

May 7, 2006

SEMI-ANNUAL GROUNDWATER MONITORING REPORT MARCH 2006 GROUNDWATER SAMPLING

at Kozel Property 1001 42nd Street Oakland, California

Environmental Fledith

Submitted by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

× .

This report presents the methods and findings of Aqua Science Engineers, Inc. (ASE's) semi-annual groundwater monitoring at the Kozel Property located at 1001 42nd Street in Oakland, California (Figures 1 and 2). Part of the site is also located in Emeryville, California as the city limit runs through the subject property.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On March 2, 2006, ASE measured the depth to water in monitoring wells MW-B2, MW-B3, MW-B4 and BES-1 using an electric water level sounder. Monitoring well MW-B1 had been recently covered with a new concrete sidewalk installed by the developer of the property to the south as a part of that site's development as a residential community. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen using an interface probe and product thickness bailer. Monitoring well BES-1 contained 0.10 feet of free-floating hydrocarbons. Groundwater elevation data is presented in Table One. Recent monitoring events have been scheduled to coincide with sampling conducted by Clayton Environmental at the adjacent Former Dunne Paints site: however, Clayton has recommended case closure for the site and therefore has discontinued groundwater monitoring. Historical elevation data from Clayton Environmental for Former Dunne Paints is also included in the Table One.

A groundwater elevation (potentiometric surface) contour map is presented as Figure 2. The groundwater flow direction at the site is generally to the southwest with an approximate gradient of 0.03 feet/foot.

3.0 MONITORING WELL SAMPLING

On March 2, 2006, ASE collected groundwater samples from monitoring wells MW-B2, MW-B3, and MW-B4 for analysis. Monitoring well MW-B1 was not sampled because it was beneath new concrete, and BES-1 was not sampled due to the presence of free-floating hydrocarbons.

Prior to sampling, the wells were purged of three well casing volumes of groundwater using disposable polyethylene bailers. The pH, temperature, and conductivity of the purge water were monitored during evacuation, and samples were not collected until these parameters stabilized. Samples were collected from each well using the same bailers. The groundwater samples to be analyzed for volatile compounds were decanted from the bottom of the bailers using low flow emptying devices into 40-ml volatile organic analysis (VOA) vials, preserved with hydrochloric acid, and sealed without headspace. The remaining samples were decanted into 1-liter amber glass bottles. All of the samples were labeled and stored on ice for transport to Severn Trent Laboratories (STL San Francisco) of Pleasanton, California (CA DHS ELAP# 2496) under appropriate chain of custody documentation.

Well sampling purge water was contained in a sealed and labeled 55-gallon steel drum for temporary storage until off-site disposal can be arranged. See Appendix A for copies of the well sampling field logs.

4.0 ANALYTICAL RESULTS FOR GROUNDWATER

All groundwater samples were analyzed by STL San Francisco for total petroleum hydrocarbons as mineral spirits (TPH-MS) by modified EPA Method 8015M with silica gel cleanup, and volatile organic compounds (VOCs) by EPA Method 8260B. The analytical results are tabulated in Table Two, and a copy of the certified analytical report and chain of custody form are included in Appendix B.

4.1 Mineral Spirit Results

• The groundwater sample collected from monitoring well MW-B2 contained 9,200 parts per billion (ppb) TPH-MS. This is an increase from the previous sampling, but is still consistent with previous results. The groundwater sample collected from monitoring well MW-B4 contained 2,300 ppb TPH-MS, which is a slight decrease from the previous sampling. No TPH-MS was detected in the groundwater sample collected from MW-B3.

4.2 VOC Results

- The groundwater sample collected from monitoring well MW-B2 contained 1.8 ppb tert-butylbenzene. This is a decrease from the last sampling. No other VOCs were detected in the groundwater sample from monitoring well MW-B2.
- No VOCs were detected in the groundwater sample from monitoring well MW-B3. This is a decrease from the previous sampling.
- The groundwater sample collected from monitoring well MW-B4 contained 3.5 ppb tert-butylbenzene and 0.86 ppb vinyl chloride. These concentrations are lower than the previous sampling. No other VOCs were detected in the groundwater sample from monitoring well MW-B4.

5.0 CONCLUSIONS

Monitoring BES-1 contained a measurable thickness of free-floating hydrocarbons this quarter, which is consistent with previous findings. The free-floating hydrocarbons were bailed from the well and contained in a drum on-site. There was an increase in the TPH-MS concentration in MW-B2, although the results are consistent with historical results. The TPH-MS concentration in MW-B4 decreased slightly this quarter. No TPH-MS was detected in monitoring well MW-B3 during this sampling period. All of the VOC concentrations detected during this sampling were lower than concentrations detected during the previous sampling. None of the VOC concentrations in any of the groundwater samples analyzed exceeded California Regional

-2-

Water Quality Control Board, San Francisco Bay Region (RWQCB) environmental screening levels (ESLs) for sites where groundwater is not a current or potential source of drinking water.

6.0 RECOMMENDATIONS

The property is currently in the process of being sold. Once the details of the sale are completed, a remedial action plan will be prepared for the site. ASE recommends continued groundwater monitoring at the site on a semi-annual basis. The next groundwater monitoring event is scheduled for September 2006.

7.0 REPORT LIMITATIONS

The results presented in this report represent conditions at the time of the groundwater sampling, at the specific locations where the samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from unknown sources, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent CAL-DHS certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to assist the Edward R. and Elizabeth A. Kozel Charitable Remainder Trust with its environmental needs. Should you have any questions or comments, please feel free to call us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Robert E. Kitay, P.G., R.E.A.

Rol C. Kiloy

Senior Geologist

Attachments: Figures 1 and 2

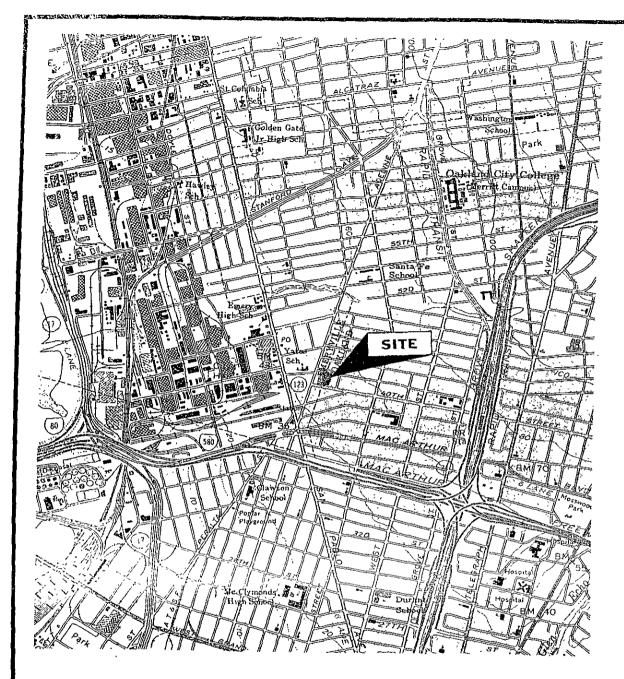
Tables One and Two Appendices A and B

cc: Mr. Edward Kozel, Edward R. and Elizabeth A. Kozel Charitable Remainder Trust, 20 Oak Knoll Drive, Healdsburg, CA 95448-3108

Mr. Thomas Trapp, Barg, Coffin, Lewis & Trapp, LLP, One Market, Steuart Tower, Suite 2700, San Francisco, CA 94105-1475

Mr. Kyle Fisher, Friedmann Goldberg, LLP, 420 Aviation Boulevard, Suite 201, Santa Rosa, CA 95403

Mr. John McManus, Cushman and Wakefield, 1111 Broadway, Suite 1600, Oakland, CA 94607

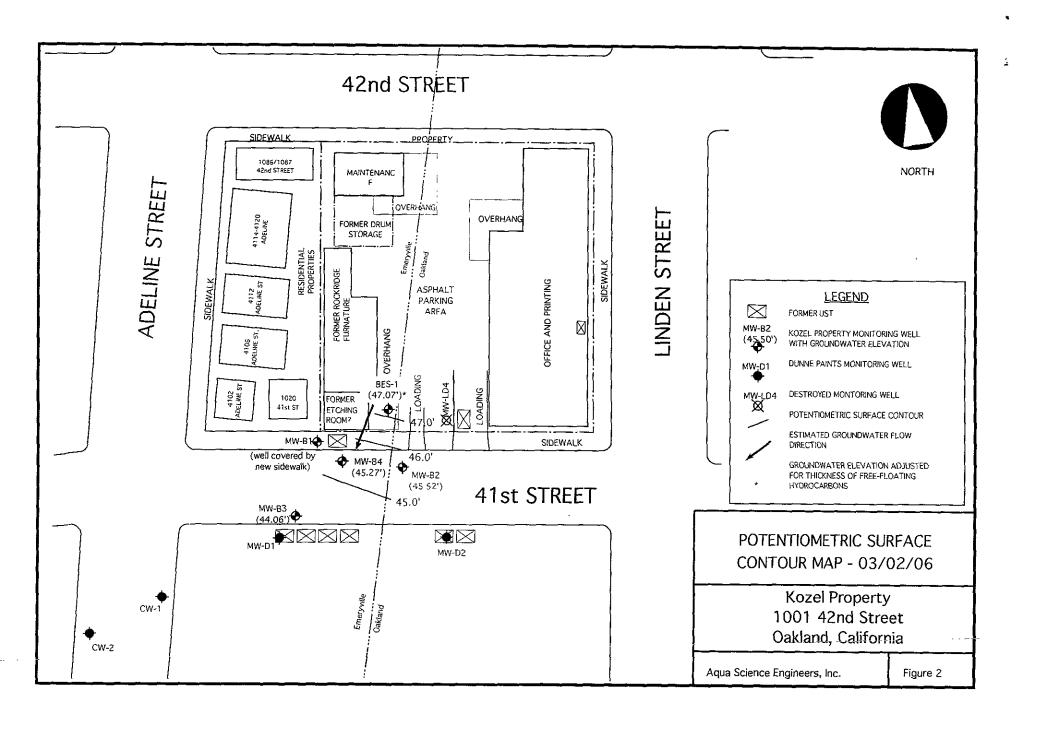

Mr. Barney Chan, Alameda County Health Care Services Agency, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Ms. Betty Graham, California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, CA 94612

Kozel Property Monitoring Report - March 2006 Sampling Event

-4-

FIGURES


NORTH

SITE LOCATION MAP

Kozel Property 1001 42nd Street Oakland, California

AQUA SCIENCE ENGINEERS, INC.

FIGURE 1

TABLES

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

} ,,,,	D	Top of Casing	Depth to	Depth to	Groundwater
Well	Date of	Elevation	Water	Product	Elevation
L_ID_	Measurement	(msl)	(feet)	(feet)	(msl)
Former (ONE Facility				
MW-B1	6/10/93	49.92	6.14		43.78
	7/8/93		6.64		43.28
	8/24/93		6.69		43.23
	9/29/93		8.46		41.46
	10/20/93		6.69		43.23
	11/23/93		6.65		43,27
	12/10/98		4774		
	12/14/99				
	6/15/04		6.00	5.85	44.04*
	9/14/04		6.18	6.14	43.77*
	12/16/04		5.14	5.12	44.80*
	3/30/05		3.54	3.50	46.41*
	6/27/05	Well cove	red with new	concrete sid	ewalk
	3/2/06		red with new		
MW-B2	6/10/93	50.77	6.75		44.02
	7/8/93		6.91		43.86
	8/24/93		7.22		43.55
	9/29/93		8.80		41.97
	10/20/93		7.25		43.52
	11/23/93		7.26		43.51
	12/10/98		6.43		44.34
	12/14/99		6.50		44.27
	6/15/04		6.40		44.37
	9/14/04		6.56		44.21
	12/16/04		5.88		44.89
	3/30/05		5.27		45.50
	6/27/05		5.99		44.78
	3/2/06		5.25		45.52
	-				

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

		Top of Casing	Depth to	Depth to	Groundwater
Well	Date of	Elevation	Water	Product	Elevation
ID_	Measurement	(msl)	(feet)	(feet)	(msl)
MW-B3	6/10/93	49.02	6.85		42,17
IVIVV-DO	7/8/93	49.02	6.05		42.17
	8/24/93		6.21		42.81
	9/29/93		7.74		41.28
	10/20/93		6.24		42.78
	11/23/93		6.18		42.76
	12/10/98		4.94		44.08
	12/14/99		5.08		43.94
	6/15/04		5.43		43.59
	9/14/04		5.63		43.39
	12/16/04		4.67		44.35
	3/30/05		3.92		45.10
	6/27/05		4.91		44.11
	3/2/06		4.96		44.06
MW-B4	6/10/93	49.74	6.00		43.74
	7/8/93		6.14		43.60
	8/24/93		6.34		43.40
	9/29/93		7.97		41.77
	10/20/93		6.11		43.63
	11/23/93		6.38		43.36
	12/10/98		6.20		43.54
	12/14/99		6.05		43.69
	6/15/04		5.58	sheen	44.16
	9/14/04		5.95		43.79
	12/16/04		5.24		44,50
	3/30/05 6/27/05		4.42 5.24		45.32
					44.50
	3/2/06		4.47		45.27
MW-LD4	6/10/93	51.51	6.98		44.53
	7/8/93		7 <i>.</i> 18		44.33
	8/24/93		7.31		44.20
	9/29/93		7.43		44.08
	10/20/93		7.37		44.14
	11/23/93		7.32		44.19
	12/10/98		6.14		45.37
	12/14/99		6.52		44.99
	6/15/04	V	/ell Abandone	d	

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

	 	Top of Casing	Depth to	Depth to	Groundwater
Well	Date of	Elevation	Water	Product	Elevation
ID.	Measurement	(msl)	(feet)	(feet)	(msl)
BES-1	12/10/98	Not surveyed	10.18		
	12/14/99		10.98		
	6/15/04		9.95	9.94	
	9/14/04		10.28	10.21	
	12/16/04	54.27	7.94	7.92	46.35*
	3/30/05		7.15	7.12	47.14*
	6/27/05		9.1	9.12	45.19*
	3/2/06		7.28	7.18	47.07*
Former D	Junne Paints				
MW-D1	6/10/93	50.56	5.29		45.27
	7/8/93	00.00	5.67		44.89
	8/24/93		6.01		44.55
	9/29/93		7.69		42.87
	10/20/93		6.20		44.36
	11/23/93		6.08		44.48
	12/14/99		4.60		45.96
	11/12/03	49.32	5.98		43.34
	3/12/03	10.02	5.97		43.35
	6/15/04		6.07		43.25
	9/14/04		5.86		43.46
MW-D2	6/10/93	50.56	6.25		44.31
ויוויוים ב	7/8/93	30.50	6.37		44.19
	8/24/93		6.47		44.09
	9/29/93		7.96		42.60
	10/20/93		6.48		44.08
	11/23/93		6.44		44.12
	12/10/98		5.68		44.88
	12/14/99		5.80		44.76
	11/12/03	50.52	9.52		41.00
	3/12/03	30.32	8.94		41.58
	6/15/04		5.89		44.63
	9/14/04		6.01		44.51
CW 1	11/12/02	47 FF	0.03		20.00
CW-1	11/12/03	47.55	8.93		38.62
	3/12/03		6.85		40.70
	6/15/04		7.85		39.70
	9/14/04		8.38		39.17
CW-2	11/12/03	47.59	9.25		38.34
	3/12/03		7.22		40.37
	6/15/04		8.40		39.19
	9/14/04		8.98		38.61

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

Well ID	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Depth to Product (feet)	Groundwater Elevation (msl)
CW-3	11/12/03	46.39	8.30		38.09
	3/12/03 6/15/04		6.04 7.74		40.35 38.65
	9/14/04		8.65		37.74

NOTES:

Current data is in bold.

 $^{^{\}star}$ = Groundwater elevation adjusted for free-floating hydrocarbons by the equation: Adjusted groundwater elevation = Top of of casing elevation - depth to groundwater + (0.8 x free-floating hydrocarbon thickness)

Summary of Analytical Results for GROUNDWATER Samples Kozel Property (Former O.N.E. Color Communications) And Former Dunne Quality Paints 1001 42nd Street, Oakland, CA 94608 All results are in parts per billion (ppb)

Well ID & Dates Sampled	Mineral Spirits	Other TPH (As Noted)	Toluene	Ethyl benzene	Total Xylenes	tert-Butyl benzene	sec-Butyl benzene	n-Butyl benzene	Vinyl chlaride	1,1- Dichloro ethane	trans-1,2- Dichloro ethene	cis-1,2- Dichloro ethene	Other VOCs
Former O.N.E. Color Communic	cations												<u>-</u>
MW-B1 9/30/1991 6/10/1993 9/29/1993 5/28/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005 6/27/2005 3/2/2006	- 43,000 26,000	< 50°; 18,000°; 29,000° 27,000°; 57,000° 1,100,000°; 37,000°	6 ND ND < 2 S	Not Samp	Not Sai Not Sai lot Sampled bled Due to I	ND ND 23 mpled Due to I mpled Due to I mpled Due to Free Pi New Concrete New Concrete	ree Product ree Product roduct (0.04- Sidewalk Pou	red Over W		ND ND ND < 2.5	ND ND ND	ND ND ND < 2.5	5 (benzene) ND ND ND < 2.5 - <25
MW-B2 6/10/1993 9/29/1993 12/10/1998 12/14/1999	- 290,000 150,000 630	3,800°; 1,400° 1,000°; ND°; 2,400°, < 1,00	ND ON ON	ND ND ND	ND ND	ND ND ND	ND ND NO	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND
5/28/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005 6/27/2005 3/2/2006	1,100 3,000 410 480 14,000 4,300 9,200	22,000 ² ; 1,600 ^c - - - - - -	< 0.5 < 5.0 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 5.0 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5	<0.5 <10 <10 <1.0 <1.0 <1.0 <1.0	3.2 < 10 < 10 1.8 5.8 5.9	3.2 < 10 < 10 1.4 4.1 4.7 < 1.0	< 0.5 33 < 10 < 1.0 < 1.0 < 1.0 < 1.0	< 0.5 < 5.0 < 5.0 < 0.5 2.2 2.2 < 0.5	< 0.5 < 5.0 < 5.0 < 0.5 < 0.5 < 0.5	<pre>- < 5.0 < 5.0 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	< 0.5 < 5.0 < 5.0 < 0.5 0.57 < 0.5 < 0.5	< 0.5 - < \$ < 5.0 - < 500 < 5.0 - < 500 < 0.5 - < 500 < 0.5 - < 50 < 0.5 - < 50 < 0.5 - < 50 < 0.5 - < 50
MW-B3 6/10/1993 9/29/1993 12/10/1998 12/14/1999	2,400 120 < 50	1,700°, 510° ND°; ND°; 830°; ND°	ND ND NO	ND DN ON	ND ND	ND ND ND	ND ND ND -	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
5/28/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005	ND < 50 < 50 < 50 < 50	ND ^a ; ND ^c - - -	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 1.0 < 1.0 < 1.0 < 1.0	< 0.5 < 1.0 < 1.0 < 1 0 < 1.0	< 0.5 < 1.0 < 1.0 < 1.0 < 1.0	< 0.5 < 1.0 < 1.0 < 1.0 < 1.0	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 - < 5 < 0.5 - < 50 < 0.5 - < 50 < 0.5 - < 50 < 0.5 - < 50
6/27/2005 3/2/2006	< 50 < 50	<u>:</u>	< 0.5 < 0.5	< 0.5 < 0.5	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	1,1,1-TCA @ 0.5 and TCE @ 3.4 < 0.5 - < 50

Summary of Analytical Results for GROUNDWATER Samples Kozel Property (Former O.N.E. Color Communications) And Former Dunne Quality Paints 1001 42nd Street, Oakland, CA 94608 All results are in parts per billion (ppb)

Well ID & Dates Sampled	Mineral Spints	Other TPH (As Noted)	Toluene	Ethyl benzene	Total Xylenes	tert-Butyl benzene	sec-Butyl benzene	n-Butyi benzene	Viny! chlonde	1,1- Dichloro ethane	trans-1,2- Dichloro ethene	cis-1,2- Dichloro ethene	Other VOCs
MW-84						· · · · · · · · · · · · · · · · · · ·							
6/10/1993	_	36,000°; 36,000°	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	-10	
9/29/1993	1,400	-	ND	ND	ND	ND	ND	ND	ďΝ	ND		ND	ND
12/10/1998	7.500	1,000°; ND°; 2,700°; ND°	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12/14/1999	5,100	1,000,110,2,700,110	-	ND.	-	(ND	-	שוו	-	ND.	ND	ND	ND
5/28/2003	990	7,000°; 14,000°	< 0.5	< 0.5	< 0.5	2.8	< 0.5	< 0.5	1.8	< 0.5	-	< 0.5	
6/15/2004	1,300	1,500 , 14,000	< 5.0	< 5.0	< 10.3	< 10	< 10	< 10.3	< 5.0	< 5.0	-		< 0.5 - < 5
9/14/2004	400		< 50	< 5.0	< 10	< 10	< 10	< 10 < 10	< 5.0 < 5.0		< 5.0	< 5.0	< 5.0 - < 500
12/16/2004	450		< 1.0	< 1.0	< 2.0	4.6	< 2.0	< 2.0		< 5.0	< 5.0	< 5.0	< 5.0 - < 500
3/30/2005	3,000		< 0.5	< 0.5	< 1.0	6.5			< 1.0	< 1.0	< 1.0	< 10	< 1.0 - < 100
6/27/2005	2,800	-	< 0.5				2.0	< 10	1.3	< 0.5	< 0.5	< 0.5	< 0.5 - < 50
3/2/2006				< 0.5	< 1.0	7.1	30	< 1.0	1.9	< 0.5	< 0.5	< 0.5	< 0.5 - < 50
3/4/2006	2,300	•	< 0.5	< 0.5	< 1.0	3.5	< 1.0	< 1.0	0.86	< 0.5	< 0.5	< 0.5	< 0.5 - < 50
3ES-1													
4/21/1994	12,000	18,000°	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2/10/1998	78,000	$< 1,000^{a}; < 1,000^{e}$	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12/14/1999	72,000	_	_	_	-	-		-		-	-	-	NU
5/28/2003	60,000	19,000°; 84,000°	< 0.5	< 0.5	< 0.5	4.4	< 0.5	< 0.5	20	1.5	2.1	17	< 0.5 ~ < 5
6/18/2003	120.000	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	18	< 0.5	< 0.5	14	<05-<5
5/15/2004				- 0 0		mpled Due to F		٧ ٥.٥	.0	V 0.5	V 0.3	17	(03-43
3/14/2004						mpled Due to F							
12/16/2004						mpled Due to F							
3/30/2005						Due to Free Pr		fant)					
6/27/2005						Due to Free Pr							
3/2/2006						Due to Free Pr							
					iot sampleu	Due to rice ri	oduct (0.10	-ieet)					
MW-LD4													
9/30/1991	~		3 1	9 0	24	-	-	-	-	-	-	-	2.0 (benzene)
6/10/1993	-	21,000"; 1.100"	ND	ND	ND	-	-	-	-	-	-	-	-
9/29/1993	700	1708 1101 708 1	ND	ND	ND	-	-	-	-	-	-	-	-
12/10/1998	130	170", ND"; 83"; ND"	ND	ND	ND	-	-	-	-	-	-	-	-
12/14/1999	440,000	-	=	-	-	-	-	-	-	-	-	-	-
1/13/2000*	630,000	-	-	-	-		-	-	-	•	-	-	-
6/15/2004						Abandone	d						

Summary of Analytical Results for GROUNDWATER Samples Kozel Property (Former O.N.E. Color Communications) And Former Dunne Quality Paints 1001 42nd Street, Oakland, CA 94608 All results are in parts per billion (ppb)

Well ID & Dates				Ethyl	Total	tert-Butyl	sec-Butyl	n-Butyl	Vinyl	1,1- Dichloro	trans-1,2- Dichloro	cis-1,2- Dichloro	Other
Sampled	Mineral Spints	Other TPH (As Noted)	Toluene	benzene	Xylenes	benzene	benzene	benzene	chloride	ethane	ethene	ethene	VOCs
Former Dunne Paints													
MW-D1													
8/26/1988	1,000	-	-	•	-	-	-	-	-		-	-	-
1/18/1989	< 1,000	-	2.0	ND	8.1	-	-	-	-	-	-	-	-
4/24/1989	< 1,000		ND	ND	1.1	-	-	-	-	-	-	-	-
2/21/1990	< 100	ND"; ND"; ND"	ND	0.4	1.3	-	-	-	-	-	-	-	-
6/10/1992	< 50	ND"; ND"; ND"	ND	ND	ND	-	-	-	-	-	-	-	-
6/10/1993	-	220"; 230"	ND	ND	ND	-	~	-	-	-	-	-	-
9/24/1993	< 50	NO", NO	NO	ND	ND	-	-	-	-	-	-	-	-
9/29/1993	110	-	ND	ND	ND	-	-	-	-	-	-	-	-
12/14/1999	< 50	-								• .	-	-	-
11/12/2003	85	-	< 5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0 5 - < 50
3/12/2004	260	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 50	< 5.0	< 0.5 - < 50
6/15/2004	100	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
9/14/2004	< 50	-	< 5.0	< 50	< 10	< 5.0	< 5.0	< 5 0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
MW-D2													
8/26/1988	1,600	-	_	-	_	_	_	_	_	_	_	_	_
1/18/1989	< 1.000	_	63	ND	12	_	~	-	-	_	_	_	_
4/24/1989	< 1.000	-	ND	ND	7.7	_	_	_	_	_	-	_	_
2/21/1990	300	-	ND	0.3	1.5	_	-	_	_	_	_	_	
6/10/1992	76	ND⁴: ND°	ND	ND	ND	_	_	_	_	_	_	_	_
6/10/1993	. *	9.100°: 6.200°	ND	ND	ND	_	-	_	_	_	_	_	
9/24/1993	< 50	ND"; ND	ND	ND	ND	-	_	_	_	_	_		
9/29/1993	220	,,,,,	ND	ND	ND	_	_	_	_	_	_	_	-
12/10/1998	180	ND"; ND"; 95"; ND"	ND	ND	ND	_	_	_	-	_	-		-
12/14/1999	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,	110	115								-
11/12/2003	1,400	-	< 5.0	< 5 0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
3/12/2004	330	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
6/15/2004	< 50	-	< 50	₹50	< 5.0	< 50	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
9/14/2004	< 50	-	< 50	< 50	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
Clar 7													
CW-I 11/12/2003	85		. 5.0	. 5.0		. = 0		~ ^					
	85 < 50	-	< 50	< 50	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
3/12/2004		_	< 50	< 5.0	< 5.0	< 50	< 5.0	< 5.0	< 10	< 5.0	< 50	< 5.0	< 0.5 - < 50
6/15/2004 9/14/2004	< 50 < 50	•	< 5.0 < 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
9/14/2004	< 5U	-	< 5 0	< 5.0	< 10	< 50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
CW-2													
11/12/2003	< 50	-	< 5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
3/12/2004	< 50	-	< 50	< 5.0	< 5.0	< 50	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
6/15/2004	< 50	-	< 50	< 5.0	< 5.0	< 5.0	< 5.0	< 50	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
9/14/2004	< 50	-	< 50	< 5.0	< 10	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0 - < 50

Summary of Analytical Results for **GROUNDWATER** Samples Kozel Property (Former O.N.E. Color Communications)

And Former Dunne Quality Paints 1001 42nd Street, Oakland, CA 94608 All results are in parts per billion (ppb)

Well ID & Dates Sampled	Mineral Spirits	Other TPH (As Noted)	Toluene	Ethyl benzene	Total Xylenes	tert-Butyl benzene	sec-Butyl benzene	n-Butyl benzene	Vinyl chloride	1,1- Dichloro ethane	trans-1,2- Dichloro ethene	cis-1,2- Dichloro ethene	Other _ VOCs
CW-3													
11/12/2003	< 50	•	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 50		6.1 (705)
3/12/2004	< 50	•	< 50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0 < 5.0	5.1 (TCE) < 0.5 - < 50
6/17/2004	< 50	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
9/14/2004	< 50	•	< 5 0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0 - < 50
ESL.	NE	VARIES	130	290	13	NE.	NE	NE	4.0	47	590	590	VARIES

Notes

Most recent concentrations are in Bold.

Non-detectable concentrations noted by the less than sign (<) followed by the laboratory reporting limit or "ND"

NA indicates the data is not available

ESL = Environmental screening levels presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (July 2003)" document prepared by the California Regional Water Quality Control Board. San Francisco Bay Region

NE Indicates an ESL has not been established

[&]quot;-" indicates not tested.

a = TPH-d, b = TEPH (non-diesel); c = TPH-g; d = TPPH (non-gasoline), e = Kerosene

^{*} indicates a grab sample

APPENDIX A

Well Sampling Field Log

WELL SAMPLING FIELD LOG

PROJECT NAME	Kozel		
JOB NUMBER	3976	DATE OF SAMPLING	3/2/06
WELL ID.	n E 5-\	SAMPLER	dr
TOTAL DEPTH OF V	VELL	WELL DIAMETER	2
DEPTH TO WATER F	PRIOR TO PURGING 7,2	J.E.	
PRODUCT THICKNES	ss 0,10		
DEPTH OF WELL CA	SING IN WATER		
NUMBER OF GALLO	NS PER WELL CASING VOL	JME	
NUMBER OF WELL C	CASING VOLUMES TO BE RE	MOVE 3	
REQUIRED VOLUME	OF GROUNDWATER TO BE	PURGED PRIOR TO SAMPLING	
EQUIPMENT USED TO	O PURGE WELL	disposable_bailer	
TIME EVACUATION :	STARTED	TIME EVACUATION COMPLET	ED
TIME SAMPLES WER	E COLLECTED		
DID WELL GO DRY		AFTER HOW MANY GALLONS	
VOLUME OF GROUN	DWATER PURGED		
SAMPLING DEVICE	disposable bailer		
SAMPLE COLOR		ODOR/SEDIMENT	

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1			
2			
3			

SAMPLES COLLECTED

NOT SAMPLED

		······································	T	
SAMPLE	# OF CONTAINERS	S SIZE AND TYPE OF CONTAINE	ANALYSIS	RESERVEI
	5	40ml VOA	VOCs, Mineral Sprits	Υ

WELL SAMPLING FIELD LOG

PROJECT NAME	Kozel		
JOB NUMBER	3976	DATE OF SAMPLING	3/2/06
WELL ID. M	11432	SAMPLER	dr
TOTAL DEPTH OF W	ELL 23.5	WELL DIAMETER	2
DEPTH TO WATER P	RIOR TO PURGING 5	.25	
PRODUCT THICKNES	s Ø		
DEPTH OF WELL CA	SING IN WATER /	8.25	
NUMBER OF GALLON	IS PER WELL CASING VO	LUME 3,1	
NUMBER OF WELL C	ASING VOLUMES TO BE	REMOVE 3	
REQUIRED VOLUME	OF GROUNDWATER TO B	E PURGED PRIOR TO SAMPLING	7.3
EQUIPMENT USED TO	PURGE WELL	disposable bailer	
TIME EVACUATION S	TARTED 1450	TIME EVACUATION COMP	ETED 1517
TIME SAMPLES WERE	COLLECTED 5	518	
DID WELL GO DRY	<u>no</u>	AFTER HOW MANY GALLO	ons n/a
VOLUME OF GROUND	WATER PURGED	7.3	
SAMPLING DEVICE	disposable bailer		
SAMPLE COLOR	clear	ODOR/SEDIMENT ತಂlu	ent/sheen
			• /

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1	66.2	6.80	670
2	65.7	6.83	678
3	65.5	6.84	675

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	RESERVE
MN-BZ	1/3	140ml VOA	VOCs, Mineral Sprits	Υ
	,			ļ

WELL SAMPLING FIELD LOG

PROJECT NAME	Kozel		
JOB NUMBER	3976	DATE OF SAMPLING	3/2/06
WELL ID. MIL	J-B3	SAMPLER	dr
TOTAL DEPTH OF W	ELL 24.2	WELL DIAMETER	2
DEPTH TO WATER P	RIOR TO PURGING 4	96	
PRODUCT THICKNES	s Ø		
DEPTH OF WELL CAS	SING IN WATER 19	1. 24	
NUMBER OF GALLON	S PER WELL CASING VOL	LUME 3.3	
NUMBER OF WELL CA	ASING VOLUMES TO BE R	REMOVE 3	
REQUIRED VOLUME O	F GROUNDWATER TO BE	PURGED PRIOR TO SAMPLING /	0
EQUIPMENT USED TO	PURGE WELL	disposable bailer	
TIME EVACUATION S	TARTED 1321	TIME EVACUATION COMPLE	TED 1414
TIME SAMPLES WERE	COLLECTED 14	15	
DID WELL GO DRY	no	AFTER HOW MANY GALLON	s n/a
VOLUME OF GROUND	WATER PURGED /	()	
SAMPLING DEVICE	disposable bailer		
SAMPLE COLOR	i leur	ODOR/SEDIMENT none	/none
		1	,

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1	65.0	4.70	535
2	64.9	6.74	575
31	64.9	6 .75	521

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	RESERVEI
MW-B3	8 1/3	L 40ml VOA	VOCs, Mineral Sprits	Υ
,				

WELL SAMPLING FIELD LOG

Kozel		
3976	DATE OF SAMPLING	3/2/06
B4	SAMPLER	dr
32.8	WELL DIAMETER	2
O PURGING 4	.47	
<i>S</i>		
N WATER /	8.33	
WELL CASING VOL	UME _ ろ \	
VOLUMES TO BE RI	EMOVE 3	
DUNDWATER TO BE	PURGED PRIOR TO SAMPLING	9.3
SE WELL	disposable bailer	
D 1410	TIME EVACUATION COM	PLETED 1445
ECTED 1441	2	
	AFTER HOW MANY GALL	ONS na
R PURGED	9.3	
oosable bailer		
lear	ODOR/SEDIMENT 51	een - Spir, 73
	3976 B4 DQ, E O PURGING WATER WELL CASING VOL VOLUMES TO BE RI DUNDWATER TO BE EE WELL ED ! '() e ER PURGED Dosable bailer	3976 BH SAMPLER WELL DIAMETER O PURGING WELL CASING VOLUME VOLUMES TO BE REMOVE SE WELL DIAMETER 3 WELL CASING VOLUME WELL CASING VOLUME TO BE PURGED PRIOR TO SAMPLING SE WELL DIAMETER AFTER HOW MANY GALL OSSABLE BAILER DOSSABLE BAILER

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1 -	44.5	679	570
2	64.4	6.80	610
3	4,3	10.82	615

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	RESERVE
MW-134	\$ 1/3	11-/ 40ml VOA	VOCs, Mineral Sprits	Υ
	,	,		:

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

ANALYTICAL REPORT

Job Number: 720-2393-1

Job Description: Kozel

For:

Aqua Science Engineers Inc 208 West El Pintado Road Danville, CA 94526

Attention: Dave Allen

Surviver Sidle

Surinder Sidhu Project Manager I ssidhu@stl-inc.com 03/16/2006

Project Manager: Surinder Sidhu

METHOD SUMMARY

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

Description		Lab Location	Method	Preparation Method	
Matrix:	Water				
Volatile Org	ganic Compounds by GC/MS (Low Level)	STL-SF	SW846 8260E	3	
	Purge-and-Trap	STL-SF		SW846 5030B	
Nonhaloger Range Orga	nated Organics using GC/FID -Modified (Diesel anics)	STL-SF	SW846 8015	3	
· · · · · · · · · · · · · · · · · · ·	Separatory Funnel Liquid-Liquid Extraction Silica Gel Cleanup	STL-SF STL-SF		SW846 3510C SW846 3630C	

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-2393-1	MW-B2	Water	03/02/2006 1518	03/03/2006 1620
720-2393-2	MW-B3	Water	03/02/2006 1415	03/03/2006 1620
720-2393-3	MW-B4	Water	03/02/2006 1446	03/03/2006 1620

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

Client Sample ID:

MW-B2

Lab Sample ID:

720-2393-1

Client Matrix:

Water

Date Sampled:

03/02/2006 1518

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Allalysis Daton. 720-02-

Lab File ID:

d:\data\200603\030606\720-

Dilution:

1.0

Initial Weight/Volume:

40 mL

Date Analyzed:

03/06

03/06/2006 1804

Final Weight/Volume:

40 mL

Date Prepared:

03/06/2006 1804

Analyte Result (ug/L) Qualifier	RL
Methyl tert-bulyl ether ND	5.0
Acetone ND	50
Benzene ND	0.50
Dichlorobromomethane ND	0.50
Bromobenzene ND	1.0
Chlorobromomethane ND	1,0
Bromoform ND	1.0
Bromomethane ND	1.0
Methyl Ethyl Ketone ND	50
n-Butylbenzene ND	1.0
sec-Butylbenzene ND	1.0
tert-Butylbenzene 1.8	1.0
Carbon disulfide ND	5.0
Carbon tetrachloride ND	0.50
Chlorobenzene ND	0.50
Chloroethane ND	1.0
Chloroform ND	1.0
Chloromethane ND	1.0
2-Chlorotoluene ND	0.50
4-Chlorotoluene ND	0.50
Chlorodibromomethane ND	0.50
1,2-Dichlorobenzene ND	0.50
1,3-Dichlorobenzene ND	0.50
1,4-Dichlorobenzene ND	0.50
1,3-Dichloropropane ND	1.0
1,1-Dichloropropene ND	0.50
1,2-Dibromo-3-Chloropropane ND	1.0
Ethylene Dibromide ND	0.50
Dibromomethane ND	0.50
Dichlorodifluoromethane ND	0.50
1,1-Dichloroethane ND	0.50
1,2-Dichloroethane ND	0.50
1,1-Dichloroethene ND	0.50
cis-1,2-Dichloroethene ND	0.50
trans-1,2-Dichloroethene ND	0.50
1,2-Dichloropropane ND	0.50
cis-1,3-Dichloropropene ND	0.50
trans-1,3-Dichloropropene ND	0.50
Ethylbenzene ND	0.50
Hexachlorobutadiene ND	1.0
Isopropylbenzene ND	0.50
4-Isopropyltoluene ND	1.0
Methylene Chloride ND	5.0

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Client Sample ID:

MW-B2

Lab Sample ID:

720-2393-1

Client Matrix:

Water

Date Sampled:

03/02/2006 1518

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

d:\data\200603\030606\720-

Dilution:

Analyte

1.0

Initial Weight/Volume:

40 mL

Date Analyzed:

03/06/2006 1804

40 mL

RL

50

1.0

1.0

0.50

0.50

0.50

Date Prepared:

03/06/2006 1804

methyl isobutyl ketone Naphthalene N-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1.2.3-Trichlorobenzene

1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane

1,2,3-Trichloropropane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride Xylenes, Total 2,2-Dichloropropane

Surrogate 4-Bromofluorobenzene 1.2-Dichloroethane-d4

Toluene-d8

Result (ug/L) ND

ND ND ND ND

ND ND ND ND

ND ND ND ND ND

ND ND ND ND ND

ND %Rec 100

Qualifier

ND

ND

95 97

Final Weight/Volume:

0.50 0.50 1.0 1.0 0.50 0.50 0.50 1.0 0.50 0.50 0.50

0.50 50 0.50 1.0 0.50

Acceptance Limits 79 - 118 78 - 117

77 - 121

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Client Sample ID:

MW-B3

Lab Sample ID:

720-2393-2

Client Matrix:

Water

Date Sampled:

03/02/2006 1415

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

Qualifier

d:\data\200603\030606\720-

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

40 mL

40 mL

RL

Date Analyzed: Date Prepared: 03/06/2006 1838 03/06/2006 1838

Analyte	Result (ug/L)
Methyl tert-butyl ether	ND
Acetone	ND
Benzene	ND
Dichlorobromomethane	ND
Bromobenzene	ND
Chlorobromomethane	ND
Bromoform	ND
Bromomethane	ND
Methyl Ethyl Ketone	ND
n-Butylbenzene	ND
sec-Butylbenzene	ND
tert-Butylbenzene	ND
Carbon disulfide	ND
Carbon tetrachloride	ND
Chlorobenzene	ND
Chloroethane	ND
Chloroform	ND
Chloromethane	ND
2-Chlorotoluene	ND
4-Chlorotoluene	ND
Chlorodibromomethane	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,3-Dichloropropane	ND
1,1-Dichloropropene	ND
1,2-Dibromo-3-Chloropropane	ND
Ethylene Dibromide	ND
Dibromomethane	ND
Dichlorodifluoromethane	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	ND
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND

5.0
50
0.50 0.50
1.0
1.0
1.0
1.0
50
1,0
1.0
1.0
5 0
0,50
0,50
1.0
1.0
1:0
0.50
0.50
0.50
0,50
0.50
0.50
1.0
0.50
1.0
0.50
0.50
0.50
0.50
0.50
0.50
0.50 0.50
0 50
0.50
0.50
0.50
0.50 0.50
U.5U
0.50
1.0
0.50
1.0
5.0
5.0

ND

ND

ND

ND

ND

ND

ND

cis-1,3-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

4-Isopropyltoluene

Methylene Chloride

Ethylbenzene

trans-1,3-Dichloropropene

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Client Sample ID:

MW-B3

Lab Sample ID:

720-2393-2

Client Matrix:

Water

Date Sampled:

03/02/2006 1415

Date Received: 03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-6241 Instrument ID: Saturn 2K3

Preparation: 5030B Lab File ID: d:\data\200603\030606\720-

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 03/06/2006 1838 Final Weight/Volume: 40 mL

Date Prepared: 03/06/2006 1838

Analyte	Result (ug/L)	Qualifier	RL
	, - /	Qualifor	
methyl isobutyl ketone	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachioroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0,50
1,1,2-Trichloroethane	ND		0150
Trichloroethene	ND		0,50
Trichlorofluoromethane	ND		1,0
1,2,3-Trichloropropane	ND		0,50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0450
1,2,4-Trimethylbenzene	ND		0,50
1,3,5-Trimethylbenzene	ND		0:50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	103		79 - 118
1,2-Dichloroethane-d4	98		78 - 117
Toluene-d8	94		77 - 121

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

Client Sample ID:

MW-B4

Lab Sample ID:

720-2393-3

Client Matrix:

Water

Date Sampled:

03/02/2006 1446

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

d:\data\200603\030606\720-

Dilution:

1.0

Initial Weight/Volume:

40 mL

Date Analyzed:

03/06/2006 1911

Final Weight/Volume:

40 mL

03/06/2006 1911

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
Methyl Ethyl Ketone	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	3.5		1 0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1 Ò
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ИD		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Client Sample ID:

MW-B4

Lab Sample ID:

720-2393-3

Client Matrix:

Water

Date Sampled:

03/02/2006 1446

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

d:\data\200603\030606\720-

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

40 mL 40 mL

RL

50

1.0

1.0

0.50

0.50

0.50

0.50

0.50

1.0

1.0

0.50

0.50

0.50

1.0

0.50

0.50

50

0.50

1.0

0.50

Date Analyzed: Date Prepared: 03/06/2006 1911

03/06/2006 1911

Analyte Result (ug/L) Qualifier methyl isobutyl ketone ND Naphthalene ND N-Propylbenzene ND Styrene ND 1,1,1,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND Tetrachloroethene ND Toluene ND 1.2.3-Trichlorobenzene ND 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND Trichloroethene ND Trichlorofluoromethane ND 1,2,3-Trichloropropane ND 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1,2,4-Trimethylbenzene ND 1,3,5-Trimethylbenzene ND Vinyl acetate ND Vinyl chloride 0.86 Xylenes, Total ND 2,2-Dichloropropane ND %Rec 102

0.50 0.50

Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8

95 95

Acceptance Limits 79 - 118 78 - 117 77 - 121

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Client Sample ID:

MW-B2

Lab Sample ID:

720-2393-1

Client Matrix:

Water

Date Sampled:

03/02/2006 1518

Date Received:

03/03/2006 1620

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method:

8015B

Analysis Batch: 720-6565

Instrument ID:

HP DRO3

Preparation:

3510C

Lab File ID:

N/A

Dilution:

Prep Batch: 720-6233

Date Analyzed:

5.0

Initial Weight/Volume: Final Weight/Volume:

250 mL 1 mL

Date Prepared:

03/13/2006 2100 03/06/2006 1648

Injection Volume: Column ID:

PRIMARY

Analyte

Result (ug/L)

Qualifier

RL

Mineral Spirit Range Organics [C9-C13]

9200

250

Surrogate o-Terphenyl %Rec 93

Acceptance Limits

60 - 130

03/02/2006 1415

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Client Sample ID: MW-B3

Lab Sample ID: 720-2393-2 Date Sampled:

Client Matrix: Water Date Received: 03/03/2006 1620

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method:8015BAnalysis Batch: 720-6565Instrument ID:HP DRO3Preparation:3510CPrep Batch: 720-6233Lab File ID:N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL

Date Analyzed: 03/12/2006 0028 Final Weight/Volume: 1 mL

Date Prepared: 03/06/2006 1648 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL
Mineral Spirit Range Organics [C9-C13] ND 50

Surrogate %Rec Acceptance Limits

o-Terphenyl 90 60 - 130

Client: Aqua Science Engineers Inc.

Job Number: 720-2393-1

Client Sample ID:

MW-B4

Lab Sample ID:

720-2393-3

Client Matrix:

Water

Date Sampled:

03/02/2006 1446

Date Received:

03/03/2006 1620

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method:

8015B

Analysis Batch: 720-6565

Instrument ID:

HP DRO3

Preparation:

3510C

Lab File ID:

Dilution: Date Analyzed:

Date Prepared:

1.0

Prep Batch: 720-6233

Initial Weight/Volume:

N/A

Final Weight/Volume:

250 mL 1 mL

Injection Volume:

Column ID:

PRIMARY

Analyte

03/12/2006 0055

03/06/2006 1648

Result (ug/L)

Qualifier

RL

Mineral Spirit Range Organics [C9-C13]

2300

50

Surrogate

%Rec

Acceptance Limits

o-Terphenyl

92

60 - 130

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

QC Association Summary

. . .

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-62	241			
LCS 720-6241/19	Lab Control Spike	Water	8260B	
MB 720-6241/20	Method Blank	Water	8260B	
720-2393-1	MW-B2	Water	8260B	
720-2393-2	MW-B3	Water	8260B	
720-2393-3	MW-B4	Water	8260B	
GC Semi VOA				
Prep Batch: 720-6233				
LCS 720-6233/2-B	Lab Control Spike	Water	3510C	
LCSD 720-6233/3-B	Lab Control Spike Duplicate	Water	3510C	
MB 720-6233/1-B	Method Blank	Water	3510C	
720-2393-1	MW-B2	Water	3510C	
720-2393-2	MW-B3	Water	3510C	
720-2393-3	MW-84	Water	3510C	
Analysis Batch:720-65	65			
LCS 720-6233/2-B	Lab Control Spike	Water	8015B	720-6233
LCSD 720-6233/3-B	Lab Control Spike Duplicate	Water	8015B	720-6233
MB 720-6233/1-B	Method Blank	Water	8015B	720-6233
720-2393-1	MW-B2	Water	8015B	720-6233
720-2393-2	MW-B3	Water	8015B	720-6233
720-2393-3	MW-B4	Water	8015B	720-6233

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Method Blank - Batch: 720-6241

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-6241/20

Client Matrix: Water

Dilution: 1.0

Analuta

1 .

Date Analyzed: 03/06/2006 1020 Date Prepared: 03/06/2006 1020 Analysis Batch: 720-6241

Dooult

Augl

Prep Batch: N/A

Units: ug/L

Instrument ID: Saturn 2K3

Lab File ID: d:\data\200603\030606\MB

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Methyl tert-butyl ether ND 50 Acetone ND 50 Benzene ND 0,50 Dichlorobromomethane ND 0,50 Bromobenzene ND 1,0 Chlorobromomethane ND 1,0 Bromoform ND 1,0 Bromomethane ND 1,0 Bromomethane ND 1,0 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1,0 sc-Butylbenzene ND 1,0 sc-Butylbenzene ND 1,0 carbon disulfide ND 1,0 Carbon disulfide ND 5,0 Chlorobenzene ND 0,50 Chloroform ND 1,0 Chloroform ND 1,0 Chloroform ND 1,0 Chlorofoluene ND 0,50 Chlorotoluene ND 0,50 Chlorotoluene ND 0,50 Chlorot	Analyte	Result	Qual	RL
Acetone ND 50 Benzene ND 0.50 Dicklorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 carbon disulfide ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorodrome ND 0.50 Chlorodrome ND 1.0 Chlorodrome ND 0.50 Chlorodoluene ND 0.50 Chlorodoluene ND 0.50 Chlorodoluene ND 0.50	Methyl tert-butyl ether	ND		5.0
Benzene ND 0.50 Dichtorobromomethane ND 1.0 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 Bernomethane ND 1.0 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 seo-Butylbenzene ND 1.0 carbon disulfide ND 1.0 carbon disulfide ND 5.0 Chlorodicene ND 0.50 Chlorodicene ND 1.0 Chlorodicene ND 0.50 <tr< td=""><td>•</td><td></td><td></td><td></td></tr<>	•			
Dichlorobromomethane ND 0,50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 Bromomethane ND 50 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 carbon disulfide ND 1.0 Carbon disulfide ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 1.0 Chlorobenzene ND 1.0 Chlorobenzene ND 1.0 Chloroboluene ND 0.50	Benzene			
Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 seo-Butylbenzene ND 1.0 carbon disulfide ND 1.0 Carbon disulfide ND 5.0 Carbon disulfide ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 1.0 Chloroform ND 1.0 Chlorofothane ND 0.50 Chlorofothane ND 0.50 Chlorofothane ND 0.50 Chlorofothane ND 0.50 1,2-Dichorobenzene ND 0.50	Dichlorobromomethane	ND		
Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon disulfide ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chlorothane ND 1.0 Chloroform ND 1.0 Chlorothane ND 1.0 Chlorotolluene ND 0.50 4-Chlorotolluene ND 0.50 4-Chlorotolluene ND 0.50 4-Chlorotolluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 <td>Bromobenzene</td> <td></td> <td></td> <td></td>	Bromobenzene			
Bromoform ND 1.0 Bromomethane ND 1.0 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 0.50 Carbon detrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorothane ND 1.0 Chlorothane ND 1.0 Chlorotorm ND 1.0 Chlorotormethane ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichloromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dichloropropane ND	Chlorobromomethane			
Bromomethane ND 50 Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chloroform ND 1.0 Chloroform ND 1.0 Chloroform ND 1.0 Chlorofoluene ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,4-Dichloropropane ND 0.50 1,2-Dichropropane ND 0	Bromoform			
Methyl Ethyl Ketone ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 1.0 Chlorobenzene ND 1.0 Chlorotorm ND 1.0 Chlorotorm ND 1.0 Chlorotoluene ND 0.50 L,2-Dichlorobenzene ND 0.50 L,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 <td>Bromomethane</td> <td>ND</td> <td></td> <td></td>	Bromomethane	ND		
sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0,50 Chlorobenzene ND 0,50 Chlorobethane ND 1,0 Chloroform ND 1,0 Chloromethane ND 1,0 4-Chlorotoluene ND 0,50 1,2-Dichlorobenzene ND 0,50 1,2-Dichlorobenzene ND 0,50 1,3-Dichlorobenzene ND 0,50 1,3-Dichloropropane ND 0,50 1,3-Dichloropropane ND 0,50 1,1-Dichloropropane ND 0,50 2,Dichlorodfluane <t< td=""><td>Methyl Ethyl Ketone</td><td>ND</td><td></td><td></td></t<>	Methyl Ethyl Ketone	ND		
tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorotethane ND 1.0 Chloroform ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,1-Dichloropropane ND 0.50 2thylene Dibromide ND 0.50 Dibromomethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroeth	n-Butylbenzene	ND		1.0
tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorotethane ND 1.0 Chlorotororm ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,4-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 2thylene Dibromide ND 0.50 Dibromomethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane	sec-Butylbenzene	ND		1.0
Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroform ND 1.0 Chloroform ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromodelfluoromethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2-D	tert-Butylbenzene	ND		
Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloroptopane ND 0.50 1,3-Dichloroptopane ND 0.50 1,3-Dichloroptopane ND 0.50 1,2-Dichloroptopane ND 0.50 1,2-Dichloroptopane ND 0.50 1,2-Dichloroptopane ND 0.50 1,2-Dichloroptopane ND 0.50 1,2-Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2	Carbon disulfide	ND		5.0
Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 1,2-Dichloroptopene ND 0.50 trans-1,2-Dichloroptopene ND 0.50 trans-1,3-Dichloropropene ND 0.50	Carbon tetrachloride	ND		0.50
Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 1,2-Dichloroptoethene ND 0.50 1,2-Dichloroptoethene ND <td< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>0.50</td></td<>	Chlorobenzene	ND		0.50
Chloromethane ND 1 0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND	Chloroethane	ND		1.0
2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene N	Chloroform	ND		1.0
4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 trans-1,2-Dichloropropane ND 0.50 trans-1,2-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND<	Chloromethane	ND		10
Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	2-Chlorotoluene	ND		0.50
1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	4-Chlorotoluene	ND		0.50
1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromoide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0		ND		0.50
1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 0.50		ND		0.50
1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 0.50	1,3-Dichlorobenzene	ND		0.50
1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 0.50	1,4-Dichlorobenzene	ND		0.50
1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0		ND		1.0
Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0				0.50
Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0				1.0
Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0		ND		0.50
1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0		ND		0.50
1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	1,1-Dichloroethane	ND		0.50
cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	1,2-Dichloroethane	ND		0.50
trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	1,1-Dichloroethene	ND		0.50
1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	cis-1,2-Dichloroethene	ND		0.50
cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	trans-1,2-Dichloroethene	ND		0.50
trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0	1,2-Dichloropropane	ND		0.50
EthylbenzeneND0.50HexachlorobutadieneND1.0	cis-1,3-Dichloropropene	ND		0.50
Hexachlorobutadiene ND 1.0	trans-1,3-Dichloropropene	ND		0.50
Hexachlorobutadiene ND 1.0	Ethylbenzene	ND		
	Hexachlorobutadiene	ND		
0.00	Isopropylbenzene	ND		0.50

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Method Blank - Batch: 720-6241

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-6241/20

Client Matrix: Water Dilution: 1.0

• f .

Date Analyzed: 03/06/2006 1020 Date Prepared: 03/06/2006 1020 Analysis Batch: 720-6241

Prep Batch: N/A

Units: ug/L

Instrument ID: Saturn 2K3

Lab File ID: d:\data\200603\030606\MB

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual		RL
4-Isopropyltoluene	ND			1.0
Methylene Chloride	ND			5.0
methyl isobutyl ketone	ND			50
Naphthalene	ND			1.0
N-Propylbenzene	ND			1.0
Styrene	ND			0.50
1,1,1,2-Tetrachloroethane	ND			0.50
1,1,2,2-Tetrachloroethane	ND			0.50
Tetrachloroethene	ND			0.50
Toluene	ND			0.50
1,2,3-Trichlorobenzene	ND			1.0
1,2,4-Trichlorobenzene	ND			1.0
1,1,1-Trichloroethane	ND			0.50
1,1,2-Trichloroethane	ND			0.50
Trichloroethene	ND			0.50
Trichlorofluoromethane	ND			1.0
1,2,3-Trichloropropane	ND			0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND			0.50
1,2,4-Trimethylbenzene	ND			0.50
1,3,5-Trimethylbenzene	ND			0.50
Vinyl acetate	ND			50
Vinyl chloride	ND			0.50
Xylenes, Total	ND			1.0
2,2-Dichloropropane	ND			0.50
Surrogate	% Rec		Acceptance Limits	
4-Bromofluorobenzene	102		79 - 118	
1,2-Dichloroethane-d4	98		78 - 117	
Toluene-d8	92		77 - 121	
			• • • • •	

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Laboratory Control Sample - Batch: 720-6241

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-6241/19

Client Matrix: Water Dilution: 1.0

Date Analyzed: 03/06/2006 0947 Date Prepared: 03/06/2006 0947 Analysis Batch: 720-6241

Prep Batch: N/A

Units: ug/L

Instrument ID: Saturn 2K3

Lab File ID: d:\data\200603\030606\LC:

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Benzene	20.0	17	86	69 - 129	
Chlorobenzene	20.0	20	99	61 - 121	
1,1-Dichloroethene	20.0	17	84	65 - 125	
Toluene	20.0	17	87	70 - 130	
Trichloroethene	20.0	17	85	74 - 134	
Surrogate	% R	эс	Acc	eptance Limits	
4-Bromofluorobenzene	99			79 - 118	
1,2-Dichloroethane-d4	89			78 - 117	
Toluene-d8	96			77 - 121	

Client: Aqua Science Engineers Inc. Job Number: 720-2393-1

Method Blank - Batch: 720-6233 Method: 8015B Preparation: 3510C:

Lab Sample ID: MB 720-6233/1-B

Client Matrix: Water

Dilution:

₹.

1.0

Date Analyzed: 03/11/2006 2212 Date Prepared: 03/06/2006 1648 Analysis Batch: 720-6565 Prep Batch: 720-6233

Units: ug/L

Instrument ID: HP DRO3 Lab File ID: N/A

Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL

Injection Volume:

Column ID: PRIMARY

Analyte Result Qual RL

Mineral Spirit Range Organics [C9-C13] ND 50

Surrogate % Rec Acceptance Limits o-Terphenyl 83 60 - 130

Laboratory Control/ Method: 8015B Preparation: 3510C Laboratory Control Duplicate Recovery Report - Batch: 720-6233

LCS Lab Sample ID: LCS 720-6233/2-B Analysis Batch: 720-6565 Instrument ID: HP DRO3

Client Matrix: Water

Dilution: 1.0

Date Analyzed: 03/07/2006 1513

Date Prepared: 03/06/2006 1648 Prep Batch: 720-6233 Lab File ID: N/A

Units: ug/L

Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL

Injection Volume:

Column ID: **PRIMARY**

LCSD Lab Sample ID: LCSD 720-6233/3-B HP DRO3 Analysis Batch: 720-6565 Instrument ID:

Client Matrix¹ Water Dilution: 1.0

03/07/2006 1540 Date Analyzed:

Diesel Range Organics [C10-C28]

Date Prepared: 03/06/2006 1648 Prep Batch: 720-6233 Lab File ID: N/A

Units: ug/L

Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL

Injection Volume:

30

Column ID: **PRIMARY**

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

60 - 130

LCS % Rec LCSD % Rec Surrogate Acceptance Limits o-Terphenyl 95 94 60 - 130

78

76

788 W. H. Pinroins Resolt Denve by C.A.94526 (923) 820-980 U.A. 9925 837-4852

h ₁			type of Analysis to be Performed	Other Turniound lim
- s · -				
	Supelar ac.			
. ;	Sampler Signaler	! ! !-		
Symple Matrix	Method Properved	s rupl "g		
Lemmest Compact Compac	Color Hood	hate limi		State C Tales Sales Sales Other
		The state of the s		×
		1766.		
} t t" _k }	d of container - 1		Cottonsents	
		Date	lime / // //	7
		7	1- 4- 55 h	r det
	Date Fig.	Sample Law Face. Sample Law F	Sampler Signate: Sampler Sign	Sample for the first section to the sample of the sample o

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Aqua Science Engineers Inc Job Number: 720-2393-1

Login Number: 2393

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	