

1921 Ringwood Avenue • \$37,058. California 9513 \$1221 • (408) 453-7300 • Fax (408) 437-9526

L'Oliviiui, uni

97 MIN 24 PM 1: 13

Date

March 21, 1997

Project

20805-129.003

To:

Ms. Susan Hugo Alameda County Health Care Services Agency Department of Environmental Health 1131 Harborbay Parkway, Suite 250 Alameda, California 94502-6577

We are enclosing:

Copies		Description			
1	_	Fourth quarter	1996 groundwa	ater monito	ring results and
		remediation sy	stem performar	nce evaluati	on report,
		ARCO Service	e Station 2169,	Oakland, Ca	alifornia
	·····				
For your:	X	Use	Sent by:	X	Regular Mail
		Approval			Standard Air
		Review			Courier
		Information			Other:

Comments:

The enclosed groundwater monitoring and performance evaluation report is being sent to you per the request of ARCO Products Company. Please call if you have questions or comments.

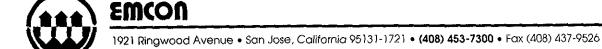
John C. Young Project Manager

cc: Kevin Graves, RWQCB - SFBR
Paul Supple - ARCO Products Company
File

Date:

March 14, 1997

Re: ARCO Station #


2169 • 889 West Grand Avenue • Oakland, CA Fourth Quarter 1996 Groundwater Monitoring Results and Remediation System Performance Evaluation Report

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached proposal or report are true and correct."

Submitted by:

Paul Supple

Environmental Engineer

March 18, 1997 Project 20805-129.003

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Re: Fourth quarter 1996 groundwater monitoring program results and remediation system performance evaluation report, ARCO service station 2169, Oakland,

California

Dear Mr. Supple:

This letter presents the results of the fourth quarter 1996 groundwater monitoring program at ARCO Products Company (ARCO) service station 2169, 889 West Grand Avenue, Oakland, California (Figure 1). Operation and performance data for the interim soil-vapor extraction (SVE) and air-sparge (AS) remediation systems at the site are also presented. The quarterly monitoring program complies with Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations. Pertinent site features, including the locations of existing on-site monitoring and vapor extraction wells are shown in Figure 2.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the scope, limitations, and cost of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

EMCON

Krishnaveni Meka Staff Engineer

John C. Young R.G. 64 Project Manager

EMCON

ARCO QUARTERLY REPORT

Station No.:	2169	Address:	889 West Grand Avenue, Oakland, California
EMCON Project	et No.		20805-129.003
ARCO Environ	mental Enginee	r/Phone No.:	Paul Supple /(510) 299-8891
EMCON Project	t Manager/Pho	ne No.:	John C. Young /(408) 453-7300
Primary Agency	y/Regulatory ID	No.:	ACHCSA /Susan Hugo
Reporting Perio	od:		October 1, 1996 to January 1, 1997

WORK PERFORMED THIS QUARTER (Fourth-1996):

- 1. Conducted quarterly groundwater monitoring and sampling for fourth quarter 1996.
- 2. Prepared and submitted quarterly report for third quarter 1996.
- 3. Stimulate natural biodegradation in groundwater monitoring wells A-5 and A-6.
- 4. Operated SVE and air-sparge systems.

WORK PROPOSED FOR NEXT QUARTER (First-1997):

- 1. Perform quarterly groundwater monitoring and sampling for first quarter 1997.
- 2. Prepare and submit quarterly report for fourth quarter 1996.
- 3. Continue operating SVE and air-sparge systems.
- 4. Continue to monitor dissolved oxygen in groundwater monitoring wells A-5 and A-6.

QUARTERLY MONITORING:

Current Phase of Project:	Quarterly Groundwater Monitoring and Operation and Maintenance of Remediation Systems
Frequency of Sampling:	Quarterly (groundwater), Monthly (SVE and Air-Sparge)
Frequency of Monitoring:	Quarterly (groundwater), Monthly (SVE and Air-Sparge)
Is Floating Product (FP) Present On-sit	e: Yes 🛛 No
Cumulative FP Recovered to Date:	4.8 gallons, Wells ADR-1 and ADR-2
FP Recovered This Quarter:	None
Bulk Soil Removed to Date:	2,196 cubic yards of TPH-impacted soil
Bulk Soil Removed This Quarter:	None
Water Wells or Surface Waters	
within 2000 ft., impacted by site:	None
Current Remediation Techniques:	SVE and Air-Sparge Systems
Approximate Depth to Groundwater:	10.54 feet
Groundwater Gradient (Average):	0.002 ft/ft toward west-northwest (consistent with past events)
SVE QUARTERLY OPERATI	ON AND PERFORMANCE:
Equipment Inventory:	Therm Tech Model VAC-25, 250 cfm, Thermal/Catalytic Oxidizer
Operating Mode:	Catalytic Oxidation
BAAQMD Permit #:	12119
TPH Conc. End of Period (lab):	300 ppmv
Benzene Conc. End of Period (lab):	<0.5 ppmv
Flowrate End of Period:	148.8 scfm
	EMCON

HC Destroyed This Period:	154.1 pounds
HC Destroyed to Date:	7830.3 pounds
Utility Usage	
Electric (KWH):	12108
Gas (Therms):	1266
Operating Hours This Period:	774.2 hours
Percent Operational:	35.1% System was down for quarterly monitoring and other maintenance
	issues. See discussion.
Operating Hours to Date:	5634.8 hours
Unit Maintenance:	Rebuilt sound cover on 12-4-96.
Number of Auto Shut Downs:	1
Destruction Efficiency Permit	
Requirement:	90%
Percent TPH Conversion:	96.2%
Stack Temperature:	656°F (12-4-96)
Source Flow:	148.8 scfm (12-4-96)
Process Flow:	148.8 scfm (12-4-96)
Source Vacuum:	55 inches of water (12-4-96)

DISCUSSION:

The SVE system was down during November and part of December 1996, because of rain and noise issues. The blower sound cover was rebuilt on December 4, 1996, and the system was restarted. The SVE system operated for approximately two days, then power interruptions caused the system to automatically shut down. Based on influent concentrations, the system may be restarted during the second or third quarter of 1997.

ATTACHED:

- Table 1 Groundwater Monitoring Data, Fourth Quarter 1996
- Table 2 Historical Groundwater Elevation and Analytical Data, Petroleum Hydrocarbons and Their Constituents
- Table 3 Approximate Cumulative Floating Product Recovery Data
- Table 4 Soil Vapor Extraction System Operation and Performance Data
- Table 5 Soil-Vapor Extraction Well Data
- Table 6 Air-Sparge System Operation and Performance Data
- Figure 1 Site Location
- Figure 2 Site Plan
- Figure 3 Groundwater Data, Fourth Quarter 1996
- Figure 4 Historical SVE System Influent TVHG and Benzene Concentrations
- Figure 5 Historical SVE System Hydrocarbon Removal Rates
- Appendix A Analytical Results and Chain of Custody Documentation, Fourth Quarter 1996
 Groundwater Monitoring Event
- Appendix B SVE System Monitoring Data Log Sheets
- Appendix C Analytical Results and Chain-of-Custody Documentation for Soil-Vapor Extraction System, Fourth Quarter 1996

cc: Susan Hugo, ACHCSA Kevin Graves, RWQCB-SFBR

EMCON

Table 1 Groundwater Monitoring Data Fourth Quarter 1996

Date, 02-17-97

Well Designation	Water Level Field Date	Top of Casing	ng Depth to Water	TS Groundwater	Floating Product	Groundwater R Groundwater Plow Direction	Hydraulic	Water Sample Field Date	r TPHG	Benzene	Toluene EPA 8020	Ethylbenzene	Total Xylenes	MTBE A BO20	т МТВЕ В ЕРА 8240	TPHD
A-1	11-21-96	14.16	10.54	3 62	ND	WNW	0.002	11-21-96	Not sampled	l. well samp	oled semi-a	nnually, du	ring the fir	st and third	quarters	
A-2	11-21-96	14 55	11.06	3 49	ND	WNW	0.002	11-21-96	<50	<05°	<0.5	<0.5	<0.5	<30#		
A-3	11-21-96	15.75	11,86	3,89	ND	WNW	0 002	11-21-96	Not sampled	well samp	oled annual	ly, during t	he third qu	arter		
A-4	11-21-96	15.25	10 83	4.42	ND	WNW	0 002		Not sampled	-			-			
A-5	11-21-96	13.51	10 05	3 46	ND	WNW	0 002	11-21-96	8000	450	550	340	1100	<30#		
A-6	11-21-96	13.51	10 54	2 97	ND	WNW	0.002	11-21-96	62	<0.5	< 0.5	<0.5	<0.5	12		
AR-I	11-21-96	1561	11 52	4 09	ND	WNW	0,002	11-21-96	Not sampled	well samp	oled semi-a	nnually, du	ring the fire	st and third	quarters	
AR-2	11-21-96	15 28	11 57	3 71	ND	WNW	0.002	11-21-96	Not sampled	· well samp	oled semi-a	nnually, du	ring the fir.	st and third	quarters	
ADR-1	11-21-96	13 95	10.49	3.46	ND	WNW	0 002	11-21-96	1900	82	21	32	270	110	·	
ADR-2	11-21-96	14 64	11.23	3.41	ND	WNW	0 002	11-21-96	15000	630	440	390	2100	75		~ -

MWN. ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG. total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L. micrograms per liter

EPA: United Statest Environmental Protection Agency

MTBE: methyl-tert-butyl ether

TPHD total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND none detected WNW: west-northwest

#. method reporting limit was raised due to (1) high analyte concentration requiring sample dilution, or (2) matrix interference

-- , not analyzed

ft-MSL. elevation in feet, relative to mean sea level

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Well Designation	Water Level Field Date	Top of Casing	ng Depth to Water	Groundwater Groundwater	Floating Product	Groundwater S Flow Direction	Hydraulic B Gradient	Water Sample Field Date	TPHG	Benzene	Toluene	Ethylbenzene	F Total Kylenes	MTBE EPA 8020	TE MTBE	TPHD S LUFT Method
A-1	02-09-94	14 16	10.09	4 07	ND	NR	NR	02-09-94	3000	560	150	66	190			^650
A-1	05-04-94	14 16	10.68	3.48	ND	NW	0.004	05-04-94	1300	250	61	27	110	- •		^2100
A-I	08-10-94	14.16	10 28	3 88	ND	WNW	0.007	08-10-94	27000	3700	1100	540	3000			^3000
A-1	11-16-94	14.16	9.75	441	ND	NW	0.005	11-16-94	2100	460	6.4	62	120			4444640
A-1	03-24-95	14 16	8 10	6.06	ND	NW	0 009	03-24-95	1200	230	39	34	66			^^^160
A-1	06-05-95	14 16	11 13	3.03	ND	NW	0 002	06-05-95	1500	310	27	36	76			^710
A-1	08-17-95	14.16	1171	2.45	ND	W	100 0	08-18-95	1600	470	35	48	110	120		^240
A-I	12-04-95	14 16	12 28	1 88	ND	NNW	0 002	12-04-95	1200	240	17	25	56		120	
A-1	03-01-96	14 16	8.78	5.38	ND	NW	0 003	03-13-96	1300	300	74	29	73	100		
A-1	05-29-96	14 16	9.85	4 31	ND	NW	0 002	05-29-96	Not sampled	l. not sched	uled for ch	emical anal	ysis			
A-l	08-29-96	14 16	11.08	3 08	ND	W	0.002	08-29-96	1200	320	5.9	25	27	110		
A-1	11-21-96	14 16	10.54	3 62	ND	WNW	0 002	11-21-96	Not sampled	l well sam	oled semi-a	nnually, du	ring the fire	st and third	quarters	
A-2	02-09-94	14 55	10 67	3 88	ND	NR	NR	02-09-94	^^260	<0.6	<0.5	<0.5	<0.5	# .		
A-2	05-04-94	14 55	11.25	3.30	ND	NW	0.004	05-04-94	<50	< 0.5	<0.5	<0.5	<0.5			
A-2	08-10-94	14 55	11 56	2 99	ND	WNW	0.007	08-10-94	690	47	25	3.9	86			
A-2	11-16-94	14 55	10.31	4.24	ND	NW	0.005	11-16-94	<50	<0.5	<0.5	<0.5	<0.5	~ -		
A-2	03-24-95	14 55	8 64	5 91	ND	NW	0 009	03-24-95	<50	<0.5	<0.5	<0.5	<0.5	~ -		
A-2	06-05-95	14.55	11.72	2.83	ND	NW	0.002	06-05-95	<50	<0.5	<0.5	<0.5	<0.5			
A-2	08-17-95	14 55	12.35	2 20	ND	W	0 001	08-17-95	<50	<0.5	<0.5	< 0.5	<0.5	12		
A-2	12-04-95	14.55	12 74	1.81	ND	NNW	0 002	12-04-95	<50	<0.5	<0.5	<0.5	< 0.5			
A-2	03-01-96	14 55	9 34	5 21	ND	NW	0 003	03-13-96	<50	< 0.5	0.6	<0.5	13	<9		
A-2	05-29-96	14.55	10.40	4 15	ND	NW	0.002	05-29-96	<50	<0.5	<0.5	< 0.5	<0.5	<20		
A-2	08-29-96	14 55	11 50	3.05	ND	W	0 002	08-29-96	<50	<0.5	< 0.5	<0.5	<0.5	<39#		
A-2	11-21-96	14.55	11.06	3 49	ND	WNW	0.002	11-21-96	<50	< 0.5	<0.5	<0.5	<0.5	<30#		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Well Designation	Water Level Field Date	Top of Casing Sevation	ged Depth to Water	-ra NG Groundwater 19 Elevation	Floating Product	Groundwater Silow Direction	Hydraulic	Water Sample Field Date	TPHG % LUFT Method	Benzene Ge GPA 8020	Toluene	표 Ethylbenzene 점 EPA 8020	ਜ Total Xylenes ਨੂੰ EPA 8020	元 MTBE 円 EPA 8020	TE MTBE	TPHD
													==			
A-3	02-09-94	15 75	11.32	4,43	ND	NR	NR	02-09-94	<50	<0.5	<0.5	<0.5	<0.5			
A-3	05-04-94	15.75	11 99	3 76	ND	NW	0.004	05-04-94	<50	<0.5	<0.5	<0.5	<0.5			
A-3	08-10-94	15 75	11.12	4 63	ND	WNW	0.007	08-10-94	<50	<0.5	<0.5	<0.5	<0.5			
A-3	11-16-94	15 75	11.02	4 73	ND	NW	0 005	11-16-94	<50	<0.5	<05	<0.5	<0.5			
A-3	03-24-95	15.75	8.83	6 92	ND	NW	0.009	03-24-95	<50	<0.5	<0.5	<0.5	<0.5			
A-3	06-05-95	15 75	12 44	3.31	ND	NW	0.002	06-05-95	Not sampled				•			
A-3	08-17-95	15.75	13.04	271	ND	W	0 001	08-17-95	Not sampled				•			
A-3	12-04-95	15.75	13 57	2 18	ND	NNW	0.002	12-04-95	Not sampled					_		
A-3	03-01-96	15.75	9 90	5 85	ND	NW	0 003	03-13-96	<50	<0.5	<0.5	<05	<0.5	<3	~ -	- *
A-3	05-29-96	15.75	11 08	4.67	ND	NW	0.002	05-29-96	Not sampled				•			
A-3	08-29-96	15.75	12 38	3 37	ND	W	0.002	08-29-96	Not sampled				•			
A-3	11-21-96	15.75	11.86	3.89	ND	WNW	0.002	11-21-96	Not sampled	i. well samp	oled annuai	ly, during t	he third qua	arter		
A-4	02-09-94	15.25	10.01	5 24	ND	NR	NR	02-09-94	. <50	<0.5	<0.5	<0.5	<0.5			
A-4	05-04-94	15 25	11 08	4 17	ND	NW	0 004	05-04-94	<50	<0.5	<0.5	<05	<0.5			
A-4	08-10-94	15.25	11.75	3 50	ND	WNW	0.007	08-10-94	<50	< 0.5	<0.5	<0.5	<0.5			
A-4	11-16-94	15 25	9 78	5 47	ND	NW	0 005	11-16-94	<50	<0.5	<0.5	<0.5	<05			
A-4	03-24-95	15.25	7.20	8 05	ND	NW	0.009	03-24-95	<50	<0.5	<0.5	<0.5	<0.5			
A-4	06-03-95	15 25	. 11 70	3 55	ND	NW	0 002	06-05-95	Not sampled				•			
A-4	08-17-95	15.25	12.28	2 97	ND	W	0.001	08-17-95	Not sampled				•			
A-4	12-04-95	15 25	1263	2.62	ND	NNW	0 002	12-04-95	Not sampled				•			
A-4	03-01-96	15.25	8.55	6.70	ND	NW	0.003	03-13-96	<50	<0.5	<0.5	<0.5	<0.5	<3		
A-4	05-29-96	15 25	10 32	4 93	ND	NW	0 002	05-29-96	Not sampled							
A-4	08-29-96	15.25	11.55	3 70	ND	W	0.002	08-29-96	Not sampled				•			
A-4	11-21-96	15,25	10 83	4 42	ND	WNW	0 002	11-21-96	Not sampled	i- well samp	led annual	ly, during t	he third qua	arter		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

													-			
Well Designation	Water Level Freld Date	-r- W Top of Casing 'S Elevation	B Depth to Water	Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic	Water Sample Field Date	TPHG	Benzene G EPA 8020	Toluene	Ethylbenzene	Total Xylenes EPA 8020	MTBE F EPA 8020	MTBE EPA 8240	TPHD
																
A-5	02-09-94	13.51	9.44	4 07	ND	NR	NR	02-09-94	2200	190	130	130	310		- •	
A-5	05-04-94	13 51	10 00	3.51	ND	NW	0.004	05-0 9 -94	13000	1000	1500	490	2000			- •
A-5	08-10-94	13 51	10.76	2 75	ND	WNW	0 007	08-10-94	11000	730	930	310	1300			
A-5	11-16-94	13 51	9.09	4 42	ND	NW	0 005	11-16-94	2600	160	220	130	400			
A-5	03-24-95	13.51	7.40	611	ND	NW	0.009	03-24-95	3300	200	310	130	460			
A-5	06-05-95	13 51	10 43	3.08	ND	NW	0 002	06-05-95	57000	2700	4600	1500	6800	- •		
A-5	08-17-95	13.51	11.15	2 36	ND	W	0.001	08-18-95	34000	1600	2700	1100	5100	<28		
A-5	12-04-95	13.51	11.42	2 09	ND	NNW	0.002	12-04-95	61	<0.5	<0.5	<0.5	<0.5			
A-5	03-01-96	13 51	8 1 1	5.40	ND	NW	0.003	03-13-96	11000	860	960	380	1600	<100		
A-5	05-29-96	13.51	9.30	4 21	ND	NW	0 002	05-29-96	19000	1600	1900	880	3300	<100		
A-5	08-29-96	13.51	10 60	2.91	ND	W	0.002	08-29-96	7700	490	450	260	990	<30#		
A-5	11-21-96	13.51	10.05	3 46	ND	WNW	0 002	11-21-96	8000	450	550	340	1100	<30#	•-	
A-6	02-09-94	13.51	9 48	4.03	ND	NR	NR	02-09-94	640	<29	<3.7	<2.4	<82			
A-6	05-04-94	13.51	10 07	3,44	ND	NW	0 004	05-04-94	260	<0.5	<1.5	<1.5	<0.5			
A-6	08-10-94	13.51	10 77	2.74	ND	WNW	0 007	08-10-94	300	<0.6	<2.5	<0.8	<1			
A-6	11-16-94	13.51	9.14	4 37	ND	NW	0 005	11-16-94	250	<0.5	<1.5	<06	<1.5			
A-6	03-24-95	13 51	7 89	5 62	ND	NW	0 009	03-24-95	120	<0.5	<1	<0.5	5</td <td></td> <td></td> <td></td>			
A-6	06-05-95	13.51	10.06	3 45	ND	NW	0.002	06-05-95	160	<0.5	<0.6	<0.5	<0.5			
A-6	08-17-95	13.51	11 10	2 41	ND	w	0.002	08-18-95	530	<0.5	<0.5	<24	<4.2	6		
A-6	12-04-95	13.51	11.52	1 99	ND	NNW	0.002	12-04-95	28000	1600	1800	880	3600			
A-6	03-01-96	13.51	8.21	5.30	ND	NW	0.003	03-13-96	1400	<3	<15	<7	<10	<20		
A-6	05-29-96	13.51	9 25	4.26	ND	NW	0.002	05-29-96	410	<2	<2	<2	<2	3		
A-6	08-29-96	13.51	10.52	2 99	ND	w	0.002	08-29-96	80	<0.5	<0.5	<0.5	<0.5	6		
A-6	11-21-96	13.51	10.54	2 97	ND	WNW	0 002	11-21-96	62	<05	<0.5	<05	<0.5	12		
	21 /0	-551		271			0 002		02	~ U J	40.5	~02	~v.J	• 4		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Well Designation	Water Level Field Date	Top of Casing Flevation	ad Depth to Water	Groundwater G Elevation	Floating Product	Groundwater Flow Direction	Hydraulic Hy Gradient	Water Sample Field Date	표 TPHG 연 는 LUFT Method	т Вепхепе 679 EPA 8020	Toluene EPA 8020	표 Ethylbenzene 점 EPA 8020	ਜ Total Xylenes ਨੂੰ EPA 8020	H MTBE F EPA 8020	or MTBE	TPHD
AR-1	02-09-94	15.61	11.08	4.53	ND	NR	NR	02-09-94	26000	2900	450	020	2000			
AR-I	05-04-94	15.61	11.08	3.78	ND	NW NW	0.004	02-09-94	36000	2900 3400	450 360	920 1400	3000 3700			^4200
AR-1	08-10-94	15.61	11.09	4 52	ND	WNW	0.004	03-04-94	6100	120	56	65	530	••		^7200
AR-1	11-16-94	15.61	10 19	5.42	ND	NW	0.007	11-16-94	1200	66	20	34	210			^2900 ^^^560
AR-1	03-24-95	15.61	7.25	8.36	ND	NW	0.009	03-24-95	270	14	0,6	2.5	210			^^^130
AR-I	06-05-95	15.61	11 37	4.24	ND	NW	0.002	06-05-95	190	10	<0.5	0.8	0.5			^580
AR-1	08-17-95	15.61	12,40	3,21	ND	w	0.001	08-17-95	960	110	12	4.5	150	14		<50
AR-1	12-04-95	15.61	12 90	2 71	ND	NNW	0 002	12-04-95	<50	1.5	<0.5	<0.5	08			
AR-1	03-01-96	15 61	8.19	7 42	ND	NW	0.003	03-13-96	150	3.8	0.5	14	13	<3		
AR-1	05-29-96	15.61	10.41	5.20	ND	NW	0 002	05-29-96	Not sample					-		
AR-1	08-29-96	15 61	12.12	3 49	ND	w	0.002	08-29-96	<50	<0.5	< 0.5	<0.5	0.8	<3		
AR-1	11-21-96	15.61	11.52	4.09	ND	WNW	0.002	11-21-96	Not sample	d. well samp	oled semi-a	nnually, du	ring the fire		quarters	
AR-2	02-09-94	15.28	11 33	3.95	ND	NR	NR	02-09-94	^^82	0.5		.0.4	0.5			
AR-2	05-04-94	15.28	11 88	3.93	ND ND	NW	0.004	05-04-94	<50	<0.5	<0.5	<0.5	<0.5	- *		<50
AR-2	08-10-94	15.28	12 48	2.80	ND	WNW	0.004	03-04-94	200	<0.5 5	<05	<0.5	<0.5	- •		<50
AR-2	11-16-94	15.28	10.95	4 33	ND ND	NW	0 007	11-16-94	<50	0.8	17 <05	2.7 <0.5	38			^55
AR-2	03-24-95	15.28	9 13	6 15	ND	NW	0.009	03-24-95	<50	6.2	<0.5	<05	<05 06			<50
AR-2	06-05-95	15.28	12.09	3 19	ND	NW	0.009	05-24-95	<50	<0.5	<0.5	<0.5	<05			<50
AR-2	08-17-95	15.28	12.78	2 50	ND	w	0.001	08-18-95	<50	<0.5	<0.5	<0.5	<0.5			<50
AR-2	12-04-95	15.28	11.44	3 84	ND	NNW	0.001	12-13-95	<50	<0.5	<0.5	<0.5	<0.5	4		<50
AR-2	03-01-96	15.28	9.83	5.45	ND	NW	0.003	03-13-96	190	26	2.6	3 3	13	200		
AR-2	05-29-96	15.28	10.97	4,31	ND	NW	0.003	05-13-96	Not sampled				-	200		
AR-2	08-29-96	15 28	12.20	3 08	ND	w	0 002	08-29-96	<50	<0.5	<0.5	(0 5 ×100)	7515 <0.5	95		
AR-2	11-21-96	15.28	11 57	3 71	ND	WNW	0 002	11-21-96	Not sampled				_			
					• .~		<u>-</u>	>0		on daniq	,,,,, sciin-ai	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ang une me	want motor	quartis	

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Well Designation	Water Level Field Date	Top of Casing Selevation	a Depth to Water	G Groundwater	Floating Product	G Groundwater S Flow Direction	Hydraulic	Water Sample Field Date	TPHG	新 Benzene 高 EPA 8020	Toluene Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE	H MTBE	त TPHD ी LUFT Method
ADR-1	02-09-94	13 95	9.90	4.05	ND	NR	NR	02-09-94	3000	380	140	59	240			^110
ADR-1	05-04-94	13.95	10 50	3 45	ND	NW	0.004	05-04-94	2100	490	93	68	140			^60
ADR-1	08-10-94	13.95	10.36	3.59	ND	WNW	0.007	08-10-94	150000	5400	15000	3600	24000		*-	^^4800
ADR-1	11-16-94	13.95	9 64	4.31	Sheen	NW	0 005	11-16-94	Not sampled				24000		*-	****
ADR-1	03-24-95	13.95	8.04	** 5 92	100	NW	0 009	03-24-95	Not sampled							
ADR-1	06-05-95	13 95	11 02	2.93	ND	NW	0.002	06-05-95	23000	310	420	300	1900			^13000
ADR-1	08-17-95	13.95	11 86	2 09	ND	w	0.001	08-18-95	4400	150	120	95	620	120		^4500
ADR-1	12-04-95	13 95	10.05	3 90	ND	NNW	0 002	12-13-95	8800	100	130	120	990			
ADR-1	03-01-96	13.95	8 76	5 19	ND	NW	0 003	03-13-96	89000	370	1000	840	8100	<500		
ADR-1	05-29-96	13 95	9.74	4 21	ND	NW	0.002	05-30-96	27000	230	380	370	2700	<100		
ADR-1	08-29-96	13.95	10 77	3 18	ND	w	0 002	08-29-96	5300	190	58	76	470	85		
ADR-1	11-21-96	13.95	10 49	3 46	ND	WNW	0.002	11-21-96	1900	82	21	32	270	110		
ADR-2	02-09-94	14.64	10 73	3 91	ND	NR	NR	02-09-94	83000	6300	6100	2000	11000			12000
ADR-2	05-04-94	14 64	11.31	3.33	ND	NW	0 004	05-04-94	36000	4600	2600	930	4500			^4200
ADR-2	08-10-94	14.64	9.81	** 4 90	010	WNW	0.007	08-10-94	Not sampled	well cont	ained floati	ng product				
ADR-2	11-16-94	14 64	9 84	** 4 87	0.09	NW	0 005	11-16-94	Not sampled			₩.				
ADR-2	03-24-95	14 64	8 41	NR*	>3.00*	NR*	NR*	03-24-95	Not sampled	i: well com	ained floati	ng product				
ADR-2	06-05-95	14 64	11 45	NR*	>3 00*	NR*	NR*	06-05-95	Not sampled							
ADR-2	08-17-95	14 64	12 10	** 2.56	0 03	W	0.001	08-17-95	Not sampled	r well cont	ained floati	ng product				
ADR-2	12-04-95	14.64	10.93	** 3.73	0.03	NNW	0.002	12-13-95	Not sampled							
ADR-2	03-01-96	14 64	8.74	5 90	ND	NW	0.003	03-13-96	29000	1100	1200	710	3800	<500		
ADR-2	05-29-96	14.64	10 43	4.21	ND	NW	0.002	05-29-96	33000	510	500	470	2300	120		
ADR-2	08-29-96	14 64	11 64	3.00	ND	W	0 002	08-29-96	8000	230	180	150	730	53		
ADR-2	11-21-96	14.64	11 23	3.41	ND	WNW	0.002	11-21-96	15000	630	440	390	2100	75		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Date: 02-17-97

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L

ft-MSL elevation in feet, relative to mean sea level

MWN groundwater flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

ug/L, micrograms per liter

EPA: United States Environmental Protection Agency

MTBE Methyl-tert-butyl ether

TPHD, total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND none detected

NR: not reported, data not available or not measurable

NW: northwest

WNW: west-northwest

W: west

NNW-north-northwest

- #. method reporting limit was raised due to (1) high analyte concentration requiring sample dilution, or (2) matrix interference
- ^: sample contains a lower boiling point hydrocarbon quantitated as diesel; chromatogram does not match the typical diesel fingerprint
- ^^ sample contains a single non-fuel component eluting in the gasoline range, and quantified as gasoline
- ^^^. sample contains a mixture of diesel and a lower boiling point hydrocarbon quantitated as diesel; chromatogram does not match the typical diesel fingerprint
- ^^^, sample contains components eluting in the diesel range, quantified as diesel; chromatogram does not match the typical diesel fingerprint
- -- not analyzed or not applicable
- *: well contained more than 3 feet of floating product, exact product thickness and groundwater elevation could not be measured
- **: [corrected elevation (Z')] = Z + (h * 0.73) where: Z = measured elevation, h = floating product thickness, 0.73 = density ratio of oil to water
- ***: For previous historical groundwater elevation data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 2169, 889 West Grand Avenue, Oakland, California, (EMCON, March 4, 1996)

Table 3
Approximate Cumulative Floating Product Recovered

Date: 02-17-97

ARCO Service Station 2169 889 West Grand Avenue, Oakland, CA

Well Desig- nation	Date	Floating Product Recovered
ADR-1	1994	gallons 0.0
ADR-2	1,,,,,	0.0
ADR-1 ADR-2	1995	0.0 4.8
ADR-1 ADR-2	1996	0.0 0.0
	1994 to 1996 Total:	4.8

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2169

Vapor Treatment Unit: ThermTech Model

Location: 889 West Grand Avenue

VAC-25, 250cfm Thermal/

Oakland, California

Catalytic Oxidizer

Consultant: EMCON

Start-Up Date: 06-02-94

1921 Ringwood Avenue San Jose, Californía

Operation and Performance Data From: 06-02-94

To: 01-01-97

Beginning Date:	06-02-94	06-02-94	06-07-94	06-16-94	06-22-94
Ending Date:	06-02-94	06-07-94	06-16-94	06-22-94	06-30-94
Down-time (days):	0	0	1	0	4
Total Operation (days):	0	5	8	6	4
Total Operation (hours):	1.7	121.3	193.7	145.2	106.3
Operation Hours to Date:	1.7	123.0	316.7	462.0	568.2
TPH Concentrations					
Average Influent (ppmv):	18,000	16,000	830	1,100	230
Average Effluent (ppmv):	ND	45	ND	4.9	75.0
Benzene Concentrations					
Average Influent (ppmv):	270	420	17	24	3.8
Average Effluent (ppmv):	ND	0.30	ND	0.08	0.78
Flow Rates					
Average Influent (scfm):	61.1	131.5	145.3	194.1	176.7
Average Dilution (scfm):	184.2	97.8	69.9	0.0	0.0
Average Effluent (scfm):	268.6	272.3	289.7	264.4	288.9
TPH-G Recovery Data					
Recovery Rate (lbs/hr):	11.12	21.26	1.22	2.16	0.41
Recovery Rate (lbs/day):	266.80	510.34	29.27	51.77	9.86
Destruction Efficiency (%):	100.00	99.46	100.00	99.39	46.70
Product Recovered (lbs):	18.68	2779.35	236.08	313.27	43.64
Product Recovered to Date (lbs):	18.68	2798.02	2834.10	3147.37	3191.01
Product Recovered to Date (gal):	3.11	433.00	472.35	524.56	531.83
Benzene Recovery Data					
Recovery Rate (lbs/hr):	0.185	0.670	0.030	0.056	0.008
Recovery Rate (lbs/day):	4.447	16.076	0.719	1.355	0.195
Destruction Efficiency (%):	100.00	99.86	100.00	99.5 6	66.45
Product Recovered (lbs):	0.311	81.249	5.802	8.202	0.865
Product Recovered to Date (lbs):	0.311	81.561	87.363	95.565	96.430
Product Recovered to Date (gal):	0.043	11.270	12.050	13.181	13.301

Page 1 Footnotes

ppmv; parts per million by volume sofm; standard cubic feet per minute lbs/hr, pounds per operational hour

ibs/day: pounds per day

lbs. pounds

gal: gallons

ND: None Detected, Recovery data calculated using laboratory detection limits

- 1. Molecular weights used in recovery calculations are 65 for TPH and 78 for benzene.
- 2. Densities used in recovery calculations are 6.0 lbs/gal for TPH and 7.27 lbs/gal for benzene
- 3 All data and calculations on this page were prepared by GeoStrategies, Inc. (GSI), as presented in Letter Report, Vapor Extraction Start Up and Quarterly Groundwater Monitoring, Second Quarter 1994, (GSI, September 1994)

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 06-02-94 Operation and Performance Data From: 06-02-94

Vapor Treatment Unit: ThermTech Model

		· · · · · · · · · · · · · · · · · · ·			
Date Begin:	07-01-94	08-01-94	09-01-94	12-01-94	01-01-95
Date End:	08-01-94	09-01-94	12-01-94	01-01-95	02-01-95
Mode of Oxidation:	Therm-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox
Days of Operation:	11	17	35	16	26
Days of Downtime:	20	14	56	15	5
Average Vapor Concentrations (1)					
Well Field Influent. ppmv (2) as gasoline	1983	680	450	1500	<15
mg/m3 (3) as gasoline	5333	1800	1200	5600	<60
ppmv as benzene	29	7.6	2.9	7	< 0.1
mg/m3 as benzene	95	25	9.4	22	<0.5
System Influent: ppmv as gasoline	1983	680	450	400	<15
mg/m3 as gasoline	5333	1800	1200	1600	<60
ppmv as benzene	29	7.6	2.9	19	<0.1
mg/m3 as benzene	95	25	9.4	6	< 0.5
System Effluent: ppmv as gasoline	17	44	4.1	<15	<i5< td=""></i5<>
mg/m3 as gasoline	46	118	11.1	<60	<60
ppmv as benzene	0.15	0.7	0.04	<0.1	< 0.1
mg/m3 as benzene	0.49	2.3	0 143	< 0.5	< 0.5
Average Well Field Flow Rate (4), scfm (5):	198.3	212.6	214.3	17.7	16.7
Average System Influent Flow Rate (4), scfm:	198.3	212.6	2143	120.1	164.3
Average Destruction Efficiency (6), percent (7):	99.1	93.4	99.1	96 3	NA
Average Emission Rates (8), pounds per day (9)					
Gasoline:	0.82	2.25	0.21	0.65	0.89
Benzene:	0.01	0.04	0 00	0.01	0.01
Operating Hours This Period:	<u> 255,95</u>	<u>414,28</u>	833.57	385.86	614.80
Operating Hours To Date:	256 0	670.2	1503.8	1889.7	2504.5
Pounds/ Hour Removal Rate, as gasoline (10):	3.96	1.43	0 96	0.37	0.00
Pounds Removed This Period, as gasoline (11):	<u>1013.1</u>	<u>593.4</u>	802,3	143.1	2.3
Pounds Removed To Date, as gasoline:	4204.1	4797.4	5599.7	5742.9	5745.2
Gallons Removed This Period, as gasoline (12):	<u>163.4</u>	<u>95,7</u>	<u>129,4</u>	23.1	<u>0.4</u>
Gallons Removed To Date, as gasoline:	678.1	773.8	903.2	926.3	926.7

Table 4
Soil-Vapor Extraction System
Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California Start-Up Date: 06-02-94 Operation and Performance Data From: 06-02-94

Date Begin:	02-01-95	07-01-95	08-01-95	09-01-95	10-01-95
Date End:	07-01-95	08-01-95	09-01-95	10-01-95	11-01-95
Mode of Oxidation:	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox
Days of Operation:	0	14	19	27	12
Days of Downtime:	150	17	12	3	19
Average Vapor Concentrations (1)					
Well Field Influent: ppmv (2) as gasoline	NA (13)	1567	1975	1400	250
mg/m3 (3) as gasoline	NA	5767	7175	5200	900
ppmv as benzene	NA	12	10	3.1	0.6
mg/m3 as benzene	NA	40	33	10	1.7
System Influent: ppmv as gasoline	NA	200	270	230	66
mg/m3 as gasoline	NA	740	970	920	240
ppmv as benzene	NA	1.6	1	0.6	0.1
mg/m3 as benzene	NA	5.2	3.3	1.8	< 0.5
System Effluent: ppmv as gasoline	NA	23	<15	<15	<15
mg/m3 as gasoline	NA	83	<60	<60	<60
ppmv as benzene	NA	< 0.1	< 0.1	< 0.1	< 0.1
mg/m3 as benzene	NA	<0.5	< 0.5	<0.5	< 0.5
Average Well Field Flow Rate (4), scfm (5):	0.0	27.9	43.0	58 1	67.0
Average System Influent Flow Rate (4), scfm:	0.0	197.6	166.8	167.9	174.1
Average Destruction Efficiency (6), percent (7):	NA	88.8	93.8	93.5	75.0
Average Emission Rates (8), pounds per day (9)					
Gasoline:	0.00	1.47	0.90	0.90	0.94
Benzene:	0.00	0.01	10.0	0.01	10.0
Operating Hours This Period:	0.00	346.17	462,40	652.27	278.16
Operating Hours To Date:	2504.5	2850.6	3313.0	3965.3	4243.5
Pounds/ Hour Removal Rate, as gasoline (10):	0.00	0 60	1.15	1.13	0.23
Pounds Removed This Period, as gasoline (11):	0.0	208.5	<u>533.9</u>	<u>737 6</u>	62.8
Pounds Removed To Date, as gasoline:	5745.2	5953.6	6487.6	7225.1	7287 9
Gallons Removed This Period, as gasoline (12):	0.0	<u>33.6</u>	<u>86.1</u>	<u>119 0</u>	<u>10.1</u>
Gallons Removed To Date, as gasoline:	926.7	960.3	1046.4	1165.4	1175.5

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Number: 2169 Facility

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 06-02-94 Operation and Performance Data From: 06-02-94

Date Begin:	11-01-95	01-01-96	04-01-96	07-01-96	08-01-96
Date End:	01-01-96	04-01-96	07-01-96	08-01-96	09-01-96
Mode of Oxidation:	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox
Days of Operation:	0	0	0	0	18
Days of Downtime:	61	91	91	31	13
Average Vapor Concentrations (1)					
Well Field Influent: ppmv (2) as gasoline	NA	NA	NA	NA	140
mg/m3 (3) as gasoline	NA	NA	NA	NA	570
ppmv as benzene	NA	NA	NA	NA	1.6
mg/m3 as benzene	NA	NA	NA	NA	5
System Influent: ppmv as gasoline	NA	NA	NA	NA	73
mg/m3 as gasoline	NA	NA	NA	NA	300
ppmv as benzene	NA	NA	NA	NA	0.8
mg/m3 as benzene	NA	NA	NA	NA	2.6
System Effluent: ppmv as gasoline	NA	NA	NA	NA	<5
mg/m3 as gasoline	NA	NA	NA	NA	<20
ppmv as benzene	NA	NA	NA	NA	< 0.2
mg/m3 as benzene	NA	NA	NA	NA	<0.5
Average Well Field Flow Rate (4), scfm (5):	0.0	0.0	0.0	0.0	119.3
Average System Influent Flow Rate (4), scfm:	0.0	0.0	0.0	0.0	153.0
Average Destruction Efficiency (6), percent (7).	NA	NA	NA	NA	93.3
Average Emission Rates (8), pounds per day (9)					
Gasoline:	0.00	0.00	0.00	0.00	0.27
Benzene:	0.00	0.00	0.00	0.00	0.01
Operating Hours This Period:	0.00	0.00	0.00	1.82	435.13
Operating Hours To Date	4243.5	4243.5	4243.5	4245.3	4680.4
Pounds/ Hour Removal Rate, as gasoline (10):	0.00	0.00	0.00	0.00	0.25
Pounds Removed This Period, as gasoline (11):	0.0	0.0	0.0	0.0	110.7
Pounds Removed To Date, as gasoline:	7287 9	7287.9	7 287.9	7287.9	7398.7
Gallons Removed This Period, as gasoline (12):	0.0	<u>0 0</u>	0.0	0.0	17.9
Gallons Removed To Date, as gasoline:	1175.5	1175 5	1175.5	1175 5	1193.4

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 06-02-94

Operation and Performance Data From: 06-02-94

Date Begin:	09-01-96	10-01-96	11-01-96	12-01-96	
Date End:	10-01-96	11-01-96	12-01-96	01-01-97	
Mode of Oxidation:	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox	
Days of Operation:	8	30	0	2	
Days of Downtime:	22	1	30	29	
Average Vapor Concentrations (1)					
Well Field Influent: ppmv (2) as gasoline	770	110	NA	300	
mg/m3 (3) as gasoline	3200	460	NA	1200	
ppmv as benzene	2 4	15	NA	< 0.5	
mg/m3 as benzene	7.8	4.9	NA	<2	
System Influent: ppmv as gasoline	300	39	NA	300	
mg/m3 as gasoline	1200	160	NA	1200	
ppmv as benzene	0 8	0.5	NA	< 0.5	
mg/m3 as benzene	2.6	1.7	NA	<2	
System Effluent: ppmv as gasoline	<5	<5	NA	11	
mg/m3 as gasoline	<20	<20	NA	46	
ppmv as benzene	< 0.1	<0.2	NA	< 0.1	
mg/m3 as benzene	<0.4	<0.5	NA	<04	
Average Well Field Flow Rate (4), scfm (5):	128.6	99.3	0.0	148.8	
Average System Influent Flow Rate (4), scfm.	204.3	157.7	0.0	148.8	
Average Destruction Efficiency (6), percent (7):	98.3	87.5	NA	96.2	
verage Emission Rates (8), pounds per day (9)					
Gasoline:	0.37	0.28	NA	0.61	
Benzene:	0.01	0.01	NA	0.01	
Operating Hours This Period:	180.20	730.20	<u>0.19</u>	43.83	
Operating Hours To Date:	4860.6	5590.8	5591.0	5634.8	
Pounds/ Hour Removal Rate, as gasoline (10):	1.54	0.17	0 00	0.67	
Pounds Removed This Period, as gasoline (11):	<u>277.5</u>	124.8	0.0	29.3	
Pounds Removed To Date, as gasoline:	7676.2	7801 0	7801 0	7830.3	
Gallons Removed This Period, as gasoline (12):	<u>44.8</u>	<u>20, i</u>	0.0	<u>4.7</u>	
Gallons Removed To Date, as gasoline:	1238 2	1258 3	1258.3	1263.0	

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Number: 2169 Facility

Location: 889 West Grand Avenue

Oakland, California

San Jose, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Start-Up Date: 06-02-94

Consultant: EMCON

1921 Ringwood Avenue

Operation and Performance Data From: 06-02-94

To: 01-01-97

CURRENT REPORTING PERIOD:	10-01-96	to 01-01-97	
DAYS / HOURS IN PERIOD:	92	2208.0	
DAYS / HOURS OF OPERATION:	32	774.2	
DAYS / HOURS OF DOWN TIME:	60	1433.8	
PERCENT OPERATIONAL:		35.1 %	
PERIOD POUNDS REMOVED:	154.1		
PERIOD GALLONS REMOVED.	24.9		
AVERAGE WELL FIELD FLOW RATE (scfm):		102.1	
AVERAGE SYSTEM INFLUENT FLOW RATE (scfm):		157.2	

For the period from July 1 to December 1, 1994, ppmv results were converted to mg/m3 using the following formula:

concentration (as gasoline in mg/m3) = [concentration (as gasoline in ppmv) x 65 lb/lb-mole / 24 05 (lb/m3/lb-mole of air)/mg] (rounded as appropriate) concentration (as benzene in mg/m3) = [concentration (as benzene in ppmv) x 78 lb/lb-mole / 24.05 (lb/m3/lb-mole of air)/mg] (rounded as appropriate) For the period from December 1, 1994, to July 1, 1995, ppmv results were converted to mg/m3 using the following formula:

concentration (as gasoline in mg/m3) = {concentration (as gasoline in ppmv) x 87 lb/lb-mole / 24.05 (lb/m3/lb-mole of air)/mg} (rounded as appropriate) concentration (as benzene in rig/m3) = [concentration (as benzene in ppmv) x 78 lb/lb-mole / 24.05 (lb/m3/lb-mole of air)/mg] (rounded as appropriate) After July 1, 1995, all vapor results were reported by the laboratory in ppmv and mg/m3.

- 4. Average flow rates (time weighted average) are based on instantaneous flow rates recorded during the month; refer to Appendix B for instantaneous flow data
- 5 scfm. flow in standard cubic feet per minute at one atmosphere and 70 degrees Fahrenheit
- Average destruction efficiencies are calculated using monthly average concentrations, refer to Appendix B for instantaneous destruction efficiency data
- destruction efficiency, percent = ([system influent concentration (as gasoline in mg/m3)] system effluent concentration (as gasoline in mg/m3)] / system influent concentration (as gasoline in mg/m3)) x 100 percent
- 8. Average emission rates are calculated using monthly average concentrations and flow rates; refer to Appendix B for instantaneous emission rate data
- emission rates (pounds per day) = system effluent concentration (as gasoline or benzene in mg/m3) x system influent flow rate (scfm) x 0.02832 m3/fi3 x 1440 minutes/day x 1 pound/454,000 mg
- pounds/ hour removal rate (as gasoline) = well field influent concentration (as gasoline in mg/m3) x well field influent flow rate (scfm) x 0.02832 m3/ft3 x 60 minutes/hour x 1 pound/454,000 mg
- pounds removed this period (as gasoline) = pounds/ hour removal rate x hours of operation
- 12 gallons removed this period (as gasoline) = pounds removed this period (as gasoline) x 0.1613 gallons/pound of gasoline
- 13. NA; not applicable, not analyzed, or not available

^{1.} Average concentrations are based on discrete sample results reported during the month; refer to Appendix B for discrete sample results.

^{2.} ppmv: parts per million by volume

mg/m3: milligrams per cubic meter

Table 5
Soil-Vapor Extraction Well Data

Date. 02-17-97

						Well Idea	dification					
		A-1		Ι	A-2			A-3			A-4	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O		ppmv	1п-Н2О		ppmv	in-H2O
or SVE well me	T onitoring data prior	to January 1, 199	5, please refer to	T the third quarter 19	95 groundwater m	nonitoring report fo	r this site.					
01-13-95	passive	NA	0	passive	NA	0	passíve	NA	0	passive	NA	0
01-26-95	passive	NA	0	passive	NA	0	passive	NA	0	passive	NA	0
07-17-95	System was shut	down on January 2	26, 1995	System was restar	ted on July 17, 19	995.						
07-1 7 -95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
07-25-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
08-22-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
09-21-95	closed	NA	0	ciosed	NA	0	closed	NA	0	closed	NA	0
09-21-95	open	NA	46	closed	NA	0	closed	NA	0	closed	NA	0
09-21-95	open	600 LAB	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
10-12-95	open	NA	36	closed	NA	0	closed	NA	0	closed	NA	0
10-12-95	System was manu	ially shut down.										
08-02-96	closed	NA	0	closed	NA	0	open	NA	46	closed	NA	0
08-05-96	closed	NA	NA	closed	NA	NA ·	ореп	NA	22	closed	NA	NA
09-23-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
10-24-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
12-04-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA

TVHG, concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O, inches of water

open open to the system

passive; open to the atmosphere

closed closed to the system and atmosphere

NA not analyzed or not measured

FID TVHG concentration was measured with a portable flame ionization detector

LAB TVHG concentration was analyzed in the laboratory

PID. TVHG concentration was measured with a portable photoionization detector

Table 5
Soil-Vapor Extraction Well Data

Date 02-17-97

						Well Ider	ntification					
		AV-1		1	AV-2			AV-3			AV-4	
	Valve		Vacuum	Valve		Vacuum	Valve	- V	Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respons
		ppmv	in-H2O		ppmv	ın-H2O		ppmv	in-H2O		ppmv	:n-H2O
or SVE well mo	nitoring data prior	to January 1, 199	5, please refer to	the third quarter 19	995 groundwater m	onitoring report fo	r this site.					
01-13-95	passive	NA	15	passive	NA	0	passive	NA	0	open	463 PID	16
01-26-95	passive	NA	27	passive	NA	0	passive	NA	0	open	1 8 FID	30
07-17-95	System was shut	down on January :	26, 1995.	System was resta	arted on July 17, 19	95.			j	:		
07-17-95	open	NA	NA	open	NA	NA	open	NA	NA	closed	NA	NA
07-25-95	open	1026 PID	42	open	1364 PID	42	open	869 PID	42	closed	NA	NA
07-25-95	open	1200 LAB	NA	open	1600 LAB	NA	open	980 LAB	NA	closed	NA	NA
08-22-95	open	NA	42	ореп	NA	44	ореп	NA	44	closed	NA	NA
09-21-95	open	NA	43	ореп	NA	47	ореп	NA	47	closed	NA	0
09-21-95	open	NA	46	open	NA	46	open	NA	46	closed	NA	1
10-12-95	open	NA	44	open	NA	43	open	NA	43	closed	NA	1
10-12-95	System was manu	ıally shut down.		1								
08-02-96	closed	48.5 PID	6	open	863 PID	46	open	322 PID	44	closed	NA	0
08-05-96	closed	NA	NA	open	NA	32	open	NA	36	open	NA	32
09-23-96	open	NA	42	open	NA	50	open	NA	53	open	NA	50
	open	NA	NA	open	NA	NA	open	NA	NA	open	NA	NA
10-24-96	open											

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O: inches of water

open open to the system

passive, open to the atmosphere

closed closed to the system and atmosphere

NA not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 5
Soil-Vapor Extraction Well Data

Date: 02-17-97

						Well Iden	itification					
		AV-5			AV-6			AV-7	<u> </u>		AR-2	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O
or SVE well mo	l onitoring data prior	to January 1, 199	5, please refer to	T the third quarter 19	95 groundwater me	onitoring report fo	r this site					
01-13-95	passive	NA	1	open	46 PID	16	passive	NA	0	passive	NA	0
01-26-95	open	2.2 FID	30	open	2.3 FID	30	passive	NA	0	passive	NA	0
07-17-95	System was shut of	lown on January	26, 1995	System was resta	rted on July 17, 19	95						
07-17-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
07-25-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
08-22-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	open	NA	44
09-21-95	closed	NA	0	closed	NA	0	closed	NA	0	open	NA	48
09-21-95	closed	NA	0	ореп	NA	46	closed	NA	0	open	NA	46
09-21-95	closed	NA	NA	open	2300 LAB	NA	closed	NA	NA	open	NA	NA
10-12-95	closed	NA	0	open	NA	42	closed	NA	0	open	NA	43
10-12-95	System was manu	ally shut down		ĺ								
08-02-96	ореп	NA	44	open	185 PID	42	open	NA	44	closed	NA	40
08-05-96	open	NA	30-36	open	NA	32	open	NA	34	open	NA	28
09-23-96	open	455 PID	50	open	282 PID	49	closed	NA	NA	open	13.2 PID	45
10-24-96	open	NA	NA	open	NA	NA	closed	NA	NA	open	NA	NA
12-04-96	open	NA	NA	open	NA	NA	closed	NA	NA	open	NA	NA

TVHG, concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O inches of water

open open to the system

passive, open to the atmosphere

closed closed to the system and atmosphere

NA not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 5
Soil-Vapor Extraction Well Data

Date: 02-17-97

	}					Well Ide
		ADR-1			ADR-2	
l	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response
		ppmv	ın-H2O			in-H2O
					рртч	111-1120
For SVE well mo	I onitoring data prior	to January I, 199	5, please refer to t	The third quarter 19	95 groundwater m	onitoring report fo
01-13-95	open	58 PID	16	open	160 PID	16
01-26-95	open	2.2 FID	30	open	4.4 FID	30
07-17-95	System was shut	down on January 2	26, 1995.	System was resta	rted on July 17, 19	
07-17-95	open	NA	NA	open	NA	NA
07-25-95	open	1184 PID	42	open	1057 PID	42
07-25-95	open	1400 LAB	NA	open	1300 LAB	NA
08-22-95	open	NA	44	орел	NA	44
09-21-95	open	NA	48	open	NA	47
09-21-95	open	NA	45	open	NA	46
10-12-95	open	NA	43	open	NA	44
10-12-95	System was manu	ally shut down				
08-02-96	closed	NA	0	open	950 PID	42
08-05-96	closed	NA	NA	open	NA	32
09-23-96	open	1221 PID	NA	open	950 PID	50
10-24-96	орел	NA	NA	open	NA	NA
12-04-96	open	NA	NA	open	NA	NA
				-		
]					
	Ì					
	1					
	1					

TVHG. concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O inches of water

open: open to the system

passive open to the atmosphere

closed: closed to the system and atmosphere

NA. not analyzed or not measured

FID TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID. TVHG concentration was measured with a portable photoionization detector

Table 6
Air-Sparge System
Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Air-Sparge Unit:*

3-horsepower Conde blower 5-horsepower air compressor

Consultant: EMCON

Start-Up Date: 07-15-94

1921 Ringwood Avenue San Jose, California

Operation and Performance Data From: 07-15-94

Date Begin:	07-15-94	08-01-94	08-01-94	08-01-94	08-15-94	09-13-94
Date End:	08-01-94	08-01-94	08-01-94	08-15-94	09-13-94	11-28-94
Days of Operation:	6	0	0	19	27	0
Days of Downtime:	11	0	0	12	3	76
Air-Sparge Well Status:						
AS-1	open	open	open	open	open	closed
AS-2	open	open	open	open	open	closed
AS-3	open	open	open	open	open	closed
AS-4	open	open	open	open	open	closed
AS-5	open	open	open	open	open	closed
Air-Sparge Well Pressure (psig) (1):						
AS-1	2.8	2.8	3.0	2.0	2.4	0.0
AS-2	3.0	3.0	2.8	2.2	2.4	0.0
AS-3	3.6	3.6	3.8	3.1	2.2	0.0
AS-4	3.1	3.1	3.4	3.0	2.8	0.0
AS-5	2.8	2.8	3.2	2.8	3.2	0.0
Total Air-Sparge Flow Rate (scfm) (2):	25.0	29.0	29.0	27.0	29.0	0.0
Total Air-Sparge Pressure (psig):	5.0	2.8	2.8	2.6	3.0	0.0
Dissolved Oxygen (mg/L) (3): Air-Sparge Wells:						
AS-1	NA (4)	NA	NA	NA	NA	1.4
AS-2	ŇÁ	NA	NA	NA	NA	1.2
AS-3	NA	NA	NA	NA	NA	1.2
AS-4	NA	NA	NA	NA	NA	0.8
AS-5	NA	NA	NA	NA	NA	1.4
Depth to Water (ft-BGS) (5): Air-Sparge Wells:						
AS-1	NA	NA	NA	NA	NA	10.55
AS-2	NA	NA	NA	NA	NA	11.29
AS-3	NA	NA	NA	NA	NA	10.78
AS-4	NA	NA	NA	NA	NA	10.27
AS-5	NA	NA	NA	NA	NA	10.65

Table 6 Air-Sparge System Operation and Performance Data

Facility Number: 2169 Air-Sparge Unit:*

Location: 889 West Grand Avenue 3-horsepower Conde blower Oakland, California 5-horsepower air compressor

Consultant: EMCON 1921 Ringwood Avenue Start-Up Date: 07-15-94 Operation and Performance Data From: 07-15-94

1921 Ringwood Ave San Jose, California	nue	Operation and Performance Data From: 07-15-94 To: 01-01-97						
Date Begin:	11-28-94	01-03-95	02-03-95	03-31-95	07-25-95	08-10-95		
Date End:	01-03-95	02-03-95	03-31-95	06-28-95	08-10-95	08-22-95		
Days of Operation:	0	0	0	0	2	0		
Days of Downtime:	36	31	56	89	14	12		
Air-Sparge Well Status:								
AS-1	closed	closed	closed	closed	open	open		
AS-2	closed	closed	closed	closed	closed	closed		
AS-3	closed	closed	closed	closed	closed	closed		
AS-4	closed	closed	closed	closed	open	open		
AS-5	closed	closed	closed	closed	closed	closed		
Air-Sparge Well Pressure (psig) (1):								
AS-1	0.0	0.0	0.0	0.0	8.9	5.5		
AS-2	0.0	0.0	0.0	0.0	0.0	0,0		
AS-3	0.0	0.0	0.0	0.0	0.0	0.0		
AS-4	0.0	0.0	0.0	0.0	2.0	2.3		
AS-5	0.0	0.0	0.0	0.0	0.0	0.0		
Total Air-Sparge Flow Rate (scfm) (2):	0.0	0.0	0.0	0.0	2.0	2.0		
Total Air-Sparge Pressure (psig):	0.0	0.0	0.0	0.0	50	45		
Dissolved Oxygen (mg/L) (3): Air-Sparge Wells:								
AS-1	NA	NA	NA	NA	1.1	NA		
AS-2	NA	NA	NA	NA	NA	NA		
AS-3	NA	NA	NA	NA	NA	NA		
AS-4	NA	NA	NA	NA	1.4	NA		
AS-5	NA	NA	NA	NA	1.0	NA		
Depth to Water (ft-BGS) (5): Air-Sparge Wells:								
AS-1	NA	NA	8.79	NA	11.75	NA		
AS-2	NA	NA	9.37	NA	NA	NA		
AS-3	NA	NA	8.93	NA	NA	NA		
AS-4	NA	NA	8.43	NA	11.31	NA		
AS-5	NA	NA	8.80	NA	11.62	NA		

Table 6 Air-Sparge System
Operation and Performance Data

Facility Number: 2169 Air-Sparge Unit:*

Location: 889 West Grand Avenue 3-horsepower Conde blower 5-horsepower air compressor Oakland, California

Consultant: EMCON Start-Up Date: 07-15-94

1921 Ringwood Avenue San Jose, California		Operation and Performance Data From: 07-15-94 To: 01-01-97					
Date Begin:	08-22-95	09-21-95	10-12-95	01-01-96	04-01-96	07-01-96	
Date End:	09-21-95	10-12-95	01-01-96	04-01-96	07-01-96	08-01-96	
Days of Operation:	11	NA	NA	NA	NA	0	
Days of Downtime:	19	NA	NA	NA	NA	31	
Air-Sparge Well Status:							
AS-1	open	closed	closed	closed	closed	closed	
AS-2	closed	closed	closed	closed	closed	closed	
AS-3	closed	closed	closed	closed	closed	closed	
AS-4	open	closed	closed	closed	closed	closed	
AS-5	open	closed	closed	closed	closed	closed	
Air-Sparge Well Pressure (psig) (1):							
AS-1	7.0	0.0	0.0	0.0	0.0	0.0	
AS-2	0.0	0.0	0.0	0.0	0.0	0.0	
AS-3	0.0	0.0	0.0	0.0	0.0	0.0	
AS-4	1.5	0.0	0.0	0.0	0.0	0.0	
AS-5	1.0	0.0	0.0	0.0	0.0	0.0	
Total Air-Sparge Flow Rate (scfm) (2):	6.0	0.0	0.0	0.0	0.0	0.0	
Total Air-Sparge Pressure (psig):	45	0	0	0	0	0.0	
Dissolved Oxygen (mg/L) (3): Air-Sparge Wells:							
AS-1	NA	7.4	NA	NA	NA	NA	
AS-2	NA	NA	NA	NA	NA	NA	
AS-3	NA	NA	NA	NA	NA	NA	
AS-4	NA	1.5	NA	NA	NA	NA	
AS-5	NA	1.6	NA	NA	NA	NA	
Depth to Water (ft-BGS) (5): Air-Sparge Wells:							
AS-1	NA	12.12	NA	NA	NA	NA	
AS-2	NA	NA	NA	NA	NA	NA	
AS-3	NA	NA	NA	NA	NA	NA	
AS-4	NA	11.78	NA	NA	NA	NA	
AS-5	NA	12.05	NA	NA	NA	NA	

Table 6 Air-Sparge System Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Air-Sparge Unit:*

3-horsepower Conde blower 5-horsepower air compressor

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 07-15-94 Operation and Performance Data From: 07-15-94

Date Begin:	08-01-96	09-01-96	10-01-96	11-01-96	12-01-96
Date End:	09-01-96	10-01-96	11-01-96	12-01-96	01-01-97
Days of Operation:	18	0	30	0	2
Days of Downtime:	13	22	1	30	29
Air-Sparge Well Status:					
AS-1	open	open	open	closed	open
AS-2	closed	open	open	closed	open
AS-3	open	open	open	closed	open
AS-4	open	open	open	closed	open
AS-5	open	open	open	closed	open
Air-Sparge Well Pressure (psig) (1):					
AS-I	2.0	1.5	2.0	0.0	2.0
AS-2	NA	1.5	2.0	0.0	2.0
AS-3	2.0	1.5	2.0	0.0	2.0
AS-4	2.0	1.5	2.0	0.0	2.0
AS-5	1.5	1.5	2.0	0.0	2.0
Total Air-Sparge Flow Rate (scfm) (2):	6.0	12.0	9.0	0.0	9.0
Total Air-Sparge Pressure (psig):	40	45	50	0	50
Dissolved Oxygen (mg/L) (3):					
Air-Sparge Wells:					
AS-1	NA	NA	NA	NA	NA
AS-2	NA	NA	NA	NA	NA
AS-3	NA	NA	NA	NA	NA
AS-4	NA	NA	NA	NA	NA
AS-5	NA	NA	NA	NA	NA
Depth to Water (ft-BGS) (5):					
Air-Sparge Wells:					
AS-1	NA	NA	NA	NA	NA
AS-2	NA	NA	NA	NA	NA
AS-3	NA	NA	NA	NA	NA
AS-4	NA	NA	NA	NA	NA
AS-5	NA	NA	NA	NA	NA

Table 6 Air-Sparge System Operation and Performance Data

Facility Number 2169

Air-Sparge Unit:*

Location: 889 West Grand Avenue

3-horsepower Conde blower

Oakland, California

5-horsepower air compressor

Consultant: EMCON

Start-Up Date: 07-15-94

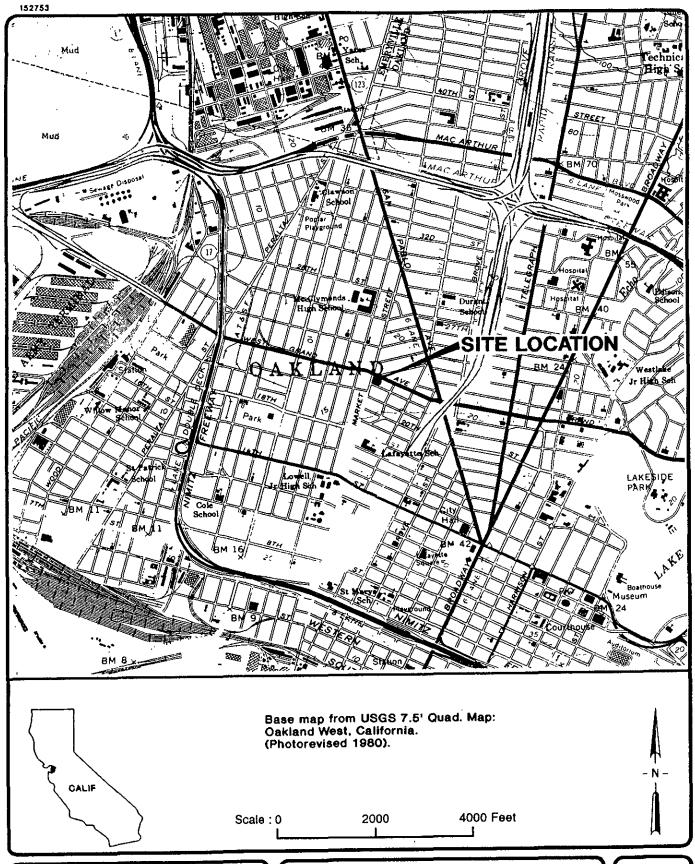
1921 Ringwood Avenue

Operation and Performance Data From: 07-15-94

San Jose, California

CURRENT REPORTING PERIOD:	10-01-96	to	01-01-97
DAYS / HOURS IN PERIOD:	92	2208.0	
DAYS / HOURS OF OPERATION:	32	774.5	;
DAYS / HOURS OF DOWN TIME:	60	1433.5	;
PERCENT OPERATIONAL:		35.1%	

^{1.} psig: pounds per square inch gauge

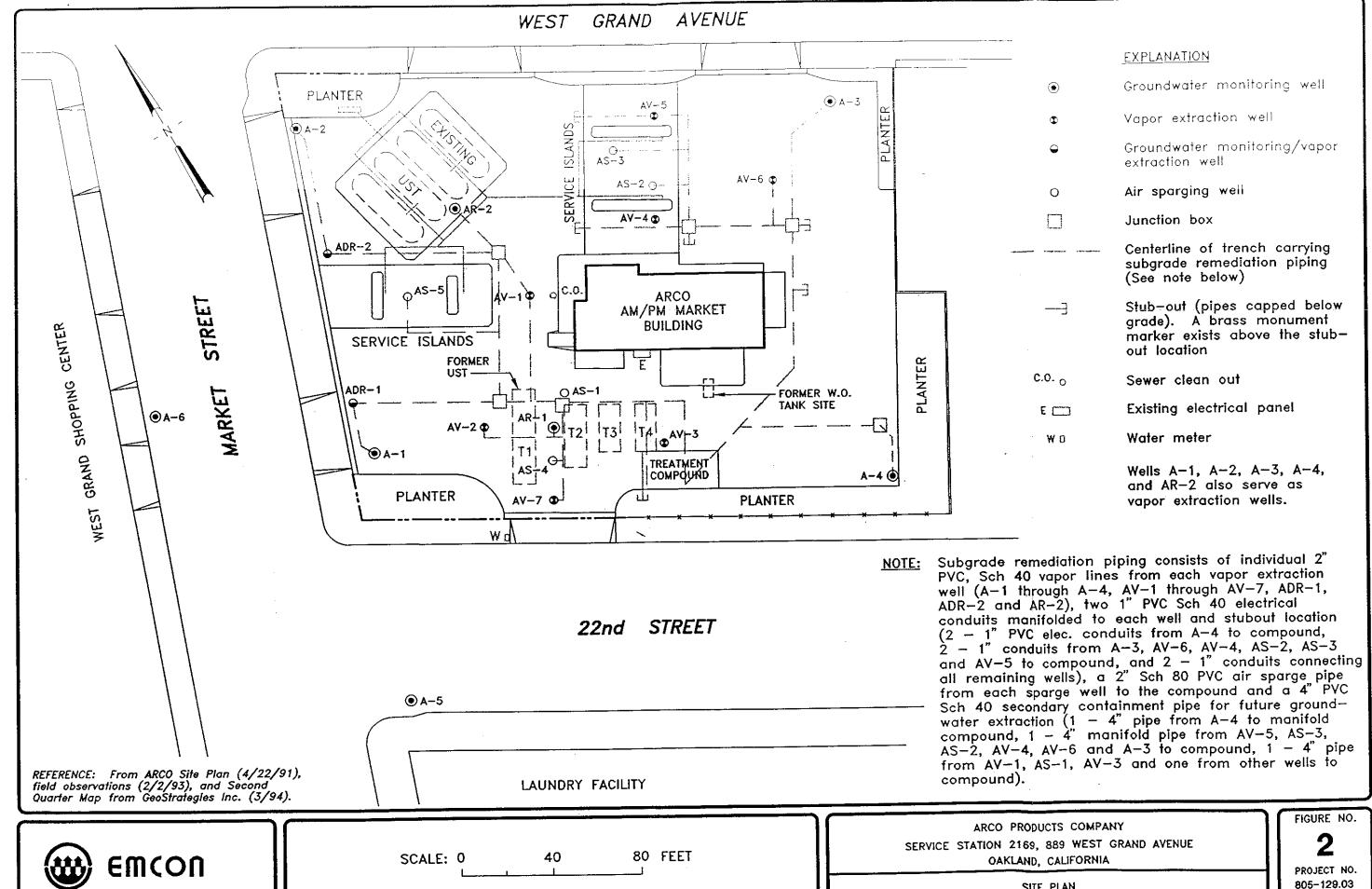

^{2.} scfm; standard cubic feet per minute at 14.7 psi and 70° F

^{3.} mg/L: milligrams per liter

^{4.} NA: not available or not analyzed

^{5.} ft-BGS: feet below grade surface

During the period from July 15, 1994 to July 25, 1995 the air-sparge system used a 3-horsepower Conde blower.
 On July 25, 1995, it was replaced with a 5-horsepower air compressor



ARCO PRODUCTS COMPANY SERVICE STATION 2169, 889 WEST GRAND AVE. QUARTERLY GROUNDWATER MONITORING OAKLAND, CALIFORNIA

SITE LOCATION

FIGURE

1
PROJECT NO. 805-129.03

SITE PLAN

FOURTH QUARTER 1996

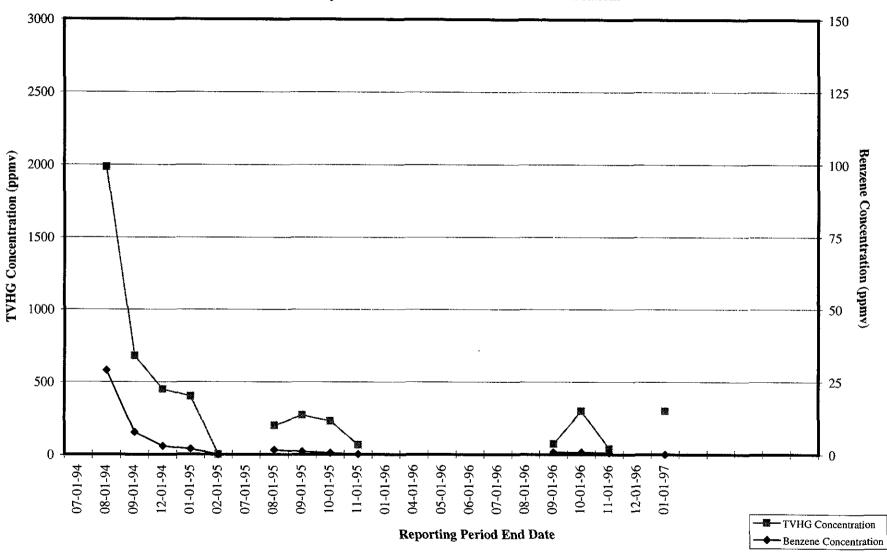
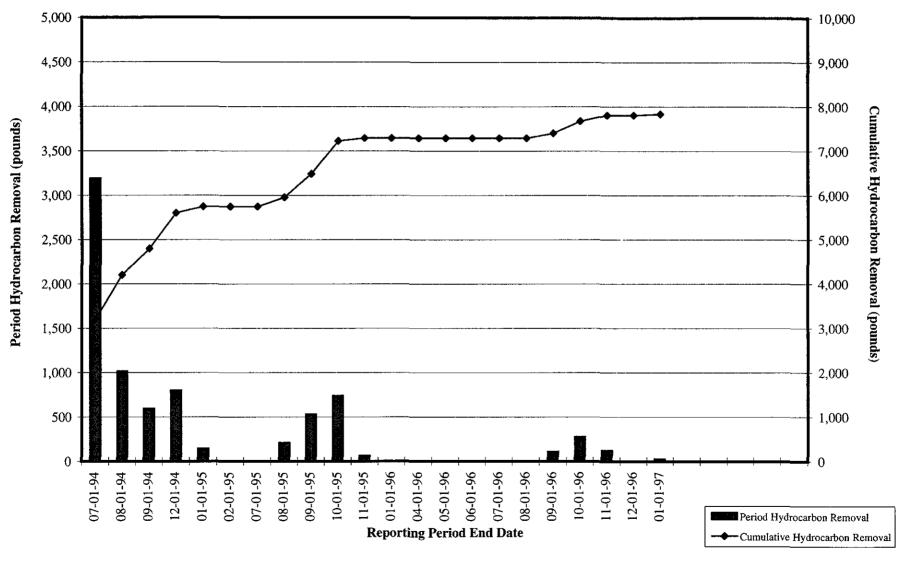

G:\805-129\G00 REV 0 2/4/97 12:59:22 KMM DJ

Figure 4

ARCO Service Station 2169

Soil-Vapor Extraction and Treatment System

Historical System Influent TVHG and Benzene Concentrations



TVHG: total volatile hydrocarbons as gasoline ppmv: parts per million by volume

Figure 5

ARCO Service Station 2169

Soil-Vapor Extraction and Treatment System
Historical Hydrocarbon Removal Rates

esj/h:\2169\2169tss.xls\SVE Model:imi 20805-129.003

APPENDIX A

ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATION, FOURTH QUARTER 1996 GROUNDWATER MONITORING EVENT

Columbia **Analytical** Services inc.

December 6, 1996 Service Request No.: <u>S9601985</u>

Mr. John Young **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 2169 OAKLAND/20805-129.003/TO#19350.00

Dear Mr. Young:

The following pages contain analytical results for sample(s) received by the laboratory on November 21, 1996. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 9, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely.

Steven L. Green

Project Chemist

Regional QA Coordinator

COLUMBIA ANALYTICAL SERVICES, Inc.

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LOS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

Sample Matrix: Water

2169 OAKLAND/20805-129.003/TO#19350.00

Service Request: \$9601985 Date Collected: 11/21/96 Date Received: 11/21/96 Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	A-2 (26) S9601985-001 12/4/96	A-6 (28) S9601985-002 12/4/96	A-5 (29) S9601985-003 12/4/96
Analyte	MRL	•		
TPH as Gasoline	50	ND	62	8,000
Benzene	0.5	ND	ND	450
Toluene	0.5	ND	ND	55 0
Ethylbenzene	0.5	ND	ND	340
Total Xylenes	0.5	ND	ND	1,100
Methyl tert -Butyl Ether	3	<30 D	12	<30 C

The MRL is elevated due to high analyte concentration requiring sample dilution. \mathbf{C}

The MRL is elevated because of matrix interferences. D

Analytical Report

Client: ARCO Pro

ARCO Products Company

2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix: Water

Project:

Service Request: S9601985

Date Collected: 11/21/96

Date Received: 11/21/96

Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	ADR-1 (21) S9601985-004 12/4/96	ADR-2 (26) S9601985-005 12/5/96	Method Blank S961204-WB1 12/4/96
Analyte	MRL			
TPH as Gasoline	50	1,900	15,000	ND
Benzene	0.5	82	630	ND
Toluene	0.5	21 -	440	ND
Ethylbenzene	0.5	32	390	ND
Total Xylenes	0.5	270	2,100	ND
Methyl tert -Butyl Ether	3	110	75	ND

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix: Water

Date Collected: 11/21/96
Date Received: 11/21/96
Date Extracted: NA

Service Request: S9601985

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

> Sample Name: Method Blank Lab Code: S961205-WB1

Date Analyzed: 12/5/96

Analyte	MRL	
TPH as Gasoline	50	ND
Benzene	0.5	ND
Toluene	0.5	ND.
Ethylbenzene	0.5	ND
Total Xylenes	0.5	ND
Methyl tert -Butyl Ether	3	ND

•

•

APPENDIX A

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix: Water

Service Request: S9601985

Date Collected: 11/21/96

Date Received: 11/21/96

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method

		PID Detector Percent Recovery	FID Detector Percent Recovery
Sample Name	Lab Code	4-Bromofluorobenzene	α,α,α-Trifluorotoluene
A-2 (26)	S9601985-001	102	100
A-6 (28)	S9601985-002	105	100
A-5 (29)	S9601985-003	. 102	104
ADR-1 (21)	S9601985-004	102	98
ADR-2 (26)	S9601985-005	99	103
A-2 (26) (MS)	S9601985-001MS	102	97
A-2 (26) (DMS)	S9601985-001DMS	100	108
Method Blank	S961204-WB1	100	95
Method Blank	S961205-WB1	102	100

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix:

Water

Service Request: \$9601985 Date Collected: 11/21/96

Date Received: 11/21/96

Date Extracted: NA
Date Analyzed: 12/4/96

Matrix Spike/Duplicate Matrix Spike Summary

TPH as Gasoline

EPA Methods 5030/California DHS LUFT Method

Units: ug/L (ppb)

Sample Name:

A-2 (26)

Lab Code:

S9601985-001MS, DMS

						Perc	ent K	CAS	Relative	
	Spike	Level	Sample	Spike	Result			Acceptance		
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	
Gasoline	250	250	ND	230	240	92	96	67-121	4	

QA/QC Report

Client: ARCO Products Company Service Request: S9601985

Project: 2169 OAKLAND/20805-129.003/TO#19350.00 Date Analyzed: 12/4/96

Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ppb

				CAS Percent
	True		Percent	Recovery Acceptance
Analyte	Value	Result	Recovery	Limits
Benzene	25	25.7	103	85-115
Toluene	25	25.4	102	85-115
Ethylbenzene	25	26.8	107	85-115
Xylenes, Total	75	76.2	102	85-115
Gasoline	250	246	98	90-110
Methyl tert -Butyl Ether	25	24	96	85-115

ARCO I	Produ	JCts (Comp	any s	\$			Task Or	der No.	193	50	0.0	0									Chain of Custody
ARCO Facilit	у по. 7	169		City	y cility)	Dald	and			Project (Consul	manag	er }	ah	nYc	วเวก	<u> </u>					• *	Laboratory name
ARCO engine		aul	/i</td <td></td> <td>chary C</td> <td><u> </u></td> <td>Telephon (ARCO)</td> <td>е по.</td> <td></td> <td>Telepho</td> <td>one no.</td> <td>740</td> <td>z)44</td> <td>7-7</td> <td>12/1</td> <td>Fau</td> <td>K NO.</td> <td>n (41</td> <td>X()</td> <td>453-</td> <td>0457</td> <td>Contract number</td>		chary C	<u> </u>	Telephon (ARCO)	е по.		Telepho	one no.	740	z)44	7-7	12/1	Fau	K NO.	n (41	X()	453-	0457	Contract number
Consultant n		Ma	ŹŇ'	pic			((41,00)	Address (Consultar	nt) 1971	Rin	CW	00	dF	ive	.5) V350	01	A	951	131	_rContract number
				Matrix		Prese	rvation			,	577							oA 🗆	000710			Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	1ce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPHINCLES, HTME EPA MGOZGOZGIGOTS	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 C 413.2 C	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi ☐ Metals ☐ VOA ☐ VOA ☐	CAM Metats EPA 60	Lead Org./DHS ☐ Lead EPA 7420/7421 ☐		Sampler Will deliver
A-260		7		×		×	Ha	11-2196			X			· –								Special detection Limit/reporting
A-66	00	Z		X		×	I+CL		1314		X											Lowest Possible
A-5(2)	7) (3	2_		Х		×	HCL		1353		X											POSSIDIC
ADR-10	21)(1	2		\times		×	HCL		1440	<u> </u>	X					L		ļ 				Special QA/QC
ADR-20	26)	2		X		×	HCL	V	1510		\times											As Normal
	•											ļ					-					Normal
	<u> </u>				-					ļ		_										Remarks
																						2-40m1 HCL VOAs
																						#20805 - 179,00
																						59601985 Turnaround time
										ļ						7						Priority Rush 1 Business Day
Condition o			cx				Date		Time	Rece	erature	receiv	ed:	<u> </u>	d	<u> L</u>						Rush 2 Business Days
Relinquishe	d by	£					// - <u>/</u> Date	<u> 1-76.</u>	1615 Time		ived by	· · · · · · · · · · · · · · · · · · ·	<u>-</u>									Expedited 5 Business Days
Relinquishe	d by						Date		Time		_	labora	2.	t ti	<u>~</u>)		Date	21-7	96	Time	t 15	Standard 10 Business Days

APPENDIX B SVE SYSTEM MONITORING DATA LOG SHEETS

Reporting Period: 19/01/96 00:00 11/01/96 00:00			12		n Period in Period					n Hours. wn Days					<i>-</i>													
1		F	eld Moni	toring D	ata]						L	aborator	y Monito	ring Data	1						7					
	Flow	Rates	FID	or PID R	esults				Vell Fiek	d Influent		Sy:	stem l	Influent			System	n Effluer	nt									
Reading Date & Time	Well Field Flow Rate	System Influent Flow Rate	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gasc	line	Benze	ene	Gasoline	•	Benz	ene	Gas	oline	Ве	enzene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scim	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv i	ng/m3	ppmv mg	/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	%	lb/day	1b/day						
10/01/96 00:00 10/24/96 11 40 11/01/96 00:00	128.6 00						12 00	110	460	1.5	4.9	39	160	05	17	<5	<20	<0	2 <0.5	87.5	0 37	0 01	563 67 180 33	5315 06 5878 51 6045 26	563 45 166 75	23 48 6 95	0.22 13.58	0.0
Penod Totals										-										•••			744 00		730 20	30 43	13 80	0.5
Penod Averages	99.3	157 7						110	460	1.5	4.9	39	160	05	17	<5	<20	0> 0	2 <0.5	87.5	0 28	0.01						

Reporting Period: 11/01/96 00.00 12/01/96 00.00		_			n Period: n Period:	720 00		Operation + Dow Operation + Dov	n Hours: 720.00 wn Days: 30.00		-W	the first Patherts		**				,				
				itoring Da]				Laboratory Monito]					
	Flow	Rates_	FID	or PID Re	esults	 -	1	Well Fie	ld Influent	System	n Influent	System	Effluent				-					
Reading Date & Time	Well Field Flow Rate	System influent Flow Rate	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gasoline	Benzene	Gasoline	Senzene	Gasoline	Benzene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scfm	scfm	ppm	ppm	ppm	%		ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	%	lb/day	lb/day						
11/01/96 00:00 11/05/96 11:55 11/06/96 11:45 12/01/96 00:00	0.0 0.0 0.0	0.0															107 92 23 83 588 25	6045.26 6045.26 6045.26 6045.45	0 00 0 00 0 19	0 00 0 00 0 01	107.92 23.83 588 06	
Period Totals:						•	•	<u>. </u>					·				720.00		0 19	0 01	719 81	29 9
Period Averages	00	0.0																				

Reporting Period 12/01/96 00:00 01/01/97 00:00		***			n Penod: n Penod;			Operatio Operatio		n Hours vn Days.			·														•	
1		F	eld Moni	toring Da	ata									Laboratory	Monito	nng Data												
	Flow	Rates	FID	or PID Re	esults				Well Fiel	d Influent			System	Influent			System	Effluent			··· ·							
Reading Date & Time	Well Field Flow Rate	System Influent Flow Rate	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gaso	oline	Benz	tene	Gasc	oline	Benze	ene	Gaso	line	Benz	ene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scfm	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ррту г	ng/m3	ppmv	mg/m3	ppmv	mg/m3	%	lb/day	lb/day						
12/01/96 00:00 12/04/96 12:45 12/04/96 13:00 01/01/97 00:00	0 0 151 6 148.8	0 0 151 6 148.8	271				13:40	300	1200	<0.5	<2	300	1200	<05	<2	11	46	<0.1	<04	96 2	0 63	0 01	84 75 0 25 659 00	6045.45 6045.45 6045.70 6089.28	0 00 0 25 43 58	0.00 0.01 1 82	84 75 0.00 615.42	3.53 0.00 25.64
Period Totals.																							744.00		43 83	1.83	700.17	29.17
Period Averages	148.8	148.8	271					300	1200	<05	<2	300	1200	<0.5	<2	11	46	<01	<04	96 2	0.61	0.01						

APPENDIX C ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION FOR SOIL-VAPOR EXTRACTION SYSTEM, FOURTH QUARTER 1996

		1	
		and the second of the second	
A Company of the State of the S			
	建装填火 医阴茎皮质 有矿		
	对其实的特别。(b) (b)		
4 - 55			

Service Request No.: S9601753

November 5, 1996

Valli Voruganti EMCON 1921 Ringwood Avenue San Jose, CA 95131

RE: 2169 OAKLAND/20805-030.039/TO#19300.00

Dear Valli Voruganti:

Attached are the results of the samples submitted to our lab on October 24, 1996. For you reference, our service request number for this work is S9601753.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 12, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

If you have questions or further needs, please call me at (408) 428-1283.

Sincerely,

Steve Green
Project Chemist

SG/sh

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-030.039/TO#19300.00

Sample Matrix: Air

Pate Collected: 10/24/96
Date Received: 10/24/96
Date Extracted: NA
Date Analyzed: 10/24/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name:

I-1

Lab Code:

S9601753-001

]	MRLs	R	esults
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.5	0.2	4.9	1.5
Toluene	0.5	0.1	12	3.2
Ethylbenzene	0.5	0.1	3.7	0.9
Xylenes, Total	1	0.2	37	8.5
Total Volatile Hydrocarbons:				
C1 - C5	10	5	210	51
C6 - C12	20	5	460	110
TPH as Gasoline*	20	5	460	110

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-030.039/TO#19300.00

Sample Matrix: Air

Service Request: S9601753

Date Collected: 10/24/96

Date Received: 10/24/96

Date Extracted: NA

Date Analyzed: 10/24/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name:

I-2

Lab Code:

S9601753-002

	3	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.5	0.2	1.7	0.5 1.0	
Toluene	0.5	0.1	3.7		
Ethylbenzene	0.5	0.1	1.0	0.2	
Xylenes, Total	1	0.2	9.7	2.2	
Total Volatile Hydrocarbons:					
C1 - C5	10	5	83	20	
C6 - C12	20	5	160	39	
TPH as Gasoline*	20	5	160	39	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-030.039/TO#19300.00

Sample Matrix: Air

Service Request: S9601753

Date Collected: 10/24/96

Date Received: 10/24/96

Date Extracted: NA

Date Analyzed: 10/24/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name:

E-1

Lab Code:

S9601753-003

]	MRLs	Results			
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)		
Benzene	0.5	0.2	ND	ND		
Toluene	0.5	0.1	ND	ND		
Ethylbenzene	0.5	0.1	ND	ND		
Xylenes, Total	1	0.2	ND	· ND		
Total Volatile Hydrocarbons:						
C1 - C5	10	5	ND	ND		
C6 - C12	20	5	ND	ND		
TPH as Gasoline*	20	5	ND	ND		

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client:

ARCO Products Company

Project:

2169 OAKLAND/20805-030.039/TO#19300.00

Sample Matrix:

Air

Service Request: S9601753

Date Collected: 10/24/96 **Date Received:** 10/24/96

Date Extracted: NA
Date Analyzed: 10/24/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name:

Method Blank

Lab Code:

S961024-WB1

	Ī	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.5	0.2	ND	ND	
Toluene	0.5	0.1	ND	ND	
Ethylbenzene	0.5	0.1	ND	ND	
Xylenes, Total	1	0.2	ND	ND	
Total Volatile Hydrocarbons:					
C1 - C5	10	5	ND	ND	
C6 - C12	20	5	ND	ND	
TPH as Gasoline*	20	5	ND	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

APPENDIX A

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-030.039/TO#19300.00

Sample Matrix: Air

Date Collected: 10/24/96 Date Received: 10/24/96 Date Extracted: N/A Date Analyzed: 10/24/96

Service Request: S9601753

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Sample Name:

Batch QC

Lab Code:

S9601746-001D

		Sample	Duplicate Sample		Relative Percent
Analyte	MRL	Result	Result	Average	Difference
Benzene	0.5	15	14	15	7
Toluene	0.5	33	32	33	3
Ethylbenzene	0.5	4	4	4	<1
Xylenes, Total	1	40	39	40	3
Total Volatile Hydrocarbons					
C1 - C5	10	590	580	585	2
C6 - C12	20	940	900	920	4
TPH as Gasoline*	20	940	900	920	4

Note: $ppmV = mg/m^3 x [24.45 (gas constant)/ molecular weight (MW)]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

* TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a

molecular weight of 100 to calculate the ppmv.

QA/QC Report

Client: **ARCO Products Company** Service Request: S9601753 2169 OAKLAND/20805-030.039/TO#19300.00 Project: Date Collected: 10/24/96 Date Received: 10/24/96

Sample Matrix: Air Date Extracted: N/A

Date Analyzed: 10/24/96

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

Sample Name: Batch QC Lab Code: S9601746-001D

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
·				J	
Benzene	0.2	4.7	4.4	5	7
Toluene	0.1	8.8	8.5	9	3
Ethylbenzene	0.1	0.9	0.9	1	<1
Xylenes, Total	0.2	9.2	9.0	9	2
Total Volatile Hydrocarbons					
C1 - C5	5	140	140	140	<1
C6 - C12	5	230	220	225	4
TPH as Gasoline*	5	230	220	225	4

 $ppmV = mg/m^3 x$ [24.45 (gas constant)/ molecular weight (MW)] Note:

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-030.039/TO#19300.00

LCS Matrix: Air

Date Collected: 10/24/96
Date Received: 10/24/96
Date Extracted: NA
Date Analyzed: 10/24/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

				CAS Percent Recovery
Analyte	True Value	Result	Percent Recovery	Acceptance Limits
Gasoline	200	210	105	60-140

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-030.039/TO#19300.00

LCS Matrix: Air

Service Request: S9601753

Date Collected: 10/24/96

Date Received: 10/24/96

Date Extracted: NA

Date Analyzed: 10/24/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

				CAS Percent Recovery
Analyte	True Value	Result	Percent Recovery	Acceptance Limits
Gasoline	49	51	104	60-140

QA/QC Report

Client:ARCO Products CompanyService Request:\$9601753Project:2169 OAKLAND/20805-030.039/TO#19300.00Date Analyzed:10/24/96

Initial Calibration Verification (ICV) Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	25	24.1	96	80-120
Toluene	25	24.0	96	80-120
Ethylbenzene	25	23.5	94	80-120
Xylenes, Total	75	70.6	94	80-120
Gasoline	250	231	92	80-120

ARCO	Produ	ICTS (Comp	ompany	\$	***************************************		Task Or	der No.		19	3 <i>0</i> 0	 ງ									Chain of Custody	
ARCO Facili						Dak	lana		T.	Project (Consul	manag	jer		V0	~ L C	1000	1:					Laboratory name	
ARCO engin	eer 1	<u>۲۰۷</u>		(F8	ciny) (<u> </u>		ie no. 105377					_V ·	VΔ	, , ,	Fax	no.			-		- CAS	_
Consultant n	ame	<u>uul</u>	<u>کر</u>	19P1			(ARCO)	Address									nsultan					Contract number	
			<u>- m</u>	COV	7	1		(Consulta	nt) 192	<u> </u>	Zina	1200	<u>Ω ος</u>	14	ve	<u> S</u>	an.	708	e C	/+	1	Mothed of phismont	_
			1	Matrix		Presei	vation				Nº	ا ا						VOA	9700	_		Method of shipment	İ
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH F.C. S EPA MEGZIBÓZOJBÓ15	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 C 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi	CAM Metals EPA 6010/7000	Lead Org./DHS Lead EPA		Special detection	
T-1	$ \mathcal{D} $	1			A1R			10/24/96	1230		X											Limit/reporting	1
	(2)	1			1				1215		X											Kepont in	
I-2 E-1	3	1							1200		X											PPMU/M9/M	3
																						Special QA/QC	
	<u> </u>			1																			
			-	-						 		<u> </u>	 										
					<u> </u>			<u> </u>		<u> </u>	-	-	 										
												<u> </u>					<u> </u>	ļ				Remarks	
										1]]	į	1				
	 			1						†													
	<u> </u>	 		 	+			 		 												7 7 62 5	
				<u> </u>			<u></u>	_		├				<u> </u>			_	 				20805 030	
		1_	<u> </u>															<u> </u>	<u> </u>			03°	7
															[
	<u> </u>	-	†	+	1								T				-						
	-	-		-						\vdash	-	 	-					<u> </u>				Lab number	
						<u> </u>		<u> </u>		<u> </u>	<u> </u>		 					<u> </u>	<u> </u>			_59601753	
ł										1												Turnaround time	
																						Priority Rush 1 Business Day	
Condition o	f sample:		2,	Un	ted	,				Temp	erature	receiv	ed:	a	m	hie	xt	,				Rush	_
Relinquishe	d by sam	pler 1	•	<i>y - w</i>			Date	24-96	Time 13/5	Rece	ived by			<u> </u>									
Relinquishe		I		<u> </u>	<u></u>		Date	· / W	Time	Rece	ived by								_			Expedited 5 Business Days	
Relinquishe	d by	<u> </u>					Date		Time	Rece	ived by	labora	lory	Bro	w.	א (אי	Date / / / / /	74/9	96	Time	15	Standard 10 Business Days	2

Distribution: White copy — Laboratory; Canary copy — ARCO Environmental Engineering; Pink copy — Consultant APC-3292 (2-91)

Columbia **Analytical**

December 18, 1996

Service Request No.: <u>S9602059</u>

Ms. Valli Voruganti **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 2169 OAKLAND/20805-129.003/TO#19300.00

Dear Ms. Voruganti:

The following pages contain analytical results for sample(s) received by the laboratory on December 4, 1996. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 8, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green **Project Chemist**

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCAS! National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: 12/4/96
Date Received: 12/4/96
Date Extracted: NA
Date Analyzed: 12/5/96

Service Request: L9604786

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: I-1

Lab Code: L9604786-001**

ı	MRLs	Results		
mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
0.4	0.1	<2	< 0.5	
0.4	0.1	11	2.9	
0.5	0.1	10	2.3	
0.9	0.2	64	15	
20	5	1300	310	
20	5	1200	300	
	mg/m3 0.4 0.4 0.5 0.9	0.4 0.1 0.4 0.1 0.5 0.1 0.9 0.2	mg/m3 uL/L (ppmv) mg/m3 0.4 0.1 <2 0.4 0.1 11 0.5 0.1 10 0.9 0.2 64 20 5 1300	

^{*} TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

^{**} MRL is elevated because of matrix interferences and because the sample required diluting.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: 12/4/96 Date Received: 12/4/96 Date Extracted: NA Date Analyzed: 12/5/96

Service Request: L9604786

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: E-1

Lab Code: L9604786-002

	1	MRLs	Results			
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)		
Benzene	0.4	0.1	ND	ND		
Toluene	0.4	0.1	ND	ND		
Ethylbenzene	0.5	0.1	0.6	0.1		
Xylenes, Total	0.9	0.2	5.2	. 1.2		
Total Volatile Hydrocarbons:						
C1 - C5	20	5	370	90		
C6 - C12*	20	5	46	11		

* TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: NA
Date Received: NA
Date Extracted: NA
Date Analyzed: 12/5/96

Service Request: L9604786

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: Method Blank Lab Code: L961205-MB

	ľ	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.4	0.1	ND	ND	
Toluene	0.4	0.1	ND	ND	
Ethylbenzene	0.5	0.1	ND	ND	
Xylenes, Total	0.9	0.2	ND	ND	
Total Volatile Hydrocarbons:					
C1 - C5	20	5	ND	ND	
C6 - C12*	20	5	ND	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

APPENDIX A

QA/QC Report

Client: Al Project: 21

ARCO Products Company

2169 OAKLAND/20805-129,003/TO#19300.00

LCS Matrix:

Air

Service Request: L9604786

Date Collected: NA
Date Received: NA
Date Extracted: NA

Date Analyzed: 12/5/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015 Units: uL/L (ppmv)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	10.0	12.3	123	60-140
Toluene	10.0	12.0	120	60-140
Ethylbenzene	10.0	12.2	122	60-140
TPH as Gasoline*	710	814	115	60-140

TPH as gasoline is defined as C6 (Benzene) through C12 (Dodecane) and uses a molecular weight of 100 to calculate the ppmv.

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: NA
Date Received: NA
Date Extracted: NA
Date Analyzed: 12/5/96

Service Request: L9604786

Duplicate Summary
BTEX and Total Volatile Hydrocarbons
EPA Methods 8020/Modified 8015
Units: uL/L (ppmv)

Sample Name: I-1

Lab Code: L9604786-001**

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.1	<0.5	<0.5	<0.5	NA
Toluene	0.1	2.86	2.89	2.88	1
Ethylbenzene	0.1	2.26	2.26	2.26	<1
Total Xylenes	0.2	14.6	14.5	14.6	1
Total Volatile Hydrocarbon:					
C1-C5	5	308	303	306	2
C6-C12*	5	298	296	297	1

^{*} TPH as gasoline is defined as C6 (Benzene) through C12 (Dodecane) and uses a molecular weight of 100 to calculate the ppmv.

^{**} MRL is elevated because of matrix interferences and because the sample required diluting.

ARCO	Produ Division	JCts (Comp Richfield(company	*			Task O	rder No.		/	93	30C). (20							Chain of Custoo	y
ARCO Facil	ity no.	216	1	Cit (Fa	y icility) C	Dec (=1.				Project (Consu	manaç Itant)	ger	V·ι	10.	09	ar	L .'					Laboratory name	
ARCO engir	P.	اں یہ	ں ک	pple	•		Telephon (ARCO)	e no.	1	Telepho (Consu	ne no. Itant)	408	153	73	00	(Co	no. nsultar	nt)				Contract number	
Consultant r	name	En	100	<u> </u>				Address (Consulta	int) 192	1 6	2, n	gw.	00 d	/	he		S. J		Ci	4			
				Matrix		Prese	rvation		_		β 8 6 8 9 8 9 9 9 9 9 9 9 9 9 9	<u>-</u>						Semi VOA□	0007/000			Method of shipment	
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lçe	Acid	Sampling date	Sampling time	8TEX 602/EPA 8020	BTEXTPH POS EPA M602/8020/8015	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 C 413.2 C	TPH EPA 418.1/SM503	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA	CAM Melets EPA 6 TTLC T STLC	Lead Org./DHS C Lead EPA 7420/7421 C		Tech	~
I-1	0	,			AIR	,		12/4/96	1340		4								-			Special detection Limit/reporting	
I-1 E-1	(2)	1			4			4	1350		4											PPMV +	L
																						ppmV , mg/m3 gg 144	16
				<u> </u>						_		-										Special QA/QC	
		<u></u>								ļ <u>.</u>		ļ		<u> </u>									
		ļ								_									ļ				
											i		•]					Remarks	
										1													
										<u> </u>	 		ļ				-					20805	^>
<u> </u>	<u> </u>									1												1290	ر∨
		-																-					
<u> </u>		}		1	1					}]									
										+	<u> </u>	ļ <u>.</u>							-				
			-	<u> </u>								-										Lab number	JO.
	 	1							 	╁		ļ						-	-			\$960205 Turnaround time	57
<u> </u>	 	ļ	<u> </u>	-	 			 		╂		-	 	ļ	-		-		<u> </u>				
				<u> </u>			<u> </u>			<u> </u>					<u> </u>							Priority Rush 1 Business Day	
Septende						Temperature received: ambient								Rush									
Relinquished by sampler 24 th 12/4/96				4/96	Time 1511	Received by								2 Business Days									
Relinquishe	ed by					_	Date		Time	Recei	ived by											Expedited 5 Business Days	
Relinquishe	ed by		-				Date		Time	Recei	wed by	laborat	ory	M	1/-)	Date	1/2/2	96	Time	5/1	Standard 10 Business Days	×

4.

Distribution: White copy — Laboratory; Canary copy — ARCO Environmental Engineering; Pink copy — Consultant APC-3292 (2-91)