

INITIAL SUBSURFACE INVESTIGATION RELATED TO FORMER WASTE-OIL TANK

ARCO Station 6148 5131 Shattuck Avenue Oakland, California

61035.02 9/27/92 Report prepared for

ARCO Products Company P.O. Box 5811 San Mateo, California 94402

by RESNA Industries Inc.

Barbara Sieminski Assistant Project Geologist

Joel Coffman

Project Geologist

JAMES LEWIS

STERED

ជ

NELSON

James L. Nelson

No. 146 Engineering Geologist No. 1463

/September 29, 1992

3315 Almaden Expressway, Suite 34

San Jose, CA 95118 Phone: (408) 264-7723 Fax: (408) 264-2435

TRANSMITTAL

TO: Ms. Susan Hugo
ACHCSA
Department of Environmental Health
80 Swan Way, Room 200
Oakland, California 94621

DATE: September 29, 1992 PROJECT NUMBER: 61035.02 SUBJECT: ARCO Station 6148 at 5131 Shattuck Avenue, Oakland, CA

FROM: Joel Coffman TITLE: Project Geologist

WE ARE SENDING YOU:

COPIES	DATED	NO.						
1	1 09/25/92		FINAL-Work Plan for Additional Subsurface Investigation at the above subject site.					
THESE ARE	FRANSMITTED	as checked be	elow:					
[] For revie	w and comment	[] Approv	ed as submitted	[] Resubmit copies for ap	proval			
[] As reque	sted	[] Approv	ed as noted	[] Submit copies for distrib	oution			
[] For appro	oval	[] Return	for corrections	[] Return corrected prints	5			
[X] For you	r files							

REMARKS: This Work Plan has been forwarded to you at the request of Mr. Mike Whelan at ARCO Products Company.

Copies: 1 to RESNA project file no. 61035.02

CONTENTS

	TION 1								
SITE DESCRIPTION AND BACKGROUND									
General									
Regional and Local Hydrogeology									
	WORK 3								
	RK 3								
Drilli	ng								
Soil S	ampling and Description 4								
	toring Well Construction and Development								
	ndwater Level Measurement and Sampling								
	ON OF GROUNDWATER GRADIENT 6								
	DRY METHODS								
Soil S	amples \dots 7								
Grou	ndwater Samples 8								
	OF LABORATORY ANALYSES								
Soil S	displos 111111111111111111111111111111111111								
Grou	difficion buildings of the second of the sec								
	TOTAL CONCECTIONS THE TOTAL CONTRACTOR OF THE TOTAL CO								
	110 11111111111111111111111111111111111								
	ION								
REFERENC	CES 14								
	PLATES								
PLATE 1:	SITE VICINITY MAP								
PLATE 2:	GENERALIZED SITE PLAN								
PLATE 3:	UNIFIED SOIL CLASSIFICATION SYSTEM AND SYMBOL KEY								
PLATES 4									
through 10:	LOGS OF BORINGS B-1 THROUGH B-4								
PLATE 11:	GEOLOGIC CROSS SECTIONS A-A' AND B-B'								
PLATE 12:	GROUNDWATER GRADIENT MAP, DECEMBER 23, 1991								
PLATE 13:	GROUNDWATER GRADIENT MAP, JANUARY 7, 1992								
PLATE 14:	TPHg CONCENTRATIONS IN SOIL AT DEPTHS OF 17 TO 18.5 FEET								
PLATE 15:	TPHd CONCENTRATIONS IN SOIL AT DEPTHS OF 17 TO 18.5 FEET								
PLATE 16:									
PLATE 17:	BENZENE CONCENTRATIONS IN GROUNDWATER, MARCH 18, 1992								
PLATE 18:	TPHg CONCENTRATIONS IN GROUNDWATER, JUNE 12, 1992								
PLATE 19:									

CONTENTS (Continued)

TABLES

TABLE 1: CUMULATIVE GROUNDWATER MONITORING DATA

TABLE 2: RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES - TPHg,

TPHd, BTEX, and TOG

TABLE 3: RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES - VOCs

and METALS

TABLE 4: CUMULATIVE RESULTS OF LABORATORY ANALYSES OF WATER

SAMPLES - TPHg, TPHd, BTEX, TOG, AND METALS

TABLE 5: CUMULATIVE RESULTS OF LABORATORY ANALYSES OF WATER

SAMPLES - VOCs

APPENDICES

APPENDIX A: FIELD PROTOCOL

WELL PURGE DATA SHEETS

APPENDIX B: WELL CONSTRUCTION PERMIT

APPENDIX C: EMCON'S FIELD REPORTS,

DEPTH TO WATER/FLOATING PRODUCT SURVEY RESULTS,

SUMMARY OF GROUNDWATER MONITORING DATA,

CERTIFIED ANALYTICAL REPORTS WITH CHAIN-OF-CUSTODY,

WATER SAMPLE FIELD DATA SHEETS

APPENDIX D: WELLHEAD SURVEY

APPENDIX E: CHAIN OF CUSTODY RECORDS

LABORATORY ANALYSES REPORTS

3315 Almaden Expressway, Suite 34

San Jose, CA 95118 Phone: (408) 264-7723 Fax: (408) 264-2435

INITIAL SUBSURFACE INVESTIGATION RELATED TO FORMER WASTE-OIL TANK

ARCO Station 6148 5131 Shattuck Avenue Oakland, California

Prepared for ARCO Products Company

INTRODUCTION

ARCO Products Company (ARCO) contracted with RESNA Industries Inc. (RESNA) to conduct an initial subsurface investigation related to the former waste-oil tank at ARCO Station 6148 located at 5131 Shattuck Avenue in Oakland, California. In June 1987, a waste-oil tank was removed from the southwestern portion of the site. Soil recovered from beneath the tank at a depth of 20 feet was reported by Crosby & Overton (C&O) to contain 210 parts per million (ppm) motor oil. The objectives of this work were to: 1) evaluate whether hydrocarbon constituents, volatile organic compounds (VOCs), or metals associated with the former waste-oil tank are present in the soil, 2) evaluate whether waste-oil related hydrocarbons have impacted the local groundwater, and 3) evaluate the gradient of the first-water bearing unit beneath the vicinity of the former waste-oil tank.

Work performed for this investigation included drilling four soil borings (B-1 through B-4); collecting and describing soil samples from the borings; installing and developing three 4 inch-diameter groundwater monitoring wells (MW-1 through MW-3) in the borings B-1 through B-3, respectively; sampling groundwater from the monitoring wells; measuring groundwater levels; surveying wellhead elevations; performing laboratory analyses on selected soil and groundwater samples; and preparing this report that presents field procedures, results, and conclusions. This work was performed as outlined in our Work Plan for Initial Subsurface Investigation Related to the Former Waste-Oil Tank (RESNA, August 30, 1991), and Addendum to Work Plan (RESNA, November 7, 1991). These documents were approved by the Alameda County Health Care Services Agency (ACHCSA) prior to commencement of this investigation.

September 29, 1992 61035.02

SITE DESCRIPTION AND BACKGROUND

General

The site is an operating gasoline station located on the southwestern corner of the intersection of 52nd Street and Shattuck Avenue in Oakland, California. The site location is shown on the Site Vicinity Map (Plate 1). The site is on a relatively flat lot at an elevation of approximately 110 feet above mean sea level.

Presently, according to information provided by ARCO, there are three 12,000 gallon, underground gasoline-storage tanks (USTs) located in the western portion of the site. The locations of the USTs and pertinent site features are shown on the Generalized Site Plan (Plate 2).

Regional and Local Hydrogeology

ARCO Station 6148 is located west of the East Bay Hills. This area lies within the Berkeley Alluvial Plain, which is a subarea of the East Bay Alluvial Plain. Soils in this area are mapped as older alluvium which consist of a heterogeneous mixture of poorly consolidated to unconsolidated clay, silt, sand, and gravel units (Helley and others, 1979). The sediments were derived mainly from bedrock underlying the hills and represent successive coalescing alluvial fans deposited during the Pleistocene epoch.

The sediments found beneath the East Bay Alluvial Plain are believed to be about 200 feet thick in the Berkeley area and are the major groundwater source in the region. Water-yielding capabilities are highly variable. Generally, high yields come only from wells that are screened through several water-bearing sand and gravel beds. Groundwater in the East Bay Plain occurs predominantly under confined conditions and tends to flow toward the San Francisco Bay to the west and southwest (Hickenbottom and Muir, 1988).

September 29, 1992 61035.02

PREVIOUS WORK

Previous work performed by C&O and Erico Construction at the site included removal of a waste-oil tank and laboratory analyses of a soil sample from the bottom of the waste-oil tank pit on June 1, 1987, additional excavation and laboratory analyses of soil from the waste-oil tank pit on June 3, 1987, and June 10, 1987. Soil excavated from the waste-oil tank pit was transported to the Class I landfill in Casmalia, California on June 10, 1987, by Erico Construction and C&O.

FIELD WORK

Drilling

Field work at the site was conducted in accordance with RESNA's field protocol in the Work Plan for Initial Subsurface Investigation Related to Former Waste-Oil Tank (RESNA, August 30, 1992) and Site Safety Plan (RESNA, October 10, 1991). A description of the field methods and Site Safety Plan is included in Appendix A, Field Protocol. A well construction permit was acquired from the Alameda County Flood Control and Water Conservation District (ACFCWCD) prior to drilling. A copy of this permit is included in Appendix B. On December 19 and 20, 1991, four soil borings (B-1 through B-4) were drilled at the site and three groundwater monitoring wells (MW-1 through MW-3) were constructed in borings B-1 through B-3, respectively.

To investigate the presence of waste-oil related chemical constituents in the soil and groundwater beneath the former waste-oil tank, boring B-1 was drilled in the former waste-oil tank pit, and groundwater monitoring well MW-1 was installed in the boring. To evaluate the presence of hydrocarbons in the soil and groundwater in the inferred downgradient direction of the former tank pit, borings B-2 and B-3 were drilled west and south, respectively, of the waste-oil tank pit, at the borders of the property, and groundwater monitoring wells MW-2 and MW-3 were installed in borings B-2 and B-3, respectively. To investigate the presence and evaluate the extent of hydrocarbons east of the former underground waste-oil tank, boring B-4 was drilled. The soil boring/monitoring well locations are shown on Plate 2.

September 29, 1992 61035.02

Soil Sampling and Description

A total of 25 soil samples were collected from soil borings B-1 through B-4 for classification and possible laboratory analyses. A summary of the Unified Soil Classification System used to identify the soil encountered during drilling is presented on Plate 3, and descriptions of the soil encountered in the borings are presented on the Logs of Borings, Plates 4 through 10. Soil samples from borings B-1 through B-4 were collected at a maximum interval of 5 feet. Sampling procedures are described in Appendix A.

The earth materials encountered during this investigation consisted primarily of sandy clay. sandy silt, silty sand and sandy to clayey gravel. In boring B-1, subrounded to rounded, well sorted pea gravel backfull was encountered immediately below ground surface to a depth of 17 feet. In borings B-2 through B-4, a sandy clay underlain by sandy silt was encountered immediately below an approximately 4-foot thick section of baserock to depths of approximately 11-1/2 and 15-1/2 feet below ground surface. A layer of sandy gravel was encountered below the sandy silt in borings B-2 through B-4, and below the pea gravel in boring B-1 and extended to the depths of approximately 18 and 19 feet. Groundwater was encountered in borings B-1 through B-4 in this sandy gravel at a depth of approximately 18 feet below ground surface. The sandy gravel is underlain by a wet, silty sand layer that grades into assandy silt in the lower portion of the layer. A stratum of clayey gravel with sand was encountered in borings B-1 through B-3 below the silty sand to sandy silt layer at depths between approximately 25-1/2 and 28-1/2 feet below ground surface and extended to the total depths of these borings (between 29 and 31-1/2 feet). Boring B-4 was terminated at a depth of 20-1/2 feet below ground surface. Graphic interpretations of the soil stratigraphy encountered in the borings are shown on Geologic Cross Sections A-A', and B-B' (Plate 11). Locations of the cross sections are depicted on Plate 2.

Product odor was noted in the soil samples collected just above water (capillary fringe section) at depths between approximately 15 and 20 feet from borings B-1 through B-4. Field Organic Vapor Meter (OVM) readings, which yield order of magnitude estimates only, were taken of soil samples from borings B-1 through B-4. OVM readings ranged from nondetectable to 498 ppm. OVM readings of soil samples collected from borings B-1

September 29, 1992 61035.02

through B-4 are shown on the boring logs (Plates 4 through 10) in the column labeled P.I.D. (photoionization detector).

Soil cuttings generated from the borings were temporarily stockpiled onsite in the southwestern corner of the property and covered with plastic sheeting pending disposal. After the completion of drilling on December 20, 1991, four soil samples were collected from the stockpile and submitted for compositing and laboratory analyses for total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as diesel (TPHd), total oil and grease (TOG), and benzene, toluene, ethylbenzene, and total xylene isomers (BTEX). The method used to obtain these samples is described in Appendix A.

Monitoring Well Construction and Development

Three groundwater monitoring wells (MW-1 through MW-3) were constructed in borings B-1 through B-3, respectively. The wells were completed with four-inch-diameter schedule 40 polyvinyl chloride (PVC) casing. Well casings were set in the wells to the depths of approximately 26 feet below ground surface. The screened casings for the monitoring wells consisted of 4-inch-diameter, 0.020 machine slotted PVC set from the total depth of the wells to approximately 13 to 14 feet below the ground surface. Blank PVC casing was set from the top of the screened casing to within a few inches below the ground surface.

The wells were developed on December 23, 1991, to remove fine-grained sediments and to allow better communication between the water-bearing zone and the groundwater monitoring well. Details regarding well construction and development are described in Appendix A.

Groundwater Level Measurement and Sampling

Depths-to-water (DTW) were measured in the wells MW-1 through MW-3, and groundwater samples were collected and visually inspected for floating product initially on December 23, 1991, and January 7, 1992, by RESNA field personnel. Water samples collected from the groundwater monitoring wells MW-1 through MW-3 exhibited hydrocarbon sheen during both monitoring events. Groundwater monitoring wells MW-1 through MW-3 were purged

September 29, 1992 61035.02

and sampled on January 7, 1992, but due to the presence of hydrocarbon sheen the samples were not submitted for laboratory analyses. Appendix A contains a description of subjective analyses and sampling procedures used by RESNA, and well purge data sheets.

In January 1992, ARCO's contractor, EMCON Associates (EMCON) of San Jose, California, began monthly monitoring and quarterly sampling at the site. DTW measurements were performed by EMCON field personnel on January 19, February 19, March 18, April 20, May 15, and June 12, 1992. Quarterly sampling was performed by EMCON field personnel on March 18, and June 12, 1992; additional samples were collected from MW-1 and MW-3 on July 2, 1992, to be analyzed for diesel because of the presence of diesel in the blank sample. Groundwater monitoring well MW-2 was not sampled during June sampling event due to the presence of floating product. The results of EMCON's field work on the site, including DTW measurements and subjective analyses for the presence of product in the groundwater are presented on EMCON's Field Report sheets and EMCON's Summary of Groundwater Monitoring Data. These data are included in Appendix C. The detailed summary of the results of the first and second quarter 1992 groundwater monitoring performed at the site by EMCON is presented in the Quarterly Groundwater Monitoring Letter Reports prepared by RESNA, which are listed in the References section.

EVALUATION OF GROUNDWATER GRADIENT

On December 27, 1991, the wellheads for the groundwater monitoring wells MW-1 through MW-3 were surveyed to a local National Geodetic Vertical Datum benchmark by a licensed land surveyor, John E. Koch. The results of this wellhead survey are included in Appendix D, Wellhead Survey. Groundwater elevations for each well were calculated by subtracting the measured DTW from the elevation of the wellhead. The measured DTW, wellhead elevations, and groundwater elevations for first and second quarter 1992, are presented in Table 1, Cumulative Groundwater Monitoring Data.

The groundwater gradient evaluated for the first encountered water-bearing zone is approximately 0.01 to the southwest. Plates 12 and 13, Groundwater Gradient Maps, are graphic interpretations of groundwater gradients measured on December 23, 1991, and January 7, 1992, respectively. Additional gradient maps for first and second quarter 1992

September 29, 1992 61035.02

are included in the Quarterly Groundwater Monitoring Letter Reports listed in the References section.

LABORATORY METHODS

Soil Samples

Soil samples were preserved as required by the applicable analytical method, and delivered with Chain of Custody Records to Sequoia Analytical Laboratories (Hazardous Waste Testing Laboratory Certification No. 1210) of Redwood City, California for analyses.

Fourteen soil samples collected from borings B-1 through B-4 were analyzed in accordance with ACHCSA requirements for the gasoline constituents BTEX and TPHg using modified Environmental Protection Agency (EPA) Methods 5030/8015/8020, TPHd using EPA Method 3550/8015, TOG using Standard Method 5520 E&F (Gravimetric), for volatile organic compounds (VOCs) using EPA Method 8240, and the metals cadmium (Cd), chromium (Cr), nickel (Ni), and zinc (Zn) using EPA Method 6010, and lead (Pb) using EPA Method 7421. The soil samples were selected for laboratory analyses based on:

- o Location above first-encountered groundwater;
- o Location in a potential confining or perching layer below first-encountered groundwater;
- o Areas where the presence of hydrocarbons were suspected; and
- o At 5-foot intervals and/or change in stratigraphic units, as recommended by state Department of Health Services (DHS) guidelines.

Soil samples collected from the soil stockpile were composited in the laboratory and analyzed for TPHg and BTEX by EPA Method 5030/8015/8020, TPHd by EPA 3550/8015, and TOG by Standard Method 5520 E&F (Gravimetric).

September 29, 1992 61035.02

Groundwater Samples

As mentioned in the previous chapter, groundwater samples collected by RESNA field personnel from monitoring wells MW-1 through MW-3 on January 7, 1992, were not submitted for laboratory analyses due to the presence of hydrocarbon sheen.

Under the direction of EMCON, groundwater samples collected on March 18, June 12, and July 2, 1992, were analyzed by Columbia Analytical Services, Inc., located in San Jose, California (Hazardous Waste Testing Laboratory Certification No. 1426). The water samples collected from the wells MW-1 through MW-3 on March 18, 1992, and from wells MW-1 and MW-3 on June 12, were analyzed for TPHg and BTEX using modified EPA Methods 5030/8020 DHS LUFT, TPHd using EPA Method 3510, TOG using Method 5520F-IR/5520C, and volatile organic compounds (VOCs) using EPA 5030/8010. Groundwater samples collected from wells MW-1 through MW-3 on March 18, 1992 were also analyzed for the metals: Cd, Cr, Ni, and Zn using EPA Method 6010, and for Pb using EPA Method 7421.

RESULTS OF LABORATORY ANALYSES

Soil Samples

The results of laboratory analyses of soil samples are summarized in Table 2, Results of Laboratory Analyses of Soil Samples - TPHg, TPHd, BTEX and TOG, and Table 3, Results of Laboratory Analyses of Soil Samples - VOCs, and Metals, and are depicted on Plate 14, TPHg Concentrations in Soil at Depths of 17 to 18.5 feet, and Plate 15, TPHd Concentrations in Soil at Depths of 17 to 18.5 feet. Copies of the laboratory reports and Chain-of-Custody records for the soil samples are included in Appendix E.

Analytical results of soil samples collected from borings B-1 through B-4 generally indicate the following:

o Except for soil samples collected from depths between 17 and 18.5 feet (directly above first encountered groundwater), most soil samples from borings contain low

September 29, 1992 61035.02

(less than 2 ppm) or nondetectable concentrations TPHg, BTEX and TPHd. The samples from depths between 17 and 18.5 feet contain up to 740 ppm TPHg, up to 41 ppm (360 ppm detected using different method) BTEX, and up to 540 ppm TPHd. We understand ARCO has not stored diesel on this site and according to analytical results the diesel detected in the soil contains hydrocarbons intermediate of gasoline and diesel (between C-10 and C-12). Thus, the detected TPHd appears to be weathered gasoline.

- o TOG was nondetectable in all samples collected from the soil borings.
- o VOCs (37 compounds tested) were nondetectable in all the soil samples collected from the borings, with the exception of BTEX detected in the samples collected just above first-encountered groundwater (between depths of 17 and 18-1/2 feet).
- o Soil samples collected from the borings contain concentrations of metals (up to 0.95 ppm Cd, 48 ppm Cr, 8.3 ppm Pb, 70 ppm Zn, and 66 ppm Ni) within the typical range of natural background levels for soil (Scott, 1991).

Based on analytical results, the composite soil sample collected from the stockpile contained 25 ppm TPHg, low concentrations of BTEX (up to 0.38 ppm), 11 ppm TPHd, and nondetectable (less than 30 ppm) TOG. These results are shown in Table 2. The soil stockpile was removed from the site and transported to BFI Landfill in Livermore by ARCO's contractor, Dillard Trucking Inc. of Byron, California, on January 10, 1992.

Groundwater Samples

The results of laboratory analyses of groundwater samples are summarized in Table 4, Cumulative Results of Laboratory Analyses of Water Samples - TPHg, TPHd, BTEX, TOG and Metals, and Table 5, Cumulative Results of Laboratory Analyses of Water Samples - VOCs. The Chain of Custody Records and Laboratory Analytical Reports are included in Appendix C. Plates 16 and 17 show concentrations of TPHg and benzene, respectively, in the groundwater on March 18, 1992. Plates 18 and 19 show concentrations of TPHg and benzene, respectively, in the groundwater on June 12, 1992.

September 29, 1992 61035.02

Laboratory analyses of groundwater samples from wells MW-1 through MW-3 on March 18, and June 16, 1992, indicate the following:

- o TPHg was detected at concentrations ranging from 790 parts per billion (ppb) to 46,000 ppb.
- o Benzene was detected at concentrations ranging from 290 ppb to 3,400 ppb. During both monitorings (March 18, and June 12, 1992), benzene concentrations in MW-1 through MW-3 exceeded the State Maximum Contaminant Level (MCL) of 1 ppb benzene in drinking water.
- Toluene, ethylbenzene, and total xylenes were detected at concentrations ranging from 10 ppb to 5,400 ppb. The toluene concentrations exceeded the Drinking Water Action Level (DWAL) of 100 ppb in MW-2 on March 18, 1992; and in MW-3 on March 18, and June 12, 1992. The ethylbenzene concentration exceeded the MCL of 680 ppb in MW-3 on June 12, 1992. The total xylenes concentration exceeded the MCL of 1,750 ppb in MW-3 on June 12, 1992.
- A lower boiling point hydrocarbon mixture quantified as TPHd was detected in MW-2 and MW-3 at concentrations ranging from 230 ppb to 2,800 ppb. The mixture was nondetectable (less than 50 ppb) in the groundwater sample from MW-1. Because the chromatograms of the hydrocarbon mixture do not match the typical diesel fingerprint, and ARCO has stated that diesel has not been stored at this site, it appears that the reported TPHd could be degraded gasoline.
- o TOG was detected in MW-2 and MW-3 at concentrations ranging from 1.2 ppm to 16 ppm, and was nondetectable (less than 0.5 ppm) in the groundwater sample from MW-1.
- o Trichloroethene (TCE) was detected in MW-1 and MW-2 at concentrations ranging from 1.2 ppb to 2.2 ppb; this chemical was nondetectable (less than 0.5 ppb) in the groundwater from MW-3.
- o Tetrachloroethene (PCE) was detected in MW-1 through MW-3 at a concentrations ranging from 1.9 ppb to 19 ppb. PCE exceeded the State MCL of 5 ppb in MW-1 and MW-2 on March 18, 1992, and in MW-1 on June 12, 1992.

September 29, 1992 61035.02

Of metals analyzed in groundwater from MW-1 through MW-3, Cd was nondetectable (less than 3 ppb), Cr was detected at concentrations ranging from 5 ppb to 67 ppb; Pb was detected at concentrations ranging from 3 ppb to 27 ppb; Ni was detected in groundwater samples from MW-2 at a concentration of 38 ppb, at 113 ppb in MW-3, and was nondetectable (less than 20 ppb) in MW-1; and, Zn was detected in groundwater samples from MW-1 through MW-3 at concentrations ranging from 31 ppb to 156 ppb. The Cr concentration exceeded the MCL of 50 ppm in MW-3 on March 18, 1992.

DISCUSSION AND CONCLUSIONS

The presently interpreted extent of hydrocarbon impacted soil beneath the site in the vicinity of the former waste-oil tank pit is presented on the Geologic Cross Sections, Plate 11. The majority of hydrocarbons at concentrations greater than 100 ppm in the soil in the vicinity of the former waste-oil tank pit appears to be at depths between approximately 15 and 20 feet, within the sandy gravel and silty sand layers and directly above the local water table. Because the greatest concentrations of hydrocarbons appears to be limited to a zone directly above the water table it appears that hydrocarbons migrated laterally within the capillary fringe along the top of the water table.

We understand that ARCO has not stored diesel at this site, and according to analytical results the diesel detected in the soil contains hydrocarbons intermediate of gasoline and diesel (between C-10 and C-12). Thus, the reported TPHd appears to be weathered gasoline.

The vertical extent of petroleum hydrocarbons in the soil beneath the vicinity of the former waste-oil tank pit appears to be delineated to less than about 10 ppm TPHg, and less than about 1 ppm BTEX to depths between about 20 and 26 feet. The vertical extent of TOG and apparent weathered gasoline (TPHd) in the vicinity of the former waste-oil tank pit appear to be delineated between depths of 20 and 26 feet.

VOCs were nondetectable (with the exception of BTEX) in the soil samples collected from borings B-1 through B-4; and concentrations of metals (Cd, Cr, Pb, Zn and Ni) were within the range typical of natural background levels for soil.

September 29, 1992 61035.02

First groundwater at the site was encountered at a depth of approximately 18 feet. The groundwater gradient and flow direction evaluated for the first encountered water-bearing cone is 0.01 to the southwest. Due to the proximity of the three onsite wells in the immediate vicinity of the former waste-oil tank pit the interpreted gradient may not represent conditions across the entire site.

Groundwater beneath the southwestern portion of the site appears to be impacted by hydrocarbons and VOCs as indicated by the occasional presence of floating product sheen on groundwater samples from monitoring wells MW-1 through MW-3, and laboratory analytical results. The lateral and vertical extent of hydrocarbons in groundwater beneath the site have not been delineated.

LIMITATIONS

This report was prepared in accordance with generally accepted standards of environmental engineering and geological practice in California at the time this investigation was This investigation was conducted solely for the purpose of evaluating environmental conditions of the soil and groundwater with respect to petroleum hydrocarbons, and chemical constituents related to an underground waste-oil tank that formerly existed in the southwestern portion of the site. Groundwater monitoring field procedures and acquisition of field and laboratory data were performed under direction of EMCON Associates of San Jose, California; evaluation and warrant of their monitoring field data and field protocols is beyond RESNA's scope of work. RESNA's scope of work was limited to interpretation of groundwater monitoring field and laboratory analytical data, which included evaluating trends in reported hydrocarbon concentrations in the local groundwater, the groundwater gradient, and direction of groundwater flow beneath the site. No soil engineering or geotechnical references are implied or should be inferred. Evaluation of the geologic conditions at the site for the purpose of this assessment is made from a limited number of observation points. Subsurface conditions may vary away from the data points available. Additional work, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of investigation.

September 29, 1992 61035.02

DISTRIBUTION

Copies of this report should be sent to the following regulatory agencies:

Ms. Susan Hugo
Alameda County Health Care Services Agency
Department of Environmental Health
80 Swan Way, Room 200
Oakland, California 94621

Mr. Richard Hiett
California Regional Water Quality Control Board
San Francisco Bay Region
2101 Webster Street, Suite 500
Oakland, California 94612

September 29, 1992 61035.02

REFERENCES

Helley, E.S., K.R. Lajoie, W.E. Spangle, and M.L. Blair. 1979. <u>Flatland deposits of the San Francisco Bay Region, California</u>. U.S. Geological Survey Professional Paper 943.

Hickenbottom, K. and Muir, K. 1988. <u>Geohydrology And Groundwater-Quality Overview</u>, East Bay Plain Area, Alameda County, California 205(J) Report.

RESNA. August 30, 1991. Work Plan for Initial Subsurface Investigation Related to Former Waste-Oil Tank at ARCO Station 6148, 5131 Shattuck Avenue, Oakland, California. RESNA 61035.01.

RESNA. October 10, 1991. Site Safety Plan. RESNA 61035.02S.

RESNA. November 7, 1991. <u>Addendum to Work Plan for Initial Subsurface Investigation Related to Former Waste-Oil Tank at ARCO Station 6148, 5131 Shattuck Avenue, Oakland, California.</u> RESNA 61035.02.

Scott, C.M., 1991. <u>Background Metal Concentrations in Soils in Northern Santa Clara County, California.</u> M.S. Thesis at the University of San Francisco, Environmental Management Program.

RESNA. June 6, 1992. <u>Letter Report, Quarterly Groundwater Monitoring First Quarter</u> 1992 at ARCO Station 6148, 5131 Shattuck Avenue, Oakland, California. 61035.03

RESNA. September 28, 1992. <u>Letter Report, Quarterly Groundwater Monitoring Second Quarter 1992 at ARCO Station 6148, 5131 Shattuck Avenue, Oakland, California.</u> 61035.03

RESNA

PROJECT 61035.02

SITE VICINITY MAP

ARCO Station 6148 5131 Shattuck Avenue Oakland, California PLATE

Source: Based on ARCO Site Plan dated 1980.

RESNA

PROJECT

61035.02

GENERALIZED SITE PLAN ARCO Station 6148 5131 Shattuck Avenue Oakland, California PLATE

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR (MAJOR DIVISION		DESCRIPTION	MAJOR DIVISION		LTR	DESCRIPTION	
		GW	Well—graded Gravels or Gravel—Sand mixtures, little or no fines.			ML	Inorganic Silts and very fine sands, rock flour, Silty or Clayey fine Sands, or Clayey Silts with slight	
	GRAVEL	GP	Poorly—graded Gravels or Gravel—Sand mixtures,		SILTS		plasticity.	
	AND GRAVELLY		little or no fines.		AND CLAYS	CL	Inorganic Clays of low to medium plasticity, Gravelly	
	SOILS		GM	Silty Gravels, Gravel—Sand— Silt mixtures.		LL<50		Clays, Sandy Clays, Silty Clays, Lean Clays.
COARSE-		GÇ	Clayey Gravel, Gravel—Sand—Clay mixtures.	FINE-		OL	Organic Silts and Organic Silt—Clays of low plasticity.	
GRAINED SOILS	SAND	SW	Well-graded Sand or Gravelly Sands, little or no fines.	GRAINED SOILS	SILTS	мн	Inorganic Silts, micaceous or diatomaceous fine Sandy or Silty Soils, Elastic Silts.	
	AND SANDY SOILS	SP	Poorly—graded Sands or Gravelly Sands, little or no fines.		AND CLAYS LL>50	СН	Inorganic Clays of high plasticity, fat Clays.	
	30123	SM	Silty Sands, Sand—Silt mixtures.			ОН	Organic Clays of medium to high plasticity, organic Silts.	
		SC	Clayey Sands, Sand—Clay mixtures.	HIGHLY ORG	ANIC SOILS	PT	Peat and other highly Organic Soils.	

T	Depth through which sampler is driven		Sand pack
T	Relatively undisturbed		Bentonite
	sample '	\$\frac{1}{2}\$	Neat cement
	No sample recovered		Caved native soil
<u>=</u>	Static water level observed in well/boring		Blank PVC
	Initial water level observed in boring		Machine—slotted PVC
S-10	Sample number	P.I.D.	Photoionization detector

BLOWS REPRESENT THE NUMBER OF BLOWS OF A 140-POUND HAMMER FALLING 30 INCHES TO DRIVE THE SAMPLER THROUGH EACH 6 INCHES OF AN 18-INCH PENETRATION.

DASHED LINES SEPARATING UNITS ON THE LOG REPRESENT APPROXIMATE BOUNDARIES ONLY. ACTUAL BOUNDARIES MAY BE GRADUAL LOGS REPRESENT SUBSURFACE CONDITIONS AT THE BORING LOCATION AT THE TIME OF DRILLING ONLY.

RESNA

UNIFIED SOIL CLASSIFICATION SYSTEM PLATE AND SYMBOL KEY **ARCO Station 6148** 5131 Shattuck Avenue Oakland, California

3

PROJECT

61035.02

Depth of boring:	29 feet Dlameter of	boring: 10 inc	ches Date drilled: 12/20/91				
Well depth:26	feet Material type:	Sch 40 PVC	Casing diameter: 4 inches				
Screen interval:	13 to 26 feet	Slot size:	0.020-inch				
Drilling Company:	HEW Drilling	Driller:	Jasper and Louie				
Method Used:	HollowStem Auger		_ Field Geologist: Barbara Sieminski				
Signature of Registered Professional: Registration No.: CEG 1463 State: CA							
REGISTRATION NO.: CEG 1463 STUJE: //CA/							

Depth	Sample No.	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -					Paved area — old tank pit. Asphalt (4 inches).	
- 2 -				GP	Gravel, brown, damp, loose; subrounded to rounded, well- sorted: pea gravel backfill.	
- 4 -	-					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 6 -					Pea gravel.	
- 8 -						2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- 10 - - 12 -					Pea gravel.	7 0 7 0
- 14 -					. •• g. a. v.,	
- 16 -			 			
- 18 -	S17.5	7 16 22	(10)San	GP <u></u>	Sandy gravel, with silt, green, moist, dense; obvious	
- 20 -				SM	Silty sand, with gravel, light brown, wet, medium dense.	
					(Section continues downward)	

PROJECT: 61035.02

LOG OF BORING B-1/MW-1

ARCO Station 6148 5131 Shattuck Avenue Oakland, California PLATE

Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const.
				SM	Silty sand, with gravel, light brown, wet, medium dense	
- 55 –	S-22.5	3 4 7	0		More silt, no gravel.	
-24					·	
	S-26.5	7 2 7 6 8 7	0	GC	Clayey gravel, with sand, light brown, moist to wet, loose to medium dense.	
-28		8 7				
-30 -					Total depth = 29 feet.	
-32 –						
-34 -						
- 36 –						
- 38 –						
- 40 —						
-42						
-44 -						
- 46 - - 48						
-50 _						

RESNA

PROJECT 61035.02

LOG OF BORING B—1/MW—1

ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE

Depth of boring: 31-1/2 feet Diameter of	boring: 10 in	ches Date drilled: 12/19/91				
Well depth: 26 feet Material type:	Sch 40 PVC	Casing diameter: 4 inches				
Screen interval: 14 to 26 feet	_ Slot size: _	0.020-inch				
Drilling Company: HEW Drilling	Driller:	Jasper and Louie				
Method Used: Hollow-Stem Auger		Field Geologist: Lou Leet				
Signature of Registered Professional:						
Registration No.: CEG 1463 State: /CA/						
	1///	•				

Depth	Sampl No.	е	Blows	P.I.D.	USCS Code	Description	
- 0 -					GC CL	Paved area. Asphalt (4 inches). Clayey gravel, dark brown, damp, medium dense; baseroc Sandy clay, dark brown, damp, medium plasticity, stiff.	V V V V V V V V V V V V V V V V V V V
- 4 -	S-5.5		5 6 8	0		Color change to brown.	V
- 8 -			3		ML	Sandy silt, with gravel, brown, damp, low plasticity, stiff; angular gravel.	
	S-10.5 S-12		5 10 8 13 16	0	GP	Sandy gravel, light brown, damp, medium dense; angular gravel.	.
- 14 - - 16 - - 18 -	S-15.5 S-17		2 10 16 12 15	20 359	GW F SW	Color change to brown, increasing silt, larger gravel. Sandy gravel, with silt, green, moist, medium dense; noticeable product odor, gravel to 1 inch diameter, subrounded. More sand, very moist, abvious product odor. Sand, with gravel, light brown, wet, medium dense.	
- 20-	S-20.5	I	5 6 10	2		(Section continues downward)	

RESNA

PROJECT:

61035.02

LOG OF BORING B-2/MW-2

ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE

epth	Sample No.	BLOW	P.I.D.	USCS Code	Description	Well Const.
22				SW	Sand, with gravel, light brown, wet, medium dense.	
24-						
	S-25.5	3 3 3	0			
28-		3		ML	Sandy silt, with clay, light brown, moist, medium plasticity, firm.	
30 -	S-30.5	19 12	0	GC	Clayey gravel, with sand, light brown, moist to damp, dense; gravel up to 1—1/2 inches diameter.	
32 -		20			Total depth = 31-1/2 feet.	
34 -						
36-						
38-						
40-						
12-						
14-						
46						
48-						
50 -						

RESN	A
------	---

PROJECT 61035.02

LOG OF BORING B—2/MW—2 ARCO Station 6148 5131 Shattuck Avenue Oakland, California

PLATE

Depth of boring: 29 feet [Diameter of boring: 10	inches Date drilled: 12/20/91					
Well depth: 26 feet Mo	aterial type: Sch 40 P	VC Casing diameter: 4 inches					
Screen interval: 14 to 26 fee	et Slot size:	0.020-inch					
Drilling Company: HEW Drilling	g Driller:	Jasper and Louie					
Method Used: Hollow-St	tem Auger	Field Geologist: Barbara Sieminski					
Signature of Registered Professional:							
Registration No.: CEG 1463 State: CA							

Depth	Sample No.		Blows	P.I.D.	USCS Code	Description	
- 0 -					_ SP _ CL	Paved area. Asphalt (4 inches). Sandy gravel, brown, damp, loose; baserock. Sandy clay, dark brown, damp, medium plasticity, stiff.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4 -	S-5.5		4	0	GC	Clayey gravel, with sand, dark brown, damp, medium dense; subangular gravel up to 1 inch diameter	7 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
- 6 -	0.0		6 10	,	CL	Sandy clay, with small gravel, dark brown, damp, medium plasticity, stiff; with roots.	V V V V V V V V V V V V V V V V V V V
- 10 ~	S~10.5		2	0		More gravel.	
_ 12 -	5 (0.5	Ī	6		ML	Sandy silt, with gravel, brown, damp, low plasticity, stiff; subangular gravel.	7 0 7 0
- 14 -			4			Gravel up to 1 inch diameter.	
- 16 -	S-15.5 S-17.5		8 10 10	25	GP	Sandy gravel, with silt green, moist, medium dense;	
- 18 -	S-17.3]]	14 24 8 13	3	7	More sand; obvious product odos. Silty sand, with gravel, green, wet, dense.	
- 20 -		Ш	18			Color change to light brown, more gravel.	
						(Section continues downward)	

PROJECT:

61035.02

ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE

)epth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const
				SM	Silty sand, with gravel, light brown, wet, dense.	
- 22 –						
-24 -		4			Less` gravel.	
	S-24.5	4 8 12	0	ML	Sandy silt, light brown, wet, low plasticity, very stiff.	
- 26 -	S-26.5	10 15	0	GC	Clayey gravel, with sand, light brown, moist, dense.	
- 85 -		10 15 20 12 16 20	0			
-30 —					Total depth = 29 feet.	1
-32 -				1		
-34 -						
- 36 –						
- 38 –						
- 40 -						
- 42 -				one and the second		
-44						
- 46 -						
_ 48 _						
_50 -						

RESNA

PROJECT 61035.02

LOG OF BORING B-3/MW-3

ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE

Depth of boring: 21 feet Diameter of	boring: 6 inc	ches Date drilled: 12/19/91
Well depth: N/A Material type:	N/A	Casing diameter:N/A
Screen interval: N/A	_ Slot size: _	N/A
Drilling Company: HEW Drilling	Driller:	Jasper and Louie
Method Used: Hollow-Stem Auger		Field Geologist: Barbara Sieminski
Signature of Registered Profe	ssional:	Aff.
Registration No.: CEG 1	463 State:	<u>EX</u>

Depth	Sample No.	Sample No.		ple ‱olg		P.I.D.	USCS Code		
- 0 -					GP	Paved area. Asphalt (4 inches). Sandy gravel, brown, damp, loose: baserock.	~ ~ ~ ~		
- 2 -					CL	Sandy clay, with small gravel, dark brown, damp, medium plasticity, stiff.	0 0 0 0		
- 4 -	S-5.5		4 5 6	0		With silt.	\times \t		
- 8 -							A A A A A A A A A A A A A A A A A A A		
- 10 - - 12 -	S10.5		2 5 9	0	ML.	Sandy silt, with gravel, brown, damp, low plasticity, stiff.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
- 14 -	5-15.5		7	13					
- 16 -			6	י ט	GP	Sandy gravel, with silt, green, damp, dense; noticeable product odor.			
- 18 -	S-18.5		4 6 9 8	27	Āşŧ	More sand; obvious product odor.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
- 20 -	S-20	1	8 0	9	-SM	Silty sand, with gravel, mottled green-brown, wet, medium dense.			
						Total depth = 21 feet.			

PROJECT: 61035.02

LOG OF BORING B-4

ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE 10

 $_{89.70}$ = Line of equal elevation of groundwater in feet above mean sea level (MSL)

89.77 = Elevation of groundwater in feet above MSL, December 23, 1991

MW−3 = Monitoring well (RESNA, December 1991)

= Underground storage tanks

Source: Based on ARCO Site Plan dated 1980.

RESNA

GROUNDWATER GRADIENT MAP ARCO Station 6148 5131 Shattuck Avenue Oakland, California PLATE 12

PROJECT

61035.02

90.50 = Line of equal elevation of groundwater in feet above mean sea level (MSL)

90.59 = Elevation of groundwater in feet above MSL, January 7, 1992

MW-3 \bigcirc = Monitoring well (RESNA, December 1991)

= Underground storage tanks

Source: Based on ARCO Site Plan dated 1980.

RESNA

GROUNDWATER GRADIENT MAP ARCO Station 6148 5131 Shattuck Avenue Oakland, California

13

PLATE

PROJECT

61035.02

B-4 = Soil boring (RESNA, December 1991)

= Underground storage tanks

Approximate Scale 40 20 0 40 80 feet Source: Based on ARCO Site Plan dated 1980.

RESNA

PROJECT 61035.02

TPHg CONCENTRATIONS IN SOIL AT DEPTHS OF 17 TO 18.5 FEET ARCO Station 6148 5131 Shattuck Avenue Oakland, California

PLATE

100 — Eline of equal concentration of TPHd in soil in parts per million (ppm)

540 = Concentration of TPHd in soil in ppm at depths of 17 to 18.5 feet

B-3/MW-3 = Monitoring well (RESNA, December 1991)

B-4 = Soil boring (RESNA, December 1991)

= Underground storage tanks

Approximate Scale 40 20 0 40 80

Source: Bosed on ARCO Site Plan dated 1980.

RESNA

TPHd CONCENTRATIONS IN SOIL AT DEPTHS OF 17 TO 18.5 FEET ARCO Station 6148 5131 Shattuck Avenue Oakland, California PLATE 15

PROJECT

61035.02

20,000 = Concentration of TPHg in groundwater in parts per billion, March 18, 1992

 MW^{-3} \longrightarrow Monitoring well (RESNA, December 1991)

Underground storage tanks

Source: Based on ARCO Site Plan dated 1980.

PROJECT 61035.02

TPHg CONCENTRATIONS
IN GROUNDWATER
ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE

3200 = Concentration of benzene in groundwater in parts per billion, March 18, 1992

MW-3 = Monitoring well (RESNA, December 1991)

= Underground storage tanks

Source: Based on ARCO Site Plan dated 1980.

PROJECT 61035.02

BENZENE CONCENTRATIONS
IN GROUNDWATER
ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE

46,000 = Concentration of TPHg in groundwater in parts per billion, June 12, 1992

NS = Not sampled due to floating product

WW-3 ■ Monitoring well (RESNA, December 1991)

= Underground storage tanks

Source: Bosed on ARCO Site Plan dated 1980

PROJECT 61035.02

TPHg CONCENTRATIONS
IN GROUNDWATER
ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE

EXPLANATION

3400 = Concentration of benzene in groundwater in parts per billion, June 12, 1992

NS = Not sampled due to floating product

MW-3
→ Monitoring well (RESNA, December 1991)

= Underground storage tanks

Source: Based on ARCO Site Plan dated 1980.

PROJECT 61035.02

BENZENE CONCENTRATIONS
IN GROUNDWATER
ARCO Station 6148
5131 Shattuck Avenue
Oakland, California

PLATE 19

September 30, 1992 61035.02

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 6148 Oakland, California

Date Well Measured	Well Elevation	Depth to Water	Water Elevation	Floating Product
MW-1				
12-23-91		18.26	89.77	Sheen
01-07-92	108.03	17.44	90.59	Sheen
01-19-92		17.17	90.86	None
02-19-92		16.52	91.51	None
03-18-92		16.81	91.22	None
04-20-92		17.56	90.47	None
05-15-92		17.96	90.07	None
06-12-92		18.16	89.87	None
MW-2				
12-23-91		17.98	89.45	Sheen
01-07-92	107.43	17.15	90.28	Sheen
01-19-92		17.47	89.96	None
02-19-92		16. 28	91.15	None
03-18-92		16.52	90.91	None
04-20-92		17.27	90.16	None
05-15-92		17.62	89.81	None
06-12-92		17.63*	89.80*	0.05
<u>MW-3</u>				
12-23-91		18.14	89.63	Sheen
01-07-92	107. <i>7</i> 7	17.26	90.51	Sheen
01-19-92		17.63	90.14	None
02-19-92		16.34	91.43	None
03-18-92		16.62	91.15	None
04-20-92		17.38	90.39	None
05-15-92		17.80	89.97	None
06-12-92		18.01	89.76	None

Measurements in feet.

Wells surveyed on December 27, 1991. Datum is City of Oakland = (USGS) + 3.00

Elevations in feet above mean sea level.

[•] indicates that the depth to water (DTW) and water elevation were corrected for the presence of floating product by the following method. Measured product thickness (PT) is multiplied by a correction factor of 0.8 and subtracted from DTW. (Adjusted DTW = DTW - [PT X 0.8]).

September 29, 1992 61035.02

TABLE 2 RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES - TPHg, TPHd, BTEX, and TOG ARCO Station 6148 Oakland, California December 19-20, 1991

Sample Identification	ТРНg	ТРНа	В	т	E	x	TOG
S-17-1/2-B1	470	370	23 [1.3]	/ 451 (18)	// (\$411181) Co	24 [8.8] week	<30
S-22-1/2-B1	<1.0	\$1.0°	0.010	* ~ < 0.0050		<0.0050	€ / <30
S-26-1/2-B1	2.0	<1.0	0.026	0.014	0.011	0.049	<30
S-12-B2	<1.0	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<30
S-17-B2	740	540	³⁰ 23 [4.3]	F S 13 [92]	([57] 3.7 [57] 3.7.7	్రాం41 [360] ా	<30
S-25-1/2-B2	< 1.0	<1.0	0.015	0.016	< 0.0050	0.019	<30
S-30-1/2-B2	<1.0	<1.0	0.015	0.0080	< 0.0050	< 0.0050	<30
S-10-1/2-B3	<1.0	<1.0	0.0070	< 0.0050	< 0.0050	< 0.0050	< 30
S-17-1/2-B3	320	45 1230 M	″ > 0.65	0.65	2.3	5.9	<30
S-26-1/2-B3	<1.0	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<30
S-10-1/2-B4	<1.0	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 30
S-15-1/2-B4	<1.0	<1.0	0.010	< 0.0050	< 0.0050	< 0.0050	<30
S-18-1/2-B4	STASS ATT	(1) To 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.42 [0.46]	0.22 [0.24]	0.54 [1.7]	0.77 [3.2]	<30
S-20-B4	<1.0	<1.0	0.0070	< 0.0050	< 0.0050	< 0.0050	<30
S-1220-SP-(A-D)	25	11	0.11	0.14	0.11	0.38	<30

All results shown in parts per million (ppm)

Total petroleum hydrocarbons as gasoline by EPA method 5030/8015/8020. TPHg:

Total petroleum hydrocarbons as diesel by EPA method 3550/8015. Laboratory reported samples matrix contained high TPHd: boiling point fuel mixture calculated as diesel, possibly weathered gasoline.

B: Benzene, T: Toluene, E: Ethylbenzene, T: Total Xylene isomers;

BTEX: Measured by EPA method 8030/8015/8020.

Total oil and grease by Standard Method 5520 E&F. TOG:

BTEX detected using EPA Method 8240. []:

Results reported as less than the detection limit.

Sample Identification:

Boring number Depth in feet Soil sample Composite sample Soil pile Date sampled

Soil sample

September 29, 1992 61035.02

TABLE 3 RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES - VOCs and METALS ARCO Station 6148 Oakland, California December 19-20, 1991

Sample Identification	VOCs	Cd	Cr	Pb	Zn	Ni
S-17-1/2-B1	ND*	0.87	31	8.3	62	41
S-22-1/2-B1	ND	0,82	30	4.1	62	34
S-17-B2	ND*	0.87	24	6.7	68	46
S-25-1/2-B2	ND	< 0.50	28	2.8	45	26
S-17-1/2-B3	NA	0.95	31	3.9	66	38
S-26-1/2-B3	ND	0.77	48	6.9	70	66
S-18-1/2-B4	ND*	< 0.50	27	3.6	57	35
S-20-B4	ND	NA	NA	NA	NA	NA

All results shown in parts per million (ppm)

VOCs: Volatile Organic Compounds by EPA Method 8240.

Cd: Cadmium by EPA Method 6010.
Cr. Chromium by EPA Method 6010.
Pb: Lead by EPA Method 7421.
Zn: Zinc by EPA Method 6010.

Ni: Nickel by EPA Method 6010.

<: Results reported as less than the detection limit.

ND: All 37 compounds tested were not detected.

ND*: All compounds tested were not detected with the exception of BTEX.

NA: Not analyzed.

Sample Identification:

Boring number
Depth in feet
Soil sample

S-1220-SP-(A-D)
Composite sample
Soil pile
Date sampled

Soil sample

September 29, 1992 61035.02

TABLE 4 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF WATER SAMPLESTPHg, TPHd, BTEX, TOG, and Metals ARCO Station 6148 Oakland, California

WELL DATE	ТРНg	ТРНа	В	т	E	x	Cđ	Cr	Pb	Ni	Zn	TOG
<u>MW-1</u> 03/18/92	790 }	<50	310	26	12	44	<3	5	3	<20	31	<0.5 (1.4)
06-12-92	1000	<50**	290	15	10	30	NA.	NA	NA	NA	NA	<0.5
<u>MW-2</u> 03/18/92	8,400	⁷ 230*	1,400	1,000	220	870	<3	21	9	38	54	1.2 (3.0)
06/12/92				No	ot sampl	ed-(fjoat	ng prod	uct 🧳				(5.0)
<u>MW-3</u> 03/18/92	20,000	2,800*	3,200	560	380	1,000	<3	67	27	113	156	7.8 (8.1)
06/12/92	46,000	1,600**	3,400	4,200	1,300	5,400	NA	NA	NA	NA	NA	16
MCL: DWAL:	<u>-</u>		1	100	680 	1,750 	10 —	50 —	50 			

Results in parts per billion (ppb), except TOG which is in parts per million (ppm).

TPHg: Total petroleum hydrocarbons as gasoline by EPA method 5030/8015/8020.

TPHd: Total petroleum hydrocarbons as diesel by EPA method 3510.

B: benzene, T: toluene, E: ethylbenzene, X: total xylenes isomers

BTEX: Analyzed by EPA method 5030/8015/8020.

TOG: Total oil and grease by Standard method 5520F-IR.

(): Concentrations in parentheses were results of Method 5520C.

*: Laboratory reported sample matrix contained high boiling point fuel mixture calculated as diesel, possibly weathered gasoline.

Metals: By EPA method 6010 and 7421.

<: Results reported below the laboratory detection limit.

••: Samples taken on July 2, 1992. Laboratory reported sample contains a lower boiling point hydrocarbon mixture quantified as diesel. The chromatogram does not match the typical diesel fingerprint, but appears to be weathered gasoline.

September 29, 1992 61035.02

TABLE 5 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF WATER SAMPLES-VOCs ARCO Station 6148 Oakland, California

Tetrachioroethene Trichloroethene Tetrachioroethene Trichloroethene	113 / 112 / 118 1.4					
Trichloroethene Tetrachloroethene Trichloroethene	1.4					
Trichloroethene	1.4					
	P.7*).					
Tetrachloroethene	19					
Trichloroethene	2.2					
cis-1,2-Dichloroethene	0.5					
lot sampled-floating product						
	•					
Tetrachloroethene	2.7					
Tetrachloroethene	1.9					
PCE	TCE		CE	·		
•	ot sampled-floating product Tetrachloroethene Tetrachloroethene	Tetrachloroethene 2.7 Tetrachloroethene 1.9 PCE TCE	Tetrachloroethene 2.7 Tetrachloroethene 1.9 PCE TCE cis-1,2-D	Tetrachloroethene 2.7 Tetrachloroethene 1.9 PCE TCE cis-1,2-DCE	Tetrachloroethene 2.7 Tetrachloroethene 1.9 PCE TCB cis-1,2-DCE	Tetrachloroethene 2.7 Tetrachloroethene 1.9 PCE TCE cis-1,2-DCE

Results in parts per billion (ppb).

VOCs: Volatile Organic Compounds by EPA method 5030/8010. Compounds not shown were not detected.

Cd: Cadmium by EPA method 6010.

Cr. Chromium by EPA method 6010.

Pb: Lead by EPA method 7421.

Zn: Zinc by EPA method 6010.

Ni: Nickel by EPA method 6010.

MCLs: Maximum Contaminant Levels as reported by the California Department of Health Services 10/24/90.

": Proposed MCL.

APPENDIX A

FIELD PROTOCOL WELL PURGE DATA SHEETS

September 29, 1992 61035.02

FIELD PROTOCOL

The following presents RESNA's protocol for a typical site investigation involving gasoline hydrocarbon-impacted soil and/or groundwater.

Site Safety Plan

The Site Safety Plan describes the safety requirements for the evaluation of gasoline hydrocarbons in soil, groundwater, and the vadose-zone at the site. The Site Safety Plan is applicable to personnel of RESNA and its subcontractors. RESNA personnel and subcontractors of RESNA scheduled to perform the work at the site are be briefed on the contents of the Site Safety Plan before work begins. A copy of the Site Safety Plan is available for reference by appropriate parties during the work. A site Safety Officer is assigned to the project.

Sampling of Stockpiled Soil

One composite soil sample is collected for each 50 cubic yards of stockpiled soil, and for each individual stockpile composed of less than 50 cubic yards. Composite soil samples are obtained by first evaluating relatively high, average, and low areas of hydrocarbon concentration by digging approximately one to two feet into the stockpile and placing the intake probe of a field calibrated OVM against the surface of the soil; and then collecting one sample from the "high" reading area, and three samples from the "average" areas. Samples are collected by removing the top one to two feet of soil, then driving laboratory-cleaned brass sleeves into the soil. The samples are sealed in the sleeves using aluminum foil, plastic caps, and aluminized duct tape; labeled; and promptly placed in iced storage for transport to the laboratory, where compositing will be performed.

Soil Borings

Prior to the drilling of borings and construction of monitoring wells, permits are acquired from the appropriate regulatory agency. In addition to these permits, encroachment permits from the City or State are acquired if drilling of borings offsite in the City or State streets is necessary. Copies of the permits are included in the appendix of the project report. Prior to drilling, Underground Services Alert is notified of our intent to drill, and known underground utility lines and structures are approximately marked.

September 29, 1992 61035.02

The borings are drilled by a truck-mounted drill rig equipped with 8- or 10-inch-diameter, hollow-stem augers. The augers are steam-cleaned prior to drilling each boring to minimize the possibility of cross-contamination. After drilling the borings, monitoring wells are constructed in the borings, or neat-cement grout with bentonite is used to backfill the borings to the ground surface.

Borings for groundwater monitoring wells are drilled to a depth of no more than 20 feet below the depth at which a saturated zone is first encountered, or a short distance into a stratum beneath the saturated zone which is of sufficient moisture and consistency to be judged as a perching layer by the field geologist, whichever is shallower. Drilling into a deeper aquifer below the shallowest aquifer can begin only after a conductor casing is properly installed and allowed to set, to seal the shallow aquifer.

Drill Cuttings

Drill cuttings subjectively evaluated as having hydrocarbon contamination at levels greater than 100 parts per million (ppm) are separated from those subjectively evaluated as having hydrocarbon contamination levels less than 100 ppm. Evaluation is based either on subjective evidence of soil discoloration, or on measurements made using a field calibrated OVM. Readings are taken by placing a soil sample into a ziplock type plastic bag and allowing volatilization to occur. The intake probe of the OVM is then inserted into the headspace created in the plastic bag immediately after opening it. The drill cuttings from the borings are placed in labeled 55-gallon drums approved by the Department of Transportation; or on plastic at the site, and covered with plastic. The cuttings remain the responsibility of the client.

Soil Sampling in Borings

Soil samples are collected at no greater than 5-foot intervals from the ground surface to the total depth of the borings. The soil samples are collected by advancing the boring to a point immediately above the sampling depth, and then driving a California-modified, split-spoon sampler containing brass sleeves through the hollow center of the auger into the soil. The sampler and brass sleeves are laboratory-cleaned, steam-cleaned, or washed thoroughly with Alconox® and water, prior to each use. The sampler is driven with a standard 140-pound hammer repeatedly dropped 30 inches. The number of blows to drive the sampler each successive six inches are counted and recorded to evaluate the relative consistency of the soil.

September 29, 1992 61035.02

The samples selected for laboratory analysis are removed from the sampler and quickly sealed in their brass sleeves with aluminum soil, plastic caps, and aluminized duct tape. The samples are then labeled, promptly placed in iced storage, and delivered to a laboratory certified by the State of California to perform the analyses requested.

One of the samples in brass sleeves not selected for laboratory analysis at each sampling interval is tested in the field using an OVM that is field calibrated at the beginning of each day it is used. This testing is performed by inserting the intake probe of the OVM into the headspace created in the plastic bag containing the soil sample as described in the Drill Cuttings section above. The OVM readings are presented in Logs of Borings included in the project report.

Logging of Borings

A geologist is present to log the soil cuttings and samples using the Unified Soil Classification System. Samples not selected for chemical analysis, and the soil in the sampler shoe, are extruded in the field for inspection. Logs include texture, color, moisture, plasticity, consistency, blow counts, and any other characteristics noted. Logs also include subjective evidence for the presence of hydrocarbons, such as soil staining, noticeable or obvious product odor, and OVM readings.

Monitoring Well Construction

Monitoring wells are constructed in selected borings using clean 2- or 4-inch-diameter, thread-jointed, Schedule 40 polyvinyl chloride (PVC) casing. No chemical cements, glues, or solvents are used in well construction. Each casing bottom is sealed with a threaded endplug, and each casing top with a locking plug. The screened portions of the wells are constructed of machine-slotted PVC casing with 0.020-inch-wide (typical) slots for initial site wells. Slot size for subsequent wells may be based on sieve analysis and/or well development data. The screened sections in groundwater monitoring wells are placed to allow monitoring during seasonal fluctuations of groundwater levels.

The annular space of each well is backfilled with No. 2 by 12 sand, or similar sorted sand, to approximately two feet above the top of the screened casing for initial site wells. The sand pack grain size for subsequent wells may be based on sieve analysis and/or well development data. A 1- to 2-foot-thick bentonite plug is placed above the sand as a seal against cement entering the filter pack. The remaining annulus is then backfilled with a slurry of water, neat cement, and bentonite to approximately one foot below the ground surface.

September 29, 1992 61035.02

An aluminum utility box with a PVC apron is placed over each wellhead and set in concrete placed flush with the surrounding ground surface. Each wellhead cover has a seal to protect the monitoring well against surface-water infiltration and requires a special wrench to open. The design discourages vandalism and reduces the possibility of accidental disturbance of the well.

Groundwater Monitoring Well Development

The monitoring wells are developed by bailing or over-pumping and surge-block techniques. The wells are either bailed or pumped, allowed to recharge, and bailed or pumped again until the water removed from the wells is determined to be clear. Turbidity measurements (in NTUs) are recorded during well development and are used in evaluating well development. The wells are allowed to equilibrate for at least 48 hours after development prior to sampling. Water generated by well development will be stored in 17E Department of Transportation (DOT) 55-gallon drums on site and will remain the responsibility of the client.

Groundwater Sampling

The static water level in each well is measured to the nearest 0.01-foot using a Solinst® electric water-level sounder or oil/water interface probe (if the wells contain floating product) cleaned with Alconox® and water before use in each well. The liquid in the onsite wells is examined for visual evidence of hydrocarbons by gently lowering approximately half the length of a Teflon® bailer (cleaned with Alconox® and water) past the air/water interface. The sample is then retrieved and inspected for floating product, sheen, emulsion, color, and clarity. The thickness of floating product detected is recorded to the nearest 1/8-inch.

Wells which do not contain floating product are purged using a submersible pump. The pump, cables, and hoses are cleaned with Alconox® and water prior to use in each well. The wells are purged until withdrawal is of sufficient duration to result in stabilized pH, temperature, and electrical conductivity of the water, as measured using portable meters calibrated to a standard buffer and conductivity standard. If the well becomes dewatered, the water level is allowed to recover to at least 80 percent of the initial water level. Prior to the collection of each groundwater sample, the Teflon® bailer is cleaned with Alconox® and rinsed with tap water and deionized water, and the latex gloves worn by the sampler changed. Hydrochloric acid is added to the sample vials as a preservative (when applicable). A sample method blank is collected by pouring distilled water into the bailer and then into sample vials. A sample of the formation water is then collected from the surface of the

September 29, 1992 61035.02

water in each of the wells using the Teflon® bailer. The water samples are then gently poured into laboratory-cleaned, 40-milliliter (ml) glass vials, 500 ml plastic bottles or 1-liter glass bottles (as required for specific laboratory analysis) and sealed with Teflon®-lined caps, and inspected for air bubbles to check for headspace, which would allow volatilization to occur. The samples are then labeled and promptly placed in iced storage. A field log of well evacuation procedures and parameter monitoring is maintained. Water generated by the purging of wells is stored in 17E DOT 55-gallon drums onsite and remains the responsibility of the client.

Sample Labeling and Handling

Sample containers are labeled in the field with the job number, sample location and depth, and date, and promptly placed in iced storage for transport to the laboratory. A Chain of Custody Record is initiated by the field geologist and updated throughout handling of the samples, and accompanies the samples to a laboratory certified by the State of California for the analyses requested. Samples are transported to the laboratory promptly to help ensure that recommended sample holding times are not exceeded. Samples are properly disposed of after their useful life has expired.

WELL PURGE DATA SHEET

Project Name: ARCO 6148 Job No. 61035.02

Page <u>1</u> of <u>1</u> Date: <u>1/7/92</u>

Time Started 12:45 Well No.MW-1

Time (hr)	Gallons (cum.)	Temp. (F)	рН	Conduct. (micromoh)	Turbidity (NTU)					
12:45	Begin p	oumping well	l MW-1							
12:49	5	60.0	7.54	3.96	NM					
12:53	10	62.8	7.40	4.42	NM					
12:57	15	64.2	7.48	4.22	NM					
1:01	20	63.8	7.43	4.31	NM					
1:05	25	64.3	7.38	4.32	NM					
1:09	30	63.7	7.43	4.28	NM					
1:10	31	31 Stop pumping MW-1								
Notes:				er (inches) : ttom (feet) :	4 26.0					

Depth to Bottom (feet): 26.0
Depth to Water - initial (feet): 17.44 Depth to Water - final (feet): 17.46

% recovery : 99

Time Sampled:

Gallons per Well Casing Volume :

Gallons Purged : 31

Well Casing Volumes Purged :

Approximate Pumping Rate (gpm) : 1.2

Turbidity not measured per ARCO request

WELL PURGE DATA SHEET

Job No. <u>61035.02</u> Project Name: ARCO 6148

Page $\underline{1}$ of $\underline{1}$ Date: <u>1/7/92</u>

Time Started 12:12 Well No.MW-2

Time (hr)	Gallons (cum.)	Temp. (F)	рН	Conduct. (micromoh)	Turbidity (NTU)
12:12	Begin p	umping wel	1 MW-2		
12:16	5	60.2	7.71	4.06	NM
12:20	10	62.7	7.47	4.55	MM
12:24	15	62.0	7.47	4.41	NM
12:28	20	62.1	7.40	4.29	NM
12:32	25	62.7	7.35	4.41	NM
12:36	29	Stop pu	mping MW-	2	
Notes:	D	De	pth to Bo	er (inches) : ttom (feet) : tial (feet) :	

Depth to Water - final (feet): 17.21

% recovery : 99

Time Sampled:

Gallons per Well Casing Volume :

Gallons Purged : 29

Well Casing Volumes Purged : 5.0

Approximate Pumping Rate (gpm) : 1.2 Turbidity not measured per ARCO request : NM

WELL PURGE DATA SHEET

Project Name: ARCO 6148 Job No. 61035.02

Date: 1/7/92 Page 1 of 1

Well No.MW-3 Time Started 11:32

·	-T		Υ						
Time (hr)	Gallons (cum.)	Temp. (F)	рН	Conduct. (micromoh)	Turbidity (NTU)				
11:32	Begin p	oumping well	1 MM-3						
11:35	5	63.2	8.92	4.75	NM				
11:38	10	64.3	5.10	NM					
11:40	15	64.0	7.80	5.40	ММ				
11:43	20	63.4	7.43	5.53	NM				
11:45	25 62.6 7.24 5.53 NM								
11:48	30 62.9 7.15 5.43 NM								
11:51	25	62.7	7.15	5.54	NM				
11:53	33	Stop pur	mping MW-	3					
Notes:	1	Dep Depth to Wat Depth to Wat Gallons per Well Cas	ter - initer - finater - f	er (inches): ttom (feet): tial (feet): al (feet): % recovery: ime Sampled: ing Volume: ons Purged: mes Purged: Rate (gpm):	26.0 17.26 17.31 99 5.8 33 5.7				
ם .	urbidity	not measure			NM				

APPENDIX B WELL CONSTRUCTION PERMIT

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE DRIVE

when 12 (27/1)

PLEASANTON, CALIFORNIA 94566

// Wyman Hong

121989

(415) 484-2600

GROUNDWATER PROTECTION ORDINANCE PERMIT APPLICATION

	,
FOR APPLICANT TO COMPLETE	FOR OFFICE USE
5131 Shattyck Avenue Caklano, A	PERMIT NUMBER 91553 LOCATION NUMBER
LIENT, ame Arco Products Company Address D. Bux 541 Phone (417) 571-2434 ity San Maxeo ZIP 9440Z	PERMIT CONDITIONS Circled Permit Requirements Apply
APPLICANT Jame American American American American Address 33:5 American American American Address 33:5 American American Address 33:5 American American Applicant American American Address 33:5 American American Applicant American American Address 33:5 American American Applicant American Applicant American Address 33:5 American American Applicant Applicant American Address 33:5 American Applicant American Applicant American American American American	A. GENERAL. 1. A permit application should be submitted so as arrive at the Zone 7 office five days prior proposed starting date. 2. Submit to Zone 7 within 60 days after completic of permitted work the original Department. Water Resources Water Well Drillers Report equivalent for well projects, or drilling log and location sketch for geotechnical projects. 3. Permit is void if project not begun within 9 days of approval date. 9. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches comment grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells on 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In dreas of hown or suspecte contamination, tremied cement grout shall be used in place of compacted cuttings. 5. CATHODIC. Fill hole above anode zone with concret placed by tremie. E. WELL DESTRUCTION. See attached.
hereby agree to comply with all requirements of this armit and Alamede County Ordinance No. 73-681	Approved - Wilmail - Hond Date 1 Oct 91

APPENDIX C

EMCON'S FIELD REPORTS (3),
DEPTH TO WATER/FLOATING PRODUCT SURVEY RESULTS,
SUMMARY OF GROUNDWATER MONITORING DATA,
CERTIFIED ANALYTICAL REPORTS WITH CHAIN-OF-CUSTODY,
WATER SAMPLE FIELD DATA SHEETS

MECETVED MAR 2 - 1992

ASSOCIATES
Consultants in Wastes
Management and
Environmental Control

Date Project February 25, 1992 G70-39.01

Engineer.

To:					
Mr. Joel Coffmar	n				
RESNA Applied					
	Expressway, Suite 34				
San Jose, Califo					
Oarr Jose, Came	51111a 00110				
We are enclosi	ng:				
Copies	Description				
1	Depth To Wa	ter/Floating Pi	roduct Sur	vey Form,	imeto estre estado e
	February 199	2 monthly wat	ter level st	ırvey, ARC	0
	station 6148,	5131 Shattuc	k Avenue,	Oakland,	CA _
For your:	X Information	Sent by:	X	Mail	
Comments:					
Monthly wat	er level data for the a	bove mentione	<u>ed site are</u>	attached.	<u>Please</u>
call if you ha	ave any questions: (40	08) 453-2266.			
	OF LOSION	1			SV
	A STATE OF THE STA		Mar	k Knuttel	M
	162				
Reviewed by:					
	MEN Sim Ulanlas				
	NO. COLLEGE		^		•
			Robert (Conte	
	Annual Let Beauth and	B(phert Porte	er Senior I	Project

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT #: G70-39.01 STATION ADDRESS: 5131 Shattuck Avenue, Oakland, C1 DATE: 2/19/92

ARCO STATION #: 6148 FIELD TECHNICIAN: VINCE RAILOCK DAY: WEDNESDAY

												
DTW	WELL	Weli	Well			Locking	FIRST	SECOND	DEPTH TO	1	WELL	
i 1	ID	Box	Lid			Well	DEPTH TO	i	1	1	TOTAL	
Order	טו	Seal	Secure	Gasket	Lock	Сар	WATER "	WATER	l .	1 1		COMMENTS
				 			(feet)	(feet)	(feet)	(feet)	(feet)	
1	MW-1	OK	Yes	ok	405	405	1652	16.53	hD	100	25.73	
2	MW-2	¢.ξ	Yes	COK	yes	ues	1628	16.29	ND	ND	25.77	
3	MW-3	014	Yes	OK-	ules	43	16.34	16.35	70	ND	25.80	
					_						·	
				<u> </u>				<u></u>				
	<u></u>											

Date <u>January 29, 1992</u> Management and Environmental Control **Project** G70-39.01 To: Mr. Joel Coffman RESNA/ Applied Geosystems 3315 Almaden Expressway, Suite 34 San Jose, California 95118 We are enclosing: Copies Description DTW/FP Survey Form, January 1992 monthly water level survey, ARCO station 6148, 5131 Shattuck Avenue, Oakland, CA For your: Χ Information Sent by: Χ Mail Comments: Monthly water level data for the above mentioned site are attached. Please call if you have any questions: (408) 453-2266. MK Mark Knuttel No: 4094 Reviewed by:

Robert Porter, Senior P.E. #4094

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

DAY: 1-19.72 PROJECT #: G70-39.01 DATE:_ STATION ADDRESS: 5131 Shattuck Avenue, Oakland, Cr

FIELD TECHNICIAN: J Williams ARCO STATION #: 6148

	Well	Well			_					WELL	
)	Box	Lid			Well	DEPTH TO	DEPTH TO	FLOATING	PRODUCT	TOTAL	
ID	Seal	Secure	Gasket	Lock	Cap	WATER	WATER	PRODUCT	THICKNESS	DEPTH	COMMENTS
						(feet)	(feet)	(feet)	(feet)	(feet)	
MW-1	ok	lg*"	oh	yı	w	17.77	17-17	NY	4 W	25.07	
MW-2						17.47	17.47	1115	AUN	25.80	
MW-3						17.63	1763	<u> 20</u>	ND		-
			1								
					,						
					L						
		,									
	MW-2	MW-1 64 MW-2	WELL Box Lid Secure MW-1 & W -7 MW-2 MW-3	WELL Box Lid Secure Gasket MW-1 &	WELL Box Lid Secure Gasket Lock MW-1 Gu W VA W MW-2	WELL Box Lid Secure Gasket Lock Cap MW-1 GV W V V V V V V V V V V V V V V V V V	WELL Box Lid Secure Gasket Lock Cap WATER (feet) MW-1 & & & & & & & & & & & & & & & & & & &	WELL ID Box Seal Lid Secure Gasket Lock Well Cap DEPTH TO WATER (feet) WATER (feet) MW-1 6½ ½ ½ ½ ½ ½ 17.77 17.17 MW-2 1 1 1 17.47 17.47 17.47 MW-3 1 1 1 17.63 17.63 I 1 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1 1 I 1 <t< td=""><td>WELL Box Lid Seal Secure Gasket Lock Cap WATER (feet) (feet) (feet) MW-1 64 W7 64 W W W 17.777 17.17 W MW-2 17.47 17.47 17.43 17.63 17.63 NA MW-3 1 17.63 17.63 17.63 NA</td><td>WELL Box Lid Secure Gasket Lock Cap WATER (feet) PRODUCT THICKNESS (feet) MW-1 & W W W 17.77 (7.17 W W W MATER) MW-2 </td><td>WELL Box Lid Secure Gasket Lock Cap Water (feet) WATER (feet) PRODUCT THICKNESS (feet) DEPTH TO (feet) WATER (feet) PRODUCT THICKNESS (feet) DEPTH (feet) WATER (feet)</td></t<>	WELL Box Lid Seal Secure Gasket Lock Cap WATER (feet) (feet) (feet) MW-1 64 W7 64 W W W 17.777 17.17 W MW-2 17.47 17.47 17.43 17.63 17.63 NA MW-3 1 17.63 17.63 17.63 NA	WELL Box Lid Secure Gasket Lock Cap WATER (feet) PRODUCT THICKNESS (feet) MW-1 & W W W 17.77 (7.17 W W W MATER) MW-2	WELL Box Lid Secure Gasket Lock Cap Water (feet) WATER (feet) PRODUCT THICKNESS (feet) DEPTH TO (feet) WATER (feet) PRODUCT THICKNESS (feet) DEPTH (feet) WATER (feet)

APR 1 200

Date

Environmental Control **Project** G70-39.01 To: Mr. Joel Coffman **RESNA/ Applied Geosystems** 3315 Alamden Expressway, Suite 34 San Jose, California 95050 We are enclosing: Copies Description Depth To Water / Floating Product Survey Results 3 Summary of Groundwater Monitoring Data Certified Analytical Reports with Chain-of-Custody 1 3 Water Sample Field Data Sheets

Comments:

For your:

Enclosed are the data from the first quarter 1992 monitoring event at ARCO service station 6148, 5131 Shattuck Avenue, Oakland, California. Please call if you have any questions: (408) 453-2266.

Sent by:

Reviewed by:

Information

X

Robert Porter, Senior Project
Engineer.

Mark Knuttel

Mail

April 2, 1992

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT #: G70-39.01 STATION ADDRESS: 5131 Shattuck Avenue, Oakland, C/ DATE: 3/18/92

ARCO STATION #: 6148 FIELD TECHNICIAN: L. RATH DAY: wepnes DAY

													O CONES DIAY
DTW	WELL	Well Box	Well Lid			Locking Well	FIRST DEPTH TO		OND	DEPTH TO	1	WELL	
Order	ID	Seal	Secure	Gasket	Lock	Сар	WATER (feet)	WA	TER	PRODUCT	THICKNESS		COMMENTS
1	MW-1	900d	1/05	90cx	3259	9000			et) 8고	(feet)	(feet)	(feet) 25.8	
2	MW-2						16.52		52	ND	AID	25.8	
3	MW-3	9006		i			1662		62	ND		258	
												- 7 0	

												·	
								·					
	<u></u>												
								<u></u>				.—	
													
<u> </u>													

Summary of Groundwater Monitoring Data First Quarter 1992 ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California micrograms per liter (µg/l) and milligrams per liter (mg/l)

Well ID and Sample Depth	Sampling Date	Depth To Water (feet)	Floating Product Thickness (feet)	TPH ¹ as Gasoline (µg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	TPH as Diesel (µg/l)	Total Oil and Grease, 5520B (mg/l	Hydrocarbons 5520F-IR (mg/l
MW-1(24)	03/18/92	16.81	ND. ²	790.	310.	26.	12.	44.	<50	1.4	<0.5
MW-2(24)	03/18/92	16.52	ND.	8,400.	1,400.	1,000.	220.	870.	230.*	3.0	1.2
MW-3(24)	03/18/92	16.62	ND.	20,000.	3,200.	560.	380.	1,000.	2,800.*	8.1	7.8
FB-1. ³	03/18/92	NA. ⁴	NA.	<50	<0.5	<0.5	<0.5	<0.5	NR. ⁵	NR.	NR.

^{1.} TPH. = Total petroleum hydrocarbons

^{2.} ND. = Not detected

^{3.} FB. = Field Blank

^{4.} NA. = Not applicable

^{5.} NR. = Not reported; sample was not scheduled for analysis of the selected parameter *. = Sample matrix contains high boiling point fuel mixture calculated as diesel

Summary of Analytical Results Halogenated Volatile Organic Compounds by EPA¹ Methods 5030/8010 First Quarter 1992

ARCO Service Station 6148

5131 Shattuck Avenue, Oakland, California micrograms per liter (μg/l) or parts per billion (ppb)

Well ID and Sample Depth	Sampling Date	cis-1,2-DCE ² (ppb)	TCE ³ (ppb)	PCE ⁴ (ppb)
MW-1(24)	03/18/92	<0.5	1.2	13.
MW-2(24)	03/18/92	0.5	2.2	19.
MW-3(24)	03/18/92	<0.5	<0.5	2.7

^{1.} EPA = United States Environmental Protection Agency.

^{2.} cis-1,2-DCE = cis-1,2-Dichloroethene
3. TCE = Trichloroethene
4. PCE = Tetrachloroethene

Summary of Analytical Results Total Metals by EPA¹ Method 6010 and 7421 First Quarter 1992 ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California micrograms per liter (µg/l) or parts per billion (ppb)

Well ID and Sample Depth	Sampling Date	Cadmium (ppb)	Chromium (ppb)	Lead (ppb)	Nickle (ppb)	Zinc (ppb)
MW-1(24)	03/18/92	<3	5	3	<20	31
MW-2(24)	03/18/92	<3	21	9	38	54
MW-3(24)	03/18/92	<3	67	27	113	156
	_					

^{1.} EPA = United States Environmental Protection Agency

March 31, 1992

Mr. Mark Knuttel EMCON Associates 1921 Ringwood Avenue San Jose, CA 95131

Re: EMCON Project No. G70-39.01

Arco Facility No. 6148

Dear Mr. Knuttel:

Enclosed are the results of the water samples submitted to our lab on March 19, 1992. For your reference, our service request number for this work is SJ92-0282.

All analyses were performed in accordance with the laboratory's quality assurance program.

Please call if you have any questions.

Respectfully submitted:

Keoni A. Murphy

COLUMBIA ANALYTICAL SERVICES, INC.

le/KAM

Analytical Report

Client: EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 03/19/92 Work Order #: SJ92-0282 Sample Matrix: Water

Inorganic Parameters¹ mg/L (ppm)

Sample Name	Date Sampled	Total Oil & Grease, 5520C	Hydrocarbons, 5520F-IR
MW-1 (24) MW-2 (24)	03/18/92 03/18/92	1.4 3.0	ND 1.2
MW-3 (24)	03/18/92	8.1	7.8
Method Blank		ND	ND
Method Reporting Lir	nit	0.5	0.5

ND None Detected at or above the method reporting limit

Unless otherwise noted, all analyses were performed within EPA recommended maximum holding times specified in *Test Methods for Evaluating Solid Waste*, (SW-846, 3rd Edition) and *Methods for Chemical Analysis of Water and Waste* (EPA-600/4-79-020, Revised March 1983).

Approved by KERLINGTHING

Date 19arch 31, 1992

2

Analytical Report

Client:

EMCON Associates

Project:

EMCON Project No. G70-39.01

Arco Facility No. 6148

Sample Matrix: Water

Date Received:

03/19/92

Date Extracted: 03/20/92

Date Analyzed: 03/23/92

Work Order #:

SJ92-0282

Total Petroleum Hydrocarbons as Diesel EPA Methods 3510/California DHS LUFT Method

 μ g/L (ppb)

Sample Name	MRL	TPH as Diesel
MW-1 (24) MW-2 (24) MW-3 (24)	50 50 50	ND 230.* 2,800.*
Method Blank	50	ND

MRL Method Reporting Limit

TPH Total Petroleum Hydrocarbons

None Detected at or above the method reporting limit ND

Sample matrix contains high boiling point fuel mixture calculated as diesel.

Approved by KEELLIAMILYNIA Date March 31, 1992

Analytical Report

Client:

EMCON Associates

Project:

EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 03/19/92

Work Order #:

SJ92-0282

Sample Matrix: Water

BTEX and TPH as Gasoline EPA Methods 5030/8020/DHS LUFT Method μ g/L (ppb)

ı	Sample Name: Date Analyzed:	<u>MW-1 (24)</u> 03/20/92	MW-2 (24) 03/20/92	MW-3 (24) 03/20/92
<u>Analyte</u>	<u>MRL</u>			
Benzene	0.5	310.	1,400.	3,200.
Toluene	0.5	26.	1,000.	560.
Ethylbenzene	0.5	12.	220.	380.
Total Xylenes	0.5	44.	870.	1,000.
TPH as Gasoline	50	790.	8,400.	20,000.

TPH Total Petroleum Hydrocarbons

Method Reporting Limit MRL

ND None Detected at or above the method reporting limit

reenint Murphy Date March 31,1992

Analytical Report

Client: **EMCON Associates**

EMCON Project No. G70-39.01 Project:

Arco Facility No. 6148

Date Received: 03/19/92 Work Order #: SJ92-0282

Sample Matrix: Water

BTEX and TPH as Gasoline EPA Methods 5030/8020/DHS LUFT Method μ g/L (ppb)

	Sample Name: Date Analyzed:		<u>FB-1</u> 03/20/92	Method Blank 03/20/92
<u>Analyte</u>		<u>MRL</u>		
Benzene		0.5	ND	ND
Toluene		0.5	ND	ND
Ethylbenzene		0.5	ND	ND
Total Xylenes		0.5	ND	ND
TPH as Gasoline		50	ND	ND

Total Petroleum Hydrocarbons TPH

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Keermannihy Date March 31,1992

Analytical Report

Client:

EMCON Associates

Project:

EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: Work Order #:

03/19/92 SJ92-0282

Sample Matrix:

Water

mple Matrix: Water

Halogenated Volatile Organic Compounds EPA Methods 5030/8010 μ g/L (ppb)

Sample Name: Date Analyzed:		MW-1 (24) 03/20/92	<u>MW-2 (24)</u> 03/23/92	MW-3 (24) 03/23/9 2
Analyte	<u>MRL</u>			
Dichlorodifluoromethane (Freon 12)	1	ND	ND	ND
Chloromethane	1	ND	ND	ND
Vinyl Chloride	0.5	ND	ND	ND
Bromomethane	0.5	ND	ND	ND
Chloroethane	0.5	ND	ND	ND
Trichlorofluoromethane (Freon 11)	0.5	ND	ND	ND
1,1-Dichloroethene	0.5	ND	ND	ND
Trichlorotrifluoroethane (Freon 113)	0.5	ND	ND	ND
Methylene Chloride	0.5	ND	ND	ND
trans-1,2-Dichloroethene	0.5	ND	ND	ND
cis-1,2-Dichloroethene	0.5	ND	0.5	ND
1,1-Dichloroethane	0.5	ND	ND	ND '
Chloroform	0.5	ND	ND	ND
1,1,1-Trichloroethane (TCA)	0.5	ND	ND	ND
Carbon Tetrachloride	0.5	ND	ND	ND
1,2-Dichloroethane	0.5	ND	ND	ND
Trichloroethene (TCE)	0.5	1.2	2.2	ND
1,2-Dichloropropane	0.5	ND	ND	ND
Bromodichloromethane	0.5	ND	ND	ND
2-Chloroethyl Vinyl Ether	5	ND	ND	ND
trans-1,3-Dichloropropene	0.5	ND	ND	ND
cis-1,3-Dichloropropene	0.5	ND	ND	ND
1,1,2-Trichloroethane	0.5	ND	ND	ND
Tetrachloroethene (PCE)	0.5	13.	19.	2.7
Dibromochloromethane	0.5	ND	ND	ND
Chlorobenzene	0.5	ND	ND	ND
Bromoform	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.5	ND	ND	ND
1,3-Dichlorobenzene	1	ND	ND	ND
1,4-Dichlorobenzene	1	ND	ND	ND
1,2-Dichlorobenzene	1	ND	ND	ND

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by

Dat

March 31, 1992

Analytical Report

Client:

EMCON Associates

Project:

EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 03/19/92

Work Order #:

SJ92-0282

Sample Matrix: Water

Halogenated Volatile Organic Compounds EPA Methods 5030/8010 μ g/L (ppb)

Sample Name:		Method Blank	
Date Analyzed:		03/20/92	03/23/92
<u>Analyte</u>	MRL.		
Dichlorodifluoromethane (Freon 12)	1	ND	ND
Chloromethane	1	ND	ND
Vinyl Chloride	0.5	ND	ND
Bromomethane	0.5	ND	ND
Chloroethane	0.5	ND	ND
Trichlorofluoromethane (Freon 11)	0.5	ND	ND
1,1-Dichloroethene	0.5	ND	ND
Trichlorotrifluoroethane (Freon 113)	0.5	ИD	ND
Methylene Chloride	0.5	ND	ND
trans-1,2-Dichloroethene	0.5	ND	ND
cis-1,2-Dichloroethene	0.5	ND	ND
1,1-Dichloroethane	0.5	ND	ND
Chloroform	0.5	ND	ND
1,1,1-Trichloroethane (TCA)	0.5	ND	ND
Carbon Tetrachloride	0.5	ND	ND
1,2-Dichloroethane	0.5	ND	ND
Trichloroethene (TCE)	0.5	ND	ND
1,2-Dichloropropane	0.5	ND	ND
Bromodichloromethane	0.5	ND	ND
2-Chloroethyl Vinyl Ether	5	ND	ND
trans-1,3-Dichloropropene	0.5	ND	ND
cis-1,3-Dichloropropene	0.5	ND	ND
1,1,2-Trichloroethane	0.5	ND	ND
Tetrachloroethene (PCE)	0.5	ND	ND
Dibromochloromethane	0.5	ND	ND
Chlorobenzene	0.5	ND	ND
Bromoform	0.5	ND	ND
1,1,2,2-Tetrachloroethane	0.5	ND	ND
1,3-Dichlorobenzene	1	ND	ND
1,4-Dichlorobenzene	1	ND	ND
1,2-Dichlorobenzene	1	ND	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit

A CAL 1444 CAPEANA DE COL A TATABANA 400/407 0400 A FALL CONTACT COEC

Mennyly Date March: 31/992

APPENDIX A LABORATORY QC RESULTS

Client: **EMCON Associates**

EMCON Project No. G70-39.01 Project:

Arco Facility No. 6148

Date Received: 03/19/92 Work Order #: SJ92-0282

Sample Matrix: Water

QA/QC Report Surrogate Recovery Summary TPH as Diesel EPA Method 3510/DHS LUFT Method

Sample Name	Date Analyzed	Percent Recovery P-Terphenyl
MW-1 (24) MW-2 (24) MW-3 (24)	03/23/92 03/23/92 03/23/92	80. 89. 81.
Method Blank	03/23/92	86.
	CAS Acceptance Criteria	55-145

Total Petroleum Hydrocarbons

Gether Millerighty Date March 34,

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

EMCON Associates

Project:

EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received:

03/19/92

Work Order #: Sample Matrix: SJ92-0282

Water

QA/QC Report Surrogate Recovery Summary

BTEX and TPH as Gasoline

EPA Methods 5030/8020/DHS LUFT Method

Sample Name	<u>Date Analyzed</u>	Percent Recovery a,a,a-Trifluorotoluene
MW-1 (24) MW-2 (24) MW-3 (24) FB-1	03/20/92 03/20/92 03/20/92 03/20/92	88. 92. 103. 91.
Method Blank	03/20/92	84.
	CAS Acceptance Criteria	70-130

Total Petroleum Hydrocarbons

Kerniffly Date March 31/992

COLUMBIA ANALYTICAL SERVICES, INC.

Client: EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 03 Work Order #: SJ

03/19/92 SJ92-0282

Sample Matrix: Water

QA/QC Report
Surrogate Recovery Summary
Halogenated Volatile Organic Compounds
EPA Methods 5030/8010

Sample Name	Date Analyzed	<u>Percent Recovery</u> 4-Bromofluorobenzene
MW-1 (24) MW-2 (24)	03/20/92 03/23/92	78. 87.
MW-3 (24)	03/23/92	81.
Method Blank Method Blank	03/20/92 03/23/92	79. 77.
Wothod Blank	03/23/02	77.
	CAS Acceptance Criteria	70-130

Approved by Kithlington

Date March 31, 1992

11

APPENDIX B

CHAIN OF CUSTODY

ARCO	Prodi Division	UCIS of Atlanti	Com	oany Company	₹			Task O	rder No.	EM	داده	-62	. 1									Chain of Custody	<u>-</u>
ARCO Facili	ty no.	148		Cit (Fa	ly scility)	Ookl	and			Project (Consu				l le		#	P			·		Laboratory name	
ARCO engin			Chri	stre				18 no. {15 - 57 1	7 4 % \(\)	Telepho (Consu	one no.	. ب. ب. ا	15.6	~~ '	2			1/- ~			52.	- CA'S	
Consultant r		-		uciat			T(NHCO)	Address (Consult		Consu	itant)	ارد در ارد	Δ.	<i>U</i> +1	<u> </u>	1 (C	onsultar	11) 401	. 42	<u> </u>	75.	Contract number	
				Matrix		Proce	rvation				ł	1	130 11	٠ ج د	Jan	<u>ديل -</u> آ	<u>~</u>		8	<u> </u>		Method of shipment	
		é		1	T-	11030	T VALION	. g	9		2 3 78015	ξ <u>γ</u>	¥.	, wg				Sem. NOA[1 S			1	
Sample I.D.	Lab no	Container n	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	ВТЕХТРН У С \$ ЕРА М602/8020/8015	TPH Modified 8015 Gas Diesel	01 and Grease (3) 413 1 □ 34132 (4)	TPH EPA 418 1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi	CAM Metals EPA 6 TTLC TTLC STLC	Lead Org./DHS CI Lead EPA 74207421 SE		so upler unit deliver	
124 1(24)	1-2	ン		×		X	Hc1	3/18/92	1500		X											Special detection Limit/reporting	
140.1(24)	3-4	2		X		Χ	HCC		1540		χ											Lowest	
NU 1/24	5-6	2	<u> </u>	×		X	Hel		1600		X											Possible	
FB 1	つ-8	2		X		χ	Hel		1500		X			-								Special QA/QC	
Mu.1(24)	9-10	L		X		X	Hc (1500						X								
136 4 Zy	,	7.		X		X	HLI		1540						Х							104-5520 C TOG-5520 F IR per P Lacey 3-19-	2
124.3(24)		,		X		X	Hc 1		1600						χ		-					Į.	
BL 1(24)				X		X	NP		1500			×					 		<u></u>			- Remarks 470-39.0	01
121 w 24)	1	2		X		X	74		1540			×					-					See attached	
126-3(24)		ı.		¥		X	his		1600			X					·		-			- Buttle List	
HL 1(24)	ŀ	2		X		X	Hel		1500				Х			ļ							
for 1(24)	23 24	ン		Х		X	Hel		1540				X										
1 m 3 (24)	25-26	ı		X		Х	Act		1600				Χ		-								
16 i(24)		١		X		X	4403		1500											x		SJ92 - 028	2
Nh 2(24)		١		X		У	il No.		1540											Х		Turnaround time	
HL >(24)		1		X		X.	Hho?		1600											×		Priority Rush	
Condition of	sample:					Ok	<u> </u>			Temp	erature	receive	ed	L <u></u>		Cic	<u></u>	<u></u>		<u> </u>		1 Business Day	
Relinquished	by sam		R	LU)	سسية تحد	Date 3/10	192	7: 18	Recei	ved by	1/	1	,<			7- 3 _/	n	// 2		7.	Rush 2 Business Days	
Relinquished		*					Date	112	Time	Recei	ved by	i till	1411/11/						12-		'. 3c	Expedited 5 Business Days	
Relinquished	i by	į.					Date		Time	Recei	ved by	laborat	ory				Date			Time		Standard	

ARCO	Division	n of Atlanti	Comp	company	₹			Task O	rder No.	EM	ا نع (7 1					<u></u>				(Chain of Custod	iv
ARCO Facilit	y no.	।५६		Cit	ty acility)	Oakle			1	Project (Consul	manag	jer /		0 1/		41.	0						Laboratory name	
ARCO engine	per k.	ele Ch	rist	لكنت ك	ioury)			ne no. {15-571-2		Telepho (Consul	tant) one no.	11.0	(000	<u> </u>	<u> </u>	Fax	E no.						'CAS	
Consultant n	ame 5	W. C.	S Ass	E	F . 1		T(ARCO) 4	Address	10.2 ((Consul	tant)	403.0	155-	0419	<u> </u>	(Co	nsultan	n) 40	<u>ૄ (૪</u>	53-CV	452		Contract number	
					1 4 3			(Consulta	nt) (10.5	\$ 5	/WC.	+ · · ·	. #	ν <u>ε</u> ,	_ <u>></u> _>~	، ن	عر	<u>, C A</u>	-				07077	
				Matrix	·	Prese	rvation]			510	10(1	[]					iJ igQ	070U		پُم	۵	Method of shipment	
Sample I.D.	Lab no.	Container no.	Soil	Water [,]	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH EPA M602/8020/8015	TPH Modified 8015 Gas L. Diesel	Oil and Grease 413.1 T 413.2	TPH EPA 418 1/SM503	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP S Metals □ VOA □\	CAM Metals EPA 60	Lead Org. IDHS C Lead EPA 7420/7421 C	Metals Ca, Cr. P.	200 3/ cc.	Sampler Will deliner	
Ken (24)		1		X		j y	HNC3	3/18/92	1500												Х		Special detection Limit/reporting	
1.1. 1(24)		1		X		X	HNCz		1540												X		Lowest	
Mi 3(24)		1		Х		у	HN53			1		ļ									^ X	 	Pessible	
200						<u> </u>		- <u> </u> - -	1600	·		 	 			ļ——						 	4	
		 	 					ļ		 			 	 				<u> </u>		<u> </u>	<u> </u>		Special QA/QC	
			 							ļ	ļ		ļ!	 	<u> </u>					ļ!		<u> </u>	urmal	
			ļ <u>.</u>							ļ														
																						1	Remarks G70-39 See attached Battle List	1.01
							1					1							 		 	+	- see attached	ł
			 			 	 				-	ļ											Buttle List	
	·	 	 	<u></u>							ļ	 	<u> </u>					ļ. <u>.</u>	<u> </u>	<u> </u>		<u> </u>		
		ļ	<u> </u>	 				ļ		ļ!		<u> </u>	<u> </u>							<u> </u>				
									ļ							į								
																		-						
											·						<u> </u>		 	 	<u> </u>	1-	Lab number	
				 			 	 		\vdash	-	 						ļ	 -	 		 	5592-028	52
		<u> </u>	├	 	ļ	<u> </u>	<u> </u>		 			 						ļ	 		<u> </u>	<u> </u>	Turnaround time	
		<u> </u>	<u> </u>			<u></u>	<u></u>			ļ	<u> </u>	<u></u>					<u></u>						Priority Rush 1 Business Day	
Relinquished	bu cam		 Z <i>E</i>	Pert	 1	<u> </u>	Date /	9/92	918 Time	-l	erature ved by	receive	id:			Cec		- 11	-9		<u> </u>		Rush 2 Business Days	
Relinquished	i by				-1		Date		Time	Recen	ved by	U	C (W	III.									Expedited 5 Business Days	
Relinquished	by						Date		Time	Receiv	red by	laborate	ory			C	Date			Time			Standard 10 Business Days	

March 31, 1992

Mark Knuttel EMCON Associates 1921 Ringwood Avenue San Jose, CA 95131

Re: ARCO #6148 - Oakland/Project #G70-39.01/SJ920282

Dear Mark:

Enclosed are the results of the samples submitted to our lab on March 19, 1992. For your reference, these analyses have been assigned our work order number K921741C.

All analyses were performed in accordance with our laboratory's quality assurance program.

Please call if you have any questions.

Respectfully submitted,

Columbia Analytical Services, Inc.

Colin B. Elliott

Senior Project Chemist

Jen. Elliet

CBE/das

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

EMCON Associates

Project:

ARCO #6148 - Oakland

Date Received: Work Order No.: K921741C

03/19/92

Sample Matrix:

Water

Total Metals μ g/L (ppb)

	Sample Nam Lab Cod		MW-1 K1741-1	MW-2 K1741-2	MW-3 K1741-3
Analyte	EPA Method	MRL			
Cadmium	6010	3	ND	ND	ND
Chromium	6010	5	5	21	67
Lead	7421	2	3	9	27
Nickel	6010	20	ND	38	113
Zinc	6010	10	31	54	156

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Colm. Ellett

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: EMCON Associates
Project: ARCO #6148 - Oakland

Sample Matrix: Water

Work Order No.: K921741C

Total Metals µg/L (ppb)

Sample Name: Method Blank
Lab Code: K1741-MB

	EPA		
Analyte	Method	MRL	
Cadmium	6010	3	ND
Chromium	6010	5	ND
Lead	7421	2	ND
Nickel	6010	20	ND
Zinc	6010	10	ND

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by Coln: Ellit Date 3/31/92

ARCO F	Prodi	ucts of Atlanti	Comp	ompany			·	Task	Order No.	EM	ديد	-92·	1								······································	Chain of Custody
ARCO Facility						Oakl	and			Project (Consu	manaç ltant)	ger L	اسا	e	·mu	Har						Laboratory name
ARCO engine	F.	yle	Chri	stre			(ARCO)	8 no. {15 - 57	1-2454	Telepho (Consu	one no. Itant)	408.	453-	0714	1	Fa:	x no. onsultar	n)405	- 45	3-04	52.	Contract number
Consultant na	ime E	Micor	Ass	ردرما	ષ્ડ			Addres (Consu	is 1938	Ju	トレィーエ	ررب	Αv	e,	San	. Ds	د (_A				ררסרס
				Matrix		Prese	rvation		1		516	1 m	17.	۲. کړه E				Ę Ś	1677000 _			Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020		TPH Modified 8015 Gas Diesel	Oil and Grease	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP S Wetats	CAM Metals EPA 60 TTLC STLC [Lead Org JDHS C		So upler Little Reliver
NW-1(24)		2		×		X	Hc (3/18/	2 1500		X	<u> </u>										Limit/reporting
NV.2(24)		2		X		X	HCI		1540		χ											lowest
No-3(24)		2		×		X	HCI		1600		X											Possible
FB-1		2		X		X	Hei		1500		X				•							Special QA/QC
MW-1(ZY)	•	L		X		X	HCI		1500						X							nermal
بد برعم		z		X		Х	HUI		1540						Х							Ner weed 5520 C TOG- 5520 F IR per P. Lacey 3-19-52
124-3(24)		2		Х		Χ	lfc1		1600						X							
NL-1(24)		2		χ		X	NP		1500			×										Remarks (470-39.01
124 4(24)		z		X		χ	74		1540			×										See attacked Bottle List
124 3(24)		z		X		X	μĩ		1600			X										Date Hist
HL 1(24)		2	· ·	X		X	Hel		1500				Х						_			
(new - L(ze)		ン		X		X	Hel		1540				×									
Nu 3(24)		z		X		Х	Hel		1600				Χ									
16h 1(24)		١		X		X	HN03		1500											Х		
Nh 2(24)		1		X		¥	HNCZ		1540											У		Turnaround time
MW-3(24)		١		X		X.	HNO3	V	1600											×		Priority Rush 1 Business Day
Condition of	sample:					Ob.				Temp	erature	receiv	ed:			CA	ارم	•				Rush
Relinquished	•	•	, 0	LU	7		Date 3/1/	192	Time 4, 18	Rece	ived by	1/	1.16				3-,	U.	117	C)	. 30	2 Business Days
Relinquished	ele by		1-0	in v	<u></u>		Date	192	Time	Rece	ived by	LEU					<u> </u>	<i>k / -</i>	12	-/		Expedited 5 Business Days
சூinquished	by						Date		Time	Rece	ived by	labora (<	oly a		-		Date3	20/9:	l	Time	730	Standard 10 Business Days

ARCO	Division	of Atlantic	Comp	any	\$	-	_	Task O	rder No.	 EMO	 	-9:										_ (Chain of Custody
ARCO Facili	ly no 6	148		Ch (Fa	y cility)	Oakle	unde			Project (Consul	manag tanti	er V	lau	2 1	nu	Hu	ρ						Laboratory name
ARCO engin	eer K.	ile Ch	risti	 ن			Telephon (ABCO) 4	e no. {(ら・57) ~3	يرج ٧	Telepho (Consul	ne no.	4 _{0%} , .	{55-	 -		Fax	no.	n Uoʻ	 ६५९	3-01	452		CAS.
Consultant n	ame E	Men	ر As	sucia	725		17	Address (Consulta	_{เกป} (93)	8 J	NKC,	tim	A	<u></u>	5	Jo	رو	CA			·•-		07077
				Matrix		Prese	rvation	(ddisdis		Ţ									900				Method of shipment
		o o	ļ					ate	96		0/8015	20□	2	3036				Sea O	§ 0		 	5	Sampler
Sample I.D.	Lab no	Container no	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8015	TPH Modified 8015 Gas (Diesel (Oil and Grease	TPH EPA 418.1/SMS03E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA	CAN Metals EP/	Lead Org JOHS C Lead EPA 74207421 C	といって	3/600	deliver
NW-1 (24)		١		*		¥	HNO3	3/18/92	· ·				-						<u> </u>		×		Special detection Limit/reporting
No.2 (24)		1		X		X	HNOZ	1	1540												X		Lowest
MW-3(24)		ı		Х		У	HN03	V	1600												X		Possible
																							Special QA/QC
																							wormal
						<u> </u>																	1 1 1
																							Remarks (
																							see attacked
																							Remarks G70-39.01 See attached Battle List
			<u> </u>																				
]																				1
																							Lab number 5592-0282
																							Turnaround time
																							Priority Rush 1 Business Day
Condition of	hu cam	nier		- /·		06	Date /	, 0	9/8/Time		erature ved by	receive	ed:			Cer							Rush
3/4	200	<u> </u>	2 K	citl	1		3//	9/92	<i>FB</i>			<u>U</u>		M	<u> </u>		ラ 〜	19	-9.	2	9:	30	2 Business Days
Rettnquished			·				Date		/ Time		ved by									-			Expedited 5 Business Days
Retinquished	l by						Date		Time	Recei		laboral BND)	ory (. '			D	ate 3	20/9:		Time	930		Standard 10 Business Days

EMCON ASSOCIATES	PURGED BY:	703901 . 2ATH L. 2ATH Water To	SAMPLE CLIENT NAM LOCATIO	ID: M W = 3 ME: PRCC DN: 5/3/ S	s G148 ShaHuck A
CASING ELEVA	(*****)	3_ 4. NR 16.62 25.8	VOLUME IN CASI CALCULATED PU ACTUAL PURGE	RGE (gal.):	6.0
	: <u>3/18/92</u> : <u>3/18/92</u>	Start (2400 Hr Start (2400 Hr	1540	End (2400 Hr) .	
(2400 Hr) 1543 1545 1548 1551 1555 D. O. (ppm):	VOLUME pH (units) (Gal.) (Gal.	5 4 5 5 8 3 5 9 (G O (CODOR: \$ 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	68.2 67.9 67.8	COLOR (MISUAL) Clear // // // // (COBALTO-100)	TURBIDITY (Misual) // // // // // // // // (NTU 0 - 200)
2° Bladder Pun Centrifugal Pun X Submersible P	np — Bailer (PVC) less Steel)	SAMPLIN 2° Bladder Pump DDL Sampler Dipper Well Wizard™	Baller (Submen	Stainless Steel) sible Pump
REMARKS:	400			LOCK #:	2 5 9
EC 1000//	e:Time:)(DI)(pH ulibration: M w Less Rid	7/) -/) (pH 4	_/)

Signature: _

		· - ····				_		
	222	WA.	AS FIT	MPLE F	IELD	LATA	A SHEE	Rev. 2,
		PROJECT I	10: <u>G70</u>	39 01		SAMPLE I	: _ mw-	.1
••: :	EMCON	PURGED I	3Y: _ L.R	4TH			ARCO	**************************************
<i>,</i> 	78 300(A100	SAMPLED 8	BY: _ L. F	RATH			The second secon	Shattick A
							0015-0	
	TYPE: Grou	nd Water^	Surface V	Vater Ti	reatment E	ffluent	Other	
				3 4.				
	CASING ELE	VATION (feet/I	MSL):	NR	VOLUME	INI CACINI	C (mail)	C S 9
	DEPTH	TO WATER (feet):	8/	CALCULA	יםוום חבדו	SE (ant). S	79 US
- 1	DEPTI	H OF WELL ((eet):2	5.8 4.95 x 3.29	ACTUAL	Pilese ve	ae (gal.): N	30.0
				4.95 X 3.29	5		/L (gal.) :	
1	DATE PURG	ED: 3/18	192	Start (2400 Hr	1410)	End (0400++-)	1420
	DATE SAMPLI	ED: <u>3/18</u>	192	Start (2400 Hr)	•	`a a	End (2400 Hr) End (2400 Hr)	
	TIME	VOLUME	1.1	·			•	and the second s
	(2400 Hr)	(gai.)	PH (units)	E.C. (µmhos/cm@ 25°		ERATURE (°F)	COLOR (Visual)	TURBIDITY
		6	6.19	437			Clear	(Visual)
	1416	13	6.38	526	-	70.0	//	//
	7.	18	6.41	467		9.9	//	/ (
		24	6.36			9.8	(1	1
11	14132	<u>30</u>	6.35	4.62		9.7	1,	//
	D. O. (ppm):	MR	<u> </u>	DOR: <fra< th=""><th>11 C</th><th></th><th>XIR</th><th>210</th></fra<>	11 C		XIR	210
					r	(0		(NTU 0 - 200)
	FIELD QC SAME	PLES COLLECT	TED AT THIS W	ELL (i.e. FB-1, XI	OUP-1):		5 $F/3$	
$\parallel \parallel$	P	URGING EQUI	PMENT			SAMPLING	EQUIPMENT	
.	2° Bladder F	ump	- Bailer (Teflond	D)	2" Black		∠ Bailer	(Teffon®)
.	Centrifugat F	oump	- Bailer (PVC)	·	DDL Sa	mpier		(Stainless Steel)
	X Submersible	•	- Bailer (Stainles	es Steel) —	- Dipper			ersible Pump
	Well Wizard	2" gren	Podicated		- Well Wi	zard ⁿ⁴	Dedica	· ·
		-	-					
WE	LL INTEGRITY	•	Good				LOCK#: 3	259
RE	MARKS:							
Ме	ter Calibration: [Date: <u>3/15/42</u>	Time: 13	59 Meter Ser	ial #: 9	11)	Temperatura	OF. 74.4
(E(= 1000 <u>9.31</u> /	1000) (DI <u>(</u>	<u>₹.80</u>)(pH7	7 157 7.00)	(pH 10 <u>/ c</u>	0.03 10	00) (pH4 3	941
Loc	ation of previous	calibration:					······································	
۵.	ature:	2.22 -Z	Dito		į	Miz	1	7
Sign	ature:		by the same	Reviewe	d By:	11/	_ Page/	_ of

WAT_R SAMPLE FIELD LATA SHEET PROJECT NO: G70 39 0/ SAMPLE ID: MW-Z EMCON PURGED BY: L. RATIT CLIENT NAME: ARCO G1 SAMPLED BY: L. RATIT LOCATION: 5/31 Shaft	A Print Laboratory of the Labo
TYPE: Ground Water Y Surface Water Treatment Effluent Other CASING DIAMETER (inches): 2 3 4 X 4.5 6 Other CASING ELEVATION (feet/MSL): NIR VOLUME IN CASING (gal.): 6-0 DEPTH TO WATER (feet): 16.52 CALCULATED PURGE (gal.): 30.4 DEPTH OF WELL (feet): 25.8 ACTUAL PURGE VOL. (gal.): 20.5	
DATE PURGED: 3/18/92 Start (2400 Hr) 15 18 End (2400 Hr) 15 3 DATE SAMPLED: 3/18/97 Start (2400 Hr) 1545 End (2400 Hr) TIME VOLUME pH E.C. TEMPERATURE COLOR (Msual) (Ms (2400 Hr) (gal.) (units) (umhos/cm@ 25°C) (°F) (Msual) (Ms (1520 G·O 6·35 4/.59 G9.5 Clear light 1524 17.0 G·5/ 2/99 G9.5 1/1 // 1526 18-0 G·5/ 2/176 G9.1 // 1/1 // 1526 18-0 G·59 2/176 G9.1 // 1/1 // 1526 18-0 G·59 2/176 G9.1 // 1/1 // 1520 Recharge G.52 2/175 G8.7 Brown MOLD D. O. (ppm): 18 ODOR: Strong AIR AIR AIR SHELD OC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): AIR	DIDITY
PURGING EQUIPMENT 2° Bladder Pump Bailer (Teflon®) 2° Bladder Pump Bailer (Teflon®) — Centrifugal Pump Bailer (PVC) DDL Sampler Bailer (Stainless Steel) — Well Wizard™ (Stainless Steel) Dipper Submersible Pump — Well Wizard™ Dedicated Other: VELL INTEGRITY: Good LOCK#: 3259 EMARKS: Net1 Dried at 20.5 Call at 1533 Hess	ip
Meter Calibration: Date: Time: Meter Serial #: 9/// Temperature °F:	

1	(水水水)	ARCH F	AC n	IVIPLE FIE	LU DAIR	4 onee	
2	EMCON	PROJECT NO: PURGED BY: SAMPLED BY:	<u> </u>	03901 RATH RATH	CLIENT NAME	The second secon	3 ShaHuck,
- 1	TYPE: Ground	d Water <u>×</u> ER (inches):	Surface W	ater Treat	ment Effluent	CC. F. C	4
	DEPTH T	ATION (feet/MSI O WATER (fee OF WELL (feet	i): <u>16</u>	· 62	OLUME IN CASING ALCULATED PURC CTUAL PURGE VO	GE (gal.) :	
	DATE PURGED	/	192	Start (2400 Hr) _ Start (2400 Hr) _	11011	End (2400 Hr) End (2400 Hr)	
FI	(2400 Hr) 1543 1545 1545 1551 1555 0. 0. (ppm):	RGING EQUIPM TO E TO E	AT THIS WE ENT Bailer (Teflon®) Bailer (PVC) Bailer (Staintess	Steel)	³ -1):		Stainless Steel)
WELL	INTEGRITY:		4000	ζ.		LOCK#: 3	
(EC 1) (DI)(pH7_	Meter Serial #		·	
Signati	ure:	Lerc 1	Sig	Reviewed B	y: <u>MK</u>	_ Page	of <u>3</u>

Consultants in Viastes Management and Environn

ants in vvastes igement and				Date	April 27, 1992
mental Control				Project	G70-39.01
To:					
Mr. Joel Coffi	man				
RESNA/ Acc	iled Ge	osystems			
3315 Almada	en Expr	essway. Suite 34	-		
San Jose, Ca	alifornia	95118			
We are enclo	osing:				
Copies		Description			
1		Depth To Wa	iter/Floatin	g Product	Survey Results
		April 1992 mo	onthly wate	er level sui	vev. ARCO
		station 6148.	5131 Sha	ttuck Aven	ue. Oaklana. CA
For your:	X	Information	Sent b	y: <u>X</u>	Maii
Comments:					
Monthly w	<u>ater lev</u>	el data for the ab	oove ment	icned site	are attached. Please
call if you	have ar	ny questions: (40)	<u>8) 453-226</u>	<u>36.</u>	
				N	lark Knuttel
Reviewed by:	A PECIS	6/30192		<i>91.</i>	H tata

				modern FO	πer. Senior Project

Engineer.

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

Α	PROJ HCO STAT		G70-39 6148	.01			DDRESS :			Oakland, C⁄	_	C.1.50 2.5
DIVI Order	WELL I()	Well Box Sual	Well Lid Secure	Gasket	1 ock	Locking Well Cap	FIRST DEPTH TO WATER (feet)	SECOND	DEPTH TO FLOATING	FLOATING	WELL FOTAL DEPTH (feet)	COMMENTS
	_MW-1	CK	OK	OK	CK	OK	17.56	17-56	1	M	25.73	
_2.	<u>MW-2</u>	010		CK	CIK			17.27	ND	ИД	25.8	
$\frac{3}{2}$	<u>WW 3</u>	<u> </u>	OK	<u> </u>	OK	<u> </u>	11.38	1 <u>3.35</u>	<u>MD</u>	<u> </u>	25.83	
											-	
												
							· 					
								·				
	·									- Commonwell		

Engineer.

Date Project May 19, 1992 G70-39.01

Tc:		
Mr. Joel Coffman		
RESNA/ Applied G	iecsvstems	
3315 Almaden Ex	<u>pressway, Suite 34</u>	
San Jose, Californ	ıa 95118	
We are enciosing:		
Copies	Description	
1	Depth To Wa	ater/Ficating Product Survey Results
	May 1992 mg	onthiv water level survey. ARCO
	station 6148.	5131 Shattuck Avenue, Oakland, CA
For your: X	Information	Sent by: X Mail
	evel data for the ar any questions: (40	gove mentioned site are attached. Please 18) 453-2266.
	٠.	Jim Butera
Reviewed by:		
	6/30/12	Pobert Porter, Senior Project

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT #: G70-39.01 STATION ADDRESS: 5131 Shattuck Ave., Oakland, CA

DATE: 5.15.9)
DAY: FRIDALL ARCO STATION #: 6148 FIELD TECHNICIAN: BUTCRA

		,									.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THOMY
der IW	WELL.	Well Box Seal	Well Lid Secure	Gasket	Lock	Locking Well Cap	FIRST DEPTH TO WATER (feet)	WATER		PRODUCT THICKNESS		COMMENTS
1	MW-1	ok	15/16 Sucket	ck	3259	VCS	17.96	(leet) 17.95	(feet)	(feet) NA	(feet) 25.7	
2_	MW-2		15/12 50(KM				17.42		ND	NA	25.8	
3_	MW-3	ok	1914 50114 T	UK	3259	yes	17.80	17.80	CIUK	NA	25.8	
				 -								
									<u> </u>			
							-				·	
												
	······································											
		- 									~	
							<u></u>					
[

June 26, 1992

Jim Butera EMCON Associates 1921 Ringwood Avenue San Jose, CA 95131

Re: EMCON Project No. G70-39.01

Arco Facility No. 6148

Dear Mr. Butera:

Enclosed are the results of the water samples submitted to our lab on June 12, 1992. For your reference, our service request number for this work is SJ92-0731.

During extraction the Method Blank for the Diesel analysis was apparently contaminated with Gasoline from sample MW-3. The chromatograms of both samples and the Method Blank had fingerprints resembling Gasoline and not Diesel. Due to insufficient sample volume, we could not reanalyze the samples for Diesel. We apologize for any inconvenience this may have caused. Except as noted, all analyses were performed in accordance with the laboratory's quality assurance program.

Please call if you have any questions.

Respectfully submitted:

The Munity_

COLUMBIA ANALYTICAL SERVICES, INC.

Keoni A. Murphy

Laboratory Manager

(melise) ade 16 ega Annelise J. Bazar Regional QA Coordinator

le/KAM

Summary of Groundwater Monitoring Data Second Quarter 1992 ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California micrograms per liter (µg/l) and milligrams per liter (mg/l)

Well ID and Sample Depth	Sampling Date	Depth To Water (feet)	Floating Product Thickness (feet)	TPH ¹ as Gasoline (µg/l)	Benzene (µg/l)	Loluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	TPH as Dieset (µg/l)	Total Oil and Grease, 5520B (mg/l
MW-1(25)	06/12/92	18 16	ND.2	1,000	290	15.	10	30	<50°	< 0.5
MW-2	FP3	17.67	0.5	FP	FP	FP	FP	FP	FP	FΡ
MW-3(25)	06/12/92	18.01	ND.	46,000	3,400	4,200.	1,300	5,400	1,600 *	16.
FB 1 ⁴	06/12/92	NA ⁵	NA.	~ 50	- 0 5	< 0.5	<0.5	< 0.5	NB 6	NR

^{1 1}PH = Fotal petroleum hydrocarbons

[≥] ND = Not detected

³ FP = Floating product detected in well, no sample was taken 4 FB = Field Blank

⁵ NA = Not applicable

⁶ TIR = Not reported; sample was not scheduled for analysis of the selected parameter - = Sample was taken on 7/2/92

Summary of Analytical Results Halogenated Volatile Organic Compounds by EPA¹ Methods 5030/8010 Second Quarter 1992

ARCO Service Station 6148

5131 Shattuck Avenue, Oakland, California

micrograms per liter (µg/l) or parts per billion (ppb)

Well ID and

Sample Depth	Sampling Date	cis-1,2-DCE ² (ppb)	(bbp) 1CF ₃	PCL4 (ppb)
MW-1(25)	06/12/92	<0.5	1.4	18
MW-2	Fp5	FP	FP	FP .
MW 3(25)	06/12/92	< 0.5	<0.5	1 9

¹ FPA = United States Environmental Protection Agency

z or 1,2 DCE = cis-1,2-Dichloroothene

³ ICE = Trichloroethene

⁴ PCE = Tetrachloroethene

⁵ FP Floating product detected, well not sampled

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT #: G70-39.01 STATION ADDRESS: 5131 Shattuck Ave., Oakland, CA DATE: 6/12/97

ARCO STATION #: 6148 FIELD TECHNICIAN: K. Reichelderter / Harten DAY: Friday

\———									,			
	WHI	Well	Well			Locking	FIRST		DEPTH TO		WELL	,
1037		Box	Lid			Woll	рично	DLPHHTO	FLOATING	PRODUCT	IOTAL	
Order	ID.	Seal	Secure	Gasket	Lock	Cáp	WAILR	WATER	PRODUCT	THICKNESS		COMMENTS
}				[(feet)	(feet)	(feet)	(feet)	(leet)	(7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
1	MW-1	Cal	Yes	5001	<u>5759</u>	YES	18.16	18.16	_ND	_ &()	<u>25 73</u>	
_2	_MW-2_	ace	<u>Yes</u>	CCG	3259	Yes	17.67	_17.67_	AD Spork	.65 mtouter	<u> 25.78 </u>	Meny exercised with letter
3	MM-3	<u>c.cl</u>	<u>Ye 5</u>	न्दरा	5.154	Y	10.61	10(1	<u>\N1)</u>	_12	25 7	
												
		ļ			<u> </u>	 						
		<u> </u>		ļ								
						ļ						
 						<u> </u>						
 			<u></u>									
					<u> </u>							
ļ												
				•		* -		I	.l	<u>1</u>	1	

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT #: G70-39.01 STATION ADDRESS: 5131 Shattuck Ave., Oakland, CA DATE: T 2 1/2

ARCO STATION #: 6148 FIELD TECHNICIAN: K REICHEL DERTER DAY: THUKSDAY

 -											•	
taw Order	WLT1 ID	Well Box Soal	Well Lid Secure	Gasket	l ock	Locking Well Cap	DEPTH TO WATER	WATEH	DEPTH TO FLOATING PRODUCT		WELL TOTAL DEPTH	COMMENTS
		 				<u> </u>	(હિલ્દા)	(feet)	(feet)	(feet)	(feet)	
1	_MW-1	UK'	CK	CK	OF	BAY	18.25	18.25		-	.25.80	LIPON LWC IS (RACKED
2	_MW-3	ÇK	OK	OF.	OF	CK	18.21	18.24			.25.80	
	· · · · · · · · · · · · · · · · · · ·											
			<u> </u>			<u> </u>						
		}		<u> </u>								
	· 			ļ		<u> </u>						
ļ							<u></u>				 	
				ļ		\						
		·	 						ļ			
		·		ļ		ļ	ļ					
 								<u> </u>				
		-				ļ	<u> </u>					
		1	<u> </u>	<u> </u>	<u> </u>		<u></u>					

Analytical Report

Client:

EMCON Associates

Project: EMCON

EMCON Project No. 370-39.01

Arco Facility No. 6148

Date Received:

06/12/92

Work Order #: Sample Matrix:

SJ92-0731

: Water

Inorganic Parameters¹ mg/L (ppm)

Sample Name: Date Sampled:

MW-1 (25) 06/12/92 MW-3 (25) 06/12/92 Method Blank

Analyte

Method MRL

Total Oil and Grease

413.2 0.5

ND

16.

ND

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Karutti mythy

Unless otherwise noted, all analyses were performed within EPA recommended maximum holding times specified in *Test Methods for Evaluating Solid Waste*, (SW-846, 3° Edition) and *Methods for Chemical Analysis of Water and Waste* (EPA-600/4-79-020, Revised March 1983).

Approved by

Da

Tine 26,1992

Analytical Report

Client:

EMCON Associates

Project:

EMCON Protect No. G70-39.01

Arco Facility No. 6148

Sample Matrix: Water

Date Received:

06/12/92

Date Extracted: 06/19/92

Date Analyzed: 06/22/92

Work Order #:

SJ92-0731

Total Petroleum Hydrocarbons as Diesel EPA Methods 3510/California DHS LUFT Method μ g/L (ppb)

Sample Name	<u>MRL</u>	TPH as Diesel
MW-1 (25) MW-3 (25)	50 50	400. ¹ , ² 24,000. ¹
Method Blank	50	2,100.1

MRL Method Reporting Limit

TPH Total Petroleum Hydrocarbons

The sample matrix contains a lower boiling point fuel mixture calculated as diesel. The chromatogram does not match typical diesel fingerprint.

Analyte concentration is an estimate because this analyte was found in the Method Blank.

Lev. Marity

Date JUNC 26, 1892

Client: EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 3148

Date Received: 06/12/92 Work Order #: SJ92-0731

Sample Matrix: Water

BTEX and TPH as Gasoline EPA Methods 5030/8020/DHS LUFT Method μ g/L (ppb)

Sample Date Ar	· Name: raiyzed:	<u>MW-1 (25)</u> 06/17/92	<u>MW-3 (25)</u> 06/19/92	<u>FB-1</u> 06/17/92
Analyte	MRL			
Benzene	0.5	290.	3,400.	ND
Toluene	0.5	15.	4,200.	ND
Ethylbenzene	0.5	10.	1,300.	ND
Total Xylenes	0.5	30.	5,400.	ND
TPH as Gasoline	50	1,000.	46,000.	ND

TPH Total Petroleum Hydrocarbons

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by KEELI AMuyshin

___oate JUNT 26/992

Client:

EMCON Associates

EMCCN Project No. G70-39.01 Project:

Arco Facility No. 6143

Date Received: 06/12/92

Work Order #:

SJ92-0731

Sample Matrix: Water

BTEX and TPH as Gasoline EPA Methods 5030/8020/DHS LUFT Method µg/L (ppb)

	Sample Name: Date Analyzed:	<u>Method Blank</u> 06/17/92	Method Blank 06/19/92
<u>Analyte</u>	MRL		
Benzene	0.5	ND	ND
Toluene	0.5	ND	ND
Ethylbenzene	0.5	ND	ND
Total Xylenes	0.5	ND	ND
TPH as Gasoline	50	ND	ND

TPH Total Petroleum Hydrocarpons

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Harrit, 1/1 26,1992

Client:

EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 5148

Date Received: Work Order #:

06/12/92 SJ92-0731

Sample Matrix:

Water

Halogenated Volatile Organic Compounds EPA Methods 5030/8010 $\mu g/L$ (ppb)

Sample Name: Date Analyzed:		<u>MW-1 (25)</u> 06/16/92	MW-3 (25) 06/19/92	Method Blank 06/16/92
<u>Analyte</u>	MRL			
Dichlorodifluoromethane (Freon 12)	1	ND	ND	ND
Chloromethane	1	ND	ND	ND
Vinyt Chloride	0.5	ND	ND	ND
Bromomethane	0.5	ND	ND	ND
Chloroethane	0.5	ND	ND	ND
Trichlorofluoromethane (Freon 11)	0.5	ND	ND	ND
1,1-Dichloroethene	0.5	ND	ИD	ND
Trichlorotrifluoroethane (Freon 113)	0.5	ND	ND	ND
Methylene Chloride	0.5	ND	ND	ND
trans-1,2-Dichloroethene	0.5	ND	ND	ND
cis-1,2-Dichloroethene	0.5	ND	ND	ND
1,1-Dichloroethane	0.5	ND	ND	ND
Chloroform	0.5	ND	ND	ND
1,1,1-Trichloroethane (TCA)	0.5	ND	ND	ND
Carbon Tetrachloride	0.5	ND	ND	ND
1,2-Dichloroethane	05	ND	ND	ND
Trichloroethene (TCE)	0.5	1.4	ND	ND
1,2-Dichloropropane	0.5	ND	ND	ND
Bromodichloromethane	0.5	ND	ND	ND
2-Chloroethyl Vinyl Ether	5	ND	ND	ND
trans-1,3-Dichloropropene	0.5	ND	ND	ND
cis-1,3-Dichloropropene	0.5	ND	ND	ND
1,1,2-Trichloroethane	0.5	ND	ND	ND
Tetrachloroethene (PCE)	0.5	18.	1.9	ND
Dibromochloromethane	0.5	ND	ND	ND
Chlorobenzene	0.5	ND	ND	ND
Bromoform	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.5	ND	ND	ND
1,3-Dichlorobenzene	1	ND	ND	ND
1,4-Dichlorobenzene	1	ND	ND	ND
1,2-Dichlorobenzene	1	ND	ND	ND

Method Reporting Limit MRL

ND None Detected at or above the method reporting limit

Secritimingshir Date June 26,1992

Client: **EMCON Associates**

EMCON Project No. 370-39.01 Project:

Arco Facility No. 6143

Date Received: 06/12/92 Work Order #: SJ92-0731

Sample Matrix: Water

Halogenated Volatile Organic Compounds EPA Methods 5030/8010 μg/L (ppb)

Sample Name:	Method Blank
Date Analyzed:	06/19/92

<u>Analyte</u>	MRL	
Dichlorogifluoromethane (Freon 12)	1	t.D
Chlorometnane	1	ND.
Vinyl Chloride	0.5	ND
Bromomethane	0.5	ND
Chloroethane	0.5	ND
Trichlorofluoromethane (Freon 11)	0.5	ND
1,1-Dichloroethene	0.5	ND
Trichlorotrifluoroethane (Freon 113)	0.5	ND
Methylene Chloride	0.5	ND
trans-1,2-Dichloroethene	0.5	ND
cis-1,2-Dichloroethene	0.5	ND
1,1-Dichloroethane	0.5	ND
Chloroform	0.5	ND
1,1,1-Trichloroethane (TCA)	0.5	ND
Carbon Tetrachloride	0.5	ND
1,2-Dichloroethane	0.5	, D
Trichloroethene (TCE)	0.5	ND.
1,2-Dichloropropane	0.5	ND
Bromodichloromethane	0.5	ND
2-Chloroetnyl Vinyl Ether	5	ND
trans-1,3-Dichloropropene	0.5	ND
cis-1,3-Dichloropropene	0.5	ND
1,1,2-Trichloroethane	0.5	ND
Tetrachloroethene (PCE)	0.5	ND
Dibromochloromethane	0.5	ND
Chlorobenzene	0.5	ND
Bromoform	0.5	ND.
1,1,2,2-Tetrachloroethane	0.5	1.D
1,3-Dichlorobenzene	1	ND
1,4-Dichlorobenzene	1	ND
1,2-Dichlorobenzene	1	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Karrithumilia Date Jine 26,1992

APPENDIX A LABORATORY QC RESULTS

Client:

EMCON Associates

Project: EMCCN Project No. G70-39.01

Arco Facility No. 6148

Date Received:

06/12/92

Work Order #:

SJ92-0731

Sample Matrix: 'Vater

QA/QC Report Matrix Spike Summary* Inorganic Parameters mg/L (ppm)

	<u>Parameter</u>	Spike <u>Level</u>	Sample <u>Result</u>	Spike Result MS DMS	Percent MS DMS	Recovery Acceptance <u>Criteria</u>
!	Total Oil and Grease	6.3	ND	5.4 4.6	86. 73.	55-145

ND None Detected at or above the method reporting limit.

The MS and DMS are from the sample run prior to this batch. There were only two (2) samples in this batch and there was insufficient sample volume to perform an MS/DMS.

soproved by AGMIHIII

Date JUNE 26,1992

EMCON Associates Client:

Project: EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 06/12/92 Work Order #: SJ92-0731 Sample Matrix: Water

QA/QC Report Continuing Calibration Summary TPH as Diesel EPA Methods 3510/DHS LUFT Method mg/L (ppm)

Date Analyzed: 06/22/92

				CAS
				Percent
				Recovery
	True		Percent	Acceptance
<u>Analyte</u>	<u>Value</u>	<u>Result</u>	Recovery	<u>Criteria</u>
TPH as Diesel	1,000.	972.	97.	90-110

TPH Total Petroleum Hydrocarbons

Approved by KullitMunilly Date Jine 26,1892

Client: EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 5148

Date Received: Work Order #:

06/12/92 SJ92-0731

Sample Matrix: Water

QA/QC Report Surrogate Recovery Summary TPH as Diesel EPA Method 3510/DHS LUFT Method

Sample Name	Date Analyzed	Percent Recovery P-Terphenyl
MW-1 (25) MW-3 (25)	06/22/92 06/22/92	85. •
MS DMS	06/22/92 06/22/92	63. 88.
Method Blank	06/22/92	103.
	CAS Acceptance Criteria	55-145

Total Petroleum Hydrocarbons TPH

Approved by Kernythinnilly Date Jine 26,1992

No surrogate spike recovery was calculated due to high sample concentration requiring a dilution.

Client:

EMCON Associates

Project:

EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: Work Order #:

06/12/92 SJ92-0731

Sample Matrix: Water

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary Total Petroleum Hydrocarbons as Diesel DHS LUFT Method μ g/L (ppb)

Data Analyzed:

06/22/92

	.			Percent R	
Parameter	Spike <u>Level</u>	Sampie <u>Resuit</u>	Spike Result MS DMS	MS DMS	Acceptance <u>Criteria</u>
Diesel	3,640.	1,170.	4,860. 4,460.	101. 90.	55-145

Date Jun 26.1992

Client:

EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: Work Order #:

06/12/92 SJ92-0731

Sample Matrix: Water

QA/QC Report Continuing Calibration Summary BTEX and TPH as Gasoline EPA Methods 5030/8020/DHS LUFT Method Nanograms

Date Analyzed:

06/17/92

<u>Analyte</u>	True <u>Value</u>	<u>Result</u>	Percent Recovery	CAS Percent Recovery Acceptance <u>Criteria</u>
Benzene Toluene Ethylbenzene Total Xylenes	250. 250. 250. 750.	251. 273. 265. 760.	100. 109. 106. 101.	85-115 85-115 85-115 85-115
TPH as Gasoline	2,500.	2,506.	100.	90-110

Date Analyzed:

06/19/92

	True		Percent	CAS Percent Recovery Acceptance
<u>Analyte</u>	<u>Value</u>	Result	Recovery	<u>Criteria</u>
Benzene	250.	248.	99.	85-115
Toluene	250.	267.	107.	85-115
Ethylbenzene	250.	258 <i>.</i>	103.	85-115
Total Xylenes	750.	744.	99.	85-115
TPH as Gasoline	2,500.	2,482.	99.	90-110

TPH Total Petroleum Hydrocarbons

Notinith mushin Date JUNE 26.1892

Client: **EMCON Associates**

Project: EMCON Project f.o. G70-39.01

Arco Facility No. 6148

Date Received: 06/12/92 Work Order #:

SJ92-0731

Sample Matrix: Water

QA,QC Report Surrogate Recovery Summary BTEX and TPH as Gasoline EPA Methods 5030/8020/DHS LUFT Method

Sample Name	Date Analyzed	Percent Recovery a,a,a-Trifluorotoluene
MW-1 (25)	06/17/92	106.
MW-3 (25)	06/19/92	113.
FB-1	06/17/92	100.
MS	06/17/92	113.
DMS	06/1 7 /92	122.
Method Blank	06/17/92	110.
Method Blank	06/19/92	108.
	CAS Acceptance Criteria	70-130

TPH Total Petroleum Hydrocarbons

Krein. Hullin Date July 26/982

Client:

EMCCN Associates

Project: EMCCN Project No. G70-39.01

Arco Facility No. 6148

Date Received: Work Order #:

06/12/92 SJ92-0731

Sample Matrix: Water

QA QC Report Matrix Spike/Duplicate Matrix Spike Summary TPH as Gasoline EPA Method 5030/DHS LUFT Method μg/L (ppb)

Date Analyzed:

06/17/92

Percent Recovery

Analytes	Spike Level	Sample <u>Result</u>	Spike Result MS DMS	MS DMS	Acceptance <u>Criteria</u>
TPH as Gasoline	250.	ND	265.9 273.9	106. 110.	70-140

None Detected at or above the method reporting limit

Howith invite

TPH Total Petroleum Hydrocarbons

Date Sincle, 992

QA/CC Report

Client: **EMCON Associates**

Project: EMCCN Project No. G70-39.01

Arco Facility No. 6148

Date Received: 06/12/92 Work Order #: SJ92-0731

Sample Matrix: Water

Continuing Calibration Summary Halogenated Volatile Organic Compounds EPA Metnoas 5030/8010 Nanograms

Date Analyzed: 06/16/92				EPA Percent Recovery
•	True		Percent	Acceptance
<u>Analyte</u>	<u>Value</u>	Result	Recovery	<u>Criteria</u>
Chlorometnane	50	â3.	116.	D-193
Vinyl Chloride	50	მ1.	122.	28-163
Bromometnane	50	62.	124.	D-144
Chloroethane	50	54.	108.	46-137
Trichlorofluoromethane (Freon 11)	50	44.	88.	21-156
1,1-Dichloroethene	50	55.	110.	28-167
Methylene Chloride	50	44.	88.	25-162
trans-1,2-Dichloroetnene	50	45 .	90.	38-15 5
1,1-Dichloroethane	50	45.	90.	47-132
Chloroform	50	44.	8 8 .	49-133
1,1,1-Trichloroethane (TCA)	50	46.	92.	41-138
Carbon Tetrachloride	50	49.	98.	43-143
1,2-Dichloroethane	50	48.	96.	51-147
Trichloroethene (TCE)	50	47.	94.	35-146
1,2-Dichloropropane	50	≟ 9.	98.	44-156
Bramoaichloromethane	ā0		90.	42-172
trans-1,3-Dichloropropene	50	≟ 9.	98.	22-178
cis-1,3-Dichloropropene	50	≟ 5.	90.	22-178
1,1,2-Trichloroethane	50	43.	86.	39-136
Tetrachloroethene (PCE)	50	48.	96.	26-162
Dibromochloromethane	50	40.	80 <i>.</i>	24-191
Chlorobenzene	50	45.	90.	38-150
Bromoform	50	35.	70.	13-159
1,1,2,2-Tetrachloroetnane	50	38.	76.	8-184
1,3-Dichlorobenzene	50	47.	94.	7-187
1,4-Dichlorobenzene	50	49.	98.	42-143
1,2-Dichlorobenzene	50	≟ 6.	92.	D-208

Detected

Fredry : + Minustry Date July 26,1992

. 3

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client: EMCCN Associates

Project: EMCCN Project No. G70-39.01

Arco Facility No. 6148

Date Received: 06/12/92 Work Order #: SJ92-0731

Sample Matrix: 'Water

Continuing Calibration Summary Halogenated Volatile Organic Compounds EPA Methods 5030/8010 Nanograms

Date Analyzed: 06/19/92	True		Percent	EPA Percent Recovery Acceptance
<u>Analyte</u>	<u>Value</u>	Result	Recovery	Criteria
Chlorometnane	50	53.	116.	D-193
Vinyl Chloride	50	62.	124.	28-163
Bromometnane	50	50.	100.	D-144
Chloroethane	50	52.	104.	46-137
Trichlorofluoromethane (Freon 11)	50	42.	84.	21-156
1,1-Dichloroethene	50	50.	100.	28-167
Methylene Chloride	50	41.	82.	25-162
trans-1,2-Dichloroetnene	50	44.	38.	38-155
1,1-Dichloroethane	50	43.	86.	47-132
Chloroform	50	44.	88.	49-133
1,1,1-Tricnloroethane (TCA)	50	45.	90.	41-138
Carbon Tetrachloride	50	47.	94.	43-143
1,2-Dichloroethane	50	42.	84.	51-147
Trichloroetnene (TCE)	50	46.	92.	35-146
1,2-Dichloropropane	50	46 .	92.	44-156
Bromodichioromethane	50	42.	34.	42-172
trans-1,3-Dichloropropene	50	42.	34.	22-178
cis-1,3-Dichloropropene	50	40.	30.	22-178
1,1,2-Trichloroethane	50	37.	74.	39-136
Tetrachloroethene (PCE)	50	47.	94.	26-162
Dibromocnloromethane	50	35.	70.	24-191
Chlorobenzene	50	4 5.	90.	38-150
Bromoform	50	30.	60.	13-159
1,1,2,2-Tetrachloroethane	50	32.	64.	8-184
1,3-Dichloropenzene	50	44.	8 8.	7-187
1,4-Dichlorobenzene	50	47.	94.	42-143
1,2-Dichloropenzene	50	43.	8 6 .	D-208

Detected

Konvill myllin

Date July 26, 1992

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

EMCON Associates

Project:

EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 06/12/92

Work Order #: Sample Matrix: Water

SJ92-0731

QA/QC Report Surrogate Recovery Summary Halogenated Volatile Organic Compounds EPA Methods 5030/8010

Sample Name	<u>Date Analyzed</u>	<u>Percent Recovery</u> 4-Bromofluorobenzene
MW-1 (25)	06/16/92	97.
MW-3 (25)	06/19/92	92.
MW-3 (25) MS	06/19/92	115.
MW-3 (25) DMS	06/19/92	113.
Metnod Blank	06/16/92	96.
Metnod Blank	06/19/92	96.
	CAS Acceptance Criteria	70-130

(dinoth) anich

Date JUNC 26,1992

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

EMCON Associates

Project:

EMCON Project No. 370-39.01

Arco Faculty No. 6148

Date Received: Work Order #:

06/12/92 SJ92-0731

Sample Matrix: Water

QA/QC Report Matrix Spike Summary Halogenated Volatile Organic Compounds EPA Methods 5030/8010 $\mu g_i L (ppb)$

Sample Name:

MW-3 (25)

Date Analyzed: 06/19/92

					Perc	ent	Recovery
Compound	Spike <u>Level</u>	Sample <u>Result</u>	Spike <u>MS</u>	Result DMS	MS	<u>DMS</u>	Acceptance <u>Criteria</u>
1,1-Dichloroethene Trichloroethene Tetrachloroethene	10 10 10	ND ND 1.9	10.7 10.7 12.5	10.2 10.7 12.3	107. 107. 106.	102. 107. 104.	28-167 35-146 26-162

ND None Detected at or above the method reporting limit

Kom Hirydu

Date Jinc 26,1992

APPENDIX B CHAIN OF CUSTODY

ARCO Facility		(0148	<u>3</u>	Cit (F:	acility)	OAK	CLANK	ρ	rder No.	Project	l manag	ger 🕌		0		 A		* *********	·	 -			Chain of Custod
ARCO engine Consultant na	ame —	1 <u>e</u> C	hre	< Fin			Telephon (ARCO)	(195)57	1-2434	(Consul	illanı) (108)4	453~	-67	19	Fa	x no onsulta	(40)	צע (פ	53-6	· 1/4 :	 7	CAS
Consultant na	-E7	100x	<u>/ /ts</u>	5C3	LITE	<u> </u>		Address (Consultar	mi) 19-	38	<u> </u>	1110	[[21U	A	UE:	VLKS	(4.4.22]		シュービ			Contract number
	ŀ		1	Mairix	,	Presi	servation	_		,	1 1	1 1						[[1]					Method of shipment
Sample I.D	רשם טכ	Container no	Soil	Water	Other	lce	Acid	Sampling date	Samoling time	875× 602°EPA 8020	STEXTON CALS	TPH Moolled 8015 Gas Diese	0.1 arg Grease	TP- EPA 418 1/SM503E	्रीहिशास्त्र मन	EPA 624/824C	PA 625'827C	TCL [₽] Ser Meta 5 □ VOA □ VOA	CAM Meja's EPA 60107000	ad Crg /DHS 20 EP / 20 742'			Samplier- will Peliver-
1101/25)	1:5	*6	1	×		X	1101		·	_	X	71		<u> </u>	X	ii	11.	2 %	डाः	Lead Lead 7420			Special dolor hon
n y)	46	1 1	Ϋ́	~	X	HCI	Stietie	17.47	/	X	'	<u>X</u>		x	· ·							Loues
11 3(<u>25</u>)	<u>6-15</u>	<u>¥6</u>	ļ	X		X	HCI	6/17/91	14:25		X	- 1	X		X	1	nc	150	n1F	*C.	1		Pessible
È:1	11-17	2	l	X		X	Hel	('	1	 - !	<u>~</u>						- 1				- !		
	.		l					Met int con	12.12	!	-2		-			1		1		1	!		Special QA/QC
10-1622	13	2	ĺ	<u>}</u>		χ	NP	6/RKK	13:45	- '		x			}			1		1		[MORIMAL
u 2[])	2	į,	Y		<u> </u>	NP	Weizhen.	12.42.	- 1	- 1	λ		l		1	1	!		,	. /		
w (_2,) 14	2	İ	Х		~		ARM	14:25	- !		χ				Ŋς	V.	Citt	/2/€				Homarks Z. VOA'S: TPH O Z-VOA'S: EPAC
			, , , , , , , , , , , , , , , , , , ,	1	*	-		+	!	1				1		'	1	'		1	1		2-circa Hel: 7
			 						- '	1		-	()	_	-		1	1		.!	- !	-	2 LIKE NP:
		, 1	· /													1		!			!		670-390
		,	1													- '		1-1		. !	- !		
			l!							j			-		1 }	1				!			Lab number
			l!								-	- +		()	- }	1	1			1			5547-0
			/ !/						1	1-1		1-1							\ !			 -	Furnaround time
Condition of s					7	CK,s	Date Co	expired of	kstic N/	Temp	erature (Lecoint	— الار		Loo	7	-]	<u></u> !			L	. 1 Business Day
Relinquished FULL ILL telinquished	reta	ter	15	51	******	- <i>I</i>	Date G/Z/9 Date	97	Fimo		ived by	1/1	F				<u> </u>	 <u></u>			/55	 - [Rush 2 Business Days
Relinquished	ъ́у -					!	Date		· - Time		ived by I		O1Y			ì	Date	-	- 7	Time		!	Expedited 5 Business Days

July 9, 1992

Jim Butera **EMCON Associates** 1921 Ringwood Avenue San Jose, CA 95131

EMCON Project No. G70-39.01 Re:

Arco Facility No. 6148

Dear Mr. Butera:

Enclosed are the results of the water samples submitted to our lab on July 6, 1992. For your reference, our service request number for this work is SJ92-0809.

All analyses were performed in accordance with the laboratory's quality assurance program.

Please call if you have any questions.

Respectfully submitted:

COLUMBIA ANALYTICAL SERVICES, INC.

Keoni A. Murphy

Laboratory Manager

Annelise J. Bazar Regional QA Coordinator

le/KAM

Analytical Report

Client:

EMCCN Associates

Project:

EMCCN Project No. G70-39.01

Arco Facility No. 6148

Sample Matrix: Water

Date Received:

07/06/92

Date Extracted: 07/07/92

Date Analyzed: 07/08/92

Work Order #:

SJ92-0809

Total Petroleum Hydrocarbons as Diesel EPA Methods 3510/California DHS LUFT Method μ g/L (ppb)

Sample Name	MRL	<u>TPH as Diesei</u>
MW-1 (25) MW-3 (25)	50. 50.	ND 1,600.*
Method Blank	50	ND

MRL Method Reporting Limit

TPH Total Petroleum Hydrocarbons

None Detected at or above the method reporting limit

Sample contains a lower boiling point hydrocarbon mixture quantitated as diesel. The chromatogram does not match the typical diesel fingerprint.

Approved by Actual Mankly

Date July 9.1892

APPENDIX A LABORATORY QC RESULTS

Client:

EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: Work Order #:

07/06/92 SJ92-0809

Sample Matrix: Water

QA/QC Report Continuing Calibration Summary TPH as Diesel EPA Methods 3510/DHS LUFT Method mg/L (ppm)

Date Analyzed:

07/08/92

				CAS Percent
<u>Analyte</u>	True <u>Value</u>	Result	Percent Recovery	Recovery Acceptance <u>Criteria</u>
TPH as Diesel	1,000.	907.	91.	90-110

TPH Total Petroleum Hydrocarbons

Fruit Maylin

Client: EMCON Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 07/06/92 Work Order #: SJ92-0809

Sample Matrix: Water

QA/QC Report
Surrogate Recovery Summary
TPH as Diesel
EPA Method 3510/DHS LUFT Method

Sample Name	Date Analyzed	Percent Recovery P-Terpnenyl
MW-1 (25) MW-3 (25)	07/08/92 07/08/92	79. 79.
MS DMS	07.08/92 07.08/92	90. 96.
Method Blank	07.08/92	86.
	CAS Acceptance Criteria	55-145

TPH Total Petroleum Hydrocarbons

Approved by Kithutlikunilly

Date July 1/9/2

Client: EMCCN Associates

Project: EMCON Project No. G70-39.01

Arco Facility No. 6148

Date Received: 07/06/92 Work Order #: SJ92-0809

Sample Matrix: Water

QA/QC Report
Matrix Spike/Duplicate Matrix Spike Summary
TPH as Diesel
DHS LUFT Method

µg/L (ppb)

Date Analyzed: 07/08/92

Percent Recovery

<u>Parameter</u>	Spike <u>Level</u>	Sample <u>Result</u>	Spike Result MS DMS	MS	DMS	Acceptance <u>Criteria</u>
Diesel	4,440.	ND	4,200. 4,290.	95.	97.	55-145

ND None Detected at or above the method reporting umit

TPH Total Petroleum Hydrocarpons

Approved by_____

Dati

APPENDIX B CHAIN OF CUSTODY

ARCO Encility no	ille Eluca	<u>Ćhvi</u>	Stie Sscr	'INTÉ	3	Telephon (ARCO)	Task Or Address (Consultar	-2434 n) 19	Consul Tolepho Consul	tent) ine no itant)	(406) 1110	211	- l: 3-0-	301 219 Ac	ات اax ا <u>(Co</u>	no nsultan	1)(e) C	E) 4 To 6	<u> </u>	24 <u>5</u>	<u>ح</u>	Contract number
Sample 1.C	Container no	Soil	Matrix	Other	Presei	Acid	Sampling date	Sampling time	BTEX 602/EPA 802:	31080	TPH Modified 8015 Gas Diese		TPH EPA 418.1/SM503E	.]	EPA 624/8240	EPA 625/8270	TCLP Sem Sem Netals □ VOA □ VOA □ (Lead Org./DHS			OTOT Method of shipment Scarpler will deliver
14 (25) [-]			<u>X</u>		<u>×</u> <u>x</u>	NP	7-2-92 7-2-92	1340			X											Special detection Limitreporting LOWEST Person
																						Special QA/QC AS LUMMA
															-							Remarks 2 - liter NP per uell
																						670-3 4815 TAT 20 675 Bute
																						Turnaround time
ondition of samp lelinquisted by sa leliqquisted by 1	mplgi	ichil	def			Date Date	5-92	7003	Recei	erature ved by ved by	receive	ad		AF	00/				5/0			Hush 2 Business Days Expeditud 5 Business Days

RECEIVED

.52

Date Project July 9 1992 G70-39.01

Hanagement and Environmental Control

To:

Mr. Joel Coffman
RESNA/ Applied Geosystems
3315 Almaden Expressway, Suite 34
San Jose, California 95050

We are enclosing:

Copies		Description				
2	_	Depth To Water	/ Floating Prod	uct Surv	ev Results	
2		Summary of Gro	undwater Mon	itoring D	ata	
2		Certified Analytic	al Reports witl	h Chain-	of-Custody	
5	_	Water Sample F	ield Data Shee	ts		
For your:	×	Information	Sent by:	X	Mail	

Comments:

Enclosed are the data from the second quarter 1992 monitoring event at ARCO service station 6148. Please note that wells MW-1 and MW-3 were resampled for diesel analysis on July 2, 1992 due to quality assurance deficiencies associated with the original analysis of these samples. Both the original and resample diesel results are enclosed for your review. Groundwater monitoring is conducted consistent with applicable regulatory guidelines.

Reviewed by:

Jim Butera

Shreerang N. Dharasker, Senior Project Engineer.

וציב ג. עשות WATER SAMPLE FIELD DATA SHEET PROJECT NO: (27C - 39 C) SAMPLE ID: MW-1 PURGED BY: 5.11-1100 /KREICHELDERTNAME: ARCC # 6149 SAMPLED BY: 5 Martan 11 Reicheldefer LOCATION: Caklang CA Ground Water X Surface Water ____ Treatment Effluent ____ Other____ CASING DIAMETER (inches): 4.5 ____ 3____ 4 🗻 Other____ CASING ELEVATION (feet/MSL): _____ VOLUME IN CASING (gal.): ________ DEPTH TO WATER (feet): 19 16 CALCULATED PURGE (gal.): 24.92 DEPTH OF WELL (feet): 25.73 ACTUAL PURGE VOL (gal.): 25.CC DATE PURGED: 6/17/00 End (2400 Hr) 13.12 DATE SAMPLED: 1.117 /gr 13:43 End (2400 Hr) 13:45 Start (2400 Hr) _ VOLUME TIME E.C. **TEMPERATURE** pН COLOR TURBIDITY (2400 Hr) (gal.) (µmhos/cm@ 25° C) (units) (°F) (visuai) (visuaı) 12.19 555 442 Cloudy 5/1c/1+ 10 464 13:21 Claudu 636 460 12.76 6.19 450 ~_ 454 67,2

ODOR: moderate

FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): FR-1

Bailer (Teffon®)

Bailer (Stainless Steel)

WELL INTEGRITY: GCCO LOCK#: 32CG

Meter Calibration: Date: 6/17/97 Time: 12.50 Meter Serial #: 99/8 Temperature °F: 69.5

(EC 1000 71 132) (DI) (pH 7 7 51 1 7 65) (pH 10 997 1 10 00) (pH 4 3 95 1)

Bailer (PVC)

Decreated

trace

(NTU 0 - 200)

(COBALT 0 - 100)

Bailer (Teffon®)

Dedicated

Bailer (Stainless Steel)

Submersible Pump

SAMPLING EQUIPMENT

- 2º Bladder Pump

DDL Sampler

- Well Wizard™

Dipper

Reviewed By: 75 Page of 5

Other: .

12:35

D. O. (ppm): .

2" Bladder Pump

Centrifugal Pump

Submersible Pump

Well Wizard™

Signature:

Other: _

REMARKS: -

NR

Location of previous calibration:

PURGING EQUIPMENT

WATER SAMPLE FIELD DATA SHEET	nev. 스 331
PROJECT NO: 6170 - 39.01 SAMPLEID: MW-	-
EMCON PURGED BY: K REICHELDERFER CLIENT NAME: ARCO	6148
SAMPLED BY: KREICHELDERFER LOCATION: 5131 SH	ATTUCK AVE
SAMPLED BY: 1- 10-10-10-10-10-10-10-10-10-10-10-10-10-1	BAKLAUD
TYPE: Ground Water Surface Water Treatment Effluent Other	
CASING DIAMETER (inches): 2 3 4 \(\times \) 4.5 6 Oth	er
	4.95
CASING ELEVATION (IEEUMSL):	24.76
DEPTH TO WATER (Teet):	4 00
DEPTH OF WELL (feet): 25.80 ACTUAL PURGE VOL. (gal.):	
DATE PURGED: 7-2-92 Start (2400 Hr) /200 End (2400 Hr)	1242
11 7 3 63 12 35	1245.
DATE SAMPLED: 7-2-92 Start (2400 Hr) 1235 End (2400 Hr)	
TIME VOLUME PH E.C. TEMPERATURE COLOR	TURBIDITY
(2400 Hr) (gal.) (units) (jumhos/cm.@ 25° C) (°F) (visual)	(visuai) LIGIFT
	V
NR ODGE: MILD NR	NR
D. O. (ppm):	(NTU 0 - 200)
11 A1 P	
FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1):	
PURGING EQUIPMENT SAMPLING EQUIPMENT	İ
2° Bladder Pump Bailer (Teflon®) 2° Bladder Pump Bailer	(Teffon®)
Centrifugal Pump Bailer (PVC) DDL Sampler Bailer	(Stainless Steel)
Submersible Pump Catalities Street	ersible Pump
Well Wizard TM Dedicated Well Wizard TM Dedicated Other:	ated
One:	259
WELL INTEGRITY: GCCD LOCK #: 3	
REMARKS: LWC HAS A CRACKED FDC7E DRIFT WELL (2) 14.00 GALLONS	
PRIFT WELL B 14.00 GALLONS	
Meter Calibration: Date: 7-2-92 Time: 1136 Meter Serial #: 9,203 Temperature (EC 1000 1549 / 1000) (DI) (pH 7 709 / 700) (pH 10 10.04) (C 09) (pH 43.	re °F: 7-2 . 3
Meter Calibration. Date: 1000 (DI) (pH 7 709 / 700) (pH 10 10.04) (0.09 (pH 43.	10 /
Location of previous calibration:	
Signature: Reviewed By: TB Page 2	01

WAIER SAMPLE FIELD DATA SMEET PROJECT NO: (-7C - 39 C/ SAMPLE ID: MW-7 PURGED BY: 5-HELLGILL K. Reicherderadent NAME: ARCC #6149 SAMPLED BY: 5-Harmolk-Reverted action: Cakland CA NΑ TYPE: Ground Water X Surface Water ____ Treatment Effluent ____ Other_ 2___ 3__ 4<u>×</u> CASING DIAMETER (inches): 4.5____ 6___ Other____ VOLUME IN CASING (gal.): 537 NA CASING ELEVATION (feet/MSL): ____ DEPTH TO WATER (feet): 17.67 CALCULATED PURGE (gal.): 26.60 DEPTH OF WELL (feet): 25.79 ACTUAL PURGE VOL. (gal.): DATE PURGED: 6/17/97 Start (2400 Hr) _____ End (2400 Hr) DATE SAMPLED: 6/17/77 Start (2400 Hr) End (2400 Hr) VOLUME рΗ **TEMPERATURE** TIME E.C. COLOR TURBIDITY (µmhos/cm@ 25° C) (2400 Hr) (gal.) (units) (°F) (visual) (visuai) NR. ODOR: D. O. (ppm): __ (COBALT 0 - 100) (NTU 0 - 200) PURGING EQUIPMENT SAMPLING EQUIPMENT Bailer (Teflon®) 2° Bladder Pump ----- Bailer (Teffon®) 2° Bladder Pump Centrifugal Pump - Bailer (PVC) DDL Sampler Bailer (Stainless Steet) Submersible Pump Bailer (Stainless Steel) Dipper Submersible Pump Well Wizard™ Dedicated — Well Wizard™ Dedicated Other: -Other: . WELL INTEGRITY: Good LOCK #: <u>3259</u> REMARKS: -Meter Calibration: Date: 6/17/97 Time: Meter Serial #: 59/7 Temperature °F: (EC 1000 ___/__) (DI ___) (pH 7 ___/__) (pH 10 ___/__) (pH 4 ___/__) Location of previous calibration: MI 1/2-1

.____ Reviewed By: _

Signature:

Page <u>3</u> of <u>5</u>

WAIER SAMPLE FIELD DATA SHEET PROJECT NO: (-7C - 39 C) SAMPLEID: MW-3 PURGED BY: 5. Harton / Reicheld CHÉNT NAME: ARCC # 6/45 SAMPLED BY: S. Herten /11. 12 exchelder ReocATION: Cololand CH TYPE: Ground Water Surface Water Treatment Effluent Other <u>z______3___4_×</u> CASING DIAMETER (inches): 4.5 ____ Other___ CASING ELEVATION (feet/MSL): _ VOLUME IN CASING (gal.): 5/2 19 CI ___ DEPTH TO WATER (feet): _ CALCULATED PURGE (gal.): 25.61 DEPTH OF WELL (feet): 25.53 ACTUAL PURGE VOL. (gal.): ZGCC DATE PURGED: 6/17/97 Start (2400 Hr) _ End (2400 Hr) DATE SAMPLED: /// 197 Start (2400 Hr) . End (2400 Hr) . VOLUME TIME E.C. **TEMPERATURE** pН CCLOR TURBIDITY (gal.) (2400 Hr) (µmnos/cm@ 25° C) (units) (visual) (visuai) 14:0Z 447 WW 194 Zau 510 14:04 14.13 trace ODOR: STrong D. O. (ppm): (COBALT 0 - 100) (NTU 0 - 2001 PURGING EQUIPMENT SAMPLING EQUIPMENT 2° Slagger Pump Bailer (Teffon®) - 2° Bladder Pump Bailer (Teffon®) Centrifugal Pump Bailer (PVC) **DDL Sampler** Bailer (Stainless Steet) Submersible Pump Bailer (Stainless Steel) Dipper Submersible Pump Well Wizard™ Dedicated - Well Wizard™ Dedicated Other: Other: _ WELL INTEGRITY: Good Lock #: 3259 REMARKS: -

Meter Calibration: Date: 6/12 '97 Time: Meter Serial #: 50/1 Temperature °F: (EC 1000 ___/ ___) (DI ___) (pH 7 ____) (pH 10 ___/ _) (pH 4 ___/ _) Location of previous calibration: 50/1 -/

Signature: Reviewed Bv: Page 4 of 5

WAILH SAMPLE FIELD DATA SHEET G70-39,01 PROJECT NO: MW-3 SAMPLE ID: K REICHELDERTER AR(O PURGED BY: 6148 CLIENT NAME: K REICHELDERFER SAMPLED BY: 5131 SHATTUCK ALE LOCATION: JAKCHN D Ground Water ... Surface Water _____ Treatment Effluent ___ Other_ $_{4}\times$ CASING DIAMETER (inches): 4.5 Other___ 4.96 CASING ELEVATION (feet/MSL): __ VOLUME IN CASING (gai.): 24.80 DEPTH TO WATER (feet): _ CALCULATED PURGE (gal.): 25.80 13.50 DEPTH OF WELL (feet): _ ACTUAL PURGE VOL. (gal.): 1253 DATE PURGED: Start (2400 Hr) End (2400 Hr) DATE SAMPLED: 1334 Start (2400 Hr) End (2400 Hr) VOLUME TIME pН E.C. **TEMPERATURE** COLOR TURBIDITY (2400 Hr) (gal.) (µmnos/cm@ 25° C) (units) (visual) (visuai) :259 5.00 (2.13 514 CLOUDY LIGHT 1302 16.00 6.24 71.0 .304 WELL DRIED 10 13.50 CHALLONS つうす KECHARGE =0,고 NR MILD NR NR D. O. (ppm): ODOR: (COBALT 0 - 100) (NTU 0 - 200) NR FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): PURGING EQUIPMENT SAMPLING EQUIPMENT 2º Bladder Pump Bailer (Teffon®) 2° Bladder Pump Bailer (Teffon®) Centrifugai Pump Bailer (PVC) **DDL Sampler** Bailer (Stainless Steel) Submersible Pump Bailer (Stainless Steel) Dipper Submersible Pump Well Wizard™ Dedicated Well Wizard™ Dedicated Other: Other: 600D LOCK#: 3259 WELL INTEGRITY:

REMARKS :	1304 -	WELL	DRIED @	13.50	GALLONS	
Meter Calibration	on: Date: 🔫	-2.72 T	īme:	Meter Serial	<u> 9203</u>	Temperature °F:
(EC 1000	/)	(DI) (pH 7	/) (p	H 10/	_)(pH4/)

Location of previous calibration: MW - /

APPENDIX D WELLHEAD SURVEY

JOHN E. KOCH
Land Surveyor
CA. State Lic. No. LS4811
5427 Telegraph Ave., Suite A
Oakland, CA 94609
(510)655-9956
FAX(510)655-9745

Applied GeoSystems
3315 Almaden Expressway, Suite 34
San Jose CA 95118
(408) 264-7723
FAX(408) 264-2435

01/02/92

Tabulation of Elevations as of 12:00 p.m. 12/27/91

Job #91084
AGS Project Job # 61035.02
Project Manager: Joel Coffman
Site: Arco Station 6148
5131 Shattuck Avenue
@ 52nd Street
Oakland, CA

<u>BENCHMARK:</u> #3172 Cut square in top of curb. Northeast end of island, triangle shaped, at east side of crosswalk at Telegraph Avenue and Claremont Avenue.
(Elev.116.271' City of Oakland Datum) *see note 1.

MONITOR WELL DATA TABLE

Well Designation	Elevation	Description
MW-1	108.03 108.27	Top of P.V.C. Casing Top of Box
MW-2	107.43 107.70	Top of P.V.C. Casing Top of Box
MW-3	107.77 108.06	Top of P.V.C. Casing Top of Box

NOTE:

- 1. Datum is City of Oakland = (USGS) +3.00
- 2. Top of Casing Elevation (T.O.C.El.) is at set mark on rim of PVC.
- 3. Ground Elevation (Gd. El.) is at set mark on top of box.

JEK JOB # 91084

LIENT: AGS/RESNA

SITE: ARCO STATION 6148

ELEVATIONS
WELL T.O.C. T.O.B
MW1 108.03 108.27
MW2 107.43 107.70
MW3 107.77 10806

LAND SURVEYOR
CA STATE LIC. NO. LS 4811
5427 TELEGRAPH AVE. SUITE A

APPENDIX E

CHAIN OF CUSTODY RECORDS LABORATORY ANALYSES REPORTS

RECEIVED

JAN 1 7 1992

RESNA CAN JOSE

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman

Project: Arco 6148, Oakland

Enclosed are the results from 14 soil samples received at Sequoia Analytical on December 20,1991. The requested analyses are listed below:

1124291	Soil, S-10.5-B3	12/20/91	EPA 3550/8015 EPA 5030/8015/8020 SM 5520 E&F (Gravimetric)
1124292	Soil, S-17.5-B3	12/20/91	Ca, Cr, Pb, Zn, Ni EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 SM 5520 E&F (Gravimetric)
1124293	Soil, S-26.5-B3		Ca. Cr. Pb, Zn, Ni EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 SM 5520 E&F (Gravimetric)
1124294	Soil, S-17.5-B1	12/20/91	Ca, Cr, Pb, Zn, Ni EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 SM 5520 E&F (Gravimetric)
1124295	Soil, S-22.5-B1	12/20/91	Ca, Cr, Pb, Zn, Ni EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 SM 5520 E&F (Gravimetric)
1124296	Soil, S-26.5-B1	12/20/91	EPA 3550/8015 EPA 5030/8015/8020 SM 5520 E&F (Gravimetric)
1124297	Soil, S-12-B2	12/19/91	EPA 3550/8015 EPA 5030/8015/8020 SM 5520 E&F (Gravimetric)
1124298	Soil, S-17-B2	12/19/91	Ca. Cr. Pb, Zn, Ni EPA 3550/8015 EPA 5030/8015/8020 EPA 8240

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
			SM 5520 E&F (Gravimetric)
1124299	Soil, S-25.5-B2	12/19/91	Ca, Cr, Pb, Zn, Ni EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 SM 5520 E&F (Gravimetric)
1124300	Soil, S-30.5-B2	12/19/91	EPA 3550/8015 EPA 5030/8015/8020 SM 5520 E&F (Gravimetric)
1124301	Soil, S-10.5-B4	12/19/91	EPA 3550/8015 EPA 5030/8015/8020 SM 5520 E&F (Gravimetric)
1124302	Soil, \$-15.5-B4	12/19/91	EPA 3550/8015 EPA 5030/8015/8020 SM 5520 E&F (Gravimetric)
1124303	Soil, S-18.5-B4	12/19/91	Ca, Cr, Pb, Zn, Ni EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 SM 5520 E&F (Gravimetric)
1124304	Soil, S-20-B4	12/19/91	EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 SM 5520 E&F (Gravimetric)

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

. Project Manager

680 Chesapeake Drive • Redwood City. CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 *Attention: Joel Coffman

Client Project ID:

Matrix Descript:

Soil

EPA 5030/8015/8020 Analysis Method:

Arco 6148, Oakland

112-4292 First Sample #:

Sampled:

Dec 20, 1991

Received: Analyzed:

Dec 20, 1991 Dec 30, 1991

Reported:

Jan 8, 1992®

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
112-4292	S-17.5-B3	320	0.65	0.65	2.3	5.9

0.050 0.050 **Detection Limits:** 10 0.050 0.050

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Arco 6148, Oakland

Matrix Descript:

Soil

EPA 5030/8015/8020

Analysis Method: 112-4294 First Sample #:

Sampled:

Dec 20, 1991 Dec 20, 1991 3

Received: Analyzed:

Reported:

Dec 30, 1991

Jan 8, 1992 8

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
112-4294	\$-17.5-B1	470	2.3	5.1	5.1	24

Detection Limits:	50	0.25	0.25	0.25	0.25	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

1124291,RRR <3>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID:

Arco 6148, Oakland

Soll

Matrix Descript: EPA 5030/8015/8020 Analysis Method:

First Sample #: 112-4297 Sampled:

Dec 19, 1991

Received: Analyzed: Dec 20, 1991 Dec 30, 1991

Jan 8, 1992 Reported:

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
112-4297	S-12- 82	N.D.	N.D.	N.D.	N.D.	N.D.
112-4299	\$-25.5-82	N.D.	0.015	0.016	N.D.	0.019
112-4300	\$-30.5•B2	N.D.	0.015	0.0080	N.D.	N.D.
112-4301	\$-10.5 - B4	N.D.	N.D.	N.D.	N.D.	N.D.
112-4302	\$-15.5- B 4	N.D.	0.010	N.D.	N.D.	N.D.
112-4304	S-20- B 4	N.D.	0.0070	N.D.	N.D.	N.D.

Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <4>

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman

Client Project ID: Matrix Descript:

Arco 6148, Oakland

Soil

EPA 5030/8015/8020

Analysis Method: First Sample #: 112-4298 Sampled:

Dec 19, 1992 Dec 20, 1991

Received: Analyzed:

Dec 30, 1991

Reported:

Jan 8, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
112-4298	S-17-B2	740	2.3	13	7.7	41

Detection Limits: 100 0.50 0.50 0.50 0.50

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised

SEQUOIA ANALYTICAL

roject Manager

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID:

Arco 6148, Oakland

Soll

Matrix Descript: Analysis Method:

First Sample #: 112-4303

EPA 5030/8015/8020

Sampled:

Reported:

Dec 19, 1991 Dec 20, 1991

Received: Analyzed: Dec 30, 1991

Jan 8, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample	Sample	Low/Medium B.P.		Ethyl			
Number	Description	Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)	
112-4303	\$-18.5- B 4	65	0.42	0.22	0.54	0.77	

0.025 0.025 0.025 0.025 **Detection Limits:** 5.0

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

bject Manager

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Client Project ID: Matrix Descript:

Arco 6148, Oakland

Sampled: Received: Dec 20, 1991

Analysis Method: EPA 3550/8015 Extracted:

Dec 20, 1991 Dec 31, 1991

Attention: Joel Coffman

First Sample #:

112-4291

Soil

Analyzed: Revised:

Jan 2, 1992 Jan 15, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
112-4291	S-10.5-B3	N.D.
112-4293	S-26.5-B3	N.D.
112-4295	S-22.5-B1	N.D.
112-4296	S-26.5-B1	N.D.

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291 RRR <7>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118
Attention: Joel Coffman

Client Project ID: Matrix Descript:

D: Arco 6148, Oakland

Soil

EPA 3550/8015

Analysis Method: EPA 3550 First Sample #: 112-4292 Sampled:

Dec 20, 1991 Dec 20, 1991

Received: Extracted:

Dec 31, 1991

Analyzed: Reported:

Jan 2, 1992 Jan 8, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
112-4292	S-17.5-B3	230

Detection Limits:

20

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

1124291.RRR <8>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

≨San Jose, CA 95118 Attention: Joel Coffman

Client Project ID: Matrix Descript:

Arco 6148, Oakland

Soil

EPA 3550/8015

Analysis Method: 112-4294 First Sample #:

Sampled: Received:

Dec 20, 1991 Dec 20, 1991 3

Dec 31, 1991 8 Extracted:

Jan 2, 1992 Analyzed: Jan 8, 1992 Reported:

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
112-4294	S-17.5-B1	370

Detection Limits:

50

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analyses reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <9>

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joei Coffman

Arco 6148, Oakland Client Project ID:

Soil Matrix Descript:

Analysis Method:

EPA 3550/8015

112-4297 First Sample #:

Sampled: Dec 19, 1991

Received: Dec 20, 1991

Extracted: Dec 31, 1991 Analyzed: Jan 2, 1992

Reported: Jan 8, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
112-4297	S-12-B2	N.D.
112-4299	\$-25.5-B2	N.D.
112-4300	\$-30.5-B2	N.D.
112-4301	\$-10.5-B4	N.D.
112-4302	S-15.5-B4	N.D.
112-4303	S-18.5-B4	41
112-4304	\$-20-84	N.D.

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated Ilmit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <10>

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman

Client Project ID:

Arco 6148, Oakland Soil

Matrix Descript: EPA 3550/8015 Analysis Method:

First Sample #: 112-4298 Sampled:

Dec 19, 1991

Received: Dec 20, 1991 Dec 31, 1991 Extracted:

Analyzed: Jan 2, 1992 Jan 8, 1992 Reported:

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
112-4298	S-17-B2	540

Detection Limits:

50

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been relacd.

SEQUOIA ANALYTICAL

Project Manager

1124291,RRR <11>

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Matrix Descript:

Client Project ID: Arco 6148, Oakland

Soil

Analysis Method: SM 5520 E&F (Gravimetric)

First Sample #: 112-4291

1.00

Sampled:

Dec 20, 1991

Received: Extracted:

Dec 20, 1991 Jan 2, 1992

Analyzed:

Jan 2, 1992

Revised:

Jan 15, 1992

TOTAL RECOVERABLE PETROLEUM OIL

Sample Number	Sample Description	Oil & Grease mg/kg (ppm)
112-4291	S-10.5-B3	N.D.
112-4292	S-17.5-B3	N.D.
112-4293	S-26.5-B3	N.D.
112-4294	S-17.5-B1	N D.
112-4295	S-22.5-B1	N.D.
112-4296	S-26.5-B1	N.D.

Detection Limits: 30

Analytes reported as N D, were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Froject Manager

1124291.RRR < 12>

RESNA 3315 Almaden Expwy., Sulte 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: Arco 6148, Oakland Sample Descript:

Analysis Method: Lab Number:

Soll, \$-26.5-B3 **EPA 8240**

112-4293

Sampled: Received:

Dec 20, 19913 Dec 20, 1991

Jan 6, 1992 Analyzed: Jan 8, 1992® Reported:

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500	***************************************	N.D.
Benzene	100	******************************	N.D.
Bromodichioromethane	100	***************************************	N.D.
Bromoform	100	4441414********************************	N.D.
Bromomethane	100	***************************************	N.D.
2-Butanone	500		N.D.
Carbon disulfide	100		N.D.
Carbon tetrachloride	100	***************************************	N.D.
Chlorobenzene	100	*************************	N.D.
Chloroethane	100		N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100	***************************************	N.D.
Chloromethane	100	**************************	N.D.
Dibromochloromethane	100		N.D.
1,1-Dichloroethane	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
1,2-Dichloroethane		***************************************	N.D.
1,1-Dichloroethene	100	******************************	N.D.
cis-1,2-Dichloroethene	100		N.D.
trans-1,2-Dichloroethene	100	*************	N.D.
1,2-Dichloropropane	100	***********	N.D.
cis-1,3-Dichloropropene	100	*************************	N.D.
trans-1,3-Dichloropropene	100	*******************************	N.D.
Ethylbenzene	100	174445441444144444444444444444444444444	N.D.
2-Hexanone	500	****************	N.D.
Methylene chloride	500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
4-Methyl-2-pentanone	500		N.D.
Styrene	100	*****************************	N.D:
1,1,2,2-Tetrachloroethane	100	***************************************	N.D.
Tetrachloroethene	100		N.D.
Toluene	100	£}{{\}}}	N.D.
1,1,1-Trichloroethane	100	* *** ***	N.D.
1,1,2-Trichloroethane	100		N.D.
Trichloroethene	100	***************************************	N.D.
Trichlorofluoromethane	100	***	N.D.
Vinyl acetate	100	***************************************	N.D.
Vinyl chloride	100	*****	N.D.
Total Xylenes	100		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

Lab Number:

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: Arco 6148, Oakland

Sample Descript: Soil, S-17.5-B1
Analysis Method: EPA 8240

EPA 8240 112-4294 Sampled:

Dec 20, 1991 Dec 20, 1991

Received: Analyzed:

Jan 3, 1992

Reported: Jan 8, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500		N.D.
Benzene:	100		. 1,300
Bromodichloromethane	100	********************************	N.D.
Bromoform	100	re************************************	N.D.
Bromomethane	100	41517777444444	N.D.
2-Butanone	50 0	*************************	N.D.
Carbon disulfide	100		N.D.
Carbon tetrachloride	100	***************************************	N.D.
Chlorobenzene	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Chloroethane	100	*************************	N.D.
2-Chloroethyl vinyl ether	500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Chloroform	100	*************************	N.D.
Chloromethane	100	*\$4********************************	N.D.
Dibromochloromethane	100	*******************************	N.D.
1,1-Dichloroethane	100	*******************************	N.D.
1,2-Dichloroethane	100	***************************************	N.D.
1,1-Dichloroethene	100		N.D.
cis-1,2-Dichloroethene	100		N.D.
trans-1,2-Dichloroethene	100	***************************************	N.D.
1.2-Dichloropropane	100		N.D.
cis-1,3-Dichloropropene	100		N.D.
trans-1,3-Dichloropropene.	100	***************************************	N.D.
Ethylbenzene	100		
2-Hexanone	500	********************************	N.D.
Methylene chloride	500	41-14	N.D.
4-Methyl-2-pentanone	500		N.D.
Styrene	100	****************************	N.D:
1,1,2,2-Tetrachloroethane	100	*******************************	N.D.
Tetrachloroethene	100		N.D.
Toluene	<u> </u>		. 1,800
1,1,1-Trichloroethane	100		N.D.
1.1,2-Trichloroethane	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Trichloroethene	100	***************************************	N.D.
Trichlorofluoromethane	100	*****************************	N.D.
Vinyi acetate	100		N.D.
Vinyl chloride	100	*******************************	N.D.
Vinyl chloride Total Xylenes	(P)		008,8

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

1124291.RRR <16>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Analysis Metho Attention: Joel Coffman Lab Number:

Client Project ID: Arco 6148, Oakland Sample Descript: Soil, S-22.5-B1

Analysis Method: EPA 8240 Lab Number: 112-4295 Sampled: Received:

Dec 20, 1991 Dec 20, 1991

Analyzed: Jan 3, 1992 Reported: Jan 8, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500		N.D.
Benzene	100	***************************************	N.D.
Bromodichloromethane,	100		N.D.
Bromoform	100		N.D.
Bromomethane	100	454444444444444444444444444444444444444	N.D.
2-Butanone	500	J-4-5-4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	N.D.
Carbon disulfide	100		N.D.
Carbon tetrachloride	100	,	N.D.
Chlorobenzene	100	***************************************	N.D.
Chloroethane	100	************************************	N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100		N.D.
Chloromethane	100	<pre></pre>	N.D.
Dibromochloromethane	100	***************************************	N.D.
1,1-Dichloroethane	100		N.D.
1,2-Dichloroethane	100		N.D.
1,1-Dichloroethene	100	***************************************	N.D.
cis-1,2-Dichloroethene	100		N.D.
trans-1,2-Dichloroethene	100	,	N.D.
1,2-Dichloropropane	100	472124444441444444444444444444444444444	N.D.
cis-1,3-Dichtoropropene	100		N.D.
trans-1,3-Dichloropropene	100	414710044777777777777777777777777777777	N.D.
Ethylbenzene	100		N.D.
2-Hexanone	500		N.D.
Methylene chloride	500	***************************************	N.D.
4-Methyl-2-pentanone	500		N.D.
Styrene	100		N.D:
1,1,2,2-Tetrachloroethane	100		N.D.
Tetrachloroethene	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Toluene	100	***************************************	N.D.
1,1,1-Trichloroethane	100		N.D.
1,1,2-Trichloroethane	100	***************************************	N.D.
Trichloroethene	100		N.D.
Trichlorofluoromethane	100	,	N.D.
Vinyl acetate	100		N.D.
Vinyt chloride	100		N.D.
Total Xylenes	100	***************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Mana Cee Project Manager

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Attention: Joel Coffman

Analysis Method: Lab Number:

Client Project ID: Arco 6148, Oakland Sample Descript: Soil, S-17-B2 **EPA 8240**

112-4298

Received: Analyzed: Dec 19, 1991 Dec 20, 1991 Jan 7, 1992

Reported:

Sampled:

Jan 8, 1992‡

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	16,500	***************************************	N.D.
Benzene	3,300		4300
Bromodichloromethane	3,300	*******	N.D.
Bromoform	3,300	***************************************	N.D.
Bromomethane	3,300	********************************	N.D.
2-Butanone	16,500	***************************************	N.D.
Carbon disulfide	3,300	***************************************	N.D.
Carbon tetrachloride	3,300	######################################	N.D.
Chlorobenzene,	3,300	*************************	N.D.
Chloroethane	3,300	************************	N.D.
2-Chloroethyl vinyl ether		*******************************	N.D.
Chloroform.	3,300		N.D.
Chloromethane		***************************************	N.D.
Dibromochloromethane	•		N.D.
1.1-Dichloroethane	•		N.D.
1,2-Dichloroethane	•		N.D.
1,1-Dichloroethene			N.D.
cis-1,2-Dichloroethene	•		N.D.
trans-1,2-Dichloroethene	3,300		N.D.
1,2-Dichloropropane	3,300		N.D.
cis-1,3-Dichloropropene	3,300		N.D.
trans-1,3-Dichloropropene.	3,300		N.D.
Ethylbenzene	300		
2-Hexanone	16,500		N.D.
Methylene chloride	16,500		N.D.
4-Methyl-2-pentanone	16,500		N.D.
Styrene	3,300		N.D.
1,1,2,2-Tetrachloroethane	3,300		N.D.
Tetrachloroethene	3,300		N.D.
	3,300	The creeking desire some and an example of	
Toluene	3,300		N.D.
1,1,1-Trichloroethane	3,300		N.D.
1,1,2-Trichloroethane	3,300	***************************************	N.D.
Trichloroethene	3,300		N.D.
Trichlorofluoromethane	3,300 3,300		N.D.
Vinyl actate		***************************************	N.D.
Vinyl chloride	3,300 3,300		360.000

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR < 18>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA \$3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: Arco 6148, Oakland

Sample Descript: Analysis Method: Lab Number:

Soil, S-25.5-B2 **EPA 8240**

112-4299

Dec 19, 1991 Sampled: Received:

Dec 20, 1991 Jan 3, 1992 Analyzed: Reported: Jan 8, 1992®

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500	***************************************	N.D.
Benzene	100		N.D.
Bromodichloromethane	100		N.D.
Bromoform	100	**********	N.D.
Bromomethane	100	*******************************	N.D.
2-Butanone	500		N.D.
Carbon disulfide	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Carbon tetrachloride	100		N.D.
Chlorobenzene	100	***************************************	N.D.
Chloroethane	100		N.D.
2-Chloroethyl vinyl ether	500	******************************	N.D.
Chloroform	100	{-q	N.D.
Chloromethane	100	***************************************	N.D.
Dibromochloromethane	100		N.D.
1,1-Dichloroethane	100	121242011001001000000000000000000000000	N.D.
1,2-Dichloroethane	100	***************************	N.D.
1,1-Dichloroethene	100	***************************************	N.D.
cis-1,2-Dichloroethene	100	,	N.D.
trans-1,2-Dichloroethene	100		N.D.
1,2-Dichloropropane	100	*****************************	N.D.
cis-1,3-Dichloropropene	100		N.D.
trans-1,3-Dichloropropene	100	***************************************	N.D.
Ethylbenzene	100		N.D.
2-Hexanone	500	***************************************	N.D.
Methylene chloride	500	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
4-Methyl-2-pentanone	500		N.D.
Styrene	100		N.D.
1,1,2,2-Tetrachloroethane	100	117171111777777777777777777777777777777	N.D.
Tetrachloroethene	100	***************************************	N.D.
Toluene	100	**********************************	N.D.
1,1,1-Trichloroethane	100	*********************************	N.D.
1,1,2-Trichloroethane	100	***************************************	N.D.
Trichloroethene	100	*******************************	N.D.
Trichlorofluoromethane	100		N.D.
Vinyl acetate	100		N.D.
Vinyl chloride	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Total Xylenes	100	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR < 19>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: Arco 6148, Oakland

Sample Descript: Analysis Method: Lab Number:

Soil, S-18.5-B4 EPA 8240 112-4303 Sampled: Received:

Dec 19, 1991 Dec 20, 1991

Analyzed: Jan 3, 1992 Reported: Jan 8, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500	*************************	N.D.
Benzene	30 S 30 S		Mark 1995 Mark management of the state of th
Bromodichloromethane	100		N.D.
Bromoform	100		N.D.
Bromomethane	100	**************************	N.D.
2-Butanone	500		N.D.
Carbon disulfide	100	******************************	N.D.
Carbon tetrachioride	100		N.D.
Chlorobenzene	100	.,,	N.D.
Chloroethane	100	***************************************	N.D.
2-Chloroethyl vinyl ether	500	***************************************	N.D.
Chloroform	100	***************************************	N.D.
Chloromethane	100	***************************************	N.D.
Dibromochloromethane	100	***************************************	N.D.
1,1-Dichloroethane	100	***************************************	N.D.
1,2-Dichloroethane	100	***************************************	N.D.
1,1-Dichloroethene	100	***************************************	N.D.
cis-1,2-Dichloroethene	100		N.D.
trans-1,2-Dichloroethene	100 ⋅	**************	N.D.
1,2-Dichloropropane	100	*************	N.D.
cis-1,3-Dichloropropene	100-		N.D.
trans-1,3-Dichloropropene	100	***************************************	N.D
Ethylbenzene	100		1,700
2-Hexanone	500		N.D.
Methylene chloride	100·	***************************************	N.D.
4-Methyl-2-pentanone	500	***************************************	N.D.
Styrene	100 ·	######################################	N.D.
1,1,2,2-Tetrachloroethane	100 ·	*****************************	N.D.
Tetrachloroethene	100 '		N.D
Toluene	100		240
1,1,1-Trichloroethane	100	ft	N.D.
1,1,2-Trichloroethane	100 ·	***************************************	N.D.
Trichloroethene	100 -		N.D.
Trichlorofluoromethane	100	***************************************	N.D.
Vinyl acetate	100 -		N.D.
Vinvi chloride	100 '	******************************	N.D.
Total Xylenes	400°		3.200

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA, 95118

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: Arco 6148, Oakland

Sample Descript: Analysis Method: Lab Number:

Soil, S-20-B4 EPA 8240 112-4304 Sampled: Received:

Dec 19, 1991 Dec 20, 1991

Analyzed: Jan 3, 1992 Reported: Jan 8, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500	1.1.11111111111111111111111111111111111	N.D.
Benzene	100		N.D.
Bromodichloromethane	100	141141111111111111111111111111111111111	N.D.
Bromoform	100		N.D.
Bromomethane	100		N.D.
2-Butanone	500		N.D.
Carbon disulfide	100		N.D.
Carbon tetrachloride	100		N.D.
Chlorobenzene	100	,	N.D.
Chloroethane	100	[cg1p=1,,	N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100	***************************************	N.D.
Chloromethane	100		N.D.
Dibromochloromethane	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
1,1-Dichloroethane	100		N.D.
1.2-Dichloroethane	100		N.D.
1,1-Dichloroethene	100		N.D.
cis-1,2-Dichloroethene	100		N.D.
trans-1,2-Dichloroethene	100		N.D.
1,2-Dichloropropane	100		N.D.
cis-1,3-Dichloropropene	100		N.D.
trans-1,3-Dichloropropene	1.2.2		N.D.
Ethylbenzene	100		N.D.
2-Hexanone	500		N.D.
Methylene chloride	500		N.D.
4-Methyl-2-pentanone	5 00		N.D.
Styrene	100		N.D.
1,1,2,2-Tetrachloroethane	100		N.D.
Tetrachloroethene	100		N.D.
	100		N.D.
Toluene	100		N.D.
1,1,1-Trichloroethane	100		N.D.
1,1,2-Trichloroethane	100	***************************************	N.D.
Trichloroethene	100	***************************************	N.D.
Trichlorofluoromethane	100		N.D.
Vinyl acetate	100	***************************************	N.D.
Vinyl chloride	100		N.D.
Total Xylenes	100	***************************************	(1)971

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

680 Chesapeake Drive • Redwood City. CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118
Attention: Joel Coffman

Client Project ID: Arco 6148, Oakland

Sample Descript: Soil, S-17.5-B3

Lab Number: 112-4292

Sampled; C Received: C

Dec 20, 1991 Dec 20, 1991

Extracted: Dec 30, 1991 Analyzed: 12/31/91-1/2/92

Reported: Jan 8, 1992

LABORATORY ANALYSIS

Analyte Detection Limit Sample Results mg/kg mg/kg

Cadmium
Chromium
Lead
ZIPC
Nickelinian and an analysis of the second and the s

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

Lab Number:

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Arco 6148, Oakland Samp

Sample Descript: Soil, S-26.5-B3

112-4293

Sampled:

Dec 20, 1991 Dec 20, 1991

Received: Extracted: Dec 30, 1991

Analyzed: 12/31/91-1/2/92 Reported: Jan 8, 1992%

LABORATORY ANALYSIS

Detection Limit Sample Results Analyte mg/kg mg/kg

Cadmium:
Chromium
Chromium
LING CONTRACTOR CONTRA
Nickel 2.5 66

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <23>

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

Arco 6148, Oakland Sample Descript:

Soil, S-17.5-B1

112-4294

Sampled:

Dec 20, 1991 Dec 20, 1991 /

Received: Extracted:

Dec 30, 1991#

Analyzed: Reported:

12/31/91-1/2/92 Jan 8, 1992 3

LABORATORY ANALYSIS

Analyte

Detection Limit mg/kg

Sample Results

mg/kg

Cadmium
Chromium 0.50 211
Lead 0.25
Zinc,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Nickels

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <24>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

Attention: Joel Coffman

San Jose, CA 95118

Client Project ID: Arco 6148, Oakland

Sample Descript: Soil, S-22.5-81

Lab Number: 112-4295 Sampled:

Dec 20, 1991

Received: Extracted: Dec 20, 1991& Dec 30, 1991

Analyzed:

12/31/91-1/2/92

Reported: Jan 8, 1992

LABORATORY ANALYSIS

Analyte

Detection Limit mg/kg

Sample Results mg/kg

Cadmium 0.50 0.82
Chromium 0.50
Lead
Zinc
Nickel

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

roject Manager

1124291.RRR <25>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

Client Project ID:

Arco 6148, Oakland

Sampled:

Dec 19, 1991

San Jose, CA 95118

Sample Descript: Soil, S-17-B2

Received: Extracted: Dec 20, 1991 § Dec 30, 1991

Attention: Joel Coffman

Lab Number:

112-4298

Analyzed: Reported:

12/31/91-1/2/92 Jan 8, 1992

LABORATORY ANALYSIS

Detection Limit Sample Results Analyte mg/kg mg/kg

Cadmium:
Chromium
Lead
ZINO:1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Nickel: 2,5

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <26>

Lab Number:

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Arco 6148, Oakland

Sample Descript:

Soil, S-25.5-B2

112-4299

Sampled: Dec 19, 1991

Dec 20, 1991 Received:

Dec 30, 1991 Extracted: 12/31/91-1/2/92 Analyzed:

Reported: Jan 8, 1992®

LABORATORY ANALYSIS

Analyte	Detection Limit mg/kg	Sample Results mg/kg
Cadmium	0,50	
Chromum	0.50	28
Lead	0.25	2.8
Zinc	0.50	45
Nickel		26

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <27>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 + FAX (415) 364-9233

RESNA

🖁 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman

Client Project ID:

Arco 6148, Oakland Sample Descript:

Soil, S-18.5-B4

Lab Number: 112-4303 Sampled:

Dec 19, 1991 Dec 20, 1991

Received: Extracted:

Dec 30, 1991s 12/31/91-1/2/92 %

Analyzed: Jan 8, 1992 Reported:

LABORATORY ANALYSIS

Analyte	Detection Limit mg/kg		Sample Results mg/kg
Cadmium	0.50	talalaliterracierracieres	N.D.
Chromium	4/22 0:50 celeb	And the state of t	. 27
Lead	∰. (0,25 40,‱		3.6
ZDC	Section 1.0:50 (1.35)		57
Nickel	2:5:2:5:2:5:2:5:2:5:2:5:2:5:2:5:2:5:2:5		

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1124291.RRR <28>

RESNA

Client Project ID: Arco 6148, Oakland

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman QC Sample Group: 112-4291-4304

Reported: Jan 8, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		Total Recov.						
	Benzene	Toluene	benzene	Xylenes	Diesel	Pet, Oil	Lead				
Method: Analyst: Reporting Units; Date Analyzed: QC Sample #:	EPA 8020 M. Nipp mg/kg Dec 30, 1991 GBLK123091 MS/MSD	EPA 8020 M, Nipp mg/kg Dec 30, 1991 GBLK123091 MS/MSD	EPA 8020 M. Nipp mg/kg Dec 30, 1991 GBLK123091 MS/MSD	EPA 8020 M. Nipp mg/kg Dec 30, 1991 GBLK123091 MS/MSD	EPA 8015 M. Laikhtman mg/kg Jan 2, 1992 DBLK123191	SM 5520 E&F A. Do mg/kg Jan 2, 1992 BLK010292	EPA 7421 M. Mistry mg/kg Dec 31, 1991 112-4303				
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	3.6				
Spike Conc. Added:	0.20	0.20	0.20	0.60	15	5000	50				
Conc. Matrix Spike:	0.15	0,20	0.19	0.58	11	4600	50				
Matrix Spike .% Recovery:	75	100	95	97	73	92	93				
Conc. Matrix Spike Dup.:	0.15	0.19	0.19	0.59	11	4600	50				
Matrix Spike Duplicate % Recovery:	75	95	95	98	73	92	93				
Relative % Difference:	0.0	5.1	0.0	1.7	0.0	0.0	0.0				

SEQUOIA ANALYTICAL

Project Manager

% Recovery:	Conc. of M.S Conc. of Sample Spike Conc. Added	x 100	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2		

1124291.RRR <29>

RESNA

Client Project ID: Arco 6148, Oakland

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 112-4291-4304

1-4304 Reported: Jan 8, 1992

QUALITY CONTROL DATA REPORT

ANALYTE				,
	Cadmium	Chromium	Nickel	Zinc
Method:	EPA 6010	EPA 6010	EPA 6010	EPA 6010
Analyst: Reporting Units:	C. Medefesser mg/kg	C. Medefesser rng/kg	mg/kg	C. Medefesser mg/kg
Date Analyzed:	Jan 2, 1992	Jan 2, 1992	Jan 2, 1992	Jan 2, 1992
QC Sample #:	112-4299	112-4299	112-4299	112-4299
Sample Conc.:	N.D.	28	26	45
Sample Cono	14.0.	20	20	, ,
0.11.0				
Spike Conc. Added:	100	100	100	100
Added.	100	100	100	100
Conc. Matrix	400	100	100	450
Spike:	100	130	130	150
Matrix Spike				
% Recovery:	100	102	104	105
Conc. Matrix				
Spike Dup.:	100	130	120	150
•				
Matrix Spike				
Duplicate % Recovery:	100	102	94	105
70 11COOVC1 J.	,00		.	
_				
Relative	0.0	0.0	8.0	0.0
% Difference:	0.0	Ų.U	0.0	0.0

SEQUOIA ANALYTICAL

Maria Lee Project Manager % Recovery:

Conc, of M.S. - Conc. of Sample x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1124291.RRR <30>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Sulte 34

San Jose, CA 95118 Attention: Joel Coffman

Client Project ID: Method (units):

Arco 6148, Oakland EPA 8240 (µg/L purged)

M. Williams Analyst(s): QC Sample #:

VBLK010692

Q.C. Sample Dates

Analyzed: Jan 6, 1992 Reported: Jan 8, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
1,1-Dichloro- ethene	N.D.	50	39	78	40	80	2.5
Trichloroethene	N.D.	50	44	88	43	86	2.3
Benzene	N.D.	50	41	82	39	78	5.0
Toluene	N.D.	50	46	92	44	88	4.4
Chlorobenzene	N.D.	50	46	92	44	88	4.4

SEQUOIA ANALYTICAL

Project Manager

% Recovery: Conc. of M.S. - Conc. of Sample x 100 Spike Conc. Added Conc. of M.S. - Conc. of M.S.D. x 100 Relative % Difference:

(Conc. of M.S. + Conc. of M.S.D.) / 2

1124291.RRR <31>

ARCO	Prod Divisio	UCTS n of Atlanti	Com	pany Company	₹₹			Task O	rder No.	6	14	8-	9	1 —		A		_				Chain of Custody
ARCO Facili	ty no.	6148		Cit (Fa	ly acillty)	Oakla	۸d			Project (Consu	กลกลอ	ger _	000	· C	4	444			<u> </u>			Laboratory name
ARCO engin	oer C	huck	(a.	rmel			Telepho (ARCO)	ne no.	- ·	Telepho	one no.	/ UM	212	64.	·772	7) Fa	7 (110.	/11-	~\^	2	435	1 / 1
Consultant r	ame	RES	NA	-			1001	Address	ant) 331H	A I.	nant)	in F	1/2	5,,,1	- 30	<u> 7(c</u>	msun :	40	A CA	511 X	17)	
				Matrix		Prese	rvation	[(Consulta	111) J. 117	7, a.	1	1	<i>XP'</i>)	ا ماد	<u>و يې</u>	<u>در،</u>	2		8	211		Method of shipment
Semple I.D.	Lab no.	Container no.	Soil	Water	Other	ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8015	TPH Modified 8015 Gas X Diesel X	Oil and Grease 413.1 U 413.2 U	ТРН EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	Metals C VOA C VOA	CAM Metals EPA 6010/7000 TTLC □ STLC □	Lead Org./DHS CLead EPA		Sequisier
2-22-RJ	٠	1	<u></u>			8		12/19/91										. — I				Special detection Limit/reporting
5-10,5-100	į.	1	~			B		12/19/91	i								-	 				-
5-12-B2			~			13		12/19/91		1		X	V		1	-	(<i>i</i> -	-7	5			_
5-55-BZ	,	1	V			v	,	12/19/91		1	-	/ \	/\				٦	1	/_			
S-17-B2		1	1			4)	2/19/91		1			\checkmark		/	V	_	! <u> </u>				Special QA/QC
2-J05B		1	V			3,	-	12/19/91		1					/		1	, <u>}</u> `	35			
z-522-80		 	V			V		12/19/91	ł	+		×										
s-305-8		1	~			3	6	12/19/91				X	\Diamond			1	2Y.	7	7)			Remarks
S-55-84			V			7	3	12/19/91		1						110	77:	لكا				· *
5-195-84		1	v			V		12/19/91				X	X			//	7.	-	,		_	-
S-15584	1	1	V			V.U.	ż	12/19/91				X	\overline{X}			110	7/		//			
5-185-84		1	V			ا الأ		12/19/91				X	X			X	71	-}- -}		/ 		
5-20-84		1	V			V:	7	12/19/91				X	X			* J	7	سلاسا م 2 م				
						7 ::	11-1	27								/ X	ر. ل <u>ي</u>		7.1			Lab number ,
																		 				Turnaround time
,						,												!. <u></u> }				
Condition of	sample	·		<u></u>	£.X.	1 .)	1.,			Temp	erature	receive	l ($\overline{}$			L	! —			. <u>i.</u> ,	1 Business Day
Relinquistied	by san	npler	Sier	ww	<u> </u>	3:	Date 12/2/	7/91	(40 ^{Time} PH	Receiv	ved by	1/1		<u>~</u>	19	<u> </u>	·					Rush 2 Business Days
Relinquished	l by	7.51	· .				Date	<i>3 (i : :</i>	Time Received by Expedite						Expedited 5 Business Days " L							
Reimquished	l by		•				Date		Time	Receiv	ved by	laborati	ory	()	1		Date			Time		Standard 10 Business Days

ARCU	rod Divisio	IUCIS on of Atlanti	Com; cRichfield	company	₹			Task Or	der No.	10	14	8	-0	7 / -	- 7	2 1	+	45					Chain of Custody
ARCO Facilit		6148	?	Cit (Fe	y scility)	Oakl	and			Project (Consul	manag		Toe	el (Cof	tuno	<u></u>						Laboratory name
ARCO engin	Ĺ	huck	Ca	me	9		Telephor	ne no.		Telepho (Consul	ne no.	408	3)2	64-	77	23 Fax	no.	1102	3720	64	243	5	Segue; Contract number
Consultant n	ame	RES	NA					Address (Consultar	n) 331	5 A	lmo	de	ν E _Y	2,50	nite	34 <u>,</u>	<u>5</u> . ا	,, To	se, C	A٩	ज़ार	2	Contract number
				Matrix		Prese	rvation				315	1954	<u>i</u>	ш			,	Vo/	000/0				Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8015	TPH Modified 8015. Gas X Diesel X	Oil and Grease	TPH EPA 418.11SM503E	EPA 601/8010	EPA 624/8240	FPA 625/8270	TCL Netals [] VOA (_] VOA [_]	CAM Metals EPA 6010/7000	Lead Org /OHS C			Segusia Courier
5-5 _{,5-8})	1	V			V		12/20/9/															Special detection Limit/reporting
5-10.5-B2		1	V			V	1	12/20/91				X	X) (4	99	/		
5-155-83)	1	V			'v	ļ	12/20/91															}
5-175-83		1	V			V	1	12/20/91		ļ		X	X			X		iLo	X	39	Q		Special QA/QC
5-19-82		1	<u></u>			V	!	12/20/91										_					
5-245-B		1	V		ļ	V_	ļ	12/20/91		<u> </u>				<u> </u>									<u> </u>
5-265B	.		\ <u> \</u>	<u> </u>	<u> </u>	V_	<u> </u>	12/20/91				X	X			X		LLS	X	29	3		Remarks
5-175-8		11_	V			V	-	12/20/91	,	 		X	X	<u></u>		X	<u> </u>	1/2	W/		14	···	Mitals:
5-225-81		1	V			\ <u>\</u>	ļ <u> </u>	12/20/91				X	X		<u> </u>	X	<u> </u>	1:2 -	X	2	5		Mitals: (d,Cr,Pb, Zn+Ni
5-965-81	·	11	LV			1	•	12/20/91	<u> </u>			X	X					J/L	7	29	6		Z11 + N1
		-	-		<u> </u>	,				-					-		_	_	<u> </u>	-			-
					-	 `- -	ļ				JH.			_	-		-			 	-		_
<u> </u>			-		<u> </u>	 		19		-	 		-				_		-	-			Lab number
		-	-	-	 	 '	 				 	 		 		 -			-				Turnaround time
	-		-		-		ļ,			 	ļ		 	-	-	-	-	· <u>†</u> —		1			Priority Rush
Condition of	sampi	e:	1		-£)		1	<u> </u>	<u> </u>	Temr	erature	receiv	ed:		$\frac{1}{n}$	<u> </u>	<u> </u>	i	1	1	11	· · ·	1 Business Day
Relinquishe Relinquishe	d by sa	ampler /	len	u ns	lú_		Date 12/2		Time	Rece	ived by	[] id	Pro.		3	FT							Rush 2 Business Days Expedited 5 Business Days
Rélinquishe	d by						Date		Time	Rece	ived by	labora	itory	i)	1		Date			Time			Standard 10 Business Days

RECEIVED

v 19**91**

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joei Coffman RESNA SAN JOSE

Project: Arco #6148, Oakland

Enclosed are the results from 1 soil samples received at Sequoia Analytical on December 20,1991. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
1123897	Soil, S1220-SP, (A-D)	12/20/91	EPA 3550/8015 EPA 5030/8015/8020 SM 5520 E&F (Gravimetric)

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joel Coffman

F POADÁ ZOON NEMEGY EFFEVAR A CEMPENDE CARRO DA KOEFFEAN DE CARRO DE LO COMPANDA DE CARRO DE LO COMPANDA DE C Matrix Descript:

Client Project ID: Arco #6148, Oakland

Soil

Analysis Method: EPA 3550/8015

First Sample #: 112-3897 Sampled:

40.00 (2888) Dec 20, 1991

Received: Dec 20, 1991 1 Extracted: Dec 23, 1991 ··

Analyzed: Dec 23, 1991

Reported: Dec 26, 1991 olomenti ilingo kangalong pangang pangasang bangasang kangang bang kangang bang kangang bang kangang bang kang

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

High B.P. Sample Sample Hydrocarbons Number Description mg/kg (ppm) 11 112-3897 S1220-SP, (A-D)

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1123897.RRR <1>

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript.: Soil, \$1220-SP, (A-D) Analysis Method:

Arco #6148, Oakland EPA 5030/8015/8020

Sampled: Received: Dec 20, 1991 Dec 20, 1991

Lab Number: 112-3897

Analyzed: Reported:

Dec 26, 1991 Dec 26, 19911

TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION (EPA 8015/8020)

Detection Limit Sample Results Analyte mg/kg (ppm) mg/kg (ppm)

Low to Medium Boiling Point Hydrocarbons
Benzene
Toluene:
Ethyl Benzene
Xylenes:::::::::::::::::::::::::::::::::::

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1123897.RRR <2>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Matrix Descript: Analysis Method: Arco #6148, Oakland

Soil

SM 5520 E&F (Gravimetric)

First Sample #:

Client Project ID:

112-3897

Sampled:

Dec 20, 1991

Received:

Dec 20, 1991 -

Analyzed:

Dec 26, 1991

Reported:

Dec 26, 1991

TOTAL RECOVERABLE PETROLEUM OIL

Sample Number	Sample Description	Oil & Grease mg/kg (ppm)
112-3897	S1220-SP. (A-D)	N.D.

Detection Limits:

30

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

1123897.RRR <3>

RESNA

Client Project ID: Arco #6148, Oakland

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Attention: Joel Coffman QC Sample Group: 112-3897 Reported: Dec 27, 1991

QUALITY CONTROL DATA REPORT

ANALYTE											
	Grease	Benzene	Toluene	Benzene	Xylenes	Diesel					
Method:	SM 5520 E&F	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015					
Analyst:	M. Mistry	A. Maralit	A. Maralit	A. Maralit	A. Maralit	R. Lee					
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Date Analyzed:	Dec 26, 1991	Dec 23, 1991	Dec 23, 1991		Dec 23, 1991						
QC Sample #:	BLK122691	GBLK122391	GBLK122391	GBLK122391	GBLK122391	DBLK122391					
•											
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.					
Janiple Conc	14.15.	14.6.	14.6.	14.27.	14.5.	11.6.					
Spike Conc.	5000	0.00	0.00	0.00	0.00	4.6					
Added:	5000	0.20	0.20	0.20	0.60	15					
Conc. Matrix											
Spike:	4000	0.20	0.19	0.18	0.54	11					
•											
Matrix Spike											
% Recovery:	80	100	95	90	90	73					
70 HECOVERY.	00	100	00	30	.						
Conc. Matrix	0000	0.40	0.40	0.47	0.50	40					
Spike Dup.:	3900	0.18	0.18	0.17	0.50	10					
Matrix Spike											
Duplicate											
% Recovery:	78	90	90	85	83	67					
·											
Dalativa											
Relative	1.2	11	5.4	5.7	7.7	9.5					
% Difference:	1.3	13	3.4	5.7	1.1	9.5					

SEQUOIA ANALYTICAL

Project Manager

Conc. of M.S. - Conc. of Sample % Recovery: x 100 Spike Conc. Added Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100 (Conc. of M.S. + Conc. of M.S.D.) / 2

1123897.RRR <4>

4	RCO I	Produ	ICTS (Comp	any 4	(Task Ord	der No	/2	14	\ \ -	0	<u> </u>	7							С	hain of Custody
4	ICO Facilit	y no. 6	148		City (Fai	cility)	Ouk	land	Tusic Ore	F	roject Consul	manag tant)	er	Jue	20	City	timo	m						Laboratory name
٩ŧ	RCO engin	eer CV	ruck	Wi in	rel			Telephon (ARCO)	e no	Ť	elepho Consul	ne no tant)	408	26	4-~	172	7 Fax (Co	no. ∩sultan	(40:	3 126	.4-2	<u>43</u>	2	Contract number
d	onsultant n	Address (Consultant) 3-315							n 3315	Project manager Juel Littmon Telephone no (408) 264-7723 Fax no. (Consultant) (408) 264-7723 Fax no. (Consultant) (408) 264-7723 Fax no. (Consultant) (403) 264-2435 Almorden Exp., Suik 34, Sun Juse, (A 75113)											07-07-3 Method of shipment			
		Matrix Preservation											l l	•	- 1	ļ			OA [00000			t t	
	Sample I.D.	Lab no.	Container no.	Soil	Water	Olher	Ice	Acid	Sampling date	Sampling trme	BTEX 602/EPA 8020	ВТЕХ/ТРН ЕРА М602/8020/8015	TPH Modilled 8015 Gas Diesel	Oil and Grease	TPH EPA 418.1/SM5038	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals ☐ VOA ☐ VOA	CAM Metals EPA 60 TTLC C STLC L	Lead Org./DHS La Lead EPA 7420/7421			Country
5	127,0-5	FA	ì	V			~		12/20/91			- 11	2:	389	17									Special detection Limit/reporting
.1	-12,20-		_	V			\checkmark		12/20/31	,														
Ł	-12,20		l	>			V		12/20/91			X	X	\supset										
_	-1220-			i/			V		12/20/91		7													Special OA/OC
																								Remarks If & true no and in Co exposite is by Lab number Turnaround time Priority Bush
Condition of sample: Relinquished by sampler Date 12/20/71 4 mm								Temperature received. Received by 3/1									Rush 2 Business Days							
Pelinquisted by Ct'US 3.16 Date Time (2.136/91 6 15)								Rece	Received by									Expedited 5 Business Days _ []						
Relinquished by Date Time							Received by laboratory Date Time						Standard 10 Business Days											