

1921 Ringwood Avenue • San Jose, California 95131-1721 • (408) 453-7300 • Fax (408) 437-9526

Date	December 13, 1996
Project	20805-129.003
J	

To:

Ms. Susan Hugo Alameda County Health Care Services Agency Department of Environmental.Health 1131 Harborbay Parkway, Suite 250 Alameda, California 94502-6577

We are enclosing:

Copies		Description			
1		Third quarter	1996 groundwa	ter monitori	ng results and
	·	remediation sy	ystem performa	nce evaluati	on report,
		ARCO Servic	e Station 2169,	Oakland, Ca	alifornia
					
For your:	X	Use	Sent by:	X	Regular Mail
		Approval			Standard Air
		Review			Courier
		Information			Other:

Comments:

The enclosed groundwater monitoring and performance evaluation report is being sent to you per the request of ARCO Products Company. Please call if you have questions or comments.

Wohn C. Young

cc: Kevin Graves, RWQCB - SFBR
Paul Supple - ARCO Products Company
File

Date:

December 12, 1996

Re: ARCO Station #

14

4.

2169 • 889 West Grand Avenue • Oakland, CA Third Quarter 1996 Groundwater Monitoring Results and Remediation System Performance Evaluation Report

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached proposal or report are true and correct."

Submitted by:

Paul Supple

Environmental Engineer

1921 Ringwood Avenue • San Jose, California 95131-1721 • (408) 453-7300 • Fax (408) 437-9526

December 12, 1996 Project 20805-129.003

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Re: Third quarter 1996 groundwater monitoring program results and remediation system performance evaluation report, ARCO service station 2169, Oakland, California

Dear Mr. Supple:

This letter presents the results of the third quarter 1996 groundwater monitoring program at ARCO Products Company (ARCO) service station 2169, 889 West Grand Avenue, Oakland, California (Figure 1). Operation and performance data for the interim soil-vapor extraction (SVE) and air-sparge (AS) remediation systems at the site are also presented. The quarterly monitoring program complies with Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations. Pertinent site features, including the locations of existing on-site monitoring and vapor extraction wells are shown in Figure 2.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the scope, limitations, and cost of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

EMCON

Krishnaveni Meka

Staff Engineer

John C. Young, R.G. 6407 Project Manager

EMCON

ARCO QUARTERLY REPORT

Station No.:	2169	Address:	889 West Grand Avenue, Oakland, California	
EMCON Project	t No.		20805-129.003	_
ARCO Environ	nental Enginee	er/Phone No.:	Paul Supple /(510) 299-8891	
EMCON Projec	t Manager/Pho	one No.:	John C. Young /(408) 453-7300	_
Primary Agency	/Regulatory II	No.:	ACHCSA /Susan Hugo	
Reporting Perio	d:		July 1, 1996 to October 1, 1996	_

WORK PERFORMED THIS QUARTER (Third-1996):

- 1. Conducted quarterly groundwater monitoring and sampling for third quarter 1996.
- 2. Prepared and submitted quarterly report for second quarter 1996.
- 3. Installed oxygen releasing compounds (ORCs) into groundwater monitoring wells A-5 and A-6 to further stimulate natural biodegradation.
- 4. Operated SVE and air-sparge systems.

WORK PROPOSED FOR NEXT QUARTER (Fourth- 1996):

- 1. Perform quarterly groundwater monitoring and sampling for fourth quarter 1996.
- 2. Prepare and submit quarterly report for third quarter 1996.
- 3. Continue operating SVE and air-sparge systems.
- 4. Groundwater monitoring well A-2 will be sampled semi-annually during the first and third quarter of the year.

QUARTERLY MONITORING:

Current Phase of Project:	Quarterly Groundwater Monitoring and Operation and Maintenance of Remediation Systems
Frequency of Sampling:	Quarterly (groundwater), Monthly (SVE and Air-Sparge)
Frequency of Monitoring:	Quarterly (groundwater), Monthly (SVE and Air-Sparge)
Is Floating Product (FP) Present On-site	∷ ∐ Yes ⊠ No
Cumulative FP Recovered to Date:	4.8 gallons, Wells ADR-1 and ADR-2
FP Recovered This Quarter:	None
Bulk Soil Removed to Date:	2,196 cubic yards of TPH-impacted soil
Bulk Soil Removed This Quarter:	None
Water Wells or Surface Waters	
within 2000 ft., impacted by site:	None
Current Remediation Techniques:	SVE and Air-Sparge Systems
Approximate Depth to Groundwater:	10.77 feet
Groundwater Gradient (Average):	0.002 ft/ft toward west (consistent with past events)
SVE QUARTERLY OPERATI	ON AND PERFORMANCE:
Equipment Inventory:	Therm Tech Model VAC-25, 250 cfm, Thermal/Catalytic Oxidizer
Operating Mode:	Catalytic Oxidation
BAAQMD Permit #:	12119

EMCON

TPH Conc. End of Period (lab): 770 ppmv Benzene Conc. End of Period (lab): 2.4 ppmv Flowrate End of Period: 128.6 scfm HC Destroyed This Period: 388.3 pounds HC Destroyed to Date: 7676.2 pounds Utility Usage Electric (KWH): 7504 673 Gas (Therms): Operating Hours This Period: 617.2 hours Percent Operational: 28.0% System was down for quarterly monitoring, power interruptions, and other maintenance issues. Operating Hours to Date: 4860.6 hours Unit Maintenance: Installed rebuilt blower motor on August 2, 1996. Number of Auto Shut Downs: 1 Destruction Efficiency Permit Requirement: 90% 98.3% Percent TPH Conversion: Stack Temperature: 681°F (9-23-96) Source Flow: 122.4 scfm (9-23-96) Process Flow: 191.3 scfm (9-23-96) Source Vacuum: 50 inches of water (9-23-96)

ATTACHED:

- Table 1 Groundwater Monitoring Data, Third Quarter 1996
- Table 2 Historical Groundwater Elevation and Analytical Data,

Petroleum Hydrocarbons and Their Constituents

- Table 3 Approximate Cumulative Floating Product Recovery Data
- Table 4 Soil Vapor Extraction System Operation and Performance Data
- Table 5 Soil-Vapor Extraction Well Data
- Table 6 Air-Sparge System Operation and Performance Data
- Figure 1 Site Location
- Figure 2 Site Plan
- Figure 3 Groundwater Data, Third Quarter 1996
- Figure 4 Historical SVE System Influent TVHG and Benzene Concentrations
- Figure 5 Historical SVE System Hydrocarbon Removal Rates
- Appendix A Field Data Sheets, Third Quarter 1996 Groundwater Monitoring Event
- Appendix B Analytical Results and Chain of Custody Documentation, Third Quarter 1996
 Groundwater Monitoring Event
- Appendix C SVE System Monitoring Data Log Sheets
- Appendix D Field Data Sheets, Operation and Maintenance Visits, Third Quarter 1996
- Appendix E Analytical Results and Chain-of-Custody Documentation for Soil-Vapor Extraction System, Third Quarter 1996

cc: Susan Hugo, ACHCSA Kevin Graves, RWQCB-SFBR

Table 1 Groundwater Monitoring Data Third Quarter 1996

ARCO Service Station 2169 889 West Grand Avenue. Oakland, CA

Date: 11-26-96

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L
A-1	08-29-96	14 16	11.08	3.08	ND	w	0 002	08-29-96	1200	320	59	25	27	110		
A-2	08-29-96	14.55	11 50	3.05	ND	W	0.002	08-29-96	<50	< 0.5	<0.5	< 0.5	<0.5	<39#		
A-3	08-29-96	15 75	12 38	3.37	ND	W	0 002	08-29-96 N	lot sampled	: not schedu	aled for che	mical anal	ysis			
A-4	08-29-96	15 25	11.55	3 70	ND	W	0.002	08-29-96 N	lot sampled	: not schedi	uled for che	mical anal	Y\$18			
A-5	08-29-96	13 51	10.60	2 91	ND	W	0 002	08-29-96	7700	490	450	260	990	<30#		
A-6	08-29-96	13 51	10 52	2.99	ND	W	0 002	08-29-96	80	<0.5	< 0.5	<0.5	<0.5	6		~ -
AR-1	08-29-96	15.61	12.12	3.49	ND	W	0.002	08-29-96	<50	< 0.5	< 0.5	< 0.5	0.8	<3		
AR-2	08-29-96	15 28	12.20	3 08	ND	W	0 002	08-29-96	<50	< 0.5	<0.5	< 0.5	<0.5	95	-	
ADR-I	08-29-96	13 95	10.77	3.18	ND	W	0.002	08-29-96	5300	190	58	76	470	85		
ADR-2	08-29-96	14 64	11.64	3 00	ND	W	0.002	08-29-96	8000	230	180	150	730	53		

ft-MSL elevation in feet, relative to mean sea level

MWN. ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft. foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L. micrograms per liter

EPA: United Statest Environmental Protection Agency

MTBE, methyl-tert-butyl ether

TPHD. total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND none detected

W: west

#: method reporting limit was raised due to (1) high analyte concentration requiring sample dilution, or (2) matrix interference

- - : not analyzed

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Date: 11-25-96

Well Designation	Water Level Field Date	7. Top of Casing 7. Elevation	R Depth to Water	-ta Groundwater TS Elevation	Floating Product	Groundwater Flow Direction	Hydraulic	Water Sample Field Datc	TPHG LUFT Method	는 Benzene 전 EPA 8020	ਜੂ Toluene ਜੂ EPA 8020	Ethylbenzene E EPA 8020	Total Xylenes	ਨੂੰ MTB E ਨੇ EPA 8020	h 는 EPA 8240	TPHD COLLUFT Method
A-1	02-09-94	14.16	10.09	4.07	ND	NR	NR	02-09-94	2000	540						
A-1	05-04-94	14.16	10.68	3.48	ND ND	NW NW	0.004	02-09-94	3000 1300	560	150	66	190			^650
A-I	03-04-94	14.16	10.08	3.48	ND ND	WNW	0.004	03-04-94	27000	250	61	27	110			^2100
A-1	11-16-94	14.16	9 75	441	ND ND	NW	0.007	11-16-94	27000	3700	1100	540	3000			^3000
A-1	03-24-95	14.16	8 10	6 06	ND	NW	0.003	03-24-95	1200	460	64	62	120			^^^640
A-1	06-05-95	14.16	11.13	3.03	ND ND	NW	0.009	05-24-95	1500	230	39	34	66			^^^160
A-1	08-17-95	14.16	11.13	2 45	ND ND	W	0.002	08-18-95	1600	310	27	36	76			^710
A-1	12-04-95	14.16	12.28	1.88	ND	NNW	0.001	12-04-95	1200	470	35	48	110	120		^240
A-1	03-01-96	14.16	8 78	5 38	ND ND	NW	0.002	03-13-96	1300	240	17	25	56		120	
A-1	05-29-96	14.16	985	4.31	ND ND	NW	0.003	05-13-96		300	74	29	73	100		
A-1	03-29-96	14.16	11.08	3.08	ND	NW W	0.002	03-29-96	Not sampled 1200	not sched	uled for che 5 9		•			
	00 27 70		11.00	3.00	115	"	0 002	06-29-90	1200	320	39	25	27	110		
A-2	02-09-94	14 55	10 67	3.88	ND	NR	NR	02-09-94	^^260	<0.6	<0.5	<0.5	<0.5	* -		
A-2	05-04-94	14.55	11 25	3 30	ND	NW	0.004	05-04-94	<50	< 0.5	< 0.5	<0.5	<0.5			
A-2	08-10-94	14.55	11.56	2 99	ND	WNW	0.007	08-10-94	690	47	25	39	86			
A-2	11-16-94	14 55	1031	4.24	ND	NW	0 005	11-16-94	<50	<0.5	< 0.5	<0.5	< 0.5			
A-2	03-24-95	14.55	8.64	5.91	ND	NW	0.009	03-24-95	<50	<05	< 0.5	< 0.5	< 0.5			
A-2	06-05-95	14.55	11.72	2 83	ND	NW	0 002	06-05-95	<50	<0.5	<0.5	< 0.5	< 0.5			
A-2	08-17-95	14.55	12 35	2 20	ND	W	0.001	08-17-95	<50	< 0.5	< 0.5	< 0.5	< 0.5	12		
A-2	12-04-95	14.55	12.74	1 81	ND	NNW	0.002	12-04-95	<50	< 0.5	<0.5	< 0.5	< 0.5			
A-2	03-01-96	14 55	9 34	5 21	ND	NW	0 003	03-13-96	<50	< 0.5	06	< 0.5	13	<9		
A-2	05-29-96	14.55	10.40	4 15	ND	NW	0 002	05-29-96	<50	< 0.5	<0.5	< 0.5	< 0.5	<20		
A-2	08-29-96	14.55	11.50	3 05	ND	W	0.002	08-29-96	<50	<0.5	<0.5	<0.5	< 0.5	<39#		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Date: 11-25-96

Well Designation	Water Level Field Date	Top of Casing Elevation	යි Depth to Water	Groundwater Groundwater Elevation	Floating Product ক্ল Thickness	Groundwater Flow Direction	Hydraultc	Water Sample Field Date	TPHG	Benzene P EPA 8020	Toluene	Ethylbenzene Se EPA 8020	ਜੂ Total Xylenes ਕੁੱ EPA 8020	MTBE E EPA 8020	MTBE % EPA 8240	TPHD
A-3	02-09-94	15.75	11.32	4,43	ND	NR	NR	02-09-94	<50	<0.5				· · · · · · · · · · · · · · · · · · ·		
A-3	05-04-94	15.75	11.99	3 76	ND	NW	0 004	05-04-94	<50	<0.5	<0.5 <0.5	<0.5	<0.5			
A-3	08-10-94	15.75	11 12	4 63	ND	WNW	0.007	08-10-94	<50	<0.5	<0.5	<05 <05	<0.5 <0.5		•-	
A-3	11-16-94	15.75	11.02	4 73	ND	NW	0.007	11-16-94	<50	<0.5	<0.5	<0.5	<05		*-	• •
A-3	03-24-95	15 75	8.83	6.92	ND	NW	0.009	03-24-95	<50	<0.5	<0.5	<0.5	<0.5			
A-3	06-05-95	15 75	12.44	3.31	ND	NW	0 002	06-05-95	Not sampled							
A-3	08-17-95	15 75	13 04	2.71	ND	W	0.001	08-17-95	Not sampled							
A-3	12-04-95	15.75	13.57	2 18	ND	NNW	0.002	12-04-95	Not sampled							
A-3	03-01-96	15.75	9.90	5 85	ND	NW	0 003	03-13-96	<50	<0.5	< 0.5	<0.5	<0.5	<3		
A-3	05-29-96	15 75	11.08	4.67	ND	NW	0 002	05-29-96	Not sampled					~3	• •	
A-3	08-29-96	15.75	12.38	3.37	ND	w	0.002	08-29-96	Not sampled							
A-4	02-09-94	15.25	10.01	5 24	ND	NR	NR	02-09-94	<50	<05	<05	<0.5	<0.5			
A-4	05-04-94	15.25	11.08	4.17	ND	NW	0 004	05-04-94	<50	<0.5	<0.5	< 0.5	<0.5			
A-4	08-10-94	15.25	11.75	3.50	ND	WNW	0.007	08-10-94	<50	<0.5	<0.5	<0.5	<0.5			
A-4	11-16-94	15.25	9.78	5.47	ND	NW	0 005	11-16-94	<50	<0.5	<0.5	<0.5	<0.5			
A-4	03-24-95	15.25	7.20	8.05	ND	NW	0 009	03-24-95	<50	<0.5	<0.5	<0.5	<0.5			
A-4	06-05-95	15 25	11 70	3.55	ND	NW	0.002	06-05-95	Not sampled:							
A-4	08-17-95	15.25	12 28	2 97	ND	W	0 001	08-17-95	Not sampled.			-				
A-4	12-04-95	15.25	12.63	2.62	ND	NNW	0 002	12-04-95	Not sampled:			-				
A-4	03-01-96	15 25	8.55	6.70	ND	NW	0.003	03-13-96	<50	<0.5	<0.5	<0.5	<0.5	<3		
A-4	05-29-96	15 25	10 32	4 93	ND	NW	0.002	05-29-96	Not sampled							
A-4	08-29-96	15.25	11.55	3 70	ND	w	0.002	08-29-96	Not sampled:							

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Date: 11-25-96

	Well Designation	Water Level Field Date	Top of Casing	R Depth to Water	Groundwater Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic F Gradient	Water Sample Field Date	क TPHG के LUFT Method	Benzene	Toluene	Ethylbenzene E EPA 8020	Total Xylenes EPA 8020	MTBE	MTBE P EPA 8240	TPHD
=		<u></u>	*														
	A-5	02-09-94	13.51	9.44	4.07	ND	NR	NR	02-09-94	2200	190	130	130	310			
	A-5	05-04-94	13.51	10.00	3.51	ND	NW	0.004	05-09-94	13000	1000	1500	490	2000			
	A-5	08-10-94	13.51	10 76	2 75	ND	WNW	0.007	08-10-94	11000	730	930	310	1300			
	A-5	11-16-94	13.51	9.09	4 42	ND	NW	0.005	11-16-94	2600	160	220	130	400			
	A-5	03-24-95	13.51	7.40	6 1 1	ND	NW	0.009	03-24-95	3300	200	310	130	460			
	A-5	06-05-95	13.51	10.43	3.08	ND	NW	0 002	06-05-95	57000	2700	4600	1500	6800			
	A-5	08-17-95	13.51	11.15	2 36	ND	W	100 0	08-18-95	34000	1600	2700	1100	5100	<28		
	A-5	12-04-95	13.51	11.42	2 09	ND	NNW	0.002	12-04-95	61	< 0.5	< 0.5	<0.5	<0.5			
	A-5	03-01-96	13 51	8.11	5.40	ND	NW	0 003	03-13-96	11000	860	960	380	1600	<100		
	A-5	05-29-96	13 51	9 30	4 21	ND	NW	0 002	05-29-96	19000	1600	1900	880	3300	<100	-	
	A-5	08-29-96	13 51	10.60	2 91	ND	W	0.002	08-2 9 -96	7700	490	450	260	990	<30#		
	A-6	02-09-94	13 51	9.48	4.03	ND	NR	NR	02-09-94	640	<29	<3.7	<24	<82	• •		-+
	A-6	05-04-94	13.51	10 07	3 44	ND	NW	0.004	05-04-94	260	< 0.5	<1.5	<15	< 0.5			
	A-6	08-10-94	13.51	10.77	2.74	ND	WNW	0.007	08-10-94	300	< 0 6	<2.5	< 0.8	<1			
	A-6	11-16-94	13.51	9.14	4.37	ND	NW	0.005	11-16-94	250	< 0.5	<1.5	<06	<15			
	A-6	03-24-95	13.51	7.89	5.62	ND	NW	0.009	03-24-95	120	< 0.5	1>	<0.5	<1.5			
	A-6	06-05-95	13.51	10.06	3 45	ND	NW	0 002	06-05-95	160	< 0.5	<0.6	< 0.5	<0.5			
	A-6	08-17-95	13 51	11 10	2.41	ND	W	0.001	08-18-95	530	< 0.5	< 0.5	<24	<42	6		
	A-6	12-04-95	13.51	11.52	1 99	ND	NNW	0.002	12-04-95	28000	1600	1800	880	3600			
	A-6	03-01-96	13.51	8 21	5.30	ND	NW	0 003	03-13-96	1400	<3	<15	<7	<10	<20		
	A-6	05-29-96	13.51	9.25	4 26	ND	NW	0 002	05-29-96	410	<2	<2	<2	<2	3		
	A-6	08-29-96	13.51	10 52	2 99	ND	W	0.002	08-29-96	80	<0.5	<0.5	<0.5	<0.5	6		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Date. 11-25-96

Well Designation	Water Level Field Date	7. Top of Casing 7. Elevation	a Depth to Water	Groundwater TS Elevation	Floating Product	Groundwater Plow Direction	Hydraulic The Gradient	Water Sample Field Date	TPHG CONTRACTION TO THE METHOD	Benzene 점 EPA 8020	Toluene	Ethylbenzene B EPA 8020	Total Xylenes	표 MTBE 중 EPA 8020	MTBE EPA 8240	TPHD CT CUFT Method
AR-I	02-09-94	15.61	11.08	4.53	ND	NR	NR	02.00.04	26000	2000	450	000				
AR-1	05-04-94	15.61	11.08	4,33 3.78	ND ND	NW NW	0.004	02-09-94 05-04-94	26000 36000	2900	450	920	3000		* *	^4200
AR-1	03-04-94	15.61	11.09	4.52	ND	WNW	0.004	03-04-94	6100	3400	360	1400	3700			^7200
AR-1	11-16-94	15.61	10.19	5.42	ND	NW	0 007	11-16-94	1200	120 66	66 20	65 34	530			^2900
AR-1	03-24-95	15 61	7 25	8.36	ND	NW	0 003	03-24-95	270	14	06	25	210 21			^^^560
AR-1	06-05-95	15 61	11 37	4.24	ND ND	NW NW	0.002	05-24-95	190	10	< 0.5	08	05	* *		^^^130
AR-I	08-17-95	15.61	12.40	3 21	ND	W	0.002	08-17-95	960	110	12	4.5	150	14		^580
AR-I	12-04-95	15.61	12.90	2 71	ND	NNW	0.001	12-04-95	<50	110	<0.5	<0.5	08		* -	<50
AR-I	03-01-96	15.61	8 19	7 42	ND ND	NW	0 002	03-13-96	150	38	0.5	14	13	-2		
AR-I	05-29-96	15.61	10.41	5 20	ND	NW	0 003	05-29-96	Not sampled					<3		
AR-1	08-29-96	15.61	12.12	3.49	ND	w	0.002	03-29-96	<50	<0.5	<0.5	-1111Car attar	9818 0.8	<3		
														_		
AR-2	02-09-94	15 28	11 33	3 95	ND	NR	NR	02-09-94	^^82	<0.5	<0.5	<0.5	<0.5			<50
AR-2	05-04-94	15 28	11.88	3 40	ND	NW	0 004	05-04-94	<50	<0.5	< 0.5	<0.5	<0.5			<50
AR-2	08-10-94	15.28	12.48	2.80	ND	WNW	0 007	08-10-94	200	5	17	27	38			^55
AR-2	11-16-94	15.28	10.95	4.33	ND	NW	0.005	11-16-94	<50	8.0	<0.5	<0.5	< 0.5			<50
AR-2	03-24-95	15.28	9 13	6 15	ND	NW	0.009	03-24-95	<50	6.2	< 0.5	< 0.5	06			<50
AR-2	06-05-95	15 28	1209	3 19	ND	NW	0.002	06-05-95	<50	<0.5	<0.5	< 0.5	<0.5			<50
AR-2	08-17-95	15 28	12,78	2.50	ND	W	0 001	08-18-95	<50	< 0.5	< 0.5	< 0.5	< 0.5	4		<50
AR-2	12-04-95	15.28	11.44	3.84	ND	NNW	0 002	12-13-95	<50	<0.5	< 0.5	<0.5	< 0.5			
AR-2	03-01-96	15.28	9.83	5.45	ND	NW	0 003	03-13-96	190	26	2.6	3.3	13	200		
AR-2	05-29-96	15.28	10 97	4 31	ND	NW	0.002	05-29-96	Not sampled	l: not schedi	iled for che	mical analy	ysis			
AR-2	08-29-96	15 28	12.20	3 08	ND	W	0.002	08-29-96	<50	<0.5	< 0.5	<0.5	<0.5	95		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Date 11-25-96

Well Designation	Water Level Field Date	Top of Casing	35 Depth to Water	7 Groundwater SG Elevation	Floating Product	S Groundwater S Flow Direction	Hydraulic Gradient	Water Sample Freld Date	TPHG 以上UFT Method	Benzene	Totuene	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	क MTBE है EPA 8020	ਜੂ ਜੂ P EPA 8240	ت الم T LUFT Method
ADR-1	02-09-94	13 95	9.90	4.05	ND	NR.	NR	02-09-94	3000	380	140	59	240			4110
ADR-1	05-04-94	13 95	10.50	3.45	ND	NW	0 004	05-04-94	2100	490	93	68	140			^110 ^60
ADR-1	08-10-94	13 95	10.36	3.59	ND	WNW	0 007	08-10-94	150000	5400	15000	3600	24000	••		^^4800
ADR-1	11-16-94	13.95	9.64	4.31	Sheen	NW	0 005	11-16-94	Not sampled				24000			****4000
ADR-1	03-24-95	13 95	8.04	** 5 92	0.01	NW	0 009	03-24-95	Not sampled							
ADR-1	06-05-95	13 95	11.02	2 93	ND	NW	0 002	06-05-95	23000	310	420	300	1900			^13000
ADR-1	08-17-95	13 95	11.86	2.09	ND	w	0 001	08-18-95	4400	150	120	95	620	120		^4500
ADR-1	12-04-95	13.95	10.05	3.90	ND	NNW	0.002	12-13-95	8800	100	130	120	990			
ADR-1	03-01-96	13.95	8.76	5 19	ND	NW	0 003	03-13-96	89000	370	1000	840	8100	<500		
ADR-1	05-29-96	13.95	9.74	4.21	ND	NW	0.002	05-30-96	27000	230	380	370	2700	<100		
ADR-I	08-29-96	13.95	10.77	3 18	ND	W	0.002	08-29-96	5300	190	58	76	470	85		
ADR-2	02-09-94	14,64	10.73	3 91	ND	NR	NR	02-09-94	83000	6300	6100	2000	11000			
ADR-2	05-04-94	14.64	11.31	3 33	ND	NW	0 004	05-04-94	36000	4600	2600	930	4500			12000
ADR-2	08-10-94	14.64	9.81	** 4 90	0 10	WNW	0.007	08-10-94	Not sampled				4300			^4200
ADR-2	11-16-94	14.64	9 84	** 4 87	0.09	NW	0.007	11-16-94	Not sampled							
ADR-2	03-24-95	14.64	8 41	NR*	>3.00*	NR*	NR*	03-24-95	Not sampled							
ADR-2	06-05-95	14.64	11.45	NR*	>3.00*	NR*	NR*	06-05-95	Not sampled.							
ADR-2	08-17-95	14.64	12 10	** 2.56	0.03	w	0 001	08-17-95	Not sampled:							
ADR-2	12-04-95	14.64	10 93	** 3 73	0.03	NNW	0 002	12-13-95	Not sampled:			U 1				
ADR-2	03-01-96	14.64	8 74	5 90	ND	NW	0.003	03-13-96	29000	1100	1200	710	3800	<500		
ADR-2	05-29-96	14,64	10,43	4.21	ND	NW	0.002	05-29-96	33000	510	500	470	2300	120		
ADR-2	08-29-96	14.64	11.64	3.00	ND	w	0.002	08-29-96	8000	230	180	150	730	53		
								•					,			

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present***

Date: 11-25-96

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Веп z епе EPA 8020	Toluene EPA 8020	Ethylbenzene BPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L,	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L

ft-MSL elevation in feet, relative to mean sea level

MWN, groundwater flow direction and gradient apply to the entire monitoring well network

ft/ft. foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl-tert-butyl ether

TPHD; total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND, none detected

NR: not reported; data not available or not measurable

NW: northwest

WNW, west-northwest

W: west

NNW: north-northwest

- #. method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference
- ^: sample contains a lower boiling point hydrocarbon quantitated as diesel, chromatogram does not match the typical diesel fingerprint
- A: sample contains a single non-fuel component eluting in the gasoline range, and quantified as gasoline
- ^^^: sample contains a mixture of diesel and a lower boiling point hydrocarbon quantitated as diesel; chromatogram does not match the typical diesel fingerprint
- ^^^^ sample contains components eluting in the diesel range, quantified as diesel; chromatogram does not match the typical diesel fingerprint
- -: not analyzed or not applicable
- * well contained more than 3 feet of floating product; exact product thickness and groundwater elevation could not be measured
- **: [corrected elevation (Z)] = Z + (h * 0.73) where Z = measured elevation, h = floating product thickness, 0.73 = density ratio of oil to water
- ***: For previous historical groundwater elevation data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 2169, 889 West Grand Avenue, Oakland, California, (EMCON, March 4, 1996)

Table 3
Approximate Cumulative Floating Product Recovered

Date:	11	25	~
Dane.		- / ٦	.ur

Well Desig- nation	Date	Floating Product Recovered gallons
		garions
ADR-1	1994	0.0
ADR-2		0.0
ADR-1	1995	0.0
ADR-2	*****	4.8
ADR-1	1996	0.0
ADR-2	1270	0.0
- · · · · · · · · · · · · · · · · · · ·	1994 to 1996 Total:	4.8

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Number: 2169 Facility

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose. California

Operation and Performance Data From: 06-02-94

Start-Up Date: 06-02-94

San Jose, Camornia			10: 10-01-96

Beginning Date:	06-02-94	06-02-94	06-07-94	06-16-94	06-22-94
Ending Date:	06-02-94	06-07-94	06-16-94	06-22-94	06-30-94
Down-time (days):	0	0	1	0	4
Total Operation (days):	0	5	8	6	4
Total Operation (hours):	1.7	121.3	193 7	145.2	106.3
Operation Hours to Date:	1.7	123.0	316.7	462.0	568.2
TPH Concentrations					
Average Influent (ppmv):	18,000	16,000	830	1,100	230
Average Effluent (ppmv):	ND	45	ND	4.9	75.0
Benzene Concentrations					
Average Influent (ppmv):	270	420	17	24	3.8
Average Effluent (ppmv):	ND	0.30	ND	0.08	0.78
Flow Rates					
Average Influent (scfm):	61.1	131.5	145.3	194.1	176.7
Average Dilution (scfm):	184.2	97.8	69.9	0.0	0.0
Average Effluent (scfm):	268.6	272.3	289.7	264.4	288.9
TPH-G Recovery Data					
Recovery Rate (lbs/hr):	11.12	21.26	1.22	2.16	0.41
Recovery Rate (lbs/day):	266.80	510.34	29.27	51.77	9.86
Destruction Efficiency (%):	100.00	99.46	100.00	99.39	46.70
Product Recovered (lbs):	18.68	2779.35	236.08	313.27	43.64
Product Recovered to Date (lbs):	18.68	2798.02	2834.10	3147.37	3191.01
Product Recovered to Date (gal):	3.11	433.00	472.35	524.56	531.83
Benzene Recovery Data					
Recovery Rate (lbs/hr):	0.185	0.670	0.030	0.056	0.008
Recovery Rate (lbs/day):	4.447	16.076	0.719	1,355	0.195
Destruction Efficiency (%):	100.00	99.86	100.00	99.56	66.45
Product Recovered (lbs):	0.311	81.249	5.802	8.202	0.865
Product Recovered to Date (lbs):	0.311	81.561	87.363	95.565	96.430
Product Recovered to Date (gal):	0.043	11.270	12.050	13.181	13.301

Page 1 Footnotes

ppmv parts per million by volume sofm: standard cubic feet per minute lbs/hr: pounds per operational hour lbs/day, pounds per day

lbs: pounds

gal: gallons

ND: None Detected; Recovery data calculated using laboratory detection limits

- 1. Molecular weights used in recovery calculations are 65 for TPH and 78 for benzene.
- 2. Densities used in recovery calculations are 6.0 lbs/gal for TPH and 7 27 lbs/gal for benzene
- 3 All data and calculations on this page were prepared by GeoStrategies, Inc. (GSI), as presented in Letter Report, Vapor Extraction Start Up and Quarterly Groundwater Monitoring, Second Quarter 1994, (GSI, September 1994)

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 06-02-94 Operation and Performance Data From: 06-02-94

San Jose, California				To: 10)-01-96
Date Begin:	07-01-94	08-01-94	09-01-94	12-01-94	01-01-95
Date End:	08-01-94	09-01-94	12-01-94	01-01-95	02-01-95
Mode of Oxidation:	Therm-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-O _X
Days of Operation:	11	17	35	16	26
Days of Downtime:	20	14	56	15	5
Average Vapor Concentrations (1)					
Well Field Influent: ppmv (2) as gasoline	1983	680	450	1500	<15
mg/m3 (3) as gasoline	5333	1800	1200	5600	<60
ppmv as benzene	29	7.6	2.9	7	<01
mg/m3 as benzene	95	25	9.4	22	< 0.5
System Influent: ppmv as gasoline	1983	680	450	400	·<15
mg/m3 as gasoline	5333	1800	1200	1600	<60
ppmv as benzene	29	7.6	2.9	1.9	< 0.1
mg/m3 as benzene	95	25	9.4	6	< 0.5
System Effluent: ppmv as gasoline	17	44	4.1	<15	<15
mg/m3 as gasoline	46	118	11.1	<60	<60
ppmv as benzene	0.15	0.7	0.04	< 0.1	<0.1
mg/m3 as benzene	0.49	2.3	0.143	< 0.5	<0.5
Average Well Field Flow Rate (4), scfm (5):	198.3	212.6	214.3	17 7	16.7
Average System Influent Flow Rate (4), scfm:	198.3	212.6	214.3	120.1	164.3
Average Destruction Efficiency (6), percent (7):	99.1	93.4	99 1	96.3	NA
Average Emission Rates (8), pounds per day (9)					
Gasoline [,]	0 82	2.25	0.21	0.65	0.89
Benzene:	10.0	0.04	0.00	10.0	10.0
Operating Hours This Period	<u>255.95</u>	414.28	833.57	385,86	614.80
Operating Hours To Date:	256.0	670.2	1503.8	1889.7	2504.5
Pounds/ Hour Removal Rate, as gasoline (10):	3.96	1.43	0.96	0.37	0.00
Pounds Removed This Period, as gasoline (11):	1013.1	<u>593.4</u>	802.3	143.1	2.3
Pounds Removed To Date, as gasoline.	4204.1	4797 4	5599.7	5742.9	5745.2
Gallons Removed This Period, as gasoline (12):	163.4	<u>95 7</u>	<u>129.4</u>	23.1	0.4
Gallons Removed To Date, as gasoline:	678.1	773.8	903.2	926.3	9267

Table 4
Soil-Vapor Extraction System
Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California Start-Up Date: 06-02-94 Operation and Performance Data From: 06-02-94

Date Begin:	02-01-95	07-01-95	08-01-95	09-01-95	10-01-95
Date End:	07-01-95	08-01-95	09-01-95	10-01-95	11-01-95
Mode of Oxidation:	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox
Days of Operation:	0	14	19	27	12
Days of Downtime:	150	17	12	3	19
Average Vapor Concentrations (1)					
Well Field Influent: ppmv (2) as gasoline	NA (13)	1567	1975	1400	250
mg/m3 (3) as gasoline	NA	5767	7175	5200	900
ppmv as benzene	NA	12	10	3.1	0.6
mg/m3 as benzene	NA	40	33	10	17
System Influent: ppmv as gasoline	NA	200	270	230	66
mg/m3 as gasoline	NA	740	970	920	240
ppmv as benzene	NA	1.6	1	06	0.1
mg/m3 as benzene	NA	5.2	3.3	1.8	< 0.5
System Effluent: ppmv as gasoline	NA	23	<15	<15	<15
mg/m3 as gasoline	NA	83	<60	<60	<60
ppmv as benzene	NA	< 0.1	< 0.1	< 0.1	<0.1
mg/m3 as benzene	NA	<0.5	<0.5	<0.5	<0.5
Average Well Field Flow Rate (4), scfm (5):	0 0	27.9	43.0	58.1	67.0
Average System Influent Flow Rate (4), scfm	0.0	197.6	166.8	167.9	174.1
Average Destruction Efficiency (6), percent (7):	NA	88.8	93 8	93.5	75.0
Average Emission Rates (8), pounds per day (9)					
Gasoline [,]	0 00	1.47	0.90	0.90	0 94
Benzene:	0.00	0.01	0.01	0.01	0.01
Operating Hours This Period:	0.00	346.17	462.40	652.27	278.16
Operating Hours To Date:	2504.5	2850.6	3313.0	3965.3	4243 5
Pounds/ Hour Removal Rate, as gasoline (10):	0.00	0.60	1.15	1.13	0.23
Pounds Removed This Period, as gasoline (11):	0.0	208.5	533.9	737.6	62.8
Pounds Removed To Date, as gasoline:	5745.2	5953.6	6487 6	7225.1	7287.9
Gallons Removed This Period, as gasoline (12).	0.0	33.6	<u>86.1</u>	119.0	<u> 10.1</u>
Gallons Removed To Date, as gasoline.	926 7	960.3	1046 4	1165.4	1175.5

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Number: 2169 Facility

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 06-02-94 Operation and Performance Data From: 06-02-94

Date Begin:	11-01-95	01-01-96	04-01-96
Date End.	01-01-96	04-01-96	07-01-96
Mode of Oxidation:	Cat-Ox	Cat-Ox	Cat-Ox
Days of Operation.	0	0	0
Days of Downtime.	61	91	91
Average Vapor Concentrations (1)			
Well Field Influent: ppmv (2) as gasoline	NA	NA	NA
mg/m3 (3) as gasoline	NA	NA	NA
ppmv as benzene	NA	NA	NA
mg/m3 as benzene	NA	NA	NA
System Influent: ppmv as gasoline	NA	NA	NA
mg/m3 as gasoline	NA	NA	NA
ppmv as benzene	NA	NA	NA
mg/m3 as benzene	NA	NA	NA
System Effluent: ppmv as gasoline	NA	NA	NA
mg/m3 as gasoline	NA	NA	NA
ppmv as benzene	NA	NA	NA
mg/m3 as benzene	NA	NA	NA
Average Well Field Flow Rate (4), scfm (5):	0.0	0 0	0 0
Average System Influent Flow Rate (4), scfm:	0.0	0.0	0 0
Average Destruction Efficiency (6), percent (7):	NA	NA	NA
Average Emission Rates (8), pounds per day (9)			
Gasoline	0.00	0.00	0.00
Benzene [.]	0.00	0.00	0.00
Operating Hours This Period	0.00	0.00	0.00
Operating Hours To Date:	4243.5	4243.5	4243 5
Pounds/ Hour Removal Rate, as gasoline (10):	0.00	0.00	0 00
Pounds Removed This Period, as gasoline (11):	0.0	00	0.0
Pounds Removed To Date, as gasoline	7287.9	7287.9	7287.9
Gallons Removed This Period, as gasoline (12):	0.0	0.0	0.0
Gallons Removed To Date, as gasoline	1175.5	1175.5	1175.5

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 06-02-94

Operation and Performance Data From: 06-02-94

				10. 10-01-5
Date Begin.	07-01-96	08-01-96	09-01-96	
Date End.	08-01-96	09-01-96	10-01-96	
Mode of Oxidation:	Cat-Ox	Cat-Ox	Cat-Ox	
Days of Operation:	0	18	8	
Days of Downtime:	31	13	22	
Average Vapor Concentrations (1)				
Well Field Influent: ppmv (2) as gasoline	NA	140	770	
mg/m3 (3) as gasoline	NA	570	3200	
ppmv as benzene	NA	1.6	2.4	
mg/m3 as benzene	NA	5	7.8	
System Influent: ppmv as gasoline	NA	73	300	
mg/m3 as gasoline	NA	300	1200	
ppinv as benzene	NA	0.8	0.8	
mg/m3 as benzene	NA	2.6	2.6	
System Effluent: ppmv as gasoline	NA	<5	<5	
mg/m3 as gasoline	NA	<20	<20	
ppmv as benzene	NA	< 0.2	< 0.1	
mg/m3 as benzene	NA	<0.5	<0.4	
Average Well Field Flow Rate (4), scfm (5)	0.0	119.3	128.6	
Average System Influent Flow Rate (4), sefm:	0.0	153 0	204.3	
Average Destruction Efficiency (6), percent (7):	NA	93.3	98.3	
Average Emission Rates (8), pounds per day (9)				
Gasoline:	0.00	0.27	0.37	
Benzene.	0.00	0.01	0.01	
Operating Hours This Period:	1.82	435.13	180,20	
Operating Hours To Date:	4245.3	4680.4	4860 6	
Pounds/ Hour Removal Rate, as gasoline (10):	0.00	0.25	1.54	
Pounds Removed This Period, as gasoline (11)	0.0	110.7	<u> 277.5</u>	
Pounds Removed To Date, as gasoline	7287 9	7398.7	7676.2	
Gallons Removed This Period, as gasoline (12):	0.0	<u>17.9</u>	44.8	
Gallons Removed To Date, as gasoline.	1175.5	1193.4	1238.2	

Table 4 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model VAC-25, 250cfm Thermal/

Catalytic Oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 06-02-94 Operation and Performance Data From: 06-02-94

To: 10-01-96

CURRENT REPORTING PERIOD:	07-01-96	to 10-01-96
DAYS / HOURS IN PERIOD:	92	2208.0
DAYS / HOURS OF OPERATION:	26	617.2
DAYS / HOURS OF DOWN TIME:	66	1590.9
PERCENT OPERATIONAL:		28.0 %
PERIOD POUNDS REMOVED:	388.3	
PERIOD GALLONS REMOVED:	62.6	
AVERAGE WELL FIELD FLOW RATE (scfm):		121.7
AVERAGE SYSTEM INFLUENT FLOW RATE (scfm);		167.5

For the period from July 1 to December 1, 1994, ppmv results were converted to mg/m3 using the following formula:

concentration (as gasoline in mg/m3) = [concentration (as gasoline in ppmv) x 65 lb/lb-mole / 24.05 (lb/m3/lb-mole of air)/mg] (rounded as appropriate) concentration (as benzene in mg/m3) = {concentration (as benzene in ppmv) x 78 lb/lb-mole / 24.05 (lb/m3/lb-mole of air)/mg] (rounded as appropriate) For the period from December 1, 1994, to July 1, 1995, ppmv results were converted to mg/m3 using the following formula:

concentration (as gasoline in mg/m3) = [concentration (as gasoline in ppmv) x 87 lb/lb-mole / 24.05 (lb/m3/lb-mole of air)/mg] (rounded as appropriate) concentration (as benzene in mg/m3) = [concentration (as benzene in ppmv) x 78 lb/lb-mole / 24.05 (lb/m3/lb-mole of air)/mg] (rounded as appropriate) After July 1, 1995, all vapor results were reported by the laboratory in ppmv and mg/m3.

- Average flow rates (time weighted average) are based on instantaneous flow rates recorded during the month, refer to Appendix C for instantaneous flow data.
- sefm: flow in standard cubic feet per minute at one atmosphere and 70 degrees Fahrenheit
- Average destruction efficiencies are calculated using monthly average concentrations; refer to Appendix C for instantaneous destruction efficiency data
- destruction efficiency, percent = ([system influent concentration (as gasoline in mg/m3) system effluent concentration (as gasoline in mg/m3)] / system influent concentration (as gasoline in mg/m3)) x 100 percent
- Average emission rates are calculated using monthly average concentrations and flow rates; refer to Appendix C for instantaneous emission rate data. emission rates (pounds per day) = system effluent concentration (as gasoline or benzene in mg/m3) x system influent flow rate (scfm) x 0.02832 m3/ft3
- x 1440 minutes/day x 1 pound/454,000 mg
- pounds/ hour removal rate (as gasoline) = well field influent concentration (as gasoline in mg/m3) x well field influent flow rate (scfm) x 0 02832 m3/ft3 x 60 minutes/hour x 1 pound/454,000 mg
- 11 pounds removed this period (as gasoline) = pounds/ hour removal rate x hours of operation
- 12 gallons removed this period (as gasoline) = pounds removed this period (as gasoline) x 0.1613 gallons/pound of gasoline
- 13. NA not applicable, not analyzed, or not available

Average concentrations are based on discrete sample results reported during the month; refer to Appendix C for discrete sample results.

pomy, parts per million by volume

mg/m3: milligrams per cubic meter

Table 5
Soil-Vapor Extraction Well Data

Date: 11-26-96

A-2 TVHG ppmv 1995 groundwater m NA NA tarted on July 17, 19 NA NA NA NA NA NA	0 0	Valve Position To this site. passive passive closed closed closed closed	A-3 TVHG ppmv NA NA NA NA NA NA	Vacuum Response in-H2O 0 0 NA NA NA	Valve Position passive passive closed closed closed	A-4 TVHG ppmv NA NA NA NA NA NA	Vacuum Response in-H2O 0 0 NA NA
ppmv 1995 groundwater m NA NA tarted on July 17, 19 NA NA NA NA	Response in-H2O conitoring report for 0 0 995. NA NA NA 0	Position This site. passive passive closed closed closed	NA NA NA NA NA	Response in-H2O 0 0 NA NA NA	passive passive closed closed closed	TVHG ppmv NA NA NA NA NA NA	Respons in-H2O 0 0 NA NA
1995 groundwater m NA NA tarted on July 17, 19 NA NA NA NA	onitoring report for 0 0 1955. NA NA NA 0	passive passive closed closed closed	NA NA NA NA	0 0 NA NA NA	passive closed closed closed	NA NA NA NA NA	in-H2O 0 0 NA NA
NA NA tarted on July 17, 19 NA NA NA NA	0 0 995. NA NA NA 0	passive passive closed closed closed	NA NA NA	0 NA NA NA	passive closed closed closed	NA NA NA	0 NA NA
NA NA tarted on July 17, 19 NA NA NA NA	0 0 995. NA NA NA 0	passive passive closed closed closed	NA NA NA	0 NA NA NA	passive closed closed closed	NA NA NA	0 NA NA
tarted on July 17, 19 NA NA NA NA	995. NA NA NA O	closed closed closed	NA NA NA	NA NA NA	passive closed closed closed	NA NA NA	0 NA NA
NA NA NA NA	NA NA NA O	closed closed closed	NA NA NA	NA NA NA	closed closed closed	NA NA NA	NA NA
NA NA NA	NA NA O	closed closed	NA NA	NA NA	closed closed	NA NA	NA
NA NA	NA 0	closed	NA	NA	closed	NA NA	NA
NA	0	1			closed	NA	
		closed	NA	,			
NA	Λ			0 I	closed	NA	0
		closed	NA	o	closed	NA	ő
NA	NA	closed	NA	NA NA	closed	NA	NA
NA	0	closed	NA	0	closed	NA	0
		1					•
NA	0	open	NA	46	closed	NΑ	0
NA.	NA	open	NA	22	closed		NA
NA	NA	closed	NA	NA			NA
	NA	NA NA	NA NA open	NA NA open NA	NA NA open NA 22	NA NA open NA 22 closed	NA NA open NA 22 closed NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O inches of water

open open to the system

passive: open to the atmosphere

closed: closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 5
Soil-Vapor Extraction Well Data

Date. 11-26-96

AV-1 Valve Vacuum Valve Position TVHG Response Position TVHG Popmv in-H2O ppmv i	Vacuu Respon in-H20
Valve Position TVHG Response Position TVHG Re	Respon
ppmv in-H2O ppmv i	Respon
for SVE well monitoring data prior to January 1, 1995, please refer to the third quarter 1995 groundwater monitoring report for this site 01-13-95 passive NA 15 passive NA 0 passive NA 0 open 463 PID 01-26-95 passive NA 27 passive NA 0 passive NA 0 open 18 FID 07-17-95 System was shut down on January 26, 1995. System was restarted on July 17, 1995	in-H2
01-13-95 passive NA 15 passive NA 0 passive NA 0 open 463 PID 01-26-95 passive NA 27 passive NA 0 passive NA 0 open 18 FID 07-17-95 System was shut down on January 26, 1995. System was restarted on July 17, 1995	
01-13-95 passive NA 15 passive NA 0 passive NA 0 open 463 PID 01-26-95 passive NA 27 passive NA 0 passive NA 0 open 18 FID 07-17-95 System was shut down on January 26, 1995. System was restarted on July 17, 1995	
01-26-95 passive NA 27 passive NA 0 passive NA 0 open 18 FID 07-17-95 System was shut down on January 26, 1995. System was restarted on July 17, 1995	16
07-17-95 System was shut down on January 26, 1995. System was restarted on July 17, 1995	30
07.17.05	50
07-17-95 open NA NA open NA NA closed NA	NA
07-25-95 open 1026 PID 42 open 1364 PID 42 open 869 PID 42 closed NA	NA
07-25-95 open 1200 LAB NA open 1600 LAB NA open 980 LAB NA closed NA	NA
08-22-95 open NA 42 open NA 44 open NA 44 closed NA	NA
09-21-95 open NA 43 open NA 47 open NA 47 closed NA	0
09-21-95 open NA 46 open NA 46 open NA 46 closed NA	1
10-12-95 open NA 44 open NA 43 open NA 43 closed NA	1
10-12-95 System was manually shut down.	•
08-02-96 closed 48.5 PID 6 open 863 PID 46 open 322 PID 44 closed NA	0
08-05-96 closed NA NA open NA 32 open NA 36 open NA	32
00 23 06	50
09-23-96 open NA 42 open NA 50 open NA 53 open NA	

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water open: open to the system

passive open to the atmosphere

closed: closed to the system and atmosphere

NA not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB. TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 5
Soil-Vapor Extraction Well Data

Date. 11-26-96

ŀ						Well Ider	ntification					
,		AV-5			AV-6		· · · · · · · · · · · · · · · · · · ·	AV-7			AR-2	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve	7110-2	Vacuun
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respons
		ppmv	in-H2O		ppmv	in-H2O		ppmv	ın-H2O		ppmv	ın-H2C
or SVE well mo	I mitoring data prior	to January 1, 199	5, please refer to	I the third quarter 19	95 groundwater m	onitoring report fo	r this site.					
01-13-95	passive	NA	1	open	46 PID	16	passive	NA	0	passive	NA	0
01-26-95	open	2 2 FID	30	open	2,3 FID	30	passive	NA	ŏ	passive	NA.	0
07-17-95	System was shut of	down on January	26, 1995	System was resta	rted on July 17, 19	95.	•	F - F W	Ů	passife	NA.	U
07-17-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
07-25-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA.	NA NA
08-22-95	closed	NA	NA	closed	NA	NA	closed	NA	NA.	open	NA NA	44
09-21-95	closed	NA	0	closed	NA	o	closed	NA	0	open open	NA NA	48
09-21-95	closed	NA	0	open	NA	46	closed	NA	ŏ	ореп	NA NA	46
09-21-95	closed	NA	NA	open	2300 LAB	NA	closed	NA	NA	open	NA NA	NA
10-12-95	closed	NA	0	open	NA	42	closed	NA	0	ореп	NA NA	NA 43
10-12-95	System was manu	ally shut down							ŭ	Орсп	IVA.	43
08-02-96	open	NA	44	open	185 PID	42	орел	NA	44	closed	NA	40
08-05-96	open	NA	30-36	open	NA	32	open	NA	34	open	NA NA	28
09-23-96	open	455 PID	50	open	282 PID	49	closed	NA	NA.	open	13 2 PID	45

TVHG concentration of total volatile hydrocarbons as gasoline

ppmv. parts per million by volume

in-H2O inches of water

open: open to the system

passive open to the atmosphere

closed closed to the system and atmosphere

NA. not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID. TVHG concentration was measured with a portable photoionization detector

Table 5 Soil-Vapor Extraction Well Data

Date. 11-26-96

						Well Ide
ı		ADR-1		<u> </u>	ADR-2	
	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O
For SVE well me	I onitoring data prior	r to January 1, 199:	5, please refer to t	he third quarter 19	95 groundwater me	onitoring report fo
01-13-95	open	58 PID	16	open	160 PID	16
01-26-95	open	2 2 FID	30	open	4 4 FID	30
07-17-95	System was shut	down on January 2	6, 1995.	System was resta	rted on July 17, 199	95.
07-17-95	open	NA	NA	open	NA	NA
07-25-95	open	1184 PID	42	open	1057 PID	42
07-25-95	open	1400 LAB	NA	open	1300 LAB	NA
08-22-95	open	NA	44	open	NA	44
09-21-95	open	NA	48	open	NA	47
09-21-95	open	NA	45	open	NA	46
10-12-95	open	NA	43	open	NA	44
10-12-95	System was many	ually shut down.				
08-02-96	closed	NA	0	open	950 PID	42
08-05-96	closed	NA	NA	open	NA	32
09-23-96	open	1221 PID	NA	орел	950 PID	50
						•
	ļ					
)			J		
				L		

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O: inches of water

open: open to the system passive: open to the atmosphere

closed closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB TVHG concentration was analyzed in the laboratory

PID. TVHG concentration was measured with a portable photoionization detector

Table 6
Air-Sparge System
Operation and Performance Data

Facility Number: 2169

Air-Sparge Unit:*

Location: 889 West Grand Avenue Oakland, California

3-horsepower Conde blower 5-horsepower air compressor

Consultant: EMCON

Start-Up Date: 07-15-94

1921 Ringwood Avenue San Jose, California Operation and Performance Data From: 07-15-94

Date Begin:	07-15-94	08-01-94	08-01-94	08-01-94	08-15-94	09-13-94
Date End:	08-01-94	08-01-94	08-01-94	08-15-94	09-13-94	11-28-94
Days of Operation:	6	0	0	19	27	(
Days of Downtime:	11	0	0	12	3	76
Air-Sparge Well Status:						
AS-1	open	open	open	open	open	closec
AS-2	open	open	open	open	open	closed
AS-3	open	open	open	open	open	closed
AS-4	open	open	open	open	open	closed
AS-5	open	open	open	open	open	closed
Air-Sparge Well Pressure (psig) (1):						
AS-1	2.8	2.8	3.0	2.0	2.4	0.0
AS-2	3.0	3.0	2.8	2.2	2.4	0.0
AS-3	3.6	3.6	3.8	3.1	2.2	0.0
AS-4	3.1	3.1	3.4	3.0	2.8	0.0
AS-5	2.8	2.8	3.2	2.8	3.2	0.0
Total Air-Sparge Flow Rate (scfm) (2):	25.0	29.0	29.0	27.0	29.0	0.0
Total Air-Sparge Pressure (psig):	5.0	2.8	2.8	2.6	3.0	0.0
Dissolved Oxygen (mg/L) (3): Air-Sparge Wells:						
AS-1	NA (4)	NA	NA	NA	NA	1.4
AS-2	NA (4)	NA NA	NA NA	NA NA	NA NA	1.4 1.2
AS-3	NA	NA NA	NA NA	NA NA	NA NA	1.2
AS-4	NA	NA NA	NA NA	NA NA	NA NA	0.8
AS-5	NA NA	NA NA	NA NA	NA NA	NA NA	1.4
Depth to Water (ft-BGS) (5): Air-Sparge Wells:					,	
AS-1	NA	NA	NA	NA	NA	10.55
AS-2	NA	NA	NA	NA NA	NA NA	11,29
AS-3	NA	NA	NA NA	NA NA	NA	10.78
AS-4	NA	NA	NA NA	NA NA	NA NA	10.76
AS-5	NA	NA NA	NA NA	NA NA	NA NA	10.27

Table 6 Air-Sparge System Operation and Performance Data

Facility Number: 2169

Air-Sparge Unit:*

Location: 889 West Grand Avenue

3-horsepower Conde blower

Oakland, California

5-horsepower air compressor

Consultant: EMCON

Start-Up Date: 07-15-94

1921 Ringwood Avenue San Jose, California

Operation and Performance Data From: 07-15-94

D . B .					· · · · · · · · · · · · · · · · · · ·	
Date Begin:	11-28-94	01-03-95	02-03-95	03-31-95	07-25-95	08-10-95
Date End:	01-03-95	02-03-95	03-31-95	06-28-95	08-10-95	08-22-95
Days of Operation:	0	0	0	0	2	0
Days of Downtime:	36	31	56	89	14	12
Air-Sparge Well Status:						
AS-1	closed	closed	closed	closed	open	open
AS-2	closed	closed	closed	closed	closed	closed
AS-3	closed	closed	closed	closed	closed	closed
AS-4	closed	closed	closed	closed	open	open
AS-5	closed	closed	closed	closed	closed	closed
Air-Sparge Well Pressure (psig) (1):						
AS-1	0.0	0.0	0.0	0.0	8.9	5.5
AS-2	0.0	0.0	0.0	0.0	0.0	0.0
AS-3	0.0	0.0	0.0	0.0	0.0	0.0
AS-4	0.0	0.0	0.0	0.0	2.0	2.3
AS-5	0.0	0.0	0.0	0.0	0.0	0.0
Total Air-Sparge Flow Rate (scfm) (2):	0.0	0.0	0.0	0.0	2.0	2.0
Total Air-Sparge Pressure (psig):	0.0	0.0	0.0	0.0	50	45
Dissolved Oxygen (mg/L) (3):						
Air-Sparge Wells:						
AS-1	NA	NA	NA	NA	1.1	NA
AS-2	NA	NA	NA	NA	NA	NA
AS-3	NA	NA	NA	NA	NA	NA
AS-4	NA	NA	NA	NA	1.4	NA
AS-5	NA	NA	NA	NA	1.0	NA
Depth to Water (ft-BGS) (5):						
Air-Sparge Wells:						
AS-1	NA	NA	8.79	NA	11.75	NA
AS-2	NA	NA	9.37	NA NA	NA	NA NA
AS-3	NA	NA	8.93	NA NA	NA NA	NA NA
AS-4	NA.	NA	8.43	NA NA	11.31	NA NA
AS-5	NA	NA	8.80	NA NA	11.62	NA NA

Table 6 Air-Sparge System Operation and Performance Data

Facility Number: 2169

Location: 889 West Grand Avenue

Oakland, California

Air-Sparge Unit:*

3-horsepower Conde blower 5-horsepower air compressor

Consultant: EMCON

1921 Ringwood Avenue San Jose, California Start-Up Date: 07-15-94

Operation and Performance Data From: 07-15-94

Date Begin:	08-22-95	09-21-95	10-12-95	01-01-96	04-01-96	
Date End:	09-21-95	10-12-95	01-01-96	04-01-96	07-01-96	
Days of Operation:	11	NA	NA	NA	NA	
Days of Downtime:	19	NA	NA	NA	NA	
Air-Sparge Well Status:						
AS-1	open	closed	closed	closed	closed	
AS-2	closed	closed	closed	closed	closed	
AS-3	closed	closed	closed	closed	closed	
AS-4	open	closed	closed	closed	closed	
AS-5	open	closed	closed	closed	closed	
Air-Sparge Well Pressure (psig) (1):						
AS-1	7.0	0.0	0.0	0.0	0.0	
AS-2	0.0	0.0	0.0	0.0	0.0	
AS-3	0.0	0.0	0.0	0.0	0.0	
AS-4	1.5	0.0	0.0	0.0	0.0	
AS-5	1.0	0.0	0.0	0.0	0.0	
Total Air-Sparge Flow Rate (scfm) (2):	6.0	0.0	0.0	0.0	0.0	
Total Air-Sparge Pressure (psig):	45	0	0	0	0	
Dissolved Oxygen (mg/L) (3):						
Air-Sparge Wells:						
AS-1	NA	7.4	NA	NA	NA	
AS-2	NA	NA	NA	NA	NA	
AS-3	ΝA	NA	NA	NA	NA	
AS-4	NA	1.5	NA	NA	NA	
AS-5	NA	1.6	NA	NA	NA	
Pepth to Water (ft-BGS) (5):						
Air-Sparge Wells:						
AS-1	NA	12.12	NA	NA	NA	
AS-2	NA	NA	NA	NA NA	NA NA	
AS-3	NA	NA	NA	NA	NA NA	
AS-4	NA.	11.78	NA	NA NA	NA NA	
AS-5	NA.	12.05	NA NA	NA NA	MA	

Table 6 Air-Sparge System Operation and Performance Data

Facility Number: 2169 Air-Sparge Unit:*

Location: 889 West Grand Avenue

Oakland, California

3-horsepower Conde blower 5-horsepower air compressor

Consultant: EMCON Start-Un

1921 Ringwood Avenue

Start-Up Date: 07-15-94 Operation and Performance Data From: 07-15-94

San Jose, California		To: 10-01-96					
Date Begin:	07-01-96	08 01 06	00.01.04				
Date End:	08-01-96		09-01-96				
Days of Operation:	08-01-90		10-01-96				
Days of Downtime:	31	18 13	0				
Days of Downtine.	31	13	22				
Air-Sparge Well Status:							
AS-1	closed	open	open				
AS-2	closed	closed	open				
AS-3	closed	open	open				
AS-4	closed	open	open				
AS-5	closed	open	open				
Air-Sparge Well Pressure (psig) (1):							
AS-1	0.0	2.0	1.5				
AS-2	0.0	NA	1.5				
AS-3	0.0	2.0	1.5				
AS-4	0.0	2.0	1.5				
AS-5	0.0	1.5	1.5				
Total Air-Sparge Flow Rate (scfm) (2):	0.0	6.0	12.0				
Total Air-Sparge Pressure (psig):	0.0	40	45				
Dissolved Oxygen (mg/L) (3): Air-Sparge Wells:							
AS-1	NA	NA	NA				
AS-2	NA	NA	NA				
AS-3	NA	NA	NA				
AS-4	NA	NA	NA				
AS-5	NA	NA	NA				
Depth to Water (ft-BGS) (5):							
Air-Sparge Wells:							
AS-1	NA	NA	NA				
AS-2	NA	NA	NA				
AS-3	NA	NA	NA				
AS-4	NA	NA	NA				
AS-5	NA	NA NA	NA NA				
.10 0	1471	1461	INA				

Table 6 Air-Sparge System Operation and Performance Data

Facility Number: 2169

Air-Sparge Unit:*

to

2208.0

437.8

1770.2

19.8%

Location: 889 West Grand Avenue

3-horsepower Conde blower

Oakland, California

5-horsepower air compressor

10-01-96

Consultant: EMCON

PERCENT OPERATIONAL:

Start-Up Date: 07-15-94

1921 Ringwood Avenue San Jose, California

Operation and Performance Data From: 07-15-94

To. 10-01-96

CURRENT REPORTING PERIOD: 07-01-96 DAYS / HOURS IN PERIOD: 92 DAYS / HOURS OF OPERATION: 18 DAYS / HOURS OF DOWN TIME: 74

^{1.} psig: pounds per square inch gauge

^{2.} scfm: standard cubic feet per minute at 14 7 psi and 70° F

^{3.} mg/L: milligrams per liter

NA: not available or not analyzed

^{5.} ft-BGS: feet below grade surface

During the period from July 15, 1994 to July 25, 1995 the air-sparge system used a 3-horsepower Conde blower. On July 25, 1995, it was replaced with a 5-horsepower air compressor.

ARCO PRODUCTS COMPANY
SERVICE STATION 2169, 889 WEST GRAND AVE.
QUARTERLY GROUNDWATER MONITORING
OAKLAND, CALIFORNIA

SITE LOCATION

FIGURE

PROJECT NO. 805-129.03

ARCO Service Station 2169
Soil-Vapor Extraction and Treatment System

Figure 4

Historical System Influent TVHG and Benzene Concentrations

TVHG: total volatile hydrocarbons as gasoline ppmv: parts per million by volume

Figure 5

ARCO Service Station 2169

Soil-Vapor Extraction and Treatment System
Historical Hydrocarbon Removal Rates

esj/h:\2169\2169tss.xIs\SVE Model·imi 20805-129.003

APPENDIX A

FIELD DATA SHEETS, THIRD QUARTER 1996 GROUNDWATER MONITORING EVENT

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT # : 21775-235.002 STATION ADDRESS : 899 West Grand Avenue, Oakland

DATE : 3/29/96

ARCO STATION # : 2169 FIELD TECHNICIAN : DAY

		Welt	Well			Type	FIRST	SECOND	DEPTH TO	FLOATING	14/5/ 1	
DTW	WELL	Box	Lid	Gasket	Lock	Of Well	DEPTH TO	DEPTH TO	FLOATING		WELL	
Order	ID	Seal	Secure	l	Number	1 !	WATER	4	i .	PRODUCT	TOTAL	
	,_	004	Occupa	rieseili	MANUEL	Сар		WATER	PRODUCT	THICKNESS	DEPTH	COMMENTS
<u> </u>		1	4	,,			(feet)	(feet)	(feet)	(feet)	(feet)	
1	A-2	1	Χ	· X	Hori	Tec	11.50	11.50	14	ΔN	24.6	
2	A-3	Y	X	X	No	Scies	12.38	/2.38	ND	ND	28.3	17
3	A-4	X	X	×		Sou		1.55	NO	ND	28,4	
4	AR-1	メ	. (X			12.12	12.12	145	~/N	27.3	
5	AR-2	X	X	X	VI	71	12,20	12,20	K/\)	NI)	28,5	
6	A-6	χ	λ	X	ANCO	LECT	10:57	10,52	// <u>/</u> /	MS	27.0	
7	A-1	X	Х	X	[IOUS	Tel	11.08	11.08	ND	ND	23.4	
8	A-5	X	V	X	ikr(0	LWL	10,60	10.60	1/19	MI	29.6	
9	ADR-1	χ	<u> X</u>	*	n-pa	Tu	10,77	10,77	ND	ND	20,8	
10	ADR-2	1	1	Χ̈́	1	Tu	11.64	11.64	HD	20	26.3	
		1								/ 7/1-3	AU. 2	
												

SURVEY POINTS ARE TOP OF WELL CASINGS

Rev.	2	2/04
nev,	J,	2/34

DEPTH TO WATER (feet) :	WATER SAMPLE FIELD DATA SHEET
SAMPLED BY: COATION: OR OR OR OR OR OR OR O	MCON PROJECT NO: 2///3-235:002 SAMPLE ID: A-/(/3')
TYPE: Ground Water	SAMPLED BY: CLIENT NAME: AF(0 H)/49
CASING ELEVATION (feet/MSL):	LUCATION: (/AX / DX) . (2)
CASING ELEVATION (feet/MSL):	SING DIAMETER (inches): 2
DEPTH TO WATER (feet):	
TIME (2400 Hr)	DEPTH TO WATER (feet): 1/.02 CALCULATED PURGE (gal.): 13.77 DEPTH OF WELL (feet): 23.6 ACTUAL PURGE VOL. (gal.): 14.0
Cadoo Hr) (gal.) (units) (units) (units) (units) (solid) (so	ATE PURGED: 8-29-90 Start (2400 Hr) 1349 End (2400 Hr) 1353 ATE SAMPLED: Start (2400 Hr) 1400 End (2400 Hr)
D. O. (ppm):	2400 Hr) (gal.) (units) (µmhos/cm@ 25° C) (°F) (visual) (visual) 35/ 5:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7
Field QC samples collected at this well: Parameters field filtered at this well: PURGING EQUIPMENT SAMPLING EQUIPMENT 2' Bladder Pump Bailer (Teflon®) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steel) Well Wizard™ Dedicated Other: CHANGE CHANGE COCK #:	1753 1/12 - 1764
PURGING EQUIPMENT 2' Bladder Pump	d QC samples collected at this well: Parameters field filtered at this well: (COBALT 0 - 500) (NTU 0 - 200)
2* Bladder Pump — Bailer (Teflon®) — 2* Bladder Pump — Bailer (Teflon®) Centrifugal Pump — Bailer (PVC) — DDL Sampler — Bailer (Stainless Steel) — Submersible Pump — Bailer (Stainless Steel) — Dipper — Submersible Pump — Well Wizard™ — Dedicated — Well Wizard™ — Dedicated Other: — Other: ELL INTEGRITY: CCA EMARKS: — G1/ Samples]s s s s s s s s s s s s s s	
Centrifugal Pump	SOME LIMIS ELUMENT
Submersible Pump — Bailer (Stainless Steel) — Dipper — Submersible Pump — Dedicated — Well Wizard™ — Dedicated — Dedicated — Other: — Dedicated — Dedi	Contributed Russes Bailer (Teffon®)
Well Wizard™ Dedicated — Well Wizard™ Dedicated Other:	— Submersible Pump — Bailer (Stainless Steel)
EMARKS:	— Well Wizard™ — Dedicated — Well Wizard™ — Dedicated Dedicated
eter Calibration: Date: 8/29/94 Time: Meter Serial #: 9204 Temperature °F: EC 1000 /) (DI) (pH 7 /) (pH 10 /) (pH 4 /) scation of previous calibration: 22-2	
cation of previous calibration: 4-2	aks: — 411 Samples faksen
ocation of previous calibration: 4-2	
ocation of previous calibration: 4-2	
cation of previous calibration: 4-2	Calibration: Date: 8/20/01 -
ocation of previous calibration:	Meter Serial #: 7209 Temperature °F:
	on of Previous calibration: #-7
Reviewed Rv. A.T.	\sim 101.101

Rev.	3.	2/94

PROJECT NO PURGED BY	ER SAMPLE FIELD DATA SHEET 2/775-235-002 SAMPLE ID: A-2 24 MG/2/G CLIENT NAME: AR(0H2/69 LOCATION: OAKLALA, CA	ev. 3, 2
TYPE: Ground Water CASING DIAMETER (inches)	Surface Water Treatment Effluent Other	
T .		'O
DATE PURGED: 3-2	Start (2400 Hr) 1230 End (2400 Hr) 123 Start (2400 Hr) 1240 End (2400 Hr)	
TIME (2400 Hr) (gal.) 1.232 5.0 1.235 100 1.234 14.5	pH (units) (μmhos/cm@25°C) (°F) (visual) (visua	IIDITY uai)
D. O. (ppm): Field QC samples collected at		
PURGING E 2° Bladder Pump Centrifugal Pump Submersible Pump Well Wizard™ Other:	UIPMENT — Bailer (Teffon®) — Bailer (PVC) — Bailer (Stainless Steel) — Dedicated — SAMPLING EQUIPMENT — Bailer (Teffon® — Bailer (Stainless Steel) — Dipper — Submersible F — Well Wizard™ — Dedicated — Other:	ss Steel)
FELL INTEGRITY: HOD	angle teken LOCK#: DOM.	
Meter Calibration: Date: 8/25/3	Time: 1225 Meter Serial #: 9204 Temperature °F: 9	0,8

Reviewed By: __

Location of previous calibration: ____

Signature:

	AIER SAMPL		A SHEET
ENCON	No: 2/775-235.0		: A-5 (29')
	BY: Mi Calleges	CLIENT NAME	ARIOH 2/LG
SAMPLED		LOCATION	: CAKLANA (A
TYPE: Ground Water	Surface Water	Treatment Effluent _	Other
CASING DIAMETER (inch	es): 2 <u> </u>	4 4.5	6 Other
	et/MSL):NR		NG (gal.):
3	(feet): 10,60	CALCULATED PU	RGE (gal.):
DEPTH OF WEL	L (feet): 29.6	ACTUAL PURGE	VOL. (gal.) : 9,5
DATE PURGED:	-29-94 Start ((400 Hr) _/ 5 / (
DATE SAMPLED:	Start (2	400 Hr)	End (2400 Hr) End (2400 Hr)
TIME VOLUMI (2400 Hr) (gal.)	Pi I	C. TEMPERATURI	E COLOR TURBIDITY
(2400 Hr) (gal.) 1512 3. ひ		25°C) (°F)	(visual) (visual)
1513 6.0		1081 72.9	BRN HEAVX
1514 9,5	7,30 /	72.7	
D. O. (ppm):2	ODOR: Mo	becare	MR MD
Field QC samples collected			(COBALT 0 - 500) (NTU 0 - 200
	A//2	ters field filtered at this well:	or 0 - 1000)
PURGING	EQUIPMENT	SAME	PLING EQUIPMENT
2* Bladder Pump	Bailer (Teflon®)	2° Bladder Pun	.,
Centrifugal Pump	Bailer (PVC)	- DDL Sampler	Bailer (Stainless Steel)
Submersible Pump Well Wizard™	Bailer (Stainless Steel)	э.ррс.	Submersible Pump
Other:	Dedicated	—— Well Wizard™.	2124404
VELL INTEGRITY:	7,000		
•			_ LOCK#: Anco-leev
EMAHKS:		1465)	
Meter Calibration: Date: 2	29/66	2700	Temperature °F:
FC 1000 / \	/ DI	vieter Serial #:	Temperature °F:
ocation of previous calibration	\mathcal{A} -2) (pH 10/_) (pH 4/)
gnature:	1 1 1 1	Reviewed By:	Page 5 of 9
			OI

Rev.	3.	2/94
	٠,	~~~

EMCON PROJECT NO: 2/775	-235,002	SAMPLE	in: A-(.(277
PURGED BY:	1/1.62			
TYPE: Ground Water Surface	Motor T	LOCATIO	ON: OAKLA	M, (A
CASING DIAMETER (inches): 2 1	3 4	reatment Effluent	Other	
CASING ELEVATION (feet/MSL):	1/0	4.5	60	ther
DEPTH TO WATER (feet):			SING (gal.):	
DEPTH OF WELL (feet) :	27.0		PURGE (gal.):	
	·	ACTUAL PURGE	VOL. (gal.) :	57.0
DATE PURGED: 8-29-84 DATE SAMPLED:	Start (2400 H Start (2400 H	r) <u>1454</u> r) <u>1459</u>	End (2400 Hr) End (2400 Hr)	14/56
TIME (2400 Hr) (gal.) (units) (1405 F 3.0 (.81) 1459 recharge 6.85	1158 a + 40	・・・・フ <i>ケ</i> //	(visual)	TURBIDITY (visual) -leepuy
	R: Modera f Parameters fiel	d filtered at this well:	(COBALT 0 - 500)	(NTU 0 - 200 or 0 - 1000)
PURGING EQUIPMENT		SAM	IPLING EQUIPMEN	иT
, 2' Bladder Pump Bailer (To		2" Bladder Pi		uler (Teflon®)
- · · · · · · · · · · · · · · · · · · ·	VC) tainless Steet)	— DDL Samplei		iler (Stainless Steel)
— Well Wizardna — Dedicates Other:	đ	Dipper Well Wizard	De	bmersible Pump dicated
	(Other:		
EMARKS: CILL Sauges	, folen		LOCK#: <u>A</u>	

(EC 1000 ____/__) (DI ____) (pH 7 ____/___) (pH 10 ____/___) (pH 4 ____/___)

Reviewed By: -

Location of previous calibration: 4-2

Signature: 2

· 10 7. J. L. 34	Rev.	3.	2/94
------------------	------	----	------

WATER SAMPLE FIELD DATA SHEET
EMCON PROJECT NO: 21775-235.002 SAMPLE ID: 10 1 (771)
PURGED BY: M. C. a // C. S CLIENT NAME: PRIO # 2/15
JOCATION ONLY
Surface Water Treatment Effluent
$\frac{3}{4} = 4.5 = 6 \times \text{Other}$
CASING ELEVATION (feet/MSL): A/R VOLUME IN CASING (gal.): 23.3/ DEPTH TO WATER (feet): 12.12 CALCULATED PURGE (gal.): (c6.94/ ACTUAL PURGE VOL. (gal.): 4/0.0
DATE PURGED: 8-29-96 Start (2400 Hr) 1249 End (2400 Hr) 1.254 DATE SAMPLED: Start (2400 Hr) 1300 End (2400 Hr) —
TIME (2400 Hr) (gal.) pH E.C. TEMPERATURE COLOR TURBIDITY (2400 Hr) (gal.) (units) (μπhοs/cm@ 25°C) (°F) (visual) (visual) (visual) (visual) (visual)
1303 recharge 7.58 868 76.4
D. O. (ppm): ODOR: Modera # X/R X/R Field QC samples collected at this well: Parameters field filtered at this well: (COBALT 0 - 500) (NTU 0 - 200 or 0 - 1000)
PURGING FOUIPMENT 2° Bladder Pump — Bailer (Tefton®) — 2° Bladder Pump — Bailer (Teffon®) — Centrifugal Pump — Bailer (PVC) — DDL Sampler — Bailer (Stainless Steel) — Submersible Pump — Bailer (Stainless Steel) — Dipper — Submersible Pump — Well Wizard™ — Dedicated — Well Wizard™ — Dedicated Other: — Other:
WELL INTEGRITY: GOOD REMARKS: Call Samples Laken LOCK #: Mone
Meter Calibration: Date: 8/29/91
Meter Calibration: Date: \$\frac{8/29/94}{29/94} \text{ Time: Meter Serial #: \frac{9204}{2004} Temperature °F:
(EC 1000/) (DI) (pH 7/) (pH 10/) (pH 4/) Location of previous calibration: A-2
Signature: Page 5 of 8

Rev.	3,	2/94	
------	----	------	--

			IVIPLE				
EMCON	PROJECT NO:	11/15-	235 -002	-	SAMPLE ID	: <u> </u>	(28')
	FUNGED BY:	101,100	1 2305 /3 162.	_ C	LIENT NAME	ARCOH	2169
TYPE: Grou	SAMPLED BY:	<u> 27</u>			1 OCATION	· MALLA	. (1)
CASING DIAM	und water	. Surface V	/ater	Treatmor	t Effluent	~	
ONOING DIAM	CTCA (inches):	2	3 4		4.5	6	Other
CASING ELE	EVATION (feet/MS	SL):	K/R	VOLU	JME IN CASI	NG (gal.):	10,64
02,10	I IO WATER (IE	et):	17.70	CALC	ULATED PU	RGE (gal.):	31.94
DEPT	TH OF WELL (fe	et) :	28.5	ACTU,	AL PURGE	/OL. (gal.) :	32.0
DATE PURG	SED: Y-29.	-94	Start (2400 H	1	*11		
DATE SAMPL	SED: <u>Y-29</u> . ED: <u></u>	/	Start (2400 F	•		End (2400)	Hr)/320_
TIME		····	Olait (2400 F	11) <u>/</u>	<u> </u>	End (2400)	-tr)
(2400 Hr)	VOLUME (gal.)	pH (units)	E.C. (µmhos/cm@ 25	TE	MPERATURE		
1316	10.5	8,19	96,2	•	(°F) -7.2./	(visual)	
1318	21.0	7.86	940		72,7	- Cloy	Mos
13,20	3,2.0	7.85	452				
				_	72.5	(1)	
							
5.0 /	7						
D. O. (ppm):		ODOR:	Modera	fe.		NR	_K/R
Field QC samp	les collected at this	s well:			at this well:	(COBALT 0 - S	00) (NTU 0 - 200 or 0 - 1000)
	PURGING FOU	IDA4ENIT		192			,
		— Bailer (Tefl	20.A)			LING EQUIPA	
/	•	Bailer (PVC			2° Bladder Pum		Bailer (Teffon®)
	sible Pump	- Bailer (Stair			DDL Sampler		Bailer (Stainless Stee
Well Wi	·	- Dedicated	noss ciden)		Dipper Well Wizard™		Submersible Pump
Other:			· · · · · · · · · · · · · · · · · · ·	Other:	Well Wizardin		Dedicated
ELL INTEGRIT	Y: Pro0						
EMARKS : ——			es tak	an		LOCK#:	none
EMANS;		7 -			···		
	8/6			·			
neter Calibration:	Date: 8/19/6	<u>역</u> Time:	Meter S	Serial #: _	1204	Temper	ature °F:
EC 1000	/) (DI) (pH 7	/	_) (pH 1	0/)(bH4	/)
ocation of previous	us calibration:	A-2		•		/ / pi i 4	
anatura.	lt val	11.	- -		6/1		, 0
mature, Zz	- or war		Revie	wed By:	111	Page _	6 of 8

Rev.	3	2/04
IIOY.	J,	4 34

CASING DIAMETER (inches)	ADR-1(20) AR(0#2169
CASING ELEVATION (feet/MSL):	NG (gal.):
DATE PURGED:	End (2400 Hr) End (2400 Hr) COLOR (visual) (visual) (visual) (close) (close) (close)
D. O. (ppm): ODOR: Strong Field QC samples collected at this well: Parameters field filtered at this well:	(COBALT 0 - 500) (NTU 0 - 200 or 0 - 1000)
PURGING EQUIPMENT 2* Bladder Pump Bailer (Teffon®) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steet) Well Wizard Other: Other:	JNG EQUIPMENT Bailer (Teflon®) Bailer (Stainless Steel) Submersible Pump Dedicated
MARKS:GIL Sample La ken	LOCK#: 120Ar

	Other:
WELL INTEGRITY: Good. REMARKS: GIL Sample La Ken	LOCK#: _/70/1e
Meter Calibration: Date: \$\frac{\sigma_{9}}{5}\$ \sqrt{Time:} Meter (EC 1000/) (DI) (pH 7/) Location of previous calibration: \$\frac{\sqrt{2}}{2}\$	r Serial #:

Reviewed By:

WELL INTEGRITY: [Look] REMARKS: - GI/ Samples +	a kon LOCK#: More,
Meter Calibration: Date: 5/25/24 Time:	Meter Serial #:

Reviewed By:

Signature: —

APPENDIX B

ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATION, THIRD QUARTER 1996 GROUNDWATER MONITORING EVENT

Columbia Analytical Services

September 12, 1996

Service Request No.: <u>S9601425</u>

Mr. John Young EMCON 1921 Ringwood Avenue San Jose, CA 95131

RE: 2169 OAKLAND/20805-129.003/TO#19350.00

Dear Mr. Young:

Attached are the results of the samples submitted to our lab on August 29, 1996. For you reference, our service request number for this work is \$9601425.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 10, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

If you have questions or further needs, please call me at (408) 428-1282.

Sincerely,

Steve Green Project Chemist

SG/sh

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Laboratory Control Sample
Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable
NAN Not Analyzed

NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected (on Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

Sample Matrix: Water

2169 OAKLAND/20805-129.003/TO#19350.00

Service Request: \$9601425 Date Collected: 8/29/96 Date Received: 8/29/96 Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	A-2 (24) S9601425-001 9/9/96	AR-1 (27) S9601425-002 9/9/96	AR-2 (28) S9601425-003 9/9/96
Analyte	MRL			
TPH as Gasoline	50	ND	ND	ND
Benzene	0.5	ND	ND	ND
Toluene	0.5	ND	ND	ND
Ethylbenzene	0.5	ND	ND	ND
Total Xylenes	0,5	ND	0.8	ND
Methyl tert -Butyl Ether	3	<39*	ND	95

Raised MRL due to matrix interference.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix: Water

Service Request: S9601425

Date Collected: 8/29/96

Date Received: 8/29/96

Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	A-6 (27) S9601425-004 9/9/96	A-1 (23) S9601425-005 9/6/96	A-5 (29) S9601425-006 9/9/96
Analyte	MRL			
TPH as Gasoline	50	80	1,200	7,700
Benzene	0.5	ND	320	490
Toluene	0.5	ND	5.9	450
Ethylbenzene	0.5	ND	25	260
Total Xylenes	0.5	ND	27	990
Methyl tert -Butyl Ether	3	6	110	<30 C

The MRL is elevated due to high analyte concentration requiring sample dilution.

C

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix: Water

Service Request: S9601425
Date Collected: 8/29/96
Date Received: 8/29/96
Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	ADR-1 (20) S9601425-007 9/10/96	ADR-2 (26) S9601425-008 9/9/96	Method Blank S960906-WB1 9/6/96
Analyte	MRL			
TPH as Gasoline	50	5,300	8,000	ND
Benzene	0.5	190	230	ND
Tolucne	0.5	58	180	ND
Ethylbenzene	0.5	76	150	ND
Total Xylenes	0.5	470	730	ND
Methyl tert -Butyl Ether	3	85	53	ND

Analytical Report

Client:

ARCO Products Company

Project:

2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix: Water

Date Collected: 8/29/96 **Date Received:** 8/29/96 **Date Extracted:** NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	Method Blank S960909-WB1 9/9/96	Method Blank S960910-WB1 9/10/96
Analyte	MRL		
TPH as Gasoline	50	ND	ND
Benzene	0.5	ND	ND
Toluene	0.5	ND	ND
Ethylbenzene	0.5	ND	ND
Total Xylenes	0.5	ND	ND
Methyl tert -Butyl Ether	3	ND	ND

APPENDIX A

QA/QC Report

Client: ARCO Products Company Service Request: S9601425

Project: 2169 OAKLAND/20805-129.003/TO#19350.00

Date Collected: 8/29/96

Sample Matrix: Water

Date Received: 8/29/96

Date Extracted: NA

Date Analyzed: 9/6-10/96

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method

Sample Name	Lab Code	PID Detector Percent Recovery 4-Bromofluorobenzene	FID Detector Percent Recovery α, α, α -Trifluorotoluene
A-2 (24)	S9601425-001	102	96
AR-1 (27)	S9601425-002	102	100
AR-2 (28)	S9601425-003	105	93
A-6 (27)	S9601425-004	96	97
A-1 (23)	S9601425-005	98	99
A-5 (29)	S9601425-006	100	104
ADR-1 (20)	S9601425-007	99	95
ADR-2 (26)	S9601425-008	99	103
A-2 (24) (MS)	S9601425-001MS	98	107
A-2 (24) (DMS)	S9601425-001DMS	98	106
Method Blank	S960906-WB1	99	94
Method Blank	S960909-WB1	101	98
Method Blank	S960910-WB1	102	93

CAS Acceptance Limits: 69-116 69-116

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19350.00

Sample Matrix: Water

Service Request: S9601425
Date Collected: 8/29/96
Date Received: 8/29/96
Date Extracted: NA

Date Extracted: NA

Date Analyzed: 9/9/96

Matrix Spike/Duplicate Matrix Spike Summary

TPH as Gasoline

EPA Methods 5030/California DHS LUFT Method

Units: ug/L (ppb)

Sample Name: A-2 (24) Lab Code: S9601425-001

Percent Recovery

						1 (1 (си і	ccovery	
	Spike 1	Level	Sample	Spike	Result			CAS Acceptance	Relative Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Gasoline	250	250	ND	230	230	92	92	67-121	<1

QA/QC Report

Client: Project: ARCO Products Company

2169 OAKLAND/20805-129.003/TO#19350.00

Service Request: \$9601425 Date Analyzed: 9/6/96

Initial Calibration Verification (ICV) Summary
BTEX, MTBE and TPH as Gasoline
EPA Methods 5030/8020/California DHS LUFT Method
Units: ppb

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	25	24.9	100	85-115
Toluene	25	24.7	99	85-115
Ethylbenzene	25	24.1	96	85-115
Xylenes, Total	75	73.1	97	85-115
Gasoline	250	240	96	90-110
Methyl tert-Butyl Ether	50	47	94	85-115

ARCO Facili	Division	of Atlanti	Richfield			<u> </u>		Task C	rder No.	192	5	Cl	Chain of Custody											
		2160	1	(Fa	y scility)	Pakl	and			Projec (Consu	t manaç Itant)		Ohn	1401	m	<u>^</u>		/ _				L	aboratory name	
ARCO engin		11/16	2 W/	hek	0		Telephor (ARCO)	пе по.		Teleph (Consu	one no.	(41)	2)40	`Z-`	72/2	Fau	k no.	.[10	(A)	40	04	$\overline{\mathcal{O}}$	CAS	
Consultant n	ame /	MC	ON					Address (Consult	ant) [9]	Ri	$H_{-}H_{-}$	100	dF	ive	5	7/)	V S	9.7	H	75	131	22 C	Contract number	
				Matrix		Prese	rvation				LINE.							U¥ U¥	0001/0			N	lethod of shipment	
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	tce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH INC. 1/16 17 BE EPA M602/8020/8015	TPH Modified 8015 Gas Diesel	Oil and Grease	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA □	CAM Molels EPA 6010/7000	Lead Org./DHS CLead EPA			Sample Will delive	er er
1764		2		X		×	10	8/29/54	1240		X								<u> </u>	776		S	pecial detection imit/reporting	
1R-167	(2)	2		×		×	Ha		1300	1	×										-		Lowes	1
1R-ZG8)(3)	2		×		×	HCL		1325		メ												Possible	9
7-667		2		×		×	HCL		1459		X											s	pecial QA/QC	
7-16:) (5)	2		×		×	HCL		1400		×												As	
1-5Q	~~~	2		×		\times	HCL		1520	_	×												Normal	
	10	2		\times		\times	Ha	 	14124	ļ	×											<u> </u>	lemarks	
1DR-20	6)(8)	2	·	×		~	HCL		1440	ļ	×													
							-	<u> </u>		-								_				\Box	2-40m1 VOAs	Ha
		:					_				_					<u> </u>		-		-	-	-	VOAS	
							_													-				
																						<u> </u>	#20805-J2 ab number	9,0
							_	· · · · · · · · · · · · · · · · · · ·		 													so number \$960/425	,
							_															Ti	urnaround time	
ondition of	sample:	- / 6	(TPC													a							riority Rush Business Day	
Condition of sample: /////CT Relinquished by sampler 2								-94/1	Time	Receiv	ed by	eceived	1: 	Co	21								Rush Business Days	
Refinquished by Date							/	<u></u>	Receiv	ed by				====			- -					expedited Business Days		
Relinquished by Date							Time	Receiv				lle		De 8	ite/14	196	T	ime 16.7			itandard 0 Business Days	×		

APPENDIX C SVE SYSTEM MONITORING DATA LOG SHEETS

ARCO 2169 SVE SYSTEM MONITORING DATA

07/01/96 00:00 08/01/96 00:00					in Penod in Period:			Operation + Do																
ļ			ield Moni				ļ					Laboratory Monito	onng Data				·		1					
ŀ	FIOW	Rates	FID (or PID R	esults	ļ		Well Fie	ld Influent	<u> </u>	System	influent	System Effluent						1					
Reading Date & Time	Well Fleid Flow Rate System Influent Flow Rate Well Fleid System Influent System Effluent		Destruction Efficiency	aboratory Sample Time	Gasoline Benzene		zene	Gasoline	Benzene	Gasoline Be		Benzene		Basoline Emission Rate	Senzene Emission Rate	enod Hours	Aeter Hours	lours of Operation	Days of Operation	Down Hours	Down Days			
	scim	scfm	ppm	ppm	ppm	%		ppmv mg/m3	ppmv	mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m	3 ррти	 ma/m3	<u> </u>	lb/day	lb/day		<	<u> </u>			
07/01/96 00:00 08/01/96 00:00	0.0	0.0																	744 00	4697.91 4699.73	1 82	0.08	742 18	
Penod Totals																			744 00		1 82	0.08	742.18	

ARCO 2169 SVE SYSTEM MONITORING DATA

Reporting Period: 08/01/96 00:00 09/01/96 00:00					n Penod in Penod	744.00 31.00		Operation + Down Hours: 744 00 Operation + Down Days: 31.00																				
			eld Moni]							Laborator	y Monito	ring Data		······································					1					
	Flow	Rates	FID	r PID R	esults	<u> </u>	-	ļ	Well Fiel	d Influent			System	influent		System Effluent						1						
	Well Fletd Flow Rate	System Influent Flow Rate	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gaso	oline	Benz	Systematics	Ben	zene .	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	deter Hours	fours of Operation	Days of Operation	Down Hours	Down Days						
	scfm	scfm	ppm	ppm	ppm	_%		ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	%	lb/day	lb/day	- "			<u> </u>		
08/01/96 00.00 08/02/96 11:00 08/02/96 14:15 08/05/96 12:00 08/13/96 12:55 08/23/96 13:15 09/01/96 00 00	0 0 101.7 101.7 81.3 144.0	0.0 178.4 199.8 144.0 144.0	661				12.10	140	570	1.6	5	73	300	0.8	2.6	<5	<20	<0.2	<0.5	93 3	0.36	0 01	35.00 3.25 69 75 192.92 240.33 202.75	4699 73 4699 73 4702.98 4770 85 4894 07 5134 86 5134.86	0.00 3.25 67 87 123 22 240 79 0 00	0 00 0 14 2 83 5.13 10.03 0.00	35.00 0.00 1.88 69.70 -0.46 202.75	1. 0. 0 2. -0. 8.
Period Totals:													***************************************										744.00		435 13	18 13	308 87	12.
Period Averages:	1193	153 0						140	570	16	5	73	300	0.8	2.6	<5	<20	<02	<0.5	93 3	0.27	0 01						

ARCO 2169 SVE SYSTEM MONITORING DATA

Reporting Period 09/01/96 00:00 10/01/96 00:00					n Period n Penod			Operatio Operatio		n Hours 720 wn Days 30				•					_							* 10° t	
			eld Mon]						Laborato	ry Monito	ring Data							1					
	Flow	Rates	FID	or PID R	esults	<u> </u>	-	- '	Well Fiel	d Influent		Syste	m Influent				Effluent					j					
Reading Date & Time	Well Field Flow Rate	System Influent Flow Rate	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gasc	ine	Benzene	•	Sasoline	Ben	zene	Gasc	oline	Ben	zene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Penod Hours	deter Hours	dours of Operation	Days of Operation	own Hours	Jown Days
09/01/96 00:00	scfm	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv mg/n	n3 ppn	nv mg/m	3 ppmv	mg/m3	ppmy	mg/m3	ppmv	mg/m3	%	lb/day	îb/day						_=
09/23/96 11:25 09/23/96 11 48 09/23/96 12 30 10/01/96 00:00	0.0 0 0 122 4 128 6	0.0 0.0 191.3 204.3					13:30	770	3200	24 7	78 3	120	0 08	2.6	<5	<20	<01	<04	98.3	0 34	0 01	539 42 0 38 0.70 179 50	5134 86 5134 86 5134 86 5135 56 5315 06	0.00 0 00 0 70 179.50	0 00 0 00 0 03 7 48	539 42 0.38 0.00 0.00	22 0. 0.
Penod Totals																						720 00	_	180.20	7.51	539.80	22.
Period Averages	128 6	204.3						770	3200	24 7	8 3	00 120	8.0 0	<05	<5	<20	<0.1	<04	983	0.37	0.01						

APPENDIX D

FIELD DATA SHEETS, OPERATION AND MAINTENANCE VISITS, THIRD QUARTER 1996

Box Tempera Box Tempera Box Tempera Point (°F) AL HOURS ric Meter (I ral Gas (cf) FID (p without with cas PID (p) amples take ELD e on	erature (°F) S kwh) AI pm) CARBON FILTER) pm) CARBON FILTER) PMO AI CARBON FILTER) PMO CARBON FILTER) PMO CARBON FILTER) PMO CARBON FILTER)	SYSTEM IR MONITO Amb CAL GAS: Sis at: Velo (ft/i (2') (2') Some	RING -1	Ce:	PID (ppm) 48.5
Box Tempera Box Tempera Box Tempera Box Tempera Point (°F) AL HOURS ric Meter (I ral Gas (cf) FID (p (WITHOUT (WITH CAR PID (p) amples take ELD e on (I) (I) (I) (II) (II) (III) (25 thermal/c) (12"x12") ture (°F) erature (°F) S kwh)) All pm) CARBON FILTER) pm) G en for analys /acuum lin. of H,O)	SYSTEM IR MONITO Amb CAL GAS: Sis at: Velo (ft/i (2') (2') Some	RING -1	1-2 DO	PID (ppm)
Box Tempera Box Tempera Box Tempera Box Tempera Point (°F) AL HOURS ric Meter (I ral Gas (cf) FID (p (WITHOUT (WITH CAR PID (p) amples take ELD e on (I) (I) (I) (II) (II) (III) (25 thermal/c) (12"x12") ture (°F) erature (°F) S kwh)) All pm) CARBON FILTER) pm) G en for analys /acuum lin. of H,O)	SYSTEM IR MONITO Amb CAL GAS: Sis at: Velo (ft/i (2') (2') Some	RING -1	1-2 DO	PID (ppm)
Box Tempera Box Tempera Box Tempera Box Tempera Box Tempera Point (°F) AL HOURS FID (p WITHOUT WITHOUT AMPLICATE PID (p) Amples take BLD BOD (P) BOD ((12"x12") Iture (°F) erature (°F) S kwh) AI pm) CARBON FILTER) pm) (CARBON FILTER)	SYSTEM IR MONITO Amb CAL GAS: Sis at: Velo (ft/i (2') (2') Some	RING -1	1-2 DO	PID (ppm)
Box Tempera Box Tempera Box Tempera Point (°F) AL HOURS ric Meter (I ral Gas (cf) FID (p without with care PID (p) amples take ELD e on	erature (°F) S kwh) AI pm) CARBON FILTER) pm) CARDON FILTER) pm) CACUUM (In, of H,O)	CAL GAS: Velo (ft/i (2°) (2°) Some	RING -1 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	1-2 DO	PID (ppm)
Box Temper Point (°F) AL HOURS ric Meter (I rai Gas (cf)) FID (p. (WITHOUT (WITH CAR)) PID (p) Amples take ELD e on e on (I)	erature (°F) S kwh) AI pm) CARBON FILTER) pm) CARBON FILTER) PMO AI CARBON FILTER) PMO CARBON FILTER) PMO CARBON FILTER) PMO CARBON FILTER)	CAL GAS: Velo (ft/i (2°) (2°) Some	RING -1 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	1-2 DO	PID (ppm)
Point (°F) AL HOURS Tric Meter (I ral Gas (cf) FID (p WITH CAF PID (p) Amples take ELD e on (II) O O O O O O O O O O O O O	S kwh) All pm) CARBON FILTER) pm) (CARBON FILTER) pm) (CARBON FILTER) pm) (CARBON FILTER)	CAL GAS: Velo (ft/i (2°) (2°) Some	RING -1 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	1-2 DO	PID (ppm)
Point (°F) AL HOURS Tric Meter (I ral Gas (cf) FID (p WITH CAF PID (p) Amples take ELD e on (II) O O O O O O O O O O O O O	S kwh) All pm) CARBON FILTER) pm) (CARBON FILTER) pm) (CARBON FILTER) pm) (CARBON FILTER)	CAL GAS: Sis at: Velo (ft/) (2") (2") 50 Mar.	-1	1-2 DO	PID (ppm)
FID (p with cap PID (p) amples take ELD e on (i)	kwh)) Al pm) CARBON FILTER) PBON FILTER) pm) CACUUM (In, of H,O)	CAL GAS: Sis at: Velo (ft/) (2") (2") 50 Mar.	-1	1-2 DO	E-1 PID (ppm)
FID (p. (with care PID (p.	kwh)) Al pm) CARBON FILTER) PBON FILTER) pm) CACUUM (In, of H,O)	CAL GAS: Sis at: Velo (ft/) (2") (2") 50 Mar.	-1	I-2 D0	PID (ppm)
FID (p. (without care PID (p.	All pm) CARBON FILTER) PBON FILTER) pm) Characteristics Pacuum (In. of H,O)	CAL GAS: Sis at: Velo (ft/) (2") (2") 50 Mar.	-1	DO	PID (ppm)
FID (p. MITHOUT (WITH CAP PID (p. PID	All pm) CARBON FILTER) PBON FILTER) pm) Can for analys Vacuum (in. of H,O)	CAL GAS: Sis at: Velo (ft/) (2") (2") 50 Mar.	-1	DO	PID (ppm)
without (with car PID (p) P/ D/3	pm) CARBON FILTER) PM) (CARBON FILTER) PM) (CARBON FILTER) PM (CAL GAS: Sis at: Velo (ft/) (2") (2") 50 Mar.	-1	DO	PID (ppm)
without (with car PID (p) P/ D/3	carbon filter) pm) CG en for analys /acuum (in. of H,O)	CAL GAS: Sis at: Velo (ft/i (2") (2") 50m	CCe/	DO	PID (ppm)
PID (p) P/ D/3 amples take ELD e on on (0)	PRONFILTER) PM) C en for analys /acuum (in. of H,O)	Velo (ft/i	ocity min)		(ppm)
PID (p) P/2/4 amples take ELD en on (i)	pm) en for analys /acuum (in. of H,O)	Velo (ft/i	ocity min)		(ppm)
amples take ELD e on en) 4	en for analys	Velo (ft/i	ocity min)		(ppm)
amples take ELD e on en) (6)	en for analys	(ft/i (2°) (2°) 50m	ocity min)		(ppm)
ELD e on en) (6)	/acuum (In. of H,O)	(ft/i (2°) (2°) 50m	min)		(ppm)
ELD e on en) (6)	/acuum (In. of H,O)	(ft/i (2°) (2°) 50m	min)		(ppm)
on (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(in. of H,O)	(ft/i (2°) (2°) 50m	min)		(ppm)
en) (en) (en)	(in. of H,O)	(ft/i (2°) (2°) 50m	min)		(ppm)
40	5	(2°) 50m		(mg/l)	
40	c c	(2°) 50m			
	c		ا دیکلاسیی		
TU		(2) 7/11			863
40	•		water		
, 4	77	(2") Way			-
) 4	<u></u>		enutr		100
2 4		(2*)			185
0	<u> </u>	(2") Som			
Ö	<u> </u>				
UL		(2") Wa	ier		
+		(2°) Wa			322
	0				
7		(2") WC	uter		
1 4	_	(2) Way	ver		az n
Drocou	re Air Flow	(2")			950
		!!!	R	EMARKS	1
o) (psi)	(scfm)	(mg/l)			
2		-			
12		 			
		 -			
1 " }				<u> </u>	
		C		5.6%	<u></u>
1.5					
1.5	ا دنہ	Lotal Air S	parge Tem	p(F) = A	mb
1.5					(micon
_		2	2	Compressor Hours= (scfm)= 5 Total Air Sparge Tem	Compressor Hours= 353, 3 (scfm)= 5 Total Air Sparge Temp(F)= A

Operator: Utitur Ruth Date: 8/2/46 Work Authorization # 19300

ARCO 2169 Soil Vapor Extraction System

Remarks:							-				
	100	Blowe	dinge	7 9 9	ampl	44	Reite	° 141 - 1	ري ر	FLI	
- hu	red	13 (ou	on - 90	heck	645	em	CYK	· VAL -ET		Cra (
 								/		·,	
			led site visi		Sc	heduled si	te visit	<u> </u>			
		SYSTEM PAI	RAMETERS	(Therm 1	ech Mod	iel VAC-25	thermal/e	catalytic o	(idizer)	==== :	
Arrival Time (24	:00 hour)		10	30	Efflue	nt (E-1)	(12"x12")				
System Status (<u> </u>	0	N		Temperatu					277.
Shutdown Time				_				SYSTE	M		477_
Restart Time (24					Fire B	ox Temper	ature (°F)			1 7 -	7 =
Reading Time (24:00 ho	ur)	120	20		int (°F)					25
Well Field I-1 (_/	TOTA	. HOURS	,			445	20 70.E
Vacuum (in. of H	,0)					Meter (kv	vh)			- 7 /	10.0
Velocity (ft/min)						Gas (cf)	<u>,</u>				
Temperature (°F							A	R MONITO	RING		
After Blower 1-	2 (4")					FID (pp		Amb	1-1	1 10	T = .
Total Pressure (in	n. of H,O)		4	<u> </u>	Date:		ARBON FILTER)	71110	1-1-	1-2	E-1
Total Flow (in. of	H,O)		. 3	5	Date ⁻	(WITH CARBO	ON FILTER)			-	╀
remperature (°F)			19	5		PID (ppi	m)	CAL GAS:	<u> </u>	<u> </u>	<u> </u>
Dilution Air (3"		erature (°F)	: (5)	Aut.	Date.				T	7	
Dilution Air Flow (in	of H ₂ O)		1.1	\	Date:	-					
ATI operating pro	periy: y	es/no			Lab san	nples taker	for analys	is at:	45	<u> </u>	<u> </u>
				W	ELL FIE			10 dt.	<u> </u>		e
SVE WELL	Well	Screen	DTFP	DTW	Valve	Va	cuum	Yel.		T	
ID	Diamete	Interval	(feet)	(feet)	Position (% open)	' 	of H ₂ O)		ocity	DO	PID
AV-1	2"	5'-14'	+ (1.5.7)	(1001)	C	8			min)	(mg/l)	(ppm
AV-2	2"	5'-14'	 	 	700		2	(2")		 	ļ
AV-3	2"	5'-14'			100			(2")		 	
AV-4	4"	5'-14'			100	3 2	7)	(2")		-	
AV-5	4"	5'-14'		<u> </u>	100	30-		(2")			
AV-6	4"	5'-14'	-		100	3:	<i>36</i>	(2*)	· · · · · ·	ļ	
AV-7	4"	5'-14'	 		100	30		(2")		 	
A-1	3"	9'-25'			0	C	/	(2")		 	
A-2	3"	10'-25'			<u>~</u>	0		(2")			
A-3	3"	9'-29.5'			100		2	(2")		ļ	
A-4	3"	8'-28'			22	OA		(2*)		 	
AR-2	4*	8.5'-28.5'			760	28		(2")			
ADR-1	4"	5'-22'		·	0	0		(2")			
ADR-2	4"	5'-22'			100	32		(2")		 	
PARGE WELL	Well	Screen	DTFP	DTW	Valve			(2*)		<u> </u>	
ID	Diameter	Interval	1 1		Position		Air Flow	DO	F	REMARKS	
AS-1	2'	27'-29'	(feet)	(feet)	(% open)	(psi)	(scfm)	(mg/l)			
AS-2	2'	21'-23'	 			2	1				
AS-3	2'	26'-29'				- 43	 / -				
AS-4	2*	20'-23'				<u> </u>	/				
AS-5	2*	20.5'-22.5'				2	_/_		 		
			Sparge Da	nta		1.5	/				
al Air Sparge Pre	essureins		Total Air S		v Dota/a	(ma)		Compresso		·	
cial Instructions		<u> </u>	TOTAL ALL S	parge riow	nate(SC	im)= (0	Total Air S	parge Ten	np(F)= <i>4</i>	ub.
) chain-of-ois	todu form-	Dian		1.2				<i>(</i> .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Use of chain-of-cus	nly ARCC	chain-of-cus n. Request all	tody forms. TPHG,BTE	Please ind X. and Bei	clude all a nzene res	nalytical mults in mg/	nethod nun 'm'. Report	nbers as re	quested or	n the	mkor

Work Authorization # 19300

ARCO 2169 Soil Vapor Extraction System

Remarks:	Ores	t. L n	1 11 1		· · · ·						
	Kes	TAL FECK	Jun	X cit	4ev	powe	er O	utuc	Pir	Cest	la.
<u> </u>	ω	- - 1 1 / 2 /	Y A	<u>v</u> 11	orki	<u>nc -</u>	O.K				
	 	· · · · · · · · · · · · · · · · · · ·	<u> </u>						·		
	···	Linechedul	ed site visit					-	····		
					Sci Sci	heduled si	te visit []				
Arrival Time (24	000 hour)	SYSTEM PAR	112	2				atalytic o	(idizer)	*	
System Status (14 -		nt (E-1)					
Shutdown Time		ur)	+	<u>r </u>	Stack	Temperatu	re (°F)			1465	263
Restart Time (24			129	-	Fire De			SYSTE	М		
Reading Time (130			x Tempera	ature (°F)				232
Well Field I-1 (10 4		Set Poi					L CC	30
Vacuum (in. of F	·		 	/		HOURS	- 1			48	94.6
Velocity (ft/min)	1,0/					Meter (ky	<u>vh)</u>	***			
Temperature (°F	5)				Ivaturai	Gas (cf)				<u> </u>	
After Blower I-	·				 			MONITO	RING	· · · · · · · · · · · · · · · · · · ·	
Total Pressure (i			2.4	1000		FID (pp		Amb	-1	1-2	E-1
Total Flow (in. of			— X	2 d /m	Date:		ARBON FILTER)				
Temperature (°F)	11,0)		195	(1+50)	Date.	(WITH CARBO			<u> </u>		<u> </u>
Dilution Air (3"	1) Tempo	erature (°F)	69	'	ļ	PID (ppr	n)	CAL GAS:			-
Dilution Air Flow (in		rature (1)	109	(1273)	Date ⁻			-	<u> </u>		
TI operating pro		es/no		7(17)	Date:				<u> </u>	<u>[</u>	
	<u> </u>			w	ELL FIEL	pies taken	for analysi	s at:		-7. www.	
SVE WELL	Well	Screen	DTFP	DTW	Valve	7		Τ		 	
iD	Diamete		(feet)		Position	1	cuum	i .	ocity	DO	PID
AV-1	2*	5'-14'	(leet)	(feet)	(% open)	(in.	of H ₂ O)	(ft/	min)	(mg/l)	(ppm
AV-2	2*	5'-14'	 	 				(2")			
AV-3	2"	5'-14'	 	 				(2")			
AV-4	4*	5'-14'	 	 		 		(2")			
AV-5	4"	5'-14'		 				(2")			
AV-6	4*	5'-14'	 	 		 		(2")			
AV-7	4"	5'-14'	 	 		 		(2")			
A-1	3"	9'-25'	 			 -		(2")			
A-2	3"	10'-25'				} -		(2")		[
A-3	3"	9'-29.5'				 		(2*)			
A-4	3"	8'-28'				 	 	(2*)			
AR-2	4"	8.5'-28.5'						(2*)			
ADR-1	4"	5'-22'						(2*)			·
ADR-2	4"	5'-22'			-, .			(2")			
PARGE WELL	Well	Screen	DTFP	DTW	Valve	Brassura		(2*)			
ID	Diameter	Interval	(feet)		Position		Air Flow	DO	F	REMARKS	!
AS-1	2.	27'-29'		(leet)	(% open)	(psi)	(scfm)	(mg/l)		_	
AS-2	2.	21'-23'					 				
AS-3	2*	26'-29'				 -	 				
AS-4	2.	20'-22'				-					
AS-5	2"	20.5'-22.5'									
	<u></u>		Sparge Da	ata				Compress			
			, 5000					Compress	or mours=		
al Air Sparge Pr	essure(ps	i)=	Total Air S	parge Flow	/ Rate/ect	'm)=		Total Ave C	parge Ten	/5	

chain-of-custody form. Request all TPHG.BTEX, and Benzene results in mg/m². Report O, and CO, in % by volume

Project# 20805-129.003

Work Authorization # 19300

ARCO 2169 Soil Vapor Extraction System

Remarks:					 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Shu	t syst	ein	Dowi	1 (L	ow l	10(5)				
		11- anh anti-l					· · · · · · · · · · · · · · · · · · ·				•
		SYSTEM PAF	led site visit		Sch Mod	reduled sit	e visit []	-4-1-41	· · · · · · · · · · · · · · · · · · ·		,
Arrival Time (24:	00 hour)		11	3 <i>0</i>		et VAC-25 nt (E-1) (atalytic ox	idizer)		
System Status (c				N		r (⊏-1) (remperatu				1	
Shutdown Time ((24:00 ho	ur)	13		Otabit .	emporata	16 (1)	SYSTE	A.A.	T X G	WO.
Restart Time (24			7 -		Fire Bo	x Tempera	ature (°F)	O I O I L	A1	T 3	2 / 2
Reading Time (2	24:00 hot	ur)	13	15.	Set Poi		attaic ()				5 10 2
Well Field I-1 (3	3")	204				HOURS				5120	1. 20
Vacuum (in. of H,	,0)		1 2	04		Meter (kw	vh)			212.	4. Dr
Velocity (ft/min)				-		Gas (cf)	<u> </u>			 	
Temperature (°F)		·	7	<u> </u>			All	R MONITO	RING		
After Blower 1-2						FID (ppr		Amb	I-1	1-2	E-1
Total Pressure (in			2.		Date	(WITHOUT CA	ARBON FILTER)		1	 	
Total Flow (in. of	H,O)				Date:	(WITH CARBO	N FILTER)				
Temperature (°F)			19			PID (ppr	n)	CAL GAS:		<u> </u>	<u></u>
Dilution Air (3")		erature (°F)		<u> </u>	Date.						
Dilution Air Flow (in			 	——-	Date:				-	-	1
ATI operating prop	erly: ye	es/no	Ye				for analysi	is at:			4
					VELL FIEL	.D					
SVE WELL	Well	Screen	DTFP	DTW	Valve Position	Va	cuum	Vel	ocity	DO	PID
ID	Diamete	r Interval	(feet)	(feet)	(% open)	(in.	(O,H 10	1	min)	(mg/l)	(ppm
AV-1	2*	5'-14'					44	(2")		13/	/PP
AV-2	2"	5'-14'				2	0	(2")		 	
AV-3	2*	5'-14'				7	<u>\0</u>	(2")			
AV-4	4"	5'-14'	ļ			S	会20	(2")		1 -	
AV-5	4"	5'-14'	ļ <u></u>	<u> </u>			0	(2")		 	
AV-6	4"	5'-14'	ļ. <u></u>				0	(2")			
AV-7	4"	5'-14'	<u> </u>				20	(2")		1	
<u>A-1</u>	3"	9'-25'				c+		(2")			
A-2	3*	10'-25'	<u> </u>			0+	42	(2*)			
A-3	3"	9'-29.5'	 		ļ	1	2	(2")			
A-4	3"	8'-28'	 	ļ			44	(2")			
AR-2	4"	8.5'-28.5'	 			16		(2")			
ADR-1 ADR-2	4"	5'-22'				04		(2*)			
SPARGE WELL	4"	5'-22'			Valve		<u>ک</u>	(2")			
	Well	Screen	DTFP	DTW	Position	Pressure	Air Flow	00		REMARKŞ	
ID AC. 1	Diameter	Interval	(feet)	(feet)	(% open)	(psi)	(scfm)	(mg/l)			
AS-1	2'	27'-29'				2					
AS-2	2.	21'-23'	 				ļ				
AS-3	2"	26'-29'	ļ <u>-</u>			_ ユ_			Tota	l Col	FILL
AS-4	2'	20'-22'				'2_					
		20.5'-22.5'	<u> </u>			1.5	Ll				
AS-5		Takal	10								1 1
AS-5	·		Sparge Da			 ,		Compresso		707.1	
	essure(ps				w Rate(scf	m)= (c			カ <i>ワ.し</i> np(F)= Al	

form. Request all TPHG.BTEX, and Benzene results in mg/m². Report O, and CO, in % by volume.

Work Authorization # 19300

Operator: V. White

Project# 20805-129.003

Date: 8/23/96

ARCO 2169 Soil Vapor Extraction System

OPERATION AND MAINTENANCE FIELD WORK REQUEST

TO:

Lisle Rath

DATE: September 15, 1996

PROJECT: 20805-128.002

FROM:

Valli Voruganti

RE:

O&M at ARCO 2169, 889 West Grand Avenue, Oakland, California

Lisle: Water at ARCO 2169 is at its lowest it has been for the year approx. 12 to 13 feet BGS. So start up the SVE system with wells ADR-1, ADR-2, AV-1, AV-2, AV-3, AV-4, AV-5, AV-6, and AR-2 on-line, at the max. possible vacuum you can. Do individual PID's at each well and record flow and vacuum readings. Based on the highest PID and flow readings you and I can then discuss which wells we will leave on-line for the SVE system. If you are pulling up water because of too much vacuum, try opening A-1, A-2, A-3, and A-4 to the atmosphere and see if this helps. If this does not turn off the problem wells or try w/them on-line for passive vent.

Having started the SVE system, lets now start the AS system. Take water levels and depths in AS-4, AS-2, and AS-5. Based on this water level and where the screen is in these wells, determine the min pressure required to make sure we have pushed water below the screen. Now turn on each well for AS one at a time and keep an air flow of 2 scfm per well. Make sure pressure to flow meter does not fall below 40 psi. Van previously required 2 to 3 psi for each sparge well to get air flow in wells.

Now do the monthly air sampling of the SVE system and record all parameters on the flow sheets. The originals are in Van's office.

Call me and keep me posted on the status of the system.

Thanks valli

Anome ler vacuum meter given to Stan Strong FOR EM CORP System Start Up.

COMPLETE 9-23-96

	(- -				
On-OFF	Remarks: Arrived	on 5	ite at 11	25	HQ:	s For	- VAM	white	a 17-11	SVS	<u>ten</u>	ns of	<u>= 6767</u>	Arri	vec 1
FOR ATI	Call Valle	<u>Check</u>	ATT SY	Slen	n lê	500 H	es At	I OK.	- PUI	1149	<u>+</u>	141 OZ	to sys	ilem a	+
Found on	50 W.C. 01	7en Sa	MPIC PO	rts	on	A-L,	2,3,4,	Anon	eter	and	V	acoun	Grag	e No	7
Bullery	Available +	oday.	START	<u> </u>	2A-1	2.65E	ystem.	a+ 12	226 1	125	<u>~</u>	SAM PI	<u> 二十二</u>	I-S	
Un Pluzed	E-1 FOR	TPH	GAS	<u>13 T</u>	<u>メ</u>	<u> - Su</u>	<u>Slem</u> j	Zuunin	9 47	01	<u>d</u> .	epunt.	ure -	,,	
			Unscheduled	site v	isit []		Sched	duled site v	risit 🤛			•		`	
Manual		SY	STEM PARA	METE	RS (Therm T	ech Model	VAC-25 th	ermal/cat	alytic o	oxid	lizer)			
445 SHUT	Arrival Time (24:00	hour)		112	5		Effluent	(E-1) (12	"x12")						
OFE NOT	System Status (on				FF	=		mperature					681		
Closing	Shutdown Time (24		· · · · · · · · · · · · · · · · · · ·		iA				` /	SYST	EM		<u> </u>		
-10519	Restart Time (24:00				18		Fire Box	Temperatu	re (°F)				620	i	
100 000 001	Reading Time (24:				30	2	Set Point		10 \ \ 1				630		
Manual	Well Field I-1 (3")						—{-····································						05134		
AIR line			· · · · · ·	5	m		Electric Meter (kwh) 80591								
Shut OFF		<i>l</i>			R		Natural Gas (cf) Mot Sure where is 15							<u> </u>	
WILL MOT	Temperature (°F)			9	<u> </u>		AIR MONITORING								
cpen		(AB)			U		-	EID (mmm)		T	—		10		
	After Blower I-2			- 11			Date:	FID (ppm) (WITHOUT CARB		Aml	_	1-1	I-2	E-1	
Pressure	Total Pressure (in.			— <u> </u>	, 7	(2250)	╂			-			V 1 1		
Soutch	Total Flow (III. OI F.	<u>,U)</u>			32	-\-	Date:	(WITH CARBON I			1	<u> </u>	////		
FOR	Temperature (°F)				200			PID (ppm)		CAL GA	us:		V./(
58a+46	Dilution Air (3")		ature (°F)	6	7	// // /////	Date:			ļ		/_			
System	Dilution Air Flow (in o			0.	13	(1400)	Date:			l					
Locked	ATI operating prope	rly: yes	s/no	Ve	<u> 25</u>			les taken f	or analysis	at:					
00.1		· · · · · · · · · · · · · · · · · · ·					<u>VELL FIELI</u>		- 1						5 ;
Fix Proble	SVE WELL	Well	Screen	ITG	FP	DTW	Valve Position	Vac	uum	١ ١	Velo	city	DO	PID	1
1215 HR	l' lb	Diameter	Interval	(fee	et)	(feet)	(% open)	(in. o	f H,O)		(ft/n	nin)	(mg/l)	(ppm)	
1615 AL	O AV-1	2"	5'-14'		R_	W	100	41		(2")	7	/	. (5/	water	
Ang comp	● AV-2	2"	5'-14'		7	7 17	100	50		(2")				FIEE	WA
AIR COMP Powerex MOD	◆ AV-3	2"	5'-14'		 		100	5	<u>?</u>	(2")				Willes	
morte	AV-4	4"	5'-14'	 			100	3		1, ,				werter?	Ī
inon		4"	5'-14'		\vdash					(2")				455	ļ
				1 1		1 <u> </u>	100	50		(2")					
5T50501	AV-5	 		·			1100	11	G				1		
l l	AV-6	4"	5'-14'		<u> </u>		100	4		(2")			<u> </u>	782	Į.
22V	AV-6 AV-7	4" 4"	5'-14' 5'-14'				O	C	>	(2")				782	
Cycling	AV-6 AV-7 C A-1	4" 4" 3"	5'-14' 5'-14' 9'-25'				0	0)	(2") (2")				282	
ZZV Cycling Off 34:36	AV-6 AV-7 C A-1 A-2	4" 4" 3" 3"	5'-14' 5'-14' 9'-25' 10'-25'				0000	<u>C</u>)	(2") (2") (2")				282	
22V Cycling Off 34:36 on 34:54	AV-6 AV-7 A-1 A-2 A-3	4" 4" 3" 3" 3"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5'				0000	C C)	(2") (2") (2") (2")				282	
22V Cycling Off 34:36 on 34:54 off 35:33	AV-6 AV-7 C A-1 A-2 C A-3 C A-4	4" 4" 3" 3" 3"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28'	:			0 0 0	000000000000000000000000000000000000000)))	(2") (2") (2")					
22V Cycling Off 34:36 on 34:54 off 35:33	AV-6 AV-7 A-1 A-2 A-3	4" 4" 3" 3" 3" 4"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5'				0000	0)))) ,	(2") (2") (2") (2")				13.2	
22V Cycling Off 34:36 on 34:54 off 35:33	AV-6 AV-7 C A-1 A-2 C A-3 C A-4	4" 4" 3" 3" 3" 4"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22'				0 0 0 0 700 700	C C C C C C C C C C C C C C C C C C C	5	(2") (2") (2") (2") (2")				13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2	4" 4" 3" 3" 3" 4"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5'	8			000000000000000000000000000000000000000	0	5	(2") (2") (2") (2") (2")				13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 AR-2 AR-2 ADR-1	4" 4" 3" 3" 3" 4"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22'	& DI		DTW	0 0 0 0 100 100 Valve	C C C C C C C C C C C C C C C C C C C	5	(2") (2") (2") (2") (2") (2") (2")			REMARK	13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL	4" 4" 3" 3" 3" 4" 4"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22' 5'-22' Screen	דם	FP	ÞΤW	000000000000000000000000000000000000000	C C C C C C C C C C C))) 5 ?) Air Flow	(2°) (2°) (2°) (2°) (2°) (2°) (2°)			REMARKS	13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID	4" 4" 3" 3" 3" 4" 4" 4" Well	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22' 5'-22' Screen Interval	DT (fe	FP et)	DTW (feet)	COO OO	C C C C C C C C C C C C C C C C C C C	Air Flow (scfm)	(2") (2") (2") (2") (2") (2") (2") (2")	/1)		REMARK	13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1	4" 4" 3" 3" 3" 4" 4" 4" Uell Diameter	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22' 5'-22' Screen Interval 27'-29'	דם	FP et)	ÞΤW	COO OO	C C C C C C C C C C C C C C C C C C C	5 2 Air Flow (scfm) 2 - 3	(2°) (2°) (2°) (2°) (2°) (2°) (2°)	/1)		REMARK	13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2	4" 4" 3" 3" 4" 4" 4" Well Diameter 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23'	DT (fe	FP et)	DTW (feet)	COO OO	C C C C C C C C C C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/1)		REMARK	13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3	4" 4" 3" 3" 3" 4" 4" Well Diameter 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29'	DT (fe	FP et)	DTW (feet)	COO OO	C C C C C C C C C C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/1)		REMARK	13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	● AV-6 AV-7 C A-1	4" 4" 3" 3" 3" 4" 4" 4" Uell Diameter 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28' 8.5'-28.5' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20'-22'	DT (fe	FP et)	DTW (feet)	COO OO	C C C C C C C C C C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/1)		REMARK	13.2	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3	4" 4" 3" 3" 3" 4" 4" Well Diameter 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20'-22'	DT (fe-	FP et)	DTW (feet)	COO OO	C C C C C C C C C C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/1)			13.2 1221 950	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	● AV-6 AV-7 C A-1 A-2 C A-3 C A-4 ● AR-2 ● ADR-1 ● ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3 AS-4 AS-5	4" 4" 3" 3" 4" 4" 4" Well Diameter 2" 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20'-22' 70ta	OT (fee	FP et)	DTW (feet)	O O O O O O O O O O O O O O O O O O O	C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/I)	sor Hours=	∞ 767	13. Z 12 Z1 950 3	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	● AV-6	4" 4" 3" 3" 4" 4" 4" Well Diameter 2" 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20'-22' 70ta	OT (fee	FP et)	DTW (feet)	COO OO	C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/I)		∞ 767	13.2 1221 950	
22V Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3 AS-4 AS-5 Total Air Sparge Pr	4" 4" 3" 3" 3" 4" 4" 4" Well Diameter 2" 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20'-22' 20.5'-22.5' Tota	(fe-	FP et) / / rge [Oata Sparge F	O O O O O O O O O O O O O O O O O O O	C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	ress	sor Hours= Sparge Te	- ○○ 70 70 70 pmp(F)=	13.2 1221 950 5	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3 AS-4 AS-5 Total Air Sparge Properties of the structions of the struction of the	4" 4" 3" 3" 3" 4" 4" 4" 4" Uell Diameter 2" 2" 2" 2" 2" 2" 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 8'-28.5' 8.5'-28.5' 5'-22' Screen Interval 27'-29' 20'-22' 20-22' 20.5'-22.5' Tota si)= 45	(fee	FP et) rge D	Oata Sparge F	COO OO	C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/I) rress Air as r	sor Hours= Sparge Te	: ○○ `76 ; emp(F)= on the	13. Z 12 Z1 950 3	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3 AS-4 AS-5 Total Air Sparge Properties of the structions of the struction of the	4" 4" 3" 3" 3" 4" 4" 4" 4" Uell Diameter 2" 2" 2" 2" 2" 2" 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20'-22' 20.5'-22.5' Tota	(fee	FP et) rge D	Oata Sparge F	COO OO	C C C C C C C C C C	Air Flow (scfm) 2 - 3 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	/I) rress Air as r	sor Hours= Sparge Te	: ○○ `76 ; emp(F)= on the	13.2 1221 950 5	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3 AS-4 AS-5 Total Air Sparge Properties of the structions of the struction of the	4" 4" 3" 3" 3" 4" 4" 4" 4" Uell Diameter 2" 2" 2" 2" 2" 2" 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 9'-29.5' 8'-28.5' 5'-22' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20.5'-22.5' Tota si)= 45	(fee	rge D	DTW (feet) Oata Sparge F S. Please EX, and	O O O O O O O O O O O O O O O O O O O	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Air Flow (scfm) 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	Air as r	sor Hours= Sparge Te	: ○○ `76 ; emp(F)= on the	13.2 1221 950 5	
ZZV Cycling Off 34:36 on 34:54 off 35:33 on 35:52	AV-6 AV-7 A-1 A-2 A-3 A-4 AR-2 ADR-1 ADR-2 SPARGE WELL ID AS-1 AS-2 AS-3 AS-4 AS-5 Total Air Sparge Properties of the structions of the struction of the	4" 4" 3" 3" 4" 4" 4" Well Diameter 2" 2" 2" 2" 2" 2" 2" 2" 2" 2"	5'-14' 5'-14' 9'-25' 10'-25' 8'-28.5' 8.5'-28.5' 5'-22' Screen Interval 27'-29' 21'-23' 26'-29' 20-22' 10.5'-22.5' Tota si)= 45 O chain-of-cum. Request al	GI Spail Total Stody II TPH 2080	rge [] I Air	DTW (feet) Oata Sparge F S. Please EX, and	O O O O O O O O O O O O O O O O O O O	Pressure (psi) 1-2 1-2 1-2 1-2 Manalytical results in mg	Air Flow (scfm) 2 - 3 2 - 3 2 - 3 2 - 3	(2") (2") (2") (2") (2") (2") (2") (2")	ress Air as r	sor Hours= Sparge Te	emp(F)= on the volume.	13.2 1221 950 6	

DISSOLVED OXYGEN DATA SHEET

1	
	J)
No. of Concession,	Chica.
Smc.	~

Project Number:

#20805-129.038

Date: ____8/29/

Station Number:

ARCO #2169

Day:

Location:

Oakland, CA

Sampler:

Measuring Method(s):

D.O. Meter

Well ID	Date	Time	D.O. Reading
A-2	8/29/96		/
A-3	,	1048	2
A-4		1048	1-2
AR-1			1
AR-2			1
A-6			2
A-1			/
A-5			2
ADR-1			/
ADR-2	₩.		1

SIGNATURE:	Total welf	
		_

Page	1	of
------	---	----

1

APPENDIX E

ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION FOR SOIL-VAPOR EXTRACTION SYSTEM, THIRD QUARTER 1996

Columbia **Analytical** Services inc.

August 16, 1996

Service Request No.: <u>\$9601261</u>

Ms. Ivy Inouye **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 2169 OAKLAND/20805-129.003/TO#19300.00

Dear Ms. Inouye:

Attached are the results of the samples submitted to our lab on August 5, 1996. For you reference, our service request number for this work is \$9601261.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 12, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

If you have questions or further needs, please call me at (408) 428-1282.

Sincerely,

Steve Green **Project Chemist**

SG/sh

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC fon Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit

QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

ARCO Products Company Client:

2169 OAKLAND/20805-129.003/TO#19300.00 Project:

Sample Matrix:

Service Request: S9601261 Date Collected: 8/5/96 Date Received: 8/5/96 Date Extracted: NA Date Analyzed: 8/6/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name:

E-1

Lab Code:

S9601261-001

]	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.5	0.2	ND	ND	
Toluene	0.5	0.1	ND	ND	
Ethylbenzene	0.5	0.1	ND	ND	
Xylenes, Total	1	0.2	ND	ND	
Total Volatile Hydrocarbons:					
C1 - C5	10	5	17	ND	
C6 - C12	20	5	ND	ND	
TPH as Gasoline*	20	5	ND	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

LCS/102194

Analytical Report

Client:

ARCO Products Company

Project:

2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix:

Air

Date Collected: 8/5/96
Date Received: 8/5/96
Date Extracted: NA
Date Analyzed: 8/6/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name:

I-1

Lab Code:

S9601261-002

	1	MRLs	Results			
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)		
Benzene	0.5	0.2	5	1.6		
Toluene	0.5	0.1	7	1.9		
Ethylbenzene	0.5	0.1	4	0.9		
Xylenes, Total	1	0.2	33	7.6		
Total Volatile Hydrocarbons:						
C1 - C5	10	5	410	100		
C6 - C12	20	5	570	140		
TPH as Gasoline*	20	5	570	140		

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

LCS/102194

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

Service Request: \$9601261

Date Collected: 8/5/96

Date Received: 8/5/96

Date Extracted: NA

Date Analyzed: 8/6/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name:

I-2

Lab Code:

S9601261-003

]	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.5	0.2	2,6	0.8	
Toluene	0.5	0.1	3.6	1.0	
Ethylbenzene	0.5	0.1	2.0	0.5	
Xylenes, Total	1	0.2	16	3.7	
Total Volatile Hydrocarbons:					
C1 - C5	10	5	220	54	
C6 - C12	20	5	300	73	
TPH as Gasoline*	20	5	300	73	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: ARCO Products Company

Project: 2169 QAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

r

Date Collected: 8/5/96
Date Received: 8/5/96
Date Extracted: NA
Date Analyzed: 8/6/96

Service Request: S9601261

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: Lab Code: Method Blank \$960806-VB1

MRLs Results mg/m3 uL/L (ppmv) mg/m3 uL/L (ppmv) Benzene 0.5 0.2 ND ND Toluene 0.5 0.1 ND ND Ethylbenzene 0.5 0.1 ND ND Xylenes, Total 0.2 ND ND

ryiches, Total	*	0,2	ND	עאו
Total Volatile Hydrocarbons:				
C1 - C5	10	5	ND	ND
C6 - C12	20	5	ND	ND
TPH as Gasoline*	20	5	ND	ND

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

APPENDIX A

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

Service Request: S9601261
Date Collected: 8/5/96
Date Received: 8/5/96
Date Extracted: N/A
Date Analyzed: 8/6/96

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Sample Name: 1
Lab Code: 1

Batch QC S9601260-001

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.5	ND	ND		
Toluene	0.5	ND	ND		
Ethylbenzene	0.5	ND	ND		
Xylenes, Total	1	ND	ND		
Total Volatile Hydrocarbons					
C1 - C5	10	230	230	230	<1
C6 - C12	20	38	37	38	3
TPH as Gasoline*	20	38	37	38	3

Note: $ppmV = mg/m^3 x [24.45 (gas constant)/ molecular weight (MW)]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

* TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: 8/5/96
Date Received: 8/5/96
Date Extracted: N/A
Date Analyzed: 8/6/96

Service Request: S9601261

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

Sample Name: Lab Code: Batch QC S9601260-001

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.2	ND	ND		
Toluene	0.1	ND	ND		
Ethylbenzene	0.1	ND	ND		
Xylenes, Total	0.2	ND	ND		
Total Volatile Hydrocarbons					
C1 - C5	5	56	56	56	<1
C6 - C12	5	9	9	9	<1
TPH as Gasoline*	5	9	9	9	<1

Note: $ppmV = mg/m^3 x [24.45 (gas constant)/ molecular weight (MW)]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

QA/QC Report

Client:

ARCO Products Company

Project:

2169 OAKLAND/20805-129.003/TO#19300.00

LCS Matrix:

Air

Service Request: \$9601261

Date Collected: 8/5/96 **Date Received:** 8/5/96

Date Extracted: NA
Date Analyzed: 8/6/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

				CAS
				Percent
				Recovery
	True		Percent	Acceptance
Analyte	Value	Result	Recovery	Limits
Gasoline	200	210	105	60-140

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/20805-129.003/TO#19300.00

LCS Matrix: Air

Service Request: \$9601261

Date Collected: \$/5/96

Date Received: \$/5/96

Date Extracted: NA

Date Analyzed: \$/6/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

				CAS Percent Recovery
Analyte	True Value	Result	Percent Recovery	Acceptance Limits
Gasoline	49	51	104	60-140

QA/QC Report

Client: Project: **ARCO Products Company**

2169 OAKLAND/20805-129.003/TO#19300.00

Service Request: \$9601261 Date Analyzed: 8/6/96

Initial Calibration Verification (ICV) Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	25	22.0	88	80-120
Toluene	25	22.0	88	80-120
Ethylbenzene	25	21.4	86	80-120
Xylenes, Total	75	63.7	85	80-120
Gasoline	250	228	91	80-120

ARCO	Produ Division	ICTS (Comp	ompany	\$			Task O	der No.	7	930	20	.00	2								Chain of Custody
ARCO Facili	ty no.	216	,9	Cit (Fa	y ıcility) (Da.K.	lano	0		Project (Consul	manag	jer	S.	Ye	liv	nar	rch	1/2		-045		Laboratory name
ARCO engin	eer D	aul	5	City P	le		Telephon (ARCO)	19 по. 408 453—1	1440	Telepho (Consul	one no. Itant)	45	ぎ 3-フ	300	>	Fax (Co	no. nsultar	t) 4	400 53	-045	<u> </u>	Contract number
Consultant r	iame E	MC	ON	<i>,</i> .				Address (Consulta	int) 19e	2/	Ri	اركم	ين ۾ ديا	2d	Ai	e.	Ser	u V	056	CA	!	
ĺ		ļ	1	Matrix	į	Prese	vation				f	2							0,7000			Method of shipment
Sample I.D.	Гар по.	Container no.	Soit	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8015	TPH Modified 8015 Gas Cl Diesel Cl	Oil and Grease	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi	CAM Melas EPA 601	Lead Org./DHS Tead EPA 7420/7421		
E-1		1			<u>ــــــــــــــــــــــــــــــــــــ</u>			8/5/96	1210		X											Special detection Limit/reporting
I-1	(2)	1			х			8/5/96	1215		×											Mg/M3 &
I-2	(Z) (Z)				x			8/5/96	1220	ļ <u>.</u>	×											Mg/m³ ? PPMV
													•									Special QA/QC
																						Remarks
																						20805-129.003
																						Lab number 5968/210 /
				ļ	<u> </u>	 																Turnaround time
0 17				Ι,	hop.	<u> </u>		111	1-1			L						/				Priority Rush 1 Business Day
Condition of Relinquishe	by same		//	<u>/ t</u>	ems	as	Date 8 - 4	ufla = a	Time	Recei		receive	·d:	Ur.	XI	ll	A			<u></u>		Rush 2 Business Days
Relinquished	d by	124	1111		·		Date	5-96	/600 Time	Receiv	ved by	· <u> </u>								·		Expedited 5 Business Days
Relinquishe	d by						Date		Time			laborate		710	\sim		ate 3-5	-90		Time / / /	 H)	Standard 10 Business Days

Columbia **Analytical** Services inc.

October 7, 1996

Service Request No.: S9601548

Valli Voruganti **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 2169 OAKLAND/#20805-129.003/TO#19300.00

Dear Ms. Voruganti:

Attached are the results of the samples submitted to our lab on September 23, 1996. For your reference, our service request number for this work is \$9601548.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 9, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

If you have questions or further needs, please call me at (408) 428-1283.

Sincerely,

Steven L. Green

Project Chemist

Greg Anderson

Regional QA Coordinator

SG/sh

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Laboratory Control Sample
Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion
ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/#20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: 9/23/96
Date Received: 9/23/96
Date Extracted: NA
Date Analyzed: 9/25/96

Service Request: L9603987

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: I-1

Lab Code: L9603987-001

]	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.4	0.1	7.8	2.4	
Toluene	0.4	0.1	25	6.5	
Ethylbenzene	0.5	0.1	13	3.0	
Xylenes, Total	0.9	0.2	71	16	
Total Volatile Hydrocarbons:					
C1 - C5	20	5	2800	670	
C6 - C12*	20	5	3200	770	

^{*} TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/#20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: 9/23/96
Date Received: 9/23/96
Date Extracted: NA
Date Analyzed: 9/25/96

Service Request: L9603987

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: I-2

Lab Code: L9603987-001

	ľ	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.4	0.1	2.6	0.8	
Toluene	0.4	0.1	10	2.6	
Ethylbenzene	0.5	0.1	5.8	1.3	
Xylenes, Total	0.9	0.2	29	6.6	
Total Volatile Hydrocarbons:					
C1 - C5	20	5	1100	270	
C6 - C12*	20	5	1200	300	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/#20805-129.003/TO#19300.00

Sample Matrix: Air

Date Collected: 9/23/96
Date Received: 9/23/96
Date Extracted: NA
Date Analyzed: 9/25/96

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: E-1

Lab Code: L9603987-003

]	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.4	0.1	ND	ND	
Toluene	0.4	0.1	ND	ND	
Ethylbenzene	0.5	0.1	ND	ND	
Xylenes, Total	0.9	0.2	ND	ND	
Total Volatile Hydrocarbons:					
C1 - C5	20	5	270	64	
C6 - C12*	20	5	ND	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: ARCO Products Company

Project: 2169 OAKLAND/#20805-129.003/TO#19300.00

Sample Matrix: Air

Service Request: L9603987
Date Collected: NA
Date Received: NA
Date Extracted: NA
Date Analyzed: 9/25/96

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: Method Blank Lab Code: L9603987-MB

	1	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.4	0.1	ND	ND	
Toluene	0.4	0.1	ND	ND	
Ethylbenzene	0.5	0.1	ND	ND	
Xylenes, Total	0.9	0.2	ND	ND	
Total Volatile Hydrocarbons:					
C1 - C5	20	5	ND	ND	
C6 - C12*	20	5	ND	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

APPENDIX A

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/#20805-129.003/TO#19300.00

Sample Matrix: Air

Service Request: L9603987
Date Collected: NA
Date Received: NA
Date Extracted: NA

Date Analyzed: 9/20/96

Duplicate Summary
BTEX and Total Volatile Hydrocarbons
EPA Methods 8020/Modified 8015
Units: uL/L (ppmv)

Sample Name: BATCH QC Lab Code: L9603951-001

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	
Benzene	0.1	1.63	1.55	1.59	5	
Toluene	0.1	9.75	11.2	10.5	14	
Ethylbenzene	0.1	6.99	6.56	6.78	6	
Total Xylenes	0.2	27.7	26.4	27.0	5	
Total Volatile Hydrocarbon:						
C1-C5	5	475	475	475	<1	
C6-C12*	5	513	510	512	<1	

^{*} TPH as gasoline is defined as C6 (Benzene) through C12 (Dodecane) and uses a molecular weight of 100 to calculate the ppmv.

QA/QC Report

Client: ARCO Products Company

Project: 2169 OAKLAND/#20805-129.003/TO#19300.00

LCS Matrix: Air

Service Request: L9603987

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Extracted: NA
Date Analyzed: 9/25/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015 Units: uL/L (ppmv)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	10.0	7.22	72	60-140
Toluene	10.0	8.16	82	60-140
Ethylbenzene	10.0	8.72	87	60-140
TPH as Gasoline*	710	527	74	60-140

TPH as gasoline is defined as C6 (Benzene) through C12 (Dodecane) and uses a molecular weight of 100 to calculate the ppmv.

ARCO	Prod	ucts in of Atlant	Com!	pany dCompany				Task (Order No.	!	193	500	 Э.(20	,						,	Chain of Custody
ARCO Facili	ility no. –	2169	G	Cit (Fa	City Facility) C	oak	Jan	/ · · · · · · · · · · · · · · · · · · ·		Projec	it mana	ger 1	1. Uc	<u> </u>	oc ₁ Cen	<u>, I ;</u>						Laboratory name
ARCO engir Consultant r	The Pa	aul	Si	uppl.	e		Telephor (ARCO)	one no. 1408 37	78697	(Consu	ultant)	408	1453	375	50O	Fa	ax no. Consulta	ant)				Contract number
COnsultan.	781110	<u>t</u> n	ncon	<u>n</u>				Address (Consult	s Itant) 192	:1 (Rin	CIWC	00 d	A	re	<u> </u>	<u>. Z</u> .	(<u> </u>	-		
 				Matrix		Prese	ervation				10	1 .	1 1	1	1 .	1	1	₩ Ş	0000			Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water		lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH F G S EPA M602/8020/8015		Oif and Grease 413.1 413.2	TPH EPA 418.1/SM503	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA □	CAM Metals EPA 60 TTLC STLC (Lead Org./DHS C		Tech
I-1 I-2 E-1	/	1	<u> </u>		AR	 		9/23/91	61330		4											Special detection Limit/reporting
I-2	3	1			AIR	<u> </u>			1345		4											TKEPORT IN
E-1	3	1	-		A112		<u> </u>	1	1400	<u> </u>	1											Report IN PPMU/M9/M3
			-	-			-				<u> </u>	<u> </u>		 '	<u> </u> ′	 		 				Special QA/QC
	 '	 '	-	1								 		_	 '	-	-	 	 	1	_	
		 	-	-				+		 		+'	-	 		-	+	+	-	-		_
	-			+	+			-				-			+	 	+	 	-	+-+	_	Remarks
	+				+ +					+		-			+-	 	+	 	 	+	_	-
								 	 						+	 	-	-			+	7 ******
								 	 -	-	 				-	 	+-			-	-	Z0805-129.003
								 							 	 	-			 		
									<u> </u>						 	 	 			+	-	-
		1						 	 				$\overline{}$	1					H	 	-	Lab number
						1		<u> </u>						\rightarrow			-			-	-	Turnaround time
						+								,—+		Γ			\square	-	-	Priority Rush
Condition of	i sample:		<u></u>	ىــــــــا	<u> </u>			<u>L</u>		Tempr	erature r	receive	<u></u> ∌d:				<u> </u>					1 Business Day
					Date 9-25	Date Time 9-23-96 1-126			GOLL LE GLOWN 9.23.96 1926											Rush 2 Business Days		
Relinquished	d by						Date			Receiv	Received by						<u></u>	7		_ / 1 ~	K KC/	Expedited 5 Business Days
Relinquished by				ı	Date Time			Received by laboratory					E	Date Time					Standard 10 Business Days			