ND	0.5	ug/L	03/16/2000 13:55	
MTBE	ND	5.0	ug/L	03/16/2000 13:55	
Surrogate(s)					
Trifluorotoluene	85.0	58-124	%	03/16/2000 13:55	
4-Bromofluorobenzene-FID	89.4	50-150	%	03/16/2000 13:55	

CHROMALAB, INC. Environmental Services (SDB)

Submission #: 2000-03-0148

Aqua Science Engineers, Inc. To:

Test Method:

8015M 8020

Attn.: Ian T. Reed

Prep Method:

5030

Batch QC Report Gas/BTEX and MTBE- -

Method Blank

Water

QC Batch # 2000/03/17-01.01

MB:

2000/03/17-01.01-001

Date Extracted: 03/17/2000 06:57

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Gasoline Benzene Toluene Ethyl benzene Xylene(s) MTBE	ND ND ND ND ND	50 0.5 0.5 0.5 0.5 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	03/17/2000 06:57 03/17/2000 06:57 03/17/2000 06:57 03/17/2000 06:57 03/17/2000 06:57 03/17/2000 06:57	
Surrogate(s) Trifluorotoluene 4-Bromofluorobenzene-FID	85.6 79.6	58-124 50-150	% %	03/17/2000 06:57 03/17/2000 06:57	

Printed on: 03/20/2000 17:10

Submission #: 2000-03-0148 CHROMALAB, INC. Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M

8020

Attn.: Ian T. Reed

Prep Method:

5030

Batch QC Report Gas/BTEX and MTBE - -

Method Blank

Water

QC Batch # 2000/03/19-01.04

MB:

2000/03/19-01.04-001

Date Extracted: 03/19/2000 17:08

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Benzene Toluene Ethyl benzene Xylene(s)	ND ND ND ND	0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L	03/19/2000 17:08 03/19/2000 17:08 03/19/2000 17:08 03/19/2000 17:08	
Surrogate(s) Trifluorotoluene	78.4	58-124	%	03/19/2000 17:08	

CHROMALAB, INC. Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M

8020

Attn: Ian T. Reed

Prep Method:

5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water*

QC Batch # 2000/03/16-01.04

LCS:

2000/03/16-01.04-002

Extracted: 03/16/2000 09:44

Analyzed

03/16/2000 09:44

LCSD:

2000/03/16-01.04-003

Extracted: 03/16/2000 10:13

Analyzed

03/16/2000 10:13

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	ery [%]	RPD	Ctrl. Limi	ts [%]	Flag	js
- Compound	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Gasoline	419	495	500	500	83.8	99.0	16.6	75-125	20		
Benzene	96.3	85.6	100.0	100.0	96.3	85.6	11.8	77-123	20		
Toluene	95.5	84.8	100.0	100.0	95.5	84.8	11.9	78-122	20		
Ethyl benzene	92.8	82.5	100.0	100.0	92.8	82.5	11.8	70-130	20		
Xylene(s)	279	252	300	300	93.0	84.0	10.2	75-125	20		
Surrogate(s)											
Trifluorotoluene	443	392	500	500	88.6	78.4		58-124			
4-Bromofluorobenzene-FI	473	480	500	500	94.6	96.0		50-150			<u> </u>

CHROMALAB, INC.

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8015M

8020

Attn: Ian T. Reed

Prep Method:

5030

Batch QC Report

Gas/BTEX and MTBE ~

Laboratory Control Spike (LCS/LCSD)

Water^{*}

QC Batch # 2000/03/17-01.01

LCS:

2000/03/17-01.01-002

Extracted: 03/17/2000 07:33

Analyzed 03/

03/17/2000 07:33

LCSD:

2000/03/17-01.01-003

Extracted: 03/17/2000 08:08

Analyzed

03/17/2000 08:08

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	ery [%]	RPD	Ctrl. Limi	ts [%]	Flag	js
Compound	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Gasoline	469	445	500	500	93.8	89.0	5.3	75-125	20		
Benzene	89.8	88.1	100.0	100.0	89.8	88.1	19	77-123	20		
Toluene	88.3	86.1	100.0	100.0	88.3	86.1	2.5	78-122	20		
Ethyl benzene	89.2	86.8	100.0	100.0	89.2	86.8	2.7	70-130	20		
Xylene(s)	268	260	300	300	89.3	86.7	3.0	75-125	20		
Surrogate(s)											İ
Trifluorololuene	416	414	500	500	83.2	82.8	!	58-124		!	
4-Bromofluorobenzene-FI	449	438	500	500	89.8	87.6		50-150	<u></u>	<u> </u>	

CHROMALAB, INC.

Submission #: 2000-03-0148

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method: 8015M

8020

Attn: Ian T. Reed

Prep Method:

5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/03/19-01.04

LCS:

2000/03/19-01.04-002

Extracted: 03/19/2000 16:00

Analyzed 03

03/19/2000 16:00

LCSD:

2000/03/19-01.04-003

Extracted: 03/19/2000 16:30

Analyzed

03/19/2000 16:30

Compound	Conc.	Conc. [ug/L]		[ug/L]	Recov	Recovery [%]		Ctrl. Limi	Ctrl. Limits [%]		js
Omposive.	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS_	LCSD
Benzene	104	92.6	100.0	100.0	104.0	92.6	11.6	77-123	20		
Toluene	105	95.4	100.0	100.0	105 0	95.4	9.6	78-122	20		
Ethyl benzene	104	93.2	100.0	100.0	104.0	93.2	11.0	70-130	20		
Xylene(s)	311	283	300	300	103.7	94.3	9.5	75-125	20		
Surrogate(s) Trifluorotoluene	485	434	500	500	97.0	86.8		58-124			

Printed on: 03/20/2000 17:10

CHROMALAB, INC. Environmental Services (SDB)

Submission #: 2000-03-0148

To: Aqua Science Engineers, Inc.

Test Method: 8015M

8020

Attn:lan T. Reed

Prep Method: 5030

Legend & Notes___

Gas/BTEX and MTBE

Analyte Flags

9

Hydrocarbon reported in the gasoline range does not match our gasoline standard.

1220 Quarry Lane * Pleasanton, CA 94566-4756 Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Printed on: 03/20/2000 17:10

CHROMALAB, INC. Environmental Services (SDB)

Soluble Metals

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 3540

Project: OAKLAND TRUCK STOP

Samples Reported

Sample ID	Matrix	Date Sampled	Lab #
MW-4	Water	03/08/2000 10:50	3

Page 1 of 4 Printed on: 03/13/2000 12:33

Submission #: 2000-03-0148

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

6010B

Prep Method:

3005A

Soluble Metals

Sample ID:

MW-4

Lab Sample ID: 2000-03-0148-003

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

Extracted:

03/09/2000 14:56

Sampled:

03/08/2000 10:50

QC-Batch:

2000/03/09-02.15

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Lead	ND	0.0050	mg/L	1.00	03/09/2000 18:33	

CHROMALAB, INC. Environmental Services (SDB)

Submission #: 2000-03-0148

Agua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

6010B

Prep Method:

3005A

Batch QC Report Soluble Metals

Water Method Blank

QC Batch # 2000/03/09-02.15

MB:

2000/03/09-02.15-024

Date Extracted: 03/09/2000 14:56

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Lead	1 ' '-	0.0050	mg/L	03/09/2000 17:37	

Printed on: 03/13/2000 12:33

Submission #: 2000-03-0148

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method: 6010B

Attn: Ian T. Reed

Prep Method: 3005A

Batch QC Report

Soluble Metals

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/03/09-02.15

2000/03/09-02.15-025 LCS: 2000/03/09-02.15-026 LCSD:

Extracted: 03/09/2000 14:56 Extracted: 03/09/2000 14:56

Analyzed 03/09/2000 17:41

Analyzed 03/09/2000 17:45

Compound	Conc.	[mg/L]	Exp.Conc.	[mg/L]	Recov	Recovery [%]		D Ctrl. Limits [%]		Flags	
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Lead	0.462	0.462	0.500	0.500	92.4	92.4	0.0	80-120	20		

Printed on: 03/13/2000 12:33

Page 4 of 4

Total Extractable Petroleum Hydrocarbons (TEPH)

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 3540

Project: OAKLAND TRUCK STOP

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-2	Water	03/08/2000 10:50	1
MW-3	Water	03/08/2000 10:50	2
MW-4	Water	03/08/2000 10:50	3
MW-5	Water	03/08/2000 10:50	4
MW-6	Water	03/08/2000 10:50	5

Printed on: 03/16/2000 10:12

CHROMALAB, INC.

Environmental Services (SDB)

To: Aqua Science Engineers, Inc. Test Method:

8015m

Attn.: Ian T. Reed

Prep Method:

3510/8015M

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample ID:

MW-2

Lab Sample ID: 2000-03-0148-001

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

03/13/2000 06:44

Sampled:

03/08/2000 10:50

Extracted:

Matrix:

Water

QC-Batch:

2000/03/13-01.10

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel Motor Oil	530 ND	50 500	ug/L ug/L	1.00 1.00	03/13/2000 22:18 03/13/2000 22:18	
Surrogate(s) o-Terphenyl	89.7	60-130	%	1.00	03/13/2000 22:18	

Submission #: 2000-03-0148

Environmental Services (SDB)

To: Aqua Science Engineers, Inc. Test Method:

8015m

Attn.: Ian T. Reed

Prep Method:

3510/8015M

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample ID:

MW-3

Lab Sample ID: 2000-03-0148-002

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

Extracted:

03/13/2000 06:44

Sampled:

03/08/2000 10:50

QC-Batch:

2000/03/13-01.10

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel Motor Oil	4500 ND	50 500	ug/L ug/L	1.00 1.00	03/13/2000 22:57 03/13/2000 22:57	ndp
Surrogate(s) o-Terphenyl	71.7	60-130	%	1.00	03/13/2000 22:57	

Printed on: 03/16/2000 10:12

CHROMALAB, INC.

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Test Method:

8015m

Attn.: Ian T. Reed

To:

Prep Method:

3510/8015M

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample ID:

MW-4

Lab Sample ID: 2000-03-0148-003

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

Extracted:

03/13/2000 06:44

Sampled:

03/08/2000 10:50

QC-Batch:

2000/03/13-01.10

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel	220	50	ug/L	1.00	03/13/2000 23:37	ndp
Motor Oil	ND	500	ug/L	1.00	03/13/2000 23:37	
Surrogate(s) o-Terphenyl	92.1	60-130	%	1.00	03/13/2000 23:37	

Submission #: 2000-03-0148

Environmental Services (SDB)

To: Aqua Science Engineers, Inc. Test Method:

8015m

Attn.: Ian T. Reed

Prep Method:

3510/8015M

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample ID:

MW-5

Lab Sample ID: 2000-03-0148-004

Project:

3540

Received:

03/09/2000 11:55

OAKLAND TRUCK STOP

Extracted:

03/13/2000 06:44

Sampled:

03/08/2000 10:50

2000/03/13-01.10

Matrix:

Water

QC-Batch:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel Motor Oil	530 ND	50 500	ug/L ug/L	1.00 1.00	03/14/2000 00:16 03/14/2000 00:16	
Surrogate(s) o-Terphenyl	86.1	60-130	%	1.00	03/14/2000 00:16	·····

CHROMALAB, INC.

Environmental Services (SDB)

To: Aqua Science Engineers, Inc. Test Method:

8015m

Attn.: Ian T. Reed

Prep Method:

3510/8015M

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample ID:

MW-6

Lab Sample ID: 2000-03-0148-005

Project:

3540

Received:

OAKLAND TRUCK STOP

03/09/2000 11:55

Sampled:

Extracted:

03/13/2000 06:44

03/08/2000 10:50

QC-Batch:

2000/03/13-01.10

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel Motor Oil	4600 ND	50 500	ug/L ug/L	1.00 1.00	03/14/2000 00:55 03/14/2000 00:55	ndp
Surrogate(s) o-Terphenyl	85.8	60-130	%	1.00	03/14/2000 00:55	

CHROMALAB, INC.

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8015m

Prep Method:

3510/8015M

Batch QC Report

Total Extractable Petroleum Hydrocarbons (TEPH)

Water Method Blank

QC Batch # 2000/03/13-01.10

Date Extracted: 03/13/2000 06:44 MB: 2000/03/13-01.10-001

Compound	Result	Rep.Limit	Units	Units Analyzed				
Diesel Motor Oil	ND ND	50 500	ug/L ug/L	03/13/2000 10:53 03/13/2000 10:53				
Surrogate(s) o-Terphenyl	87.0	60-130	%	03/13/2000 10:53				

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Attn: Ian T. Reed

To:

Test Method: 8015m

Prep Method: 3510/8015M

Batch QC Report

Total Extractable Petroleum Hydrocarbons (TEPH)

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/03/13-01.10

Submission #: 2000-03-0148

2000/03/13-01.10-002 LCS:

Extracted: 03/13/2000 06:44

Analyzed 03/13/2000 11:36

2000/03/13-01.10-003 LCSD:

Extracted: 03/13/2000 06:44

Analyzed

03/13/2000 12:20

Compound	Conc.	[ug/L]	Exp.Conc.	.Conc. [ug/L] Recovery [%] RPD Ctrl. Limi		its [%]	Flag	ıs			
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Diesel	911	925	1250	1250	72.9	74.0	1.5	60-130	25		
Surrogate(s) o-Terphenyl	14.4	14.7	20.0	20.0	72.0	73.5		60-130			

CHROMALAB, INC. Environmental Services (SDB)

Submission #: 2000-03-0148

To: Aqua Science Engineers, Inc.

Attn:lan T. Reed

Test Method: 8015m

Prep Method: 3510/8015M

Legend & Notes

Total Extractable Petroleum Hydrocarbons (TEPH)

Analyte Flags

edr

Hydrocarbon reported is in the early Diesel range, and does not match our Diesel standard

ndp

Hydrocarbon reported does not match the pattern of our Diesel standard

1220 Quarry Lane * Pleasanton, CA 94566-4756 Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Printed on: 03/16/2000 10:12

Aqua Science Engineers, inc. 208 W. El Pintado Road

Chain of Custody

Danville, CA (925) 820	9452 -9391	26 1						(<i>)</i>			0 6		/ Y	/					,	,	
(925) 820 FAX (925)	337-4	853																		<u></u> 0F		_
SAMPLER (SIGN	$\overline{}$	_		•	ONE NO.)		PROJ	ECT N	AME		Oax	ibrd	Tr	nck	Ste	₽		JOB N	10	3 <u>5</u>	10	
let	Kou	21	(925)	fz0-93	391		ADDR	ESS		82	<i>5</i> 3 :	Sar i	Tru	<u>~ S</u>	+, a	extac	LCA-	DATE	<u> </u>	3-0		=
ANAL`			QUES	Ī				Š			1				1		i i					
SPECIAL INSTRU	ICTIONS	·			3TEX 020)		9	RBO	1109		NIC SANIC				Sic	OKU 814	E 815	83	3	1		1
5	i		л <u>-</u>		BE & B 015-8	E 015)) M	ALOCA	ROMA: 20)	3ANICS 40)	E ORG 270)		(2)	LS (000)	11CIDE 3080	10 <i>SP</i> Н 5 (EPA 8080	ORGANOCHLORINE HERBICIDES (EPA 8150)	FUEL OXYGENATES (EPA 8260)	el Le			<u> </u>
5-	-d o	Y 7,	AT	46 / M 030/8			:SEL {	ABLE H	ABLE A	LE ORC 24/82	0LATII	REASE 520)	ETALS 010+7	, META 010+7	& PES 308/	NOPP ICIDES 608/	NOCH	0XYG 8260	Solv			COMPOSITE
SAMPLE ID.	DATE	TIME	MATRIX	NO. OF SAMPLES	TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	TPH-GASOLINE (EPA 5030/8015)	TPH-DIESEL & M 0 (EPA 3510/8015)	PURGEABLE HALOCARBONS (EPA 601/8010)	PURGEABLE AROMATICS (EPA 602/8020)	VOLATILE ORGANICS (EPA 624/8240)	SEMI-YOLATILE ORGANICS (EPA 625/8270)	OIL & GREASE (EPA 5520)	LUFT METALS (5) (EPA 6010+7000)	CAM 17 METALS (EPA 6010+7000)	PCBs & PESTICIDES (EPA 608/8080)	ORGANOPHOSPHORUS PESTICIDES (EPA 8140) (EPA 608/8080)	ORGA HERB	FUEL (EPA	Dissolved lees			Ó
MW-Z	3.800	1650	vete	5	X		X															
MW-3		1200		5			\nearrow															
MW-4		1220		7			$\geq \leq$				_											{
MW-5		1250	-	5			\times									<u> </u>						
MU-6	4	1120	4	5			<u>~</u>								<u> </u>							
		<u> </u>								<u> </u>			-									
																	ļ <u>-</u>	,				
																		-				
				<u></u>																		
REUNQUISHER B' Ve Teo (signature)	Y: 0 '	920 ne)	RECEIV (Signati	ED BY:	(time)	(30	(sign	NQUISHI mulature)	up	(D)	:	(ster	EIVED B	Y LABO	lam	e)	co	MMENT 5-8	S:	4.	3	
Ion T Red (printed name)	3 (da	-9-00 te)	(printed	in Whight	+ 3/9 (date)	(Q)	(print	ow ()e, h*	6 03/1 (date)	31/00	(prin	hirs ted nam		Te E	23/m [0	58	lor	TAT		
Company-			Compar				Com	pany- C/l	_			Com	pany	Mor	na	leb						