

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

COLLEEN CHAWA, Director

April 30, 2018

BRE Properties, Inc. 525 Market Street, 4th Floor San Francisco, CA 94105 BRE Properties, Inc. 44 Montgomery, Floor 36 San Francisco, CA 94104-4602 SPK Industrial Portfolio LLC c/o EOP-Industrial Portfolio, LLC 222 S. Riverside Plaza, Suite 200 Chicago, IL 60606

F.P. Lathrop

FP and Marcia F. Lathrop, and Sandra Hyde

Spieker Properties LP Address Unknown

Goldsmith Lathrop

FP and Marcia F. Lathrop and Sandra Hyde Trust

Address Unknown Address Unknown

Mr. Michael Park 75 Glen Alpine Road Piedmont, CA 94611

(Sent via electronic mail to: mkparkmd@gmail.com)

Subject:

Case Closure for Fuel Leak Case No. RO0000071 and Geotracker Global ID T0600102203.

Goldsmith Lathrop, 5813-5815 Shellmound St, Emeryville, CA 94608

Dear Ladies and Gentleman:

This letter transmits the enclosed Remedial Action Completion Certificate and Case Closure Summary for the subject leaking underground fuel tank case. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. This Remedial Action Completion Certificate and the case closure summary can also be viewed on the State Water Resources Control Board's GeoTracker website (http://geotracker.waterboards.ca.gov) and the Alameda County Environmental Health website (http://www.acgov.org/aceh/index.htm).

This site is closed with residual contamination that limit future land use to the current commercial land use as a commercial facility. Land use restrictions are described in the attached Case Closure Summary.

If you have any questions, please call Mark Detterman at (510) 567-6876. Thank you.

Sincerely,

Dilan Roe, P.E.

Chief, Land Water Division

Enclosures:

- 1. Remedial Action Completion Certification
- Case Closure Summary

cc w/enc.:

Jim Gribi, Gribi Associates, 1090 Adams Street, Suite K, Benicia, CA 94510, (Sent via

electronic mail to: jgribi@gribiassociates.com)

City of Emeryville, Public Works Department, 1333 Park Avenue, Emeryville CA 94608

(Sent via E-mail to: mroberts@emeryville.org)

Dilan Roe, ACDEH, (Sent via electronic mail to: dilan.roe@acgov.org)

Paresh Khatri, ACDEH; (Sent via electronic mail to: paresh.khatri@acgov.org)

Mark Detterman, ACDEH, (Sent via electronic mail to: mark.detterman@acgov.org)

Electronic File; GeoTracker

.**S** AGENCY

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

COLLEEN CHAWLA, Director

REMEDIAL ACTION COMPLETION CERTIFICATION

April 30, 2018

BRE Properties, Inc. 525 Market Street, 4th Floor San Francisco, CA 94105 BRE Properties, Inc. 44 Montgomery, Floor 36 San Francisco, CA 94104-4602

SPK Industrial Portfolio LLC c/o EOP-Industrial Portfolio, LLC 222 S. Riverside Plaza, Suite 200 Chicago, IL 60606

F.P. Lathrop
Goldsmith Lathrop

FP and Marcia F. Lathrop, and Sandra Hyde FP and Marcia F. Lathrop and Sandra Hyde Trust

Spieker Properties LP Address Unknown

Address Unknown Address Unknown

Mr. Michael Park 75 Glen Alpine Road Piedmont, CA 94611

(Sent via electronic mail to: mkparkmd@gmail.com)

Subject:

Case Closure for Fuel Leak Case RO0000071 and Geotracker Global ID T0600102203,

Goldsmith Lathrop, 5813-5815 Shellmound St, Emeryville, CA 94608

Dear Ladies and Gentleman:

This letter confirms the completion of a site investigation and remedial action for the underground storage tank formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Ronald Browder

Director

Goldsmith Lathrop (T0600102203; RO0000071)

1. CASE INFORMATION

A. Facility/Site Address (Case Name & Address)

Project Name	Address
Goldsmith Lathrop	5813-5815 Shellmound St, Emeryville, CA 94608

B. Case Identification Numbers

Cleanup Oversight Agencies	Case/ID No
Alameda County Local Oversight Program (LOP) - Lead Agency	RO0000071
San Francisco Bay Regional Water Quality Control Board (Region 2)	N/A
State Water Resources Control Board GeoTracker Global ID	T0600102203

C. Lead Agency Information

Agency Name:	Agency Address:	Agency Phone:
Alameda County Department of Environmental Health (ACDEH)	1131 Harbor Bay Parkway, Alameda, CA 94502-6577	(510) 567-6700
Case Worker:	LOP Supervisor:	Land Water Division Chief:
Mark Detterman, PG 4799, CEG 1788	Paresh Khatri	Dilan Roe, PE C73703

D. Responsible Party Information

Responsible Party(ies):	Address:
FP Lathrop, c/o Goldsmith Lathrop	2000 Powell St, Emeryville, CA 94608
FP and Marcia F. Lathrop, and Sandra Hyde Trust c/o FP and Marcia Lathrop and Sandra Hyde	2000 Powell St, Emeryville, CA 94608
Spieker Properties LP	1255 Treat Blvd, Ste 150, Walnut Creek, CA 94597
BRE Properties, Inc	525 Market Street, 4th Floor, San Francisco, CA 94105
BRE Properties, Inc	44 Montgomery, Floor 36, San Francisco, CA 94104
SPK Industrial Portfolio LLC c/o EOP Industrial Portfolio LLC	222 S. Riverside Plaza, Suite 200, Chicago, IL 60606
Michael Park	75 Glen Alpine Road, Piedmont, CA 94611

Goldsmith Lathrop (T0600102203; RO0000071)

2. PROPERTY INFORMATION

A. Assessor Parcel Numbers (APNs)

Current	49-1493-2-3
Historic	N/A

B. Alternate Addresses

N/A

C. Identified Historic Land Use & Operations

Туре	Description
Various commercial uses	The site is located on fill material in the historic Bay margin area in Emeryville. Companies associated with fill generation in the vicinity of the site include Paraffine Companies, Inc (1884 to 1920), Pabco (1920 to 1957), and Fireboard Corporation (1957 to 1968).
	Subsequent to filling, land use at the site has been industrial and commercial. Known land use from 1972 to present has included a construction yard and office for FP Lathrop Construction Company, a Good Guys retail facility, and a sales office by Sherwin Williams Paints.

D. Environmental Cases Associated with Property

Case Type	Oversign		Potential Contaminants of Concern	Status (Open/Closed)
LUST ¹	ACDEH	T0600102203; RO0000071	TPH-g, BTEX, MTBE, Naphthalene	1989/2018
SCP	ACDEH	T0000011073; R00003267	VOCs, SVOCs, TPH, Naphthalene	2018/Present
Other ²	DTSC	N/A	N/A	N/A
Other ³	EPA	N/A	N/A	N/A
Post- Closure ¹	N/A	N/A	N/A	N/A

¹ Refer to the State Water Resources Control Board's GeoTracker database for case information: https://geotracker.waterboards.ca.gov

² Refer to the California Department of Toxics Substances Control Board's (DTSC) Envirostor database for case information: http://www.dtsc.ca.gov/sitecleanup/cleanup_sites_index.cfm

³ Refer to the United States Environmental Protection Agency's (EPA) Site Specific National Cleanup Databases for case information: https://www.epa.gov/cleanups/site-specific-national-cleanup-databases

Goldsmith Lathrop (T0600102203; RO0000071)

3. CASE SUMMARY

A. Reason Case Opened

Fuel Leak Case No Case No. RO0000071 was opened by ACDEH in 1993 to investigate an unauthorized release from a gasoline underground storage tank (UST) that was removed from the site in 1989.

B. Known UST Systems at the Site

UST System Component	Size / Quantity	Material Stored	Status	URF Filing Date:
UST	2,000-gallon	Gasoline	Removed	10/26/1989

C. Unauthorized Release Description

Fuel	release	from	the	gasoline	UST	system.
------	---------	------	-----	----------	-----	---------

D. Site Investigations

Investigation activities were conducted in 1994 to evaluate the extent of petroleum hydrocarbon contamination impacts to soil and groundwater from the gasoline UST release. The investigations included installation of five soil bores (SB-A through SB-E) and one groundwater monitoring well (C-2) in the vicinity and downgradient of the former tank pit for the collection of soil and groundwater samples to delineate the extent of the release and evaluate risk to human health and the environment. Additional soil bores (13, 14, HA8 through HA11) advanced as part of a separate investigation of subsurface contamination on the adjacent property provide additional data delineating the extent of the gasoline UST release at the site.

Additional subsurface investigations have also been conducted at the site from 1994 to present to delineate the extent of petroleum and non-petroleum contamination that has been identified at the site associated with historic fill material and contaminant migration from the adjacent property located at 5800 Christie Avenue. The investigations have included installation of additional soil bores, groundwater monitoring wells, and soil/sub-slab vapor monitoring points for the collection of soil, soil and soil vapor. In 2017 a separate Site Cleanup Program Case (RO0003267) was opened to bifurcate investigation of the contamination associated with the gasoline UST release investigated in 1994 from the petroleum and non-petroleum contamination identified at the site.

E. Remediation

Other than removal of the UST, no remediation was conducted.

Goldsmith Lathrop (T0600102203; R00000071)

3. CASE SUMMARY (CONTINUED)

F. Constituents Evaluated & Residual Contamination Remaining at Closure

Material	/aluated & Residual		OII IXE	manni	ig at c	Media			
Stored/Dispensed in UST System	Analytes	Sampled, Residual	S	GW	sw	SV	SS	IA	OA
Engine Fuels	TDU 1	Sampled	×	×					
☑ Gasoline Fuel	TPH-g ¹	Residual	×	×					
(1, 2, 9, 10, 11, 12, 13, 14)	TPH-d ²	Sampled							
☐ Diesel Fuel	TFTI-U	Residual							
(2, 9, 10)	TPH-mo ³	Sampled							
☐ Jet Fuel	(soil only)	Residual							
(1, 2, 4, 9, 10)	TPH-if ⁴	Sampled							
Heating Oils		Residual							
☐ Kerosene	TPH-k ⁵	Sampled							
(2, 5, 9, 10)	111111	Residual							
☐ Residential	TPH-ss ⁶	Sampled							
Heating Oils	1111-33	Residual							
(2, 3, 9, 10)	TPH-bo ⁷	Sampled							
☐ Commercial &		Residual							
Industrial Heating	TPH- ho ⁸	Sampled							
Oils (1, 2, 3, 7, 9, 10, 15, 16)	111110	Residual							
Other Oils	BTEX9	Sampled	×	×					
		Residual	×	×					
☐ Waste (Used) Oil (1, 2, 3, 9, 10, 15, 16, 17, 18)	Naphthalene ¹⁰	Sampled		×					
(1, 2, 0, 0, 10, 10, 11, 10)		Residual		×					
☐ Hydraulic Oil (8, 16, 17)	MTBE/TBA ¹¹	Sampled		×					
(0, 10, 17)		Residual							
☐ Dielectric Oil	EDB/EDC ¹²	Sampled							
(2, 3, 10, 16, 17)		Residual							
☐ Unknown Oil	Organic Lead ¹³	Sampled							
(1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)		Residual							
	Fuel Oxygenates ¹⁴	Sampled							
Solvents	(DIPE, TAME, EtOH, ETBE)	Residual							
☐ Hydrocarbon	VOCs ¹⁵	Sampled							
Solvents (2, 3, 6, 9, 10)	(full scan)	Residual							
	SVOCs ¹⁶	Sampled							
		Residual							
	PCBs ¹⁷	Sampled							
		Residual							
	Metals ¹⁸ (Cd, Cr, Pb, Ni, Zn)	Sampled							
	(-5, 5, 5, 7, 41)	Residual							

S = Soil, GW = Groundwater, SW = Surface Water, SV = Soil Vapor, SS = Sub-Slab Vapor, IA = Indoor Air, OA = Outdoor Air

Goldsmith Lathrop (T0600102203; RO0000071)

4. CLOSURE SUMMARY

A. Low Threat Closure Policy (LTCP) Evaluation

This UST release case has been evaluated for closure consistent with the State Water Resource Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP) for petroleum related contaminants. ACDEH has determined that the site meets all the LTCP General Criteria and the Media Specific Criteria for Groundwater.

The site does not meet the LTCP Media Specific Criteria for Vapor Intrusion and Outdoor Air due to shallow groundwater that limits a bioattenuation zone to less than 5 feet and precludes the collection of soil vapor data. However, petroleum volatile organic compounds, including naphthalene, in soil and groundwater samples in the vicinity of the former UST were non-detect or detected at trace concentrations and indicate that residual contamination from the gasoline UST release at the site does not pose a vapor intrusion risk at the site or downgradient of the site.

This site also does not meet the Direct Contact and Outdoor Air Media-Specific Criteria due to the lack of analysis in soil for naphthalene at the former gasoline UST location. However, the maximum concentration of TPHg documented in tank excavation spoils at the site was reported to be 23 milligrams per kilogram (mg/kg) in a four-way composite sample. The LUFT manual indicates that naphthalene is present at an average of 0.25% and a maximum of 0.36% in fresh gasoline product. Assuming a four-fold reduction due to compositing, the data indicates that naphthalene may be present at a concentration up to 0.29 mg/kg at the site, which is below the Table 1 criteria for a commercial land use and construction worker exposure. Additionally, under the current land use scenario the direct contact exposure pathways is incomplete as the site is covered with buildings and hardscape.

Refer to Attachments 4 through 7 for detailed information on the LTCP evaluation.

B. Well Status (Groundwater)

No. of Wells Installed: 4	No. of Wells Lost: 0
No. of Wells Destroyed: 0	No. of Wells Retained: Four (Transferred to SCP Case No. RO0003267)

C. Vapor Probe Status

No. of Vapor Probes (VP) Installed: 0	No. of VPs Lost: 0
No. of VPs Destroyed: 0	No. of VPs Retained: 0

D. Waste Removal Status

All investigation derived waste associated with the gasoline UST release was removed from the site.

E. Public Comment

A 60 day public notification period was completed on February 9, 2014. Refer to Attachment 3 for case closure notification information.

T0600102203; RO0000071

Goldsmith Lathrop (T0600102203: RO0000071)

5. ADMINISTRATIVE, INSTITUTIONAL & ENGINEERING CONTROLS

A. Land Use at Time of Closure

At the time of closure the site was developed with a vacant building occupied and an associated parking lot. Shellmound Way borders the property to the north, Shellmound Street to the east, Powell Street to the south, and the property to the immediate west is commercial. Properties to the north, east, south, and west are all commercial, and the site is situated in a commercial district of Emeryville. There were no known plans to redevelop the site at time of closure. Refer to Attachment 1 for the current land use configuration.

B. Administrative Controls

Site Management Requirements: Due to residual petroleum hydrocarbon subsurface contamination, the site has been closed with the following site management requirements. The site management requirements associated with this case are specific to petroleum hydrocarbon contamination related to historic releases from UST systems and do not address other site contamination that may be in the subsurface from historic land use at and in the vicinity of the site.

a. Repair & Maintenance of Existing Site Improvements: Any repair or maintenance activity of existing site improvements in areas of residual contamination requires planning and implementation of appropriate health and safety procedures prior to and during excavation activities. These activities include repair or maintenance of existing foundations, utility lines, hardscape, landscaping or other work occurring beneath the grade level of the existing finished surface.

Each contractor shall be responsible for the safety of its employees and site visitors and must adhere to a site-specific health and safety plan prepared for the work in accordance with California Occupational Safety and Health Administration requirements and use properly trained personnel in accordance with California Code of Regulations, Title 29, Part 1910.120 Hazardous Waste Operations and Emergency Response (HAZWOPER) standards.

Site management requirements associated with this case are specific to petroleum hydrocarbon contamination related to historic releases from UST systems and do not address other site contamination that may be in the subsurface from historic land use at and in the vicinity of the site.

- b. Modifications to Existing Site Improvements: Prior to permitting of any proposed modifications to the existing site improvements that include modifications to the foundation, subsurface utilities and/or hardscape or subsurface work, the property owner and the local building and planning authority with permitting jurisdiction at the site must notify ACDEH as required by Government Code Section 65850.2.2. ACDEH will re-evaluate the site relative to the proposed modifications to assess risk to human health under the proposed changes.
- c. Site Redevelopment. Prior to permitting of any proposed site redevelopment including a change in land use to residential, or other conservative land use, the property owner and the local building and planning authority with permitting jurisdiction at the site must notify ACDEH as required by Government Code Section 65850.2.2. ACDEH will re-evaluate the site relative to the proposed redevelopment to assess risk to human health under the proposed land use scenario from subsurface contamination associated all recognized environmental concerns at the site.

C. Engineering Controls

Not Applicable

D. Institutional Controls

Not Applicable

Goldsmith Lathrop (T0600102203; RO0000071)

5. ADMINISTRATIVE, INSTITUTIONAL & ENGINEERING CONTROLS (CONTINUED)

E. Environmental Due Diligence

ACDEH recommends that during the environmental due diligence process (initiated as part of activities including, but not limited to, property transactions, bank refinancing, and redevelopment) that the site and parcels in the vicinity of the site be evaluated for risk from and exposure to potential chemicals of concern identified at this site.

6. LOCAL AGENCY SIGNATURES

Dilan Roe, PE, C73703	Title: Chief, Land Water Division				
Signature: Zul	Date: 4 30 2018				
Paresh Khatri	LOP Supervisor				
Signature: James -	Date: 4/30/2018				
Mark Detterman, PG 4799, CEG 1788	Title: Senior Hazardous Materials Specialist				
Signature: Make	Date: 4/30/2018				

This Case Closure Summary along with the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. Additional information on the case can be viewed in the online case file. Case files can be viewed over the Internet on the Alameda County Department of Environmental Health website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Both databases should be reviewed to obtain a complete history.

Leaking Underground Storage Tank (LUST) Cleanup Site Case Closure Summary Form Goldsmith Lathrop (T0600102203; R00000071)

ATTACHMENTS

No.	Description	No. of Pages
1	Site Vicinity and Plan Figures and Site Maps	3
2	Responsible Party Information	12
3	Case Closure Public Notification Information	5
4	Geotracker LTCP Evaluation Checklist	2
5	LTCP Media Specific Evaluation - Groundwater	2
6	LTCP Media Specific Evaluation - Vapor Intrusion	2
7	LTCP Media Specific Evaluation - Direct Contact	1
8	Figures with Sampling Locations	2
9	Boring Logs	8
10	Groundwater Data	12
11	Soil Data	7
12	Sensitive Receptor Data	1

T0600102203; RO0000071

Goldsmith Lathrop (T0600102203; RO0000071)

ACRONYMS

ACDEH	Alamada Caunty Danartment of Environmental Health
APN	Alameda County Department of Environmental Health
	Assessor Parcel Number
bgs BTEX	below ground surface
	benzene, toluene, ethylbenzene, xylenes
EDB	ethylene dibromide or 1,2-dichloroethane (1,2-DCA)
EDC	ethylene dichloride
CEG	Certified Engineering Geologist
Cd	cadmium
Cr	chromium
c/o	care of
DIPE	di-isopropyl etherr
DTSC	California Department of Toxic Substances Control
EPA	Environmental Protection Agency
ETBE	Ethyl tert butyl ether
EtOC	ethanol
ft bgs	feet below ground surface
GW	groundwater
IA	indoor Air
ID	Identification
LOP	Local Oversight Program
LTCP	State Water Resources Control Board's Low Threat Closure Policy
LUST	Leaking Underground Storage Tank
MTBE/TBA	methyl tert butyl either/t-Butyl alcohol
Ni	nickel
NA	not analyzed
NR	not required
OA	outdoor air
Pb	lead
PCBs	polychlorinated biphenyls
PE	California Professional Engineer
PG	California Professional Geologist
S	soil
SCP	Site Cleanup Program
SS	sub-slab vapor
SV	soil vapor
SVOCs	semi volatile organic compounds
SW	surface water
TAME	tert amyl methyl ether
TPHbo	
TPHd	total petroleum hydrocarbons as bunker oil
TPHg	total petroleum hydrocarbons as diesel
	total petroleum hydrocarbons as gasoline
TPHho	total petroleum hydrocarbons as hydraulic oil
TPHjf	total petroleum hydrocarbons as jet fuel
TPHk	total petroleum hydrocarbons as kerosene
TPHmo	total petroleum hydrocarbons as motor oil
TPHss	total petroleum hydrocarbons as stoddard solvent
UST	Underground Storage Tank
VOCs	volatile organic compounds
Zn	zinc
mg/kg	milligrams per kilogram
μg/L	microgram per liter
μg/m3	microgram per cubic meter greater than, less than, or greater than or equal to

T0600102203; RO0000071

ATTACHMENT 1

ATTACHMENT 2

Help

New Query

History Value Transfer Map Glossary

Parcel Number:49-1493-2-3 Inactive:N Lien Date:01/01/2017 Owner:PARK MICHAEL

Property Address: 5811 SHELLMOUND ST, EMERYVILLE, CA 94608

Mailing Name		Historical Mailing Address	Document Date	Documer Number		Count	
PARK MICHAEL	<u>List</u> <u>Owners</u>	75 GLEN ALPINE RD , PIEDMONT, CA 94611	07/27/2017	2017- 164232	\$3,500,000	1	9400
BRE PROPERTIES INC c/o ESSEX PROPERTIES TRUST, INC	<u>List</u> <u>Owners</u>	925 E MEADOW DR , PALO ALTO, CA 94303- 4233	04/01/2014	1TRAN- 281661		<u>12</u>	9400
BRE PROPERTIES INC	<u>List</u> <u>Owners</u>	44 MONTGOMERY FL 36, SAN FRANCISCO, CA 94104-4602	06/29/2005	2005- 266595		2	4200
SPK INDUSTRIAL PORTFOLIO LLC c/o PROP TX DEPT (13682)	<u>List</u> <u>Owners</u>	PO BOX A-3879 , CHICAGO, IL 60690	03/01/2002	2TRAN- 61627		1	4200
SPK INDUSTRIAL PORTFOLIO LLC	<u>List</u> <u>Owners</u>	2180 SAND HILL RD , MENLO PARK, CA 94025- 6929		TRAN- 233896		1	<u>4200</u>
SPK INDUSTRIAL PORTFOLIO LLC c/o SARA R STEPPE	<u>List</u> <u>Owners</u>	2180 SAND HILL RD , MENLO PARK, CA 94025- 6929		2001- 225531		1	<u>4200</u>
SPIEKER PROPERTIES L.P. c/o TRUDE HURSH	<u>List</u> <u>Owners</u>	1255 TREAT BLVD STE 150, WALNUT CREEK, CA 94597-7974		1997- 25064		1	<u>4200</u>
LATHROP F P & MARCIA F & HYDE SANDRA L TRS	<u>List</u> <u>Owners</u>	2000 POWELL ST , EMERYVILLE, CA 94608- 1804		1994- 251757		1	<u>4200</u>
LATHROP F P c/o GOLDSMITH & LATHROP	<u>List</u> <u>Owners</u>	2000 POWELL ST , EMERYVILLE, CA 94608- 1804		1971- 36243		1	<u>4200</u>
FIBREBOARD CORPORATION	<u>List</u> <u>Owners</u>	5811 SHELLMOUND ST , EMERYVILLE, CA 94608- 1913		TRAN- 61626		1	<u>4200</u>

All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the

Assessor's knowledge of each property. Caution is advised for use other than its intended purpose.

The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later.

Click <u>here</u> for more information regarding supported browsers.

Copyright © 2001 Alameda County

REBECCA GEBHART, Interim Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

November 30, 2017

BRE Properties, Inc. 525 Market Street, 4th Floor San Francisco, CA 94105 BRE Properties, Inc. 44 Montgomery, Floor 36 San Francisco, CA 94104-4602 SPK Industrial Portfolio LLC c/o EOP-Industrial Portfolio, LLC 222 S. Riverside Plaza, Suite 200 Chicago, IL 60606

F.P. Lathrop Goldsmith Lathrop FP and Marcia F. Lathrop, and Sandra Hyde FP and Marcia F. Lathrop and Sandra Hyde Trust

Spieker Properties LP Address Unknown

Address Unknown

Address Unknown

Subject: Notice of Responsibility; Fuel Leak Case No. RO0000071 and Geotracker Global ID T0600102203, Goldsmith Lathrop, 5813-5815 Shellmound St, Emeryville, CA 94608

Dear Ladies and Gentleman:

In an earlier Notice of Responsibility (NOR), BRE Properties Inc. and SPK Industrial Portfolio LLC (currently EOP-Industrial Portfolio, LLC) were notified that the referenced site had been placed in the Local Oversight Program and that they were named as a Responsible Party for the fuel leak case. In the attached updated NOR, the current property owner has been named an additional Responsible Party for the fuel leak case as defined under 23 C.C.R Sec. 2720. Please see Attachment A – Responsible Parties Data Sheet, which identifies all Responsible Parties and provides background on the unauthorized release and Responsible Party Identification.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Mark E. Detterman, P.G., C.E.G.

Senior Hazardous Materials Specialist

Enclosures:

Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

cc:

Michael Park, 75 Glen Alpine Road, Piedmont, CA 94611; (Sent via electronic mail to:

mkparkmd@gmail.com)

Dilan Roe, ACDEH, (Sent via electronic mail to: dilan.roe@acgov.org)

Paresh Khatri, ACDEH; (Sent via electronic mail to: paresh.khatri@acgov.org)
Mark Detterman, ACDEH, (Sent via electronic mail to: mark.detterman@acgov.org)

Electronic File; GeoTracker

AGENCY REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

November 30, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GOLDSMITH LATHROP 5813 – 5815 SHELLMOUND STREET **EMERYVILLE, CA 94608**

Local ID:

RO0000071

Related iD: RWQCB ID: STID 5557 01-2393

Globai ID:

T0600102203

Responsible Party:

SPK INDUSTRIAL PORTFOLIO LLC C/O EOP-INDUSTRIAL PORTFOLIO, LLC 222 S. RIVERSIDE PLAZA, SUITE 200 CHICAGO, IL 50606

Date First Reported:

9/11/1989

Substance:

8006619 Gasoline-Automotive (motor gasoline

and additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified SPK INDUSTRIAL PORTFOLIO LLC, C/O EOP-INDUSTRIAL PORTFOLIO, LLC as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-5876 if you have questions regarding your site.

RONALD BROWDER, Director

Date: 12-01-7019

Action: Update

ADD

Reason:

Contract Project Director

Attachment A: Responsible Parties Data Sheet

cc: Cindy Davis, SWRC8 (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

AGENCY

REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

November 30, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GOLDSMITH LATHROP 5813 – 5815 SHELLMOUND STREET EMERYVILLE, CA 94608

Local ID:

RO0000071

Related ID:

STID 5557

RWQCB ID:

01-2393

Global ID:

T0600102203

Responsible Party:

BRE PROPERTIES, INC 525 MARKET STREET, FL 4 SAN FRANCISCO, CA 94105 Date First Reported:

9/11/1989

Substance:

8006619 Gasoline-Automotive (motor gasoline

and additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified BRE PROPERTIES, INC as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-5876 if you have questions regarding your site.

RONALD BROWDER, Director

Action:

Update ADD

Reason:

Contract Project Director

Attachment A: Responsible Parties Data Sheet

cc: Clndy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

Date:

AGENCY

REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

November 30, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GOLDSMITH LATHROP 5813 - 5815 SHELLMOUND STREET EWERYVILLE, CA 94508

Local ID:

RO0000071

Related ID: RWOCB ID: STID 5557 01-2393

Global ID:

T0600102203

Responsible Party:

BRE PROPERTIES, INC 44 MONTGOMERY, FL 36 SAN FRANCISCO, CA 94104 Date First Reported:

9/11/1989

Substance:

8006619 Gasoline-Automotive (motor gasoline

and additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified BRE PROPERTIES, INC as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-5876 if you have questions regarding your site.

RONALD BROWDER, Director Contract Project Director

Action: Update

ADD

Reason:

Attachment A: Responsible Parties Data Sheet

cc: Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

AGENCY

REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #: 7014 2120 0000 5558 9962

November 30, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GOLDSMITH LATHROP 5813 – 5815 SHELLMOUND STREET EMERYVILLE, CA 94608

Local JD:

RO0000071

Related ID: RWQCB ID: **STID 5557**

01-2393

Global ID:

T0600102203

Responsible Party:

MICHAEL PARK **75 GLEN ALPINE ROAD** PIEDMONT, CA 94611

Date First Reported:

9/11/1989

Substance:

8006619 Gasoline-Automotive (motor gasoline

and additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified MICHAEL PARK as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-5876 if you have questions regarding your site.

RONALD BROWDER, Director Contract Project Director

Action:

Update

ADD

Reason:

Attachment A: Responsible Parties Data Sheet

cc: Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

AGENCY

REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

December 1, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GOLDSMITH LATHROP 5813 - 5815 SHELLMOUND STREET EMERYVILLE, CA 94608

Local ID:

RO0000071

Related ID:

STID 5557

RWOCB ID:

01-2393

Global ID:

T0600102203

Responsible Party:

SPIEKER PROPERTIES, LP ADDRESS UNKNOWN

Date First Reported:

9/11/1989

Substance:

8006619 Gasoline-Automotive (motor gasoline

and additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified SPIEKER PROPERTIES, LP as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-5876 if you have questions regarding your site.

RONALD BROWDER, Director

Date:

Action:

Update

ADD

Reason:

Contract Project Director

Attachment A: Responsible Parties Data Sheet

cc: Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

AGENCY

REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

November 30, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GOLDSMITH LATHROP 5813 - 5815 SHELLMOUND STREET EMERYVILLE, CA 94608

Local ID:

RO0000071

Related ID: RWQCB ID: **STID 5557** 01-2393

Global ID:

T0600102203

Responsible Party:

FP LATHROP c/o GOLDSMITH LATHROP ADDRESS UNKNOWN

Date First Reported:

9/11/1989

Substance:

8006619 Gasoline-Automotive (motor gasoline

and additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified FP LATHROP, C/O GOLDSMITH LATHROP as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-5876 if you have questions regarding your site.

RONALD BROWDER, Director Contract Project Director

Action:

Reason:

Update

ADD

Attachment A: Responsible Parties Data Sheet

cc: Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

Date:

AGENCY

REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

November 30, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GOLDSWITH LATHROP 5813 - 5815 SHELLMOUND STREET EMERYVILLE, CA 94608

Local ID:

RO0000071

Related ID: RWQCB ID: STID 5557 01-2393

Global ID:

T0600102203

Responsible Party:

FP AND MARCIA LATHROP AND SANDRA HYDE TRUST c/o FP AND MARCIA LATHROP AND SANDRA HYDE ADDRESS UNKNOWN!

Date First Reported:

9/11/1989

Substance:

8006619 Gasoline-Automotive (motor gasoline

and additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified FP AND MARCIA LATHROP AND SANDRA HYDE TRUST C/O FP AND MARCIA LATHROP AND SANDRA HYDE as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change,

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-5876 if you have questions regarding your site.

RONALD BROWDER, Director

Action: Update

Reason:

ADD

Contract Project Director

OC_Date: 12-01-7017

ALAMEDA COUNTY DEPARTMENT OF ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

November 30, 2017

Site Name & Address:

GOLDSMITH LATHROP 5813 – 5815 SHELLMOUND STREET EMERYVILLE, CA 94608 Local ID: R00000071
Related ID: STID 5557
RWQC8 ID: 01-2393

Global ID:

T0600102203

All Responsible Partles
RP has been named a Primary RP – FP LATHROP C/O GOLDSMITH LATHROP
Re has been harned a Primary RP - PP DATAROP C/O GOLDSWITH LATHROP
ADDRESS UNKNOWN No Phone Number Listed
RP has been named a Primary RP – FP AND MARCIA LATHROP, AND SANDRA HYDE TRUST ATTN: FP AND MARCIA LATHROP, AND SANDRA HYDE ADDRESS UNKNWON No Phone Number Listed
RP has been named a Primary RP – SPIEKER PROPERTIES, LP
ADDRESS UNKNOWN No Phone Number Listed
RP has been named a Primary RP – SPK INDUSTRIAL PORTFOLIO LLC, C/O EOP-INDUSTRIAL PORTFOLIO, LLC
222 S. RIVERSIDE PLAZA, SUITE 200 CHICAGO, IL 60606 No Phone Number Listed
RP has been named a Primary RP – BRE PROPERTIES, INC.
525 MARKET STREET, FL 4 SAN FRANCISCO, CA 94105 No Phone Number Listed
RP has been named a Primary RP - BRE PROPERTIES, INC.
44 MONTGOMERY, FL 36 SAN FRANCISO, CA 94104 No Phone Number Listed
RP has been named a Primary RP – MICHAEL PARK
75 GLEN APLINE RAOD PIEDMONT, CA 94611 No Phone Number Listed

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET (Continued)

November 30, 2017

Responsible Party Identification Background

Alameda County Department of Environmental Health (ACDEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party four ways. An RP can be:

- 1. "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

Existence of Unauthorized Release

On October 26, 1989, one 2,000-gallon gasoline underground storage tank (UST) was removed from the subject site. Two soil samples were collected from the tank excavation, and a four-point stockpile sample was collected. Concentrations up to 23 milligrams per kilogram (mg/kg) Total Petroleum Hydrocarbons (TPH) as gasoline and up to 0.280 mg/kg total xylenes were detected in soil. A grab groundwater sample was also collected in the tank excavation. Concentrations up to 2,800 micrograms per liter (µg/l) TPH as gasoline, 12 µg/l benzene, 240 µg/l toluene, 61 µg/l ethylbenzene, and 400 µg/l total xylenes were detected in groundwater. The data indicates that than an unauthorized release had occurred.

Responsible Party Identification

F. P. Lathrop / Goldsmith Lathrop (including F.P. and Marcia Lathrop and Sandra Hyde Trust), purchased the property in March 1971. F.P. Lathrop / Goldsmith Lathrop is a responsible party for the site because they owned an UST used for the storage of a hazardous substance (Definition 1); in the case of a UST no longer in use, they owned the UST immediately before the discontinuation of use (Definition 2), they owned the property where an unauthorized release from an UST occurred (Definition 3), and they had control of the UST at the time of or following an unauthorized release (Definition 4).

Spieker Properties L. P. purchased the property in January 1997. The Spieker Properties L.P. is a responsible party for the site because it owned the property where an unauthorized release has occurred (Definition 3).

SPK Industrial Portfolio LLC (currently EOP-Industrial Portfolio, LLC) purchased or received the property in June 2001. The SPK Industrial Portfolio LLC (currently EOP-Industrial Portfolio, LLC) is a responsible party for the site because it owned the property where an unauthorized release has occurred (Definition 3).

BRE Properties, Inc, including c/o Essex Properties Trust, Inc., purchased or received the property in June 2005. The BRE Properties, including c/o Essex Properties Trust, Inc., is a responsible party for the site because it owned the property where an unauthorized release has occurred (Definition 3).

Michael Park purchased or received the property in July 2017. Michael Park is a responsible party for the site because he owned the property where an unauthorized release has occurred (Definition 3).

ATTACHMENT 3

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

INVITATION TO COMMENT - POTENTIAL CASE CLOSURE

Goldsmith Lathrop 5813 – 5815 Shellmound Street, Emeryville, 94608 FUEL LEAK CASE RO0000071 GEOTRACKER GLOBAL ID T0600102203

December 6, 2013

The above referenced site is a fuel leak case that is under the regulatory oversight of the Alameda County Environmental Health (ACEH) Local Oversight Program for the investigation and cleanup of a release of petroleum hydrocarbons from an underground storage tank (UST) system. Site investigation and cleanup activities associated with the UST have been completed and the site has been evaluated in accordance with the State Water Resources Control Board Low-Threat Closure Policy. The site appears to meet all of the criteria in the Low-threat Closure Policy. Therefore, ACEH is considering closure of the fuel leak case. Please be aware that the closure is specifically limited to contamination associated with the former UST and contamination from other sources is excluded from this closure.

This notice is being sent to the current landowner in compliance with Health and Safety Code Section 25295.40. It is also being sent to the current occupants and landowners of adjacent properties and known interested parties for this site.

The public is invited to review and comment on the potential closure of the fuel leak case. The entire case file can be viewed over the Internet on the ACEH website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.swrcb.ca.gov). Please send written comments to Mark Detterman at the address below; all comments will be forwarded to the responsible parties. Comments received by February 9, 2014 will be considered and responded to prior to a final determination on the proposed case closure.

If you have comments or questions regarding this site, please contact the ACEH caseworker, Mark Detterman at 510-567-6876 or by email at mark.detterman@acgov.org. Please refer to ACEH case RO0000067 in any correspondence.

AG CCRP PUBLIC MARKET L P Parcel #: 49-1556-2 2000 AVENUE OF THE STARS LOS ANGELES CA 90067

CITY OF EMERYVILLE Parcel #: 49-1321-1-2 1333 PARK AVE EMERYVILLE CA 94608

RESIDENT Parcel #: 49-1321-1-2 1535 POWELL ST EMERYVILLE CA 94608

RESIDENT Parcel #: 49-1493-11 5800 SHELLMOUND ST EMERYVILLE CA 94608

SHELLMOUND CHRISTIE Parcel #: 49-1493-6 5850 SHELLMOUND ST EMERYVILLE CA 94608 BRE PROPERTIES INC Parcel #: 49-1493-2-3 525 MARKET ST 4TH FL SAN FRANCISCO CA 94105

EMERYVILLE HOTEL Parcel #: 49-1515-7-5 400 S EL CAMINO REAL #200 EMERYVILLE CA 94402

RESIDENT Parcel #: 49-1493-2-3 5811 SHELLMOUND ST EMERYVILLE CA 94608

RESIDENT Parcel #: 49-1556-2 BAY ST EMERYVILLE CA 94608 CHRISTIE AVE LLC Parcel #: 49-1493-7-4 640 LENFEST RD SAN JOSE CA 95133

EMERYVILLE LLC Parcel #: 49-1493-11 71 S WACKER DR CHICAGO IL 60606

RESIDENT Parcel #: 49-1493-7-4 5800 CHRISTIE AVE EMERYVILLE CA 94608

RESIDENT Parcel #: 49-1515-7-5 1603 POWELL ST EMERYVILLE CA 94608 East Bay Municipal Utility District Chandra Johannesson P.O. Box 24055, Oakland, CA 94623

cjohanne@ebmud.com

City of Emeryville Public Works Department Michael Roberts 1333 Park Avenue Emeryville CA 94608

mroberts@emeryville.org

City of Emeryville Planning Division 1333 Park Avenue Emeryville CA 94608

City of Emeryville Nancy Humphrey Environmental Programs Supervisor 1333 Park Avenue Emeryville CA 94608

nhumphrey@emeryville.org nhumphrey@ci.emeryville.ca.us

Regional Water Quality Control Board Laurent Meillier San Francisco Bay Region 1515 Clay St, Ste 1400 Oakland, CA 94612

laurent.meillier@waterboards.co.gov

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 6, 2013

BRE Properties, Inc. 525 Market Street, 4th FI San Francisco, CA 94105 SPK Industrial Portfolio LLC c/o Prop Tax Dept. PO Box A-3879

Chicago, IL 60690

F.P. Lathrop Goldsmith Lathrop Address Unknown FP and Marcia F. and Sandra Hyde FP and Marcia F. and Sandra Hyde Trust

Address Unknown

Subject:

Public Participation Notification for Case Closure Consideration for Fuel Leak Case No. RO0000071 and Geotracker Global ID T0600102203, Goldsmith Lathrop, 5813-5815

Shellmound St, Emeryville, CA 94608

Dear Ladies and Gentleman:

Alameda County Environmental Health (ACEH) is reviewing the fuel case file for the above referenced site for potential case closure. As you are aware a site investigation and groundwater monitoring for underground storage tank leaks has been performed at the subject property to which you are named as the primary or active responsible party. Please be aware that the closure is specifically limited to contamination associated with the former UST. Contamination from other sources is excluded from this closure and will be referred to a new case number.

List of Landowners Form

Pursuant to Section 25297.15 (a), Alameda County Environmental Health (ACEH), the local agency, shall not consider cleanup or site closure proposals from the primary or active responsible party, issue a closure letter, or make a determination that no further action is required with respect to a site upon which there was an unauthorized release of hazardous substances from an underground storage tank subject to this chapter unless all current record owners of fee title to the site of the proposed action have been notified of the proposed action by the primary or active responsible party. ACEH is required to notify the primary or active responsible party of their requirement to certify in writing to the local agency that the notification requirement in the above-mentioned regulation has been satisfied and to provide the local agency with a complete mailing list of all record fee title owners.

To satisfy this requirement, please complete the enclosed *List of Landowners Form*, and mail or e-mail it back to ACEH by the date identified below. Also your comments, if any, must be considered prior to the proposed closure. Please respond within 30 days from the date of this letter for your comments to be considered.

Public Participation

Public participation is a requirement for the Corrective Action Plan and case closure process. In order to notify potentially affected members of the public of the potential fuel leak case closure, ACEH has distributed the attached *Notification of Potential Case Closure* to addresses in the immediate vicinity. The *Notification of Potential Case Closure* requests that landowners or residents submit any comments or questions to ACEH regarding potential case closure by February 9, 2014. ACEH will consider all comments from the public prior to potential case closure.

Ladies and Gentleman RO00000071 December 6, 2013, Page 2

Request for Waste Removal

Local Oversight Programs are required by the State's Low Threat Closure Policy (LTCP) to issue a uniform closure letter within 30 days from the end of the public comment period for case closures. Normally this includes well destruction and disposal of any investigation or destruction related wastes; however, because this site will contain significant residual contamination that does not appear to be related to the former UST, ACEH is limiting this request to the removal of any remaining investigation derived waste. ACEH specifically requests that the wells remain for future site investigations unrelated to the former UST.

Therefore, in order to meet the 30 day timeframe ACEH requests that waste (as defined by the LTCP) is removed from the site and appropriate documentation be submitted by the date identified below. After written ACEH concurrence (e-mail or other) that there have been no public comments, and provided ACEH receives the required List of Landowners Form and confirmation of waste removal as is described above, ACEH would proceed with closure of the fuel leak case.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

- December 9, 2013 Public Comment Period Begins
- January 8, 2014 Return List of Landowner Form
 File to be named: RO71 LNDOWNR F yyyy-mm-dd
- January 8, 2014 Confirmation of Waste Removal
- February 9, 2014 Public Comment Period Ends
- 4 Weeks After Close of Public Comment Period ACEH issues uniform closure letter if all required documents are submitted

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Online case files are available for review at the following website: http://www.acgov.org/aceh/index.htm.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Digitally signed by Mark Detterman DN: cn=Mark Detterman, o, ou, email=mark.detterman@acgov.org, c=US Date: 2013.12.06 13:59:32 -08'00'

Mark E. Detterman, PG, CEG

Senior Hazardous Materials Specialist

Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements/Obligations &

Electronic Report Upload (ftp) Instructions

Attachment A - Invitation to Comment - Potential Case Closure

Attachment B - List of Landowners Form

Attachment C – Mailing List

cc: Treadwell & Rollo, 555 Montgomery Street, Suite 300, San Francisco, CA 94111

Dilan Roe (sent via electronic mail to dilan.roe@acgov.org)

Mark Detterman, ACEH, (sent via electronic mail to mark.detterman@acgov.org)

Geotracker, Electronic File

ATTACHMENT 4

Regulator Tools	Reports	⇔ Other Tools	*** GAMA			\square	Contact ♠Log	gout Qu
GOLDSMITH LATHROP	(T0600102203) -	MAP THIS SITE						PUBLIC F
5813-5815 SHELLMOUN EMERYVILLE , CA 94606 ALAMEDA COUNTY LUST CLEANUP SITE (INFO) STATUS: OPEN - ELIGIBLE FO	В				HT AGENCIES .OP (LEAD) - CASE #: ROI Y RWQGB (REGION 2) - C			
■ Activities Report	② Documents /	Data @ Enviro	nmental Cond	itions 🌼 Ad	min 🔟 Fundin	ng ⊞ Case	Reviews	
					TH THIS CASE - SHO			
			-		1/2018 6:08:06 PM - HIST			
CLOSURE POLICY	THIS V	ERSION IS FINAL	L AS OF 4/21	/2018	CHECKLIST INITIATI	ED ON 8/9/2013		POLICY HISTOR
General Criteria - The							YES	
a. Is the unauthorized rel Name of Water System EBMUD		the service area of a p	ublic water syste	m?				⊕ YES ○ N
b. The unauthorized relea	ase consists only of	petroleum (info).						⊕ YES ○ N
c. The unauthorized ("pri	•		een stopped.					● YES O N
d. Free product has been	removed to the ma	kimum extent practical	ole <u>(info)</u> .			O FP	Not Encountered	⊕ YES ○ N
e. A conceptual site mod	el that assesses the	nature, extent, and mo	bility of the relea	se has been develo	ped <u>(info)</u>			● YES O N
f. Secondary source has	been removed to the	e extent practicable (in	<u>fo)</u> .					⊕ YES O N
g. Soil or groundwater ha	s been tested for M	TBE and results report	ed in accordance	with Health and Sa	fety Code Section 2529	96.15.	O Not Required	● YES O N
h. Does a nuisance exist,	as defined by Water	Code section 13050						O YES N
Media-Specific Crite meets all of the addition	onal characteristic	s of one of the five o	lasses of sites			or decreasing in a		YES
EXEMPTION - Soil Only (-						O YES 💿 N
1.1 - The contaminant plo				oth There is no fro	a product. The pearest	ovinting water num		● YES ○ N
surface water body is >2	50 feet from the defi	ned plume boundary.						● YES ○ N
2. Media Specific Crite specific conditions sai	tisfy items 2a, 2b, o	or 2c - CLEAR SECTION A		e is considered lo	w-threat for the vapo	or-intrusion-to-air		NO
EXEMPTION - Active Co								O YES ® N
Does the site meet any of ADDITIONAL QUESTIONS								O YES ()
Soil Gas Samples : O No Soil Gas Samp			int do not meet	no poney enterior.				
Exposure Type : O Residential C Free Product :	ommercial							
O In Groundwater	O In Soil O Unkno	own						
TPH in the Bioattenuat ○≥ 100 mg/kg ○ Bioattenuation Zone The	Unknown O Soil s	amples not taken at tw	o depths within	5 ft. zone (only for S	Scenario 4 with BioZone	e)		
	one) O≥5 Feet an	d < 10 Feet O≥ 10 F	eet and < 30 Fee	t O≥30 Feet C	30ft BioZone Compro	omised TPH > 100r	ng/kg 🔘 Unknow	'n
● No O₂ Data O O								
Benzene in Groundwat O ≥ 100 μg/l and < 1		Oug/L Ottoknown						
Soil Gas Benzene :			(_3	000 un (m ³ 1 - 00	0,000 µg/m³ O≥280	n noo ug/3 🙉 u	Inknown	
Soil Gas EthylBenzene	:							DOWN.
Soil Gas Naphthalene :					m³ and < 3,600,000 µg			IOWIT
U ≥ 93 μg/m³ and < :	310 μg/m³ U ≥ 31	υ μg/m° and < 93,000 μ	µg/m° U≥93,i	υψ0 μg/m° and < 31	0,000 µg/m³ O≥ 310	u,u00 μg/m° 🖲 Մ	nknown	
3. Media Specific Crite meets 1, 2, or 3 below.			posure - The s	ite is considered k	ow-threat for direct of	contact and outde	oor air exposure i	fit NO
EXEMPTION - The upper	10 feet of soil is fre	ee of petroleum contar	nination				1	O YES ® N
Does the site meet any o	f the Direct Contact	and Outdoor Air Expo	sure criteria scer	narios?				O YES ® N
ADDITIONAL QUESTION:	S - Please indicate o	nly those conditions t	hat do not meet t	he policy criteria:				
Exposure Type: O Residential O C	ommercial O Utilir	ty Ŵorker						
Petroleum Constituent		East has Ollete	n					
O≤5 Feet bgs O: Soil Concentrations of	=	Feet bgs O Unknow	11					
O > 1.9 mg/kg and ≤	2.8 mg/kg O > 2.8	8 mg/kg and ≤ 8.2 mg/	kg O > 8.2 mg	/kg and ≤ 12 mg/kg	○ > 12 mg/kg and :	≤ 14 mg/kg	14 mg/kg O Unki	nown
Soil Concentrations of	LtnylBenzene :							

Attachment 5: LTCP Media Specific Evaluation - Groundwater

	LTCP G	ROUNDWATE	R SPECIFIC	CRITERIA		
			Scenario			
Site has not Scenario 5:	t affected groundwater; This case should be	X_Scenar closed in spit	i o 1 ; Sce te of not meet	nario 2; <u> </u>	Scenario 3; __ dwater specific	Scenario 4; c media criteria
		n Criteria: Sh				
Site Spe	ecific Data	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Plume Length	< 25 feet	<100 feet	<250 feet	<250 feet	<1,000 feet	
Free Product	No free product	No free product	No free product	Removed to maximum extent practicable	No free product	The site does not
Plume Stable or Decreasing	Stable or decreasing	Stable or decreasing	Stable or decreasing	Stable or decreasing for minimum of 5 years	Stable or decreasing	meet scenarios 1 through 4; however, a determination been made that
Distance to Nearest Water Supply Well (from plume boundary)	> 2,000 feet	>250 feet	>1,000 feet	>1,000 feet	>1,000 feet	reasonably expected future scenarios, the
Distance to Nearest Surface Water Body (from plume boundary)	Downgradient: 1,600 feet Cross Gradient: 1,320 feet Upgradient: > 9,500 feet	>250 feet	>1,000 feet	>1,000 feet	>1,000 feet	contaminant plume poses a low threat to human health and safety and to the environment and water quality
Benzene Concentrations (µg/I)	Historic Max: <0.5 Current Max: <0.5	No criteria	<3,000	<1,000	<1,000	objectives will be achieved within a reasonable time
MTBE Concentrations (µg/l)	Historic Max: <0.2 Current Max: <0.2	No criteria	<1,000	<1,000	<1,000	frame.
Property Owner Willing to Accept a Land Use Restriction	Not applicable	Not applicable	Not applicable	Yes	Not applicable	

Attachment 5: LTCP Media Specific Evaluation - Groundwater

	LTCP GROUNDWATER SPECIFIC CRITERIA (continued)
	Analysis
Plume Length	The extent of petroleum hydrocarbon contamination impacts to groundwater from the gasoline UST release was defined by grab groundwater samples collected from soil bores (SB-A through SB-E) and groundwater samples collected from monitoring well (C-2) located in the vicinity and downgradient of the former tank pit. Additional soil bores (13, 14, HA8 through HA11) advanced as part of a separate investigation of subsurface contamination on the adjacent property provide additional data delineating the extent of the gasoline UST release at the site. Based on this data the contaminant plume that exceeds water quality objectives is less than approximately 25 feet from the edge of the plume.
Free Product	Not observed at site.
Plume Stability	The plume is stable in aerial extent (i.e., the contaminant mass has expanded to its maximum extent defined as the distance from the release where attenuation exceeds migration.)
Water Supply Wells	An Alameda County Public Works Agency (ACPWA) well survey indicate no public water supply wells, irrigation wells within 2,000 feet of the site. The well survey results from the GeoTracker Groundwater Ambient Monitoring Assessment (GAMA) website indicates there are no public water supply wells, irrigation wells, Department of Water Resources (DWR) wells, California Department of Public Health wells, or Department of Pesticide Regulation wells located within a 2,000 foot radius of the site.
Surface Water Bodies	San Francisco Bay is downgradient to the southwest at an approximate distance of 1,600 feet, and 1,320 feet cross-gradient to the northwest. No creeks are upgradient for at least a distance greater than 9,500 feet.

Attachment 6: LTCP Media Specific Evaluation - Vapor Intrusion

		LTCF	VAPOR S	PECIFIC CRI	TERIA							
			Closure	Scenario								
Exemption	Exemption: Active fueling station exempt from vapor specific criteria;											
	l; Scenario 2 with bioattenuati Exposure cor X Case clos	on zone; ntrolled throused in spite	Site specific ugh use of n of not mee	c risk assessm nitigation mea- ting the vapo	nent demons sures or insti or specific m	trates huma itutional con nedia criteri	n health is p trols;					
Evaluation Criteria: Shading indicates criteria met.												
Site Specif	Site Specific Data Scenario S											
Unweathered LNAPL	No LNAPL	LNAPL in gw	LNAPL in soil	No LNAPL	No LNAPL	No LNAPL	No criteria	No criteria				
Thickness of Bioattenuation Zone Beneath Foundation	< 5 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	≥5 feet	No criteria	≥ 5 feet				
Depth to Shallowest Groundwater	3.33 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	≥ 5 feet	≥ 5 feet	≥ 5 feet				
Total TPHg & TPHd in Soil in Bioattenuation Zone	23 mg/kg (tank pit water)	<100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	No criteria	<100 mg/kg				
Maximum Current Benzene Concentration in Groundwater	32 µg/L (tank pit water)	No criteria	No criteria	<100 µg/L	≥100 and <1,000 µg/L	<1,000 µg/L	No criteria	No criteria				
Oxygen Data in Bioattenuation Zone	Not Analyzed	No criteria	No criteria	No oxygen data or <4%	No oxygen data or <4%	≥4%	No criteria	≥4% at bottom of zone				
Soil Vapor Depth Beneath Foundation	Not Analyzed	No criteria	No criteria	No criteria	No criteria	No criteria	5 feet	5 feet				
Benzene Concentrations (µg/m³)	Historic Max: Not Analyzed Current Max: Not Analyzed	No criteria	No criteria	No criteria	No criteria	No criteria	Res: < 85; Com: < 280	Res: < 85K; Com: < 280K				
Ethylbenzene Concentrations (µg/m³)	Historic Max: Not Analyzed Current Max: Not Analyzed	No criteria	No criteria	No criteria	No criteria	No criteria	Res: < 1,100; Com: < 3,600	Res: < 1,100K; Com: < 3,600K				
	Historic Max:						Res:	Res:				

Not Analyzed

Current Max:

Not Analyzed

No

criteria

No

criteria

No criteria

Naphthalene

 $(\mu g/m^3)$

Concentrations

No

criteria

No

criteria

< 93K;

Com:

< 310K

< 93;

Com:

< 310

Attachment 6: LTCP Media Specific Evaluation - Vapor Intrusion

	LTCP VAPOR SPECIFIC CRITERIA (continued)									
	Vapor Intrusion to Indoor Air Analysis									
Onsite	The site does not meet the LTCP Media Specific Criteria for Vapor Intrusion and Outdoor Air due to shallow groundwater that limits a bioattenuation zone to less than 5 feet and precludes the collection of soil vapor data. However, petroleum volatile organic compounds in soil and groundwater samples in the vicinity of the former UST were non-detect or detected at trace concentrations.									
	The highest reported soil concentration of Total Petroleum Hydrocarbons as gasoline (TPHg) in the vicinity of the former UST was 23 milligrams per kilogram (mg/kg) contained in a four-way composite soil sample collected at the time of the tank removal. Benzene, toluene, and ethylbenzene concentrations in the composite sample were reported to be less than 0.050 milligrams per kilogram (mg/kg), whereas total xylenes were reported to be 0.28 mg/kg. TPHg concentrations in the tank sidewall soil samples were reported to be less than 1.0 mg/kg, and BTEX concentrations in tank sidewall soil samples were reported to be less than 0.005 mg/kg. The samples were collected just above groundwater. Subsequent soil samples collected around the former UST location at a depth of five or six feet below grade surface (bgs) in soil bores SB-A, SB-B, SB-C, SB-D, and SB-E indicate the hydrocarbon contamination from the former UST was not extensive. Concentrations of up TPHg up to 1.1 milligrams per kilogram (mg/kg) and BTEX less than 0.0025 mg/kg were reported from these bores.									
	Benzene concentrations in the former tank excavation was reported to be 32 micrograms per liter (μ g/l). Benzene, naphthalene and ethylbenzene concentrations in groundwater samples collected from downgradient well C-2 had maximum concentrations of 1.1, 2.0 and 11 μ g/L, respectively.									
	Based on the low levels of petroleum VOCs in soil and groundwater and the land use as a parking lot at the time of closure in the vicinity of the former tank pit, the gasoline UST release does not pose a vapor intrusion risk at the site.									
Offsite	The petroleum hydrocarbon plume from the former gasoline UST does not extend offsite.									

T0600102203; RO0000071

Attachment 7 - Direct Contact Evaluation and Data

LTCP DIRECT CONTACT AND OUTDOOR AIR EXPOSURE CRITERIA

Closure Scenario

__ Exemption (no petroleum hydrocarbons in upper 10 feet); __ Maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1 below; __ Site-specific risk assessment; __ A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health; __ A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health as a result of controlling exposure through the use of mitigation measures or through the use of institutional controls; X_This case should be closed in spite of not meeting the direct contact and outdoor air specific media criteria.

Evaluation	Criteria:	Bold	indicates	criteria met.
------------	-----------	------	-----------	---------------

Are maximum o	oncentrations les	s than those in	Yes (current commercial land use scenario)					
		Res	idential	Commerc	ial/Industrial	Utility Worker		
Cons	tituent	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 10 feet bgs (mg/kg)		
Site Maximum	Benzene	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
LTCP Criteria	Benzene	≤1.9	≤2.8	≤8.2	≤12	≤14		
Site Maximum	Ethylbenzene	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
LTCP Criteria	Ethylbenzene	≤21	≤32	≤89	≤134	≤314		
Site Maximum	Naphthalene	NA	NA	NA	NA	NA		
LTCP Criteria	Naphthalene	≤9.7	≤9.7	≤45	≤45	≤219		
Site Maximum	PAHs	NR	NR	NR	NR	NRA		
LTCP Criteria	PAHs	≤0.063	NR	≤0.68	NR	≤4.5		

Direct Contact and Outdoor Air Analysis

This site does not meet this LTCP criterion due to the lack of analysis in soil for naphthalene. Analysis for poly-aromatic hydrocarbons (PAHs) is not necessary under the LTCP for a former gasoline UST.

Onsite

The maximum concentration of TPHg documented in tank excavation spoils at the site is reported to be 23 mg/kg in a four-way composite sample. Because there is no documentation that the soil was removed from the site and disposed offsite, ACDEH assumes the soil was returned to the excavation. The LUFT manual indicates that naphthalene is present at an average of 0.25% and a maximum of 0.36% in fresh gasoline product. Assuming a four-fold reduction due to compositing, would indicate that naphthalene may be present at a concentration up to 0.29 mg/kg at the site. This is below the Table 1 criteria for a commercial facility.

Additionally, under the current land use, most of the site is paved with minor landscaped areas near the site boundaries resulting in a low potential for direct contact exposure under the current land use. Excavation or construction activities in areas of potential residual contamination will be managed with a land use restriction, and require planning and implementation of appropriate health and safety procedures by the responsible party, or current property owner, prior to and during excavation and construction activities.

Offsite

The petroleum hydrocarbon soil contamination does not extend offsite.

L			R	ORING LOG							- 1	-	OD 4
ł	Client: Crosby, Heafey, Roach, and May Project No: Phase Task 000								ion 58 1 ce Elev. J		Borin mound		SB-A t, Emeryville, CA Page 1 of 1
Depth Feet	Blow Count	Sample	Interval		Lithologic Descriptio			TPHg (ppm)	Graphic Log	Bo Com Gra	ring oletion ohics	Depth	Additional Comments
5	Ground Surface			ASPHALT Silty CLAY; damp; 20% estimated hy	(CL); Grayish silt, 80% cla /draulic cond	green; y; Low uctivity	soft;					5	
10	3 2 1			Organic CLA wet; 60% cla estimated by	Y; (OL); Black ay, 40% silt; draulic condu	; very s Low ctivity.	oft;					10	Bottom of boring
Dril	ler Soils Exp		ration		Drilling Star					Note	s: Pror	erty l	ine west of tank
										-			
War	ter-Bearing Zone	8 _			Grout Type	Por	tland '	Type I	///	_			

_										
	nt: Crosby, act No:	He		ORING LOG loach, and l Phase	May Task 000		ion 58 1 ce Elev. (SB-B t, Emeryville, CA Page 1 of 1
Depth Feet	Blow Count	Sample	Interval		Lithologic Description	TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth	Additional Comments
5	Ground Surfa	A		conductivity	; (MH); Dark grey; very ow plasticity; 20% clay, we estimated hydraulic /. Y: (OL); Black; very soft; asticity; 60% clay, 40% mated hydraulic				5	
15	P								15	Bottom of boring
Dril			ration		Drilling Started 9/22/9	4		Notes: Imm	ediate	ely west of tanks
Log	ged By <u>NSIV</u>	_		<u>.</u>	Drilling Completed 9/2			_		
Wa	ter-Bearing Zone	25			Grout Type Portland	Type	1/11			11

Clien Proje	t: Crosby,	He		ORING LOG oach, and N Phase		000		on 581 te Elev. N		Boring Imound		SB-C , Emeryville, CA Page 1 of 1
Jepth Feet	Blow Count	Sample	Interval		Lithologic Description		TPHg (ppm)	Graphic Log	Bo Com Gra	oring pletion phics	Depth Feet	Additional Comments
0	Ground Surfac			ASPHALT SILT: (ML); G plasticity; 20 Moderate esti conductivity.	iray; soft; wet; Lo % clay, 80% silt; imated hydraulic	w					0	
5	P										5	
-	P			Organic CLAY Low to mediu 40% silt; Low conductivity.	/; (OL); Black; soft m plasticity; 60% v estimated hydrau	; wet; clay, alic					16	Bottom of boring
' (er Soils Ex ged By NSN ter-Bearing Zon	n	ration		Drilling Started Drilling Complete Grout Type	ed <u>9/22</u>	2/94	1/11	_	es: <u>Imn</u>	nediate	ely south of

			ORING LOG				· · · · · · · · · · · · · · · · · · ·		Borin		SB-D	
	nt: Crosby, ect No:	He	afey, R	oacn, and I Phase	viay	Task 000		on 58 1 ce Elev. 1		ound	Street	, Emeryville, CA Page 1 of 1
Depth Feet	Blow Count	Sample	Interval		Lithologic Description		TPHg (ppm)	Graphic Log	Borii Comple Graph	etion	Depth Feet	
5	Ground Surfa			Clayey SiLT: Low plasticit 20% sand, 3 estimated hy Organic CLA' Low to media 40% sitt; Loy conductivity.	(ML); Gray; sy; 20% clay, 30% gravel; Ndraulic condu	19					5	Bottom of boring
15									ga g		15	
Driller Soils Exploration Drilling Started 9/22/94								_ Notes:	Sou	theast	of tanks on	
Logged By NSM Drilling Completed 9/22/94 pro							prope	erty lir	19			
Wa	Water-Bearing Zones Grout Type Portlan							///				

	BORING LOG		T		Borir	g ID	SB-E
Client: Crosby, F. Project No:	leafey, Roach, and Phase	-	Locati Surfac	on 581 be Elev. N	3 Shelimound IA ft,	Street	t, Emeryville, CA Page 1 of 1
Blow Count	Interval	Lithologic Description	TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth	
6 Ground Surface	ASPHALT	T; (ML); Black; soft; wet; high plasticity; 30% clay, 15% sand, 15% gravel; ated hydraulic conductivity.				5	
16	Organic CL wet; Low to clay, 30% s estimated h	AY; (OL); Black; very soft; medium plasticity; 60% ilt, 10% gravel; Low ydraulic conductivity.				10	Bottom of boring
Driller Soils Explo	oration	Drilling Started 9/22/94		,	Notes: Sout	heast	of SB-D
Logged By NSM		Drilling Completed 9/22	/94				
Water-Bearing Zones		Grout Type Portland	Type I/	11			

	nt: Crosby,	He		oach, and I Phase	-	Task 010			3 Shellmound		C-1 , Emeryville, CA Page 1 of 1	
Depth	Blow Count	Sample	Interval		Lithologic Description		TPHg (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details	
	Ground Surfa	CA							N///N//	0	T.O.C. Elev. NA	
				Gravelly SIL1	E: (ML): Grayist silt, 10% sand erate estimated	n Brown;				-	locking well cap with traffic-rated vault	
5				conductivity						5	2	
10	6 6 6	V A			CL); Grayish bl sticity; 50% c nd, 20% gravel draulic conduc					10		
15	3 8			SAND: (SW); plasticity; 10 sand, 30% g hydraulic con	Brown; soft; 6 % clay, 30% s ravel; Low esti ductivity	damp; low silt; 30% mated		777777		15		
-	3				D; (SW); Brow le; wet; 20% o d, 20% gravel draulic conduct	n; :lay, 10% ; Moderate tivity						
20	6 9									20	Bottom of well	
25					. =					25		
- 1	ller <u>Soils Ex</u>		ration		Development				Bentonite Sea			
Logged By BGW Well Casing 2"							a. <u>0'</u>	to <u>5'</u>	_ Sand Pack	Mo	onterey Sand	
Dri	Drilling Started 12/9/94 Casing Type Sched						40 P	VC	Sand Pack Ty	oe <u>#2</u>	/16	
Dri	Drilling Completed 12/9/94 Well Screen 2"						a. <u>5'</u>	to <u>18'</u>	_ Static Water L	evel 8	.00 ft Depth	
Co	Construction Completed 12/9/94 Screen Type Sch						40 P	VC		ate		
De	Development Completed Slot Size						ch		Notes: Eas	Notes: East side of site		
Wa	iter Bearing Zon	es			Drilling Mud		4.445		_	1		
					Grout Type	Portland	1/11		_			

Clier	t: Crosby,	Heafe		LLING LOG bach, and I				on 581	3 Shellmound		C-2 , Emeryville, CA
Proje	ect No:	1 1		Phase	7	ask 010	Surfac	e Elev. N	IA ft,	1	Page 1 of 1
Depth Feet	Blow Count	Sample			Lithologic Description		TPHg (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
1						·					T.O.C. Elev. NA
0_	Ground Surfac	Ce .		CONCRETE Organic CLA damp; soft; I clay, 20% si gravel; Mode conductivity.	Y: (OL); Grayis nedium plastic t, 20% sand, ' rate estimated	h black; ity; 50% i 0% hydraulic				0	Locking well cap with traffic-rated vault
10				Silty SAND:	(SM); Brown; n	noist;				10	
15				Moderate pla	sticity; 20% cl d; Low estima	ay, 30%				15	Bottom of well
20									æ	20	
25			Ì							25	
Dril Dril	iged By <u>BGV</u> ling Started <u>1:</u> ling Completed	V 2/9/94 12/9	4		Development Well Casing Casing Type Well Screen	2" Di Schedule 2" Di	a. 3'	VC to <u>15'</u>		<u>Mo</u> ne <u>#2</u> evel _	onterey Sand
1 1	nstruction Comp				Screen Type			VC	- I	ate	t side of site
	velopment Comp ter Bearing Zon				Slot Size Drilling Mud Grout Type	O.010-in			Notes: NOT	1114462	Colde of olfe

			RILLING LOG			Well I	D C-	3 Borit	ig ID	C-3
Clier	t: Crosby,	Heafey,	Roach, and	May						, Emeryville, CA
Proje	ct No:		Phase	1	Task 01		ce Elev. I			Page 1 of 1
Depth Feet	Blow Count	Sample Interval		Lithologic Description		TPHg (ppm)	Graphic Log	Well Construction Graphics	Depth	Well Construction Details
ı [—]										T.O.C. Elev. NA
10	Ground Surface	ce	Sandy CLA	(SM); Black; mity; 30% clay, 10 10% gravel; Lovydraulic conduction (CL); Grayish In plasticity; 40% 8 sand; Low e	black:				10	Locking well cap with traffic-rated vault
25									26	
Dril	er Soils Ex	ploration		Development	Yield		·	Bentonite Se	al <u>1' to</u>	0 2.5'
Log	ged By BGV	V		Well Casing	2"	Dia. <u>0'</u>	to <u>3'</u>	Sand Pack	Mo	onterey Sand
Dril	ling Started 1	2/9/94		Casing Type	Schedi	<u>ile 40 P</u>	vc	Sand Pack Ty	rpe <u>#2</u>	/16
Dril	ing Completed	12/9/9	4	Well Screen	2 "	Dia. <u>3'</u>	to <u>15'</u>	_ Static Water	Level	ft Depth
Cor	struction Comp	oleted 1	2/9/94	Screen Type	Schedu	ile 40 P	<u>vc</u>	_	Date _	
Dev	elopment Com	pleted		Slot Size	0.010	<u>lnch</u>	,	Notes: So	uthwes	t side of site
Wa	ter Bearing Zon	es		Drilling Mud				_		
·				Grout Type	Portlan	d I/II		_		

Table 5. Ground Water Elevation and Analytic Data for Hydrocarbons and Volatile Organic Compounds (VOCs) - Lathrop Investigation, Emeryville, California

2016	:	,	,	1	T. C.	¢	ŀ	ŀ	;	5								
2	Well Elev.	Depth &	∰ 6.	I PHG	00 H 1	1 0	-	Ð	*)	DCE	DCA DCA	DCE DCE	DCA	f,l.,l TCA	E	5	Notes
	(r)	ì							(Concentra	(Concentration in ug/I or parts per billion)	or parts per	billion)		,				
1/19/94	₹.	6.30	2.32	1	5,000	77	4,300	73	70	pu	nđ	pu	рu	μţ	pu	nđ	ри	
12/16/94		3.82	96 18	pg	пф	pu	pu	pu	pu	pu	pu	pu	pu	рш	pu	pu	nđ	
12/16/94		3,33	95.89	рu	nd	рu	pu	pu	pu	pu	pu	pu	ъф	힏	рu	иф	pu	
12/16/94	4 99.24	3.82	95.42	5.1	17	1,900	120	5.1	250	pu	pu	pu	ри	pu	ри	ри	ри	
LATHROP PROPERTY	RTY																	
Ente	Sewer Water Entering Excavation	tion																
68/97/01	6.			!	2,800	33	240	61	400	į.	1	ı	ı	ı	1	1	ŀ	
ing G	Cambria Boring Grab Samples	49														06		
9/22/94	4			:	49	pu	pu	nđ	рu	1	1	1	ł	;	1	8	!	
9/22/94	4			ı	31	nđ	рu	рu	μđ	pu	pu	pu	pu	pu	pu	nd	pu	L.7 CF, a
9722194	¥			ŧ		pu	2.1	pq	nd	рu	pu	nd	nd	nd	ρu	pu		0.8 CF
5/22/94	4			1	38	0.78	1.2	pd	1.0	1.8	pu	pu	pu	pu	pu	pu		0.7 CF
\$722/94	¥			1		220	6,500	78	350	190	4.0	440	77	3.6	15	640		19 TCA,
9722/94	1 4			ı	40,000	230	5,200	0/1	300	430	1.0	1,300	24	16	35	82	рц	0.6 TCA,
9/22/94	*			1	13,000	1,000	nd	140	pu	i	1	1	1	ì	1	1		P
9722/94	*			1	38,000	8,100	1,500	550	570	pu	nd	рu	nd	nd	pu	pu	pu	
9722794	\$			1	1,500	4.8	1.0	7.3	10	nđ	pu	pu	pu	pu	pu.	pu	рц	
9/22/94	74		*	1	21,000	1,500	150	260	pu	рu	пđ	54	pu	pu	nd	nd	pu	Q.
S C	DTC/ M/CI c or Chate Action			:	HZ.	-	100	680	1.750	i	;	1	;	1	1	1	1	
200	ate Actions				į	3	2	2	76767		!			İ	ı	1		

Table 5. Ground Water Elevation and Analytic Data for Hydrocarbons and Volatile Organic Compounds (VOCs) - Lathrop Investigation, Emeryville, California

1,2 1,3 1,1,1 TCE CA Notes DCE DCA TCA	
L,1 DCA	ts per billic
r'i BOG	ug/i or par
AC AC	ntralion in
×	(Conce
щ	ATTACA NA PARA
F	
8	
TPH	
TPHer	
⊕ Bev.	
Depth Depth	
Well Bev.	
Date	nus
Well	Abbreviatic

Well Elevation ... Top of easing elevation with respect to onsite benchmark

GW == Ground water

LPH = Liquid-phase hydrocarbons; calculated ground water elevation corrected for LPH by the relation: Ground Water Elevation = Well Elevation = Depth to Water + 0.8 LPH
TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015
B = Bernene by EPA Method 8020
E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020 X = Xylenes by EPA Method 8020

nd = Not detected, detection limit not reported by consultant

DTSC MCLs = Department of ToxicSubstances Control maximum contaminant level for drinking water

NE - Not established

VC - Vinyl chloride

1,1 DCE = 1,1 dichloroethene
1,1 DCA = 1,3 dichlorocthane
1,2 DCE = Trans 1,2 dichloroethene

1,1,1 TCA = 1,1,1 inichiorocthane TCA = [,1,2 trichloroethane

TCE = Trichloroethene

CA = Chlorochane

CF = Cliboroform

- * Constiuent not analyzed. PCE ** Tetrachlorocthene

a = 0.7 ppm BDCA

b = 2, 400 cls-1,2 - dichloroethane, 0.5 tetrachlorethene, 1.9 1,1,2 - trichlorethane, c = 830 ppm cis-1,2 - dichlorethene, d = 1he positive result has an atypical pattern for gasoline analysis.

* = BTEX do not match gasoline pattern.

Client Name: Cambria Env. Technology

Client Acct: 98900

Date: 10/18/1994

ELAP Cert: 1386 Page: 44

Ref: Lathrop/Emeryville

SAMPLE DESCRIPTION: SB-B

Date Taken: 09/22/1994 Time Taken: 16:50 NET Sample No: 217438

1121 Campao noi anima							
			Reportin	ıg		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Liquid)							
METHOD 5030/M8015		RSC					09/30/1994
DILUTION FACTOR*	1						09/30/1994
as Gasoline	0.049		0.01	mg/L	5030		09/30/1994
METHOD 8020 (GC, Liquid)							09/30/1994
Benzene	ND		0.5	ug/L	8020		09/30/1994
Toluene	ŅD		0.5	ug/L	8020		09/30/1994
Ethylbenzene	ND		0.5	ug/L	8020		09/30/1994
Xylenes (Total)	ND		1.5	ug/L	8020		09/30/1994
SURROGATE RESULTS							09/30/1994
Bromofluorobenzene (SURR)	98			* Rec.	5030		09/30/1994

RSC : Refer to attached Sub-Contract Laboratory Report for QA data.

NOTE: Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety.

Client Name: Cambria Env. Technology

Client Acct: 98900 NET Job No: 94.04411 Date: 10/18/1994

ELAP Cert: 1386 Page: 45

Ref: Lathrop/Emeryville

SAMPLE DESCRIPTION: SB-C

Date Taken: 09/22/1994 Time Taken: 17:06 NET Sample No: 217439

			Reportin	g		Date	Date
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed
TPH (Gas/BTXE, Liquid)							
METHOD 5030/M8015		RSC					09/30/1994
DILUTION FACTOR*	1						09/30/1994
as Gasoline	0.031		0.01	mg/L	5030		09/30/1994
METHOD 8020 (GC, Liquid)							09/30/1994
Benzene	ND		0.5	ug/L	8020		09/30/1994
Toluene	ND		0.5	ug/L	8020		09/30/1994
Ethylbenzene	ND		0.5	ug/L	8020		09/30/1994
Xylenes (Total)	ND		1.5	ug/L	8020		09/30/1994
SURROGATE RESULTS							09/30/1994
Bromofluorobenzene (SURR)	101			% Rec.	5030		09/30/1994

RSC : Refer to attached Sub-Contract Laboratory Report for QA data.

Client Name: Cambria Env. Technology

Client Acct: 98900 NET Job No: 94.04411

Date: 10/18/1994

ELAP Cert: 1386 Page: 46

Ref: Lathrop/Emeryville

SAMPLE DESCRIPTION: SB-C

Date Taken: 09/22/1994 Time Taken: 17:06 NET Sample No: 217439

		Reportin	•		Date	Date
Parameter	Results Flags	Limit	Units	Method	Extracted	Analyzed
METHOD 8010 (GC, Liquid)						
DILUTION FACTOR*	1					09/27/1994
Bromodichloromethane	0.7	0.5	ug/L	8010		09/27/1994
Bromoform	ND	1.0	ug/L	8010		09/27/1994
Bromomethane	ND	1.0	ug/L	8010		09/27/1994
Carbon tetrachloride	ND	0.5	ug/L	8010		09/27/1994
Chlorobenzene	ND	0.5	ug/L	8010		09/27/1994
Chloroethane	ND	1.0	ug/L	8010		09/27/1994
2-Chloroethylvinyl ether	ND	1.0	ug/L	8010		09/27/1994
Chloroform	1.7	0.5	ug/L	8010		09/27/1994
Chloromethane	MD	1.0	ug/L	8010		09/27/1994
Dibromochloromethane	ND	0.5	ug/L	8010		09/27/1994
1,2-Dichlorobenzene	ND	0.5	ug/L	8010		09/27/1994
1,3-Dichlorobenzene	ND	0.5	ug/L	8010		09/27/1994
1,4-Dichlorobenzene	ND	0.5	ug/L	8010		09/27/1994
Dichlorodifluoromethans	ND	1.0	ug/L	8010		09/27/1994
1,1-Dichloroethane	ND	0.5	ug/L	8010		09/27/1994
1,2-Dichloroethane	ND	0.5	ug/L	8010		09/27/1994
1,1-Dichloroethene	ND	0.5	ug/L	8010		09/27/1994
trans-1,2-Dichloroethene	ND	0.5	ug/L	8010		09/27/1994
1,2-Dichloropropane	ND	0.5	ug/L	8010		09/27/1994
cis-1,3-Dichloropropene	ND	0.5	ug/L	8010		09/27/1994
trans-1,3-Dichloropropene	ND	0.5	ug/L	8010		09/27/1994
Methylene chloride	ND	5.0	ug/L	8010		09/27/1994
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	8010		09/27/1994
Tetrachloroethene	ND	0.5	ug/L	8010		09/27/1994
1,1,1-Trichloroethane	ND	0.5	ug/L	8010		09/27/1994
1,1,2-Trichloroethane	MD	0.5	ug/L	8010		09/27/1994
Trichloroethene	ND	0.5	ug/L	8010		09/27/1994
Trichlorofluoromethane	ND	1.0	ug/L	8010		09/27/1994
Vinyl chloride	ND	1.0	ug/L	8010		09/27/1994
SURROGATE RESULTS			_			09/27/1994

Client Acct: 98900

Client Name: Cambria Env. Technology

NET Job No: 94.04411

Date: 10/18/1994

ELAP Cert: 1386 Page: 47

Ref: Lathrop/Emeryville

SAMPLE DESCRIPTION: SB-D

Date Taken: 09/22/1994

Time Taken: 17:11

NET Sample No: 217440

		Reporting	3		Date	Date
Results	Flags	Limit	Units	Method	Extracted	Analyzed
	RSC					09/30/1994
1						09/30/1994
0.019		0.01	mg/L	5030		09/30/1994
						09/30/1994
ND		0.5	ug/L	8020		09/30/1994
2.1		0.5	ug/L	8020		09/30/1994
ND		0.5	ug/L	8020		09/30/1994
ND		1.5	ug/L	8020		09/30/1994
						09/30/1994
102			* Rec.	5030		09/30/1994
	1 0.019 ND 2.1 ND	RSC 1 0.019 ND 2.1 ND	Results Flags Limit RSC 1 0.019 0.01 ND 0.5 2.1 0.5 ND 0.5 ND 1.5	RSC 1 0.019	Results Flags Limit Units Method RSC 1 0.019 0.01 mg/L 5030 ND 0.5 ug/L 8020 2.1 0.5 ug/L 8020 ND 0.5 ug/L 8020 ND 1.5 ug/L 8020	Results Flags Limit Units Method Extracted

RSC : Refer to attached Sub-Contract Laboratory Report for QA data.

NOTE: Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety.

Client Name: Cambria Env. Technology Client Acct: 98900 NET Job No: 94.04411

Date: 10/18/1994 ELAP Cert: 1386

Page: 48

Ref: Lathrop/Emeryville

SAMPLE DESCRIPTION: SB-D

Date Taken: 09/22/1994 Time Taken: 17:11 NET Sample No: 217440

and pumpie not altere		Reporting	1		Date	Date
Parameter	Results Flags	Limit	Units	Method	Extracted	Analyzed
METHOD 8010 (GC, Liquid)	110000000000000000000000000000000000000		VIII. 4.0	230 02200	2764 40044	MIGETER
DILUTION FACTOR*	1					09/27/1994
Browodichloromethane	ND	0.5	ug/L	8010		09/27/1994
Bromoform	ND	1.0	ug/L	8010		09/27/1994
Bromomethane	ND	1.0	ug/L	8010		09/27/1994
Carbon tetrachloride	ND	0,5	ug/L	8010		09/27/1994
Chlorobenzene	ND	0.5	ug/L	8010		09/27/1994
Chloroethane	ND	1.0	ug/L	8010		09/27/1994
2-Chloroethylvinyl ether	ND	1.0	ug/L	8010		09/27/1994
Chloroform	0.8	0.5	ug/L	8010		09/27/1994
Chloromethane	ND	1.0	ug/L	8010		09/27/1994
Dibromochloromethane	ND	0.5	ug/L	8010		09/27/1994
1,2-Dichlorobenzene	ND	0.5	ug/L	8010		09/27/1994
1,3-Dichlorobenzene	ND	0.5	ug/L	8010		09/27/1994
1,4-Dichlorobenzene	ND	0.5	ug/L	8010		09/27/199
Dichlorodifluoromethane	MD	1.0	ug/L	8010		09/27/1994
1,1-Dichloroethane	ND	0.5	ug/L	8010		09/27/1994
1,2-Dichloroethane	ND	0.5	ug/L	8010		09/27/1994
1,1-Dichloroethene	ND	0.5	ug/L	8010		09/27/1994
trans-1,2-Dichloroethene	ND	0.5	ug/L	8010		09/27/1994
1,2-Dichloropropane	ND	0.5	ug/L	8010		09/27/1994
cis-1,3-Dichloropropene	ND	0.5	ug/L	8010		09/27/1994
trans-1,3-Dichloropropene	ND	0.5	ug/L	8010		09/27/1994
Methylene chloride	ND	5.0	ug/L	8010		09/27/1994
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	8010		09/27/1994
Tetrachloroethene	ND	0.5	ug/L	8010		09/27/1994
1,1,1-Trichloroethane	ND	0.5	ug/L	8010		09/27/1994
1,1,2-Trichloroethane	ND	0.5	ug/L	8010	77	09/27/1994
Trichloroethene	ND	0.5	ug/L	8010		09/27/1994
Trichlorofluoromethane	ND	1.0	ug/L	8010		09/27/1994
Vinyl chloride	ND	1.0	ug/L	8010		09/27/1994
SURROGATE RESULTS						09/27/1994
-Chlorotoluene (SURR)	100		t Rec			09/27/1994

Table 1. Ground Water Elevation and Analytic Data for Petroleum Hydrocarbons - Lathrop Investigation, 5813-15 Shelimound St., Emeryville, California

Date	TOC	85	AS O	TPHor	FILEL	101	A COLUMN	THE REAL PROPERTY.			The second second	
Sampled Elevation		Depth	Elevation	11. 11.00		1,717.0	TPHe	Вепzеве	Toluene	Ethyl-	Xylenes	MTBE
3		(E)	(£)	V	The state of the s		(Con	(Concentrations in ug/L)	e/L)	Denzene		,
Grab Ground Water Analytic Data												
88.0		1	I	35,000	~200	000°5>	790	4.0	2,1	8	4	9
										1	2	3
100.00		3.82	96.18	<500	N.	ĀN	Ş	ų Š	4			
	•	4.21	95.79	200€>	\$065	750	} {	7 5	S 5	\$6	9.5	NA
	-,	5.45	94.55	<1.000	1.100	2,500	3 5	05.05	27.7C	<0.50	9.0	<2.0
41	41	5.67	94.33	<2.000	2,600	3 000	3	05.05 15.05	<0.50	≪0.50	<0.50	20
ěr.	40	5.86	94.14	<2,000	3,700	8,200	8 8	<0.50 <0.50	8 8	05.05 8.50	<0.50	27.0
99.22 3.	ะกั	6, 13, 13,	94.89	003/	Y.	2	1			PC'A	3	20
8	m	3.61	95.61	300	14.PF	NA 200	8	80.5	<0.5	<0.5	<0.5	NA
vi	W	5.92	93.28	800	650	1 200) {	050	<0.50	<0.50	<0.50	<2.0
4	4	4.91	94.31	200	1,000	1000	3 8	-: :	Q0.50	970	S. 65	0.2
46	5	5.12	94.10	0000	810	1,200	§ §	0.71	S 6	4, 4	<0.50	27.0
	ē	5							OC'A	0.7	40.5 0	<2.0
39.24	ന് (2.82	95.42	5,100	NA	NA	17,000	1.900	130	r V	1	
iń I	K)	5.82	93.42	10,000	250	<2,500	6,600	300	130	ر د د د د د د د د د د د د د د د د د د د	250	NA
หา	l√i ⊤	5.19	94.05	21,000	2000	600,5	16,000	1.760	730	230	150	ğ
œ e	Ó	6.31	92.93	25,000	<500	€,000	21.000	1400	5 5	320	230	<100
Ŷ	ò	6.44	92.80	24,000	<1,000	€,000	15,000	1.200	110	90 S	200	<200
	,	3	,					2716	0	180	170	2.0
98.04	0	6.46	92.18	25,000	500 500	€5,000	5,400	540	10	5	;	
võ v	vo v	6.52	92.12	25,000	<500	<5,000	8,800	470	3 2	720) DOI 0	8
ó	ō	6,52	92.12	16,000	0.00	<5,000	6.800	470	12	0.7	56	\$4 04 04 04
6.	6	6.54	92.10	18,000	<1,000	€,000	4,900	360	7 5	9 5	A	40
The state of the s				() (*)	10	P	1	38	3	770	6	8

Table I. Ground Water Elevation and Analytic Data for Petroleum Hydrocarbons - Lathrop Investigation, 5813-15 Shellmound St., Emeryville, California

MTBE	
Xylenes	
Ethyl- benzene	TPHcr = Total petroleum hydrocarbons as creosote by modified EPA Method 8015 TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method 8015 TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015 TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015 Benzene, Edylbenzene, Toluene, and Xylenes by EPA Method 8020 MTBE = Methyl Totiary-Buryl Ether by EPA Method 8020
Toluene	ug/L) codified EPA Manufified EPA Melfied 8020
Вептенс	(Concentrations in tight) TPHcr = Total percoleum hydrocarbons as creosote by modified EPA Method 8015 TPHmo = Total percoleum hydrocarbons as motor oil by modified EPA Method 8015 TPHg = Total percoleum hydrocarbons as gasoline by modified EPA Method 8015 TPHd = Total percoleum hydrocarbons as diesel by modified EPA Method 8015 Benzene, Ednylbenzene, Toluene, and Xylenes by EPA Method 8020 MTBE = Methyl Tertiary-Butyl Ether by EPA Method 8020
TPHg	rdrocarbons as ydrocarbons a docarbons a docarbons as drocarbons as luene, and Xy lusyl Ether by B
TPHmo	il peroleum hy tal peroleum hy l peroleum by l peroleum hy ylbenzeue, To hyl Tertiary-B
ТРН	TPHcr = Tot: TPHmo = To TPHg = Tota TPHd = Tota Benzene, Ed
TPHcr	#
GW Elevation (ft)	
GW Depth (ft)	rbon than diesel
TOC Elevation (ft)	eavier hydrocs
Date Sampled	and Notes: ons per liter red ssing pears to be a h
Sample ID	Abbreviations and Notes: ug/L = Micrograms per liter ft = fee; NA = Not Analyzed TOC = Top of Casing a = The result appears to be a heavier hydrocarbon than

Table 2. Ground Water Elevation and Analytic Data for Semi-Volatile Organic Compounds (including PNAs) - Lathrop Investigation, 5813-15 Shellmound Steet, Emeryville, California

Additional Compounds Detected					ത്ഥ് വിശ്യം	د م د د
Pyrene		<10	₹ 8 8	40 40 40 40 40 40 40 40 40 40 40 40 40 4	61 240 1,000 3,100 810	6,400 1,300 850 450
Phenan- threne		01>	5 8 8	7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	260 560 1,200 4,700	7,300 1,400 1,100 560
Naphtha- lene		₽ 8 ;	₹ 8 8	0 = 6 0 0 0 0 = 6 0 0 0	11,000 12,000 11,000 16,000	13,000 5,000 5,400 5,800
2-Methyl- Naphtha- Phenan- naphtha- lene threne lene		9 ₹	9 8	0	490 360 680 760 460	500 230 95 160
Fluorene		985	88	01 00 00 00 00 00 00 00 00 00 00 00 00 0	110 170 330 670 240	1,100 300 140 150
Fluor- anthene ug/L)		₽ ₹ ₹	98	\$20 \$3.3 \$10 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$2	50 210 850 2,900 550	5,400 1,100 790 390
Benzo- Chrysene Flue (g.h.i) anthe perylene (Concentrations in ug/L.)		9 9 ₹	88	9 5 5 9 9	20 130 430 1,200 280	2,000 460 160 150
		015 015 015	88	8 8 8 8 8	7.3° 86 230 850 220	1,700 290 170 150
Benzo-		00 00 T	6 6	\$ \$ \$ \$ \$	8.5f 95 350 850 230	1,800 440 150 140
Benzo-Benzo- (a)anthra- (a)pyrene cene		€ 5 ₹	88	450 40 40 40 40 40 40	7.2£ 49 <100 600 180	1,300 <100 130 110
# 11		⇔ ⇔ ⇔	88	101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010<	37 140 410 1,200 270	1,600 400 140 130
Acenaphth-		610 610 611	8 8	10 410 410 410 410 410 410 410 410 410	780 310 520 300	880 210 96 120
Acenaphth- Acenaphth- Antura- ene ylene cene		8 8 ₹	ଟି ଟି	01 05 05 05 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 br>05 05 05 05 05 05 05 05 05 05 05 0	150 570 800 2,400 930	2,400 760 680 480
GW / Elevation (ft)		96.18 95.79 94.55	94.33	95.89 95.61 93.28 94.31	95.42 93.42 94.05 92.93	92.18 92.12 92.12 92.10
GW (ft)		3.82 4.21 5.45	5.86	3.33 3.61 5.94 4.91 5.12	3.82 5.82 5.19 6.31	6.46 6.52 6.52 6.54
TOC Elevation (ft)		100.00		99.22	99.24	98.64
Date TOC Sampled Elevation (ft)	guijāu	03/19/97 03/19/97 05/30/97	08/07/97	12/16/94 03/19/97 05/30/97 07/30/97	12/16/94 03/19/97 05/30/97 07/03/97	03/1,9/97 05/30/97 07/03/97 08/07/97
Sample ID	ty Sa	3		2000	ິນ	4

Table 2. Ground Water Elevation and Analytic Data for Semi-Volatile Organic Compounds (including PNAs) - Lattrop Investigation, 5813-15 Shellmound Street, Emeryville, California

	Additional	Compounds	Detected		
	Purene	A JANEER		1	O.
	Phenan	threne			lethod 827, tod 8270 cod 8270 thod 8270 cod 8270
	Nanhtha-	cne		A CONTRACTOR OF THE PERSON OF	by EPA N EPA Med 3 8270 EPA Meth Y EPA Meth TPA Meth EPA Meth EPA Meth EPA Meth EPA Meth EPA Meth
	Benzo- Benzo- Chrysene Fluor- Fluorene 2-Methyl- Naphrha. Phenan. Parene Additional	naphtha-	lene		f = Lab estimated value g = Berzo (b&k) fluoranthene detected at 1,100 ug/L by EPA Method \$270 = Dibenzo (a,h) anthracene detected at 110 ug/L by EPA Method \$270 = Dibenzofuran detected at 73 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 610 ug/L by EPA Method \$270 b = Berzo (b&k) fluoranthene detected at 510 ug/L by EPA Method \$270 = Dibenzo (a,k) anthracene detected at 230 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 120 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 120 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 180 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 180 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 180 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 180 ug/L by EPA Method \$270 = Indeno (1,2,3-cd) pyrene detected at 110 ug/L by EPA Method \$270
	Fluorene				detected at letected at 3 ug/L by etected at detected at detected at etected at etected at etected at detected at detected at detected at detected at detected at etected at etected at detected at detected at detected at
	Fluor-	anthene		- (T/gi	to the transfer of the transfer of the transfer of tra
	Chrysene	•		(Concentrations in ug/L)	f = Lab estimated value g = Benzo (b&k) fluoran = Dibenzofuran detect = Indemo (1,2,3-cd) py h = Benzo (b&k) fluoran = Dibenzo (a,h) anthra = Indemo (1,2,3-cd) py j = Benzo (b&k) fluoran = Indemo (1,2,3-cd) py k = Benzo (b&k) fluoran = Indemo (1,2,3-cd) py
	Benzo	(g,h,i)	perylene	(Concent	= Lab est = Diben; = Diben; = Diben; = Reezo = Benzo = Benzo = Indeno
	Benzo- Benzo- (a)pyrene			
	Benzo-	a)anthra-	cene		
	Anthra-	cene			
	GW Acenaphth- Acenaphth- Anthra-	ylene			8270 8270 8270 770 4 8270 2270 2270
	Acenaphth-	che	,	V	bhreviations and Notes: = Dibenzofuran at 15 ugL by EPA Method 8270 = Benzo (b&k) fluoranthene detected at 110 ugL by EPA Method 8270 = Dibenzofuran dectected at 25 ugL by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 61 ugL by EPA Method 8270 = Benzo (b&k) fluoranthene detected at 61 ugL by EPA Method 8270 = Benzo (b&k) fluoranthene detected at 180 ugL by EPA Method 8270 = Benzo (b&k) fluoranthene detected at 2300 ugL by EPA Method 8270 = Dibenzo (a,b) anthracene detected at 230 ugL by EPA Method 8270 = Indeno (1,2,5 - cd) pyrene detected at 1,200 ugL by EPA Method 8270 = Indeno (1,2,5 - cd) pyrene detected at 290 ugL by EPA Method 8270 = Benzo (b&k) fluoranthene detected at 290 ugL by EPA Method 8270 = Indeno (1,2,5 - cd) pyrene detected at 290 ugL by EPA Method 8270 = Indeno (1,2,5 - cd) pyrene detected at 290 ugL by EPA Method 8270
	ΘW	Sampled Elevation Depth Elevation	8		bhreviations and Notes: = Dibenzofuran at 15 ug/L by EPA Method 8270 = Benzo (b&k) fluoranthene detected at 110 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 61 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 61 ug/L by EPA Method (1,2,3 -cd) pyrene detected at 180 ug/L by EPA Method (1,2,3 -cd) pyrene detected at 2,300 ug/L by EPA Method (1,2,3 -cd) pyrene detected at 2,300 ug/L by EPA Methodibenzofuran detected at 2,60 ug/L by EPA Methodibenzofuran detected at 1,00 ug/L by EPA Methodibeno (1,2,5 - cd) pyrene detected at 1,200 ug/L by EPA Methodibeno (1,2,5 - cd) pyrene detected at 2,300 ug/L by EPA Methodibeno (1,2,3 - cd) pyrene detected at 2,300 ug/L by EPA Methodibeno (1,2,3 - cd) byrene detected at 2,300 ug/L byrene detect
	ĕ	Depth	€		A Metho cted at 11 g/L by El g/L by El coted at 45 cted at 45 cted at 42 cted at 20 cted at 20 cted at 1 by El cted at 1 by El cted at 1 by El cted at 250 cted at
21. Carrie 6	700	Elevation	€	WATER COMMISSION OF THE PARTY O	riter ug/L by EP ug/L by EP mrhene dete riter red at 25 u pyrene decte rrane detect
	Date	Sampled			in and Name of the control of the co
	Sample 1D Date				Abbreviations and Notes: ug/L = Micrograms per liter a = Dibenzohuran at 15 ug/L by EPA Method 8270 b = Benzo (b&k) fluoranthene detected at 110 ug/L by EPA Method 8270 = Dibenzohuran dectected at 25 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 61 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 450 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 180 ug/L by EPA Method 8270 = Dibenzo (b&k) fluoranthene detected at 2300 ug/L by EPA Method 8270 = Dibenzohuran dectocted at 110 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 1,200 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 290 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 290 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 290 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 290 ug/L by EPA Method 8270 = Indeno (1,2,3 - cd) pyrene detected at 290 ug/L by EPA Method 8270

= Indeno (1,2,3-cd) pyrene detected at 230 ug/L by EPA Method 8270

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, Califomia

	Sampled	Depth	ıracı	TPHG	THuo	TPHE	Benzene	Senzene Toluene Ethyl benze	Ethyl benzene	Xylenes
		ì					Contestanation	nd to Swam or bar	S per manon	
ATHROP	LATITROP (5813-5815 Shellmound)	hellmound)								
enk Excar	Tank Excavation Samples	37								
1512	10/26/89	4-	ţ	ı	ı	pu	pu u	įgi	nđ	pa
1521	10/26/89	4-	ı	:	ŧ	ри	nd	pu	pu	100
1533. Comp	10/26/89	K K	i .	1	1	23	nd	pu	pu	0.28
ambria Bu	Cambria Borings (September 1994)	nber 1994)								
SB-A	09/22/94	5.0	1	1	ı	pu	pu	pu	pu	°C
SB-A	09/22/94	1.7	ı	:	ŧ	_ pu	pq	par	P	ם יי
SB-B	09/22/94	0.9	1	1	1	0.1	pu	pu	pu	T T
SB-B	09/22/94	11.7	t	;	1	pu	nd	pu	Pu	78
SB-C	.09/22/94	5.0	1	1	1	nd	pu	pu	Pш	þ
SB-C	09/22/94	11.7	ŧ	1	ı	, mil	nd	pu	Pu	3
SB-D	09/22/94	5.0	\$		1	nđ	pa	nd	þú	1 1
SB-E	09/22/94	5.0	1	and the same of th	1	pu	nd	pu	Pu	E
SB-P	09722/94	5.0	*	e i	t	1	1	ţ	1	1
SB-G	09/22/94	3.0	*	:	1	מ	32	69.0	4	P
SB-G	09/22/94	5.0	•	1	1	23	0.15	3.4	0.13	. 61
SB-G	09/22/94	11.7	1	1	1	1	1	. \$	1	
SB-H	09/22/94	3.0	i	ı	ł	nd	pu	0.620	9016	0.180
SB-11	09/22/94	5.0	\$	4	*	15	0.052	0.066	8.6	0380
SD-II	09/22/94	11.7	ŧ	ı	1	T	0.012	0.650		0100
SB-1	09/22/94	5.0	1	1	1	pu	0.011	0.0037	T	Page 1
SD-1	09/22/94	5.0	1	1	ı	ŧ	1	1	•	2

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

mes				×¢			0.230															•							
Xylenes			; <	y ;	*	1	ර	‡	01			ł	I	1	1	Į	ł	1		1	1	1	6 1	ŧ	I	ı	1	ı	1
Ethyl benzene	S per million)		. 2	2 5	7.7	1	0.170	L	-			l	•	ŧ	t	e	1	1	ł	ł	å å	40	I.	B.	1 2	5	į.		Tr.
Toluene	(Concentration in mg/kg or parts per million)		27		ŗ.	1 0	0.034	1	0Q		H	! !	1	ī	i .	t I	ı	7			l ;	1	1 ;	t i	ı ;	1 ;	i	ł I	r ij
Benzene	(Concentration		5.0	2	0	0.000	0.000	1 !			1	1	1		1 1	ı i	i 1		! ;	1 1	! \$: ;	! !	18		į	1	: 1	ı į
TPNg		100	1.700	009 6	2004	22	7.	1 9	00c+2		ı	ī	:	í	t	ı		1 (1	t	1	Í	1	1	t	ì		;	;
ТРИшо		1	7	ţ	1	ţ	*	t i	ı		1.300	26	6	23	069	P	68.000	570	Pu	13,000	pu	pu	T T	nđ	5,600	pa	·	3,300	-1.9
PHál		1	1	ı	t	1	ł	ı	I		рш	00	9.6	7.1	pu	Вď	nd	bu	Did.	nd	nd	pu	PE	pu	3,900	pu	PI	1,300	- 134
TPHer		1	1	ł	3	ņ	ł				pu	pu	2	pa	nd	11,000	25,000	nd	23	5,200	58	42,000	61	240,000	nd	36	pu	pus	THE .
Sample Depth	€	3.0	5.0	10.5	11.7	5.0	11.7	11.7		ber 1994)	3.5	5.5	5.5	5.5	=	3.5	5.5	9.0	11.0	6.0	11.0	4.0	0.11	4.0	0.9	071	5.5	60 5.5	3.5
Date Sampled		09/22/94	09/22/94	09/22/94	09/22/94	09/22/94	09/22/94	09/22/94		Cambria Borings (December 1994)	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/07/94	12/08/94	12/08/94	12/08/94
Sample		SB-N	SB-N	SB-N	SIB-N	SB-O	SB-O	SB-P		Cambria B	SB-Q	SB-Q	SB-R	SB-S	SB-S	SB-T	SB-T	SB-T	SB-T	SB-U	N-8S	SB-V	SB-V	SB-W	SB-W	SB-W	SB-X	SB-X	SB-X2

Table continued on next page

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

IRES																											
Xylenes		Į.	1	I	ŧ	I	£	t	*	1	1	1	ŧ	t	ł	t	1	1	1	‡-	•	ŧ	t	1	1	*	1
zene																											
Ethyl benzene		I	1	Į.	1	1	1	L	ı	Į.	1	1	1	1	a P	1	Į	1	1	ı	1	1	ī	II.	ŧ	į	1
Benzene Toluene Ethyl benz (Concentration in merke or narts ner million)		l 4	1	1 :	(#C	l - }	; ;	1	1 1	f ;	1 :	1 1	1	1	t A	t t	1	1	1	1 3		;	ı	ŧ	1	ŧ ;	:
Benzene (Concentration		1	1		1	i 1	. 1	1	1	1	1 1	. 1	. 1	1	1	. 1	1 1	i 1		1	1	. 1	; ;	1 1	1 1	1	
TPHg		2	:	: :	1	4	t	ı	1	1	1	1	1	١	.1	I		.1	1	t	1	ŧ	1	2	1	- 1	
TPHmo	87,000	P	550	PE	pu	ם ו	pu	PH	PI	170	PI	2,300	EZ	P	þú	pu	05	90	ņ	1	pu	T	pu	70	nd	. 4	
ТРНА	ри	рш	150	pu	pu	Pu	pu	pq	PE	pu	pu	pu	pu	pu	nd	E	31	7.9	2.30	ı	pq	Pu	pu	2	pu	1	
TPHcr	pu	pu	pu	40,000	pu	Pu	PH .	2	РШ	pu	ри	nd	pu	pu	pu	2	Pu	pu	12	P	3,700	19,000	62,000	14	pu	81.00	
Sample Depth (ft)	5.5	0.6	11.0	35.	NA.	4.0	6.0	0.6	11.0	3.5	0.9	5.5	90 47,	13.5	18.5	3.5	5,5	6.5	0.11	15.0	3.5	5.5	5,0	11.0	14.0	15.0	
Date Sampled	12/08/94	12/08/94	12/08/94	12/08/94	12/08/94	12/08/94	12/08/94	12/08/94	12/08/94	12/08/94	12/08/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	12/09/94	
Sample ID	SD-X2	SB-X2	SB-X2	SIB-Y	SB-Y	SB-Y2	SB-Y2	SB-Y2	SB-Y2	Z-gs	SB-Z	1-5	3	급	<u>:</u>	C-7	C-2	55	3	C-2	C-3	:3	C-3	S	3	C-3	

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

Sample ID	Sample Date Sample ID Sampled Depth (ft)	Sample Depth (ft)	TPHer	TPHd	TPHmo	TPHg	Benzene (Concentration	Benzene Toluene Ethyl benze (Concentration in mg/kg or parts per million)	Ethyl benzene per million)	Xylenes
COLEY AN	D HERRING I	COLEY AND HERRING INVESTMENT (5800 Christie	io Christie Street)							
1 (9665)	1 (9665) 12/28/88	4.0	;	1	ŧ	1	nď	1,400	m	60
1 (9666)	12/28/88	6.0	1	1	;	ŧ	pu	26	nđ	pu
2 (9668)	12/28/88	7.0	I	;	1	1	pu	87	nd	pu
2 (9667)	12/28/88		ı	;	ι	35	pu	56	pq	pu
3 (9669)	12/28/88	5.0	ı	ı	t	1	pu	33	pu	pu
3 (9670)	12/28/88	12.0	1	1	ţ	1.4	nd	0.81	pu	pu
4 (9653)	10/12/88	2.4	ı	·	ι	ı	pu	2800	28	42
5 (9661)	10/12/88	3.4	1	ı	1	1	pu	pu .	þu	pu
(0996) 9	10/12/88	3.0	1	ı	ł	!	pu	09000	pu	0.0049
7 (9658)	10/12/88	3.0	:	t	t	ŧ	pu	pu	nd	pu
8 (9659)	10/12/88	3.3	:	1	ŧ	I	ກຕຸ	pu	pu	pu
9 (9655)	10/12/88	2.0	;	1	ţ	ı	pd	0.0032	pu	pu
10 (9656)	10/12/88	6.3	•	ı	1	ī	pq	0.0040	pu	pu
11 (9654)	10/12/88	4.0	;	1	ŧ	1	pu	0.0055	рu	pu
12 (9657)	10/12/88	2.0	4	1	ι	:	pu	0.0028	nd	nd
13 (9663)	10/27/88	6.0	ı	1	1	pu	pu	nd	pu	рu
13 (9664)	10/27/88	11.0	1	1	ı	m	pu	pu	pu	nđ
14 (9662)	10/27/88	11.0	ı	ı	t.	¥O.	nđ	pu	pu	0.057
McLaren F	oundation Exc	McLaren Foundation Excavation Samples								
HA-1	04/14/89	2,3	1	1	ţ	ı	pu	0.019	pu	md
HA-4	04/14/89	2.0	1	t	:	1	pu	0.16	pu	pu
HA-5	04/14/89	2.7	1	1	ţ	1	pu	0.80	nd h	pu
HA-6	04/14/89	3.5	ı	1.	t	ı	pu	0.12	pu	pu
HA-7	04/14/89	3.5	ı	1	l	ŧ	pu	0.072	, nd	nd pu

Table continued on next page

Table 1. Soil Analytic Data for Hydrocarbons - Lathrop Investigation, Emeryville, California

TPHd TPHmo TPHg Benzere Toluene Ettyl											
Sampled Depth (f) 04/14/89 3.5	Sample	Date	Sample	TPHcr	TPHd	ТРНто	TPHg	Benzene	Toluene	Ethyl benzene	Xylenes
O4/14/89 3.5	a	Sampled	(ft)					(Concentrati	on in mg/kg or pa	rts per million)	
O4/14/89 3.5	HA-8	04/14/89	3.5	1	t	:	ŧ	pu	0.048	bu.	pu
Q4/14/89 3.5	HA-9	04/14/89	3.5	1	ř	:	1	pu	ри	pu	pu
WA14/89 2.5	HA-10	04/14/89	3.5	1	ı	ı	i	рu	0.049	pu	pu
1989 5.0	HA-11	04/14/89	2.5	1	i	1	ı	рu	0.030	рu	pu
1989 5.0	ETS Exca	vation Wall Sa	ımples								
1989 5.0	ΑΙ	6861	5.0	1	1	ł	ı	pu	nđ	pu	pu
1989 5.0	A2	1989	5.0	1	ı	1	1	pu	0.11	рп	pu
1989 5.0	М	1989	5.0	ì	ŧ	ı	ı	pu	180	3.8	28
1989 5.0	ပ	1989	5.0	1	ŀ	ť	t	pu	320	9.3	48
1989 S.0	Ω	1989	5.0	ı	1	ı	ı	pu	1.8	pu	pu
1989 5.0	E	1989	5.0	1	;	1	1	0.70	0.70	09 0	1.1
1989 5.0	舀	1989	5.0	;	1	ı	;	pu	pu	pu	pu
pulirmation Borings After SVE 12/03/91 3-5	lt.	1989	5.0	t	1	ı	1	pu	2.700	14	35
pufirmation Borings After SVE 12/03/91 3-5		• /									
12/03/91 3-5 nd nd nd 12/03/91 3-5 - nd 0.076 12/03/91 3-5 - nd nd nd 12/03/91 3-5 nd 12/03/91	Confirms	tion Borings A	fier SVE								
12/03/91 3-5 — I.5 nd 0.076 12/03/91 3-5 — nd 0.076 12/03/91 3-5 — nd nd nd 12/03/91 3-5 — nd nd nd 12/03/91 3-5 — nd nd nd 12/03/91 3-5 — nd 12	Ö	12/03/91	3-5	1	1	1	pu	pu	pq	pu	nđ
nd nd	н	12/03/91	3-5	1	ı	;	1.5	pu	0.076	0,0062	0.10
Abbreviations TPH: Total petroleum hydrocarbons as creosote by EPA Method 5020, 5030 or by modified EPA Method 8015 TPH: Total petroleum hydrocarbons as diesel by EPA Method 5020, 5030 or by modified EPA Method 8015 TPM: Total petroleum hydrocarbons as motor oil by EPA Method 5020, 5030 or by modified EPA Method 8015 TPH: Total petroleum hydrocarbons as gasoline by EPA Method 5020, 5030 or by modified EPA Method 8015 BTEX = BTEX compounds by EPA Method 601/8240 unless 8020/5030 performed also.	3004	12/03/91	3-5	t	ŧ	ı	pu	nd	nd	pu	пd
	Abbieviag TPHGr = 1 TPHG = 7 TPHG = 7 TPHg = 7 TPHg = 7 BTEX = E	ions otal petroleum otal petroleum lotal application de	hydrocarbons hydrocarbons hydrocarbons hydrocarbons shydrocarbons as by EPA Miszed as by EPA Miszed hydrocarbons in the contract of the contra	as creosote by EPA Methors as diesel by EPA Methors motor oil by EPA Methors gas gasoline by EPA Methothod 601/8240 unless 80	thod 5020, 5030 or by d 5020, 5030 or by m thod 5020, 5030 or by not 5020, 5030 or by 020/5030 performed a	r modified EPA Nodified EPA Modified EPA Mety modified EPA I modified EPA Notes.	Aethod 8015 thod 8015 Method 8015 lethod 8015			I	•

Table 3. Soil Analytic Data for Polynucleararomatics (PNAs) - Lathrop Investigation, Emeryville, California

And in contrast of the last																		
Sample ID	Sampled Sampled	Sample Depth (ft)	Acenap h-there	Acenap Acenaph Amhra- h-thene thylene cene	Anthra- cenc	Benzo- (a)an- thracene	Benzo- (b)staor- anthene	Benzo- (k)fluor- anthene	Benzo- (a) pyrenc	Benzo- (g.h.i) perylene	Chrysene	Fluor- anthene	Flourene	Indeno- (1,2,3-cd) pyrene	2-Methyl- naphtha- lene	Naphtha- lene	Phenasa- Unene	Pyrene
									(Соисел	itration in t	(Concentration in mg/kg or parts per million)	s per million	_					
LATH	LATHROP (5813-5815 Sheffmonad)	Selfans	Wend															
			,															
Cambr	Cambria, October 1994	1994																
SB-G	09/22/94	5.5	Ħ	, pu	pu	Ind	nď	ри	'pg	Pad	20	7	1	١		1	٠	
SB-N	SB-N 09/22/94	10.5	380	2,100	096	1.100	пd	nd in	1.160	880	07.0	SON SON	200		DC -	DG .	Pi	P
Cambr	Cambria, December 1994	r 1994						!	-	3		Por	900	000	740	5,900	3,800	2,800
SB-T		5.5	720	pit	250	190	140	120	210	130	290	008	450	1011	Š	-		
SB-X2		5.5	pu	pu	pu	pu	pu	pe	pu	pd		2 6	D 10		27	1,400	7,600	-
S		5.5	pu	nd.	P	nd	pu)E	pu	100	2	7	7	2 1		pr .	D .	B
3		5.5	pu	1,500	640	540	390	480	018	700	760	2 400	2 45	De ve	00 4	ם י	pu	pu
පී	12/07/94	14.0	nd	pu	pn	pu	рu	Pil.	pu	Pil	pu	200	200	700	04C	5,700	3,500	2,600
T		15.0	640	1,700	086	920	700	820	1,300	1,200	1,300	3,600	0.850	0.880	n 530	Du V	pu out #	
	1															Part's	חתכינ	4,100

Abhreviations
nd = Not detected, or no fimit given by previous consultant.
• " Lab estimated value.

