

STID 5557

April 14, 1998

Ms. Susan L. Hugo Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Ground Water Monitoring and Risk-Based Corrective Action (RBCA) Evaluation

Former Lathrop Property 5813-15 Shellmound Street Emeryville, California Cambria Project No. 190-0122.010

Dear Ms. Hugo:

This report presents the results of a ground water monitoring effort and a Tier 2 Risk-Based Corrective Action (RBCA) evaluation conducted by Cambria Environmental Technology, Inc., (Cambria) at the above-referenced site. Cambria's objectives for this work were to establish a reliable water quality data set and then to incorporate that data into a RBCA evaluation. Cambria's RBCA analysis was based on risk assessment guidelines for petroleum release sites set forth by the American Society of Testing and Materials¹, and utilized the RBCA Spreadsheet System developed by Groundwater Services, Inc.² Specifically, the objectives of these efforts were:

- To monitor and evaluate the site ground water quality and establish the ground water flow direction, as directed by Ms. Susan Hugo of the Alameda County Department of Environmental Health (ACDEH) in her September 20, 1996 correspondence to Mr. F.P. Lathrop; and
- To assess the potential risk that residual petroleum hydrocarbons and semi-volatile organic compounds (SVOCs), including polynuclear aromatics (PNAs), may pose to the health of future on- and off-site occupants.

A brief site summary, ground water monitoring procedures, ground water monitoring results, the results of our Tier 2 RBCA evaluation, and our conclusions and recommendations are presented below.

Cambria

ENVIRONMENTAL

TECHNOLOGY, INC.

1144 65TH STREET,

SUITE B

Oakland,

CA 94608

ASTM Designation E 1739-95 (Revised December 1996): Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

Рн (510) 420-0700

Tier 2 RBCA: Spreadsheet System and Modeling Guidelines, 1995: Groundwater Services, Inc., 2211 Norfolk, Suite 1000, Houston, Texas 77098-4044.

Fax: (510) 420-9170

Mr. Jahres Wilson April 14, 1998

SITE HISTORY AND BACKGROUND

The site is located at 5813 Shellmound Street in the City of Emeryville, California (Attachment A). The property was purchased by Mr. F.P. Lathrop from the Fiberboard Corporation in the late 1960s. In 1971, Mr. Lathrop erected a single story commercial building on the eastern portion of the property and a concrete parking surface over the western portion. The property was leased from May 1, 1972 to April 30, 1987 by the F.P. Lathrop Construction Company for use as a construction yard and associated storage and office facilities. The site is currently used as a stereo installation facility by the Good Guys Retail Chain and as a retail storage and sales site by Sherwin Williams Paints.

The first environmental investigation conducted on the Lathrop property occurred in October 1989 during the removal of a gasoline underground storage tank (UST) that had been used to fuel F.P. Lathrop Construction Company construction vehicles. No hydrocarbons were detected in soil beneath the tank and only 23 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPHg) were detected in a stockpile of the backfill material removed with the tank. However, in response to a lawsuit filed by the owners of the adjacent property, who had detected benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in a well on their property, Crosby, Heafey, Roach and May (Crosby) directed Cambria to conduct a subsurface investigation of the former UST pit in late 1994.

1994 Subsurface Investigation: To determine the subsurface distribution of hydrocarbons, volatile organic compounds (VOCs), polynuclear aromatics (PNAs) and metals, Cambria drilled thirty-one soil borings and converted three of these borings to monitoring wells C-1, C-2, and C-3 in September and December 1994. Results of this work indicated the limited presence of VOCs, benzene, and toluene along the western property line, and elevated concentrations of heavy oil-range hydrocarbons and PNAs in the center and southwestern portions of the site. Detailed results of this investigation are summarized in a Cambria report prepared for Crosby in March 1995.

1997 Subsurface Investigation: To determine the extent of contaminants along and immediately beyond the southwestern/downgradient portion of the site, Cambria drilled three soil borings and converted one of these to monitoring well C-4 in February 1997. The results of this investigation were consistent with those of previous investigations which have suggested that the source of the VOCs is on the adjacent site to the west. The presence of elevated concentrations of petroleum hydrocarbons and semi-volatile organic compound (SVOCs) suggested that the extent of these compounds was not completely defined. Details of this investigation were summarized in the May 1997 report prepared by Cambria.³ Historical soil analytical data for the site are included as Attachment B.

Cambria Environmental Technology, Inc: Site Investigation and Ground Water Monitoring, Lathrop Property, May 20, 1997. Submitted to Crosby, Heafey, Roach and May.

Mr. James Wilson April 14, 1998

GROUND WATER MONITORING PROCEDURES

The results of Cambria's 1997 ground water monitoring are summarized below. Figures 1 and 2, Attachment A, depict ground water elevation contours and petroleum hydrocarbons/SVOC concentrations. Tabulated ground water analytic data and laboratory analytic reports are included as Attachment C and documentation confirming waste water disposal is presented as Attachment C-1.

Sampling Dates:

December 16, 1994 March 19, 1997 May 30, 1997 July 3, 1997 August 7, 1997

Purging Method:

A minimum of four well volumes was hand bailed from each well while monitoring physio-chemical parameters (pH, conductivity, suspended solids and temperature) for stabilization.

Laboratory Analyses:

Ground water samples from the wells were analyzed for:

- TPHg by modified EPA Method 8015;
- Total petroleum hydrocarbons as creosote (TPHcr), total petroleum hydrocarbons as motor oil (TPHmo), and total petroleum hydrocarbons as diesel (TPHd) by modified EPA Method 8015;
- BTEX and methyl tertiary-butyl ether (MTBE) by EPA Method 8020; and
- SVOCs (including PNAs) by EPA Method 8270.

Ground Water Flow Direction:

Based on the August 7, 1997 depth to ground water measurements, ground water flows toward the south at a gradient of about 0.017 ft/ft (Figure 1). The historical ground water flow direction has ranged from the south to the southwest beneath this site.

Waste Water Disposal:

Purge water generated during the 1997 sampling events was stored on site in sealed, labeled, D.O.T.-approved 55-gallon steel drums. On October 1, 1997, this water was disposed of at Integrated Waste Stream Management, Inc. in Milpitas, California (Attachment C-1).

Mr. James Wilson April 14, 1998

CAMBRIA

GROUND WATER MONITORING RESULTS

Analytical data for ground water samples collected from monitoring wells C-1 through C-4 are presented on Tables 1 and 2, Attachment C, and summarized below. The general trends of analyte concentrations in ground water and the maximum current concentrations of each analyte detected are presented on the following page.

- TPHcr were detected consistently at relatively stable concentrations in wells C-3 and C-4.
- TPHd detections in wells C-1 and C-2 most likely represent weathered motor oil, because (1) all diesel detections are qualified by the laboratory as appearing to be a heavier hydrocarbon than diesel, and (2) diesel detections mimic the motor oil detections. Diesel does not appear to be a contaminant of concern for this site.
- TPHmo have been stable in well C-2 but have been increasing in well C-1. The possible increase in TPHmo concentration in well C-1 may be related to the receding water level at the site. No detections have been reported for wells C-3 and C-4 at a detection limit of 5,000 ppb.
- TPHg, benzene, and SVOCs have been consistently detected in wells C-3 and C-4, and both wells show stable trends in the concentrations.
- MTBE was not detected in any wells.

	(GROUND W	ATER SAME	PLING SUMI	WARY	
Analysis	C-1 General Trend	C-2 General Trend	C-3 General Trend	C-4 General Trend	Current Maximum Concentration (ppb)	Location of Highest Detection
TPH(cr)	ND	ND	Stable	Decreasing	24,000	C-3
TPH(mo)	Increasing	Stable	ND (b)	ND (b)	8,200	C-1
TPH(g)	ND	ND	Stable	Decreasing	16,000	C-3
TPH(d)	Increasing (a)	Stable (a)	ND	ND	3,700 ^(a)	C-1
Benzene	ND	ND.°	Stable	Decreasing	B: 1,200	C-3
T, E, and X	ND 25	ND °	Stable	Stable	T: 110 E: 260 X: 170	C-3 C-3 C-3
MTBE	ND	ND	ND	ND	ND	
SVOCs (d)	ND	ND (e)	Stable ⁽ⁱ⁾	Decreasing	Benzo(a)pyrene: 230	C-3
(incl. PNAs)					Naphthalene: 12,000 Phenanthrene: 1,200	C-3
		Company of the Compan			Pyrene: 810	C-3
× 10					erest and the second	C-3

Abbreviations and Notes:

- (a): diesel detections most likely represent weathered motor oil.
- (b): detection limit typically 5,000 ppb due to elevated concentrations of other analytes.
- (c): Maximum of 1.1 ppb benzene and 2 ppb ethylbenzene detected.
- (d): See Table 2 (Attachment C) for the complete list of SVOCs detected.
- (e): All sample concentrations were less than detection limits except for a one-time detection of Naphthalene at 11ppb (1ppb above the detection limit).
- (f): Concentrations generally stable except for an increase for most analytes during the 7/3/97 sampling event. During the following sampling event (7/3/97), concentrations generally decreased from that of the prior event (5/30/97).

RISK ASSESSMENT

As previously indicated, Cambria's risk assessment followed RBCA guidelines set forth by ASTM for petroleum release sites. The ASTM RBCA process is summarized below, including specific details of our assessment.

Overview of RBCA Process

The RBCA process is the integration of site assessment, remedial action selection, and monitoring with USEPA-recommended risk and exposure assessment practices. This creates a process by which corrective action decisions are made in a consistent manner that is protective of human health and the environment. The RBCA process is implemented in a tiered approach, involving increasingly sophisticated levels of data collection and analysis. Upon completion of each tier, the results are evaluated and, if warranted, assumptions of the current tier are replaced with site-specific data and the analysis proceeds to the next tier.

Mr. Jantes Wilson
April 14, 1998

CAMBRIA

In the first of the three tiers (Tier 1), a simple look-up table is used to develop numerical cleanup goals based on very conservative contaminant transport and exposure assumptions. If this initial conservative screening indicates acceptable risk, the site generally poses little danger to human health and no additional work is necessary. However, if the initial screening exceeds the conservative risk levels, then the reviewer may proceed to a more site-specific, less-generalized Tier 2 evaluation to establish a more accurate set of site-specific cleanup guidelines. Similarly, if the Tier 2 evaluation shows risk is not below the conservative acceptable level, the reviewer may proceed to a more sophisticated Tier 3. The three tiers are described in detail below.

Tier 1 Evaluation: Cambria first reviews the risk associated with the chemicals of concern (COCs) observed beneath a site by comparing site-specific representative COC concentrations to highly conservative, generic, risk-based screening levels (RBSLs) that are developed from default parameters and equations and a generalized conceptual site model. The Tier 1 process uses simplified contaminant equilibria models, addresses both direct and indirect exposure pathways, and anticipates various potential property use categories (residential and commercial/industrial).

Tier 2 Evaluation: Site-specific target levels (SSTLs) for soil and ground water cleanup are based on site-specific physical soil conditions and points of exposure. Both RBSL and SSTL values represent concentration limits for constituents within the source zone. However, SSTLs differ from RBSLs in the following ways:

- Site-specific data are used to calculate risk-based clean up goals (SSTLs);
- SSTLs are based on the assumption that human exposure to affected media may occur at a separate "point of exposure" (POE), not just at the source zone; and
- The effects of natural attenuation during lateral transport from the source to a downgradient POE are considered in the SSTL calculation; they are not in the RBSL calculations.

Tier 3 Evaluation: A Tier 3 evaluation can be conducted if the reviewer believes that the SSTLs produced by the Tier 2 effort remain unrealistically high. A Tier 3 is a sophisticated site-specific analysis that can incorporate, if necessary, a full range of exposure and toxicological considerations.

Conceptual Model

Cambria's approach to performing this risk assessment, including development of the conceptual site model for the risk assessment, conducting the Tier 1 and Tier 2 analyses, and documenting the need, if any, for future corrective action at the site, is presented below.

As the initial step in quantifying the human health risks due to contaminant exposure, Cambria developed a conceptual site model (CSM) of contaminant occurrence, transport mechanisms, and potential exposure pathways. This CSM model is based on review of all available hydrogeologic data, the current and future land

Mr. Jantes Wilson April 14, 1998

use and the potential receptors on- and off-site. Specifically, Cambria reviewed soil and ground water quality, ground water level, geologic data and also evaluated future land use and surface features at the site. A flowchart summarizing the CSM is shown in Figure 1.

Exposure Pathways

The site where the contaminants of concern (COCs) were detected in soil and ground water is currently a parking lot. However, to provide a conservative estimate, for the purpose of this risk assessment, we have assumed that the parking area is unpaved. Also, for the purposes of the risk assessment, Cambria conservatively assumed that a commercial building may be constructed on this lot in the future. Accordingly, Cambria also assessed the risk by these exposure routes to on-site indoor occupants of a commercial/industrial building. Hydrocarbons in soil samples collected below the water table/saturated zone are represented by ground water analytic results. Therefore, for on-site receptors, volatilization of BTEX and SVOCs from ground water to ambient and indoor air was also considered. Our exposure pathway analysis is summarized in Table 1 on the following page.

Sensitive Receptors

In November 1997, Cambria contracted Vista Information Solutions, Inc., (Vista) of San Diego, California, to identify all monitoring, domestic, irrigation, and municipal wells within a 1/2-mile radius of the site. Banks Information Solutions, Inc., (Banks) of Austin, Texas, in conjunction with Vista reviewed all available files for the township and range in which the site is located at the Department of Water Resources (DWR), Central District in Sacramento, California. The well survey identified only one well within the 1/2-mile radius of the site. The well is 213 ft deep and is located about 1/2-mile upgradient of the site. It is unknown if the well is currently active. A copy of the area well survey is included as Attachment D.

Although the area well survey identified only one well within a 1/2-mile radius of the site (located upgradient), to be conservative in this risk assessment, we also assessed the potential risk assuming an off-site ground water ingestion receptor existed 60 ft downgradient of the site, beyond the off-site monitoring well C-4.

Table 1 - Exposure Pathway Summary

Exposure Scenario		ed for this sment?	Rationale
	Yes	No	
Soil Exposure Routes			
Surficial soil (<3 ft bgs) ingestion/dermal/inhalation		x	Site paved with asphalt. No direct contact with soil beneath the site.
Soil volatilization to outdoor air	X		Volatilization of COCs from soil and transport of vapors through the air volds in soil to ambient air.
Soil volatilization to indoor air	x .		Migration of subsurface COC vapors to top soil, accumulation in building foundation, and then into the building indoor air.
Soil-leachate to protect ground water ingestion		X	No significant infiltration/percolation through site soil due to the shallow ground water depth and asphalt cover.
Ground Water Exposure Routes	}		
Ground water volatilization to outdoor air	X		Volatilization of COCs from ground water beneath the site and subsequent transport of vapors through the air voids in soil to ambient air.
Ground water vapor intrusion from ground water to buildings	X _		Migration of subsurface COC vapors from ground water to top soil, accumulation in building foundation and then into the building indoor air.
Ground water ingestion	x /		This pathway is considered for a conservative analysis, assuming a downgradient ground water receptor exists.
Future Property Use			
Residential		Х	Site used for a commercial purpose.
Commercial	х		Site is currently a parking lot/retail buildings.
Industrial	×		Retail building/paint warehouse on-site,

⁴ Mr. James Wilson April 14, 1998

Selection of Representative COC Concentrations

COCs in soil: The extent of COCs in the lateral as well as the vertical direction has been well-defined by the numerous soil borings drilled across the site. When such a large data set is available, an appropriate site-specific value for the COC is a statistical estimate, generally the 95% upper confidence limit (UCL) of the mean concentration. Therefore, for this site, the representative COC concentrations are the 95% UCL of their respective concentrations detected in samples from above the water table (about 6.5 feet, considering the most recent measurements from monitoring well C-4). Where the COC was not detected (ND) above the laboratory detection limit, a value of one-half the detection limit for that COC was considered representative for that sample. Historical soil analytical data is included as Attachment B.

COCs in Ground Water: The average concentrations of the COCs from the last five sampling events in monitoring well C-3 were considered representative of ground water concentrations. Historically, the highest BTEX and SVOC concentrations have been detected in on-site monitoring well C-3, which is also located closest to the Good Guys Building (commercial use). Therefore, the use of these concentrations as representative COCs in ground water is conservative. Our conceptual model and the representative concentrations for this evaluation are presented below in Table 2. Ground water monitoring results are included as Attachment E.

Table 2 - Conceptual Model for Risk Assessment

ltem		Comment
Contaminant Source Media:	Underlying Soil and Ground Water	Hydrocarbons and SVOCs (including PNAs) have been detected in unsaturated soil and ground water beneath the site.
Potential Chemicals of Concern (COC):	Benzene, Toluene, Ethylbenzene, and Xylenes Anthracene, Benzo(a)anthracene, Benzo(a)Pyrene, Chrysene, Dibenzo(a,h)Anthracene, Fluoranthene, Indeno(1,2,3,c,d) Pyrene, Naphthalene, and Pyrene	All chemicals detected in representative samples in soil and ground water.

⁴ Mr. James Wilson April 14, 1998

ltem			Comment
Representative COC Concentrations in Soil:	Benzene: Toluene: Ethylbenzene: Xylenes: Anthracene: Benzo(a)Anthracene: Benzo(a)Pyrene: Chrysene: Fluoranthene: Indeno(1,2,3,c,d)Pyrene: Naphthalene: Pyrene:	0.08 0.14 0.13 0.15 220 190 220 240 730 140 1,400 89	95% UCL of all concentrations detected in unsaturated soils beneath the site.
Representative COC concentrations in ground water (for volatilization pathway)	Benzene: Ethylbenzene: Benzo(a)Anthracene: Benzo(a)Pyrene: Chrysene: Dibenzo(a,h)Anthracene: Indeno(1,2,3,c,d)Pyrene:	0.26 0.18 0.31 0.41 0.11 0.25	Average concentrations of all sampling events in on-site monitoring well C-3 in all sampling events.
Representative COC concentrations in ground water (for ingestion pathway)	Benzene: Ethylbenzene: Benzo(a)Anthracene: Benzo(a)Pyrene: Chrysene: Dibenzo(a,h)Anthracene; Indeno(1,2,3,c,d)Pyrene:	0.46 0.12 0.40 0.63 0.69 0.14 0.42	Average concentrations of all sampling events in the off-site monitoring well C-4.
Target Carcinogenic Risk Level:	1x10 ⁻⁵ and 1x10 ⁻⁶		Conservative target risk level, considering a commercial receptor scenario on-site and a residential receptor off-site.
Non-Carcinogenic Hazard Quotient:	1.0		Consistent with ASTM default value.
Benzene Slope Factor:	0.1 (mg/kg/day) ⁻¹		Defined by California EPA.
All concentrations in par	ts per million (ppm)		

Mr. James Wilson April 14, 1998

Tier 1 Analysis

Consistent with the tiered approach adopted by the ASTM RBCA guidelines, Cambria initially quantified the risk associated with the site COCs by performing a Tier 1 evaluation. As outlined in ASTM E-1739-95, the site-specific COC source concentrations are compared to highly-conservative, generic Tier 1 RBSLs, which are based on simplified equations and generalized site conditions. Table 3 contains the results of our comparison of site COC source concentrations to Tier 1 RBSLs for those COCs whose site-specific soil and ground water concentrations exceed the Tier 1 RBSLs. Results of the Tier 1 analysis for all the COCs detected in soil and ground water are included as Attachment E.

Table 3 - COC Concentrations Exceeding RBCA Tier 1 RBSLs

Exposure Pathway			Target Risk Applicable Level RBSL (USEPA)		Representative Concentration for COCs						
**************************************	*5	Benzen	e (in ppm)	·							
Volatilization from ground water to on- site indoor air	Commercial	1x10 ⁻⁵	0.739	0.214	1.5						
Ground water ingestion	Residential	1x10 ⁻⁶	0.0029	0.00084	0.46						
Benzo (a) Anthracene (in ppm)											
Ground water ingestion	Residential	1x10 ⁻⁶	0.00012	NA	0.40						
		Benzo (a) P	yrene (in ppm)								
Ground water ingestion	Residential	1x10 °	0.000012	NA	0.63						
		Chrysen	e (in ppm)								
Ground water ingestion	Residential	1x10*	0.000074	NA	0.69						
	45000 017401 08 107	Dibenzo (a,h) Ar	nthracene (in ppm)								
Ground water ingestion	Residential	1X10 ⁶	0.000012	NA	0.14						
		Indeno (1,2,3,c,	d) Pyrene (in ppm)								
Ground water ingestion	Residential	1x10 ⁶	0.00012	NA	0.42						

As shown in Table 3, the exposure scenarios exceeding the Tier 1 levels are (1) volatilization of benzene from ground water into on-site indoor air, and (2) residential ingestion of benzene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenzo(a,h) anthracene, and indeno(1,2,3,c,d) pyrene in off-site ground water. These scenarios served as the basis for our Tier 2 analysis.

'Mr. James Wilson April 14, 1998

Tier 2 Analysis

In Cambria's Tier 2 analysis, we re-evaluated the exposure scenario for COCs listed in Table 3 by using site-specific data as input into the Tier 2 RBCA Spreadsheet System. Standard exposure scenarios inherent to the Tier 1 ASTM risk evaluation employ conservative assumptions consistent with state and federal guidelines. Risk related input parameters such as duration and frequency are selected to represent the maximally exposed individual and are not an accurate portrayal of time spent at a place of residence or business. The quantitative effect of these uncertainties contributes to overestimation of the overall potential health risk. Our assigned values for key input variables and our justification for use of these values are summarized in Table 4 below and in Attachment F. The results of our Tier 2 analysis are summarized in Table 5 and Attachment F.

Table 4 - Assigned Key Parameter Values

Parameter	Units	Default Value	Value Used in Cambria Evaluation	Justification for Use of Value
Depth to Ground Water (DTW)	çm	300	195	Based on ground water monitoring data for well C-4 (6.5 ft bgs);
Vadose Zone Porosity	cm³/cm³-soil	0.38	0.36	Average porosity of soil samples collected from 5 ft depth in borings C-4 and SB-BB, adjoining the site.
Moisture Content	cm³-water/cm³-soil	0.12	0.14	Moisture content in a soil sample from boring C-4 at 5 ft depth.
Air-filled voids	cm³-air/cm³-soil	0.26	0.22	Difference of porosity and moisture content in the vadose zone.
Fraction Organic Carbon (f _{oc})	g-carbon/g-soll	0.01	0.033	Measured in soll boring SB-BB at 5 ft depth.
Saturated Hydraulic Conductivity (K)	cm/sec	NA	2.5x10 ^{·5}	Typical for clayey sands and sandy clays encountered in the saturated zone beneath the site (Fetter, 1994)
Fetter, C.W., 1994.	Applied Hydrogeology, F	rentice-Hall, Engl	ewood Cliffs, New Jersey.	

why Cf

Table 5 - Results of Tier 2 Analysis

				r 2 SSTL for and SVOCs		Representative Concentration vs SSTL		
Exposure Pathway	Receptor Scenario	Target Risk Level	Applicable SSTL (USEPA)	California EPA SSTL (0.29xRBSL)	Rep. Conc. for COCs	Exceed	Below	
, 3 to 1 to			Benze	ene				
Volatilization from ground water to on-site indoor air	Commercial	1x10 ⁻⁵	5.8	1.68	1.5		x	
Off-site ground water ingestion	Residential	1x10 ⁻⁸	>SOL	>SOL	0.46		Х	
	Lancing and the state of the st	***************************************	Benzo (a) Ai	T0000000000000000000000000000000000000				
Off-site ground water ingestion	Residential	1x10°	>80L	NA	0.40		х	
			Benzo (a)	Pyrene				
Off-site ground water ingestion	Residential	1×10 ⁻⁶	>SOL	NA	0.63		X	
			Chrys	ene				
Off-site ground water ingestion	Residential	1x10°	>SOL	NA	0.69		x	
			Dibenzo (a,h)	Anthracene				
Off-site ground water ingestion	Residential	1x10°	>SOL	NA	0.14		X	
			Indeno (1,2,3,	c,d) Pyrene				
Off-site ground water ingestion	Residential	1x10°	>SOL	NA	0.42		x	
All concentrations (NA = Not Applicab > SOL = Selected ri	le	ceeded for all	l possible dissolve	d levels (≤pure com	ponent solubility)			

As the above Table 5 indicates, the site-specific concentrations for benzene and all the SVOCs are below their respective SSTLs, indicating that there is no potential health risk to on-site occupants from the COCs detected beneath the site. Also, as shown in Table 6 on the following page, the risk associated with potential exposure to the site-specific benzene source concentration from ground water is significantly less than the target risk

'Mr. James Wilson April 14, 1998

level set forth by the USEPA. As shown in Attachment F, a benzene concentration of 1,700 ppb⁴ is protective of the target risk level of 10⁻⁶.

Table 6 - Comparison of Risk Levels (for benzene only)

Exposure Scenario	Calculated Risk Level	Target Risk Level	Result
Volatilization of benzene	9x10 ⁻⁷	1x10 ⁶	Site-specific source benzene
from ground water beneath			concentration is protective of target
the site into indoor air.			risk level.

DISCUSSION

Consistent with ASTM standards, Cambria's risk assessment employed a conservative approach to mathematical formulation and parameter estimation. The effects of both the ASTM process and of our parameter value selections on our conclusions are discussed below.

Inherent Conservatism of ASTM Model

Fate and Transport Modeling: The GSI RBCA Spreadsheet System used by Cambria employs a series of simplified fate and transport models for predicting COC concentrations at points of exposure. The simplified analytic nature of these models, used to simulate fate and transport of contaminants in ground water, particularly the Domenico solution without bioattenuation, often results in over-estimated COC exposure point concentrations. Hence, use of these models may result in over-estimation of health risks.

Toxicological Data: Several aspects of the toxicological data employed in the ASTM RBCA process contain a high degree of uncertainty that affect estimation of risk and delineation of SSTLs. These uncertainties arise in two primary areas. First, slope factors used in this assessment correspond to the 95 percent upper confidence limits (UCL) on the low-dose portion of the chemical's dose-response curve, as extrapolated from high-dose human or animal response data using the EPA linearized multistage model (LMS). This assumption means actual risks are likely to be lower than the risk estimates calculated in this assessment.

Second, results of animal studies are often used to predict the potential human health effects of a chemical. Extrapolation of toxicological data from animal tests is one of the largest sources of uncertainty in the human health risk evaluation process. There may be important but unidentified differences in uptake, metabolism,

The results shown in Attachment G are based on the default ASTM benzene slope factor of 0.029 (mg/kg-day)⁻¹. To account for the more conservative Cal/EPA benzene slope factor of 0.1 (mg/kg-day)⁻¹, we multiply the benzene concentration values in Attachment G by the correction factor of 0.29 (e.g., 5,800 ppb x 0.29 = 1,700 ppb).

'Mr. James Wilson
April 14, 1998

CAMBRIA

distribution, and elimination of chemicals between a test species and humans. Animal studies are usually conducted under high-dose conditions, whereas humans are rarely exposed to such high doses. The dose level itself may be responsible for the observed carcinogenic effects. Also, animal lifetimes tend to be less than two years, while assumed human life expectancy is 70 years.

Interpretation of Risk Levels: The excess lifetime cancer risk used to evaluate carcinogenic compounds is often misunderstood. For example, a risk level of one-in-one million (1×10^{-6}) associated with exposure to a particular chemical is often misconstrued as an expectation that one out of a million people exposed to the chemical will develop cancer. In actuality the carcinogenic risk is not an actual risk, but rather a mathematical risk based on conservative scientific assumptions used in the risk assessment process. The Food and Drug Administration (FDA) uses this conservative estimate to ensure that the risk is not understated.

Uncertainties Associated with Combinations of Conservative Assumptions: Uncertainties from the various sources discussed above are additive; hence, the overall effect of using conservative assumptions in each step of the risk assessment process results in significant overestimation of potential risks/hazards, and an underestimation of action levels. Accordingly, evaluation of applicable SSTLs must be viewed with an understanding of the uncertainty and conservatism involved, and how these effect risk estimations. Because of the high degree of conservatism associated with the RBCA process, findings of insignificant risk (high SSTLs) may reflect conditions close to reality; however, findings of measurable risk (low SSTLs) may reflect conditions that result from the conservative nature of the evaluation.

Cambria's evaluation consistently incorporated conservative assumptions for selection of parameters used to calculate risk, while attempting to maintain a reasonable, site-specific evaluation. The overall effect of using conservative assumptions in each step of the risk assessment process is likely to result in an overestimation of potential risk.

CONCLUSIONS AND RECOMMENDATIONS

Cambria's Tier 2 risk assessment for this site suggests that the COCs detected in soil and ground water do not pose a significant threat to the health of persons currently occupying the site or potentially occupying the site in the future.

Based on the results of the ground water monitoring and on this risk assessment, Cambria recommends that the site be monitored semi-annually for one year, with the sampling events coinciding with seasonal high and low water tables. Analyzed constituents should include TPHg, TPHmo, TPHcr, BTEX and SVOCs. If this monitoring confirms the previous ground water quality trends, then we would recommend that the site be closed or granted a finding of No Further Action (NFA).

CLOSING

We appreciate this opportunity to provide environmental consulting services to Crosby, Heafey, Roach and May. Please call if you have any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc.

Sam Rangarajan

Engineer

Joseph P. Theisen, CEG Principal Hydrogeologist

Attachments:

Figure 1: Flowchart indicating the conceptual site model

A - Figures

B - Soil Analytical Data

C - Ground Water Analytical DataC-1 - Waste Water Disposal Forms

D - Area Well Survey

E - Tier 1 RBSLs

F - Tier 2 RBCA Tables

cc: Mr. James Wilson, Crosby, Heafey, Roach and May, 1999 Harrison Street, Oakland, CA 94612

H:\MISC\LATHROP\RBCA\RBCAQM(e) WPD

Figure 1. Generic Conceptual Site Model - Former Lathrop Property, 5813-15 Shellmound Street, Emeryville, California

Attachment A Figures

Attachment BSoil Analytical Data

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

Sample	Date	Sample	TPHcr	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl benzene	Xylenes
ΙĎ	Sampled	Depth (ft)					(Concentration	n in mg/kg or par	ts per million)	
LATHRO	> (5813-5815 S	hellmound)								
	avation Sample									_
1512	10/26/89	-4				nd	nd	nd	nđ	nd
1521	10/26/89	~4		••		nd	nd	nd	nd	nd
1533- Comp	10/26/89	NA	·	-	~ ~	23	nd	nd	nd	0.28
Cambria !	Borings (Septe	mber 1994)					. 4	m.đ	nd	nď
SB-A	09/22/94	5.0				nd	nd	nd 1	nd	nd
SB-A	09/22/94	11.7			***	nd	nd	nd 4		nd
SB-B	09/22/94	6.0		••	40	1.0	nd	nd	nd 4	nd
SB-B	09/22/94	11.7		••	**	nd	nđ	nd	nd	
SB-C	09/22/94	5.0		**	••	nđ	nd	nd	nd	nd
SB-C	09/22/94	11.7				1.1	nd	nd	nd	nd
SB-D	09/22/94	5.0	**	·		nđ	nđ	nd	nd	nd
SB-E	09/22/94	5.0				nd	nd	nd	nd	nd
SB-F	09/22/94	5.0				_	**	T T		
SB-G	09/22/94	3.0	**		••	nd	32	0.69	4.4	nd
SB-G	09/22/94	5.0	••			21	0.15	3.4	0.13	1.2
SB-G	09/22/94	11.7		4-			••			
SB-H	09/22/94	3.0		••		nd	nd	0.620	0.016	0.180
SB-H	09/22/94	5.0		••	••	15	0.052	0.066	9.8	0.380
SB-H	09/22/94	11.7				1.1	0.012	0.650	nd	0.010
SB-I	09/22/94	5.0		••		nd	0.011	0.0037	nd ,	nd
SB-J	09/22/94	5.0							- '	

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

Sample	Date	Sample	ТРНсг	TPHd	ТРНто	TPHg	Benzene	Toluene	Ethyl benzene	Xylenes
ID	Sampled	Depth (ft)				6	(Concentration	on in mg/kg or pa	ts per million)	
SB-N	09/22/94	3.0				••				••
SB-N	09/22/94	5.0		**		1,700	5.9	2.7	10	9.8
SB-N	09/22/94	10.5				2,600	18	7.3	12	14
SB-N	09/22/94	11.7								
SB-O	09/22/94	5.0				23	0.058	0.034	0.170	0.230
SB-O	09/22/94	11.7	••		<u></u> .					
SB-P	09/22/94	11.7	· -			2,300	17	1.8	13	10
Cambria B	Borings (Dece	mber 1994)								
SB-Q	12/07/94	3.5	nđ	nđ	1,300					
SB-Q	12/07/94	5.5	nđ	8.8	26	••				
SB-R	12/07/94	5,5	nd	9.6	19				••	
SB-S	12/07/94	5.5	nd	7.1	21	~~	***			***
SB-S	12/07/94	11	nđ	nd	690					••
SB-T	12/07/94	3.5	11,000	nd	nd				••	
SB-T	12/07/94	5.5	25,000	nd	68,000		**			
SB-T	12/07/94	9.0	nd	nd	570					*-
SB-T	12/07/94	11.0	23	nd	nđ	**				
SB-U	12/07/94	6.0	5,200	nd	13,000				••	
SB-U	12/07/94	11.0	58	nđ	nd	**				
SB-V	12/07/94	4.0	42,000	nd	nd				**	
SB-V	12/07/94	11.0	19	nd	nđ	**				
SB-W	12/07/94	4.0	240,000	nd	nđ	••		***		
SB-W	12/07/94	6.0	nd	3,900	5,600					
SB-W	12/07/94	11.0	36	nđ	nd				-	
SB-X	12/08/94	5.5	nđ	nd	nd	•			!	-
SB-X	12/08/94	8.5	nd	1,300	3,300					
SB-X2	12/08/94	3:5	- nd	n d	67-	••	_ _			

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

Sample ID	Date Sampled	Sample Depth (ft)	ТРНсг	TPHd	ТРНто	TPHg	Benzene (Concentration	Toluene on in mg/kg or pa	Ethyl benzene rts per million)	Xylenes
SB-X2	12/08/94	5.5	nd	nd	87,000				**	
SB-X2	12/08/94	9.0	nd	nd	nd		-			**
SB-X2	12/08/94	11.0	nd	150	550		**			
SB-X2 SB-Y	12/08/94	3.5	40,000	nd	nd				••	***
SB-Y	12/08/94	5.5	nd	nd	nđ	••	••			
SB-Y2	12/08/94	4.0	nd	nd	nd		**		••	•-
SB-Y2	12/08/94	6.0	nđ	nd	nd		حب			
SB-Y2	12/08/94	9.0	nd	nd	nd					
SB-Y2	12/08/94	11.0	nd	nd	nd					
SB-Z	12/08/94	3.5	nd	nđ	170			••		
SB-Z	12/08/94	6.0	nd	nd	nd		-			
C-1	12/09/94	5.5	nd	nd	2,300					**
C-1	12/09/94	8.5	nd	nd	23					
C-1	12/09/94	13.5	nd	nđ	nd					
C-1	12/09/94	18.5	nd	nd	nd					
C-2	12/09/94	3.5	nd	nd	nd		**	••		
C-2	12/09/94	5.5	nd	31	50				40 / 10	
C-2	12/09/94	8.5	nd	7.9	18			••		
C-2	12/09/94	11.0	12	2.30	nd				-	**
C-2	12/09/94	15.0	nd	**				••		
C-3	12/09/94	3.5	3,700	nd	nd					
C-3	12/09/94	5.5	19,000	nd	pd				••	
C-3	12/09/94	8.5	62,000	nd	nd		•			
C-3	12/09/94	11.0	14	nd	nd					
C-3	12/09/94	14.0	nd	nd	nđ	••	**		•-	***
C-3	12/09/94	15.0	81,00						:	

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

Sample	Date	Sample	ТРНсг	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl benzene	Xylenes
ID	Sampled	Depth (ft)					(Concentrati	on in mg/kg or part	s per million)	
	-0.11555510	** ** ********	(2000 Christia Streat)							
COLEY AN Rorings hv	O HERRING Gils Associat	INVESIMENI ((5800 Christie Street)							
1 (9665)	12/28/88	4.0		•••		••	nd	1,400	3	8.4
1 (9666)	12/28/88	6.0				-	nd	26	nd	nd
2 (9668)	12/28/88	7.0	••				nd	87	nd	nd
2 (9667)	12/28/88	12.0				35	nd	56	nd	nd
3 (9669)	12/28/88	5.0		••			nd	33	nd	nd
3 (9670)	12/28/88	12.0		••		1.4	nd	0.81	nd	nd
4 (9653)	10/12/88	2.4					nd	2800	28	42
5 (9661)	10/12/88	3.4	-	••			nd	nd	nd	nd
6 (9660)	10/12/88	3.0					nd	0.0060	nđ	0.004
	10/12/88	3.0					nd	nd	nđ	nd
7 (9658)	10/12/88	3.3		••	••		nd	nd	nd	nd
8 (9659)	10/12/88	2.0			•-		nd	0.0032	nd	nđ
9 (9655)	10/12/88	6.3					nd	0.0040	nd	nd
10 (9656)							nd	0.0055	nd	nd
11 (9654)	10/12/88	4.0			**		nd	0.0028	nđ	nd
12 (9657)	10/12/88	2.0		**		nd	nd	nđ	nd	nd
13 (9663)	10/27/88	6.0		•		3	nd	nd	nd	nd
13 (9664)	10/27/88	11.0		••		5	nd	nd	nd	0.057
14 (9662)	10/27/88	11.0				3	110	•••		
McLaren I	Foundation Ex	ccavation Sampi	es					0.010	-4	nd
HA-I	04/14/89	2.3	**				nd	0.019	nd t	
HA-4	04/14/89	2.0					nđ	0.16	nd	nd
HA-5	04/14/89	2.7		**			nđ	0.80	nd	nd
HA-6	04/14/89	3.5					nd	0.12	nd	nd
HA-7	04/14/89	3.5	••	. • <u>•</u>	••		nd	0.072	nd	nd

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

Sample	Date	Sample	TPHcr	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl benzene	Xylenes
ID	Sampled	Depth (ft)					(Concentrati	on in mg/kg or par	ts per million)	
HA-8	04/14/89	3.5		**			nd	0.048	nd	nd
HA-9	04/14/89	3.5			**	••	nd	nd	nđ	nđ
HA-10	04/14/89	3.5			••		nd	0.049	nd	nđ
HA-11	04/14/89	2.5	***				nd	0.030	nd	nd
ETS Excav	ation Wall S	amples							4	nd
Al	1989	5.0	·	***	+		nd	nđ	nd	
A2	1989	5.0	-4	**		••	nd	0.11	nd	nd
В	1989	5.0		••	**		nd	180	3.8	28
С	1989	5.0		**	**		nd	320	9,3	48
D	1989	5.0	••				nd	1.8	nđ	nđ
El	1989	5.0				**	0.70	0.70	0.60	1.1
E2	1989	5.0					nd	nd	nd	nd
F	1989	5.0					nd	2,700	14	35
Confirmat	ion Borings A	After SVE								
G	12/03/91	3-5				nd	nđ	nd	nd	nd
H	12/03/91	3-5				1.5	nd	0.076	0.0062	0.10
I	12/03/91	3-5	**	••		nd	nd	nd	nd	nd

Abbreviations

TPHcr = Total petroleum hydrocarbons as creosote by EPA Method 5020, 5030 or by modified EPA Method 8015 TPHd = Total petroleum hydrocarbons as diesel by EPA Method 5020, 5030 or by modified EPA Method 8015

TPmo = Total petroleum hydrocarbons as motor oil by EPA Method 5020, 5030 or by modified EPA Method 8015

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 5020, 5030 or by modified EPA Method 8015

BTEX = BTEX compounds by EPA Method 601/8240 unless 8020/5030 performed also.

-- = Constituent not analyzed

nd = Not detected, or no limit given by previous consultant

Table 2. Soil Analytic Data for Volatile Organic Compounds (VOCs) - Lathrop Investigation, Emeryville, California

Sample	Date	Sample	VÇ	1,1	1.2	МС	1,2 DCA	1,1,1 TCA	TCE	PCE	carbon tet	Comments
IĎ	Sampled	Depth (ft)		DCA	DCE			(Concentratio	n in mg/kg or pa	rts per millior	n) 	
LATHROI	• (5813-5815 S	hellmound)										
	avation Sampl											
1512	10/26/89	-4						**	••			
1521	10/26/89	~4		••	••			••	••	-		stockpile sample
1533- Comp	10/26/89	NA					6 -45-	***				2000kma amilya
Cambria !	_											
SB-A	09/22/94	5.0			nd	nd	nd	nđ	nd	nd	nd	a
SB-A	09/22/94	11.7	nd	nđ	1RI							
SB-B	09/22/94	6.0					••	••				
SB-B	09/22/94	11.7		**			••	••	***			
SB-C	09/22/94	5.0		 nd	nđ	nđ	nd	nđ	nđ	nd	nd	
SB-C	09/22/94	11.7	nd	na 	11u		••					
SB-D	09/22/94	5.0				_	**			••		
SB-E	09/22/94	5.0	nd	nd	nd	nd	nd	nd	nđ	nd	nd	
SB-F	09/22/94	5.0	ла 0.12	2.3	0.014	0.051	0.014	0.036	6.2	nd	nd	
SB-G	09/22/94	3.0 5.0	0.034	0.35	nd	nd	nd	nd	0.042	nd	nđ	
SB-G	09/22/94	3.0 11.7	0.034 nd	0.0062	nd	0.059	nd	nd	nd	nd	nd	
SB-G	09/22/94	3.0	nd nd	0.19	nd	nd	nd	nd	nd	nd	nd	
SB-H	09/22/94		3.2	1.6	0.025	0.056	0.039	nd	0.0081	nd	nd	0.067 chloroethane
SB-H	09/22/94 09/22/94	5.0 11.7	2.3	0.66	0.059	nđ	nd	nd	nd	nd	nd	0.010 bromoform
SB-H SB-I	09/22/94	5.0	nd	0.0062	nđ	nđ	nd	nd	nd	nd	nd	0.0066 bromomethan

Table 2. Soil Analytic Data for Volatile Organic Compounds (VOCs)
- Lathrop Investigation, Emeryville, California

Sample ID	Date	Sample Depth	VC	1,1 DCA	1.2 DCE	МС	1,2 DCA	1.1,1 TCA	TCE	PCE	carbon tet	Comments
,,,	Sampled	(A)						(Concentration	n in mg/kg or p	arts per million)	
SB-J	09/22/94	5.0	nd	nd	nď	nd	nd	bn	nd	nd	nd	
SB-N	09/22/94	3.0	nd	nd	nd	nd	nd	nd	nđ	nd	nd	
SB-N	09/22/94	5.0	0.25	0.043	nd	0.20	0.02	0.016	nđ	nd	nd	0.027 chloroform
5B-N	09/22/94	10.5	nd	nd	nd	nd	nd	nđ	nd	nd	nđ	
SB-N	09/22/94	11.7	nd	nđ	nd	nd	nd	nd	nd	nd	nd	
SB-O	09/22/94	5.0	nd	nd	nd ¹	nd	nd	nđ	nd	nd	nd	
SB-O	09/22/94	11.7	nd	nđ	nd	nd	nd	nđ	nd	nd	nd	
SB-P	09/22/94	11.7	nd	nd	nd	nd	nd	nđ	nđ	nd	nd	
1 (9666)	12/28/88	6	nd	nd	nd	nd	nd nd	3.7 76	19 160	nd nd	nd 12	
1 (9665)	Gils Associati 12/28/88	4	nd	nd	nđ	nd	nđ	190	960	nd	23	
2 (9668)	12/28/88	7	nd	4.2	nd	nd	nd	76	160	nd	12	
2 (9667)	12/28/88	12	nd	nd	nd	nd	nd	69	93	nd	11	
3 (9669)	12/28/88	5	nd	nđ	nđ	nd	nd	7.3	88	nđ	nd	
3 (9670)	12/28/88	12	nd	nđ	nd	nd	nd	0.49	2.9	nđ	nđ	
4 (9653)	10/12/88	2.4	nd	nd	nđ	nd	nd	280	3600	nd	27	
5 (9661)	10/12/88	3.4	nd	nd	nd	nd	nd	nd	nd	nd	nđ	
6 (9660)	10/12/88	3	nd	0.0076	0.059	nd	nd	0.077	0.14	0.034	nd	
7 (9658)	10/12/88	3	nd	nd	nđ	nd	nd	nd	nd	nd	nd	
8 (9659)	10/12/88	3.3	nd	nd	nd	nd	nd	nd	nđ	nd	nđ	
9 (9655)	10/12/88	2	nd	nđ	nd	0.0025	nd	nd	0.012	0.012	nd ·	
10 (9656)	10/12/88	6.3	nd	nd	nđ	nd	nd	0.0036	0.0091	nd	nd	,
11 (9654)	10/12/88	4	nd	nd	nđ	nd	nd	nđ	0.0086	nd	nd	-
12 (9657)	10/12/88	2	nd	nd	nđ	nđ	nđ	nd	0.0078	nd	nd	

Table 2. Soil Analytic Data for Volatile Organic Compounds (VOCs)

- Lathrop Investigation, Emeryville, California

Sample ID	Date	Sample Depth	VC	1,1 DCA	1,2 DCE	MC	1.2 DCA	1,1,1 TCA	TCE	PCE	carbon tet	Comments
10	Sampled	(ft)						(Concentration	n in mg/kg or p	arts per million	n)	
13 (9663)	10/27/88	6	<u></u>	٠								
13 (9664)	10/27/88	11										
14 (9662)	10/27/88	11			**	••						
	Foundation Ex	cavation										
Samples	04/14/89	2.25	nd	nd	nd	0.067	nđ	nd	nd	nd	nd	
HA-I	04/14/89	2.23	nd	nd	nd	0.13	nd	nd	nd	nd	nd	
HA-4	04/14/89	2.7	nd	nd	nd ·	nd	nd	nd	nd	nđ	nđ	
HA-5	04/14/89	2.7 3.5	nd	nd	nđ	0.13	nd	nd	nd	nđ	nđ	
HA-6	04/14/89	3.5	nd	nd	nđ	nd	nd	nđ	nđ	nđ	nđ	b
HA-7	04/14/89	3.5	nd	nđ	nd	nd	nd	nd	nđ	nd	nd	c
HA-8	04/14/89	3.5	nd	nd	nd	nd	nd	nđ	nd	nd	nd	đ
HA-9	04/14/89	3.5	nd	nđ	nd	nd	nd	nd	nđ	nđ	nđ	e
HA-10 HA-11	04/14/89	2.5	nd	nđ	nđ	nd	nd	nd	nd	nd	nđ	f
ETS Exca	vation Wall St	amples								_		0,011 freon
ΑI	1989	5	nđ	nd	nd	0.18	nd	nd	0.019	?	?	U,VI I ITEON
A2	1989	5	nd	nd	0.12	nd	nd	nđ	0.10	?	?	
В ,	1989	5	nd	nd	nd	nd	nd	130	150	?	?	
c	1989	5	nd	nđ	nd	nđ	nd	23	42	?	?	
D	1989	5	nd	nd	nd	nđ	nđ	1.0	18	?	?	
El	1989	5	nd	nd	nd	nđ	nd	0.50	0.80	?	?	
E2	1989	5	nd	nd	nd	nđ	nd	nd	nđ	?	?	10toblorobe
F	1989	5	nd	nd	nd	nd	nđ	280	1,300	?	?	18'chlorobenzene

Confirmation Borings After SVE

Table 2. Soil Analytic Data for Volatile Organic Compounds (VOCs)

- Lathrop Investigation, Emeryville, California

Sample ID	Date	Sample Depth	VC	1,1 DCA	1,2 DCE	МС	1,2 DCA	1,1,1 TCA	TCE	PCE	carbon tet	Comments
	Sampled	(fi)						(Concentratio	n in mg/kg or p	arts per millio	n)	
G	12/03/91	3-5	nd	nd	nđ	nd	nd	nd	nd	?	?	
H	12/03/91	3-5	nđ	nd	nd	nd	nd	nd	nd	?	?	g
I	12/03/91	3-5	nd	nđ	nd	nd	nd	0.420	0.580	?	?	h

Abbreviations

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 5020, 5030 or by modified EPA Method 8015

BTEX = BTEX compounds by EPA Method 601/8240 unless 8020/5030 performed also.

--- = Constituent not analyzed

nd = Not detected, or no limit given by previous consultant

VC= Vinyl chloride by EPA Method 8010 or 8240.

1.1 DCA = 1,1 dichloroethane by EPA Method 8010 or 8240.

1,2 DCE = Trans 1,2 dichloroethene by EPA Method 8010 or 8240.

MC= methylene chloride by EPA Method 8010 or 8240.

1,2 DCA = 1,2 dichloroethane by EPA Method 8010 or 8240.

1.1.1 TCA = 1,1,1 trichloroethane by EPA Method 8010 or 8240.

TCE = Trichloroethene by EPA Method 8010 or 8240.

PCE = Tetrachloroethene by EPA Method 8010 or 8240.

? = Data unavailable.

Comments

a = 0.021 chloroform and 0.0072 bromodichloromethane

b = methylene chloride and freon detected at 0.11 and 0.014 ppm, respectively, which were less than the raised reporting limit.

c = methylene chloride was detected at 0.073 ppm which was less than the raised reporting limit.

d = methylene chloride and toluene present at 0.063 ppm and 0.0070 ppm, respectively, which were less than the raised reporting limit.

e = methylene chloride was present at 0.071 ppm which was less than the raised reporting limit.

f = methylene choride was detected at 0.043 ppm which was less than the raised reporting limit.

g = chloroform and cis-1, 2 - dichloroethene were detected at 0.040 ppm and 0.033 ppm, respectively.

h = 0.017 ppm and cis-1,2 - dichloroethene detected.

Table 3. Soil Analytic Data for Polynucleararomatics (PNAs)
- Lathrop Investigation, Emeryville, California

Sample ID	Date Sampled	Sample Depth (ft)	Acenap h-thene	Acenaph- thylene	Anthra- cene	Benzo- (a)an- thracene	Benzo- (b)fluor- anthene	Benzo- (k)fluor- anthene	Benzo- (a) pyrene	Benzo- (g.h.i) perylene	Chrysene	Fluor- anthene	Flourene	Indeno- (1,2,3-cd) pyrene	2-Methyl- naphtha- lene	Naphtha- lene	Phenan- threne	Pyrene
									(Conce	ntration in	ng/kg or par	ts per millio	π)			<u> </u>		
LATHR	OP (5813-5	815 Shelln	nound)															
Cambri	a, October	1994							_			1	ف.	nd	nd	nd	nd	nd
SB-G	09/22/94	5.5	nd	nd	nd	nd	nđ	nd	nđ	nd	nd	nd	nd					
SB-N	09/22/94	10.5	380	2,100	960	1,100	nd	nd	1,100	880	870	500	880	650	740	5,900	3,800	2,800
Cambri	a, Decembe	r 1994																
SB-T	12/07/94	5.5	720	nd	250	190	140	120	210	130	290	890	250	110*	170	•	1,600	i
SB-X2	12/08/94	5.5	nd	nd	nd	nd	nd	nd	bn	nd	nd	nd	nd	nd	nd	nd	nd	nd
	•	5.5	nd	nđ	nd	nđ	nd	nd	nd	nd	nd	nd	nd	nd	pa	nd	nd	nd
C-2	12/09/94				640	540	390	480	810	700	760	2,400	580	500	540	5,700	3,500	2,600
C-3	12/07/94	5.5	nd	1,500		•		nd		nd	nd	nd	nd	nd	nd	nd	nd	nđ
C-3	12/07/94	14.0	nd	nd	nd	nd	nd					3,600		0,880		4,400	5,300	4,100
C-3	12/07/94	15.0	640	1,700	980	920	700	820	1,300	1,200	1,300	3,000	0,050	0,800	0,550	4,100	3,300	.,

Abbreviations

nd = Not detected, or no limit given by previous consultant.

* = Lab estimated value.

Table 4. Soil Analytic Data for Metals

- Lathrop Investigation, Emeryville, California

Sample	Date	Sample	Arsenic	Barium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Tin	Vanadium	Zinc
ID	Sampled	Depth (ft)					(Concentration i	n mg/kg or part	s per million)	· · · · · · · · · · · · · · · · · · ·			
LATHROI	? (5813-5815	Shellmound	1)										
Cambria,	December 19	94											
SB-T	12/07/94	5.5	1.1	170	44	9.0	47	94	0.9	51	18	31	590
C-3	12/07/94	5.5	5.3	550	17	4.6	1,700	400	nd	41	nd	20	370
DTSC TTLC			500	1,000	500	8,000	2,500	1,000	20	2,000	ne	2,400	5,000
DTSC = D		oxic Substa		tant									

Table 1. Soil Analytic Data for Petroleum Hydrocarbons and Volatile Organic Compounds (VOC's) - Lathrop Investigation, 5813 - 15 Shellmound Street, Emeryville, California

Sample ID	Depth (ft)	Date	TPHcr	TPHmo	TPHg	TPHd (Concentration	Benzene s in mg/kg)	Toluene	Ethylbenzene	Xylenes	MTBE	BM*	Freon
C-4-5	5	2/25/97	3,800	<1,000	<1.0	<100	<0.0025	<0.0025	<0.0025	<0 0025	<0.010	0.0062	0.0053
SB-88-5	5	2/25/97	4,200	<1,000	1.0	<100	0.0035	<0.0025	0.0058	0.0076	⊲0.010	0.004	<0.0020
SB-AA-5	5	2/25/97	34,000	<12,000	1,700	<1,200	5.6	2.5	17	14	<1.0	NA	NA

Abbreviations:

ft = feet

a = Bromomethane was detected in method blank at 0.005 mg/kg

TPHcr = Total petroleum hydrocarbons as creosote by modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

Benzene , Toluene, Ethylbenzene, and Xylenes by EPA Method 8020

MTBE = Methyl Tertiary-Butyl Ether by EPA Method 8020

BM = Bromomethane by EPA Method 8010

Freon = Freon 113 by EPA Method 8010

Only the VOC's that were detected are reported here. For the complete suite of analytes, see lab report

Table 2. Soil Analytic Data for Semi-Volatile Organic Compounds (including PNAs) - 5813-15 Shellmound Street, Emeryville, California

Sample ID	Date Sampled	Depth (ft)	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo (a) anthracene	Benzo (b&k) fluor- anthena		Benzo (g,h,l) perylene centrations in	Chrysene mg/kg)	Dibenzo (a,h) anthracene	Fluor- anthene	Fluorene	indeo- (1,2,3-cd) pyrene	2-Methyt- naphtha- lene	Naphtha- lene	Pnenan- threne	Pyrene
C-4-5	02/25/97	5	3.4	26	18	53	120	90	84	65	17	170	5.1	63	<3.3	19	87	210
SB-BB-5	02/25/97	5	<3.3	29	27	60	140	100	97	70	18	170	11	71	5.1	68	130	230

Notes:
Only constituents that were detected are only reported here. For the complete suite of analytes, see lab report.
All analytes detected by EPA Method 8270

Attachment C
Ground Water Analytical Data

Table 1. Ground Water Elevation and Analytic Data for Petroleum Hydrocarbons - Lathrop Investigation, 5813-15 Shellmound St., Emeryville, California

Sample ID	Date Sampled	TOC Elevation	GW Depth	GW Elevation	ТРНст	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE
		(ft)	(ft)	(ft)				—— (Cor	centrations in	ug/L) —			
Grab Ground V	Vater Analytic	Data											
SB-BB	02/25/97			 -	35,000	<500	<5,000	790	4.0	2.1	9.3	7.5	<2.0
Quarterly Mon	itoring												
C-1	12/16/94	100.00	3.82	96.18	<500	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA
	03/19/97		4.21	95.79	<500	590°	750	<50	< 0.50	<0.50	<0.50	0.6	<2.0
	05/30/97		5.45	94.55	<1,000	1,100 ^a	2,600	<50	< 0.50	<0.50	< 0.50	<0.50	<2.0
	07/03/97		5.67	94.33	<2,000	2,600°	3,900	<50	< 0.50	<0.50	< 0.50	<0.50	<2.0
	08/07/97		5.86	94.14	<2,000	3,700 ^a	8,200	<50	<0.50	<0.50	<0.50	1.5	<2.0
C-2	12/16/94	99.22	3.33	95.89	<500	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA
	03/19/97		3.61	95.61	<500	590ª	790	<50	< 0.50	<0.50	< 0.50	<0.50	<2.0
	05/30/97		5.94	93.28	<500	650 ^a	1,200	<50	1.1	<0.50	0.6	<0.50	<2.0
	07/03/97		4.91	94.31	<500	1,000°	1,200	<50	1.1	<0.50	1.4	<0.50	<2.0
	08/07/97		5.12	94.10	<500	810 ^a	1,200	<50	0.71	<0.50	2.0	<0.50	<2.0
C-3	12/16/94	99.24	3.82	95.42	5,100	NA	NA	17,000	1,900	120	5.1	250	NA
	03/19/97		5.82	93.42	10,000	250	<2,500	9,600	1,300	120	170	150	<20
	05/30/97		5.19	94.05	21,000	<500	<5,000	16,000	1,700	230	320	230	<100
	07/03/97		6.31	92.93	25,000	<500	<5,000	21,000	1,400	160	300	200	<200
	08/07/97		6.44	92.80	24,000	<1,000	<5,000	15,000	1,200	110	260	170	<2.0
C-4	03/19/97	98.64	6.46	92.18	25,000	<500	<5,000	5,400	540	19	62	87	<20
	05/30/97		6.52	92.12	25,000	<500	<5,000	8,800	470	22	170	97	<40
	07/03/97		6.52	92.12	16,000	<500	<5,000	6,800	470	12	140	74	<40
	08/07/97		6.54	92.10	18,000	<1,000	<5,000	4,900	360	13	120	67	<20

 \tilde{v}_{ℓ}^{\star}

Table 1. Ground Water Elevation and Analytic	: Data for Petroleum H	l vdrocarbons - Lathro	p Investigation, 5	5813-15 Shellmound St.	. Emervville. California
--	------------------------	-------------------------------	--------------------	------------------------	--------------------------

Sample ID	Date	TOC	GW	GW	ТРНст	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE
	Sampled	Elevation	Depth	Elevation							benzene		
		(ft)	(ft)	(ft)	←			— (Cor	centrations in	ug/L)			>

Abbreviations and Notes:

ug/L = Micrograms per liter

ft = feet

NA = Not Analyzed

TOC = Top of Casing

a = The result appears to be a heavier hydrocarbon than diesel

TPHcr = Total petroleum hydrocarbons as creosote by modified EPA Method 8015

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

Benzene, Ethylbenzene, Toluene, and Xylenes by EPA Method 8020

MTBE = Methyl Tertiary-Butyl Ether by EPA Method 8020

Table 2. Ground Water Elevation and Analytic Data for Semi-Volatile Organic Compounds (including PNAs) - Lathrop Investigation, 5813-15 Shellmound Street, Emeryville, California

Sample ID	Date	TOC	GW	GW	Acenaphth-	Acenaphth-	Anthra-	Benzo-	Benzo-	Benzo-	Chrysene	Fluor-	Fluorene	2-Methyl-	Naphtha-	Phenan-	Pyrene	Additional
	Sampled	Elevation	Depth	Elevation	ene	ylene	cene	(a)anthra-	(a)pyrene	(g,h,i)		anthene		naphtha-	lene	threne		Compounds
		(ft)	(ft)	(ft)				cene		perylene				lene				Detected
			_		←					(Concer	trations in	ug/L) -					<u>→</u>	
									-									
Quarterly S	ampling																	
C-1	12/16/94	100.00	3.82	96.18	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
	03/19/97		4.21	95.79	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
	05/30/97		5.45	94.55	<11	<11	<11	<11	<11	<11	<11	<11	<11	<11	<11	<11	<11	
	07/03/97		5.67	94.33	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	
	08/07/97		5.86	94.14	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	
C-2	12/16/94	99.22	3.33	95.89	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
	03/19/97		3.61	95.61	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	
	05/30/97		5.94	93.28	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	<9.3	
	07/30/97		4.91	94.31	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
	08/07/97		5.12	94.10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
C-3	12/16/94	99.24	3.82	95.42	150	780	37	7.2f	8.5f	7.3 ^f	20	50	110	490	11,000	260	61	a
	03/19/97		5.82	93.42	570	310	140	49	95	86	130	210	170	360	12,000	560	240	b
	05/30/97		5.19	94.05	800	550	410	<100	350	230	430	850	330	680	11,000	1,200	1.000	c
	07/03/97		6.31	92.93	2,400	520	1,200	600	850	850	1,200	2,900	670	760	16,000	4,700	3,100	g
	08/07/97		6.44	92.80	930	300	270	180	230	220	280	550	240	460	12,000	1,200	810	j
C-4	03/19/97	98.64	6.46	92.18	2,400	880	1,600	1,300	1,800	1,700	2,000	5,400	1,100	500	13,000	7,300	6,400	đ
	05/30/97		6.52	92.12	760	210	400	<100	440	290	460	1,100	300	230	5,000	1,400	1,300	е
	07/03/97		6.52	92.12	680	96	140	130	150	170	160	790	140	95	5,400	1,100	850	h
	08/07/97		6.54	92.10	480	120	130	110	140	150	150	390	150	160	5,800	560	450	k

Table 2. Ground Water Elevation and Analytic Data for Semi-Volatile Organic Compounds (including PNAs) - Lathrop Investigation, 5813-15 Shellmound Street, Emeryville, California

Sample ID	Date	TOC	GW	GW	Acenaphth-	- Acenaphth-	Anthra-	Benzo-	Benzo-	Benzo-	Chrysene	Fluor-	Fluorene	2-Methyl-	Naphtha-	Phenan-	Pyrene	Additional
	Sampled	Elevation	Depth	Elevation	ene	ylene	cene	(a)anthra-	(a)pyrene	(g,h,i)		anthene		naphtha-	lene	threne		Compounds
		(ft)	(ft)	(ft)				cene		perylene				lene				Detected
					<u> </u>					(Concer	trations in	ug/L) -					\rightarrow	

Abbreviations and Notes:

ug/L = Micrograms per liter

- a = Dibenzofuran at 15 ug/L by EPA Method 8270
- b = Benzo (b&k) fluoranthene detected at 110 ug/L by EPA Method 8270
- = Dibenzofuran dectected at 25 ug/L by EPA Method 8270
- = Indeno (1,2,3 cd) pyrene dectected at 61 ug/L by EPA Method 8270
- c = Benzo (b&k) fluoranthene detected at 450 ug/L by EPA Method 8270
- = Ideno (1,2,3-cd) pyrene detected at 180 ug/L by EPA Method 8270
- d = Benzo (b&k) fluoranthene detected at 2,300 ug/L by EPA Method 8270
- = Dibenzo (a,h) anthracene detected at 260 ug/L by EPA Method 8270
- = Dibenzofuran dectected at 110 ug/L by EPA Method 8270
- = Indeno (1,2,3 cd) pyrene detected at 1,200 ug/L by EPA Method 8270
- e = Benzo (b&k) fluoranthene detected at 290 ug/L by EPA Method 8270
- = Indeno (1,2,3-cd) pyrene detected at 230 ug/L by EPA Method 8270

f = Lab estimated value

- g = Benzo (b&k) fluoranthene detected at 1,100 ug/L by EPA Method 8270
- = Dibenzo (a,h) anthracene detected at 110 ug/L by EPA Method 8270
- = Dibenzofuran detected at 73 ug/L by EPA Method 8270
- = Indeno (1,2,3-cd) pyrene detected at 610 ug/L by EPA Method 8270
- h = Benzo (b&k) fluoranthene detected at 230 ug/L by EPA Method 8270
- = Dibenzo (a,h) anthracene detected at 21 ug/L by EPA Method 8270
- = Indeno (1,2,3-cd) pyrene detected at 120 ug/L by EPA Method 8270
- j = Benzo (b&k) fluoranthene detected at 280 ug/L by EPA Method 8270
- = Indeno (1,2,3-cd) pyrene detected at 160 ug/L by EPA Method 8270
- k = Benzo (b&k) fluoranthene detected at 180 ug/L by EPA Method 8270
 - = Indeno (1,2,3-cd) pyrene detected at 110 ug/L by EPA Method 8270

Table 5. Ground Water Elevation and Analytic Data for Hydrocarbons and Volatile Organic Compounds (VOCs)

- Lathrop Investigation, Emeryville, California

Well ID	Date	Well Elev.	GW Depth	GW Elev.	ТРНсг	ТРН	В	T	E	х	VC	1,1 DCE	1,1 DCA	1,2 DCE	1,2 DCA	1,1,1 TCA	TCE	CA	Notes
		(ft)	ft)	(ft) 						(Concent	ration in ug	/l or parts p	er billion)		<u>-</u>			· · · · · · · · · · · · · · · · · · ·	
CROLEY	AND HERI	RING INV	ESTMENT	r (\$800 C h	ristie Street))													
MW-I	4/25/94			(*******			nđ	nd	nd	nđ	nđ	nđ	9	9	nd	nd	nd	nđ	
MW-2	4/25/89	7.42				**	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
	2/20/90		4.26	3.16		nđ	nd	0.6	nd	nd	nd	nd	nd	nd	nd	nđ	nđ	nđ	
MW-3	4/25/89	6.42			****		nd	nd	nd	nd	nđ	nđ	nđ	nd	nđ	nd	nd	nd	
	2/20/90		5.42	1.00		nđ	nđ	nd	nd	nd	nd	nd	nd	nd	nd	ba	nd	nd	
MW-4	7/13/94					nđ	800	280	270	300	nd	nd	nd	nd	nd	nđ	nd	nd	
	10/8/93				••	2,200	290	220	120	200	nd	nd	nd	nd	55	5	nđ	nd	
	1/19/94					350	210	25	35	37	nd	nđ	nđ	nd	nd	nd	nđ	nđ	
EW-I	5/8/89	8.62					nd	190	nd	170	nd	78	nd	nd	nd	nđ	640	nd	
	11/6/89		6.15	2.47	***	740	180	39	0.8	67	29	2.3	34	350	4.8	26	740	nd	
	2/20/90		5.93	2.69	**	12,000	1,300	3,600	7.1	47	nd	14	460	2,500	34	550	1,100	29	14 MC
	5/31/90		5.86	2.76		24,000	56	6,100	17	140	2,600	69	1,900	110	33	1,200	830	94	40 MC
	9/7/90		6.30	2.32	2.0	25,000	1,100	800	nd	42	1,700	36	1,300	2,400	53	510	490	150	22 MC
	12/4/90		7.39	2.23		7,400	180	3,200	nd	nd	230	nd	460	1,500	nd	72	1,500	nd	
	4/6/91		6.02	2.60		51,000	3,000	12,000	nd a	nd	900	nd t	1,800	3,700	nd t	2,900	1,300	nd 170	
	7/3/91		6.20	2.42		23,000	650	8,700	nd nd	nd nd	1,990 170	nd a	2,000 630	2,000 620	nđ 120	200 470	130 730	170 54	
	, 10/12/91		6.50	2.12		39,000	nd nd	1,300 580	ne nd	na nd	480	nd nđ	420	1,520	250	470 8 9	1,700	nd	
	1/8/92		6.20	2.42		nd 12.000	nd 4,000	nd	nd	nd	46V nd	nd nd	1,300	1,320 nd	2,700	nd	2,800	nd	
	4/8/92 7/15/92		 	2.52	-	12,000 100,00	4,000 nd	4,700	nd	nd	150	nd	600	600	2,700 110	420	680	nd	
	10/19/92		6.10 6.10	2.52		26,000	nd nd	12,500	nd	nd	nd	4,800	nd	nđ	nd	nd	270	nđ	
	1/11/93		5.50	3.12		20,000	nd	7,500	nd	75	nd	nd	nd	nd	nd nd	nd	23	nd	42 PCE
	3/29/93		5.95	2.67		15,000	nd	12,000	nd	nd	nd	500	nd	nd	nd	nd	2,000	nd	12100
	7/7/93		6.20	2.42		40,000	nd	3,600	nd	nd	nđ	nd	1,700	nd	nd	nd	nd nd	nd	
	10/8/93		6.25	2.37		12,000	nđ	11,000	nd	81	nd	nd	1,600	nd	nd	210	nd	nd	

Table 5. Ground Water Elevation and Analytic Data for Hydrocarbons and Volatile Organic Compounds (VOCs)

- Lathrop Investigation, Emeryville, California

Well ID	Date	Well Elev.	GW Depth	GW Elev.	TPHcr	TPHg	В	T	E	x	VC	1,1 DCE	I,I DCA	1,2 DCE	1,2 DCA	1,1,1 TCA	TCE	CA	Notes
		(ft)	ft)	(ft)						(Concent	ration in ug	/I or parts po	er billion)						
	1/19/94		6.30	2.32		5,000	22	4,300	12	70	nd	nd	nđ	nd	nd	nd	nd	nd	
C-1	12/16/94	100.0	3.82	96.18	nd	nd	nđ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
C-1 C-2	12/16/94	99.22	3.33	95.89	nd	nd	nd	nđ	nd	nđ	nđ	nđ	nd	nđ	nd	nd	nd	nd	
C-3	12/16/94	99.24	3.82	95.42	(5.1	17	1,900	120	5.1	250	nd	nđ	nđ	nd	nd	nd	nd	nd	
	OP PROPERT		4 \$																
Sewer W 1,500	/ater Enterin 10/26/89	g Excava	tion			2,800	32	240	61	400			**						
Cambria	a Boring Gra	b Sample	s																
SB-B	9/22/94					49	nd	nd	nd	nd						1			1700 -
SB-C	9/22/94				^~	31	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd 4	nđ đ	nd t	1.7 CF, a 0 8 CF
SB-D	9/22/94				**	19	nd	2.1	nd	nd	nd	nd	nd •	nd	nd 4	nd 	nd d	nd	0.7 CF
SB-E	9/22/94					38	0.78	1.2	nd	1.0	1.8	nd to	nd	nd	nd	nd	nd 640	nd nd	1.9 TCA,
SB-G	9/22/94					12,000	220	6,500	78	350	190	4.0	440	22	3.6	15	82		0.6 TCA, 6
SB-H	9/22/94				••	40,000	230	5,200	110	300	430	1.0	1,300	24	9.7	35		nd	d d
SB-K	9/22/94					13,000	1,000	nd	140	nd						1	1		u
SB-N	9/22/94					38,000	8,100	1,500	550	570	nd	nd	nđ	nd	nd 1	nd 	nd	nd	
SB-O	9/22/94					1,500	4.8	1.0	7.3	10	nd	nd	nd	nd t	nd	nd 	nd t	nd t	,i
SB-P	9/22/94				**	21,000	1,500	150	260	nd	nd	nd	54	nd	nd	nd	nd	nd	d
DTSC M	1CLs or State	Action			**	NE	1	100	680	1,750									

Table 5. Ground Water Elevation and Analytic Data for Hydrocarbons and Volatile Organic Compounds (VOCs)

- Lathrop Investigation, Emeryville, California

Well ID	Date	Well Elev.	GW Depth	GW Elev.	TPHcr	TPHg	В	T	E	х	VC	I,I DCE	1,1 DCA	1,2 DCE	1,2 DCA	1,1,1 TCA	TCE	CA	Notes
	<u> </u>	(ft)	ft)	(ft)						(Concen	tration in u	g/I or parts p	er billion)						

Notes

Abbreviations

Well Elevation = Top of casing elevation with respect to onsite benchmark

GW = Ground water

LPH = Liquid-phase hydrocarbons; calculated ground water elevation corrected for LPH by the relation;

Ground Water Elevation = Well Elevation - Depth to Water + 0.8 LPH

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Xylenes by EPA Method 8020

nd = Not detected, detection limit not reported by consultant

DTSC MCLs = Department of ToxicSubstances Control maximum contaminant level for drinking water

NE = Not established

VC = Vinyl chloride

1.1 DCE = 1.1 dichloroethene

1.1 DCA = 1.1 dichloroethane

1,2 DCE = Trans 1,2 dichloroethene

1,1,1 TCA = 1,1,1 trichloroethane

TCA = 1,1,2 trichloroethane

TCE = Trichloroethene

CA = Chloroethane

CF = Chloroform

PCE = Tetrachloroethene

-- = Constiuent not analyzed.

Notes

a = 0.7 ppm BDCA

b = 2, 400 cis-1,2 - dichloroethane, 0.5 tetrachlorethene, 1.9 1,1,2 - trichlorethane.

c = 830 ppm cis- 1,2 - dichlorethene.

d = the positive result has an atypical pattern for gasoline analysis.

* = BTEX do not match gasoline pattern.

Table 7. Ground Water Analytic Data for Metals

- Lathrop Investigation, Emeryville, California

Well	Date	Cadmium	Chromium	Lead	Nickel	Tin	Vanadium	Zinc
ID				(Conc	entration in mg/kg or	parts per million)	
LATIE	OP (5813-5815 Sh	ellmound)						
Cambr Decemi	ia, ber 1994							
C-1	12/16/94	nd	nd	nd	nđ	nd	nđ	nd
C-2	12/16/94	na	na	na	na	na	na	na
C-3	12/16/94	nd	nd	nd	0.12	nd	nd	bn

Abbreviations
nd = Not detected, or no limit given by previous consultant

na = Not analyzed

CAMBRIA

Attachment C-1
Waste Water Disposal Forms

TF NUMBER:

4	ION-HAZARDOUS WA	ATER TRANSPORT FORM	A	
GENERATOR IN	FORMATION			
NAME:	F.P. Lathrop	Properties		
ADDRESS:	2000 Powell	St., St. 1600	<u></u>	
CITY.STATE.ZIP:		A 94608 PHONE	#: (510)54	7-7166
DESCRIPTION OF WATER	L: MONITORING WELL, PURGE / DECON WATER			
	NOT MEET THE CRITERIA OF HAZARDOUS WA STATE LAW, HAS SEEN PROFERLY DESCRIBED TRANSPORTATION ACCORDING TO APPLICABLE		tion for	
GENERATOR/AUTH	(FOL F.P. LATHROP) ORIZED AGENT	SIGNATURE & DATE FOR F.T	P. Lathrop) /	0/1/97
SITE INFORMA	TION			
Site Operator F. P. LATA	lop	Address PARKing Lot/Sterco In 5800 Christic Ave. Emeryville, CA	stallation	Gals
		TOTAL	GALLONS:	110
	INFORMATION		,	
NAME: ADDRESS:	IWM, Inc. 950 Ames Avenue			
CITY.STATE,ZIP:	Milpitas, CA 95035	PHONE	#: <u>(408) 942-8955</u>	
TRUCK ID #:	(Typed or	printed full name & signature)	!	(Date)
RECEIVING FA	CILITY			
NAME: ADDRESS: CITY,STATE,ZIP:	Seaport Environmental 675 Seaport Blvd. Port of Redwood City, CA 9406	53 PHONE	#: 415-364-8154	
APPROVAL #:	(Typed or	printed full name & signature)		(Date)

CAMBRIA

Attachment D
Area Well Survey

21 November 1997

CAMBRIA ENVIRONMENTAL TECHNOLOGY 1144 65th St., Suite B Oakland, CA 94608

Attn: Ms.

Ms. Ann Crum

Re:

Site Name:

Lathrop Property

Site Address:

5813-5815 Shellmound St, Emeryville, CA

Project #:

Dear Ms. Crum:

Banks Information Solutions, Inc. (Banks) in conjunction with Vista Information Solutions, Inc. has completed your request for a water well search of all known groundwater wells located within a one-half (1/2) mile radius of the above referenced site. Banks requested access to all available records, database information, and quadrangle maps maintained by the California Department of Water Resources, Central District, located in Sacramento, CA. The department approved our request and provided a water well drillers report for wells that fall within your area of review. Banks has located any wells that fall within your area on the enclosed U.S.G.S. 7.5' topographic map. Upon review of the information provided, Banks located the following wells within your area of review.

Map#	State I.D.	0			
	1644	Owner	Туре	Total Depth	Date
<u> </u>	15/4w - 15L	Griffin and Skelly	Unknown	213'	00/00/00
					00/00/00

Following is an excerpt from the California Water Code, Section 13752:

The following opinion was released on March 30, 1970 from the office of Chief Counsel Porter A. Towner, Department of Water Resources: ".... Section 13752 (California Water Code) provides that the information in the logs and reports 'shall not be made available for inspection by the public but shall be made available to governmental agencies for use in making studies: provided, that any report shall be made available to any person who obtains a written authorization from the owner well." When a governmental agency hires you as a consultant, that agency can release the information in the log to you for use in a study, but you would be subject to the same limitations as the public agency. Publication of specific items of information from the well reports, including the well logs, without the consent of the owners, is prohibited. You may publish discussions of ground water conditions in an area described by section, township, and range, even though the conditions were established in whole or in part from studies of well reports. Reference to a specific well must be omitted if the information is derived from the report rather than an independent source. The best way for making the information available without restriction and to use it in a public report is to obtain written releases from the owners of the wells."

Banks Information Solutions, Inc. has performed a thorough and diligent search of all groundwater well information provided and recorded with the California Department of Water Resources, Central District. All mapped locations are based on information obtained from the DWR. Although Banks performs quality assurance and quality control on all research projects, we recognize that any inaccuracies of the records and mapped well locations could possibly be traced to the appropriate regulatory authority or driller. It may be possible that some water well schedules may unaccountability of privately drilled wells. It is uncertain if the above listing provides 100% of the existing wells within the area of review. Therefore, Banks Information Solutions, Inc. cannot guarantee the accuracy of the data or well location(s) of those maps and records maintained by the California Department of Water Resources.

If you should require any further research or have any questions regarding this research request, please call me at 512/478-0059.

+==

Beth Rogers

BANKS INFORMATION SOLUTIONS, INC.

P.O. Box 12851 Capitol Station
Austin, Texas 78711 512/478-0059

WATER WELL SEARCH

MAP REFERENCE NUMBER 1

٦Ţĸar	DISIKICI		:227-7600	NOV 21"	PAGE			
, ,	3kalah		DEPARTM	ENT OF WATER RESOURCE	S swa	10	4	
	90URTY			• • • •	armer (a)	1	S / ab.	4-15-1
1.4	,				<u>.</u>		1	
	HEAR.			WELL LOG		_		
					•	,		
				• .	•			
* ,	LOGATION							
					•			i
	Griffi	n and Ska	117	Speryvil'	la e	•		
•	OWNER.			ADDRESS				
	* * * * * * * * * * * * * * * * * * *	eregek		110 Sutter, 9.	. F. Cali	lforni	a, 1'	738 Larkin
	DRILLID DY	-		ADDRESS	<u> </u>			
	National Statements			•				
	BRILLING METHOD			grayel PackedSA	te comple	759	· · · · · · · · · · · · · · · · · · ·	
	CONTENTO MOSTIGUE	7.09						
FIRED COPIES USE ALTERNATE LINES	BIZZ OF GASING DA			STRU	CX WATER	AT		
FILL D COPIES USE ALTERNATE LINES	SITE OF SHALLOW NW	-10						
FIRE D COPIES USE ALTERIATE LINES	PERFORATIONS			* 1 · · ·	_5122		Ne	
FIRE D. COPPERS USE ALTERNATE LINES	CSMFWART ON THE			4.				
FIRE D. COPPERS USE ALTERNATE LINES	WATER LEVEL BEFO	論者 効果治療性のよう す	NG	AFTER				
THE SCOWER USE ALTERNATIC LINES	MANUAL PROPERTY.	est rungranasi			i			74
	THAT DATA: BISCHA			DRAWDOWN FT		HOURS R	UN.	
	THE UNIAL SINGHA	14 Apr 20 1 L 1 10 10 10		•				
	OTHER DATA AVAIL	AMT 01. MPATEM (· WIN. DECORD		NALYGIB		<u></u>	
MANUEL INC. ALTERNATION INC.	GIVER BUILD MANIM				-		_ B _ Y .	
FINE IS CONTRE USE ALTERNATE LINES								og .
THE STATE HAS ALTERNATED DATE.			BATUM	SQUACE OF INFOR	MATION	riller	9 40	
THE STATE HAS ALTERNATED DATE.	SURFACE SELEV		DATUM	SQUACE OF INFOR	HATION	.71791	9 20	
•	SURFACE SETV	P.XV. OF	DATUM		MAYION	,		
e Ek	DEPTH	ELEV. OF SUTTOM THE STRATUM	DAYUM	SQUAGE OF INFOR	MAYION	THICK.		
		ELZY, OF BOTTOM OF STRATUM	nu	MATERIAL	ANION:	,		
	экги	ELZV. OF BOTTCM OF STRATUM	nu	MATERIAL PROPERTY OF THE PROPE	MATION.	THICK-	igi.ə	
Ô	экги 9 — Ц	ELEV. OF EDITOR OF STRATUM	adobe **	MATERIAL CONTROL OF THE STATE O	AXION	THICK-	igi.ə	
FINE D. COWERS 1968 ALTERNATIC LINES.	3 1 8 12	ELEV. OF EDITION OF STRATUM	Fill adobe yellow olay	MATERIAL STATES OF THE STATES	ANION CONTRACTOR OF THE CONTRACTOR OF T	THICK-	igi.ə	
THE ROOMES USE ALTERNATIC DIES.	3 12 14	ELZV. GF BOTTCM OF STRATUM	sill adobe yellow olay gray elay	MATERIAL STATES OF THE STATES	ANION CONTRACTOR OF THE CONTRACTOR OF T	THICK-	igi.ə	
THE STATE HAS ALTERNATED DATE.	3 12 11 17	ELZY, OF EDITICM OF STRATUM	Fill adobe yellow olay gray elay yellow tlay	MATERIAL CONTROL OF THE STATE O	ANION CONTRACTOR OF THE CONTRACTOR OF T	THICK XESS	igi.ə	
	8 12 14 15 25	ELEV. OF EDITION OF STRATUM	sill adobe yellow olay gray elay yellow elay etone olay	MATERIAL CONTRACTOR OF THE STATE OF THE STAT	AS	THICK XESS	igi.ə	
	3 14 8 12 14 15 25 36	ELEV. OF EDITION OF STRATUM	sill adobe yellow olay gray elay yellow elay etone clay sandy clay	MATERIAL STATES OF THE STATES	AS	THICK XESS	igi.ə	
THE STATE HAS ALTERNATED DATE.	3 14 8 12 14 17 25 36 15	ELIV. OF BOTTOM OF STRATUM	sill adobe yellow olay gray elay yellow elay etone clay sandy clay	MATERIAL	AS	THICK XESS	igi.ə	
FINE D. COWERS USE ALTERNATE LINES.	3 14 8 12 14 17 25 36 15	ELZY. OF BOTTOM OF STRATUM	sill adobe yellow olay gray elay yellow elay etone clay sandy clay gray elay yellow glay	MATERIAL	AS	THICK XESS	igi.ə	
FINE D. COWERS USE ALTERNATE LINES.	3 14 8 12 14 17 25 36 15	ELZY. OF BOTTOM OF STHATUM	Fill adobe yellow olay gray elay yellow elay stone clay sandy clay gray elay yellow elay yellow elay	MATERIAL CONTROL OF THE STATE O	AS	THICK XESS	igi.ə	
	3 14 8 12 14 17 25 36 15	ELEV. OF EDITOR OF STRATUM	Fill adobe yellow olay gray elay yellow elay stone clay sandy clay gray elay yellow elay yellow elay	MATERIAL CONTROL OF THE SECOND CONTROL OF TH	AS	THICK XESS	igi ə	
	3 14 8 12 14 17 25 36 15	ELEV. OF EDITOR OF STRATUM	sill adobe yellow olay gray olay yellow elay stone clay sandy clay gray elay yellow elay gray olay coment elay	MATERIAL CONTROL OF THE STATE O	AS	THICK XESS	igi ə	
ALTERACE	36 45 49 57 75 80	ELZV. OF BOTTOM OF STRATUM	sill adobe yellow clay gray clay yellow clay sandy clay gray clay yellow clay gray clay coment clay coment clay	SATERIAL STATES OF THE SAME AND SAME AN	AS	THICK XESS	igi ə	
ALTERACE	36 45 49 57 75 88 100	ELZV. OF BOTTOM OF STRATUM	sill adobe yellow olay gray olay yellow elay stone clay sandy clay gray elay yellow clay coment clay coment clay gray clay yellow clay	SATERIAL STATES OF THE SAME STAT	AS	THICK XESS	igi ə	
I IISE ALTERNATE	8 12 14 14 17 25 36 45 49 53 57 75 88 100 108	ELZV. OF BOTTOM OF STRATUM	sill adobe yellow olay gray olay yellow elay stone clay sandy clay gray elay yellow clay coment clay coment clay gray clay yellow clay	SATERIAL STATES OF THE SAME STAT	AS	THICK XESS	igi ə	
I IISE ALTERNATE	8 12 14 14 17 25 36 45 49 53 57 75 88 100 108	ELZY, OF EDITICM OF STRATUM	sill adobe yellow olay gray elay yellow slay stone clay sandy clay gray elay yellow glay coment clay gray clay coment clay reliow clay yellow clay had yellow	SATERIAL STATES OF THE STATES	AS	THICK XESS	igi ə	
I IISE ALTERNATE	8 12 14 14 17 25 36 45 49 53 57 75 88 100 108	ELEV. OF EDITION OF STRATUM	sill adobe yellow olay gray elay yellow elay sandy clay sandy clay gray elay yellow clay cament clay gray clay yellow clay cament clay yellow clay yellow clay cament	SATERIAL STATES OF THE STATES	MAYION.	THICK XESS	igi ə	
cours ust Atternati	30 12 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	ELEV. OF EDITION OF STRATUM	sill adobe yellow olay gray elay yellow elay gtone clay gray elay yellow elay gray elay yellow elay gray elay coment elay yellow elay yellow elay gray elay yellow elay coment had yellow dirty gray yelay	STATEMAL STATEMAN AND ADDRESS OF SAME	MAYION.	THICK XESS	igi ə	
cours ust Atternati	30 12 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	ELEV. OF EDITION OF STRATUM	sill adobe yellow olay gray elay yellow elay etone clay sandy clay gray elay rellow clay coment clay gray clay rellow clay coment clay coment clay coment dirty grave gray clay coment c	STATEMAL STATEMAN AND ADDRESS OF SAME	MAYION.	THICK XESS	igi ə	
cours ust Atternati	36 42 12 14 17 25 36 45 49 53 57 75 88 100 108 123 127 139 149	ELEV. OF EDITION OF STRATUM	sink adobe yellow olay gray elay yellow elay stone clay sandy clay rellow clay rellow clay commat coar gray clay rellow clay commat clay commat clay commat clay commat clay commat clay commat aray clay commat andy clay	se sand	MAYION.	THICK XESS	igi ə	
en B cours 1162 Altichalt	8 12 14 15 15 36 45 49 53 57 75 88 100 108 123 127 139 149 152	ELIV. OF EDITION OF STRATUM	gray elay yellow elay yellow elay yellow elay gray elay gray elay yellow elay gray elay yellow elay coment elay gray elay yellow elay gray elay yellow elay gray elay coment elay coment elay coment elay	SATERIAL STATES OF THE	MAYION.	THICK XESS	igi ə	
en B cours 1162 Altichalt	30 12 12 13 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	ELEV. OF BOTTOM OF STRATUM	gray elay yellow elay yellow elay yellow elay stone clay sandy clay yellow elay yellow elay yellow elay coment elay gray elay yellow elay yellow elay coment elay gray elay yellow elay coment elay gray elay coment elay sandy elay coment yellow sandy elay coment yelay	SATERIAL STATES OF THE	MAYION.	THICK XESS	igi ə	
en B cours 1162 Altichalt	8 12 14 17 25 36 45 49 53 57 75 88 100 108 123 127 139 149 152 156 166	ELEV. OF STRATUM	adobe yellow clay gray clay yellow clay stone clay sandy clay gray clay yellow clay gray clay coment clay gray clay reliew clay coment clay coment had yellow dirty gray gray clay coarse sand sandy clay sement gray sandy clay yellow clay yellow clay	SEATONIAL STATES OF THE STATES	MAYION.	THICK XESS	igi ə	
en B cours 1162 Altichalt	8 12 14 17 25 36 45 49 53 57 75 88 100 108 123 127 139 149 152 156 166 180	ELEV. OF STRATUM	adobe yellow olay gray clay yellow slay stone clay sandy clay gray slay yellow slay gray clay coment clay gray clay rellow clay coment had yellow dirty grave gray clay coarse sand sandy clay yellow clay yellow clay coarse sand	SEATONIAL CONTROL OF THE SEATON OF THE SEATO	MAYION.	THICK XESS	igi ə	
en B cours 1162 Altichalt	8 12 14 17 25 36 45 49 53 57 75 88 100 108 123 127 139 149 152 156 166 180 194 200	ELEV. OF STRATUM OF STRATUM	adobe yellow olay yellow elay yellow elay setone clay sandy clay yellow clay yellow clay gray clay cement clay yellow clay yellow clay cement clay sement yellow dirty grave gray clay coarse sand sandy clay yellow clay	SEATONIAL CONTROL OF THE SEATON OF THE SEATO	MAYION.	THICK XESS	igi ə	
en B cours 1162 Altichalt	8 8 12 14 17 25 36 49 53 57 75 88 100 108 123 127 139 149 152 156 166 166 180 194 200 230	ELZY. OF STRATUM	adobe yellow olay gray elay yellow elay stone clay sandy clay yellow clay gray clay gray clay coment clay sement clay sement had yellow dirty graw soment gray coment gray soment gray	COLUMN TO THE PROPERTY OF THE	MAYION.	THICK XESS	igi ə	
en B cours 1162 Altichalt	8 12 14 17 25 36 45 49 53 57 75 88 100 108 123 127 139 149 152 156 166 180 194 200	ELZY. OF STRATUM	adobe yellow olay yellow elay yellow elay setone clay sandy clay yellow clay yellow clay gray clay cement clay yellow clay yellow clay cement clay sement yellow dirty grave gray clay coarse sand sandy clay yellow clay	COLUMN TO THE PROPERTY OF THE	MAYION.	THICK XESS	igi ə	

LOG OBTAINED BY.

CAMBRIA

Attachment ETier 1 RBSLs

Site Name: Lathrop Property

Job Identification: 190-122

Software: GSI RBCA Spreadsheet

Site Location: 5813-15 Shellmound Street, Erbate Completed: 10/28/97

ate Completed: 10/28/97 Version: 1.0.1 Completed By: Sam Rangarajan, Cambria Env. Tech. Inc

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined

Exposure	<u>-</u>		Residential			al/Industrial	Surface				
arameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Constrctn	
Tc	Averaging time for carcinogens (yr)	70					Α	Contaminated soil area (cm^2)	2 2E+06	1.0E+06	
ιTα	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	1 5E+03	1.0E+03	
3W	Body Weight (kg)	70	15	35	70		W.gw	Length of affect, soil parallel to groundwater (cm)	1 5E+03		
D	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
	Averaging time for vapor flux (yr)	30			25	1	deita	Air mixing zone height (cm)	2.0E+02		
F	Exposure Frequency (days/yr)	350			250	180	Lss	Thickness of affected surface soils (cm)	1.0E+02		
F.Derm	Exposure Frequency for dermal exposure	350			250		Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
Rgw	Ingestion Rate of Water (L/day)	2			1			(3 411 213)	0.04 ()		
ig Rs	Ingestion Rate of Soil (mg/day)	100	200		50	100					
ns Radj	Adjusted soil ing. rate (mg-yr/kg-d)	1.1E+02	200		9.4E+01		Groundwater	r Definition (Units)	Value		
rauj Rain	Inhalation rate indoor (m^3/day)	15			20		delta gw	Groundwater mixing zone depth (cm)	2.0E+02	-	
		20			20	10	ueita gw	Groundwater infiltration rate (cm/yr)	3.0E+01		
Ra.out	Inhalation rate outdoor (m^3/day)			2.0E+03	5 8E+03	5.8E+03	11	` • /			
SA.	Skin surface area (dermal) (cm^2)	5 8E+03		2.05.+03		5.0⊑+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.5E+03		
iAadj	Adjusted dermal area (cm^2-yr/kg)	2 1E+03			1.7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	6.6E+03		
/ 	Soil to Skin adherence factor	1			54L05		Ks	Saturated hydraulic conductivity(cm/s)			
AFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)			
AFd	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
ox	Use EPA tox data for air (or PEL based)?	TRUE					Sd	Depth of groundwater source zone (cm)			
wMCL?	Use MCL as exposure limit in groundwater?	FALSE					phi.eff	Effective porosity in water-bearing unit	3 8E-01		
							foc.sat	Fraction organic carbon in water-bearing unit	1 0E-03		
							BIO?	Is bloattenuation considered?	FALSE		
							BC	Biodegradation Capacity (mg/L)			
Matrix of Exp	osed Persons to	Residential			Commerci	al/Industrial					
Complete Exp	osure Pathways				Chronic	Constrctn	Soil	Definition (Units)	Value	_	
Outdoor Air P	athways:						hc	Capillary zone thickness (cm)	5.0E+00	_	
SS.v	Volatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	3.0E+02		
S.V	Volatilization from Subsurface Soils	FALSE			TRUE		rho	Soil density (g/cm^3)	1.7		
€W.v	Volatilization from Groundwater	FALSE			TRUE		foc	Fraction of organic carbon in vadose zone	0.01		
ndoor Air Pai	thways:						phi	Soil porosity in vadose zone	0.38		
3 b	Vapors from Subsurface Soils	FALSE			FALSE		Lgw	Depth to groundwater (cm)	3.0E+02		
GW.b	Vapors from Groundwater	FALSE			FALSE		Ls	Depth to top of affected subsurface soil (cm)	1 0E+02		
oil Pathways	•						Lsubs	Thickness of affected subsurface soils (cm)	2 0E+02		
SS d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	pH	Soil/groundwater pH	6.5		
Groundwater							P	g	capillary	vadose	four
arvanamater aW.i	Groundwater Ingestion	FALSE			FALSE		phi.w	Volumetric water content	0 342	0.12	1001
3.VV.1 S.I	Leaching to Groundwater from all Soils	FALSE			FALSE		phi.a	Volumetric air content	0.038	0.26	3
ا, و	resound to choolingwater normal sons	1 / LOL			I ALUL		pina	resembling all content	0.030	0.20	3
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2 0E+02	3 0E+02	
avantur of Doo	antay Distance	Poole	lential		Commorai	al/Industrial	ER	Building air exchange rate (s^-1)	4.2E-04	3 0E+02 2 3E-04	
	eptor Distance	Distance	On-Site		Distance	On-Site	Lcrk			2 3E-04	
	On- or Off-Site	Distance			Distance	TRUE		Foundation crack thickness (cm)	1 5E+01		
G₩	Groundwater receptor (cm)		TRUE				eta	Foundation crack fraction	<u>0.001</u>		
5	Inhalation receptor (cm)		TRUE			TRUE					
							_				
							Transport			_	
Matrix of							Parameters		Residential	Commercial	
Target Risks		Individual	Cumulative				Groundwater	r — —			
TRab	Target Risk (class A&B carcinogens)	1.0E-05					ax	Longitudinal dispersivity (cm)		_	
TRc "	Target Risk (člass C čarčinogens)	1.0E-05					ay	Transverse dispersivity (cm)			
THQ	Target Hazard Quotient	1 0E+00					az	Vertical dispersivity (cm)			
Opt	Calculation Option (1, 2, or 3)	1					Vapor	,			
Tier	RBCA Tier	1					dcy	Transverse dispersion coefficient (cm)			

		RBCA SITE	ASSESSIV	IENT					1	ier 1 Worksh	eet 6.2	
Site Name: Lat	throp Property		Completed B	y: Sam Ranga	arajan, Cambna E	nv. Tech. Inc						
Site Location: 5	5813-15 Shellmound Street, Emery	ville, CA	Date Comple	ted: 10/28/19	97							1 OF 1
SUE	BSURFACE SOIL RBSL (> 3.3 FT BGS)	VALUES	Target	k (Class A & B) Risk (Class C) Iazard Quotient	1.0E-5	☐ MCL expo		.,	Ca	lculation Option	. 1	
				RBSL	Results For Compl	lete Exposure P	athways ("x" if	Complete)			·	·
CONSTITUEN	TS OF CONCERN	Representative Concentration	Soi	Leaching to (Groundwater		latilization to door Air		olatilization to	Applicable RBSL	RBSL Exceeded ?	Required CRF
CAS No.	Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/kg)	"■" If yes	Only if "yes" le
71-43-2	Benzene	8.0E-2	NA	NA	NA	NA	NA	NA	3.4E+2	3.4E+2		<1
56-55-3	Benzo(a)Anthracene	1.9E+2	NA	NA	NA	NA	NA	NA	>Res	>Res		<1
50-32-8	Benzo(a)Pyrene	2.2E+2	NA	NA	NA	NA	NA	NA	>Res	>Res		<1
218-01-9	Chrysene	2.4E+2	ΝA	NA	NA	NA	NA	NA	>Res	>Res		<1
	Ethylbenzene	1.3E-1	NA	NA	NA	NA	NA	NA	>Res	>Res		<1

			RBCA	SITE ASS	ESSMENT						Tier 1 Wo	rksheet 6.3	}
		athrop Property 5813-15 Shellmound Street, Emer	ville, CA	•	y: Sam Rang ited: 10/28/19	arajan, Cambria E 97	nv. Tech. Inc		• • • • •				1 OF 1
	G	ROUNDWATER RBSL \	/ALUES	Target	k (Class A & B) Risk (Class C) lazard Quotient	1.0E-5	☐ MCL expo			Ca	Iculation Option	1	
					RBS	L Results For Com	plete Exposure	Pathways ("x" if	Complete)		***	L BBO	,
co	NSTITUEN	ITS OF CONCERN	Representative Concentration		Groundwater	Ingestion		oundwater ion to Indoor Air		er Volatilization tdoor Air	Applicable RBSL	RBSL Exceeded	Required CRF
CA	S No.	Name	(mg/L)	Residential. (on-site)	Commercial ¹	Regulatory(MCL) (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	•∎• If yes	Only if "yes" left
	71-43-2	Benzene	1.5E+0	NA	NA _	NA	NA	NA	NA	1.8E+2	1.8E+2		<1
	56-55-3	Benzo(a)Anthracene	1.8E-1	NA	NA	NA	NA	NA	NA	>Sol	>Sol		<1
	50-32-8	Benzo(a)Pyrene	3.1E-1	NA	NA	NA	NA	NA	NA	>Sol	>Sol		<1
Г	218-01-9	Chrysene	4.1E-1	NA	NA	NA	NA	NA	NA	>Sol	>Sol		<1
Г	100-41-4	1 Ethylbenzene	2.1E-1	NA	NA	NA	NA	NA	NA	>Sol	>Sol		<1

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-273-IBX-894

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA TIER 1: Volatilization from Subsurface Soil and Ground Water to Indoor Air

Input Summary Table

Site Name: Lathrop Property

Job Identification: 190-122

Software: GSI RBCA Spreadsheet

Site Location: 5813-15 Shellmound Street, Erbate Completed 10/28/97

Completed By. Sam Rangarajan, Cambria Env. Tech. Inc

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

F			Decidential		Cammora	int/land-untried	Cumfana				
xposure	Definition (Units)	Adult	Residential (1-6yrs)	(1-16 yrs)	Chronic	ial/Industrial Constrctn	Surface Parameters	Definition (Units)	Residential	Constrctn	
arameter To	Averaging time for carcinogens (yr)	70	(1-oyrs)	(1-10 yis)	Chronic	Consucui	A	Contaminated soil area (cm^2)	2.2E+06	1.0E+06	
λτη.	Averaging time for non-carcinogens (yr)	30	6	16	25	1	ŵ	Length of affect, soil parallel to wind (cm)	1.5E+03	1.0E+03	
SW		70	15	35	70	1		* ' '	1.5E+03	1.0E+03	
	Body Weight (kg)	30	6	16	75 25	1	W.gw	Length of affect, soil parallel to groundwater (cm)			
ED	Exposure Duration (yr)	30	0	10	25 25	1	Uair delta	Ambient air velocity ın mixing zone (cm/s)	2.3E+02		
	Averaging time for vapor flux (yr)	350			250 250	180	Lss	Air mixing zone height (cm)	2.0E+02		
EF D	Exposure Frequency (days/yr)	350			250 250	100	LSS Pe	Thickness of affected surface soils (cm)	1.0E+02		
EF.Derm	Exposure Frequency for dermal exposure	2			290 1		re	Particulate areal emission rate (g/cm/2/s)	6.9E-14		
Rgw	Ingestion Rate of Water (L/day)		200		50	400					
Rs	ingestion Rate of Soil (mg/day)	100	200			100	O	u Proficial on Atlantas			
Radj	Adjusted soil ing. rate (mg-yr/kg-d)	1.1E+02			9.4E+01			r Definition (Units)	Value	-	
Rain	Inhalation rate indoor (m^3/day)	15 20			20 20	10	delta.gw	Groundwater mixing zone depth (cm)	2.0E+02		
Ra out	Inhalation rate outdoor (m^3/day)			0.05.00			1	Groundwater infiltration rate (cm/yr)	3 0E+01		
SA	Skin surface area (dermal) (cm^2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.5E+03		
SAadj	Adjusted dermal area (cm^2-yr/kg)	2.1E+03 1			1.7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	6.6E+03		
M	Soil to Skin adherence factor	•			TOUE		Ks	Saturated hydraulic conductivity(cm/s)			
AAFs	Age adjustment on soil ingestion	<u>TRUE</u>			<u>TRUE</u>		grad	Groundwater gradient (cm/cm)			
AAFd	Age adjustment on skin surface area	<i>TRUE</i> TRUE			<u>TRUE</u>		Sw Sd	Width of groundwater source zone (cm)			
tox	Use EPA tox data for air (or PEL based)?	FALSE						Depth of groundwater source zone (cm)	0.05.0		
gwMCL?	Use MCL as exposure limit in groundwater?	FALSE					phi eff	Effective porosity in water-bearing unit	3 8E-01		
							foc sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO? BC	Is bloattenuation considered?	FALSE		
Matrice of Firm	and Dames to	Residential			Commore	ial/Industrial	BÇ	Biodegradation Capacity (mg/L)			
	osed Persons to posure Pathways	nesidendal			Chronic	Constrctn	Soil	Definition (Units)	Value		
Outdoor Air F					Ontonio	CONSTON	he	Capillary zone thickness (cm)	5.0E+00	-	
SS v	Volatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	3.0E+02		
S.v	Volatilization from Subsurface Soils	FALSE			FALSE	INCOL	rho	Soil density (g/cm/3)	1.7		
GW.v	Volatilization from Groundwater	FALSE			FALSE		foc	Fraction of organic carbon in vadose zone	0.01		
Indoor Air Pa					17100=		phi	Soil porosity in vadose zone	0.38		
S b	Vapors from Subsurface Soils	FALSE			TRUE		Lgw	Depth to groundwater (cm)	3.0E+02		
GW.b	Vapors from Groundwater	FALSE			TRUE		Ls	Depth to top of affected subsurface soil (cm)	1.0E+02		
Soil Pathway		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Lsubs	Thickness of affected subsurface soils (cm)	2.0E+02		
SS d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	pH	Soil/groundwater pH	6.5		
Groundwater					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		μ	oomground pri	capillary	vadose	foundation
GW.i	Groundwater Ingestion	FALSE			FALSE		phrw	Volumetric water content	0.342	0 12	0.12
LS.	Leaching to Groundwater from all Soils	FALSE			FALSE		phi.a	Volumetric air content	0.038	0.26	0.26
J	Eccoling to Ground Hatel Hall an Colle				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		p	Total	0.000	020	0.20
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2 0E+02	3 0E+02	
Matrix of Rec	eptor Distance	Resid	fential		Commerc	ial/Industrial	ER	Building air exchange rate (s^-1)	1 4E-04	2 3E-04	
	On- or Off-Site	Distance	On-Site	-	Distance	On-Site	Lcrk	Foundation crack thickness (cm)	1.5E+01	20204	
GW EGGGGG	Groundwater receptor (cm)		TRUE			TRUE	eta	Foundation crack fraction	0.01		
s	Inhalation receptor (cm)		TRUE			TRUE	O LO	1 ouridation order nacyton	001		
ŭ	madalor recopior (orry		******								
							Transport				
Matrix of							Parameters	Definition (Units)	Residential	Commercial	
Target Risks		Individual	Cumulative				Groundwate		, toolder real	2011 Mercial	
TRab	Target Risk (class A&B carcinogens)	1.0E-05		-			ax	Longitudinal dispersivity (cm)			
TRo -	Target Risk (class C carcinogens)	1.0E-05					ay	Transverse dispersivity (cm)		-	-
THQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
Opt	Calculation Option (1, 2, or 3)	1.01.700					Vapor	ronteal dispensivity (only			
Opt Tier	RBCA Tier	1					dey	Transverse dispersion coefficient (cm)			
1161	ROOA HEI	1					•				
							dcz	Vertical dispersion coefficient (cm)			

"		RBCA SITE	ASSESSM	ENT							ier 1 Worksh	eet 6.2	
Site Name: La	throp Property	<u> </u>	Completed B	y: Sam Ranga	arajan, Cambria E	nv. Te	ch. Inc	<u> </u>	,	<u>.</u>			
Site Location:	5813-15 Shellmound Street, Emer	yville, CA	Date Comple	ted: 10/28/19	97								1 OF 1
			Target Risk	(Class A & B)	1.0E-5	ШΝ	/ICL expo	sure limit?		Ca	Iculation Option	: 1	
SU	BSURFACE SOIL RBSL	. VALUES	Target	Risk (Class C)	1.0E-5		EL expos	sure limit?					
	(> 3.3 FT BGS)		Target H	azard Quotient	1.0E+0						.=		
				RBSL	Results For Comp	lete Ex	rposure Pa	athways ("x" if	Complete)				
COMOTITUEN	ITS OF CONCERN	Representative Concentration	Soil	Leaching to (Groundwater	x		atilization to		latilization to	Applicable RBSL	RBSL Exceeded	Required CRF
CAS No.	Name	(mg/kg)	Residential: (on-site)		Regulatory(MCL): (on-site)	Res	sidential: n-site)	Commercial (on-site)	Residential: (on-site)	Commercial (on-site)	(mg/kg)	·■• If yes	Only if "yes" left
71-43-2	Benzene	8.0E-2	NA	NA	NA		NA	7.9E-1	NA	NA	7.9E-1		<1
56-55-3	Benzo(a)Anthracene	1.9E+2	NA	NA	NA	1	NA	>Res	NA	NA NA	>Res		<1
50-32-8	Benzo(a)Pyrene	2.2E+2	NA	NA	NA		NA	>Res	NA	NA	>Res		<1
218-01-9	Chrysene	2.4E+2	NA	NA	NA		NA	>Res	NA	NA	>Res		<1
100-41-4	1 Ethylbenzene	1.3E-1	NA	NA	NA		NA	>Res	NA	NA	>Res		<1

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-273-IBX-894

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA	SITE ASSI	ESSMENT						Tier 1 Wo	rksheet 6.3	1
Site Name: Lat	throp Property		Completed B	y: Sam Ranga	arajan, Cambria E	nv. Tech. Inc						
Site Location:	5813-15 Shellmound Street, E	meryville, CA	Date Comple	ted: 10/28/19	97							1 OF 1
GI	ROUNDWATER RBS	L VALUES	Target	(Class A & B) Risk (Class C)	1.0E-5	☐ MCL expo			Cal	culation Option	- 1	
	V		l arget H	azard Quotient RBSI		plete Exposure	Pathways ("x" if C	omplete)				
CONSTITUEN	ITS OF CONCERN	Representative Concentration		Groundwater	Ingestion		undwater ion to Indoor Air		er Volatilization atdoor Air	Applicable RBSL	RBSL Exceeded ?	Required CRF
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial. (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial. (on-site)	(mg/L	"■" If yes	Only if "yes" left
71-43-2	Benzene	1.5E+0	NA	NA	NA	NA	7.4E-1	_ NA	NA	7.4E-1	-	2.0E+00
56-55-3	Benzo(a)Anthracene	1.8E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1
50-32-8	Benzo(a)Pyrene	3.1E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1
218-01-9	Chrysene	4.1E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1
	Ethylbenzene	2.1E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1
				>Sol	ındıcates risk-ba	sed target conc	entration greater t	han constituen	solubility			

Version: 1.0.1

Software: GS! RBCA Spreadsheet

Serial: G-273-IBX-894

Site Name: Lathrop Property Job Identification: 190-122 Software: GSI RBCA Spreadsheet Site Location: 5813-15 Shellmound Street, Erbate Completed 10/28/97 Version: 1.0.1

Completed By. Sam Rangarajan, Cambria Env Tech Inc.

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

Exposure			Residential		Commerci	al/Industrial	Surface				
arameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Constrctn	
Tc	Averaging time for carcinogens (yr)	70					A	Contaminated soil area (crr/2)	2 2E+06	1,0E+06	
Tn	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect soil parallel to wind (cm)	1 5E+03	1.0E+03	
W	Body Weight (kg)	70	15	35	70		W.gw	Length of affect soil parallel to groundwater (cm)	1.5E+03		
D.	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
.U	Averaging time for vapor flux (yr)	30	v	10	25	i	delta	Air mixing zone height (cm)	2.0E+02		
F		350			250	180	Lss	Thickness of affected surface soils (cm)	1.0E+02		
	Exposure Frequency (days/yr)				250 250	100	LSS Pe	` ,			
F.Derm	Exposure Frequency for dermal exposure	350					re	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
Rgw	Ingestion Rate of Water (L/day)	2			1						
Rs	Ingestion Rate of Soil (mg/day)	100	200		50	100					
Radj	Adjusted soil ing rate (mg-yr/kg-d)	1.1E+02			9 4E+01			r Definition (Units)	Value	_	
Ra.in	Inhalation rate indoor (m^3/day)	15			20		delta.gw	Groundwater mixing zone depth (cm)	2 0E+02	=	
Ra.out	Inhalation rate outdoor (m/3/day)	20			20	10	t	Groundwater infiltration rate (cm/yr)	3.0E+01		
SA .	Skin surface area (dermal) (cm^2)	5 8E+03		2.0E+03	5.8E+03	5 8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.5€+03		
SAadı	Adjusted dermal area (cm^2-yr/kg)	2,1E+03			1 7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	6.6E+03		
	Soil to Skin adherence factor	1					Ks	Saturated hydraulic conductivity(cm/s)			
AAFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)			
AAFd	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
יטאי שאי	Use EPA tox data for air (or PEL based)?	TRUE			171202		Sd	Depth of groundwater source zone (cm)			
		FALSE					phi eff		3.8E-01		
wMCL?	Use MCL as exposure limit in groundwater?	FALSE						Effective porosity in water-bearing unit			
							foc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO?	Is bioattenuation considered?	FALSE		
					_		BC	Biodegradation Capacity (mg/L)			
	osed Persons to	Residential			-	al/Industrial					
	oosure Pathways				Chronic	Constrctn	Soil	Definition (Units)	Value	_	
Outdoor Air P							hc	Capillary zone thickness (cm)	5.0E+00		
\$\$.v	Volatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	3 0E+02		
S.v	Volatilization from Subsurface Soils	FALSE			FALSE		rho	Soil density (g/cm^3)	1.7		
GW.v	Volatilization from Groundwater	FALSE			FALSE		foc	Fraction of organic carbon in vadose zone	0.01		
ndoor Air Pat	thways:						phi	Soil porosity in vadose zone	0.38		
Sb	Vapors from Subsurface Soils	FALSE			TRUE		Lgw	Depth to groundwater (cm)	3.0E+02		
GW b	Vapors from Groundwater	FALSE			TRUE		Ls	Depth to top of affected subsurface soil (cm)	1 0E+02		
Soil Pathways							Lsubs	Thickness of affected subsurface soils (cm)	2.0E+02		
SS.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	pΗ	Soil/groundwater pH	65		
Groundwater		,,,				171202	P	Comg. content of pri	capillary	vadose	founda
GW.i	Groundwater Ingestion	FALSE			FALSE		phi.w	Volumetric water content	0,342	0.12	0 1
		FALSE			FALSE		•				
S.I	Leaching to Groundwater from all Soils	FALSE			FALSE		phi.a	Volumetric air content	0.038	0.26	0.2
							Duiteline	Definition (Unite)	Desidenti-!	0	
							Building	Definition (Units)	Residential	Commercial	
		.				-16	Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
	eptor Distance		dential			al/Industrial	ER	Building air exchange rate (s^-1)	1.4E-04	2.3E-04	
	On- or Off-Site	Distance	On-Site		Distance	On-Site	Lork	Foundation crack thickness (cm)	1.5E+01		
GW	Groundwater receptor (cm)		TRUE			TRUE	eta	Foundation crack fraction	0.01		
S	Inhalation receptor (cm)		TRUE			TRUE					
							Transport				
Matrix of							Parameters	Definition (Units)	Residential	Commercial	
Target Risks		Individual	Cumulative				Groundwater	r			
TRab	Target Risk (class A&B carcinogens)	1.0E-05		•			ax	Longitudinal dispersivity (cm)			
TRo	Target Risk (class C carcinogens)	1 0E-05					ay -	Transverse dispersivity (cm)	-		-
THQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
		1.02400					مد Vapor	vertion dispersivity (cm)			
Opt	Calculation Option (1, 2, or 3)	1					•	Towns of the section			
Tier	RBCA Tier	1					dey	Transverse dispersion coefficient (cm)			
							ďcz	Vertical dispersion coefficient (cm)			

		RBCA SITE	ASSESSM	ENT								ier 1 Worksho	eet 6.2	
Site Name: La	throp Property		Completed By	y: Sam Ranga	rajan, Cambna E	nv. T	ech. Inc					····		
Site Location:	5813-15 Shellmound Street, Emeryv	ifle, CA	Date Complet	ted: 10/28/199	7					_				1 OF 1
			Target Risk	(Class A & B)	1.0E-5		MCL expos	sure limit?			Ca	Iculation Option	1	
ຣປ	BSURFACE SOIL RBSL	VALUES	Target	Risk (Class C)	1.0E-5		PEL expos	sure limit?						
	(> 3.3 FT BGS)		Target Ha	azard Quotient	1.0E+0									
				RBSLI	Results For Compl	lete E	xposure Pa	thways ("x" if	Con	nplete)		"		
CONSTITUE	NTS OF CONCERN	Representative Concentration	Soil	Leaching to (х	Soil Vol	atilization to		Soil Vol	atılızation to	Applicable RBSL	RBSL Exceeded	Required CRF
CAS No.	Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)		sidential: on-site)	Commercial: (on-site)		lesidential: (on-site)	Commercial. (on-site)	(mg/kg)	•■• If yes	Only if "yes" left
120-12-7	7 Anthracene	2.2E+2	NA	NA	NA	Γ	NA	NA		NA	NA	>Res		<1
53-70-2	Dibenzo(a,h) Anthracene	0.0E+0	NA	NA	NA	П	NA	>Res		ŅΑ	NA	>Res		<1
206-44-0	Fluoranthene	7.3E+2	NA	NA	NA	Г	NA	NA		NA	NA	>Res		<1
193-39-	Indeno(1,2,3,c,d)Pyrene	1.4E+2	NA	_NA	NA	Γ	NA	>Res		NA	NA	>Res		<1
91-20-	Naphthalene	1.4E+3	NA	NA	NA	Г	NA	NA		NA	NA	>Res		<1
129-00-0	Pyrene	8.9E+1	NA	NA	NA	Г	NA	NA	Γ	NA	NA	>Res		<1
108-88-	3 Toluene	1.4E-1	NA	NA	NA		NA	9.3E+1		NA	NA	9.3E+1		<1
4000.00	7 Xylene (mixed isomers)	1.5E-1	NA	NA	NA		NA	>Res		NA	NA	>Res		<1

		RBCA	SITE ASS	ESSMENT							Tier 1 Wo	rksheet 6.3	· · · · · · · · · · · · · · · · · · ·
Site Name: Lal		P- 04	-	-	arajan, Cambria E	ກv. Te	ch. Inc						4.054
Site Location:	5813-15 Shellmound Street, Emery	/lile, CA		ted: 10/28/19									1 OF 1
			Ĭ	k (Class A & B)			•	sure limit?		Cat	culation Option:	: 1	
GI	ROUNDWATER RBSL V	ALUES	Target	Risk (Class C)	1 0E-5		EL expos	sure limit?					
			Target H	lazard Quotient	1.0E+0						<u> </u>		
				RBSI	L Results For Com	ıplete E	xposure	Pathways ("x" if C	omplete)				
CONSTITUEN	TS OF CONCERN	Representative Concentration		Groundwater	Ingestion	x		undwater ion to Indoor Air		er Volatilization utdoor Air	Applicable RBSL	RBSL Exceeded	Required CRF
CAS No.	Name	(mg/L)	Residential (on-site)	Commercial. (on-site)	Regulatory(MCL): (on-site)		idential n-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	•■• If yes	Only if "yes" left
120-12-7	Anthracene	0.0E+0	NA	NA	NA		NA	NA	NA	NA	>Sol		<1
53-70-3	Dibenzo(a,h) Anthracene	1.1E-1	NA	NA	NA		NA	>Sol	NA	NA	>Sol		<1
206-44-0	Fluoranthene	0.0E+0	NA	NA	NA	l	NA	NA	NA	NA	>Sol		<1
193-39-5	Indeno(1,2,3,c,d)Pyrene	2.5E-1	NA	NA	NA		NA	>Sol	NA	NA	>Sol		<1
91-20-3	Naphthalene	0.0E+0	NA	NA	NA		NA	NA	NA	NA	>Sol		<1
129-00-0	Pyrene	0.0E+0	NA	NA	NA	-	NA	NA	NA	NA	>Sol		<1
108-88-3	Toluene	0.0E+0	NA	NA NA	NA		NA .	8.5E+1	NA	NA	8.5E+1		<1
1330-20-7	Xylene (mixed isomers)	0.0E+0	NA	NA	NA		NA	>Sol	NA	NA	>Sol		<1

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet

Serial: G-273-IBX-894

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

Completed By: Sam Rangarajan, Cambria Env. Tech. Inc.

Site Name: Lathrop Property

Job Identification: 190-122

Software: GSI RBCA Spreadsheet

Site Location, 5813-15 Shellmound Street, Erbate Completed: 10/28/97

Version 101

NOTE values which differ from Tier 1 default values are shown in bold italics and underlined

Exposure	_		Residential		Commerci	al/Industrial	Surface				
Parameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	<u>Parameters</u>	Definition (Units)	Residential	Constrctn	
(Tc	Averaging time for carcinogens (yr)	70					A	Contaminated soil area (cm^2)	2.2E+06	1.0E+06	
AΤα	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect soil parallel to wind (cm)	1 5E+03	1.0E+03	
3W	Body Weight (kg)	70	15	35	70		W gw	Length of affect, soil parallel to groundwater (cm)	1 5E+03		
≣D.	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
	Averaging time for vapor flux (yr)	30			25	i	delta	Air mixing zone height (cm)	2 0E+02		
EF	Exposure Frequency (days/yr)	350			250	180	Lss	Thickness of affected surface soils (cm)	1 0E+02		
EF.Derm	Exposure Frequency for dermal exposure	350			250	· · ·	Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
Rgw	Ingestion Rate of Water (L/day)	2			1						
Rs	Ingestion Rate of Soil (mg/day)	100	200		50	100					
Radj	Adjusted soil ing. rate (mg-yr/kg-d)	1.1E+02			9.4E+01	, -	Groundwate	r Definition (Units)	Value		
Ra.in	Inhalation rate indoor (m/3/day)	15			20		delta.gw	Groundwater mixing zone depth (cm)	2 0E+02	-	
Ra out	Inhalation rate outdoor (m^3/day)	20			20	10	1	Groundwater infiltration rate (cm/yr)	3 0E+01		
SA	Skin surface area (dermal) (cm^2)	5 8E+03		2.0E+03	5 8E+03	5 8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.5E+03		
SAadj	Adjusted dermal area (crry2-yr/kg)	2.1E+03		2.02.00	1 7E+03	0.02.40	Ugw.tr	Groundwater seepage velocity (cm/yr)	6.6E+03		
orauj	Soil to Skin adherence factor	1			1,2,00		Ks	Saturated hydraulic conductivity(cm/s)	0.02100		
VI NAFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)			
AAFd	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
OX	Use EPA tox data for air (or PEL based)?	TRUE			TAGOL		Sd	Depth of groundwater source zone (cm)			
wMCL?	Use MCL as exposure limit in groundwater?	FALSE					phi.eff	Effective porosity in water-bearing unit	3 8E-01		
JWWCL,	Ose MCL as exposure limit in groundwater.	PALOL					foc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO?	Is bloattenuation considered?	TRUE		
							BC	Biodegradation Capacity (mg/L)	INGE		
d-sales and Press.	and Daman to	Residential			Commore	ial/Industrial	₽C	Biodegradation Capacity (mg/L)			
	osed Persons to oosure Pathways	nesideridai			Chronic	Constrctn	Soil	Definition (Units)	Value		
Outdoor Air P	- 				Ottionio	00//3//0//	hc	Capillary zone thickness (cm)	5.0E+00	-	
38.v	Volatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	3.0E+02		
50.v S v	Volatilization from Subsurface Soils	FALSE			FALSE	IALUL	rho	Soil density (g/cm^3)	1.7		
aw.v	Volatilization from Groundwater	FALSE			FALSE		foc	Fraction of organic carbon in vadose zone	0.01		
avv.v ndoor Air Pat		IADOL			· ALGE		phi	Soil porosity in vadose zone	038		
110001 A11 721 3.b	Vapors from Subsurface Soils	FALSE			FALSE		Lgw	Depth to groundwater (cm)	3.0E+02		
GW b	Vapors from Groundwater	FALSE			FALSE		Ls	Depth to top of affected subsurface soil (cm)	1.0E+02		
Soil Pathways	•	1 ALOL			· ALOL		Lsubs	Thickness of affected subsurface soils (cm)	2.0E+02		
SS.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	pH	Soil/groundwater pH	6.5		
ರಿತ್ತರ Groundwater		FALSE			TALSE	FALSE	рп	Solvy: Out Idware: pH	capillary	vadose	founda
	-	TRUE			FALSE		phi.w	Volumetric water content	0.342		
GWı S.I	Groundwater Ingestion	TRUE			FALSE		phi.a	Volumetric air content	0 038	<u>0.12</u> 0.26	<u>0.2</u> 0.1
5.1	Leaching to Groundwater from all Soils	INUL			FALSE		prii.a	Voidifietific all content	0 036	0.26	<u>U.12</u>
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
Matrix of Roc	eptor Distance	Resid	iential		Commerc	ial/Industrial	ER	Building air exchange rate (s^-1)	4.2E-04	2.3E-04	
	On- or Off-Site	Distance	On-Site		Distance	On-Site	Lork	Foundation crack thickness (cm)	1.5E+01	2.02 01	
GW	Groundwater receptor (cm)		TRUE			TRUE	eta	Foundation crack fraction	0.001		
Q#7	Inhalation receptor (cm)		TRUE			TRUE	J.,	. Concessor Graces Records	0.007		
_	and and receptor (only					.,,,,,					
							Transport				
Matrix of							Parameters	Definition (Units)	Residential	Commercial	
Target Risks		Individual	Cumulative				Groundwate				
TRab	Target Risk (class A&B carcinogens)	1.0E-06	-union vo				ax	Longitudinal dispersivity (cm)			
TRc	Target Risk (class C carcinogens)	1.0E-06	-				ay	Transverse dispersivity (cm)	-		
THQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
	•	1.02-400					Vapor	remedial dispersivity (em)			
Opt	Calculation Option (1, 2, or 3) RBCA Tier	1					dcy	Transverse dispersion coefficient (cm)			
Tier											

		RBCA	SITE ASSI	ESSMENT						Tier 1 Wo	rksheet 6.3	
Site Name: La	uthrop Property		Completed B	y: Sam Ranga	arajan, Cambria E	nv. Tech. Inc					-	
Site Location	5813-15 Shellmound Street, Emi	eryville, CA	Date Comple	ted: 10/28/19	97							1 OF 1
			Target Risk	(Class A & B)	1.0 E -6	☐ MCL expc	sure limit?		Ca	lculation Option	: 1	
G	ROUNDWATER RBSL	VALUES	Target	Risk (Class C)	1.0E-6	☐ PEL expo	sure limit?					
			Target H	azard Quotient	1.0€+0						(Two-directi	ional vert. dispersior
				RBSI	. Results For Com	plete Exposure	Pathways ("x" if C	omplete)				
CONSTITUEN	NTS OF CONCERN	Representative Concentration	x	Groundwater	Ingestion	1 1	undwater ion to Indoor Air	1	er Volatilization tdoor Air	Applicable RBSL	RBSL Exceeded ?	Required CRF
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial. (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	•■• If yes	Only if "yes" left
71-43-2	Benzene	4.6E-1	2.9E-3	NA	NA	NA	NA _	NA	NA	2.9E-3		1.6E+02
56-55-3	Benzo(a)Anthracene	4.0E-1	1.2E-4	NA	NA	NA NA	NA	NA	NA	1.2E-4		3.4E+03
50-32-8	Benzo(a)Pyrene	6.3E-1	1.2E-5	NA	_ NA	NA	NA	NA	NA	1.2E-5		5.4E+04
218-01-9	Chrysene	6.9E-1	7.4E-5	NA	NA	NA	NA	NA_	NA	7.4E-5		9.3E+03
53-70-3	B Dibenzo(a,h) Anthracene	1.4E-1	1.2E-5	NA	NA	NA	NA	NA	NA	1.2E-5		1.2E+04
100-41-4	1 Ethylbenzene	1.2E-1	3.7E+0	NA	NA	NA	NA	NA_	NA	3.7E+0		<u><1</u>
193-39-5	Indeno(1,2,3,c,d)Pyrene	4.2E-1	1.2E-4	NA	NA	NA	NA	NA	NA	1.2E-4		3.6E+03

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet Version: 1 0 1 Serial: G-273-IBX-894

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

CAMBRIA

Attachment F
Tier 2 RBCA Tables

1 ()

RBCA TIER 2: Volatilization from Subsurface Soil and Ground Water to Indoor Air

Input Summary Table

Site Name: Lathrop Property Job Identification: 190-122 Software: GSI RBCA Spreadsheet
Site Location. 5813-15 Shellmound Street, Eribate Completed: 10/28/97 Version: 1.0.1

Completed By: Sam Rangarajan, Cambria Env Tech. Inc

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined

Exposure			Residential		Commercia	al/Industrial	Surface				
arameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Constrctn	
Tc	Averaging time for carcinogens (yr)	70	(1)	\			A	Contaminated soil area (cm^2)	2.2E+06	1.0E+06	
\Tn	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	1.5E+03	1.0E+03	
sw	Body Weight (kg)	70	15	35	70	•	W.gw	Length of affect, soil parallel to groundwater (cm)	3.0E+03	1.52100	
:D	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
:0		30	0	10	25	1	đelta	Air mixing zone height (cm)	2.0E+02		
F	Averaging time for vapor flux (yr)				250 250	180		3 3 . ,			
-	Exposure Frequency (days/yr)	350				180	Lss	Thickness of affected surface soils (cm)	1.0E+02		
EF Derm	Exposure Frequency for dermal exposure	350			250		Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
Rgw	Ingestion Rate of Water (L/day)	2			1						
Rs	Ingestion Rate of Soil (mg/day)	100	200		50	100					
Radj	Adjusted soil ing. rate (mg-yr/kg-d)	1 1E+02			9.4E+01			r Definition (Units)	Value	•	
Ra.in	Inhalation rate indoor (m^3/day)	15			20		delta.gw	Groundwater mixing zone depth (cm)	2.0E+02		
Ra out	Inhalation rate outdoor (m^3/day)	20			20	10	1	Groundwater infiltration rate (cm/yr)	3.0Ё+01		
A	Skin surface area (dermal) (cm^2)	5 85+03		2.0E+03	5.8E+03	5 8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	9.4E+02		
Aadj	Adjusted dermal area (cm/2-yr/kg)	2 1E+03			1.7E+03		Ugw tr	Groundwater seepage velocity (cm/yr)	2.5E+03		
Λ	Soil to Skin adherence factor	1					Ks	Saturated hydraulic conductivity(cm/s)	3 0E-03		
AFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)	1 0E-02		
∖ AFd	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
ox	Use EPA tox data for air (or PEL based)?	TRUE					Sd	Depth of groundwater source zone (cm)			
wMCL?	Use MCL as exposure limit in groundwater?	FALSE					phi eff	Effective porosity in water-bearing unit	3.8Ё-01		
,	9	.,					foc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO?	Is bioattenuation considered?	FALSE		
							BC	Biodegradation Capacity (mg/L)	771202		
fateiv of Evo	osed Persons to	Residential			Commerci	al/Industrial	50	Bloody (mg/2)			
	oseure Pathways	i issinci indi			Chronic	Constrctn	Soil	Definition (Units)	Value		
Outdoor Air F					J111 Q111Q	-411011411	he	Capillary zone thickness (cm)	3.0E+01	-	
SS V	Volatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	3.0E+01 1.7E+02		
v 66 V.6	Volatilies and Paniculates from Sunace Soils Volatilization from Subsurface Soils	FALSE			FALSE	IALGE	rho	Soil density (g/cm/3)			
5.V 3W.v	Volatilization from Subsurface Soils Volatilization from Groundwater	FALSE			FALSE		foc	Fraction of organic carbon in vadose zone	<u>1.5</u> 0.033		
		FALSE			FALSE						
ndoor Air Pa		FALSE			TRUE		phi 1 av	Soil porosity in vadose zone	<u>0.36</u>		
S.b	Vapors from Subsurface Soils						Lgw	Depth to groundwater (cm)	2.0E+02		
GW.b	Vapors from Groundwater	FALSE			TRUE		Ls	Depth to top of affected subsurface soil (cm)	1.0E+02		
Soil Pathway					F41	E41.6=	Lsubs	Thickness of affected subsurface soils (cm)	<u>9.8E+01</u>		
SS d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	рН	Soil/groundwater pH	65		
Groundwater	•							-	capillary	vadose	fou
GW.i	Groundwater Ingestion	FALSE			FALSE		phi w	Volumetric water content	<u>0.3</u>	0.14	
81	Leaching to Groundwater from all Soils	FALSE			FALSE		phia	Volumetric air content	<u>0.06</u>	<u>0.22</u>	
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
Matrix of Rec	eptor Distance	Resid	lential		Commerci	al/Industrial	ER	Building air exchange rate (s^-1)	4.2E-04	2 3E-04	
	On- or Off-Site	Distance	On-Site		Distance	On-Site	Lcrk	Foundation crack thickness (cm)	1 5E+01		
GW	Groundwater receptor (cm)		FALSE			FALSE	eta	Foundation crack fraction	0.001		
S	Inhalation receptor (cm)		FALSE			FALSE		• • •			
_											
							Transport				
Matrix of							Parameters	Definition (Units)	Residential	Commercial	
		Individual	Cumulative				Groundwate		residential	Commercial	
Target Risks	Toront Diels (elean ASD		Junidianive								
TRab	Target Risk (class A&B carcinogens)	1.0E-05					ax	Longitudinal dispersivity (cm)		-	-
TRC	Target Risk (class C carcinogeris)	1.0E-05					ay	Transverse dispersivity (cm)			
THQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
Opt	Calculation Option (1, 2, or 3)	2					Vapor				
Tier	RBCA Tier	2					dcy	Transverse dispersion coefficient (cm)			
							dcz	Vertical dispersion coefficient (cm)			

		RBCA SITE	ASSESSM	ENT						7	ier 2 Worksh	eet 9.2	
Site Name: La	throp Property		Completed B	y: Sam Ranga	rajan, Cambna E	nv. Te	ch. Inc						
Site Location:	5813-15 Shellmound Street, Emer	ryville, CA	Date Comple	ted: 10/28/199	97								1 OF 1
			Target Risk	(Class A & B)	1 0E-5	□ N	1CL expo	sure limit?		Ca	dculation Option	2	
SU	BSURFACE SOIL SSTL	. VALUES	Target	Risk (Class C)	1.0 E -5	□ P	EL expos	sure limit?					
	(> 3.3 FT BGS)		Target H	azard Quotient	1.0E+0							_	
		<u></u>		SSTL	Results For Compl	lete Ex	posure Pa	athways ("x" if	Complete)				
CONSTITUEN	NTS OF CONCERN	Representative Concentration	Soil	Leaching to (Groundwater	x		atilization to		fatilization to tdoor Air	Applicable SSTL	SSTL Exceeded	Required CRF
CAS No.	Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)		idential. n-site)	Commercial (on-site)	Residential. (on-site)	Commercial: (on-site)	(mg/kg)	*■° If yes	Only if "yes" lef
71-43-2	2 Benzene	8.0E-2	NA	NA	NA		NA	7.0E+0	NA	NA	7.0E+0		<1
56-55-3	Benzo(a)Anthracene	1.9E+2	NA	NA	NA		NA	>Res	NA	NA	>Res		<1
50-32-8	Benzo(a)Pyrene	2.2E+2	NA	NA	NA		NA	>Res	NA	NA	>Res		<1
218-01-9	9 Chrysene	2.4E+2	NA.	NA	NA		NA	>Res	NA	N/A	>Res		<1
100-41-4	4 Ethylbenzene	1.3E-1	NA	NA	NA NA		NA	>Res	NA	NA	>Res		<1
100-41-2	4 Eulylberizerie				-based target con						<u> </u>		

		SITE ASSESSMENT					Tier 2 Worksheet 9.3					
Site Name: La Site Location:		y: Sam Ranga eted: 10/28/19	arajan, Cambna E 97	nv. Tech. Inc						1 OF 1		
GROUNDWATER SSTL VALUES			Target Risk (Class A & B) 1 0E-5 Target Risk (Class C) 1 0E-5 Target Hazard Quotient 1.0E+0			☐ MCL exposure limit? ☐ PEL exposure limit?		Calculation Option 2				
				SSTI	. Results For Com	plete Exposure	Pathways ("x" if C	omplete)				•
Representative Concentration CONSTITUENTS OF CONCERN		Groundwater Ingestion		Groundwater X Volatilization to Indoor Air		Groundwater Volatilization to Outdoor Air		Applicable SSTL	SSTL Exceeded ?	Required CRF		
CAS No.	Name	(mg/L)	Residential (on-site)	Commercial: (on-site)	Regulatory(MCL) (on-site)	Residential: (on-site)	Commercial (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	■ If yes	Only if "yes" left
71-43-2	Benzene	1.5E+0	NA	NA	NA	NA	5.8E+0	NA	NA	5.8E+0		<1
56-55-3	Benzo(a)Anthracene	1.8E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1
50-32-8	Benzo(a)Pyrene	3.1E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1
218-01-9	Chrysene	4.1E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1
100-41-4	Ethylbenzene	2.1E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-273-IBX-894

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA TIER 2: Ground Water Ingestion Off-Site Input Summary Table Site Name: Lathrop Property Job identification: 190-122 Software: GSI RBCA Spreadsheet Site Location: 5813-15 Shellmound Street, Erbate Completed 10/28/97 Version: 1.0.1 > Completed By: Sam Rangarajan, Cambria Env. Tech. Inc. NOTE values which differ from Tier 1 default values are shown in bold italics and underlined Exposure Residential Commercial/Industrial Surface Adult (1-16 yrs) Chronic Parameter Definition (Units) (1-6yrs) Constrctn Parameters Definition (Units) Residential Constrctn Averaging time for carcinogens (yr) Ā Contaminated soil area (cm^2) ATc 70 2.2E+06 1.0E+06 16 25 w ATn Averaging time for non-carcinogens (yr) 30 6 Length of affect, soil parallel to wind (cm) 1.5E+03 1.0E+03 BW Body Weight (kg) 70 15 35 70 W.gw Length of affect, soil parallel to groundwater (cm) 3.0E+03 ED Exposure Duration (yr) 30 16 25 1 Uair Ambient air velocity in mixing zone (cm/s) 2.3E+02 Averaging time for vapor flux (yr) 30 25 delta Air mixing zone height (cm) 2.0E+02 Exposure Frequency (days/yr) 350 250 180 Lss Thickness of affected surface soils (cm) 1.0E+02 EF.Derm Exposure Frequency for dermal exposure 350 250 Pe Particulate areal emission rate (g/cm^2/s) 6.9E-14 lRgw Ingestion Rate of Water (L/day) 2 1 100 200 50 100 IRs Ingestion Rate of Soil (mg/day) lRadi 1.1E+02 9.4E+01 Groundwater Definition (Units) Adjusted soil ing_rate (mg-yr/kg-d) Value Groundwater mixing zone depth (cm) Inhalation rate indoor (m^3/day) 15 20 delta.gw 2.0E+02 IRa.ın Groundwater infiltration rate (cm/yr) IRa.out Inhalation rate outdoor (m^3/day) 20 20 10 3 0E+01 2.0E+03 SA Skin surface area (dermai) (cm^2) 5.8E+03 5.8E+03 5.8E+03 Ugw Groundwater Darcy velocity (cm/yr) 1.4E+01 SAadj Adjusted dermal area (cm/2-yr/kg) 2.1E+03 1.7E+03 Ugw.tr Groundwater seepage velocity (cm/yr) 3.9E+01 Soil to Skin adherence factor Ks Saturated hydraulic conductivity(cm/s) 2.5E-05 1 FALSE FALSE grad Groundwater gradient (cm/cm) AAFs Age adjustment on soil ingestion 1.8E-02 FALSE FALSE AAFd Width of groundwater source zone (cm) Age adjustment on skin surface area Sw 2.1E+03 tox Use EPA tox data for air (or PEL based)? TRUE Sd Depth of groundwater source zone (cm) 1.5E+02 gwMCL? Use MCL as exposure limit in groundwater? FALSE phi.eff Effective porosity in water-bearing unit 3.6E-01

Matrix of Exposed Persons to		Residential	Commercial/Industrial			
Complete	Exposure Pathways		Chronic Const			
Outdoor A	ir Pathways:					
SS.v	Volatiles and Particulates from Surface Soils	FALSE	FALSE	FALSE		
Sv	Volatilization from Subsurface Soils	FALSE	FALSE			
GW.v	Volatilization from Groundwater	FALSE	FALSE			
Indoor Air	Pathways:					
Sb	Vapors from Subsurface Soils	FALSE	FALSE			
GW.b	Vapors from Groundwater	FALSE	FALSE			
Soil Pathy	vays:					
SS.d	Direct Ingestion and Dermal Contact	FALSE	FALSE	FALSE		
Groundwa	iter Pathways:					
GW.i	Groundwater Ingestion	TRUE	FALSE			
S.I	Leaching to Groundwater from all Soils	TRUE	FALSE			
	•					

2

Residential

Building	Definition (Units)	Residential	Commercial	
ph.a	Volumetric air content	<u>0.06</u>	<u>0.22</u>	<u>0.14</u>
phi w	Volumetric water content	<u>0.3</u>	<u>0.14</u>	0.24
		capillary	vadose	foundation
рH	Soil/groundwater pH	6.5		
Lsubs	Thickness of affected subsurface soils (cm)	9.8E+01		
Ls	Depth to top of affected subsurface soil (cm)	1 0E+02		
Lgw	Depth to groundwater (cm)	2.0E+02		
phi	Soil porosity in vadose zone	<u>0.36</u>		
foc	Fraction of organic carbon in vadose zone	<u>0.033</u>		
rho	Soil density (g/cm^3)	<u>1.5</u>		
hv	Vadose zone thickness (cm)	1.7E+02		
	, , ,			

3.35-02

TRUE

Value

3.0E+01

2.0E+02

4.2E-04

3.0E+02

2.3E-04

Fraction organic carbon in water-bearing unit

Is broattenuation considered?

Capillary zone thickness (cm)

Building volume/area ratio (cm)

Building air exchange rate (s^-1)

Transverse dispersion coefficient (cm)

Vertical dispersion coefficient (cm)

Definition (Units)

Biodegradation Capacity (rng/L)

foc sat

BIO?

ВС

Soil

hc

Lb

ER

dcy

dcz

and Location	On- or Off-Site	Distance	On-Site	Distance	On-Site	Lcrk	Foundation crack thickness (cm)	1.5E+01	
GW	Groundwater receptor (cm)	1.8E+03	FALSE	1 8E+03	FALSE	eta	Foundation crack fraction	<u>0.001</u>	
s	Inhalation receptor (cm)		FALSE		FALSE				
					Transport				
Matrix of						Parameters	Definition (Units)	Residential	Commercial
Target Risks	<u> </u>	Individual	Cumulative			Groundwate	r		
TRab	Target Risk (class A&B carcinogens)	1.0E-06				ax	Longitudinal dispersivity (cm)	1.5E+02	
TRc"	Tärget Risk (class C carcinogens)	1.0E-06				ay	Transverse dispersivity (cm)	1.5E+01	
THQ	Target Hazard Quotient	1 0E+00				az	Vertical dispersivity (cm)	1 5E+00	
Opt	Calculation Option (1, 2, or 3)	2				Vapor			

RBCA Tier

Matrix of Receptor Distance

Commercial/Industrial

Tier

		RBCA	SITE ASS	ESSMENT						Tier 2 Wo	rksheet 9.3	j
Site Name: Laf	throp Property		Completed B	y: Sam Ranga	rajan, Cambria E	nv. Tech. Inc					_	
Site Location:	e, CA	Date Completed: 10/28/1997									1 OF 1	
	Target Risk (Class A & B) 1.0E-6			☐ MCL exposure limit?			Calculation Option 2					
GROUNDWATER SSTL VALUES			Target Risk (Class C) 1.0E-6		☐ PEL exposure limit?		Groundwater DAF Option. Domenico - First Order				First Order	
	Target H	lazard Quotient	1.0E+0				(Two-directional vert.			ional vert. dispersio		
	***************************************			SSTI	. Results For Com	plete Exposure	Pathways ("x" if C	Complete)				
Representative Concentration CONSTITUENTS OF CONCERN					Groundwater Volatilization to Indoor Air		Groundwater Volatilization to Outdoor Air		Applicable SSTL	SSTL Exceeded	Required CRF	
CAS No.	Name	(mg/L)	Residential 60 feet		Regulatory(MCL): 60 feet	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	•■• If yes	Only if "yes" left
71-43-2	Benzene	4.6E-1	>Sol	NA	NA	NA	NA	NA	NA	>Sol		<1
56-55-3	Benzo(a)Anthracene	4.0E-1	>Sol	NA	NA	NA	NA	NA	NA	>Sol		<1
50-32-8	Benzo(a)Pyrene	6.3E-1	>Sol	NA	NA	NA	NA	NA	NA	>Sol		<1
218-01-9	Chrysene	6.9E-1	>Sol	NA	NA	NA	NA	NA	NA	>Sol		<1
53-70-3	Dibenzo(a,h) Anthracene	1.4E-1	>Sol	NA	NA	NA	NA	NA	NA	>Sol		<1
100-41-4	Ethylbenzene	1.2E-1	>Sol	NA	NA	NA	NA	NA	NA	>Sol		<1
193-39-5	Indeno(1,2,3,c,d)Pyrene	4.2E-1	>Sol	NA	NA	NA	NA	NA	NA	>Sol		<1

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-273-IBX-894

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.