

Engineering & sciences applied to the earth & its environment

September 24, 1996 92CB040

Ms. Susan Hugo Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Subject: Interstate Brands Company, 1010 46th Street, Oakland, CA
Ouarterly Groundwater Monitoring Report

Dear Ms. Hugo:

Woodward-Clyde Consultants (WCC) has prepared this letter report discussing the July 1996 quarterly groundwater monitoring results for the Interstate Brands Company (IBC) Site at 1010 46th Street, Oakland, California shown on Figure 1. This site is a former Continental Baking Company (CBC) facility. WCC is providing environmental consulting services to IBC and is submitting this report on their behalf.

FIELD ACTIVITIES

Groundwater samples were collected from monitoring wells MW-1, MW-2, and MW-3, shown on Figure 2, on July 6, 1996 by WCC personnel. The sampling procedures involved the following:

- calculation of the wetted casing volume;
- purging by the removal of greater than four casing volumes;
- periodic measurement of various water quality parameters;
- water levels were measured with an electronic water level sounder and recorded to the nearest 0.01 foot; and
- groundwater samples were collected with a clean disposable bailer and poured into appropriate sample containers provided by the analytical laboratory. Sample containers were sealed, labeled, and placed in a chilled cooler containing ice for transportation to the analytical laboratory under chain-of-custody control.

In addition to the groundwater samples collected from the four monitoring wells, one duplicate sample was collected from well MW-1 and labeled MW-4. Copies of the laboratory data sheets, the chain-of-custody form, and the field water sample logs are attached.

Ms. Susan Hugo Alameda County Health Care Services Agency September 24, 1996 Page 2

RESULTS

Groundwater Elevation

Table 1 summarizes the current and previous groundwater elevation measurements in the monitoring wells. Groundwater elevations vary in the four monitoring wells from 49.12 feet above mean sea level (MSL) to 52.74 feet above MSL.

Analytical Results

Samples from the monitoring wells were submitted for analysis to Inchcape Testing Services Anametrix Laboratories, San Jose, California for Total Petroleum Hydrocarbons (TPH) quantified as diesel (TPHd, modified EPA Method 8015) and gasoline (TPHg); and benzene, toluene, ethylbenzene and total xylenes (BTEX, EPA Method 8020).

A quality assurance/quality control review of the analytical data was performed by a WCC chemist. The results of the review indicated that the data are of acceptable quality.

The reported results from the July 1996 sampling, summarized in Table 2, are as follows:

- TPHg was detected in MW-1 only at a concentration of 3,000 μg/L;
- TPHd was detected in MW-1 only at a concentration of 670 μg/L; and
- BTEX was detected in MW-1 only at concentrations ranging from 89 ug/L benzene to 350 ug/L xylenes.

Groundwater samples from monitoring wells MW-1 and MW-3 were analyzed for Total Dissolved Solids (TDS) by EPA Method 160.1. TDS concentrations were reported to be 271 mg/L and 596 mg/L in MW-1 and MW-3, respectively, as shown on Table 3. These results compare with California Secondary Drinking Water Standards of 500, 1000, and 1500 mg/L (recommended, upper, and short-term limits, respectively).

Nutrient Results

The following nutrients were analyzed to preliminarily evaluate potential nutrient limitations in the contaminated area: Nitrate and Nitrite, both as Nitrogen (EPA Method 300.0); Ammonia

X:\CXHUNTE0\92CB040.002 9924/96 4:46 PM

Ms. Susan Hugo Alameda County Health Care Services Agency September 24, 1996 Page 3

(EPA Method 350.3); total Phosphorus (EPA Method 365.3); and Total Kjeldahl Nitrogen (TKN, EPA Method 351.3). Nitrogen and phosphorus are two major elements that are required by microorganisms to perform enzymatic reactions. If these essential elements are present in limiting concentrations, then the indigenous microbial population may not be able to effectively degrade organic contaminants.

Table 3 presents the nutrient results for monitoring wells MW-1 and MW-3. Groundwater samples from monitoring wells MW-1 and MW-3 contained TKN at <0.24 mg/L and 1.2 mg/L; ammonia at <0.10 mg/L and 0.98 mg/L; nitrate at 2.5 mg/L and <0.02 mg/L; and phosphorus at 13.2 mg/L and 17.5 mg/L, respectively.

Biological Results

Heterotrophic (organisms that utilize organic carbon for biosynthesis) and petroleum hydrocarbon-degrading indigenous microorganisms were analyzed to evaluate whether a potential exists for the biodegradation of petroleum compounds by insitu microorganisms. Groundwater samples from monitoring wells MW-1 and MW-3 were submitted to BBC Laboratories, Inc., Tempe, Arizona for analysis for Heterotrophic Plate Count (SM 9215C) and Petroleum Hydrocarbon Degrading Bacteria.

A common microbiological procedure used to enumerate microbial populations is the spread plate technique. With this procedure, microorganisms utilizing a specific substrate are aseptically spread onto a solid agar plate containing the substrate of choice. Based on the volumes used in the extraction and spreading steps, the original density of microorganisms selectively utilizing the chosen substrate can be calculated. This technique is based on the concept that organisms can be uniformly diluted and spread onto agar plates resulting in the development of distinct microbial colonies. The numbers of organisms are expressed in terms of colony forming units (CFU) per milliliter of water.

Groundwater samples were diluted 1:10 (weight/volume) in sterile phosphate buffered saline. This dilution was mixed by vigorous shaking. The sample was further diluted in a 10-fold dilution series and plated on the appropriate medium using a spread plating technique. The heterotrophs were enumerated on Tryptic Soy Agar (Difco) while the petroleum hydrocarbon degraders were enumerated on freshly prepared non-carbon containing minimal medium amended with gasoline and diesel fuel (equal volumes) at a final concentration of 2,500 mg/L. Each sample was plated at

X:\CXHUNTE0\92CB040.002 9/24/96 4:07 PM

Ms. Susan Hugo Alameda County Health Care Services Agency September 24, 1996 Page 4

dilutions 10⁻⁴, 10⁻⁵, and 10⁻⁶ on each medium. The plates were incubated at 28°C for a minimum of seven days prior to counting colonies.

Table 4 shows microbial enumeration results for indigenous heterotrophic and petroleum hydrocarbon degrading microorganisms. All results are reported in colony forming units per milliliter (CFU/ml) of groundwater. These results indicate that the groundwater from MW-1 contains a typical level of aerobic heterotrophs in groundwater, which on the average ranges from 10,000 CFU/ml to 100,000 CFU/ml (Hazen et al. 1991; Balkwill and Ghiorse, 1985; Ghiorse and Balkwill, 1983). However, the aerobic heterotrophic microbial population in MW-3 was an order of magnitude lower than MW-1. This may be due to a greater nutrient limitation near MW-3 or lower dissolved oxygen or other appropriate electron acceptor concentration in the groundwater and/or soil in this area.

CONCLUSIONS

The reported chemical analytical results and groundwater elevations are generally consistent with historical results prior to the last round of sampling in March 1996. The March results were higher possibly due to elevated groundwater levels not observed during this round of sampling. The groundwater flow direction is approximately southeast.

The TDS results, which are similar to the Secondary Drinking Water Standards, suggest that groundwater beneath the site could be utilized for drinking based on this parameter.

The nutrient results indicate that, if TKN and ammonia are the major sources of nitrogen for the indigenous microbial populations, then nitrogen may be present in concentrations which would limit microbial enzymatic reactions. This may significantly reduce the microbial population's ability to degrade organic contaminants. Because TOC data are not available for this site, the nutrient requirements are based on the petroleum hydrocarbon concentrations. If the TOC is several orders of magnitude higher than the petroleum hydrocarbon contamination and this organic carbon is biodegradable, nitrogen may be limiting at the site. Phosphorus does not appear to be present in a concentration that would limit microbial enzymatic reactions.

One interpretation of the microbial enumeration results involves examining the ratio of petroleum hydrocarbon degrading microorganisms to the aerobic heterotrophic population, as shown in Table

X:\CXHUNTE0\92CB040.002 9/24/96 4:07 PM

Ms. Susan Hugo Alameda County Health Care Services Agency September 24, 1996 Page 5

4. A high ratio of petroleum hydrocarbon degrading microorganisms to heterotrophs is a positive indicator of potential biodegradation of petroleum compounds. A ratio of 0.10 or higher indicates that a representative fraction of microorganisms are adapted to contaminants. The ratio cannot be calculated for MW-3 because the petroleum hydrocarbon degrading bacteria enumeration was less than 1,000 CFU/ml. The ratio calculated for MW-1 was approximately 0.06. This low ratio does not exclude the possibility of successful bioremediation; however, it may indicate that a longer time period is required for contaminant bioremediation. The longer time period could be indicative of a low rate of microbial contaminant conversion.

The following discussion briefly summarizes the results of this round of monitoring:

- Contamination concentrations and groundwater elevations have returned to historical levels following the high levels recorded last Spring;
- The groundwater could be considered a drinking water resource based on TDS concentrations; and
- There may be insufficient nitrogen, dissolved oxygen, and/or ratio of degrading organisms
 to heterotrophs for successful biodegradation of petroleum compounds. However, with
 augmentation of nutrient concentrations, bioremediation may be successful over a longer
 time period.

REFERENCES

- Balkwell, D.L. and W.C. Ghiorse. 1985. "Characterization of subsurface bacteria associated with two shallow aguifers in Oklahoma." <u>Appl. and Environm. Microbiol.</u> 50:580-588.
- Ghiorse, W.C. and D.L. Balkwill. 1983. Enumeration and morphological characterization of bacteria indigenous to subsurface environments, pp. 213-224. In *Developments in Industrial Microbiology*, Vol. 24: *Proceedings of the Thirty-Ninth General Meeting of the Society for Industrial Microbiology*. Society for Industrial Microbiology, Arlington, VA.
- Hazen, T.C., L. Jimenez, G. Lopez de Victoria and C.B. Fliermans. 1991. "Comparison of bacteria from deep subsurface sediment and adjacent ground water." <u>Microbial Ecology 22</u>:293-304.

X:\CXHUNTE0\92C8040,002 9/24/96 4:07 PM

Ms. Susan Hugo Alameda County Health Care Services Agency September 24, 1996 Page 6

WCC proposes that the monitoring wells at this site be sampled on a semi-annual basis because of the relative consistency of results recorded for the last 14 quarters (3 1/2 years). We will plan to sample these wells again in January 1997 unless required and informed by Alameda County Health Care Services Agency, Department of Environmental Health to continue quarterly sampling. If you have any questions, please feel free to call.

Jay Kamine

(916) 368-0988

Senior Project Engineer

Sincerely,

Bill Copeland

Assistant Project Geologist

(510) 874-3192

Attachments

cc: Larry Brown, IBC-Sacramento, CA Travis Bryant, IBC-Kansas City, MO

Jim Hummert, WCC-SL

X:\CXHUNTE0\92CB040.002

9/24/96 4:07 PM

TABLE 1 SUMMARY OF GROUNDWATER ELEVATIONS INTERSTATE BRANDS CORPORATION, OAKLAND, CA

Well		Top of Casing Elevation	Depth to Water	Water Surface Elevation
Identification	Date_	(feet above MSL)	(feet below top of casing)	(feet above MSL)
MW1	5/26/94	61.84	9.27	52.57
	7/29/94	61.84	9.81	52.03
	8/26/94	61.84	9.87	51.97
	10/4/94	61.84	9.89	51.95
	10/27/94	61.84	9.94	51.90
	11/30/94	61.84	8.92	52.92
	1/3/95	61.84	8.79	53.05
	1/31/95	61.84	8.33	53.51
	3/16/95	61.84	8.07	53.77
	6/25/95	61.84	9.02	52.82
	8/30/95	61.84	9.44	52.40
	11/29/95	61.84	9.93	51.91
	3/6/96	61.84	8.37	53.47
	7/8/96	61.84	9.10	52.74
MW-2	5/26/94	53.10	9.30	53.80
	7/29/94	63.10	9.70	53.40
	8/26/94	63.10	9.89	53.21
	10/4/94	63,10	9.86	53.24
	10/27/94	63.10	9.96	53.14
	11/30/94	63.10	8,95	54.15
	1/3/95	63.10	8.15	54.95
	1/31/95	63.10	6.96*	56.14
	3/16/95	63.10	6.37*	56.73
	6/12/95	63.10	9.07	54.03
	8/30/95	63,10	9.53	53.57
	11/29/95	63.10	9.74	53.36
	3/6/96	63.10	7.23	55.87
	7/8/96	63.10	8.84	54.26
MW-3	5/26/94	62.51	12.88	49.63
	7/29/94	62.51	13.61	48.90
	8/26/94	62,51	13.71	48.80
	10/4/94	62.51	13.74	48.77
	10/27/94	62.51	13.77	48.74
	11/30/94	62.51	11.85	50.66
	1/3/95	62.51	12.09	50.42
	1/31/95	62,51	10.64	51.87
	3/16/95	62.51	10.79	51.72
	6/12/95	62.51	12.05	50.46
	8/30/95	62,51	13.54	48.97
	11/29/95	62.51	13.72	48.79
	3/6/96	62,51	10.78	51.73
	7/8/96	62.51	13.39	49.12

^{*} Noted to be under pressure when opened.

X.\CXHUNTE0\92CB040 003 9/24/96 4.12 PM

TABLE 2 SUMMARY OF ANALYTICAL RESULTS INTERSTATE BRANDS CORPORATION, OAKLAND, CALIFORNIA

Parameters		TPH diesel	TPH gasoline			Lbh rlex		· !
			_	benzene	toluene	ethylbenzene	total xylenes	total oil & grease
EPA Method		8015	8015		80	20		5520 BF
Units		(μg/L)	(µg/L)		(µд	/L)		(mg/L)
Well Number	Date						-	
MW-1	5/26/94	1300	12000	57	340	370	3100	<5.0
	8/26/94	510 ¹ /650 ¹	6700/8400	22/35	71/97	310/410	1000/1400	<5.0/<5.0
	11/30/94	1300	29000	480	1100	1200	5300	<5.0
	3/16/95	1900	29000	140	1400	1800	9700	<5.0
	6/12/95	810 ¹ /540 ¹	3900/11000	23/280	57/610	200/400	680/2000	<5.0/<5.
	8/30/95	350 ¹	3300	26	36	250	490	<5.0
	11/29/95	270	1700	20	21	110	210	<5.0
	3/6/96	2500/2400 ^t	39000/38000	690/1000	1800/2000	2300/2300	14000/15000	5.9
	7/8/95 670/580 ⁴ 3000/2600		89/9.5	79/85	140/120	350/270	NA	
MW-2	MW-2 5/26/94 <50/ <50 <50/ <50 8/26/94 <50 <50	0,50/<0,50	0.50/<0.50	0.50/<0.50	0.50/<0.50	<5.0		
	8/26/94	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0
	11/30/94	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	3/16/95	<50/<50	<50/<50	<0.50/<0.50	<0.50/<0.50	<0.50/<0.50	<0.50/<0.50	<5.0
	6/12/95	<50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	8/30/95	52 ³	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	11/29/95	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	3/6/96	68 ⁴	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	7/8/96	1300 12000 57 510 ¹ /650 ¹ 6700/8400 22/35 4 1300 29000 480 1900 29000 140 810 ¹ /540 ¹ 3900/11000 23/28 350 ¹ 3300 26 5 270 1700 20 2500/2400 ¹ 39000/38000 690/100 670/580 ¹ 3000/2600 89/9.3 5 50 <50 <50 <0.50 4 <50 <50 <50 <0.50 5 52 ³ <50 <0.50 5 52 ³ <50 <0.50 5 52 ³ <50 <0.50 68 ⁴ <50 <0.50 68 ⁴ <50 <0.50 68 ⁴ <50 <0.50 68 ⁴ <50 <0.50 68 ⁵ <50 <0.50 68 ⁶ <50 <0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	
MW-3	5/26/94	99	< 50	57 340 22/35 71/9 480 1100 140 1400 23/280 57/60 26 36 20 21 690/1000 1800/2 89/9.5 79/8 0.50/<0.50 0.50/< <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.50 <0.5 <0.5 <0.50 <0.5 <0.5 <0.50 <0.5 <0.5 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	< 0.50	< 0.50	1.7	<5.0
	8/26/94	66 ²	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	11/30/94	78/85	100/100	<0.50/1.9	<0.50/0.50	< 0.50/1.0	2.1/4.3	<5.0
	3/16/95	<50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	6/12/95	120 ²	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	8/30/95	88 ³ /57 ³	<50/<50	<0.50/<0.50	<0.50/<0.50	<0.50/<0.50	<0.50/<0.50	<5.0/<5
	11/29/95	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	3/6/96	140 ³	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	7/8/96	< 50	<50	< 0.50	< 0.50	< 0.50	<0.50	NA

Results of duplicate sample analyses are shown by a dash ("/")

(1) Primarily due to lighter petroleum product of hydrocarbon range C6-C12, possibly gasoline.

(2) Primarily due to heavier petroleum product of hydrocarbon range C18-C36.

(3) Due to a combination of diesel and a discrete peak not indicative of diesel fuel.

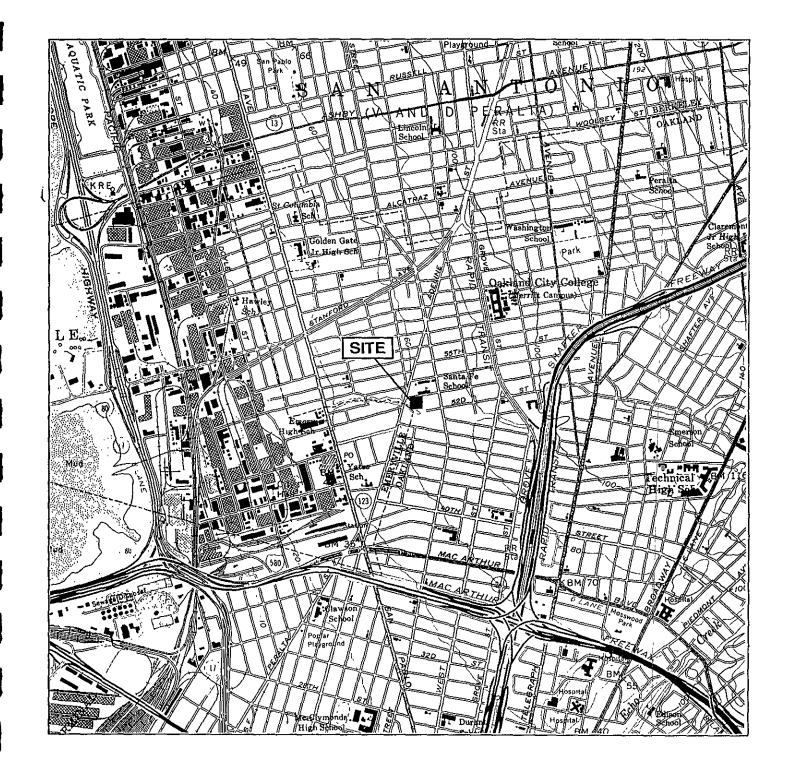
(4) Due to the presence of discrete peaks not indicative of diesel fuel.

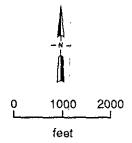
TABLE 3

SUMMARY OF ADDITIONAL ANALYTICAL RESULTS
INTERSTATE BRANDS CORPORATION, OAKLAND, CALIFORNIA

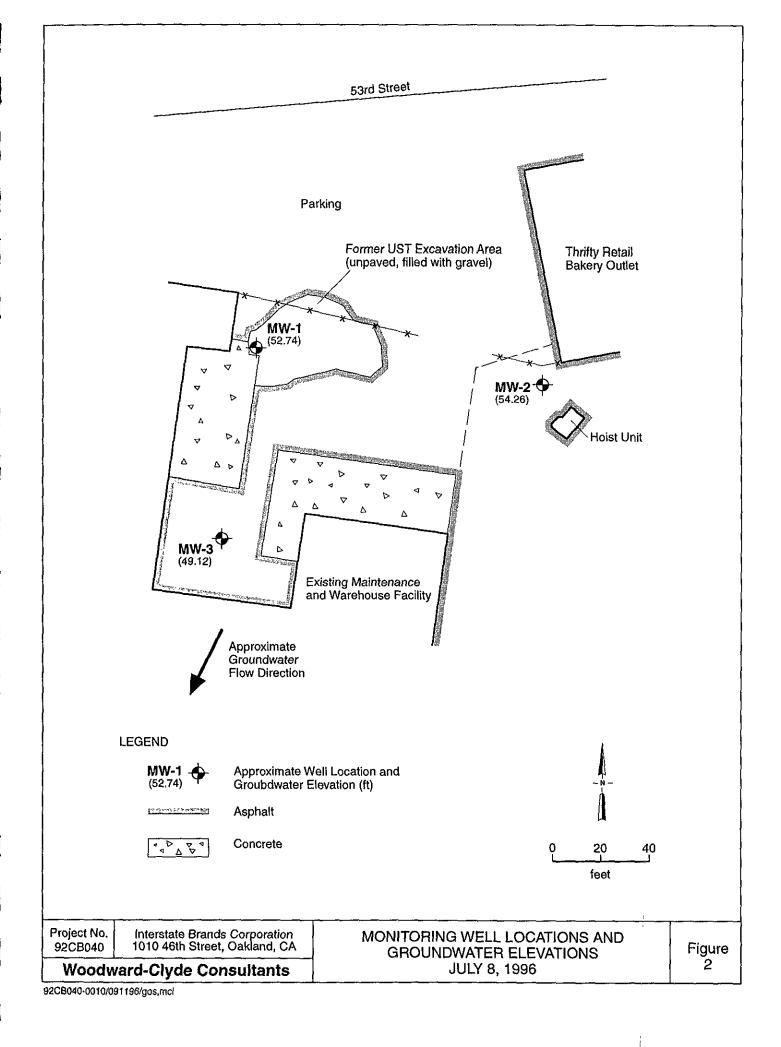
Parameters EPA Method Units		Total Dissolved Solids 160.1 (mg/L)	Nitrite 300.0 (mg/L)	Nitrate 300.0 (mg/L)	Ammonia 350,3 (mg/L)	Phosphorus 365.3 (mg/L)	Total Kjeldahl Nitrogen (TKN) 351.3 (mg/L)
Well Number	Date	_					
MW-I	7/6/95	271	< 0.03	2.5	< 0.10	13.2	< 0.24
MW-3	7/6/96	596	< 0.03	< 0.02	0.98	17.5	1.2

^{*} Petroleum Hydrocarbon Degrading Bacteria - Journal of Industrial Microbiology, 1992, 10:13-23 (modified), determined using gasoline and diesel as the sole carbon sources.


X:\CXHUNTE0\92CB040.005 9/2A/96 4:19 PM


TABLE 4

MICROBIAL ENUMERATIONS AND RATIO OF PETROLEUM HYDROCARBON DEGRADING BACTERIA TO AEROBIC HETEROTROPHS INTERSTATE BRANDS CORPORATION, OAKLAND, CALIFORNIA


Well Number	Date	Aerobic Heterotrophic (Colony Forming Units per milliliter (CFU/ml))	Petroleum Hydrocarbon Degrading Bacteria (PHDB)	Ratio of PHDB to Aerobic Heterotrophs
MW-1	7/6/96	18,000	1,000	0.06
MW-3	7/6/96	1,200	< 1,000	 1

X:\CXHUNTE0\92CB040,005 9/2A/96 4:19 PM

Project No. 92CB040	Interstate Brands Corporation 1010 46th St., Oakland, CA	SITE LOCATION	Figure
Woodw	ard-Clyde Consultants		1

Sample No.	W/	TER S	SAMPI	E LOG	S	ampl	e No.	MH-Z	
	Project No.: _ Project Name: Sample Lecal	IBC	<u>- Oa</u>	kland			7/	8/96	
	Wester Cond Charrestons		PVC	w//	o e F	- J		ρ	
	L	Assuran	CE Wellto	ing Alethed:		200	•	elinst soun	dev
	Pump Lines: Method of cle pH Meter No.: Specific Cond	toing Pump /	Baller:	177	VA	C.	ibrated a	4.00/7.00 red-Unch	
	Comments:	19.53						8 g	-
	Sampli Measur	ng rements		Level (helow MP) ering Point (MP): Specific		90	eI_ 	Casing	
	17:69 17:13	7 7	.27 Z0.	\$ 50 0	£ 864	11	ft.	dry@17	
]7:29] 7:48	216 296	9720. 1220.		it ie	₽¢.	i/	dry@23.5	-
				1				4+	
	Manber and	i also of annyl	Aurged water:	55g	10,	dr	### ###	Tedalkin	8)
	Columned b		HAR	•	Wood	ward	Clyd	le Consultants Datemat, CA 94807-4814 F-3800	
•								_	

- ·-- --

عديونغيث والشياروها ووالوأ الراب

Sample No.		W	ATER	SAN	IPLE	LOG			io.MN	t	
	P	reject Ne. :	7	2 613	204	0		<u> 7</u>	/8/9	5	
	F	ungila Local	ion:	W-)_kla	<u> </u>			[
		Nil Descipi			VC_	<u>w/</u>	cki	900	enge co	p	
		Courtiens		-							
				= 7).'sae	selle	baile		
		Quality	Assura	ance	Method k	Mangora Wale	r torri : 🧲	200 5	ou mal		
		hump Lines; Authori of cir			Clesned		1/4	New] Clemed		
		Al Libet er Na.	<u></u>	023	09	77	£	Callbrid	4.00/	7.00	
		Specific Cond Specific Cond	lectures 140 1 <u>9.44</u>	ler No.; _ _/3,	37 = 0	3749 .05 x.	\$ 3=	Calbu 4x4 =	m red-1 16 galla	·nel	
								2 39	- /3	39	
		Sampling Warn Lovel (below 147) at Measurements Measurements						Top of Casing			
	5	Пен	()incharge ignitions)	př1	Temp.	Specific Conductance	Turbicity	Color Od	or Comm	onts	
		7:02	-	703	Zo	(DOU	MOD.	SAN AL	0		
		7:05	7	693	/18 199	900	12	11 (dry@		
		7:19	(2.5	4.91	19.8	900	tr .	11 4	dey &		
		7:35	16	6.[7	19.6	900	11	1; 1,			
	50										
	STATE			16.	5 0.	llows	Make		4+	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Teled Discha	ingonal of d	Kachupad	window:	·	1-4	5 m 10	A (88C)	<u>) </u>	
		Huntur and	Mar of the	f in l		€183.	·Fu/	X	krêger -		
		Collected by			100		W000	hward-Cly	yde Consu 10, Outlind, CA 840 800-3008	Itants 67-4614	
		Collected by	Y:		· 		<u> </u>	<i>(113)</i>	901-3008	i	
•	1										

1961 Concourse Drive Suite E San Jose, CA 95131 Tel: 408-432-8192 Fax: 408-432-8198

August 1, 1996

Mr. Bill Copeland Woodward-Clyde Consultants 500 12th St. #100 Oakland, CA 94607

Dear Mr. Copeland,

Enclosed are the analytical results for your Project ID: 92CB040 we received on July 09, 1996. The enclosed work was performed by a laboratory subcontracted by I.T.S - Environmental Laboratories.

I.T.S. Env. ID:	Client ID:
9607066-03	MW-3
9607066-04	MW-1

If you have any questions regarding this workorder, please give me a call at (408) 432-8192.

Sincerely,

I.T.S. - ENVIRONMENTAL LABORATORIES

Rich Phaler

Project Manager

1089 E. Collins Blvd. Richardson, TX 75081 Tel. 214-238-5591 Fax. 214-238-5592

ANALYTICAL REPORT

DATE RECEIVED : 10-JUL-1996

REPORT NUMBER : D96-7468

REPORT DATE : 26-JUL-1996

SAMPLE SUBMITTED BY : ITS/San Jose

ADDRESS: 1961 Concourse Drive, Ste. E

: San Jose, CA 95131

ATTENTION : Mr. Richard Phaler PROJECT : 9607066 92CB040

Included in this data package are the analytical results for the sample group which you have submitted to Inchcape Testing Services for analysis. These results are representative of the samples as received by the laboratory.

The information contained herein has undergone extensive review and is deemed accurate and complete. Sample analysis and quality control were performed in accordance with all applicable protocols. Any deviations from these protocols or observations of interest are detailed in an accompanying Case Narrative. Please refrain from reproducing this report except in its entirety.

If you have any questions regarding this report and its associated materials please call your Project Manager at (214) 238-5591.

We appreciate the opportunity to serve you and look forward to providing continued service in the future.

Martin Jeffus General Manager

DATE RECEIVED : 10-JUL-1996

REPORT NUMBER: D96-7468-1 REPORT DATE: 26-JUL-1996

SAMPLE SUBMITTED BY: ITS/San Jose
ADDRESS: 1961 Concourse Drive, Ste. E
: San Jose, CA 95131
ATTENTION: Mr. Richard Phaler

SAMPLE MATRIX : Liquid ID MARKS : Sample #3

PROJECT: 9607066 92CB040

DATE SAMPLED: 8-JUL-1996

MISCELLANEOUS ANALYSES			
TEST REQUESTED		DETECTION LIMIT	RESULTS
Total Phosphorus	/1	0.25 mg/L	17.5 mg/L

Dilution Factor: 25

Analyzed using EPA 365.3 on 15-JUL-1996 by BAF

QC Batch No : 669045

DATE RECEIVED : 10-JUL-1996

REPORT NUMBER : D96-7468-2

REPORT DATE : 26-JUL-1996

SAMPLE SUBMITTED BY : ITS/San Jose

ADDRESS : 1961 Concourse Drive, Ste. E

: San Jose, CA 95131

ATTENTION: Mr. Richard Phaler

SAMPLE MATRIX : Liquid

ID MARKS : Sample #4

PROJECT : 9607066 92CB040

DATE SAMPLED: 8-JUL-1996

TEST REQUESTED		DETECTION LIMIT	RESULTS
		DETECTION STILL	1120010
Total Phosphorus	/1	0.25 mg/L	13.2 mg/L

Analyzed using EPA 365.3 on 15-JUL-1996 by BAF

QC Batch No : 669045

REPORT DATE : 26-JUL-1996 REPORT NUMBER : D96-7468

SAMPLE SUBMITTED BY : ITS/San Jose

ATTENTION: Mr. Richard Phaler PROJECT: 9607066 92CB040

LABORATORY QUALITY CONTROL REPORT

ANALYTE	Total Phosphorus
BATCH NO.	669045
LCS LOT NO.	9962
PREP METHOD	
PREPARED BY	
ANALYSIS METHOD	EPA 365.3
ANALYZED BY	BAF
UNITS	mg/L
METHOD BLANK	< 0.01
SPIKE LEVEL	4.00
MS RESULT	В
MS RECOVERY %	В
MSD RESULT	В
MSD RECOVERY %	В
MS/MSD RPD %	8
BS RESULT	NA
BS RECOVERY %	NA
BSD RESULT	NA
BSD RECOVERY %	NA
BS/BSD RPD %	NA
DUPLICATE RPD %	8.16
LCS LEVEL	6.26
LCS RESULT	6.93
LCS RECOVERY %	111
SPIKE SAMPLE ID	7635-1
DUP SAMPLE ID	7635-1

Not applicable due to matrix interference in the QC sample. Not applicable

NA

Inchcape Testing Services Anametrix Laboratories

San Jose, CA 95131 (408) 432-8192 • Fax (408) 432-8198

CHAIN-OF-CUSTODY RECORD

PROJECT NUMBER		PROJECT NA	WE					Typ	pe of	Analy	sis					-		
940701	06	9														_	Bandlalan	
Send Report Att		•	ı	sport Du	1	Manber	Туре	4	Į.	F							Condition	Initial
MR. RIJH	PHALER		7	1191	96 1	of	of	365.2		13	1"		# B	V E	Ø		of	1015191
Sample Humber	Sate	Time	Comp	Matrix	Station Location	on Cotors	Containers	20									Samples	
3	म 8196	2020		WATER	MW-3	(500 mi-	X		<u> </u>		_ _	_	 			7468-	
4		2040		1	MW-I	1	-	J									2	
								İ					İ					
										- -	Ť		T					
							 			- -	Ť	+	1					
		-		 	! 	<u> </u>	-	-		+	-		\dagger	 				.\
<u>-</u>			1					-			+		╫	╁	\dagger	·		
	<u> </u>			-				-		+			╢	+-	-	-		
				-							-		+-	+-			R TEMPERATURE EN RECEIVED .	
			 	 			CHEE			弹	T A						<i>_</i> <u> </u>	
Relinquished by	:(Signature	Date/Tim +/07/01 1630	Red	eived by	/: (Signature)	Date/Time	Remarks:			D Ti) [(3-	PF	\iL	AS	·		
Relinquished by	(Signature		e Re	ceived by	y: (Signature)	Date/Time	COMPANY:	INC	HCAP	E TF	STI	NG S	SERV	/ICE	s.	ANA	METRIX LABS	
Relinquished by	::{Signature) Pate/lim	- 7-	de jud by	enthinar	Date/line		196 SAN	1 CO	NCOU E, C	IRSE 'A 9	DR:	IVE,	, si	JITE	E	3)432-8198	

1961 Concourse Drive Suite E San Jose, CA 95151 Tel: 408-452-8192 Fax: 408-452-8198

August 1, 1996

Mr. Bill Copeland Woodward-Clyde Consultants 500 12th St. #100 Oakland, CA 94607

Dear Mr. Copeland,

Enclosed are the analytical results for your Project ID: 92CB040 we received on July 09, 1996. The enclosed work was performed by a laboratory subcontracted by I.T.S - Environmental Laboratories.

I.T.S. Env. ID:	Client ID:
9607066-03	MW-3
9607066-04	MW-1

If you have any questions regarding this workorder, please give me a call at (408) 432-8192.

Sincerely,

I.T.S. - ENVIRONMENTAL LABORATORIES

Rich Phaler

Project Manager

Inchcape Testing Services Environmental Laboratories

55 South Park Drive Colchester, VT 05446

75 Green Mountain Drive South Burlington, VT 05403

Analytical Report

Inchcape Testing Services 1961 Concourse Drive

Suite #E

San Jose, CA 95131

Attention: Rich Phaler

Date : 08/15/96 ETR Number : 59665 Project No.: 93228

No. Samples: 3

Arrived : 07/10/96

Page 1

Job: 9607066

Standard analyses were performed in accordance with Mothods for Analysis of Water and Wastes, EPA-600/4/79-020, Test Methods for Evaluating Solid Waste, SW-846, or Standard Methods for the Examination of Water and Wastewater.

All results are in mg/l unless otherwise noted.

Lab No./	Sample Deschod No.	cription/ Parameter	Result
306326	9607066-3:07/08/96 351.3	02020(Water) Total Kjeldahl Nitrogen	1.2
306327	9607066-4:07/08/96 351.3	@2040(Water) Total Kjeldahl Nitrogen	<0.24
306328	LCS:(Liquid) 351.3	Total Kjeldahl Nitrogen	9.29

Comments/Notes

TKN prep blank <0.24mg/L and LCS recovery = 97.8%.
TKN analyzed on 08/14/96, 9 days out of holding time.

< Last Page >

Submitted By :

Aquatec Inc.

55 South Park Drive - Colchester, VT 05446 - Tel: 802-655-1203 - Fax: 802-665-1248

Inchcape Testing Services Ansmetrix Laboratories

1961 Concourse Dilve, Suite E Son Jose, CA 96131 (405) 432-8192 • Fox (405) 432-8196

CHAIN-OF-CUSTODY RECORD

PROJECT NUMBER		PROJECT M	UNE OND	040	٠			Ϊγ	pe (of An	alysi	<u>s</u>						
96070 MR RICH	ention of:	<u> </u>	81	port Du		thumber of	Typa of	TKN (391.2)									Condition of	initlal
Sample Number	Date	Time	Сопр	Metrix	Station Location	Cotors	Containers	TKA									Samples	
3	118196	2020		WATED	MW-3	l	gooinil poly	X						_				
4		2040			MM-1	1	7	J. 1								_ _		
										<u> </u>								
								İ_		1								
·														_				
					٠													
										<u> </u>	<u>}</u> 					1		
				·					-	 	<u> </u>	_						
									[-	ĺ -							· }
									<u> </u>	 -	<u> </u>	<u> </u>	<u> </u>			_		
							ļ		<u> </u>	<u> </u>	 	 				_		
							1			ļ	-						<u></u>	
telinquished by		07/04/a	-		10	te/line	Acmarks:	ANB	1 63	PT	d l	15	BU	IRL	1N	TTO	1.	
tet inquished by		<u> </u>				.te/Tjme:	COMPANY	INC	ж	APE	TES	TIN	G SI	ERV)	CES	, AN	AMETRIX LABS	
Relinquished by	;{\$ignature	Date/Ilm		Direct by		(6/76)	ADDRESS:	SAN)	CONC OSE, 432	CH	95 93	131	V E. ,	. ATA	TE E)8)432-8198 	

Laboratories, Inc.

Environmental Microbiological Services

3220 South Fair Lane Suite 18 Tempe, AZ 85282

(602)438.1606

FAX (602)438.1207 Bill Copeland Woodward-Clyde Consultants 500 12th Street, Suite 100 Oakland, CA 94607

Date Reported: Client Sample ID: 7-26-96 MW-1

Project #:
Project Name:

92CB040 IBC-Oakland

Date Sampled:
Date Submitted:

7-8-96

Laboratory ID:

7-9-96

7442

Results

Parameter	Results	Methods
Heterotrophic Plate Count	1.8 x 10 ⁴ CFU/ml	SM 9215C
Petroleum Hydrocarbon Degrading Bacteria	1 x 10 ³ CFU/ml	*

CFU/ml- Colony Forming Units/milliliter of sample.

* Petroleum Hydrocarbon Degrading Bacteria - Journal of Industrial Microbiology, 1992, 10:13-23 (modified), determined using gasoline and diesel as the sole carbon sources.

Reviewed by: Tilli X/ Ben

Date: 7-29-96

Laboratories, inc.

Environmental Microbiological Services

3220 South Fair Lane Suite 18 Tempe, AZ 85282

(602)438.1606

FAX (602)438.1207 Bill Copeland Woodward-Clyde Consultants 500 12th Street, Suite 100 Oakland, CA 94607

Date Reported: 7-26-96
Client Sample ID: MW-3
Project #: 92CB040

Project Name: IBC-Oakland
Date Sampled: 7-8-96

Date Sampled: 7-8-96
Date Submitted: 7-9-96
Laboratory ID: 7443

Results

Parameter	Results	Methods
Heterotrophic Plate Count	1.2 x 10 ³ CFU/ml	SM 9215C
Petroleum Hydrocarbon Degrading Bacteria	<1 x 10 ³ CFU/ml	*

CFU/ml- Colony Forming Units/milliliter of sample.

Reviewed by: Vicla W. Ben

Date: 7-29-96

^{*} Petroleum Hydrocarbon Degrading Bacteria - Journal of Industrial Microbiology, 1992, 10:13-23 (modified), determined using gasoline and diesel as the sole carbon sources.

ABORATORIES, INC. Chain of Custody

BBC Labaratories, Inc. 3220 South Fair Lane, Suite 18 Tempe, AZ 85282 (602) 438 1606 FAX (602) 438.1207

LADOITAI	OH		, 1140.		nam or	Ousion	ч	DATE	18/96 P	AGE of
REPORT TO: COMPANY: ADDRESS: SAMPLED BY: (S	Solo Oal	Kland	H ST. CA. 10)874-326) PHONE #	LYDE Sk. 10 9460° (90)87	<u>(ONS</u> <u>7</u> <u>14-3268</u> FAX#		nternat 329 Ard Sacramen	to CA	Prants, I 1. 958	# OF CONTAINERS
SAMPLE ID	°.5TIME	DATE	SIZE	MATRIX	LABID	1100	AN	ALYSIS REQUES		#
MW-)	18:10	7/8/96	45 ml.	Water	7442_	HPCT	HD _			1
MW-3	18:20	1/8/96	45 ml.	Water	7443	HPC, t	² H D			1
				<u> </u>	· ·			- <u></u>	···	
									·	
						<i>1</i> 4				
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		1					
		-								
								-	v	
PROJECT INFORMATI	ON		RELINQUISHED	BY: 1.	RELINQUI	SHED BY: 2,	RELINQUI	SHED BY: 3,	RELIN	QUISHED BY: 4.
PROJECT NO.: 92CBC	040	Signature:	1	Time: 19:00	Signature:	Time:	Signature:	Time:	Signature:	Time:
PROJECT NAME TBC -Q	akbad	Printed Name Jon	HAUS :	Date: /96	Printed Name:	Date:	Printed Name:	Date:	Printed Name:	Date:
P.O. NO.:		Company:		DE CONS,	Company:		Company:		Company:	
Comments:			RECEIVED BY		RECEIV			/EDBY: 3,		CEIVED BY: 4.
*		Signature:	Ben	Time:	Signature:	Time:	Signature:	Time:	Signature:	Time:
		Printed Name:	Kess ?	Date: 7-9-96	Printed Name:	Date:	Printed Name:	Date:	Printed Name:	Date:
		company:	Laborato		Company:		Company:		Company:	

1961 Concourse Drive Suite E San Jose, CA 95131 Tel: 408-432-8192 Fax: 408-432-8198

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9607066
Date Received : 07/09/96
Project ID : 92CB040
Purchase Order: N/A

The following samples were received at Inchcape for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9607066- 1	TBLANK
9607066- 2	MW-4
9607066- 3	MW-3
9607066- 4	MW-1
9607066- 5	MW-2

This report is organized in sections according to the specific Inchcape laboratory group which performed the analysis(es) and generated the data.

The results contained within this report relate to only the sample(s) tested. Additionally, these data should be considered in their entirety and Inchcape cannot be responsible for the detachment, separation, or otherwise partial use of this report.

Inchcape is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234.

If you have any further questions or comments on this report, please call your project manager as soon as possible. Thank you for using Inchcape Testing Services.

Project Manager

Date!

This report consists of 36 pages.

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9607066
Date Received : 07/09/96
Project ID : 92CB040
Purchase Order: N/A
Department : GC

Sub-Department: TPH

SAMPLE INFORMATION:

INCHCAPE SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9607066- 2	MW-4	WATER	07/08/96	трна
9607066- 3	MW-3	WATER	07/08/96	TPHd
9607066- 4	MW-1	WATER	07/08/96	трна
9607066- 5	MW-2	WATER	07/08/96	трна
9607066- 1	TBLANK	WATER	06/25/96	TPHgBTEX
9607066- 2	MW-4	WATER	07/08/96	TPHgBTEX
9607066- 3	MW-3	WATER	07/08/96	TPHgBTEX
9607066- 4	MW-1	WATER	07/08/96	ТРНдВТЕХ
9607066- 5	MW-2	WATER	07/08/96	TPHgBTEX

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9607066
Date Received : 07/09/96
Project ID : 92CB040
Purchase Order: N/A
Department : GC
Sub-Department: TPH

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

- The concentrations reported as diesel for samples MW-4 and MW-1 are primarily due to the presence of a lighter petroleum product of hydrocarbon range C6-C12, possibly gasoline.

Department Supervisor Da

Chemist

07/16/96 Date

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

DATA SUMMARY FORM

Laboratory ID: Matrix: Date Sampled:	9607066-01 WATER 6/25/96	Client Project ID: Client Sample ID: Instrument ID:		92CB040 TBLANK HP12
Date Analyzed:	7/10/96		Surrogate Recovery:	101%
Date Released:	7/11/96		ug/L	
<u>COMPOUND</u>		Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount <u>Found</u>
MtBE		1	5.0	ND
Benzene		1	0.5	ND
Toluene		1	0.5	ND
Ethylbenzene		1	0.5	ND
Total Xylenes		1	0.5	ND
Gasoline		1	50	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

DATA SUMMARY FORM

Laboratory ID:	9607066-02	Client Project ID:	92CB040
Matrix:	WATER	Client Sample ID:	MW-4
Date Sampled:	7/8/96	Instrument ID:	HP12
Date Analyzed:	7/10/96	Surrogate Recovery:	96%
Date Released:	7/11/96	Concentration Units:	ug/L

COMPOUND	Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount Found
MtBE	10	50	ND
Benzene	10	5.0	9.5
Toluene	10	5.0	85
Ethylbenzene	10	5.0	120
Total Xylenes	10	5.0	270
Gasoline	10	500	2600

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

DATA SUMMARY FORM

Laboratory ID:	9607066-03	Client Project ID:	92CB040
Matrix:	WATER	Client Sample ID:	MW-3
Date Sampled:	7/8/96	Instrument ID:	HP12
Date Analyzed:	7/10/96	Surrogate Recovery:	104%
Date Released:	7 /11/96	Concentration Units:	ug/L

	Dilution	Reporting	Amount
<u>COMPOUND</u>	<u>Factor</u>	<u>Limit</u>	<u>Found</u>
MtBE	1	5.0	ND
Benzene	1	0.5	ND
Toluene	1	0.5	ND
Ethylbenzene	1	0.5	ND
Total Xylenes	1	0.5	ND
Gasoline	1	50	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

DATA SUMMARY FORM

Laboratory ID: Matrix: Date Sampled: Date Analyzed: Date Released:	9607066-04 WATER 7/8/96 7/10/96 7/11/96	Client Project ID: Client Sample ID: Instrument ID: Surrogate Recovery: Concentration Units:		92CB040 MW-1 HP12 99% ug/L
COMPOUND		Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount <u>Found</u>
MtBE Benzene Toluene Ethylbenzene Total Xylenes		25 25 25 25 25 25	125 12.5 12.5 12.5 12.5	ND 89 79 140 350

ND: Not detected at or above the reporting limit for the method.

25

Gasoline

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

1250

Surrogate recovery quality control limits for p-Bromofluorobenzene are 61-139%. All testing procedures follow California Department of Health Services approved methods.

3000

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

DATA SUMMARY FORM

Laboratory ID:	9607066-05		Client Project ID:	92CB040
Matrix:	WATER		Client Sample ID:	MW-2
Date Sampled:	7/8/96		Instrument ID:	HP12
Date Analyzed:	7/10/96		Surrogate Recovery:	100%
Date Released:	7/11/96		Concentration Units:	ug/L
		Dilution	Reporting	Amount
COMPOUND		Factor	Limit	Found

	Dilution	Reporting	Amount
COMPOUND	<u>Factor</u>	<u>Limit</u>	<u>Found</u>
MtBE	1	5.0	ND
Benzene	1	0.5	ND
Toluene	1	0.5	ND
Ethylbenzene	1	0.5	ND
Total Xylenes	1	0.5	ND
Gasoline	1	50	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

DATA SUMMARY FORM

Laboratory ID:	BL1001E1		Client Project ID:	92CB040
Matrix:	WATER		Client Sample ID:	Method Blank
Date Sampled:	44227		Instrument ID:	HP12
Date Analyzed:	7/10/96	Surrogate Recovery:		98%
Date Released:	7/11/96	Concentration Units:		ug/L
		Dilution	Reporting	Amount
COMPOUND		<u>Factor</u>	<u>Limit</u>	Found

	Dilution	Reporting	Amount
COMPOUND	<u>Factor</u>	<u>Limit</u>	Found
MtBE	1	5.0	ND
Benzene	1	0.5	ND
Toluene	1	0.5	ND
Ethylbenzene	1	0.5	ND
Total Xylenes	1	0.5	ND
Gasoline	1	50	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

MATRIX SPIKE RECOVERY REPORT

Laboratory ID: 9607066-05 Client Project ID: 92CB040 Client Sample ID: MW-2 Date Released: 7/11/96 7/8/96 Instrument ID: HP12 Date Sampled: Date Analyzed: 7/10/96 Matrix: WATER Concentration Units: ug/L

Concentration Units: ug/L

COMPOUND NAME	SPIKE <u>AMT</u>	SAMPLE <u>CONC</u>	MS <u>CONC</u>	% REC <u>MS</u>	MSD <u>CONC</u>	%REC <u>MSD</u>	<u>RPD</u>
Gasoline	400	0	390	98%	380	95%	-3%
p-Bromofluorobenze	ene			95%		95%	

Quality control limits for MS/MSD recovery are 48-149%

Quality control limits for RPD(relative percent difference) are +/- 30%

Quality control limits for p-Bromofluorobenzene recovery are 61-139%.

TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID: 92CB040 Laboratory ID: ML1001E1

Matrix: WATER Date Released: 7/11/96

Date Analyzed: 7/10/96 Instrument ID: HP12

Concentration Units: ug/L

COMPOUND SPIKE LCS %REC NAME AMT CONC LCS

Gasoline 400 390 98%

p-Bromofluorobenzene 100%

Quality control limits for LCS recovery are 67-127%.

Quality control limits for p-Bromofluorobenzene recovery are 61-139%.

TOTAL PETROLEUM HYDROCARBONS AS BTEX

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID:	92CB040		Laboratory ID:	NL1001E
Matrix:	WATER		Date Released:	7 /11/96
Date Analyzed:	7/10/96		Instrument ID:	HP12
			Concentration Units:	ug/L
COMPOUND		SPIKE	LCS	%REC
<u>NAME</u>		<u>AMT</u>	CONC	<u>LCS</u>
MtBE		10.0	9.2	92%
Benzene		10.0	10.7	107%
Toluene		10.0	11.8	118%
Ethylbenzene		10.0	11.0	110%
Total Xylenes		10.0	12.5	125%
p-Bromofluorobenz	zene			103%

Quality control limits for LCS recovery are 50-150% for MTBE, 52-133% for benzene, 57-136% for toluene, 56-139% for ethylbenzene, and 56-141% for total xylenes.

Quality control limits for p-Bromofluorobenzene recovery are 61-139%.

TOTAL PETROLEUM HYDROCARBONS AS DIESEL

INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

DATA SUMMARY FORM

Laboratory Workorder9607066Client Project ID:92CB040Matrix:WATERDate Released:7/16/96Date Extracted:7/11/96Concentration Units:ug/L

Instrument ID: HP23

Laboratory ID	Client ID	Date Sampled	Date <u>Analyzed</u>	Dilution Factor	Reporting <u>Limit</u>	Amount Found	Surrogate Recovery
9607066-02	MW-4	7/8/96	7/12/96	1	50	580	97%
9607066-03	MW-3	7/8/96	7/12/96	1	50	ND	97%
9607066-04	MW-1	7 /8/96	7/12/96	1	50	670	97%
9607066-05	MW-2	7/8/96	7/12/96	1	50	ND	93%
BL1111F1	Method Blank		7/12/96	1	50	ND	91%

ND: Not detected at or above the reporting limit for the method.

TPHd: Total Petroleum Hydrocarbons as C10-C28 is determined by GC/FID (modified EPA Method 8015) following sample extraction by EPA Method 3510. Surrogate recovery quality control limits for o-terphenyl are 65-122%.

All testing procedures follow California Department of Health Services approved methods.

TOTAL PETROLEUM HYDROCARBONS AS DIESEL INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

MATRIX SPIKE RECOVERY REPORT

Client Project ID:	92CB040			Laboratory		9607075-01	
Client Sample ID:	Batch Spike			Date Releas	sed:	7/16/96	
Date Sampled:	7/9/96			Instrument	ID:	HP9	
Date Extracted:	7/11/96			Matrix:		WATER	
Date Analyzed:	7/13/96			Concentrati	on Units:	ug/L	
COMPOUND NAME	SPIKE <u>AMT</u>	SAMPLE CONC	MS CONC	% REC <u>MS</u>	MSD CONC	%REC <u>MSD</u>	<u>RPD</u>

881

63%

91%

896

64%

95%

2%

Quality control limits for MS/MSD recovery are 32-143%

98

1250

Diesel

o-Terphenyl

Quality control limits for RPD(relative percent difference) are +/- 30%.

Quality control limits for o-terphenyl recovery are 65-122%.

TOTAL PETROLEUM HYDROCARBONS AS DIESEL INCHCAPE TESTING SERVICES/ ENVIRONMENTAL LABORATORIES (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID:	92CB040			Laboratory I	D:	M/NL1111F1
Matrix:	WATER			Date Release	:d:	7/16/96
Date Extracted:	7/11/96			Instrument II	D:	HP23
Date Analyzed:	7/12/96			Concentratio	n Units:	ug/L
		T (3)	4/ 550	TOOD		

COMPOUND	SPIKE	LCS	% REC	LCSD	%REC	
NAME	<u>AMT</u>	CONC	<u>LCS</u>	<u>CONC</u>	LCSD	<u>RPD</u>
-						
Diesel	1250	728	58%	650	52%	-11%
Diosoi	1200	,	• • • • • • • • • • • • • • • • • • • •			
a Tambanul			91%		81%	
o-Terphenyl			2170		01/0	

Quality control limits for LCS/LCSD recovery are 34-111%.

Quality control limits for RPD(relative percent difference) are +/- 18%.

Quality control limits for o-terphenyl recovery are 65-122%.

INCHCAPE TESTING SERVICES, SAN JOSE LABORATORIES REPORT DESCRIPTION - INORGANICS

Analytical Data Report (ADR)

The ADR contains tabulated results for inorganic analytes. All field samples, QC samples and blanks were prepared and analyzed according to procedures in the following references:

- "Test Methods for Evaluating Solid Waste," SW-846, EPA, 3rd Edition, November 1986.
- "Methods for Chemical Analysis of Water and Wastes," EPA, 3rd Edition, 1983.
- CCR Title 22, Section 66261, Appendix II, California Waste Extraction Test.
- CCR Title 22, Section 66261, Appendix XI, Organic Lead.
- "Standard Methods for the Examination of Water and Wastewater," APHA, AWWA, WEF, 18th Edition, 1992.
- USEPA Contract Laboratory Program Statement of Work for Inorganic Analyses, ILM02.1, 1991.

Matrix Spike Report (MSR)

The MSR summarizes percent recovery and relative percent difference information for matrix spikes and matrix spike duplicates. This information is a statement of both accuracy and precision. MSRs may not be provided with all analytical reports. ITS-SJ control limit for MSR is 75-125% with 25% for RPD limits, except for Method 6010A, which is 80-120% with 25% RPD limits.

Laboratory Control Sample Report (LCSR)

The LCSR summarizes percent recovery information for laboratory control spikes on reagent water or soil. This information is a statement of performance for the method, i.e., the samples are properly prepared and analyzed according to the applicable methods. ITS-SJ control limit for LCSR is 80-120%.

Method Blank Report (MBR)

The MBR summarizes quality control information for reagents used in preparing samples. The absolute value of each analyte measured in the method blank should be below the method reporting limit for that analyte.

Post Digestion Spike Report (PDSR)

The PDSR summarizes percent recovery information for post digestion spikes. A post digestion spike is performed for a particular analyte if the matrix spike recovery is outside of established control limits. Any percent recovery for a post digestion spike outside of established limits for an analyte indicates probable matrix effects and interferences for that analyte. ITS-SJ control limit for PDSR is 75-125%.

Qualifiers (Q)

ITS-SJ uses several data qualifiers in inorganic reports. These qualifiers give additional information on the analytes reported. The following is a list of qualifiers and their meanings:

- I Sample was analyzed at the stated dilution due to interferences.
- U Analyte concentration was below the method reporting limit. For matrix and post digestion spike reports, a value of "0.0" is entered for calculation of the percent recovery.
- B Sample concentration was below the reporting limit but above the instrument detection limit. Result is entered for calculation of the percent recovery only.
- H Spike percent recovery is not calculated due to possible interferences from relatively high concentration level of the analyte in the unspiked sample.
- L Reporting limit was increased to compensate for background absorbances or matrix interferences.

Comment Codes

In addition to qualifiers, the following codes are used in the comment section of all reports to give additional information about sample preparation methods:

- A Sample was prepared for silver based on the silver digestion method developed by the Southern California Laboratory, Department of Health Services, "Acid Digestion for Sediments, Sludges, Soils and Solid Wastes. A Proposed Alternative to EPA SW846, Method 3050." Environmental Science and Technology, 1989, 23, 898-900.
- T Spikes were prepared after extraction by the Toxicity Characteristic Leaching Procedure (TCLP).
- C Spikes were prepared after extraction by the California Waste Extraction Test (CWET) method.
- D Reported results are dissolved, not total, metals.

Reporting Conventions

Analytical values reported are gross values, i.e., <u>not</u> corrected for method blank contamination. Solid matrices are reported on a wet weight basis, unless specifically requested otherwise.

f Vorms/metals/coversht/ard doc

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014

Workorder # : 9607066 Date Received: 07/09/96

Project ID : 92CB040
Purchase Order: N/A
Department : METALS
Sub-Department: METALS

SAMPLE INFORMATION:

INCHCAPE SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9607066- 3	MW-3	WATER	07/08/96	160.1
9607066- 4	MW-1	WATER	07/08/96	160.1
9607066- 3	MW-3	WATER	07/08/96	300.0
9607066- 4	MW-1	WATER	07/08/96	300.0
9607066- 3	MW-3	WATER	07/08/96	350.3
9607066- 4	MW-1	WATER	07/08/96	350.3

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9607066
Date Received : 07/09/96
Project ID : 92CB040
Purchase Order: N/A
Department : METALS
Sub-Department: METALS

QA/QC SUMMARY :

- Holding times have been met for the analyses reported in this section.

Jona Kamel for 01/19/96
Department Supervisor Date

Chemist

Dat

INORGANICS - PAGE 2

ITS-SJ Sample ID: 9607066-03 Client Sample ID: MW-3

Client Project Number: 92CB040

Matrix: WATER

SDG #: N/A

Date Sampled: 07/08/96

Analyst: L

Supervisor:

Analyte	Prep. Method	Prep. Batch	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Total Dissolved Solids	160.1	13174	160.1	N/A	07/11/96	07/15/96	1	mg/L	10.0	596	
Nitrite as N	300.0	13137	300.0	IC1	07/09/96	07/09/96	1	mg/L	0.030	מא	
Nitrate as N	300.0	13137	300.0	IC1	07/09/96	07/09/96	1	mg/L	0.020	ND	
Ammonia as N	350.3	13158	350.3	MET2	07/12/96	07/12/96	1	mg/L	0.10	0.98	

ITS-SJ Sample ID: 9607066-04 Client Sample ID: MW-1 Client Project Number: 92CB040

Matrix: WATER

SDG #: N/A

Date Sampled: 07/08/96

Analyst: 4

Supervisor:

Analyte	Prep. Method	Prep. Batch	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Total Dissolved Solids	160.1	13174	160.1	N/A	07/11/96	07/15/96	1	mg/L	10.0	271	
Nitrite as N	300.0	13137	300.0	IC1	07/09/96	07/09/96	1	mg/L	0.030	ND	
Nitrate as N	300.0	13137	300.0	IC1	07/09/96	07/09/96	1	mg/L	0.020	2.5	1
Ammonia as N	350.3	13158	350.3	MET2	07/12/96	07/12/96	1	mg/L	0.10	ND	

ITS-SJ Sample ID: BL116WA

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Prep. Batch: 13174

Analyst: L

Supervisor:

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q	
Total Dissolved Solids	160.1	160.1	N/A	07/11/96	07/15/96	1	mg/L	10.0	ND		

1TS-SJ Sample ID: BL096WA

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Prep. Batch: 13137

Analyst: J Supervisor: 's

Analyte	Prep. Method	Analytical Method	instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Nitrite as N	300.0	300.0	IC1	07/09/96	07/09/96	1	mg/L	0.030	ND	
Nitrate as N	300.0	300.0	IC1	07/09/96	07/09/96	1	mg/L	0.020	ND	

ITS-SJ Sample ID: BL096WB

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Prep. Batch: 13137

Analyst:

Supervisor:

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Nitrite as N	300.0	300.0	IC1	07/09/96	07/09/96	1	mg/L	0.030	ND	

ITS-SJ Sample ID: BL126WA

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Prep. Batch: 13158

Analyst: 500

Supervisor:

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Ammonia as N	350.3	350.3	MET2	07/12/96	07/12/96	1	mg/L	0.10	ND	

INCHCAPE TESTING SERVICES SAN JOSE LABORATORIES (408) 432-8192 SAMPLE DUPLICATE REPORT

ITS-SJ Sample ID: 9606052-02D

Client Sample ID: BATCH QC

Client Project Number: 92CB040

Matrix: WATER

Associated W.O. #: 9607066

SDG #: NA Analyst: 5C

Supervisor:

Analyte	Prep. Meth.	Prep. Batch	Analyt. Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Sample Conc.	Sample Duplicate Conc.	RPD	Q
Nitrite as N	300.0	13137	300.0	IC1	07/09/96	07/09/96	20	mg/L	ND	ND	N/A	1
Nitrate as N	300.0	13137	300.0	IC1	07/09/96	07/09/96	1	mg/L	1.1	1.1	0.0	

INCHCAPE TESTING SERVICES SAN JOSE LABORATORIES (408) 432-8192 SAMPLE DUPLICATE REPORT

ITS-SJ Sample ID: 9607066-03D

Client Sample ID: MW-3

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Analyst: عربر

Supervisor:7

Analyte	Prep. Meth.	Prep. Batch	Analyt. Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Sample Conc.	Sample Duplicate Conc.	RPD	Q
Ammonia as N	350.3	13158	350.3	MET2	07/12/96	07/12/96	1	mg/L	0.98	0.88	10.8	

INCHCAPE TESTING SERVICES SAN JOSE LABORATORIES (408) 432-8192 SAMPLE DUPLICATE REPORT

ITS-SJ Sample ID: 9607066-04D

Client Sample ID: MW-1

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA Analyst: 50

Supervisor: 7

Analyte	Prep. Meth.	Prep. Batch	Analyt. Method	Instr. ID		Date Analyzed	Dil. Factor	Units	Sample Conc.	Sample Duplicate Conc.	RPD	Q
Total Dissolved Solids	160.1	13174	160.1	N/A	07/11/96	07/15/96	1	mg/L	271	273	0.735	

INCHCAPE TESTING SERVICES SAN JOSE LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

ITS-SJ Sample ID: 9606052-02MS, MD

Client Sample ID: BATCH QC

Client Proj. Number: 92CB040

Matrix: WATER

Associated W.O. #: 9607066

SDG #: NA Analyst: 5 Supervisor:

Analyte	Prep. Batch	Analyt. Method	instr. I.D.	Date Prepared	Date Analyzed	Units	Spike Amnt.	Sample Conc.	Matrix Spike Conc.	% Rec.	Matrix Sp. Dup. Conc.	% Rec.	RPD	Q
Nitrite as N	13137	300.0	IC1	07/09/96	07/10/96	mg/L	20.0	0.0	22.3	112	22.3	112	0.0	U
Nitrate as N	13137	300.0	IC1	07/09/96	07/09/96	mg/L	1.0	1.1	1.9	80.0	2.1	100	10.0	

INCHCAPE TESTING SERVICES SAN JOSE LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

ITS-SJ Sample ID: 9607066-03MS, MD

Client Sample ID: MW-3 Client Proj. Number: 92CB040 SDG #: NA Analyst: 9 Supervisor:

Matrix: WATER

Analyte	Prep. Batch	Analyt. Method	Instr. i.D.	Date Prepared	Date Analyzed	Units	Spike Amnt.	Sample Conc.	Matrix Spike Conc.	% Rec.	Matrix Sp. Dup. Conc.	% Rec.	RPD	Q
Ammonia as N	13158	350.3	MET2	07/12/96	07/12/96	mg/L	2.0	0.98	2.6	81.0	3.1	106	17.5	

INCHCAPE TESTING SERVICES SAN JOSE LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

ITS-SJ Sample ID: 9607066-04MS, MD

Client Sample ID: MW-1 Client Proj. Number: 92CB040

Matrix: WATER

SDG #: NA Analyst:

Supervisor: ML

Analyte	Prep. Batch	Analyt. Method	Instr. I.D.	Date Prepared	Date Analyzed	Units	Spike Amnt.	Sample Conc.	Matrix Spike Conc.	% Rec.	Matrix Sp. Dup. Conc.	% Rec.	RPD	Q
Total Dissolved Solids	13174	160.1	N/A	07/11/96	07/15/96	mg/L	1500	271	1760	99.3	1770	100	0.57	

LABORATORY CONTROL SAMPLE REPORT

ITS-SJ Sample ID: LL116WA

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Prep. Batch: 13174

Analyst: 😕

Supervisor:

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
Total Dissolved Solids	160.1	160.1	N/A	07/11/96	07/15/96	1	mg/L	1500	1460	97.3	

LABORATORY CONTROL SAMPLE REPORT

ITS-SJ Sample ID: LL096WA

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Prep. Batch: 13137

Analyst: 50

Supervisor:

Analyte	Prep. Method	Analytical Method	instr.	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
Nitrite as N	300.0	300.0	IC1	07/09/96	07/09/96	1	mg/L	1.0	0.97	97.0	-
Nitrate as N	300.0	300.0	IC1	07/09/96	07/09/96	1	mg/L	1.0	0.94	94.0	

LABORATORY CONTROL SAMPLE REPORT

ITS-SJ Sample ID: LL096WB

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040

Matrix: WATER

SDG #: NA

Prep. Batch: 13137

Analyst: 5 C

Supervisor:

	Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
_ [1]	Nitrite as N	300.0	300.0	IC1	07/09/96	07/09/96	1	mg/L	1.0	1.0	100	

LABORATORY CONTROL SAMPLE REPORT

ITS-SJ Sample ID: LL126WA

Client Sample ID: N/A

ITS-SJ WO #: 9607066

Client Project Number: 92CB040
Matrix: WATER

SDG #: NA

Prep. Batch: 13158

Analyst:

Supervisor:

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
Ammonia as N	350.3	350.3	MET2	07/12/96	07/12/96	1	mg/L	2.0	1.9	95.0	

Woodward-Clyde	Consultant
500 12th Street, Suite 100, Oa	

		street, Suite 100, Oakla (510) 893-360		7-401	4				(JΠ	all	n () TC	JU	STC	oay Kecor	a
PROJECT NO. 92CB040						ANALYSES					,						
SAMPLERS: (Signarure)			trix ter, (A)ir		***************************************		•	BTEX	(BTEX {		O	ر الا ه	8		Number of Containers	REMARKS (Sample preservation,	
DATE	TIME	SAMPLE NUMBE	Sample Matrix (S)oil, (W)ater, (A)ir	EPA Method	EPA Method	EPA Method	EPA Method	TP Ha	TP# TXV	300,0		-	• •	Number of	handling procedures, etc.)		
6/25/Y		Trip blank	E W	<u> </u>				2							2		
7/8/96		1 MW-4	W	1_	<u> </u>			3	2	*		 		,	5		
	20:20	mw-3	W	 				<i>3</i>	2	1	1	1	!	l	10		
To hi	20.40 21:10	MW-1	W	\vdash	 			3	<u>Z</u>	Į.	1	L		L	<i>10 5</i>		
11 2/76	21.10	MW-2		+	├		:	2	<u> </u>			-			<i>-</i>		6 1.
				+	-			-				-				Sample	.) <i>IC</i> ed
·- <u>-</u>				十一	 							-				upon sa	mpling
		<u> </u>		1	 			I			-	<u> </u>				Sample upon sa Fresh added @	ب د دا
·- <u>-</u> -				1												Fresh	10e 11/12/
																added @	062
																A.M.	
·				1_	<u> </u>			_				<u> </u>					
		<u> </u>		 	<u> </u>			_			_						1.
				<u> </u>	₽-			ļ			<u> </u>	<u> </u>		<u> </u>	<u> </u>	Result	5 /0:
	-			 -	-						_	<u> </u>	_	<u> </u>		RILL COM	land
				-	-			-	<u> </u>	_		1	-	<u> </u>		DIII COPE	- reprict
				╁	╂	-		-		-	-			<u> </u>			
				-	┼			-	<u> </u>		-	-		<u> </u>	 		
·				╂	┢			\vdash			-	-					
				╫	-			-				 		<u> </u>	<u> </u>		
				\top	 						_	 					
				1	\vdash							 					
				1	1												
				1													
																,	
	-			·		<u></u> کی		·					TOT BER	OF	32		
RELINQUISHED BY: DATE/TIME RECEIVED (Signature) 73/96 22:15			RECEIVED S (Signature)	VED 84: 19/4 MITE) 1100 MA DEM			R (S	RELINQUISHED BY. (Signature)				le	DATE/TIM			ME RECEIVED BY: (Signature)	
METHO	D OF SHIP		SHIPPED BY (Signature)	<u>':</u>				OUR Signa				-		REC			DATE/TIME
								·	·					4	11-	7	9/9/140

SAMPLE RECEIVING CHECKLIST									
Workorder	Client	Quote							
Number: 9607066	Project ID: 92 CB040	Number	· 630	140					
Cooler									
Shipping documentation present?		YES	NO	M/A)					
If YES, enter Carrier and Airbill #:									
Custody Seal on the outside of cooler?		YES	NO	(V/A)					
Condition: Intact ☐ Broken [<u></u> _						
Temperature of sample(s) within range?		(ED	NO	N/A					
List temperatures of cooler(s):									
Note: If all samples taken within previous 4 hr,	circle N/A and place in sample storage area as								
soon as possible. Sam	na lac	<u> </u>							
	<u></u>	YES	NO	(N/A)					
Chain of custody seal present for each co		1123	NO	CW/AD					
		VES	NO	N/A					
Samples arrived within holding time? Samples in proper containers for method	a magnage and?	YES	NO	IN/A					
· · · · · · · · · · · · · · · · · · ·		<u>TES</u>	110						
J									
If NO, were samples transferred to pro		YES	(NO)	N/A					
Were VOA containers received with zero	No 🗆	ILS	CNO	11/74					
If NO, were bubbles < 6 mm? Yes Were container labels complete? (ID, dat		CYES	NO	N/A					
Were samples properly preserved?	e, time, preservative)	(TES)	NO	N/A					
If NO, was the preservative added at the	me of receipt? Yes □ No □	(ILS)	NO	11/71					
pH check of samples required at time of		(YES)	NO						
If YES, pH checked and recorded by:		Q Las	140						
Sufficient amount of sample received for		(YES)	NO						
If NO, has the client or PM been notified		110	110						
Field blanks received with sample batch?	24: 163 140 11	YES	NO	(N/A)					
Trip blanks received with sample batch?		(YES)	NO	N/A					
Chain of	Custody			1 1/1 1					
Chain of custody form received with sam		CYES	· · · · · · · · · · · · · · · · · · ·	NO					
Has it been filled out completely and in ir	<u> </u>	(F)		NO					
Sample IDs on chain of custody form ag		VED		NO					
Number of containers on chain agree wit		(YES)		NO					
Analysis methods specified?	TACKED OF TOOLS	TES		NO					
Sampling date and time indicated?		VE		NO					
Proper signatures of sampler, courier and	custodian in appropriate spaces?	YES		NO					
With time and date? Yes	No [
Turnaround time? Standard 🗹	Rush []		•						
Torrandon time.									

Chain of custody form received with samples:	<u> </u>	110						
Has it been filled out completely and in ink?	(AES)	NO						
Sample IDs on chain of custody form agree with labels?	VED)	NO						
Number of containers on chain agree with number received?	(YES)	NO						
Analysis methods specified?	YES	NO						
Sampling date and time indicated?	(TED)	NO						
Proper signatures of sampler, courier and custodian in appropriate spaces?	VES	NO						
With time and date? Yes ☑ No □								
Turnaround time? Standard ☑ Rush □								
Any NO responses and/or any BROKEN that was checked must be detailed in a Corrective Action Form. Sample Custodian: Date: 1966 Project Manager: Date: 4 10 46								
f:\forms\nevser.doe								