

TRANSMITTAL

		Date	November 30, 2000		
		Project	2002-0945-01		
				8	
To:				WAY CO	- T
Ms. Susar	n Hugo	<u>_</u>		œ	AREA,
Alameda	County Health Care Service Agency			3	() ()
1131 Har	bor Bay Parkway, Suite 250			£	Ö
Alameda,	CA 94502-6577			<u></u>	e an
				14.0	
Re: <u>In</u>	ternational Brands Corporation, Oakland	d, CA			
<u>Item</u>	Description				
1	Human Health Risk Analysis To Suj	pport A Ris	k-Based Corrective		
	Action and Site Closure regarding Ir	nterstate Br	ands Corporation,		
	945 53 rd Street, Oakland, California			· · · · · · · · · · · · · · · · · · ·	
····					

Comments:

If you have any questions or concerns regarding the attached document, please contact me at (530) 676-6000.

Sincerely,

Jay R. Johnson, R.G. Project Manager

cc: Larry Brown, Interstate Brands Corporation Travis Bryant, Interstate Brands Corporation

HUMAN HEALTH RISK ANALYSIS TO SUPPORT A RISK-BASED CORRECTIVE ACTION AND SITE CLOSURE

INTERSTATE BRANDS CORPORATION 945 53rd STREET OAKLAND, CALIFORNIA

Prepared for INTERSTATE BRANDS CORPORATION

December 01, 2000

Prepared by

STRATUS ENVIRONMENTAL, INC.

3330 Cameron Park Drive, Suite 550
Cameron Park, California 95682

Project 2002-0945-01

Human Health Risk Analysis To Support a Risk-Based Corrective Action And Site Closure

Interstate Brands Corporation 945 53rd Street Oakland, California

The data and information presented in this report were prepared under the supervision of the undersigned.

Stratus Environmental, Inc.

Michael \$. Blankinship

Nay R. Johnson, R.G. Principal Geologist

TABLE OF CONTENTS

	Executive Summary	iv
1.	BACKGROUND	1-1
2.	INTRODUCTION AND OBJECTIVE	2-1
3.	IDENTIFICATION OF CHEMICALS OF CONCERN	3-1
4.	TOXICITY ASSESSMENT	4-1
5.	EXPOSURE ASSESSMENT	5-1
6.	RISK CHARACTERIZATION	6-1
7.	CONCLUSIONS AND RECOMMENDATIONS	7-1
8.	LIMITATIONS	8-1
9.	REFERENCES	9-1

List of Tables and Figures

TablesTable 1Supplement to EMCON Groundwater Monitoring and Soil Analytical DataTable 2Summary of Select Chemical, Physical, and Toxicological Characteristics for BTEXTable 3Soil Physical Property and Site-Specific Target Level (SSTL) Summary

Figures

Figure 1	Site Plan (Source: URS/Greiner Woodward Clyde report dated April 20, 1999)
Figure 2	Site Conceptual Model/Exposure Pathway Flowchart

List of Appendices

Appendix A	Table 1 from EMCON Report dated December 17, 1998 and
	Boring Logs for MW-1, MW-2, and MW-3 (Source: Woodward Clyde,
	May 1994)

Appendix B Model Input Summary Sheets

- B-1. Main Screen
- B-2.0 Source Media Constituents of Concern
- B-2.1 User-Specified Chemical Data
- B-3. Exposure Factors and Target Risk Limits
- B-4. Exposure Pathway Identification
- B-5. Transport Modeling Options
- B-6. Site-Specific Groundwater Parameters
- B-7. Site-Specific Soil Parameters
- B-8. Site-Specific Air Parameters
- B-9. Input Data Summary

Executive Summary

Stratus Environmental, Inc. (Stratus) performed a human health risk analysis that estimated site-specific target levels (SSTLs) for chemicals of concern in groundwater that can remain in place on the site without posing a potential adverse impact to human health. Calculations assumed that the current commercial land use is also the most-likely future land use. At this time, no chemicals of concern in groundwater pose a potential for adverse impacts to human health. Therefore, we request no further action and closure for this site.

1. BACKGROUND

Several documents describe assessment work performed on the site (EMCON, 1998; URS Greiner, 1999). A brief summary of this work is presented below and a site plan is presented in Figure 1.

In December 1992, one 10,000 gallon fiberglass gasoline tank, one 8,000 gallon diesel fuel tank; which was used as standby fuel for the building, one 5,000 gallon diesel fuel tank, and one 200 gallon waste-oil tank were removed from the site. After the underground storage tank (UST) removal, the excavation was filled with gravel.

During UST removal activities, there was no indication of a leak near the 8,000 gallon diesel UST, which was in an excavation by itself. There was visual staining and a petroleum odor observed in the other UST excavation, which formerly contained the other three tanks. Holes were observed in the waste oil tank; there were no holes observed in any of the other tanks.

In 1994, three groundwater monitoring wells (MW-1, MW-2 and MW-3) were installed on site. Boring logs for the monitoring wells are included in Appendix A. During installation of these borings, silt, silty clay and clayey silt, and sands were encountered.

From 1994 through 1995, quarterly groundwater monitoring was performed. From 1996 through 1998, semi-annual groundwater sampling was performed. One groundwater monitoring event occurred in March 1999 and no monitoring has occurred since that time. The groundwater flow direction is generally toward the southwest with a hydraulic gradient of approximately 0.05 feet/feet (ft/ft). Approximate depths to groundwater range between 9 and 13 feet below ground surface (bgs).

Groundwater samples collected after September 1998 have not exhibited floating product in any of the monitoring wells. Total petroleum hydrocarbons (TPH) and xylenes have been sporadically detected in MW-2 and MW-3 through March 1998. Since March 1998, neither TPH nor xylenes have been detected in MW-2 or MW-3. Since sampling began in 1994, no benzene, toluene, or ethyl benzene have ever been detected in MW-2 and MW-3.

Compared to MW-1 and MW-2, TPH constituents have been more consistently detected in MW-1. Since 1996, and when correlated to depth to groundwater and season, the concentrations of both TPH and benzene, toluene, ethyl benzene and xylenes (BTEX) in MW-1 have decreased with time.

Two upgradient borings (A and B) were drilled at the site upgradient of the former UST excavation area as shown on Figure 1. These borings were drilled to assess the upgradient soil and groundwater conditions. Boring A encountered clayey gravelly sand from the surface to a depth of about 12 feet where a one foot layer of greenish gravelly clayey sand was encountered. Silty sand extended from about 16 feet to 24 feet, where clayey

sand with gravel was encountered. Boring B encountered a similar gravelly clayey sand to the total depth of 31 feet. Both borings were filled with cement/bentonite grout after completion of sampling.

Neither boring encountered TPH or BTEX in soil. Neither TPH nor BTEX was detected in groundwater collected from Boring B. Only trace concentrations of TPH-gasoline (TPHG), toluene, and xylenes were detected in groundwater collected from Boring A.

A summary of data from the analysis of soil and groundwater from borings A and B and from the three monitoring wells is presented in Table 1 and Appendix A.

2. INTRODUCTION AND OBJECTIVE

A letter from Susan Hugo of the Alameda County Health Care Services Agency (ACHCSA) dated October 28, 1999 indicated that the site may be considered a low risk soil and groundwater case and that a Risk-based Corrective Action (RBCA) for the site should be conducted. The letter further states that the use of American Society for Testing and Materials (ASTM) Standard Guide for RBCA Applied at Petroleum Release Sites (E1739-95) is acceptable.

In lieu of using the Risk-Based Screening Level (RBSL) Look-Up Table X2.1 in ASTM E1939-95, but consistent with Section 6.8.1 of the same ASTM document, the human health risk analysis described herein uses a Tier 2 RBCA approach. This Tier II approach is described in both ASTM E1939-95 and ASTM PS-104, Standard Provisional Guide for RBCA (ASTM, 1998).

Site-specific assessment data and reasonably likely future land use information were used. Tier II RBCA calculations were done using the RBCA Tool Kit for Chemical Releases (GSI, 1999). This analysis tool was used to estimate SSTLs for chemicals of concern (COC) using techniques consistent with ASTM E1939-95 and ASTM PS-104 and with current U.S. Environmental Protection Agency (USEPA, 1996, 1989) and California Environmental Protection Agency (CalEPA, 1994) guidelines.

Consistent with the mid-point of USEPA's established risk range as described in the National Contingency Plan (NCP), SSTLs for carcinogens were derived using an acceptable excess cancer risk value of 1x10⁻⁵. A hazard index (HI) of 1 was used to calculate SSTLs for non-carcinogens.

The objective of this human health risk analysis was to estimate concentrations of COCs that can remain on the site without likely posing adverse health effects to human health given the current and future land uses evaluated.

3. IDENTIFICATION OF CHEMICALS OF CONCERN

Summary tables from previous work (EMCON, 1998) describing chemicals detected on the site are presented in Appendix B. Review of data in these tables was accomplished to determine potential COC.

TPH has been sporadically detected in MW-2, and MW-3 and more consistently detected in MW-1. TPH is a complex mix of both long and short chain aliphatic hydrocarbons, and branched and unbranched aromatic hydrocarbons. Identification and quantification of TPH, while useful in assessing impact to the site, is not necessarily useful in assessing the level of risk, since the composition of TPH can vary significantly, and TPH is generally considered to have low toxicity. Further, no toxicity criteria have been established for TPH. To assess the risk associated with TPH, constituents of TPH were selected and identified as COC. These COC are BTEX constituents.

BTEX was selected as the COC because it is generally both more mobile and more toxic than other TPH constituents. The selection of BTEX as the COC is consistent with several risk assessment guidance documents (USEPA, 1989; ASTM, 1995). Further, CalEPA (CalEPA, 1994) and ASTM (ASTM, 1995) provide guidance for conducting risk assessment for petroleum hydrocarbons. Specifically, BTEX is considered the most mobile and toxic of gasoline constituents and therefore their consideration provides an upper-bound, conservative representation of petroleum hydrocarbons and their additives. Of the compounds that comprise BTEX, benzene is generally the most mobile of the four, and is the only carcinogen. Therefore, benzene has the lowest SSTL value of the COCs considered in this analysis.

Model inputs for COCs is presented in Appendix B, pages B-1 through B-2.1.

4. TOXICITY ASSESSMENT

The probability of developing cancer is the measure used for quantitating the toxicity of carcinogens. These probabilities identify the likelihood of a carcinogenic response in an individual that receives a given dose of a particular chemical based on mathematical modeling of the animal or human data plus safety factors. These probabilities are expressed in terms of the chemical-specific slope factor (SF) or Unit Risk Factor (URF). The SF and the URF represent the probability of a carcinogenic response per unit dose and is usually expressed as 1/milligram/kilogram-day (mg/kg-day) for SF and 1/milligram per meter cubed (mg/m³) for URF. The SF or the URF multiplied by the predicted chemical dose provides an estimate of the incremental upperbound cancer risk. Benzene is the only COC that is classified by the USEPA as a carcinogen.

Quantitation of non-cancer toxicity is accomplished with the use of the Reference Dose (RfD) or the Reference Concentration (RfC). The RfD and the RfC are derived from the No Observable Adverse Effect Level (NOAEL) and the application of an uncertainty factor (UF). The UF considers the various types of data used to estimate RfDs and RfCs along with a modifying factor (MF). The MF is based on professional judgments regarding scientific uncertainties not covered under the standard UF, such as the completeness of the overall database and the number of animals in the study.

The RfD and the RfC are very conservative estimates of daily exposure to the human population that is unlikely to have appreciable risk or adverse effects. Doses less than the RfD or RfC are not likely to be associated with any health risks, even to sensitive individuals (USEPA, 1989).

A summary of select chemical, physical, and cancer and non-cancer toxicological characteristics of COCs is presented in Table 2.

The use of the toxicity data summarized in Table 2 combined with site-specific exposure data presented below and in Appendix B allow for the estimation of SSTLs.

Model input for Toxicity data in presented in Appendix B, pages B-2.1 and B-3.

5. EXPOSURE ASSESSMENT

Benzene, because it has a relatively high vapor pressure and Henry's Law constant, can volatilize from the liquid phase into the gas phase and is subsequently able to migrate through the subsurface by a combination of molecular diffusion and advective dispersion. The rate and degree of benzene migration is determined in part by the physical and chemical properties of the subsurface. The transport of benzene is most effective in unconsolidated, gravelly or sandy soils that provide a relatively uninhibited migration pathway. In fine-grained soils, which may have high porosity, but a low degree of permeability because the pores are not connected, volatile transport may be slower.

Because benzene contamination on the site is overlain by predominantly clayey silt, vapor migration is anticipated to occur, but only to a limited extent. Vapor migration is further limited by the presence of asphalt on the site. Although vapor migration may occur through the soil profile, further migration through the asphalt is considered unlikely.

During the most recent groundwater sampling event in March 1999, benzene was detected in groundwater in MW-1 at a concentration of 58 micrograms per liter (ug/L). Benzene has never been detected in any other well. Benzene in groundwater may result in volatilization of benzene into both outdoor and indoor air. Inhalation of this air by current and future on-site commercial workers constitutes the only complete exposure pathway evaluated in this analysis. Refer to Figure 2.

As groundwater on the site is not used currently or reasonably anticipated for irrigation use or consumptive purposes, it is not part of a complete ingestion or dermal contact exposure pathway. Refer to Figure 2.

To determine the dose or amount of a COC a commercial land use occupant may be exposed to, the Johnson-Ettinger volatilization model was used. This model estimates vapor concentrations resulting from soils beneath the surface, and did not account for the presence of the asphalt on the site. USEPA Reasonable Maximum Exposure (RME) values were then used to estimate dose.

The COCs and TPH are subject to continual biotic processes that result in varying rates and degrees of degradation (Lawrence Livermore National Laboratory, 1995). Although the extent to which they are occurring is unclear, these degradative processes are occurring on the site. As a result, both TPH and BTEX concentrations will attenuate over time. This is significant because long-term (i.e., chronic) risk estimations made herein use the conservative assumption that no BTEX degradation occurs over time.

The source of contamination on the site has been removed and the most recent analysis of ground water on the site was almost 2 years ago. Review of historic groundwater analytical data (refer to Appendix A and Table 1) demonstrate that attenuation of both BTEX and TPH is occurring.

Although not defined in the past 2 years, it is highly anticipated that COC attenuation in groundwater has and will continue to occur. Thus, actual COC concentrations are very likely significantly less than the values reported in March 1999.

Site geology appears variable in nature with a combination of silt, silty clay, and clayey silt, and sands. In general, silty clay and clayey silt predominate in the subsurface above the water table. Of these two, clayey silt exhibits a greater tendency to allow for vapors to migrate through it as evidenced by its greater vapor permeability relative to silty clay. To be conservative, clayey silt was selected as one of the subsurface conditions that were evaluated.

The other subsurface condition considered was the gravel-filled former UST excavation. This gravel material is expected to be more porous and permeable, and consequently more able to allow for the migration of vapors than compared to clayey silt. To evaluate this gravel backfill, sand with 0% organic content was selected as the predominant subsurface material.

Model input for Exposure estimations are presented in Appendix B, pages B-3 through B-9.

6. RISK CHARACTERIZATION

The SSTL for the one carcinogenic COC, benzene, was derived using an acceptable excess cancer risk value of $1x10^{-5}$. An HI of 1 was used to calculate SSTLs for the remaining non-carcinogenic COCs.

A summary of the physical properties of clayey silt, sand and their corresponding SSTLs are presented in Table 3. The lowest SSTL values for benzene under a clayey silt or sand scenario are presented as **bold italic**. These bold italic values are the concentrations that, if not exceeded, do not create the potential for an adverse health affect.

The last detected benzene concentration in March 1999 was less than the bold italic SSTL values in Table 3. In addition, the last detected concentrations of all COCs are below their respective SSTLs. This indicates that no adverse health effects will result from COCs in groundwater during commercial land use or construction worker activity.

7. CONCLUSIONS AND RECOMMENDATIONS

A site-specific, risk-based derivation of clean-up goals (i.e., SSTLs) was estimated using information from site assessment data, current and anticipated commercial land use, and toxicological data. Several conservative assumptions were used in the estimation of SSTLs. These assumptions most likely result in an over-estimation of the likelihood of the potential of adverse health effects.

The presence of COCs in groundwater do not pose a potential for adverse health effects to commercial site workers. Data presented in this report indicated that the site meets the ACHCSA's definition of a "low risk soil and groundwater case". Consequently, we request closure and no further action. Please forward all documentation to that effect to Interstate Brands Corporation.

8. LIMITATIONS

This analysis did not include the estimation of risk under a residential land use scenario. If future site use includes residential land use, then an estimation of exposure and subsequent risk under this scenario will be required. Further, if additional subsurface site assessment data becomes available, risk estimations should be re-evaluated.

This work was performed in a manner consistent with the level of care and skill ordinarily exercised by other professional consultants under similar circumstances at the same time the services are performed. No warranty, express or implied, is made. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

9. REFERENCES

American Society for Testing and Materials, 1995. Standard Guide for Risk-based Corrective Action Applied at Petroleum Release Sites, ASTM-E1739-95, Philadelphia, PA

California Environmental Protection Agency (CalEPA), 1994. Preliminary Endangerment Assessment Manual, January 1994.

EMCON, 1998. Quarterly Groundwater Monitoring Report, Third Quarter 1998 dated December 17, 1998.

Groundwater Services, Inc., 1999. RBCA Tool Kit for Chemical Releases, Groundwater Services, Inc., Houston, TX.

Lawrence Livermore National Laboratory, Environmental Protection Department, Environmental Restoration Division, 1995. Recommendations to Improve the Cleanup Process for California's Leaking Underground Fuel Tanks (LUFTs), October 16, 1995. Submitted to the California State Water Resource Control Board and the Senate Bill 1764 LUST Advisory Committee. UCRL-AR-121762.

URS Greiner Woodward Clyde, 1999. Soil and Groundwater Sampling and Semi-annual Groundwater Monitoring Report, 1st Quarter 1999. Report dated April 20, 1999.

USEPA, 1996. Technical Background Document for Soil Screening Guidance, Review Draft, EPA/540/R-94/106.

USEPA, 1989. Risk Assessment Guidance for Superfund (RAGS), Volume 1, Human Health Evaluation Manual, Part A, EPA/600/3-89/013.

IBC Oakland, CA

	Matrix	Sample							
<u>Well</u>	<u>Type</u>	<u>Date</u>	TPH Diesel	TPH Gas	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE
			<u>ug/L</u>	<u>ug/L</u>	<u>ug/L</u>	<u>ug/L</u>	<u>ug/L</u>	<u>ug/L</u>	<u>ug/L</u>
MW1	Water	3/23/99	<50	9800	58	130	810	2900	<250
MW2	Water	3/23/99	<50	<50	<0.5	<0.5	< 0.5	< 0.5	<0.5
MW3	Water	3/23/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Boring A	Water	3/9/99	<50	74	<0.5	1	<0.5	0.98	<0.5
Boring B	Water	3/9/99	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boring A	Soil	3/9/99	<1	<1	<0.005	<0.005	<0.005	<0.005	<0.005
Boring B	Soil	3/9/99	<1	<1	<0.005	<0.005	< 0.005	<0.005	<0.005

Notes:

Source: URS/Greiner Woodward Clyde Report dated April 20, 1999

Samples collected from Borings A and B at a depth of approximately 12 feet bgs.

Soil values in mg/Kg.

Table 2. Summar of Select Chemical, Physical, and Toxicological Characteristics for BTEX and MTBE

IBC Oakland, CA

							Diffu	sion
		Chemical/Physical Constants						
	Solubility	Vap. Pres.	Soil 1/2 Live	Log Koc	Henry's	BCF	Air	Water
<u>Chemical</u>	<u>(mg/L)</u>	(mm Hg)	(days)	(L/Kg)	(unitless)	(L/Kg)	<u>(cm²/s)</u>	(cm²/s)
Benzene	2.E+03	1.E+02	7.E+02	2.E+00	2.E-01	1.E+01	9.E-02	1.E-05
Toluene	5.E+02	3.E+01	3.E+01	2.E+00	3.E-01	7.E+01	9.E-02	9.E-06
Ethylbenzene	2.E+02	1.E+01	2.E+02	3.E+00	3.E-01	1.E+00	8.E-02	8.E-06
Xylene (mixed isomers)	2.E+02	7.E+00	4.E+02	2.E+00	3.E-01	1.E+00	7.E-02	9.E-06
Methyl t-Butyl ether	5.E+04	2.E+02	2.E+02	1.E+00	2.E-02	1.E+00	8.E-02	9.E-05

	Cancer Data			Non-Cancer Data			Other Data		
		Car	ncer	Unit Risk		Reference			
		Slope i	Factors	<u>Factor</u>	<u>Dose</u>	s & Concentra	<u>itions</u>		
	Carcinogen?	Oral	Dermal	Inhalation	Oral RfD	Dermal RfD	Inhal. RfC	MCL	TWA
<u>Chemical</u>	Wgt. Of Evid.	1/(mg/Kg-d) ¹	1/(mg/Kg-d) ¹	<u>1/(ug/m³) ¹</u>	(mg/Kg-d)	(mg/Kg-d)	(mg/m³)	<u>(mg/L)</u>	<u>(mg/m³)</u>
Benzene	Y, A	1.E-01	1.E-01	2.90E-05	3.E-03	-	6.E-03	1.0E+00	3.3E+00
Toluene	N, D	-	-	-	2.E-01	2.E-01	4.E-01	1.0E+00	1.5E+02
Ethylbenzene	N, D	•	-	-	1.E-01	1.E-01	1.E+00	7.0E-01	4.4E+02
Xylene (mixed isomers)	N, D	-	*	-	2.E+00	2.E+00	7.E+00	1.0E+01	4.3E+02
Methyl t-Butyl ether	N, -	-	-	-	1.E-02	8.E-03	3.E+00	1.3E+01	6.0E+01

Notes:

⁽¹⁾ California Environmental Protection Agency, Office of Environmental Health Hazard Assessment (OEHHA) Toxicity Criteria Database. www.oehha.ca.gopv/risk/ChemicalDB.

Table 3. Soil Physical Property and Site Specific Target Level (SSTL) Summary

RBCA Tier 2 Analysis IBC Oakland, CA

Clayey Silt

Sand

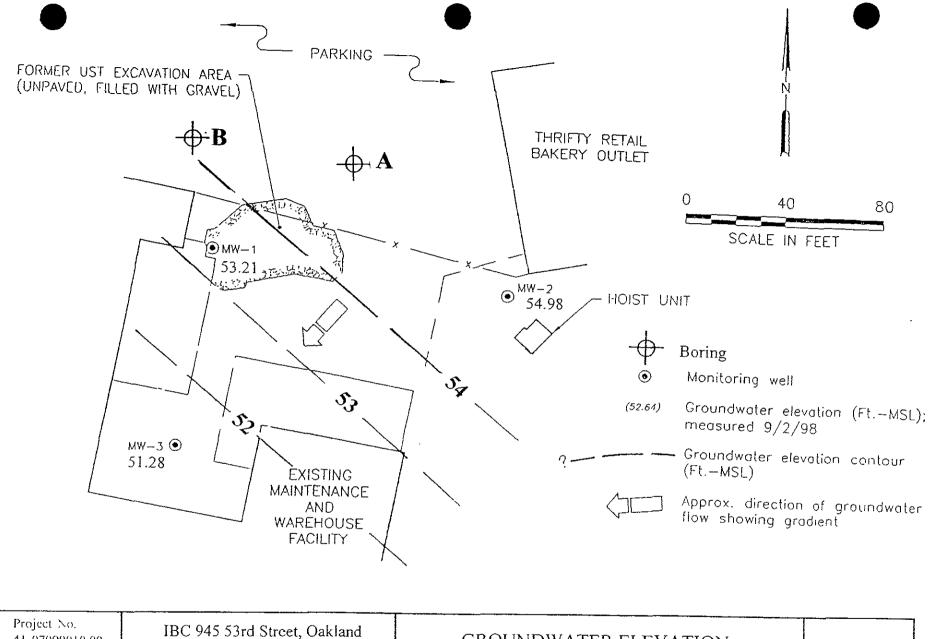
Clayey Silt Physical Properties

Physical Property	Vadose Zone	Capillary Zone
Total porosity (unitless)		0.36
Volumetric water content (unitless)	0.24	0.324
Volumetric air content (unitless)	0.12	0.036
Dry bulk density (Kg/L)		1.7
Vertical hydraulic conductivity (ft/day)	2	.8E-2
Vapor permeability (ft²)	1.	1E-14
Capillary zone thickness (ft)	8	.9E-1

Note: Values from Appendix B, Page B-7.

Clayey Silt Groundwater SSTLs (mg/L)

PATHWAY	Groundv Volatilizat Indoor	tion to Volatilization to
LOCATION (Distanc	e from	0
Sour	ce, ft.)	
LAND USE	Comme	ercial Commercial
CHEMICAL		
Benzene	8.9E-	-1 1.7E+2
Toluene	3.6E+	+2 >5.2E+2
Ethylbenzene	>1.7E	+2 >1.7E+2
Xylene (mixed isomers)	>2.0E-	+2 >2.0E+2
Methyl t-Butyl ether	7.9E+	+3 >4.8E+4

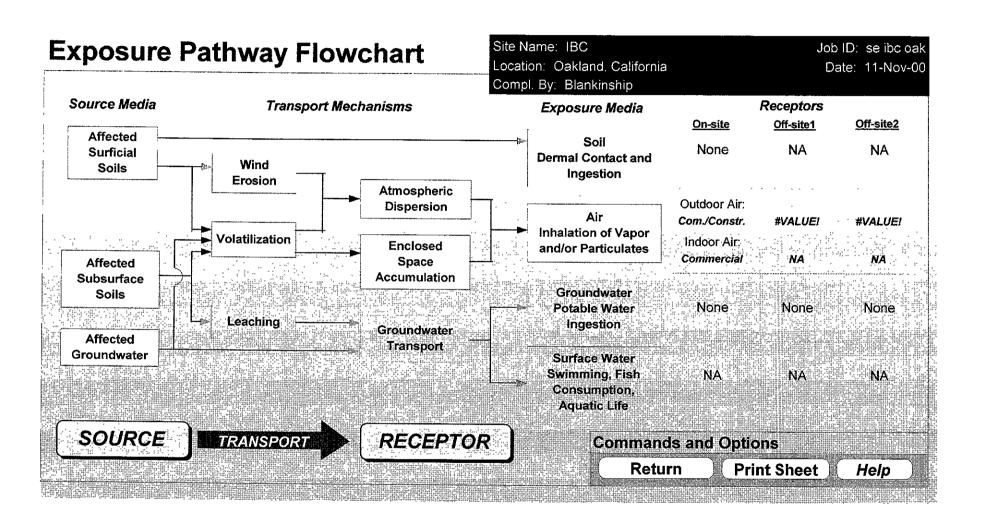

Sand Physical Properties

Physical Property	Vadose Zone	Capillary Zone
Total porosity (unitless)	().41
Volumetric water content (unitless)	0.08	0.369
Volumetric air content (unitless)	0.33	0.041
Dry bulk density (Kg/L)		1.7
Vertical hydraulic conductivity (ft/day)	2.	8E+1
Vapor permeability (ft ²)	1.1	IE-11
Capillary zone thickness (ft)	1.	6E-1

Note: Values from Appendix B, Page B-7. 0% Organic Carbon value used.

Sand Groundwater SSTLs (mg/L)

PATHWAY	Groundwater Volatilization to Indoor Air	Groundwater Volatilization to Outdoor Air
LOCATION (Distance from Source, ft.)		0
LAND USE	Commercial	Commercial
CHEMICAL		
Benzene	1.9E-1	2.2E+1
Toluene	7.8E+1	>5.2E+2
Ethylbenzene	>1.7E+2	>1.7E+2
Xylene (mixed isomers)	>2.0E+2	>2.0E+2
Methyl t-Butyl ether	3.5E+3	>4.8E+4



Project No. 41-07099010,00	IBC 945 53rd Street, Oakland California	GROUNDWATER ELEVATION	Figure
URS GREINE	R WOODWARD-CLYDE	CONTOURS	***

(Source: URS/Greiner Woodward Clyde Report dated April 20, 1999)

Figure 2. Site Conceptual Model/Exposure Pathway Flowchart

IBC Oakland, CA

APPENDIX A

Table 1 from EMCON Report dated December 17, 1998 and

Boring Logs for MW-1, MW-2, and MW-3 (Source: Woodward Clyde, May 1994)

Table 1

Groundwater Monitoring Data Interstate Brands Corporation 1010 46th Street Oakland, California

		Top of Casing	Depth to	Groundwater	TPH	117H		******		Total	Total Oil	7
		Elevation	Water	Elevation	Diesel	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	& Grease	MTBE
Well	Date	([cet)	(feet)	(feet MSL*)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(µg/L)
		(1.04		52.57	1,300	12,000	57	340	370	3,100	<5.0	NΛ
MW-1	05/26/94	61.84	9.27	52.57	7,500 AM	12,000 ΝΛ	NA.	NΛ	NA	NA	NA	NΛ
MW-I	07/29/94	61.84	9.81	52.03		6,700/8,400		71/97	310/410	1,000/1,400	<5.0/<5.0	NA
MW-1	08/26/94	61.84	9.87	51.97	510/650 [1]		22/35					I.
MW-1	10/04/94	61.84	9.89	51.95	ΝΛ	NA	NΛ	NA	NA	NA	NΛ	NA
MW-1	10/27/94	61.84	9.94	51.90	NA	NA	NΛ	NA 1.100	NA 1 000	NA C 200	NA	NA
MW-1	11/30/94	61.84	8.92	52.92	1,300	29,000	480	1,100	1,200	5,300	<5.0	ΝΛ
MW-1	01/03/95	61.84	8.79	53.05	NA	NΛ	NΛ	NA	NΛ	NA	NΛ	NA
MW-1	01/31/95	61.84	8.33	53.51	NΛ	NΛ	NΛ	NA	МА	NA	NA	NA
MW-1	03/16/95	61.84	8.07	53.77	1,900	29,000	140	1,400	1,800	9,700	<5.0	NΑ
MW-1	06/12/95	61.84	9.02	52.82	810/540 [1]	3,900/11,000	23/280	57/610	200/400	680/2,000	<5.0/<5.0	NΑ
MW-1	08/30/95	61.84	9.44	52.40	350 [1]	3,300	26	36	250	490	<5.0	NA
MW-1	11/29/95	61.84	9.93	51.91	270	1,700	20	21	110	210	<5.0	NA
MW-1	03/06/96	61.84	8.37	53.47	2,500/2,400 [1]	39,000/38,000	690/1,000	1,800/2,000	2,300/2,300	14,000/15,000	5.9	NA
MW-I	07/08/96	61.84	9.10	52.74	670/580 [1]	3,000/2,600	89/9 <i>-</i> 5	79/85	140/120	350/270	NΛ	NΑ
MW-1	04/04/97	61.84	9.14	52.70	1,400	3,500	13	27	190	410	NA	<30 [5]
MW-1	09/23/97	61.84	9.15	52.69	260	2,100	13	11	200	220	NA	<5
MW-1	03/30/98	61.84	8.73	53.11	****				or sampling			
MW-1	09/02/98	61.84	9.20	52.64	280	1,400	7	7	90	120	NA	<12
					_					20120		
MW-2	05/26/94	63.10	9.30	53.80	<50/<50	<50/<50	<05/<05	<0.5/<0.5	<05/<05	<0.5/<0.5	<5.0	NA
MW-2	07/29/94	63.10	9.70	53.40	NA	NA	NA	NA	ИV	NA	NΛ	NΛ
MW-2	08/26/94	63.10	9.89	53.21	<50	<50	<0.5	< 0.5	<0.5	<0.5	<50	NA
MW-2	10/04/94	63.10	9.86	53.24	NA	NA	NA	NA	NA	NA	NΛ	NA
MW-2	10/27/94	63.10	9.96	53.14	NA	NA	NA	АИ	NA	NA	NA	NA
MW-2	11/30/94	63.10	8.95	54.15	< 50 ′	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NΛ
MW-2	01/03/95	63.10	8.15	54.95	NΛ	NA	NA	NA	NA	NA	NA	NA
MW-2	01/31/95	63.10	6.96*	56.14	NΛ	NA	NA	NA	NA	NA	NA	NA
MW-2	03/16/95	63.10	6.37*	56.73	<50/<50	<50/<50	<0.5/<0.5	<0.5/<0.5	<0.5/<0.5	<0.5/<0.5	<5.0	NA
MW-2	06/12/95	63.10	9.07	54.03	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NA
MW-2	08/30/95	63.10	9.53	53 <i>.</i> 57	52 [3]	<50	<0.5	<0.5	<0.5	<0.5	<50	NΛ
MW-2	11/29/95	63.10	9.74	53.36	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NA
MW-2	03/06/96	63.10	7.23	55.87	68 [4]	<50	<0.5	<0.5	<0.5	<0.5	<5.0	ΝΛ
MW-2	07/08/96	63.10	8.84	54.26	<50	<50	<0.5	<0.5	<0.5	<0.5	NΛ	NA
MW-2		63 <u>.10</u>	8.70	54.40	<50	<50	<0.5	<0.5	<0.5	<0.5	N_	<3

EMCON

PER MARKET

Groundwater Monitoring Data Interstate Brands Corporation 1010 46th Street Oakland, California

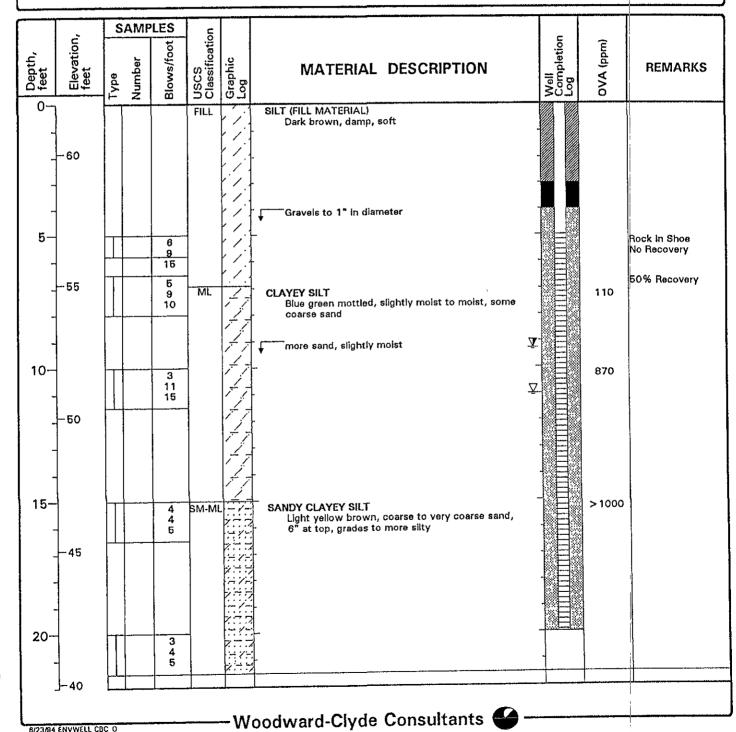
Well	Date	Top of Casing Elevation (feet)	Depth to Water (feet)	Groundwater Elevation (feet MSL*)	TPH Diesel (µg/L)	TPH Gasoline (µg/L)	Benzenc (µg/L)	Toluene (µg/L)	Ethylbenzene (ug/L)	Total Xylenes (j.ig/L)	Total Oil & Grease (mg/L)	MTBE (µg/L)
MW-2	09/23/97	63.10	9.18	53.92	<50	<50	<0.5	<0.5	<0.5	<0.5	NΛ	<5
MW-2	03/30/98	63.10	7.14	55 <i>.</i> 96	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<5
MW-2	09/02/98	63.10	9.37	53.73	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<3
MW-3	05/26/94	62.51	12.88	49.63	99	<50	<0.5	<0.5	<0.5	1.7	<50	NA
MW-3	07/29/94	62.51	13.61	48.90	NA	NA	NΛ	NA	NA	NA	NΛ	NΛ
MW-3	08/26/94	62.51	13.71	48.80	66 [2]	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NA
MW-3	10/04/94	62.51	13.74	48.77	NA	NA	NA	NA	NA	NA	NA	NA
MW-3	10/27/94	62.51	13.77	48.74	NA	NΛ	NA	NA	NA	NA	NA	NΛ
MW-3	11/30/94	62.51	11.85	50.66	78/85	100/100	<0.5/1.9	<0 <i>.</i> 5/<0 <i>.</i> 5	<0.5/1.0	2.1/4.3	<5.0	NA
MW-3	01/03/95	62.51	12.09	50.42	NA	NΛ	NA	NИ	NA	NA	NΛ	NA
MW-3	01/31/95	62 <i>.</i> 51	10.64	51.87	NA	NA	NA	NA	NA	ΝΛ	NΛ	NA
MW-3	03/16/95	62.51	10.79	51.72	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	ΝΛ
MW-3	06/12/95	62.51	12.05	50.46	120 [2]	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NΑ
MW-3	08/30/95	62.51	13.54	48.97	88/57 [3]	<50/<50	<0.5/<0.5	<0.5/<0.5	<0 <i>5</i> /<0 <i>5</i>	<0.5/<0.5	<5.0/<5.0	NΛ
MW-3	11/29/95	62.51	13.72	48.79	<50	<50	<0.5	<0.5	< 0.5	<0.5	<5.0	NΛ
MW-3	03/06/96	62.51	10.78	51.73	140 [3]	<50	<0.5	<0.5	<0.5	<0.5	<5.0	NA
MW-3	07/08/96	62.51	13.39	49.12	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-3	04/04/97	62.51	13.23	49.28	<50	<50	<0.5	<0.5	<0.5	<0.5	NΛ	<3
MW-3	09/23/97	62.51	13.35	49.16	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<5
MW-3	03/30/98	62.51	12.16	50.35	75	<50	<0.5	<0.5	<0.5	0.64	NA	<5
MW-3	09/02/98	62.51	13.19	49.32	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	<3

EMCON

45 Sec. 5

Project: CBC - Oakland

Project Location: Oakland, California


Project Number: 92CB040

6/23/84 ENVWELL CBC_O

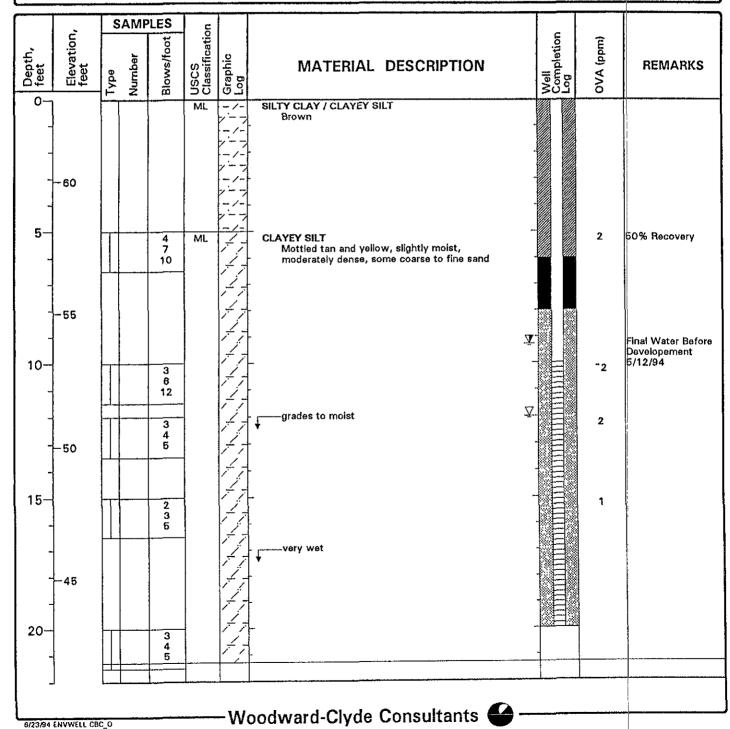
Log of Boring MW-1

Sheet 1 of 1

Date(s) 5/16/94 Drilled	Total De Drilled (f	oth et) 21.5	Top of Casing Elevation (feet)	61,84 MSL	Groundwat Level (feet)		Completion Y	24 Hours ¥ 9.27
Logged L. Autle'	Checked by		neter of 7 1/8	Diameter of Well (inches)	4	Number of Samples	Disturbed 0	Undisturbed 5
Drilling Kvilhaug Company	Drilling	Drilli Met		n Auger		Dritt Rig B-5	3	
	Split Spoon	Drill Size	Blt /Type			Type of Well Casing	4-inch PVC S	chedule 40
)20" Slot (5' - 20')			Type of Sand Page	ck #2/12 Sa	nd (4" - 20")		
	Sentonite (3'- 4')			Grout (O	<u>'- 3')</u>			
Comments Loca	ted in former tank area	next to bidg						

CBC - Oakland Project:

Project Location: Oakland, California


Project Number: 92CB040

6/23/94 ENVWELL CBC_O

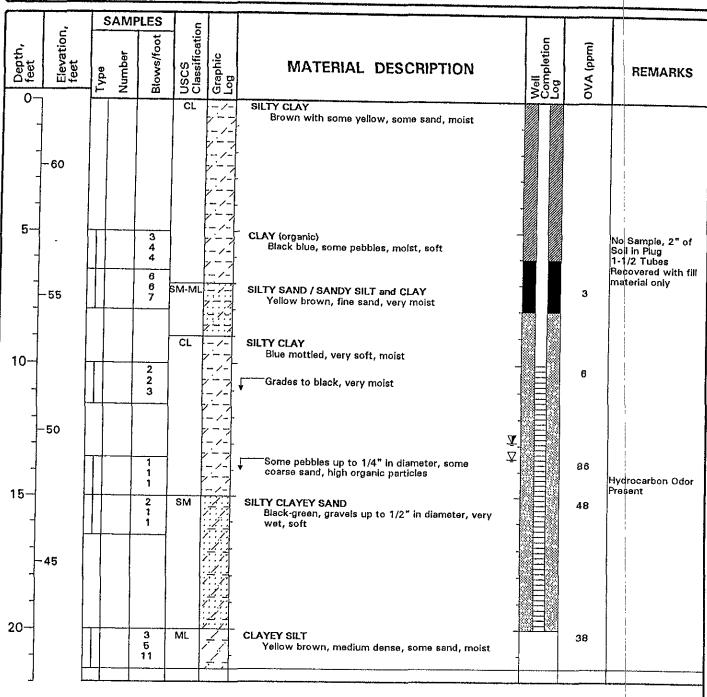
Log of Boring MW-2

Sheet 1 of 1

Date(s) 5/11/94 Drilled		Total Depth Drilled (feet)	1.5	Top of Casing Elevation (feet)	63.10 MSL	Groundwat Level (feet)		Completion	24 Hours 9.30
Logged L. Autle'	Checked by			eter of 7 1/8 (inches)	Diameter of Well (inches)	4	Number of Samples	Disturbed O	Undisturbed 6
Drilling Kvilhaug Company Kvilhaug	Drilling		Drillin Metho		n Auger		Drill Rig B-5: Type	3	
Sampler Mod. CA	Spilt Spoon		Drill B Size/I				Type of Well Casing	4-Inch PVC S	chedule 40
	020" Slot (10'	- 20')		· · · · · · · · · · · · · · · · · · ·	Type of Sand Pac	ck #2/12 Sa	ind (8' - 20')		
Type of Seals	Bentonite (6' -	8'}		,	Grout (0	' - 6')			

Project: CBC - Oakland

Project Location: Oakland, California


Project Number: 92CB040

8/23/94 ENVWELL CBC_O

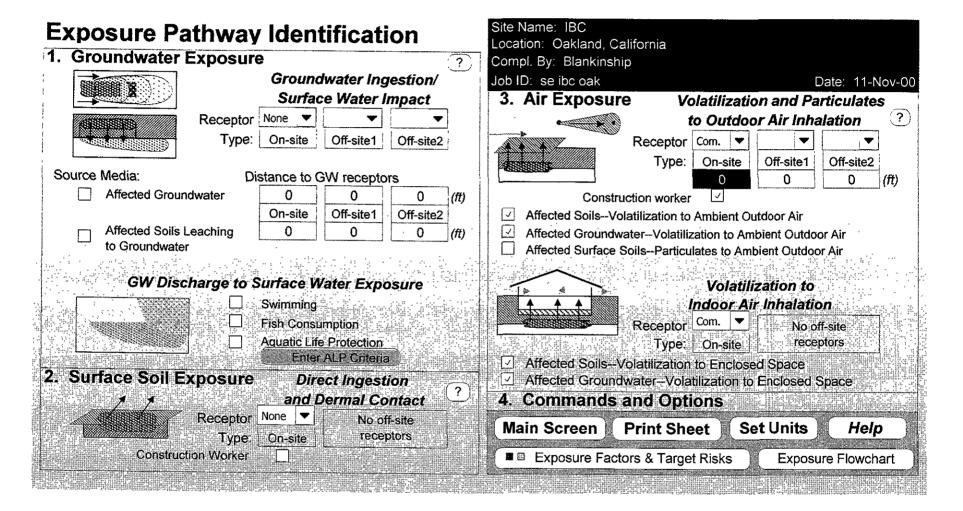
Log of Boring MW-3

Sheet 1 of 1

-Woodward-Clyde Consultants 🥌

Appendix B

Model Input Summary Sheets


- B-1. Main Screen
- **B-2.0 Source Media Constituents of Concern**
- **B-2.1 User-Specified Chemical Data**
- **B-3.** Exposure Factors and Target Risk Limits
- **B-4.** Exposure Pathway Identification
- **B-5.** Transport Modeling Options
- B-6. Site-Specific Groundwater Parameters
- **B-7.** Site-Specific Soil Parameters
- **B-8.** Site-Specific Air Parameters
- B-9. Input Data Summary

Main Screen RBCA Tool Kit for Chemical Releases Version 1.2 © 1999	4. RBCA	Evaluation P	rocess	
1. Project Information Site Name: IBC Location: Oakland, California	Prepare Data Complete? (e Input Data ■= yes, ■= no)	Review Out	tput
Compl. By: Blankinship	■□ Expo	sure Pathways	Exposure Flow	vchart
Date: 11-Nov-00 Job ID: se ibc oak 2. Which Type of RBCA Analysis?	· • ·	tern (COCs)	COC Chem. Par	ameters
° Tier 1 ° Tier 2		V	Input Data Sur	nmary
	■□ Tran	sport Models	User-Spec. COC	Data
	■□ Soi	l Parameters	Transient Domenico	Analysis
Generic Values Site-Specific Values On-Site	GW	Parameters	Baseline Ris	ks
Exposure On- or Off-Site Exposure	■□ Air	Parameters	Cleanup Stand	ards
3. Calculation Options	5. Comma	inds and Opt	ions	
Affects which input data are required Baseline Risks (Forward mode)	New Site	Load Data	Save Data As	Quit
☑ RBCA Cleanup Standards (Backward mode)	Print Sheet	Set Units	Custom Chem. Data	Help

	Job ID: se ibc oak	Command	ls and Options	
	Date: 11-Nov-00	Main Scr	een Print Sheet	Help
Constit	uents of Conce	rn (COC		Apply □ Raoult's
	Representative CO	C Concent	ration 🤨	Law 🕝
Ground	dwater Source Zone	Soi	il Source Zone	Mole Fraction
Enter Direct	y Enter Site Data	Calculate	Enter Site Data	in Source Material
(mg/L)	note	(mg/kg)	note	(-)
2.5E-1	95%UCL High Val All Wells	3.9E+0	E of Pump Island	
9.3E-2	"	7.8E+2	U	,
1.5E-1	"	6.4E+2	u u	1
3.9E-1	"	5.1E+2	11	
4.9E-2	11	1.3E+3	τt	
	a Martin gale de la compania de la c Compania de la compania de la compa			
datua.			dre ka direka kan ika ik	
4.0		ns di a di a di a di a di a di a		The Edward Walds A.
	Commencial and American Street and American		Observation of the contract of	ent a se e partir e e
	Enter Directl (mg/L) 2.5E-1 9.3E-2 1.5E-1 3.9E-1	Constituents of Conce Representative CO Groundwater Source Zone Enter Directly ■ Enter Site Data (mg/L) note 2.5E-1 95%UCL High Val All Wells 9.3E-2 " 1.5E-1 " 3.9E-1 "	Constituents of Concern (COC Representative COC Concent Groundwater Source Zone Enter Directly In Enter Site Data (mg/L) 10	Constituents of Concern (COCs) Representative COC Concentration Groundwater Source Zone Enter Directly Enter Site Data (mg/L) note 2.5E-1 95%UCL High Val All Wells 9.3E-2 1.5E-1 3.9E-1 Wall Screen Print Sneet Calculate Calculate (mg/kg) note (mg/kg) 7.8E+2 6.4E+2 5.1E+2 "

User-Specified Custom Chemical Database Toxicity Data Value Reference EPA weight of evidence Carcinogen Chemical Name Benzene Oral slope factor (1/[mg/kg/day]) CA 0.1 CAS No. Type A 71-43-2 Dermal slope factor (1/[mg/kg/day]) 0.1 CA **Physical Properties** Value Reference Inhalation unit risk factor (1/[µg/m³]) 0.00003 Molecular weight (g/mol) 78.1 • Oral reference dose (mg/kg/day) 0.003 Solubility @ 20-25°C (mg/L) 1750 PS Dermal reference dose (mg/kg/day) Vapor pressure @ 20-25°C (mmHg) 95.2 PS ~ Inhalation reference conc. (mg/m3) 0.00595 Henry's Law constant @ 20°C O (atm-m³/mol) **Dermal Exposure** 0.22888633 PS ~ unitless (-) Dermal relative adsorption factor (-) 2 0.5 D \blacksquare Ionization/dissociation constants (pH units): Dermal permeability coefficient (cm/hr) 0.021 acid pKa base pKb • Lag time for dermal exposure (hr) 0.26 Sorption coefficient (log L/kg) log Koc 1.77 PS ▾ Critical dermal exposure time (hr) 0.63 O log Kd Relative contribution of perm. coeff. (-) 0.013 Diffusion coefficient in air (cm²/s) Regulatory Standards 0.088 PS ▼ Diffusion coefficient in water (cm²/s) 0.0000098 Groundwater MCL (mg/L) 0.001 I EPA, SWRCE Miscellaneous Parameters Air PEL/TWA (mg/m³) 3.25 Analytical Detection Limits. Aquatic life prot. criterion (mg/L) Groundwater (mg/L) 0.002 Soil (mg/kg) Commands and Options 0.005 S \blacksquare First-Order Decay Half Lives (days): Close Restore Print Update Saturated 720 Unsaturated 720 ~ Help Values Sheet Database Refs. Bioconcentration Factor (-) • 12.6

Site Name: IBC **Exposure Factors and Target Risk Limits** Location: Oakland, California 1. Exposure Compl. By: Blankinship **Parameters** Residential Commercial Job ID: se ibc oak Date: 11-Nov-00 (Age 0-6) (Age 0-16) Age Adjustment? Adult Chronic Construc. 2. Risk Goal Calculation Options Averaging time, carcinogens (vr) 70 Averaging time, non-carcinogens (yr) 30 25 Individual Constituent Risk Goals Only Body weight (kg) 70 15 35 70 Individual and Cumulative Risk Goals Exposure duration (vr) 30 6 16 25 1 Exposure frequency (days/yr) 350 250 180 Dermal exposure frequency (days/yr) 350 250 3. Target Health Risk Limits Skin surface area, soil contact (cm2) 5800 2023 5800 5800 Cumulative Individual Soil dermal adherence factor (mg/cm²/day) Target Risk (Class A/B carcins.) 1.0E-5 1.0E-5 Water indestion rate (L/day) 2 Target Risk (Class C carcinogens) 1.0E-5 Soil ingestion rate (mg/day) 200 100 50 100 **Target Hazard Quotient** 1.0E+0 Swimming exposure time (hr/event) 3 Target Hazard Index 1.0E+0 Swimming event frequency (events/yr) 4. Commands and Options 12 12 Swimming water ingestion rate (L/hr) 0.05 0.5 **Return to Exposure Pathways** Skin surface area, swimming (cm²) 23000 8100 Fish consumption rate (kg/day) **Print Sheet** 0.025 Use Default Contaminated fish fraction (unitless) Values Help

Transport Modeling Options

	Location: Oakland, Californ
1. Vertical Transport, Surface Soil Column	Compl. By: Blankinship
A A A	3. Groundwater Di
Outdoor Air Volatilization Factors Surface soil volatilization model only Combination surface soil/Johnson & Ettinger models	% ; ; >
Thickness of surface soil zone 10 (ft) User-specified VF from other model Enter VF Values	No-
Indoor Air Volatilization Factors ● Johnson & Ettinger model ○ User-specified VF from other model Soil-to-Groundwater Leaching Factor	Calculate ○ Domenico equation wit ○ Domenico equation firs
ASTM Model Apply Soil Attenuation Model (SAM) Allow first-order biodecay User-specified LF from other model Enter LF Values	Modified Domenico eq electron acceptor s Enter Directly Biode
2. Lateral Air Dispersion Factor Wind	<i>Use</i>
O 3-D Gaussian dispersion model Off-site 1 Off-site 2 User-Specified ADF 1.00E+0 1.00E+0 (-)	4. Commands an Main Screen

Site Nam	ne: IBC			Job ID: se	ibc oak
Location:	Oakland, Calif	ornia		Date: 11-	Nov-00
	y: Blankinship				
3. Gro	undwater	Dilution Att	enuation	Factor	
	gen ?		25		
	<i>≯</i>		Dr.		1
	à.	,	*		
○ D		ate DAF using			(?)
		with dispersion of	Sant as a second	-	emetr.
O Dom	nenico equation	first-order decay	Enter D	ecay Rates	
O Mod	ified Domenico	equation using	Ente	Site Data	
af a made	electron accepto	r superposition	Line	JIC Dala	
Ente	er Directly Bio	degradation Capa	icity NC	(mg/L)
		or =			
	Ü	ser-Specified l	DAF Values		
\cap DAF	values from oth				
2.120	or site data	A G G & White die	Enter I	OAF Values	
			n	0	
			para are sut		
4. Co	ommands a	and Options			
		A STATE OF THE STA		11-1-	
SIVI	in Screen	Print S	neet	Help	

Site Name: IBC

Job ID: se ibc oak

Off-site 1 Off-site 2

or

0

Off-site 2

0

0

NA (ft)

(ft)

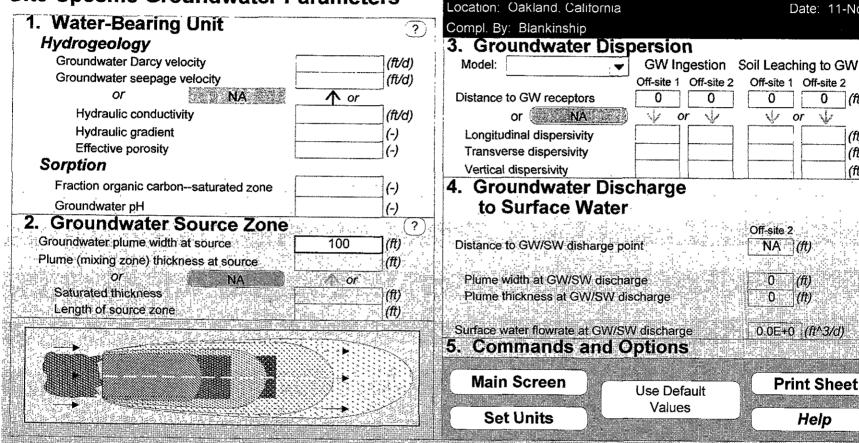
(ft)

0.0E+0 (ft^3/d)

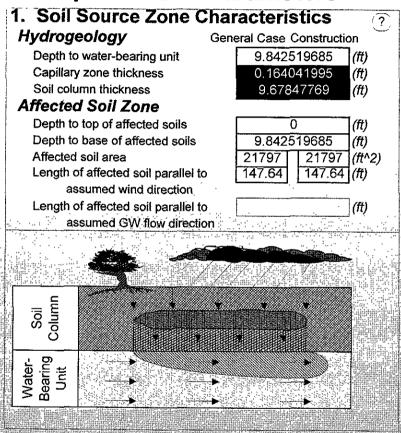
Print Sheet

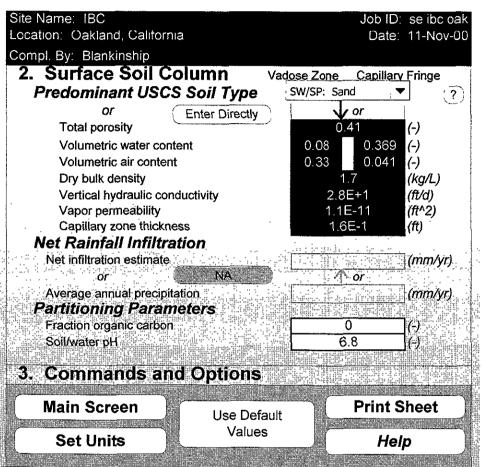
Help

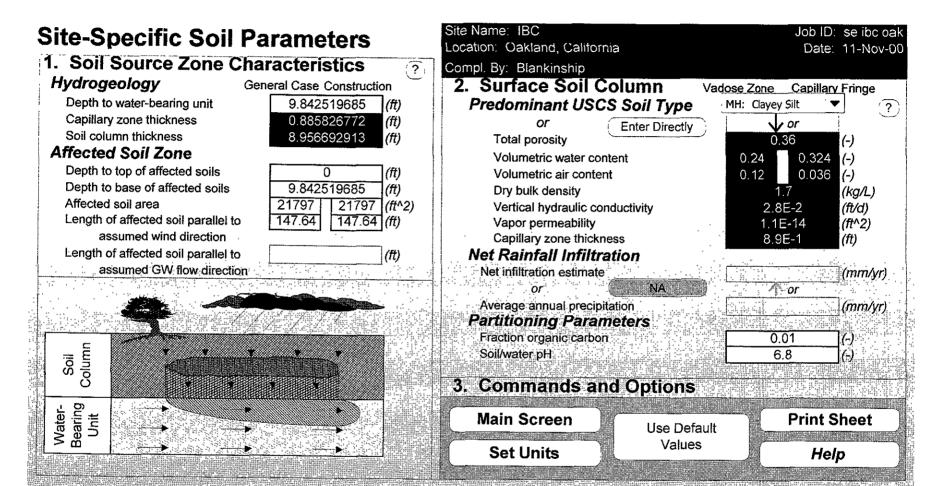
Date: 11-Nov-00

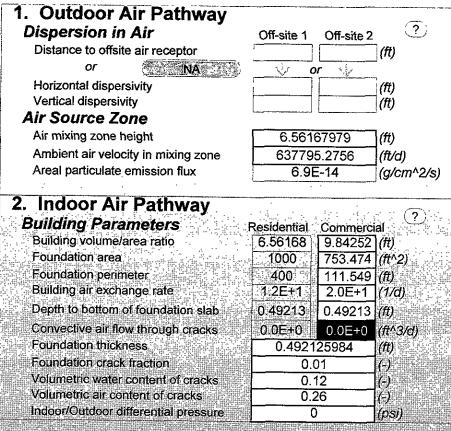

?

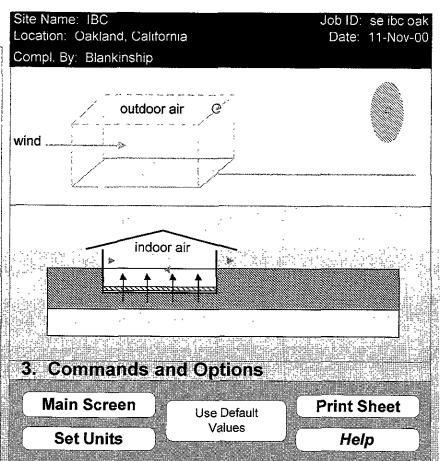
(ft)


(ft)


(ft)


Site-Specific Groundwater Parameters


Site-Specific Soil Parameters



Site-Specific Air Parameters

RBCA SITE ASSESSMENT

Input Parameter Summary

Site Name (BC Site Location Oakland, California Completed By Blankinship Date Completed: 11-Nov-00

Job ID se ibc oak

Exposu	re Parameters		Residential		Commerci	al/industrial
		Adult	(1-6yrs)	(1-16 yrs)	Chronic	Construc.
AT.	Averaging time for carcinogens (yr)	70				
AT,	Averaging time for non-carcinogens (yr)	30			25	1
8W	Body weight (kg)	70	15	35	70	•
ED	Exposure duration (yr)	30	6	16	25	1
τ	Averaging time for vapor flux (yr)	30			25	1
EF	Exposure frequency (days/yr)	350			250	180
EFo	Exposure frequency for dermal exposure	350			250	
IR.,	ingestion rate of water (L/day)	2			1	
R.	Ingestion rate of soil (mg/day)	100	200		50	100
SA	Skin surface area (dermal) (cm^2)	5800		2023	5800	5800
M	Soil to skin adherence factor	1		2-20	0000	5555
ET.	Swimming exposure time (hr/event)	3				
EV,,,,,,	Swimming event frequency (events/yr)	12	12	12		
IR _{ewm}	Water ingestion while swimming (L/hr)	0.05	0.5	:		
SAmm	Skin surface area for swimming (cm^2)	23000		8100		
IR _{feh}	Ingestion rate of fish (kg/yr)	0 025		2.00		
Flesh	Contaminated fish fraction (unitless)	1				

Complete Exposure Pathways and Receptors	On-site	Off-site 1	Off-site 2
Groundwater,			
Groundwater Ingestion	None	None	None
Soil Leaching to Groundwater Ingestion	None	None	None
Applicable Surface Water Exposure Routes:			
Swimming	i		NA.
Fish Consumption			NA.
Aquatic Life Protection			NA
Soil,	-		
Direct Ingestion and Dermal Contact	None		
Outdoor Air			
Particulates from Surface Soils	None	None	None
Volatilization from Soils	Com /Constr	#VALUE!	#VALUE!
Volatilization from Groundwater	Commercial	#VALUE!	#VALUE!
ndoor Air			
Volatilization from Subsurface Soils	Commercial	NA	NA
Volatilization from Groundwater	Commercial	NA.	NA.

Receptor Distance from Source Media	On-site	Off-site 1	Off-site 2	"(Units)
Groundwater receptor	NA NA	NA	NA	(ft)
Soil leaching to groundwater receptor	NA.	NA.	NA.	(ft)
Outdoor air inhalation receptor	0	NA	NA ,	(ft)

Target	Target Health Risk Values							
TR _{ab}	Target Risk (class A&B carcinogens)	1 QE-5	1 0E-5					
TR _c	Target Risk (class C carcinogens)	1 0E-5						
THQ	Target Hazard Quotient (non-carcinogenic risk)	1 0E+0	1 0E+0					

RBCA tier	Tier 2
Outdoor air volatilization model	Surface & subsurface models
Indoor air volatilization model	Johnson & Ettinger model
Soil leaching model	NA
Use soil attenuation model (SAM) for leachate?	NA
Air dilution factor	NA
Groundwater dilution-attenuation factor	NA

NOTE NA = Not applicable

Nov-00				1 OF	
Surfac	e Parameters	General	Construction	(Units)	
A	Source zone area	2 2E+4	2 2E+4	(ft^2)	
W	Length of source-zone area parallel to wind	1 5E+2	1.5E+2	(ft)	
W _g	Length of source-zone area parallel to GW flow	NA		(ft)	
U	Ambient air velocity in moving zone	6 4E+5		(fl/d)	
δ_{er}	Air mixing zone height	6 6E+0		(ft)	
Ρ.	Areal particulate emission rate	NA.		(a/cm^2/s)	
<u></u>	Thickness of affected surface soils	1.0E+1		(ft)	

Surfac	e Soil Column Parameters	Value			(Units)
h _{cap}	Capillary zone thickness	1 6E-1			(#)
h.	Vadose zone thickness	9 7E+0			(ft)
Pa .	Soil bulk density	1 7E+0			(g/cm^3)
foc	Fraction organic carbon	0 0E+0			(-)
θ_T	Soil total porosity	4 1E-1			Ö
K,	Vertical hydraulic conductivity	2 8E+1			(ft/d)
k,	Vapor permeability	1 1E-11			(fl^2)
Lg	Depth to groundwater	9.8E+0			(ft)
Ļ	Depth to top of affected soils	0 0E+0			(ft)
Lbeste	Depth to base of affected soils	9 8E+0			(ft)
Laubs	Thickness of affected soils	9 8E+0			(ft)
pΗ	Soil/groundwater pH	6 8E+0			(-)
		capillary	vadose	1oundation	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
θ_{w}	Volumetric water content	0 369	0.08	0 12	(-)
θ_a	Volumetric air content	0.041	0.33	0.26	6

Bulldi	ng Parameters	Residential	Commercial	(Units)
L	Building volume/area ratio	; NA	9 84E+0	(ft)
A _b	Foundation area	NA.	7 53E+2	(cm^2)
X _{crk}	Foundation perimeter) NA	1 12E+2	(ft)
ER	Building air exchange rate	NA NA	1 99E+1	(1/d)
Lcrk	Foundation thickness	NA.	4 92E-1	(ft)
Z_{crk}	Depth to bottom of foundation slab	NΑ	4 92E-1	(ft)
η	Foundation crack fraction	NA.	1 00E-2	(-)
ďΡ	Indoor/outdoor differential pressure	NA	0 00E+0	(psi)
Q_s	Convective air flow through slab	NA.	0 00E+0	(ft^3/d)

δ _{gw}	Groundwater mixing zone depth	NA.	(ft)
ŀ	Net groundwater infiltration rate	NA.	(mm/yr)
U _{gw}	Groundwater Darcy velocity	NA NA	(ft/d)
V _{Ew}	Groundwater seepage velocity	NA .	(ff/d)
K _s	Saturated hydraulic conductivity	NA	(ft/d)
	Groundwater gradient	NA.	Θ
S _w	Width of groundwater source zone	NA	(ff)
Sd	Depth of groundwater source zone	NA NA	(ft)
ne E	Effective porosity in water-bearing unit	NA.	į Θ
00-681	Fraction organic carbon in water-bearing unit	NA .	$\ddot{\Theta}$
oH _{saf}	Groundwater pH	NA .	(-)
	Biodegradation considered?	NA NA	''

Later	al Groundwater Transport	Groundwa	ter ingestion	Soil Leach	ing to GW	
α^{κ}	Longitudinal dispersivity	NA.	NA	NA.	NA	(ft)
αγ	Transverse dispersivity	NA.	NA	NA	NA	(ft)
α_z	Vertical dispersivity	NA.	NA	NA.	NA	(ft)
Latera	al Outdoor Air Transport	Soil to Outo	door Air Inhat	GW to Outdo	or Air Inhal	. ,
σ_y	Transverse dispersion coefficient	NA.	NA.	NA.	NA	(ft)
σ_z	Vertical dispersion coefficient	NA	NA	NA.	NA	(ft)
ADF	Air dispersion factor	NA.	NA	NA.	NA	(-)

Surfac	e Water Parameters	Off-site 2		(Units)
Q _{8W}	Surface water flowrate	NA NA	1	(ft^3/d)
W_{pi}	Width of GW plume at SW discharge	ļ NA	\$	(ft)
δ_{pi}	Thickness of GW plume at SW discharge	NA NA		(ft)
ΩF _{sw}	Groundwater-to-surface water dilution factor	NA NA	'	(-)

HUMAN HEALTH RISK ANALYSIS TO SUPPORT A RISK-BASED CORRECTIVE ACTION AND SITE CLOSURE

INTERNATIONAL BRANDS CORPORATION 945 53rd STREET OAKLAND, CALIFORNIA

Prepared for

INTERNATIONAL BRANDS CORPORATION

December 01, 2000

STRATUS ENVIRONMENTAL, INC.

3330 Cameron Park Drive, Suite 550 Cameron Park, California 95682

Project 2002-0945-01