

December 20, 2000

R077

3164 Gold Camp Drive Suite 200 Rancho Cordova, CA 95670-6021 U.S.A. 916/638-2085 FAX: 916/638-8385

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, CA 94570

Subject: Quarterly Groundwater Monitoring Report, Third Quarter 2000

Quarterly Soil Vapor Extraction Operation and Performance, Third Quarter 2000

ARCO Service Station No. 6148

5131 Shattuck Avenue Oakland, California

Delta Project No. D000-315

Dear Mr. Supple:

Delta Environmental Consultants, Inc. is submitting the attached report that presents the results of the third quarter 2000 ground water monitoring and soil vapor extraction operation and performance programs at ARCO Products Company Service Station No. 6148, located at 5131 Shattuck Avenue, Oakland, California. The monitoring program complies with the Alameda County Health Care Services Agency requirements regarding underground tank investigations.

The interpretations contained in this report represent our professional opinions and are based, in part, on information supplied by the client. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeological and engineering practices at this time and location. Other than this, no warranty is implied or intended.

If you have any questions concerning this project, please contact Steven W. Meeks at (916) 536-2613.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Trevor L. Atkinson Project Engineer

Steverf W. Meeks, P Project Manager

California Registered Civil Engineer No. C057461

TLA (LRP002.315.doc) Enclosures

Lilolosuics

cc: Ms. Susan Hugo – Alameda County Health Care Services Agency | W

ENALL STEUTION

Date: December 20, 2000

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.: 6148 Address: 5131 Shattuck Avenue, Oakland, California

ARCO Environmental Engineer/Phone No.: Paul Supple 925-299-8891

Consulting Co./Contact Person Delta Environmental Consultants, Inc.

Steven W. Meeks, P.E.

Consultant Project No.: D000-315

Primary Agency/Regulatory ID No. Alameda County Health Care Services Agency

WORK PERFORMED THIS QUARTER

1. Performed quarterly groundwater monitoring for third quarter 2000.

Visited site to assess status of remediation system.

Cumulative TPHg/Benzene Removed:

WORK PROPOSED FOR NEXT QUARTER

1. Prepare and submit quarterly groundwater monitoring report for third quarter 2000.

2. Perform quarterly groundwater monitoring and sampling for first quarter 2001.

3. Continue operation and maintenance of remediation system.

4. UST, product lines and dispenser upgrade scheduled for fourth guarter 2000.

QUARTERLY MONITORING:

Current Phase of Project Monitoring/Remediation Annual (1st Quarter): MW-6, MW-7 Frequency of Groundwater Sampling: Semi-Annual (1st/3rd Quarter): MW-4 Quarterly: MW-1, MW-2, MW-3, MW-5 Frequency of Groundwater Monitoring: Quarterly (Groundwater) Monthly (SVE and Air-sparge systems) Is Free Product (FP) Present On-Site: No FP Recovered this Quarter: N/A Cumulative FP Recovered to Date: None Bulk Soil Removed This Quarter: None Bulk Soil Removed to Date: 560 cubic yards of TPH-impacted soil **Current Remediation Techniques:** SVE, Air-Sparge and Air-Bubbling Systems Approximate Depth to Groundwater: 16.22 ft Groundwater Gradient: 0.017 South-Southwest

929 / 7.0 gallons

Quarterly Groundwater Monitoring Report
Quarterly Soil Vapor Extraction Operation and Performance Report
Second Quarter 2000 (continued)

December 20, 2000 Page 2

SVE QUARTERLY OPERATION & PERFORMANCE:

Therm Tech model CATVAC-10E, Electric/CatOx Equipment Inventory: Operating Mode: Catalytic Oxidation Agency/Permit No.: BAAQMD/25126 N/A TPH Concentration at end of period: Benzene Concentration at End of Period: NA N/A Flow Rate at End of Period: Hydrocarbons Removed This Period: None Hydrocarbons Removed to Date: 1,894.1 pounds Utility Usage Electric (kWh): N/A Hours Operated This Period: None Percent Operational: 0% 2,470.77 hours Total Hours Operated to Date: Routine monthly maintenance when operational Unit Maintenance Schedule: Number of Auto Shut Downs: None (POC (POC>1,000 90% 95% ppmv); Destruction of Efficiency Permit: <1.000 ppmv) waived (<1.0 lb/day TPH & <0.02 Requirements: ib/day benzene) Percent TPH Conversion: Waived 0 Average Source Flow Rate Average Process Flow Rate: 0 0 Average Source Vacuum:

DISCUSSION:

- Methyl tertiary butyl ether was reported in MW-2, MW-3, MW-4 and MW-5 at concentrations ranging from 3.48 micrograms per liter (μg/L) in MW-5 to 20 μg/L in MW-3.
- Total petroleum hydrocarbons as gasoline was not detected at or above the laboratory reporting limits in the wells.
- Benzene was reported in MW-2 at a concentration of 0.964 μg/L.
- The remediation systems were non-operational during the third quarter 2000 and are being evaluated to assess operation and repair status. No current tables of operational data have been provided due to the non-operational status of the system. Please refer to Appendix B for historical operational data of the remediation system

ATTACHMENTS:

- Table 1 Groundwater Elevation and Analytical Data
 Table 2 Groundwater Flow Direction and Gradient
 Figure 1 Groundwater Analytical Summary Map
 Figure 2 Groundwater Elevation Contour Map
 Appendix A Sampling and Analysis Procedures
 Appendix B Historical Data Tables (IT Corporation)
 Appendix C Groundwater Sampling Information
- Appendix D Certified Analytical Reports with Chain-of-Custody Documentation

TABLE 1
GROUNDWATER ANALYTICAL DATA

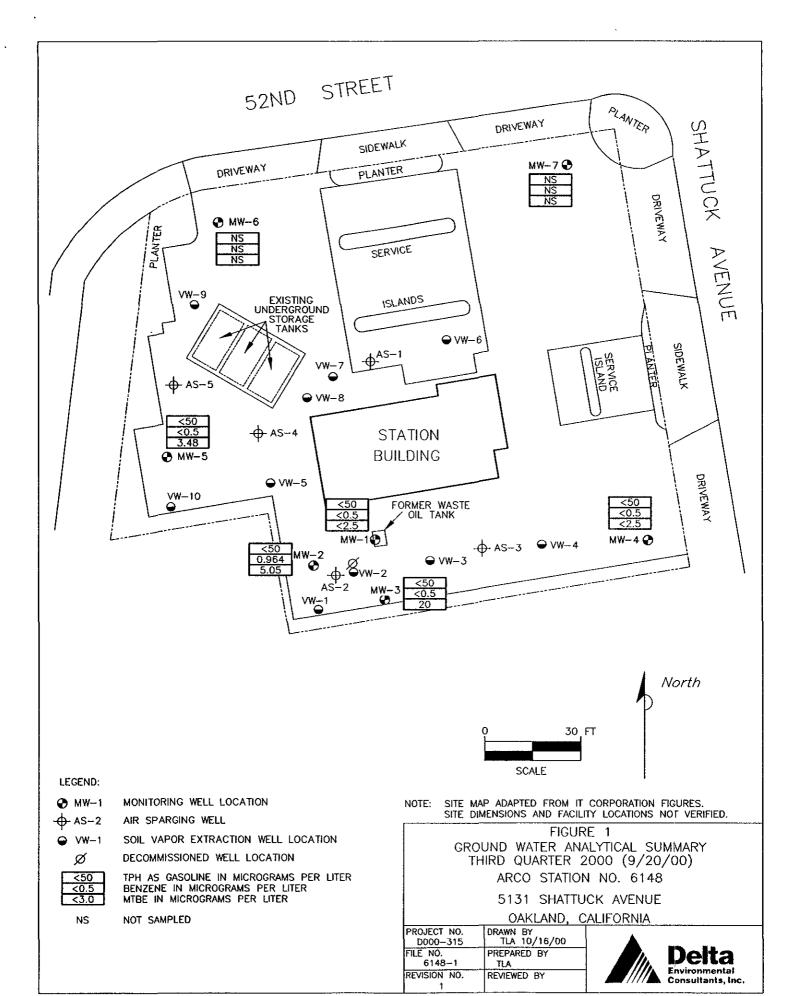
Well Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	TPH as Gasoline (μg/L)	MTBE (μg/L)
MW-1	06/21/00	107.80	17.49	90.31	<0.5	<0.5	<0.5	<1.0	<50	<3.0
	09/20/00	*****	17.64	90.16	<0.5	0.677	<0.5	0.969	<50	<2.5
MW-2	06/21/00	107.28	17.19	90.09	<0.5	<0.5	<0.5	<1.0	69	12
	09/20/00		17.31	89.97	0.964	<0.5	<0.5	<.05	<50	5.05
MW-3	06/21/00	107.61	17.52	90.09	<0.5	<0.5	<0.5	2.1	200	24
	09/20/00		17.61	90.00	<0.5	<0.5	<0.5	<0.5	<50	20
MW-4	06/21/00	106.71	16.00	90.71	5.3	7.3	36	85	1,400	4
	09/20/00		16.03	90.68	<0.5	<0.5	<0.5	<0.5	<50	<2.5
MW-5	06/21/00	106.60	16.52	90.08	<0.5	<0.5	<0.5	<1.0	67	10
	09/20/00		16.34	90.26	<0.5	<0.5	<0.5	<0.5	<50	3.48
MW-6	06/21/00	105.13	13.91	91.22	NS	NS	NS	NS	NS	NS
	09/20/00		14.03	91.10	NS	NS	NS	NS	NS	NS
MW-7	06/21/00	107.05	14.57	92.48	NS	NS	NS	NS	NS	NS
1214 4. 1	09/20/00		14.58	92.47	NS	NS	NS	NS	NS	NS

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021B unless otherwise noted

μg/L = Micrograms per liter

NM = Not measured


NC = Not calculated

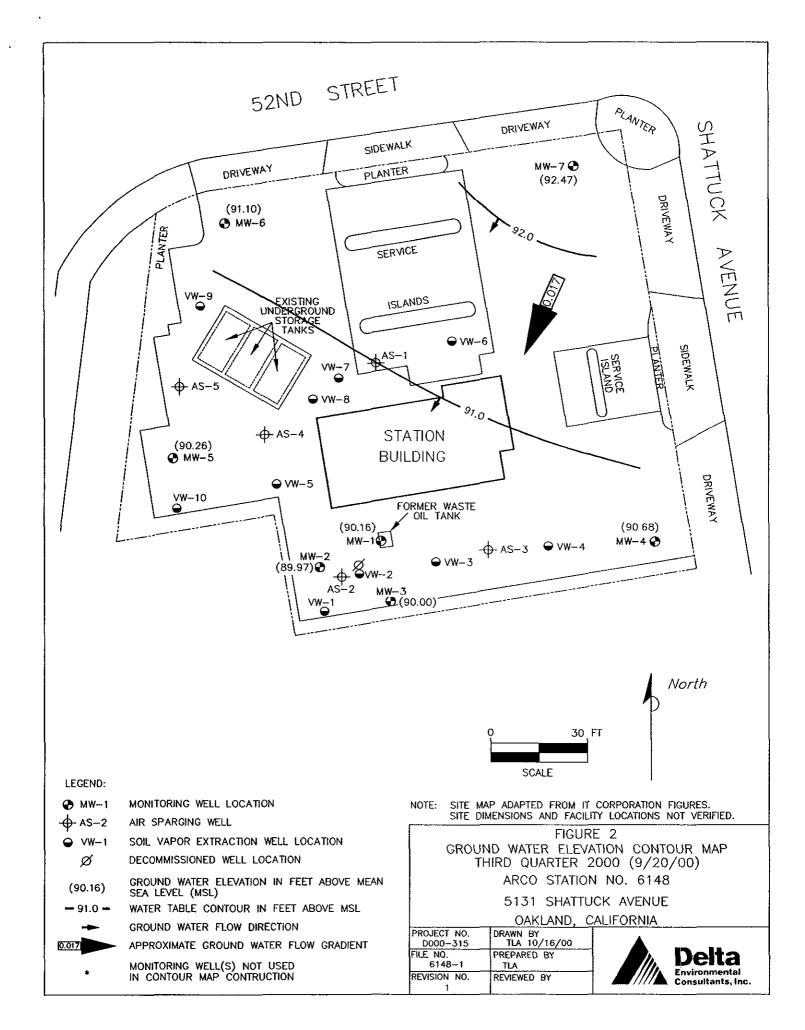

Note: Please refer to Appendix B for Historical Groundwater Elevation and Analytical Data Tables developed by IT Corporation

TABLE 2

GROUNDWATER FLOW DIRECTION AND GRADIENT

Date Measured	Average Flow Direction	Average Hydraulic Gradient
06/21/00	South-Southwest	0.02
09/20/00	South-Southwest	0.017

APPENDIX A

Sampling and Analysis Procedures

FIELD METHODS AND PROCEDURES

1.0 GROUND WATER AND LIQUID-PHASE HYDROCARBON DEPTH ASSESSMENT

A water/liquid-phase hydrocarbon (LPH) interface probe was used to assess the thickness of LPH, if present, and a water level indicator was used to measure ground water depth in monitoring wells that did not contain LPH. Depth to ground water was measured from the top of each monitoring well casing. The tip of the water level indicator was subjectively analyzed for LPH sheen. All measurements and physical observations were recorded in the field.

2.0 SUBJECTIVE ANALYSIS OF GROUND WATER

Prior to purging, a water sample was collected from the monitoring well for subjective analysis. The sample was retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer was then retrieved and the sample contained within the bailer was examined for LPH and the appearance of a LPH sheen.

3.0 MONITORING WELL PURGING AND SAMPLING

Monitoring wells were purged using a centrifugal pump or disposable bailers until pH, temperature, and conductivity of the purge water had stabilized and a minimum of three to four well volumes of water had been removed. Ground water removed from the wells was stored in 55-gallon barrels at the site. The barrels were labeled with corresponding monitoring well numbers and the date of purging. After purging, ground water levels were allowed to stabilize. A ground water sample was then removed from each of the wells using a dedicated disposable bailer. If the well was purged dry, it was allowed to sufficiently recharge and a sample was collected. Samples were collected in air-tight vials, appropriately labeled, and stored on ice from the time of collection through the time of delivery to the laboratory. A chain-of-custody form was completed to document possession of the samples. Ground water samples were transported to the laboratory and analyzed within the EPA-specified holding times for the requested analyses. Purge water will be collected from the storage barrels in a vacuum truck and transported to an appropriate facility for treatment and/or disposal.

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low–flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol previously stated in the first paragraph of this sub-section. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low–yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

APPENDIX B

Historical Data Tables IT Corporation

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

	Date	Top of Casing	Depth to	FP	Groundwater	ТРН	~	T 1	Ethyl-	Total	MTDE	TDDU	Dissolved	Purged/
Well	Gauged/	Elevation	Water	Thickness	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	TRPH	Oxygen	Not Purged
Number	Sampled	(ft-MSL)	(feet)	(feet)	(ft-MSL)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(P/NP)
MW-1	03-20-95	108.03	15.75	ND	92.28	830	140	5	41	110				
MW-1	06-06-95	108.03	17.68	ND	90.35	210	30	<0.5	7.3	16				
MW-1	08-24-95	107.80	17.45	ND	90.35	Not sampled:	well was ir	accessible (
MW-1	11-16-95	107.80	17.64	ND	90.16	< 50	5.6	<0.5	1.4	1.2	55			
MW-1	02-27-96	107.80	15.21	ND	92.59	1,400	240	88	44	110	200			
MW-1	05-15-96	107.80	17.53	ND	90.27	Not sampled:	well sampl	ed semi-anı		ig the first ar	nd third quart	er		
MW-1	08-14-96	107.80	17.15	ND	90.65	98	18	<0.5	1.9	1	45			
MW-1	11-11-96	107.80	17.78	ND	90.02	Not sampled:	: well sampl	ed semi-anı				er		
MW-1	03-25-97	107.80	17.68	ND	90.12	<50	<0.5	< 0.5	<0.5	<0.5	<3			
MW-1	05-15-97	107.80	17.91	ND	89.89	Not sampled:	: well sampl	ed semi-anı			id third quart	er		
MW-I	10-26-97	107.80	18.85	ND	88.95	< 50	< 0.5	<0.5		<0.5	<3			
MW-1	11-10-97	107.80	18.10	ND	89.70	< 50	< 0.5	< 0.5		<0.5	4			
MW-1	02-13-98	107.80	13.15	ND	94.65	<100	8.4	<1	<1	14	130			
MW-1	05-12-98	107.80	12.30	ND	95.50	< 50	< 0.5	< 0.5		< 0.5	<3			
MW-1	07-28-98	107.80	17.04	ND	90.76	< 50	<0.5	< 0.5		< 0.5	<3			
MW-1	10-28-98	107.80	18.10	ND	89.70	<50	<0.5	<0.5		< 0.5	<3			
MW-1	02-12-99	107.80	15.84	ND	91.96	72	<0.5	< 0.5		< 0.5	23			
MW-1	06-03-99	107.80	17.62	ND	90.18	890	33	1.5		2.8	250		1.44	
MW-1	10-26-99	107.80	16.92	ND	90.88	<50	< 0.5	<0.5		<1	9		9.58	
MW-1	02-02-00	107.80	15.70	ND	92.10	<50	<0.5	<0.5	<0.5	<1	<3		8.9	NP
) (XX 2	02 20 05	107.42	15.50	ND#	91.93	Not sampled	. flaatina nu	adrest antar	ad wall duri	na nuraina				
MW-2	03-20-95	107.43		ND#		1,200		21		ng punging 140				
MW-2	06-06-95	107.43	17.43		90.00									
MW-2	08-24-95	107.28	17.22	ND	90.06	Not sampled				Tuchon 7.5	210			
MW-2	11-16-95	107.28	17.36	ND	89.92	360	45	1.3		7.5			-	
MW-2	02-27-96	107.28	14.82	ND	92.46	8,900				550	940			
MW-2	05-15-96	107.28	17.40	ND	89.88	480	82	48	8	48	87			

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well	Date Gauged/	Top of Casing Elevation	Depth to Water	FP Thickness	Groundwater Elevation	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TRPH	Dissolved Oxygen	Purged/ Not Purged
Number	Sampled	(ft-MSL)	(feet)	(feet)	(ft-MSL)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(P/NP)
MW-2	08-14-96	107.28	17.00	ND	90.28	130	22	4	2	9	120			
MW-2	11-11-96	107.28	17.55	ND	89.73	1,200	150	120	21	160	110			
MW-2	03-25-97	107.28	17.32	ND	89.96	670	23	58	13	120	28			
MW-2	05-15-97	107.28	17.61	ND	89.67	<50	<0.5	<0.5	< 0.5	<0.5	23			
MW-2	10-26-97	107.28	18.43	ND	88.85	<50	<0.5	< 0.5	<0.5	<0.5	<3			l
MW-2	11-10-97	107.28	17.84	ND	89.44	<100	<1	<1	<1	1	74			
MW-2	02-13-98	107.28	12.75	ND	94.53	220	9.5	3.9	3.7	48	84			
MW-2	05-12-98	107.28	17.02	ND	90.26	3,900	210	280	86	910	35			
MW-2	07-28-98	107.28	17.30	ND	89.98	<50	<0.5	< 0.5	<0.5	< 0.5	<3			
MW-2	10-28-98	107.28	17.80	ND	89.48	170	17	< 0.5	1.7	5.0	24			
MW-2	02-12-99	107.28	15.55	ND	91.73	12,000	620	95	490	2,200	270			
MW-2	06-03-99	107.28	17.31	ND	89.97	< 50	<0.5	< 0.5	< 0.5	1.1	8		2.53	
MW-2	10-26-99	107.28	16.58	ND	90.70	<50	1.0	<0.5	<0.5	3	<3		8.17	
MW-2	02-02-00	107.28	15.30	ND	91.98	< 50	< 0.5	<0.5	<0.5	<1	<3		9.1	NP
MW-3	03-20-95	107.77	15.60	ND	92.17	29,000	880	190	760	2,000		16		
MW-3	06-06-95	107.77	17.54	ND	90.23	22,000	450	54	380	1,300		7.1		
MW-3	08-24-95	107.61	17.42	ND	90.19	Not sampled:	well was ir	accessible	due to const	ruction				
MW-3	11-16-95	107.61	17.58	ND	90.03	13,000	210	<20	320	1,000	790	8.3		
MW-3	02-27-96	107.61	15.03	ND	92.58	9,700	94	15	290	720	430	10		
MW-3	05-15-96	107.61	17.35	ND	90.26	5,600	66	12	37	67	230			
MW-3	08-14-96	107.61	17.10	ND	90.51	830	17	<i*< td=""><td>8</td><td>7</td><td>110</td><td></td><td></td><td></td></i*<>	8	7	110			
MW-3	11-11-96	107.61	17.73	ND	89.88	500	28	3	12	13	150			
MW-3	03-25-97	107.61	17.99	ND	89.62	<50	< 0.5	< 0.5	< 0.5	< 0.5	94			
MW-3	05-15-97	107.61	17.84	ND	89.77	<50	< 0.5	< 0.5	< 0.5	< 0.5	65			
MW-3	10-26-97	107.61	18.50	ND	89.11	220	4	<1	<1	<1	160			
MW-3	11-10-97	107.61	18.00	ND	89.61	350	8	<2	3	3	230			

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Number	Date Gauged/ Sampled	Top of Casing Elevation (ft-MSL)	Depth to Water (feet)	FP Thickness (feet)	Groundwater Elevation (ft-MSL)	TPH Gasoline (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)	TRPH (mg/L)	Dissolved Oxygen (mg/L)	Purged/ Not Purged (P/NP)
INGINECI	Sampica									(HS 2)		(11,5/2)	\	(2,112)
MW-3	02-13-98	107.61	13.00	ND	94.61	<50	1.3	<0.5	<0.5	1	21			
MW-3	05-12-98	107.61	17.20	ND	90.41	120	<0.5	<0.5	<0.5	<0.9	71			
MW-3	07-28-98	107.61	17.46	ND	90.15	<50	1.4	<0.5	<0.5	<0.5	52			
MW-3	10-28-98	107.61	18.00	ND	89.61	170	<0.5	<0.5	<0.5	0.7	35			
MW-3	02-12-99	107.61	15.76	ND	91.85	120	2.0	0.6	< 0.5	1.3	37			
MW-3	06-03-99	107.61	Well inacc	essible: Surve	yed well VW-1		ive							
MW-3	10-26-99	107.61	16.69	ND	90.92	630	14	0.7	13	2	38		1.24	NP
MW-3	02-02-00	107.61	15.65	ND	91.96	290	18	0.5	45	56	46		0.4	NP
1.007.4	02 20 05	107.50	12.05	MD	00.72	00	1	-0 E	<0.5	0.7				
MW-4	03-20-95	106.58	13.85	ND	92.73	88	1	<0.5						
MW-4	06-06-95	106.58	15.70	ND	90.88	<50	<0.5	<0.5	<0.5	<0.5				
MW-4	08-24-95	106.71	15.86	ND	90.85	Not sampled								
MW-4	11-16-95	106.71	16.10	ND	90.61	<50	<0.5	<0.5	<0.5	<0.5	6 10			
MW-4	02-27-96	106.71	13.72	ND	92.99	<50	<0.5	<0.5	< 0.5	<0.5				
MW-4	05-15-96	106.71	15.90	ND	90.81	Not sampled					ia inira quari <3			
MW-4	08-14-96	106.71	15.68	ND	91.03	<50	<0.5	<0.5	< 0.5	<0.5				
MW-4	11-11-96	106.71	16.19	ND	90.52	Not sampled								
MW-4	03-25-97	106.71	16.10	ND	90.61	<50	<0.5	<0.5	<0.5	<0.5	<3 			
MW-4	05-15-97	106.71	16.38	ND	90.33	Not sampled					ia inira quari <3			
MW-4	10-26-97	106.71	17.78	ND	88.93	<50	< 0.5	<0.5	<0.5	<0.5	-			
MW-4	11-10-97	106.71	16.43	ND	90.28	Not sampled								
MW-4	02-13-98	106.71	13.05	ND	93.66	<50	1.3	0.7	<0.5	2.3	19	- -		
MW-4	05-12-98	106.71	15.69	ND	91.02	Not sampled								
MW-4	07-28-98	106.71	15.93	ND	90.78	<50	<0.5	<0.5	<0.5	<0.5	<3	- -		
MW-4	10-28-98	106.71	16.40	ND	90.31	Not sampled								
MW-4	02-12-99	106.71	14.13	ND	92.58	<50	<0.5	<0.5		<0.5	<3			,
MW-4	06-03-99	106.71	16.00	ND	90.71	Not sampled	: well sampl	ed semi-ani	nually, durii	ig the first ar	id third quar	ter		

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

	Date	Top of Casing	Depth to	FP	Groundwater	ТРН	~		Ethyl-	Total) (TO)	TDDII	Dissolved	Purged/
Well	Gauged/	Elevation	Water	Thickness	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	TRPH	Oxygen	Not Purged
Number	Sampled	(ft-MSL)	(feet)	(feet)	(ft-MSL)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(P/NP)
MW-4	10-26-99	106.71	15.76	ND	90.95	Not sampled	well sampl	ed semi-anı	nually, durin	ig the first ar	nd third qtr.		1.72	
MW-4	02-02-00	106.71	14.32	ND	92.39	<50	<0.5	<0.5	<0.5	<1	<3		0.7	NP
MW-5	03-20-95	106.68	14.92	ND	91.76	21,000	6,900	450	800	1,300				
MW-5	06-06-95	106.68	16.61	ND	90.07	6,500	1,700	<20	120	69				
MW-5	08-24-95	106.60	16.47	ND	90.13	Not sampled								
MW-5	11-16-95	106.60	16.69	ND	89.91	1,800	470	<5	17	5	1,000			
MW-5	02-27-96	106.60	14.35	ND	92.25	10,000	1,000	71	690	1,000	440/450*			
MW-5	05-15-96	106.60	16.58	ND	90.02	3,400	350	6	72	20	220			
MW-5	08-14-96	106.60	17.26	ND	89.34	2,100	130	2.7	47	4.7	220			
MW-5	11-11-96	106.60	16.62	ND	89.98	1,200	31	1	8	2	130			
MW-5	03-25-97	106.60	16.38	ND	90.22	<50	<0.5	<0.5	<0.5	< 0.5	5			
MW-5	05-15-97	106.60	16.54	ND	90.06	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-5	10-26-97	106.60	17.60	ND	89.00	<50	<0.5	<0.5	< 0.5	<0.5	7			
MW-5	11-10-97	106.60	16.78	ND	89.82	< 50	<0.5	<0.5	< 0.5	< 0.5	24			
MW-5	02-13-98	106.60	12.21	ND	94.39	11,200	51	<10	<10	<10	2,000			
MW-5	05-12-98	106.60	NR	ND	NR	Not sampled								
MW-5	07-28-98	106.60	16.47	ND	90.13	<50	<0.5	< 0.5	< 0.5	< 0.5	<3			
MW-5	10-28-98	106.60	16.80	ND	89.80	<50		< 0.5	<0.5	<0.5	99			
MW-5	02-12-99	106.60	14.88	ND	91.72	<1,000		<10	<10	<10	1,100			
MW-5	06-03-99	106.60	16.65	ND	89.95	290	10	<0.5	<0.5	0.6	200		2,45	
MW-5	10-26-99	106.60	16.10	ND	90.50	<50	<0.5	< 0.5	<0.5	<1	11		NM	
MW-5	02-02-00	106.60	14,65	ND	91.95	<50	<0.5	<0.5	<0.5	<1	39		8.6	NP
MW-6	03-20-95	105.16	12.13	ND	93.03	<50	<0.5	<0.5	<0.5					
MW-6	06-06-95	105.16	13.95	ND	91.21	<50	< 0.5	< 0.5	<0.5	<0.5				
MW-6	08-24-95	105.13	14.07	ND	91.06	<50	<0.5	<0.5	<0.5	<0.5	<3	* *		

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

	Date	Top of Casing	Depth to	FP	Groundwater	TPH		· · · · · · · · · · · · · · · · · · ·	Ethyl-	Total			Dissolved	Purged/
Well	Gauged/	Elevation	Water	Thickness	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	TRPH	Oxygen	Not Purged
Number	Sampled	(ft-MSL)	(feet)	(feet)	(ft-MSL)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(P/NP)
				ND	90.79	<60	<0.5	<0.5	<0.5	<0.5				
MW-6	11-16-95	105.13	14.34			<50 <50	<0.5	<0.5	<0.5	<0.5	<3			
MW-6	02-27-96	105.13	12.00	ND	93.13	Not sampled					_			
MW-6	05-15-96	105.13	14.10	ND	91.03	Not sampled Not sampled								
MW-6	08-14-96	105.13	13.70	ND	91.43									
MW-6	11-11-96	105.13	14.11	ND	91.02	Not sampled <50	: wen samp 0.5	eu amiuany 0.5	, during me <0.5		<3			
MW-6	03-25-97	105.13	14.15	ND	90.98	Not sampled					_			
MW-6	05-15-97	105.13	14.44	ND	90.69 89.11	Not sampled	. wen samp	lad annually	, during the	first quarter				
MW-6	10-26-97	105.13	16.02	ND	90.61					first quarter				
MW-6	11-10-97	105.13	14.52	ND	95.07	voi sampied	. wen samp 0.5	eu aimuan) 0.5>			8			
MW-6	02-13-98	105.13	10.06	ND	91.38					first quarter	-			
MW-6	05-12-98	105.13	13.75	ND ND	91.38					first quarter				
MW-6	07-28-98	105.13	14.06	ND ND	90.42					first quarter				
MW-6	10-28-98	105.13	14.71	ND	90.42 92.91	<100		150 ammam) 1>	, during un <1	<1 <1	110			
MW-6	02-12-99	105.13	12.22	ND ND	91.18			r. Herrans bal	-	first quarter				
MW-6	06-03-99	105.13 105.13	13.95 14.06	ND ND	91.18	Not sampled							3.94	ļ
MW-6	10-26-99	105.13	12.03	ND	93.10	<50					<3		1.2	
MW-6	02-02-00	103.13	12.03	ND	93.10	\ 50	~0.5	10.5	-0.0	-*	~			
MW-7	03-20-95	107.08	12.32	ND	94.76	<50	< 0.5	< 0.5	<0.5	< 0.5				
MW-7	06-06-95	107.08	14.59	ND	92.49	Not sampled	: well samp	led semi-an	nually, duri	ng the first ar	id third quar	ters		
MW-7	08-24-95	107.05	14.64	ND	92.41	<50					<3			
MW-7	11-16-95	107.05	15.30	ND	91.75	Not sampled	: well samp	led semi-an	nually, duri	ng the first ar	nd third quar	ters		
MW-7	02-27-96	107.05	12.24	ND	94.81	<50					-<3			
MW-7	05-15-96	107.05	14.65	ND	92.40	Not sampled	: well samp	led annually	y, during the	e first quarter				
MW-7	08-14-96	107.05	14.35	ND	92.70					e first quarter				
MW-7	11-11-96	107.05	14.92	ND	92.13					e first quarter				
MW-7	03-25-97	107.05	14.80	ND	92.25	<50					<3			

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

	Date	Top of Casing	Depth to	FP	Groundwater	TPH			Ethyl-	Total			Dissolved	Purged/
Well	Gauged/	Elevation	Water	Thickness	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	TRPH	Oxygen	Not Purged
Number	Sampled	(ft-MSL)	(feet)	(feet)	(ft-MSL)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(P/NP)
MW-7	05-15-97	107.05	15.27	ND	91.78	Not sampled	well samp	led annually	, during the	first quarter				,
MW-7	10-26-97	107.05	16.68	ND	90.37	Not sampled	well samp	led annually	, during the	first quarter				
MW-7	11-10-97	107.05	15.37	ND	91.68	Not sampled	well samp	led annually	, during the	first quarter				
MW-7	02-13-98	107.05	10.80	ND	96.25	<50	<0.5	<0.5	<0.5	<0.5	<3	~ ~		
MW-7	05-12-98	107.05	14.32	ND	92.73					first quarter				
MW-7	07-28-98	107.05	14.79	ND	92.26					first quarter				
MW-7	10-28-98	107.05	15.57	ND	91.48	Not sampled	: well samp	led annually	, during the	first quarter				
MW-7	02-12-99	107.05	12.46	ND	94.59	<50		<0.5			<3			
MW-7	06-03-99	107.05	14.53	ND	92.52	Not sampled	: well samp	led annually	y, during the	first quarter				
MW-7	10-26-99	107.05	14.74	ND	92.31	Not sampled	: well samp	led annually	y, during the	first quarter			1.97	
MW-7	02-02-00	107.05	12.57	ND	94.48	<50	< 0.5	<0.5	<0.5	<1	<3		0.7	NP
VW-1	06-03-99	NR	17.51	ND	NR	420	2.3	0.6	2.0	2.2	74		1.28	P

ft-MSL: elevation in feet, relative to mean sea level

TPH: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

BTEX: Benzene, toluene, ethylbenzene, total xylenes by EPA method 8021B. (EPA method 8020 prior to 10/26/99)

MTBE: Methyl tert-butyl ether by EPA method 8021B. (EPA method 8020 prior to 10/26/99).

TRPH: total recoverable petroleum hydrocarbons

μg/L: micrograms per liter

mg/L: milligrams per liter

NR: not reported; data not available

ND: none detected

- -: not analyzed or not applicable
- *: confirmed by EPA 8240
- **: For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996).

^{#:} floating product entered the well during purging

Table 2 Groundwater Flow Direction and Gradient

Date	Average	Average
Measured	Flow Direction	Hydraulic Gradient
03-20-95	Southwest	0.02
06-06-95	Southwest	0.016
08-24-95	Southwest	0.014
11-16-95	Southwest	0.012
02-27-96	Southwest	0.016
05-15-96	Southwest	0.015
08-14-96	Southwest	0.021
11-11-96	Southwest	0.015
03-25-97	South-Southwest	0.018
05-15-97	South-Southwest	0.014
10-26-97	Southwest	0.009
11-10-97	South-Southwest	0.014
02-13-98	South-Southwest	0.012
05-12-98	Southwest	0.02
07-28-98	Southwest	0.02
10-28-98	Southwest	0.01
02-12-99	Southwest	0.02
06-03-99	Southwest	0.02
10-26-99	Southwest	0.01
02-02-00	South-Southwest	0.017

Table 3
Soil Vapor Extraction System
Operational Uptime Information (1998 - present)

				Period (peration			Cumulativ	e Operation	
Date	Meter (hrs.)	Operation ¹ (hrs.)	Total (days)	Uptime (days)	Downtime (days)	Uptime (%)	Total (days)	Uptime (days)	Downtime (days)	Uptime (%)
01/01/98		2697.50					827	112.4	714.6	14%
01/27/98	2702.01	2697.50	26	0.0	26.0	0%	853	112.4	740.6	13%
02/10/98	2704.73	2700.22	14	0.1	13.9	1%	867	112.5	754.5	13%
02/16/98	2704.73	2700.22	6	0.0	6.0	0%	873	112.5	760.5	13%
03/23/98	2704.73	2700.22	35	0.0	35.0	0%	908	112.5	795.5	12%
05/06/98	2704.73	2700.22	44	0.0	44.0	0%	952	112.5	839.5	12%
05/13/98	2704.73	2700.22	7	0.0	7.0	0%	959	112.5	846.5	12%
06/22/98	2704.73	2700.22	40	0.0	40.0	0%	999	112.5	886.5	11%
08/20/98	2704.73	2700.22	59	0.0	59.0	0%	1058	112.5	945.5	11%
08/27/98	2707.40	2702.89	7	0.1	6.9	2%	1065	112.6	952.4	11%
09/01/98	2709.55	2705.04	5	0.1	4.9	2%	1070	112.7	957.3	11%
09/02/98	2711.93	2707.42	1	0.1	0.9	10%	1071	112.8	958.2	11%
11/10/98	2712.40	2707.89	69	0.0	69.0	0%	1140	112.8	1027.2	10%
12/18/98	2714.81	2710.3	38	0.1	37.9	0%	1178	112.9	1065.1	10%
01/15/99	2714.18	2709.67	28	0.0	28.0	0%	1206	112.9	1093.1	9%
04/27/99	2717.29	2712.78	102	0.1	101.9	0%	1308	113.0	1195.0	9%
05/26/99	2717.29	2712.78	29	0.0	29.0	0%	1337	113.0	1224.0	8%
07/30/99	2718.05	2713.54	65	0.0	65.0	0%	1402	113.1	1288.9	8%
08/11/99	2718.05	2713.54	12	0.0	12.0	0%	1414	113.1	1300.9	8%
08/25/99	2718.05	2713.54	14	0.0	14.0	0%	1428	113.1	1314.9	8%
09/09/99	2718.45	2713.94	15	0.0	15.0	0%	1443	113.1	1329.9	8%
09/21/99	2720.63	2716.12	12	0.1	11.9	1%	1455	113.2	1341.8	8%
10/06/99	2723.1-1	2718.6	1-5	0.1	14.9	1%	1470	113.3	1356:7	- 8%
10/20/99	2725.62	2721.11	14	0.1	13.9	1%	1484	113.4	1370.6	8%

Table 3
Soil Vapor Extraction System
Operational Uptime Information (1998 - present)

				Period (Operation			Cumulativ	e Operation	
Date	Meter (hrs.)	Operation ¹ (hrs.)	Total (days)	Uptime (days)	Downtime (days)	Uptime (%)	Total (days)	Uptime (days)	Downtime (days)	Uptime (%)
11/03/99	2728.21	2723.7	14	0.1	13.9	1%	1498	113.5	1384.5	8%
11/18/99	2730.66	2726.15	15	0.1	14.9	1%	1513	113.6	1399.4	8%
12/02/99	2732.80	2728.29	14	0.1	13.9	1%	1527	113.7	1413.3	7%
12/16/99	2735.22	2730.71	14	0.1	13.9	1%	1541	113.8	1427.2	7%
01/06/00	2735.22	2730.71	21	0.0	21.0	0%	1562	113.8	1448.2	7%
01/19/00	2737.83	2733.32	13	0.1	12.9	1%	1575	113.9	1461.1	7%
02/02/00	2740.27	2735.76	14	0.1	13.9	1%	1589	114.0	1475.0	7%
03/23/00	2740.77	2736.26	50	0.0	50.0	0%	1639	114.0	1525.0	7%

Operational data through 01/01/98 from First Quarter 1998 Quarterly Monitoring Report

Table 4 Soil Vapor Extraction System Flow Rates and Analytical Results of Air Samples (1998 - present)

Date	Sample	Vacuum	Velocity	Flowrate ¹			Analys	es (ppmv)		
	Location	(in. H20)	(fpm)	(scfm)	TPHG	Benzene	Toulene	Ethylbenzene	Xylene	MTBE
01/27/98	Influent	21	1100	51	39	<0.1	0.7	0.1	<0.2	
1	Effluent ²		1100	83.1	<5	<0.1	<0.1	<0.1	<0.2	
08/20/98	Influent	10	1100	53	610	<2	<2	<2	<4	
	Effluent		1100	83.1	7	<0.1	<0.1	<0.1	<0.2	
11/10/98	Influent		Not Recorded	i	830	<2	14	<2	<4	
	Effluent		Not Recorded	i	20	<0.1	0.2	< 0.1	<0.2	
01/15/99	Influent	21.8	1500	70	340	3	5	<2	<4	44
1	Effluent	<u> </u>	900	63.9	15	<0.1	0.3	<0.1	0.2	<0.8
09/09/99	Influent	10	1400	67	140	0.3	1	0.2	0.5	6.3
	Effluent		975	69.2	<5	<0.1	<0.1	<0.1	<0.2	<0.8
10/06/99	Influent	8	1400	67	220	<0.5	1.4	0.65	3	11
	Effluent		975	69.2	7.1	<0.1	<0.1	<0.1	<0.2	<0.8
11/03/99	Influent	8	1200	58	44	0.3	3.1	0.1	0.6	21
1	Effluent		1050	74.5	<5	< 0.1	<0.1	<0.1	<0.2	<0.8
12/02/99	Influent	10	1000	48	24	<0.1	0.1	<0.1	<0.2	<0.8
<u> </u>	Effluent		900	64.4	<5	<0.1	< 0.1	<0.1	<0.2	<0.8
01/06/00	Influent	6.2	1000	48	270	0.3	0.8	0.6	0.6	6
	Effluent		925	66.1	22.0	<0.1	< 0.1	<0.1	<0.2	1.6

Table 4 Soil Vapor Extraction System Flow Rates and Analytical Results of Air Samples (1998 - present)

Arco Service Station No. 6148 5131 Shattuck Avenue, Oakland, California

Date	Sample	Vacuum	Velocity	Flowrate ¹												
	Location	(in. H20)	(fpm)	(scfm)	TPHG	Benzene	Toulene	Ethylbenzene	Xylene	MTBE						
02/02/00	Influent	12	850	40	<5	<0.1	0.5	< 0.1	0.2							
	Effluent		900	64.4	<5	<0.1	0.3	<0.1	<0.2							
1	\					·										

Influent Flow Rate, cfm = (Velocity, fpm)(Influent Pipe Area, sq. ft.)(406.8 in.H20 - Vacuum, in.H20) / (406.8 in.H20)

where Influent Pipe Diameter = 3"

Effluent Flow Rate, cfm = (Velocity, fpm)(Effluent Pipe Area, sq.ft.)[(460° R + 77° F)/(460° R + Vapor Temp F)]

where Effluent (after blower) Pipe Diameter = 4"

Dilution air only

Table 5 Soil Vapor Extraction System Extraction Rates, Emission Rates, Destruction Efficiency, and Mass Removed (1998 - present)

Arco Service Station No. 6148 5131 Shattuck Avenue, Oakland, California

Date	Extraction Rate	from Wellfield ¹	Emission Rate	to Atmosphere ²	Destruction	n Efficiency ³	Period F	Removal ⁴	Cumulativ	e Removal
End	TPHG	Benzene	TPHG	Benzene	TPHG	Benzene	TPHG	Benzene	TPHG	Benzene
	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(%)	(%)	(Ibs)	(lbs)	(lbs)	(lbs)
01/01/985									1885.6	0
01/28/98	0.7335	0	< 0.1527	< 0.0024	Wa	ived	0.0831	0.0000	1885.7	0.0000
08/20/98	11.7994	0	< 0.2137	< 0.0024	Wa	ived	4.956	0.0000	1890.6	0.0000
11/10/98	Not Ca	lculated	Not C	alculated	Not Ca	lculated	Not Ca	lculated	Not Ca	lculated
01/15/99	8.702	0.0768	0.3520	< 0.0018	Waived		1.175	0.0104	1891.8	0.0104
09/09/99	3.447	0.0074	<0.1271	< 0.0020	Wa	ived	0.3705	0.0008	1892.2	0.0112
10/06/99	5.443	0	0.1805	< 0.0020	Wa	ived	1.132	0.0000	1893.3	0.0112
11/03/99	0.933	0.0064	< 0.1369	< 0.0021	Wa	ived	0.1960	0.0013	1893.5	0.0125
12/02/99	0.422	0	< 0.1182	< 0.0018	Wa	nived	0.0802	0.0000	1893.6	0.0125
01/06/00	4.793 ⁶	0.0053	<0.5347	< 0.0019	Wa	nived	0.5213	0.0006	1894.1	0.0131
02/02/00	0	0	<0.1182	<0.0018	Wa	ived	0.0000	0.0000	1894.1	0.0131
								1	<u> </u>	

Extraction Rate, lbs/day = (Influent Flow, cfm)(Influent conc., ppmv)(g/mole)(60 min/hr)(24 hr/day)(28.3 L/cf) / $(10^6)(24.45 \text{ moles/L})(453.6 \text{ g/lb})$

where TPHG = 100 g/mole and Benzene = 78.1 g/mole; Influent conc. = 0, if reported as non-detect

Emission Rate, lbs/day = (Effluent Flow, cfm)(Effluent conc., ppmv)(g/mole)(60 min/hr)(24 hr/day)(28.3 L/cf) / $(10^6)(24.45 \text{ moles/L})(453.6 \text{ g/lb})$

where TPHG = 100 g/mole and Benzene = 78.1 g/mole; Effluent conc. = Method Reporting Limit, if reported as non-detect

Destruction Efficiency, % = (Extraction Rate - Emission Rate)(100) / (Extraction Rate); "Waived"= if TPHG emissions < 1.0 lbs/day and Benzene emissions < 0.02 lbs/day

Period Removal, lbs = (Extraction Rate)(Uptime)

Operational data through 1/1/98 from First Quarter 1998 Quarterly Monitoring Report

Value represents 24 hour per day operation. Refer to Period Removal column for actual quantity

APPPENDIX C

Groundwater Sampling Information

3164 Gold Camp Drive, Suite 200 Rancho Cordova, California 95670 Direct: (916) 638-2085 Fax: (916) 638-8385

Arco Site Address:	5131 Shattuck Avenue

Arco Site Number:

D000-315 Delta Project No.:

Arco Project Manager:

Oakland, California Paul Supple

Delta Project PM:

Steve Meeks

Arco 6148

Site Contact & Phone Number:

09/20/00 Site Sampled By: Stratus Environmental Date Sampled:

	Water Level Data Top of Total						Purge Vo	lume Cai	culation	s		Sam	oling An	alytes		Sar	nple Rec	ord
Well ID	Time	Depth to Water (feet)	Top of Screen Interval (feet)	Total Depth of Well (feet)	Check if Purge Not Required	Casing Water Column (A)	Well Diameter (inches)	Multiplier Value (B)	Three Casing Volumes (gallons)	Actual Water Purged (gallons)	BTEX (8020) VOA	TPH-g (8015M) VOA	MTBE (8020) VOA	Other	Dissolved Oxygen (mg/L)	Sample Freqency (A, S, Q)	Sample I.D.	Sample Time
MW-1	NM	17.64	11.5	NM	V	N/A	4 inch	2.0	N/A	NP	>	Image: section of the			7.3	Q/5,8,11	MW-1	7:40
MW-2	NM	17.31	12.0	NM	V	N/A	4 inch	2.0	N/A	NP	$\overline{\ }$	[]	V		6.0	Q/5,8,11	MW-2	8:05
MW-3	NM	17.61	10.0	NM	7	N/A	4 inch	2.0	N/A	NP	্য	V	V		5.2	Q/5,8,11	MW-3	8:10
MW-4	NM	16.03	13.0	NM	Image: Control of the	N/A	4 inch	2.0	N/A	NΡ	ি	>	V		6.2	S/2,8	MW-4	7:50
MW-5	NM	16.34	12.0	NM	N.	N/A	4 inch	2.0	N/A	NP	[5]	7	V		5.8	Q/5,8,11	MW-5	8:00
MW-6	NM	14.03	NM	NM		N/A			N/A						NM	A/2		
MW-7	NM	14.58	NM	NM		N/A			N/A						NM	A/2		
									!									
]															
·																		
										,								
							İ									-		

(A)-Casing Water Column: Depth to Bottom - Depth to Water (B)-Multiplier Values: (2" Well: 0.5) (4" Well: 2.0) (6" Well: 4.4)

Annual: MW-6, MW-7; Semi-Annual: MW-4; Sampling Sequence:

Quarterly: MW-1, MW-3, MW-2, MW-5

Sampling Notes:

List depth of Sample on C.O.C. [I.e. MW-1(30)]. Make Sure to Note on C.O.C. "Provide Lowest Reporting Limit Available."

If the water level is below the top of the screen, take a grab sample and check box for NO PURGE (NP). If the water level is above the screen, purge as normal.

Site Contact & Phone Number:

3164 Gold Camp Drive, Suite 200 Rancho Cordova, California 95670 Direct: (916) 638-2085 Fax: (916) 638-8385 Arco Site Address: 5131 Shattuck Avenue

Arco Site Number:

Arco 6148

Oakland, California
Paul Supple

 D000-315 Steve Meeks

Arco Project Manager: ___

Site Sampled By: Stratus Environmental

Date Sampled: 09/20/00

Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gailons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-1	7:40	19.9	7.93	271	NΡ												
																_	
											<u></u>		•				
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-2	8:05	20.1	6.52	166	NP		-	I I	•								
''''																	
					-												
														1 - 22			
Well ID	Time			Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-3	8:10	20.1	6.26	187	NP]		<u> </u>									
															 	_	
																	
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-4	7:50	21.3	6.76	180	NP												
														 			
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-5	8:00	19.9	6.33	175	NP									<u> </u>		<u> </u>	
''''			<u> </u>				···········										
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-6						ļ ,								,,_,,			
			$\gg \ll$					<u> </u>						 			
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-7																	
			>					<u> </u>									
								<u> </u>									
<u> </u>								<u> </u>	<u></u>							<u>. </u>	

Notes: NP = NO PURGE

APPENDIX D

Certified Analytical Reports And Chain-of-Custody Documentation

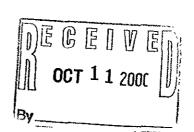
October 9, 2000

Steven Meeks
Delta Environmental Consultants - Rancho Cordova
3164 Gold Camp Drive Ste. 200
Rancho Cordova, CA N/A

RE: ARCO 6148, Oakland, CA/S009289

Dear Steven Meeks

Enclosed are the results of analyses for sample(s) received by the laboratory on September 20, 2000. If you have any questions concerning this report, please feel free to contact me.


Sincerely, Sancha R.Hansov

Sandra R. Hanson

Client Services Representative

Lito Diaz Laboratory Director

CA ELAP Certificate Number 1624

Delta Environmental Consultants - Rancho Cordova Project: ARCO 6148, Oakland, CA Sampled: 9/20/00
3164 Gold Camp Drive Ste. 200 Project Number: N/A Received: 9/20/00
Rancho Cordova, CA N/A Project Manager: Steven Meeks Reported: 10/9/00

ANALYTICAL REPORT FOR S009289

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
MW-1	S009289-01	Water	9/20/00
MW-2	S009289-02	Water	9/20/00
MW-3	S009289-03	Water	9/20/00
MW-4	S009289-04	Water	9/20/00
MW-5	S009289-05	Water	9/20/00

This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

ſ	Delta Environmental Consultants - Rancho C	Cordova Project:	ARCO 6148, Oakland, CA	Sampled:	9/20/00
- 1	3164 Gold Camp Drive Ste. 200	Project Number:	N/A	Received:	9/20/00
Ŀ	Rancho Cordova, CA N/A	Project Manager:	Steven Meeks	Reported:	10/9/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Sacramento

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
a seems to			<u>.</u>					
MW-1			S0092	<u>89-01</u>			Water	
Purgeable Hydrocarbons	0100021	10/3/00	10/3/00		50.0	ND	ug/l	
Benzene	III	н	H		0.500	ND	H	
Toluene	0	Ħ	n		0.500	0.677	н	
Ethylbenzene	11	**	n		0.500	ND	11	
Xylenes (total)	H	•	0		0.500	0.969	н	
Methyl tert-butyl ether	er .	ti	11		2.50	ND	11	
Surrogate: a,a,a-Trifluorotoluene	"	"	"	60.0-140		92.9	%	
MW-2			S0092	89-02			<u>Water</u>	
Purgeable Hydrocarbons	0100021	10/3/00	10/3/00		50.0	ND	ug/i	
Benzene	"	н	ıı		0.500	0.964	11	
Toluene	n	H	Ŋ		0.500	ND	n	
Ethylbenzene	n	IT	n		0.500	ND	n	
Xylenes (total)	N	n	u		0.500	ND	H	
Methyl tert-butyl ether	n	•	19		2.50	5.05	11	
Surrogate: a,a,a-Trifluorotoluene	tt .	"	п	60.0-140		95.1	%	
3.43W 2			S0092	89-03			Water	
MW-3	0100021	10/3/00	10/3/00	<u>05-00</u>	50.0	ND	ug/l	
Purgeable Hydrocarbons	0100021	10/5/00	10/3/00		0.500	ND	"	
Benzene		H	n		0.500	ND	IF	
Toluene Ethylhannaga	0	н	••		0.500	ND	10	
Ethylbenzene Xylenes (total)	11	n			0.500	ND	10	
Methyl tert-butyl ether	II.	n .	ti i		2.50	20.0	n	
Surrogate: a,a,a-Trifluorotoluene	"	"	n .	60.0-140		85.2	%	
			S0092	80 04			Water	
MW-4	0100021	10/3/00	10/3/00	-02-01	50.0	ND	ug/l	
Purgeable Hydrocarbons	0100021	10/3/00	#		0.500	ND	11	
Benzene	н	n	9		0.500	ND	11	
Toluene	H	11	Ħ		0.500	ND	n	•
Ethylbenzene Yulana (tatal)	H	11	H		0.500	ND	n	
Xylenes (total)	et .	11	IJ		2.50	ND	II .	
Methyl tert-butyl ether Surrogate: a,a,a-Trifluorotoluene	"	<i>"</i>	н	60.0-140	2,30	91.1	%	
NAVY E			SUUDS	<u> 89-05</u>			<u>Water</u>	
MW-5	0100021	10/3/00	10/3/00	10,7-00	50.0	ND	ug/l	
Purgeable Hydrocarbons	"	10/3/00	10/3/00 n		0.500	ND	0	
Benzene	1)	10	17		0.500	ND	#1	
Toluene	0	17	n		0.500	ND	n	
Ethylbenzene	9	H	11		0.500	ND	H	
Xylenes (total)					0.500	1,17		

Sequoia Analytical - Sacramento

*Refer to end of report for text of notes and definitions.

Delta Environmental Consultants - Rancho	Cordova Project:	ARCO 6148, Oakland, CA	Sampled:	9/20/00	
3164 Gold Camp Drive Ste. 200	Project Number:	N/A	Received:	9/20/00	
Rancho Cordova, CA N/A	Project Manager:	Steven Meeks	Reported:	10/9/00	

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Sacramento

Analyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting Limit	Result	Units	Notes*
MW-5 (continued)			S0092	<u>89-05</u>			Water	
Methyl tert-butyl ether	0100021	10/3/00	10/3/00		2.50	3.48	ug/l	
Surrogate: a,a,a-Trifluorotoluene	"	n e	"	60.0-140		95.I	%	

Delta Environmental Consultants - Rancho Cordova Project: ARCO 6148, Oakland, CA Sampled: 9/20/00 3164 Gold Camp Drive Ste. 200 Project Number: N/A Received: 9/20/00 Rancho Cordova, CA N/A Project Manager: Steven Meeks Reported: 10/9/00

Total Purgeable Hydrocarbons (Co. C.12), BTEX and MTBE by DHSLUFI/Quality Control Sequious Analytical - Sacramento

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Potch: 0100021	Date Prepa	rad: 10/3/0	nn		Extract	ion Method: EPA	4 5030R	(MeOH)		
Batch: 0100021 Blank	0100021-BI		<u>.v</u>		DATIAC	Jon Diction. Ex ?	X 50000D	(I) LCOIL)		
Purgeable Hydrocarbons	10/3/00	<u> </u>		ND	ug/l	50.0				
	10/3/00			ND	u _E /1	0.500				
Benzene Toluene	II .			ND	17	0.500				
	H			ND	11	0.500				
Ethylbenzene	н			ND	n	0.500				
Xylenes (total)	н			ND ND	11	2.50				
Methyl tert-butyl ether	<u>"</u>	10.0		9.98	"	60.0-140	99.8			
Surrogate: a,a,a-Trifluorotoluene		10.0		9.98		00.0-140	99.0			
LCS	0100021-BS	<u>81</u>								
Benzene	10/3/00	10.0		9.84	ug/l	70.0-130	98.4			
Toluene	n	10.0		9.91	,	70.0-130	99.1			
Ethylbenzene	11	10.0		10.0	***	70.0-130	100			
Xylenes (total)	н	30.0		29.9	1)	70.0-130	99.7			
Methyl tert-butyl ether	11	10.0		8.92	18	70.0-130	89.2			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.63	71	60.0-140	96.3			
Matrix Spike	010 <u>0021-M</u>	S1 Si	009269-01							
Benzene	10/3/00	10.0	ND	10.1	ug/l	60,0-140	101			
Toluene	10/5/00	10.0	ND	10.3	H	60.0-140	103			
Ethylbenzene	n	10.0	ND	10.3	n	60.0-140	103			
Xylenes (total)	H	30.0	ND	31.0	11	60.0-140	103			
Methyl tert-butyl ether		10.0	ND	9.68	H	60.0-140	96.8			
Surrogate: a,a,a-Trifluorotoluene	"	10.0	110	9.19	,,	60.0-140	91.9			
, , , , , , , , , , , , , , , , , , ,		-								
Matrix Spike Dup	0100021-M	SD1 S	009269-0 <u>1</u>							
Benzene	10/3/00	10.0	ND	10.4	ug/l	60.0-140	104	25.0	2.93	
Toluene	10	10.0	ND	10.0	И	60.0-140	100	25.0	2.96	
Ethylbenzene	U	10.0	ND	10.1	H	60.0-140	101	25.0	1.96	
Xylenes (total)	n ·	30.0	ND	30.5	IT	60.0-140	102	25.0	0.976	
Methyl tert-butyl ether	**	10.0	ND	10.1	ę1	60.0-140	101	25.0	4.25	
Surrogate: a,a,a-Trifluorotoluene	"	10.0		10.0	"	60.0-140	100			

Sequoia Analytical - Sacramento

*Refer to end of report for text of notes and definitions.

Delta Environmental Consultants - Rancho Cordova Project: ARCO 6148, Oakland, CA Sampled: 9/20/00
3164 Gold Camp Drive Ste. 200 Project Number: N/A Received: 9/20/00
Rancho Cordova, CA N/A Project Manager: Steven Meeks Reported: 10/9/00

Notes and Definitions

Note

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

Recov. Recovery

RPD Relative Percent Difference

ARCO	Prod	ucts of Atlantic	Com	pany ((>			Task O	rder No.													С	hain of Cus	tody
ARCO Facili ARCO engir Consultant	y no. 1 rco 1eer Pa.	61	48 Su	Ci (F	ty acility)	Oak	Telephor (ARCO)	ne no.		Project (Consu Telepho (Consu	manaç iltant) one no. iltant)	ger 916	57.	- 20 - 20	1 3	Me e	x no.	nt) 9/		38-	 ክን ፉ	25	Columbia Contract number	Anal
Consultant r	ame ITo	i	-nui	on me	nlal		<u></u> ,	Address (Consulta	int).3164	5012	<u>ر ب</u>	00	r. Su	Te 2	00	Ra	neto	<u> </u>	dou	<u>. ر</u> حد	956	670	Contract number	
	F			Matrix		ſ	rvation				178 H	25		ധ				Q Q	900				Method of shipment	·- <u>-</u> -
Sample 1.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH 5 / EPA M602/8020/	TPH Modified 80 Gas □ Diesel □	Oil and Grease 413.1 □ 413.2 [TPH EPA 418.1/SM500	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Sem Metals□ VOA□ \	CAM METALS EPA 601	Lead Org./DHS C Lead EPA 7420/7421 □				
mw-1		4					X	9-20-00	1		X		CD	05	72	89-	0)						Special detection Limit/reporting	
MW-2		1					\		0805								02							
Mw-3			<u> </u>						0810								03						_	
mw-4									0750								04	ļ					Special QA/QC	
MW-5		1		<u> </u>			1		0800	-				-		_	∞						1	
<u></u>		· · · · · · · · · · · · · · · · · · ·		-						-		-												
																							Remarks	
														-		ļ			-				Lab number	
				<u> </u>						1		-											Turnaround time	
																							Priority Rush 1 Business Day	
Condition of		·		-			.					receive	d;										Rush 2 Business Days	
Relinquishe	d by sam	oler //	fel.		0		Date 1-20-	00	Time 15 ½	1.70	ived by		a	(F)	e Al	Be	m	1	Q_{2n}	100	15	16	Expedited	
Relinquishe	d by		· ·			,	Date		Time		ived by			~~~	U						<u></u>		5 Business Days	
Relinquishe	d by						Date		Time	Rece	ved by			-			Date			Time			Standard 10 Business Days	ĺχ