

July 27, 2012

Roya C. Kambin Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6270 RKLG@chevron.com

Mr. Mark Detterman Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

RE: Second Quarter 2012 Groundwater Monitoring Report

1400 Powell Street, Emeryville, California Fuel Leak Case No.: RO0000067 RECEIVED

11:27 am, Aug 13, 2012

Alameda County Environmental Health

Dear Mr. Detterman,

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at (925) 790-6270.

Sincerely,

Roya Kambin

Union Oil of California - Project Manager

Attachment

Second Quarter 2012 Monitoring Report

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Suite 250 Alameda, California 94502-6577 ARCADIS U.S., Inc. 100 Montgomery Street

Suite 300
San Francisco
California 94104
Tel 415.374.2744
Fax 415.374.2745
www.arcadis-us.com

ENVIRONMENT

July 27, 2012

415.432.6912

Leah M. Ackerman

Date:

Contact:

Phone:

Email:

Subject:

Second Quarter 2012 Groundwater Monitoring Report

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company, for itself and as Attorney-in-Fact for Union Oil Company of California (hereinafter "EMC"), ARCADIS U.S., Inc (ARCADIS) is pleased to submit the enclosed Quarterly Groundwater Monitoring Report for the following facility:

Facility No.	Case No.	<u>Location</u>
3737	RO0000067	1400 Powell Street
		Emeryville, California

If you have any questions, please contact Leah Ackerman at 415.432.6912.

Our ref:

B0047937.0001

Leah.Ackerman@ arcadis-us.com

Sincerely,

ARCADIS

Leah Ackerman, P.E. Project Engineer

Copies:

Ms. Roya Kambin, EMC (electronic copy) Mr. Najmeddin Revan, Property Owner

UNION OIL OF CALIFORNIA QUARTERLY MONITORING REPORT SECOND QUARTER 2012 July 27, 2012

Facility No.: 3737 Address: 1400 Powell Street, Emeryville, California

Consulting Company/Contact Person/Phone No.: ARCADIS / Leah Ackerman/ 415.432.6912

Primary Agency/Contact Person/Regulatory ID No.:

Alameda County Environmental Health / Mr.Mark

Detterman / Case No. RO 0000067

WORK PERFORMED DURING THIS REPORTING PERIOD (Second Quarter – 2012):

1. TRC Solutions (TRC) conducted groundwater monitoring and sampling on May 20, 2012. Field data sheets and general procedures are included as **Attachment A**. Six (6) monitoring wells (MW-1A through MW-3A in the shallow zone and MW-1B through MW-3B in the deep zone) were gauged, purged, and sampled during this monitoring event.

All collected groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g) by Environmental Protection Agency (EPA) Method 8260B; benzene, toluene, ethylbenzene, and total xylenes (BTEX, collectively), full scan of volatile organic compounds (VOCs) including oxygenates (methyl tertiary butyl ether [MTBE] and tertiary butyl alcohol [TBA]); 1,2-dibromoethane (EDB) and 1,2-dichloroethane (EDC), diisopropyl ether (DIPE), tert-butyl ethyl ether (ETBE), tert-amyl methyl ether (TAME), and ethanol by EPA Method 8260B; total petroleum hydrocarbons as diesel (TPH-d) and total petroleum hydrocarbons as motor oil (TPH-mo) by EPA Method 8015B with silica gel clean-up.

The site location map, the site plan, and the groundwater contour and hydrocarbon concentration maps are presented on **Figures 1** through **4**. Current Groundwater Gauging and Analytical Results are summarized in **Table 1**, Historical Groundwater Gauging and Analytical Results are summarized in **Table 2**, and Historical Groundwater Results from Antea are included as **Attachment B**. A copy of the laboratory analytical report and chain-of-custody documentation is included as **Attachment C**.

WORK PROPOSED FOR THE NEXT REPORTING PERIOD (Third Quarter - 2012):

1. Perform groundwater monitoring and related reporting during third quarter 2012.

Current Phase of Project:	Groundwater Monitoring
Site Use:	Active Service Station
Frequency of Sampling:	Groundwater – Quarterly
Frequency of Monitoring:	Groundwater – Quarterly
Measurable Separate-Phase Hydrocarbons (SPH) this quarter:	None
Cumulative SPH Recovered to Date:	None
SPH Recovered This Quarter:	None
Bulk Soil Removed to Date:	Six cubic yards
Bulk Soil Removed this Quarter:	None
Water Wells or Surface Waters within a 2000' Radius and Their Respective Directions:	None
Groundwater Use Designation:	Municipal and Domestic
Current Remediation Techniques:	None
Permits for Discharge (No.):	None

351578_GMR_2012Q2.docx Page 1

UNION OIL OF CALIFORNIA **OUARTERLY MONITORING REPORT SECOND QUARTER 2012** July 27, 2012

Facility No.: 3737 Address: 1400 Powell Street, Emeryville, California

Approximate Depth to Groundwater: Shallow Zone: 4.40 (MW-3A) – 7.77 (MW-2A) feet

below top of casing

Deep Zone: 4.52 (MW-3B) - 7.33 (MW-1B) feet below

top of casing

Shallow Zone: 11.16 (MW-2A) – 14.22 (MW-3A) feet Approximate Groundwater Elevation:

above mean sea level

Deep Zone: 11.55 (MW-1B) - 14.05 (MW-3B) feet

above mean sea level

Measured X Estimated

Groundwater Gradient (Shallow Zone): 0.08 ft/ft (Magnitude) Northwest (Direction) Groundwater Gradient (Deep Zone): 0.004 ft/ft (Magnitude) South-southeast (Direction)

DISCUSSION:

Groundwater conditions at the six (6) monitoring wells sampled during the second quarter 2012 remained generally consistent with previous quarters. The maximum concentration of TPH-d (470 micrograms per liter [μg/L]), benzene (250 μg/L), toluene (3.2 μg/L), ethylbenzene (31 μg/L), total xylenes (3.1 μg/L), MTBE (290 μg/L), TBA (2,400 μg/L), and TAME (2.1 μg/L) were detected in the samples collected from MW-2A. The maximum concentration of TPH-g (2,200 µg/) was detected in the sample collected from MW-3A. The maximum concentration of EDC (24 µg/L) was detected in the sample collected from MW-1B. EDB, DIPE, ETBE, and ethanol were not detected in any of the monitoring wells.

Groundwater elevations across the site in the shallow water-bearing zone vary by approximately three feet and create a hydraulic gradient of 0.08 foot per foot in the northwest direction. Groundwater elevations across the site in the deeper water-bearing zone vary by approximately two and one half feet and create a hydraulic gradient of 0.04 foot per foot in the south-southeast direction.

Approval was received from Alameda County Environmental Health (ACEH) in a letter dated May 10, 2012 to reduce the monitoring and sampling interval for the deep zone monitoring wells (MW-1B, MW-2B, and MW-3B) to a semi-annual basis using the first and third quarters in a given year, and to eliminate the full scan VOC analytical suites from all wells. ARCADIS will continue to analyze the fuel oxygenates and will also analyze TPH-g in the C6-C12 range using EPA Method 8015B in all the monitoring wells.

At the time that the letter from ACEH was received, the sampling event for the second quarter was already underway and therefore the deep zone wells were also monitored and sampled this sampling event. Going forward, the deep zone wells will be monitored and reported in the first and third quarters of the year.

CONCLUSIONS AND RECOMMENDATIONS:

Dissolved hydrocarbon constituent concentrations have remained relatively consistent with previous quarters. ARCADIS recommends continued groundwater monitoring and reporting.

351578_GMR_2012Q2.docx Page 2

UNION OIL OF CALIFORNIA QUARTERLY MONITORING REPORT SECOND QUARTER 2012 July 27, 2012

Facility No.: 3737 Address: 1400 Powell Street, Emeryville, California

ATTACHMENTS:

Figure 1: Site Location Map

Figure 2: Site Plan

Figure 3: Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow Zone)
Figure 4: Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep Zone)

Table 1: Current Groundwater Gauging and Analytical ResultsTable 2: Historical Groundwater Gauging and Analytical Results

Attachment A: Field Data Sheets and General Procedures
Attachment B: Historical Groundwater Results from Antea

Attachment C: Laboratory Report and Chain-of-Custody Documentation

351578_GMR_2012Q2.docx Page 3

ARCADIS

Figures

PM:(Reqd) TM:(Opt) LYR:(Opt)ON=";OFF=*REF" dwg LAYOUT: 1 SAVED: 7/3/2012 11:06 AM ACADVER: 7 PIC:(Opt) 47937N01.dw

ARCADIS

Tables

Table 1 Current Groundwater Gauging and Analytical Results 76 Station 3737 1400 Powell Street, Emeryville, California

					GW	Previous																
				LPH	Elevation	Quarter	Change in	TPH-Motor		TPH-g												
	Date	TOC (feet	DTW	Thickness	(feet	GWE (feet	Elevation	Oil	TPH-d	(Luft-			Ethyl-	Total								
Well ID	Sampled	AMSL)	(feet bgs)	(feet)	AMSL)	AMSL)	(feet)	(8015B/FFP)	(8015B/FFP)	GC/MS)	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	EDB	EDC DI	IPE ETBE	TAME	Ethanol	Comments
MW-1A	5/20/2012	18.74	5.50	0.00	13.24	13.07	-0.17	<100	380	1,600	18	0.81	5.1	2.7	26	39	< 0.50	< 0.50 < 0	0.50 < 0.50	0.76	<250	A52
MW-1B	5/20/2012	18.88	7.33	0.00	11.55	11.29	-0.26	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	0.75	<10	< 0.50	24 <0	0.50 < 0.50	< 0.50	<250	
MW-2A	5/20/2012	18.93	7.77	0.00	11.16	11.68	0.52	<100	470	2,100	250	3.2	31	3.1	290	2,400	< 0.50	< 0.50 < 0	0.50 < 0.50	2.1	<250	A01, A52
MW-2B	5/20/2012	19.10	5.18	0.00	13.92	13.64	-0.28	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	3.0	<10	< 0.50	< 0.50 < 0	0.50 < 0.50	< 0.50	<250	
MW-3A	5/20/2012	18.62	4.40	0.00	14.22	13.90	-0.32	<100	340	2,200	45	2.2	30	2.5	0.54	25	< 0.50	0.85 <0	0.50 < 0.50	< 0.50	<250	A52
MW-3B	5/20/2012	18.57	4.52	0.00	14.05	13.95	-0.10	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	<0.50 <0	0.50 < 0.50	< 0.50	<250	

Note

Analytical results given in micrograms per liter ($\mu g/l$)

Standard Abbreviations

A01

A52

-- not analyzed, measured, or collected

not detected at or above laboratory detection limit

bgs below ground surface
AMSL above mean sealevel
DTW depth to water
GW groundwater

LPH liquid-phase hydrocarbons

TOC top of casing (surveyed reference elevation)

Analytes

MTBE methyl tertiary butyl ether TBA tertiary butyl alcohol EDB 1,2-dibromoethane EDC 1,2-dichloroethane (same as ethylene dichloride) ETBE ethyl tertiary butyl ether TAME tertiary amyl methyl ether DIPE di-isopropyl ether TPH-g total purgable petroleum hydrocarbons TPH-d total petroleum hydrcarbons as diesel TPH-Motor Oil total petroleum hydrocarbons as motor oil 8260B EPA Method 8260B for TPH-g and Volatile Organic Compounds 8015B/FFP EPA Method 8015B with silica gel clean-up for TPH-d and TPH-motor oil

PQL's and MDL's are raised due to sample dilution.

Chromatogram not typical of diesel

Table 2 Historical Groundwater Gauging and Analytical Results 76 Station 3737 1400 Powell Street, Emeryville, California

				LPH	GW Elevation	Previous Quarter	Change in	TPH-Motor	TPH-d (FFP)	TPH-g													
	Date	TOC (feet	DTW	Thickness	(feet	GWE (feet	Elevation	Oil	(8015B/FFP	(Luft-			Ethyl-	Total									
Well ID	Sampled	,	(feet bgs)	(feet)	AMSL)	AMSL)	(feet)	(8015B/FFP)	*	GC/MS)	Benzene	Toluene	benzene		MTBE	TBA	EDB	EDC	DIPE	ETBE	TAME	Ethanol	Comments
	•	,	. 0,	` ′	,	,	` ′	, ,	,	,				•									
MW-1A	05/01/2011	18.74	5.68	0.00	13.06			< 200	450	1,100	36	0.86	5.9	1.9	31	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	08/28/2011		5.72	0.00	13.02	13.06	0.04	170	540	840	21	0.68	3.8	1.8	55	<10	< 0.50		< 0.50		< 0.50	<250	
	11/20/2011		5.58	0.00	13.16	13.02	-0.14	<100	460	1,300	20	0.74	6.4	<1.0	40	79	< 0.50		< 0.50	< 0.50	< 0.50	<250	
	02/19/2012		5.67	0.00	13.07	13.16	0.09	<100	610	1,300	20	0.91	6.8	2.5	59	80	< 0.50			< 0.50	2.0	<250	
	05/20/2012		5.50	0.00	13.24	13.07	-0.17	<100	380	1,600	18	0.81	5.1	2.7	26	39	< 0.50	< 0.50	< 0.50	< 0.50	0.76	<250	A52
MW-1B	05/01/2011	18.88	8.51	0.00	10.37			<200	82	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	19	< 0.50		< 0.50	<250	
	08/28/2011		8.27	0.00	10.61	10.37	-0.24	<100	59	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	18	< 0.50	< 0.50	< 0.50	<250	
	11/20/2011		7.88	0.00	11.00	10.61	-0.39	<100	69	<50	< 0.50	< 0.50	< 0.50	<1.0	0.55	<10	< 0.50	16	< 0.50	< 0.50	< 0.50	<250	
	02/19/2012		7.59	0.00	11.29	11.00	-0.29	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	0.87	<10	< 0.50	26	< 0.50	< 0.50	< 0.50	<250	
	05/20/2012		7.33	0.00	11.55	11.29	-0.26	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	0.75	<10	< 0.50	24	< 0.50	< 0.50	< 0.50	<250	
MW-2A	05/01/2011	18.93	6.40	0.00	12.53			<1000	1,500	2,800	860	4.6	< 0.50	12	220	2,500	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	A01
	08/28/2011		5.93	0.00	13.00	12.53	-0.47	<1000	1,600	2,300	690	< 5.0	< 5.0	<10	320	2,100	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2,500	A01
	11/20/2011		5.73	0.00	13.20	13.00	-0.20	< 500	1,200	1,800	440	< 5.0	< 5.0	<10	160	2,200	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2,500	A01
	02/19/2012		7.25	0.00	11.68	13.20	1.52	<100	450	2,000	460	5.1	< 0.50	5.8	280	3,200	< 0.50	< 0.50		< 0.50	< 0.50	<250	
	05/20/2012		7.77	0.00	11.16	11.68	0.52	<100	470	2,100	250	3.2	< 0.50	3.1	290	2,400	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	A01, A52
MW-2B	05/01/2011	19.10	7.57	0.00	11.53			<200	< 50	< 50	1.2	< 0.50	< 0.50	<1.0	3.4	<10	< 0.50		< 0.50		< 0.50	<250	
	08/28/2011		5.82	0.00	13.28	11.53	-1.75	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	2.3	<10	< 0.50		< 0.50		< 0.50	<250	
	11/20/2011		5.73	0.00	13.37	13.28	-0.09	<100	56	< 50	< 0.50	< 0.50	< 0.50	<1.0	2.0	<10	< 0.50		< 0.50		< 0.50	<250	
	02/19/2012		5.46	0.00	13.64	13.37	-0.27	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	3.1	<10	< 0.50		< 0.50	< 0.50	< 0.50	<250	
	05/20/2012		5.18	0.00	13.92	13.64	-0.28	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	3.0	<10	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
MW-3A	05/01/2011	18.62	4.68	0.00	13.94			<200	460	2,700	130	2.7	98	3.6	< 0.50	<10	< 0.50	1.2	< 0.50	< 0.50	< 0.50	<250	A01
	08/28/2011		4.92	0.00	13.70	13.94	0.24	130	440	1,700	39	0.51	28	1.6	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/20/2011		4.97	0.00	13.65	13.70	0.05	<100	330	1,200	25	0.83	17	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	02/19/2012		4.72	0.00	13.90	13.65	-0.25	<1000	1400	1,900	60	2.1	41	2.1	0.71	30	< 0.50	0.80	< 0.50	< 0.50	< 0.50	<250	A01
	05/20/2012		4.40	0.00	14.22	13.90	-0.32	<100	340	2,200	45	2.2	30	2.5	0.54	25	< 0.50	0.85	< 0.50	< 0.50	< 0.50	<250	A52
MW-3B	05/01/2011	18.57	6.68	0.00	11.89			<200	< 50	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50		< 0.50		< 0.50	<250	
	08/28/2011		7.29	0.00	11.28	11.89	0.61	<100	<40	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50		< 0.50		< 0.50	<250	
	11/20/2011		6.33	0.00	12.24	11.28	-0.96	<100	45	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50		< 0.50		< 0.50	<250	
	02/19/2012		4.62	0.00	13.95	12.24	-1.71	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50			< 0.50	< 0.50	<250	
	05/20/2012		4.52	0.00	14.05	13.95	-0.10	<100	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	

Note

Analytical results given in micrograms per liter (µg/l)

Standard Abbreviations

-- not analyzed, measured, or collected

< not detected at or above laboratory detection limit

bgs below ground surface
AMSL above mean sealevel
DTW depth to water
GW groundwater

LPH liquid-phase hydrocarbons

TOC top of casing (surveyed reference elevation)

Table 2 Historical Groundwater Gauging and Analytical Results 76 Station 3737 1400 Powell Street, Emeryville, California

Analytes

MTBE	methyl tertiary butyl ether
TBA	tertiary butyl alcohol
EDB	1,2-dibromoethane
EDC	1,2-dichloroethane (same as ethylene dichloride)
ETBE	ethyl tertiary butyl ether
TAME	tertiary amyl methyl ether
DIPE	di-isopropyl ether
TPH-g	total purgable petroleum hydrocarbons
TPH-d	total petroleum hydrcarbons as diesel
TPH-Motor Oil	total petroleum hydrocarbons as motor oil
8260B	EPA Method 8260B for TPH-g and Volatile Organic Compounds
8015B/FFP	EPA Method 8015B with silica gel clean-up for TPH-d and TPH-motor oil
A01	PQL's and MDL's are raised due to sample dilution.
A52	Chromatogram not typical of diesel

ARCADIS

Attachment A

Field Data Sheets and General Procedures

123 Technology Drive West Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

May 30, 2012

TO:

Leah Ackerman

Arcadis

100 Montgomery Street, Suite 300 San Francisco, California 94104

SITE:

Unocal Site 3737

Facility 351780

1400 Powell Street, Emeryville, CA

RE:

Transmittal of Groundwater Monitoring Data

Dear Ms. Ackerman,

Please find attached the field data sheets, chain of custody (COC) forms, and technical services request (TSR) form for the monitoring event that was completed on May 20, 2012. Field measurements and collection of samples submitted to the laboratory were completed in general accordance with our usual groundwater monitoring protocol which is also attached for your reference.

Please call me at 949-727-7345 if you have questions.

Sincerely,

Christina Carrillo

Groundwater Program Coordinator

GENERAL FIELD PROCEDURES

Groundwater Gauging and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater gauging and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements (Gauging)

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Unless otherwise instructed, a well that is found to contain a measureable amount of LPH (0.01 foot) is not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps. The pump intake is initially set at about 5 feet below the level of water in the casing, and is lowered as needed to compensate for falling water level. Pump depths are recorded in Field Notes.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously, using a flow cell, until they become stable in general accordance with EPA guidelines.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

GENERAL FIELD PROCEDURES

Samples are collected by lowering a new, disposable polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

Sample containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well. If wells must be gauged or sampled out of order, alternate interface probes and/or pumps are utilized and are noted in field documentation.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liquinox and water and rinsing twice. The final rinse is in deionized water.

Purge Water Disposal

Purge water is generally collected in labeled drums for disposal as non-hazardous waste. Drums may be left on site for disposal by others, or transported to a collection location at a TRC field office, in either Fullerton, California or Concord, California, for eventual transfer to a licensed treatment or recycling facility. Alternatively, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, are documented in field notes on the following pages.

FIELD MONITORING DATA SHEET

Technician: Banko	Job #/Task #: <u>189 7-91, 2035</u> , 1780	Date: <u>5-20-/2</u>
Site # <u>3737</u>	Project Manager <i>A.F.</i>	Page of

				Depth	Depth	Product		
		Time	Total	to	to	Thickness	Time	
Well #	TOC	Gauged	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes
MW-3B	V	0750	23.80	4,52		· ·	1142	2"
MW-1B	V	0757	21.70	7.33	grana.	again the second of	1157	24
MW-ZB	V	0805	23.58	5.18	C	for	1217	2"
MW-1A	L	0811	9.70	5.50	Parama.	,	1125	2"
MW-3A	Ł	0819	9.22	4.40	yana	derman,	1115	2"
MW-ZA	1	0825	10.15	7,77		•	1/03	2" Pre-Purge Time 2" OBSO portrois Analysi
								ν ,
								Note MW-2A
_							×	Note MN-2A Pre purge Time 085 0850 por 8015 Analysis
						_	BK	084 0850 por
					.			8015 Analysis
								1/
	,							
					:			
FIELD DATA	COMPL	ΞΤΕ	QA/QC		COC	WE	LL BOX CO	ONDITION SHEETS
MANIFEST	<u> </u>	DRUM IN	VENTOR\	1	TRAFFIC (CONTROL		

GROUNDWATER SAMPLING FIELD NOTES

Technician: Baulos

Site: 3737

Project No.: 189791,0035,1780

Date: 5-20-12

Well No. MW-ZA

Purge Method: HB

Depth to Water (feet): 7,77

Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 2

80% Recharge Depth(feet): 8.24

1 Well Volume (gallons): /

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit y (µS/cm)	Temperature (F,C)	pН	D.O. (mg/L)	ORP	Turbidity
Pre-F	urge			·					
0854	0856		1	2514	19.8	6.47			
			2		40km.,	<i>~</i> .			
			3		~	.			
Statio	at Time S	ampled	Tota	l Gallons Pur	ged		Sample	Time	1
\hat{q}_i	33		.5	-		110	3	*	
Comments:	Pre-P	urse 500	mple	0850	Don at	< 160	<i>/</i> .		
Did	not lec	urge sa	Uton	3015 Sul	in Hed pro			Sam 1	218.

Well No. <u>MW - 3A</u>	Purge Method:
Depth to Water (feet): 40	Depth to Product (feet):
Total Depth (feet) 9.22	LPH & Water Recovered (gallons):
Water Column (feet): 4,82	Casing Diameter (Inches): 2
80% Recharge Depth(feet): 5.36	1 Well Volume (gallons):/

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit y (µS/cm)	Temperature (F, C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-	Purge						·		
0900			1	1/77	27.3	7.12			
W	0906		2	1192	22.1	687			
			3		pur.	~			
Stati	c at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	4.65		2			11	15		
Comments	: Dry at	2614,	Did wt r	r Lover 251	Vin-				

GROUNDWATER SAMPLING FIELD NOTES

Technician: <u>Basilis</u>

Site: <u>37</u>	·37	Proj	ect No.:_/	89791.0	<u> 203</u> 5. 178	?0	Date:	5-2	0-12
	MW-		 -	Purge Metho	od:	HB		-	
Depth to V	Vater (feet):	5.50		Depth to Pro	oduct (feet):_	*	Magazgusha-sh-	_	
Total Dept	h (feet)	9.40		LPH & Wate	r Recovered	(gallons):_	**************************************	_	
Water Colu	umn (feet):_	4.20		Casing Diam	neter (Inches):	: 2-		-	
80% Rech	arge Depth(feet): 6.3L	_	1 Well Volu	me (gallons):	1			
		•							
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit y (µS/cm)	Temperature	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Purge								
0910	<u> </u>)	699.7	19.7	7.10			
	0914		2	747.7	19.4	6.94			
			3	y saw.	, parameter, parameter	g			
Statio	Static at Time Sampled To				ged		Sample	Time	

Well No. <u>MW-3B</u> Depth to Water (feet): 4.52	Purge Method: 5,5
Total Depth (feet) 23.80	LPH & Water Recovered (gallons):
Water Column (feet): 19.28	Casing Diameter (Inches):
80% Recharge Depth(feet): 8.37	1 Well Volume (gallons):

2

Dry at 26k. Did not recove 45 lin

5.70

Comments:

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit γ (μS/cm)	Temperature (F, C)	pН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Purge								
0935	0938		Lj	1336	21.2	7.44			
			Ŕ	,	~	escensor.			
			R	Managan I	***************************************	, e e e e e e e e e e e e e e e e e e e			
Statio	c at Time S	ampled	Tota	al Gailons Pur	ged		Sample	Time	
	5.42		4				114		, <u>au. a.</u>
Comments:	Dry a	t 46/5. D	idustr	ecover in	-45 Min		<i>F</i>		

1125

GROUNDWATER SAMPLING FIELD NOTES

Technician: Baulis

Site: <u>3737</u> Project No.: /	89791.0035.1780 Date: 5-20-12
Well No. MW- IB	Purge Method: 545
Depth to Water (feet): 7,33	Depth to Product (feet):
Total Depth (feet) 21.70	LPH & Water Recovered (gallons):
Water Column (feet): 14,37	Casing Diameter (Inches):
80% Recharge Depth(feet): 10.20	1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit y (µS/cm)	Temperature (F, 🖒)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	urge								
D454			3	1302	20.6	7.13			
	1001		6	1296	20.5	6.86			
			9		Miller Marine .				
Statio	at Time S	ampled	Tota	l Gallons Pur	ged		Sample	Time	<u></u>
	9.10	>	lo			11:	The same of		
Comments:	1/9	at lobls.	Dide	ot recov	er 45 lin				

Well No. <u>MW-275</u> Depth to Water (feet): 5, 18	Purge Method: 545 Depth to Product (feet):
Total Depth (feet) 23.58 Water Column (feet): 18.417	LPH & Water Recovered (gallons): Casing Diameter (Inches):
	1 Well Volume (gallons):/_

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivit y (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-	Purge								
1008	10/1		4	983.4	21.0	7,92			
			8			/			
			12						
]								
Stati	c at Time S	Sampled	Tota	al Gallons Pur	ged		Sample	Time	
	8.98		4				12	17	
Comments	: DM	at 4 61	s, bid	not re	cover BOT	260		· · · · · · · · · · · · · · · · · · ·	

STATEMENT OF NON-COMPLETION OF JOB

DATE OF EVENT: 5-20-12	
TECH: Back	CALLED SUPERVISOR: YES / NO
CALLED MY YES / NO NAME OF	PM: Aufu F.
WELLID: MW-ZA	
WELLID: MW-24 Submitted Pre purge of Olive Lack of Water	Boundles for 8015 Anglysis
Olue back of water	when sampling post pure
Submitted Biloot an	d ethanol analysis port purgi
	· · · · · · · · · · · · · · · · · · ·
WELL ID:	
·	
WELL ID:	

WELL BOX CONDITION REPORT

SITE NO. 3737

ADDRESS 1400 Powell 54.

DATE 5-20-12 PERFOMED BY: Denlist
PAGE OF [Current Well Box Size # of Broken Ears # of Broken Bolls # of Missing Bolts Well Box is Exposed Foundation Damaged # of Stripped Ears Well Box is Below Grade Unable to Access Seal Damaged Unable to Locate USA Marked Well Saw Cut Needed Well Name Missing Lid Broken Lld Paved Over System Well # of Ears Street Well Comments

CHAIN OF CUSTODY FORM

			Union Oil Cor	mpany of California a 6101	Bollinger Canyon Road	■ Sar	n Ran	non,	CA 94	1583						COC of/		
Union Oil Site ID: 37	37			Union Oil Consultant:	K H						Ÿ	ANAL'	/\$E	REC	EQUIRED			
Site Global ID: 106 5 Site Address: 74/00	160	4 5 4 5 Sell 57 NG 12	4,	Consultant Contact: Consultant Phone No.: Sampling Company: TRC	1900			SXYS	,	1.44.1	200				Turnaround Time (TAT): Standard 24 Hours 48 Hours 72 Hours	4-7		
Union Oil PM:		of an Archael		Sampled By (PRINT):	150			102	×.	Ê	(3)				Special Instructions			
Union Oil PM Phone No.: 762 460 4616					1	Δ.)	60B	/ ~		1	77				La Charles Charles A	_ }		
Charge Code: NWRTB- 0 2 2 2 -0- LAB This is a LEGAL document. ALL fields must be filled out CORRECTLY and				Sampler Signature: BC Labora Project Manage	- Diesel by EPA 8015 10	MNS SOL	BTEX/MTBE/OXYS by EPA 8260B	Ethanol by EPA 82608 7GM	EPA 8260B Full List with OXYS	160 32.					11.00 1-00 11.00 70.00 7	ا الم		
COMPLETELY.				4100 Atlas Court, Ba Phone No. 6		selb	G by GC/MS	BE/C	y EP/	B Fu	3			İ	The state of the s	July surge town		
	SAMPLI	E ID				- Die	9-	Z/MT	d loc	8260	14					Ime (163, o. Jewis.	274	
Field Point Name	Matrix	DTW	Date (yymmdd)	Sample Time	# of Containers	ТРН	TPH-	BTE)	Ethai	EPA	<i></i>					ンガバルンド フェス・カッタ: Notes / Comments	5.	
11/11/11/11	Ŵ-S-A		181520	1125		X	\geq	1	><		\times							
1.11115-119	W-S-A		!	1157	-	Parks tags / plas			s To American		î							
14141 - ZA	W-S-A		:	0850 /1103		Topical malery			1		and the second second				"			
1111 - 113	W-S-A			12/7		period and address	era pri degan .		and already		Complete Man							
21147 - 1A	W-S-A		74	1115		1	1		and the second		anna i savnos							
11/10 - 57h	W-S-A		W.	1142	<u> </u>	W	V		\mathbb{W}	,								
	w-s-A			:	· · · · · · · · · · · · · · · · · · ·	Ĺ												
	W-S-A												\perp					
	W-S-A																	
	W-S-A																	
	W-S-A																	
	W-S-A																	
THE T	npany 74 <u>(</u>	Date / Time:	- 1415 - Hord Textents	Relinquished By Com	pany Date / Time :				Relin	quishe	ed By		Cor	mpany	,	Date / Time:		
l .;	ipany R LAB	/ Date / Time: ラ <i>ろ</i> マルル	1 / 2 /4/5	Received By Com	pany Date / Time :				Rece	ived E	У		Co	mpan	у	Date / Time:		

TRC SOLUTIONS TECHNICAL SERVICES REQUEST FORM

25-Apr-12

Site ID: Address City: Cross Street:	Emery			Project No.: Client: Contact #: PM: PM Contact #:	189791.0035.1780 / 00TA01 Roya Kambin 925-790-6270 Jim Schneider CRA : 949-648-5202						
Total number Depth to Wate		ls: 6	Min. Well Diameter Max. Well Diamete	r (in.):	# of Techs, # of Hrs: Travel Time (hrs):	1, 6					
ACTIVITIES	:	Frequency	Max. Well Depth (fi		Hotel PO#:						
Gauging:	V	Quarterly									
Purge/Sampling	g: 🔽	Quarterly									
No Purge/Samp	ole 🗌										
RELATED A	CTIVIT	ΓIES Note									
Drums:	V	:									
Other Activities:		· · ·									
Traffic Control:					· · ·						
5/18 notig	erator: N		an, 510-653-2251. He is at	the station until noor	1.						
SITE INFOR			and the second of the second			1					
Prior to gauging, u Well MW-2A does - collect a no purge - then purge and si	ncap all not rech sample ample th	wells and allow to o arge quickly. a (these will be subt e well	only be sampled on a Sunequilibrate for 15 minutes. mitted if the well does not reliect post-purge samples (s	echarge after purging		ge samples)					

TRC SOLUTIONS

TECHNICAL SERVICES REQUEST FORM

25-Apr-12

Site ID:

3737

Address

1400 Powell Street

City:

Cross Street: Peladeau Street

Emeryville

Project No.:

189791.0035.1780 / 00TA01

CRA

Client:

Roya Kambin

Contact #:

925-790-6270

PM:

Jim Schneider

PM Contact #: 949-648-5202

LAB INFORMATION:

Global ID: T06019745736

Lab WO: 351780

Lab Used: BC

Lab Notes: Lab Analyses:
TPH-G by 8260B, Full Scan 8260B including OXYS, Ethanol by 8260B [Containers: 3 voas w/ HCI]
TPH-Diesel by 8015 w/ silica gel cleanup, TPH-Motor Oil by 8015 w/ silica gel cleanup [Container: two 1L ambers

unpreserved]

TRC SOLUTIONS

TECHNICAL SERVICES REQUEST FORM

25-Арг-12

Site ID.:

3737

Address

1400 Powell Street

City:

Emeryville

Cross Street Peladeau Street

			1	ı	Gau	ging		1	San	pling	!		Field Measurem	ents	•	
Well IDs	Benz.	MTB	E	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Pre-Purge	Post-Purge	Туре	Comments	
MW-3B	0		0	V	V	V	~	V	V	~	✓					
MW-1B	0	0.	.87	V	\checkmark	\checkmark	V	V	V	V	V					
MW-2B	0		3.1	V	V	V		V	V	✓	V	Î				
MW-1A	20		59	~	✓	V	~	V	~	✓	V				1	
MW-3A	60	0.	.71	V	V	V	V		V	V	V					
MW-2A	460	2	80	V	V	V	✓	V	V	✓	✓	j 🗆			i	

ARCADIS

Attachment B

Historical Groundwater Results from Antea

Table 2

Summary of Current Groundwater Analytical Data

Chevron Branded Service Station No. 3737 1400 Powell Street Emeryville, California

																									p-			1,2,4-	1,3,5
											Ethyl-										n-Butyl-	sec-Butyl-		Isopropyl-	Isopropyl-		n-Propyl-	Trimethyl-	Trimethyl-
Sample			Depth to	TOC	Groundwater	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	benzene	Xylenes	MTBE	TAME	TBA	DIPE	Ethanol	ETBE	EDB	1,2-DCA	benzene	benzene	Chloroform	benzene	toluene	Napthalene	benzene	benzene	benzene
ID	Date	Time	Water	Elevation	Elevation	(μ g/L)	(μ g/L)	(μ g/L)	(μg/L)	(μg/ L)	(μg/ L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μg/ L)	(μg/L)	(μg/L)	(μg/ L)	(μ g/L)	(μ g/L)	(μ g/L)						
MW-1A	1/26/2011	2:20	5.8	18.743	12.94	960	450	A52 <200	8.4	<0.50	1.9	1.6	50	1.4	62	<0.50	<250	<0.50	<0.50	<0.50	2.2	1.2	<0.50	4.2	1.8	1.8	7.3	1.0	1.2
MW-1B	1/26/2011	1:20	9.46	18.884	9.42	<50	<50	<200	<0.50	< 0.50	<0.50	<1.0	0.66	<0.50	<10	< 0.50	<250	<0.50	< 0.50	24	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-2A	1/26/2011	10:33	8.02	18.925	10.91	2,500	1,200	<1000	100	2.2	28	9.0	140	<0.50	1,300	< 0.50	<250	<0.50	< 0.50	<0.50	6.6	3.9	2.5	14	7.6	17	23	2.5	2.4
MW-2B	1/26/2011	2:10	5.51	19.099	13.59	<50	<50	<200	0.55	< 0.50	<0.50	<1.0	3.4	<0.50	<10	< 0.50	<250	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-3A	1/26/2011	2:30	4.75	18.616	13.87	3,100	830	<200	160	<5.0	96	<10	<5.0	<5.0	<100	<5.0	<2500	<5.0	<5.0	<5.0	<5.0	6.2	<5.0	40	9.2	<5.0	54	<5.0	<5.0
MW-3B	1/26/2011	1:35	7.33	18.571	11.24	<50	57	<200	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<10	<0.50	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
COMP	1/26/2011	1:15	NA	NA	NA	1,200	350	<200	13	0.57	5.4	1.5	6.0	<0.50	92	<0.50	15,000	<0.50	<0.50	3.6	5.3	2.3	<0.50	4.0	2.9	5.6	8.4	0.60	0.52
ESL						100	100	100	1	40	30	20	5	NA	12	NA	NA	NA	0.05	0.5	NA	NA	70	NA	NA	17	NA	NA	NA

Notes:

Depth to water measured in feet below top of casing

Groundwtaer elevation measured in feet above mean sea level

Bold concentrations indicate detection above laboratory reporting limit

(μg/L) micrograms per liter

TPH-D Total Petroleum Hydrocarbons as Diesel
TPH-MO Total Petroleum Hydrocarbons as Motor Oil
TPH-G Total Petroleum Hydrocarbons as Gasoline

MTBE methyl tertiary butyl ether
TBA tertiary buty alcohol
ETBE ethyl tertiary butyl ether
DIPE di-isopropyl ether
TAME tertiary amyl ethyl ether
EDB ethylene dibromide
1,2-DCA 1,2-dichloroethane

ESL Regional Water Quality Control Board - San Francisco Region Environmental Screening Level

A52 Data Qualifier: Chromatogram not typical of diesel

 ${\sf ESL}\ based\ on\ residential\ land\ use,\ shallow\ soil,\ and\ groundwater\ as\ a\ potential\ drinking\ resource.$

TPH-D and TPH-MO analysis by Environmental Protection Agency (EPA) Test Method 8015 with Silica Gel Cleanup

All other analyses by EPA Method 8260B.

Samples were analyzed for a full VOC Scan by EPA Method 8260B with oxygenates and lead scavengers. All Oxygenates and lead scavenger data are summarized, only VOCs with detections are presented in table. Data qualifiers regarding sample dilution, surrogate recovery, or quality control are not presented in table. Please refer to laboratory reports for full explanation of qualifiers.

ARCADIS

Attachment C

Laboratory Report and Chain-of-Custody Documentation

Date of Report: 06/05/2012

Leah Ackerman

Arcadis 2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

Project: 3737

BC Work Order: 1209293 Invoice ID: B123424

Enclosed are the results of analyses for samples received by the laboratory on 5/21/2012. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

molly meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
1209293-01 - MW-1A-W-120520	
Volatile Organic Analysis (EPA Method 8260)	7
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	10
1209293-02 - MW-1B-W-120520	
Volatile Organic Analysis (EPA Method 8260)	11
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	14
1209293-03 - MW-2A-W-120520	
Volatile Organic Analysis (EPA Method 8260)	15
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	18
1209293-04 - MW-2B-W-120520	
Volatile Organic Analysis (EPA Method 8260)	19
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	22
1209293-05 - MW-3A-W-120520	
Volatile Organic Analysis (EPA Method 8260)	23
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	26
1209293-06 - MW-3B-W-120520	
Volatile Organic Analysis (EPA Method 8260)	27
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	30
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	31
Laboratory Control Sample	
Precision and Accuracy	37
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)	
Method Blank Analysis	39
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	42

L	
	8
	IJ,
7	

Environmental Testing Laboratory Since 1949 Laboratories, Inc.

CHAIN OF CUSTODY FORM

	-											ı.	(TAT): Hours Hours Hours Hours Samples 3608 and malysis.	
									1200	1705	۲			
									100	10-11	<i>)</i>			
•					OF CUSTODY FORM								· i	
			Union Oil Cor	npany of California ■ 6101	Bollinger Canyon Road	San F	Ramon	, CA 94583				COC of	 ;	
Union Oil Site ID: 37	37			Union Oil Consultant: CRA					3 ANALYSES REQUIRED					
Site Global ID: TOGO	197	4 <i>57</i> 30		Consultant Contact: Jim Han jeder				N S	177			Turnaround Time	(TAT):	
Site Address: 1400	for	ell St		Consultant Phone No.: 949-648-5202				18X	13/7	. 1		Standard	Hours □	
	<u>. 15</u>	mery	VITTE	Sampling Company: TRC				20	£ 50			Special instruct	tions	
Union Oil PM: Roya Kambi Union Oil PM Phone No.: 925-790-6270				Sampled By (PRINT)				13/3	13/2			Prepurge sa	mole	
				Sampler Signature: BC Laboratories, Inc. Project Manager: Molly Meyers 4100 Atlas Court. Bakersfield, CA 93308 Phone No. 661-327-4911 BOBER VAJ GRAPPO NO. 661-327-4911					170			time for 1	110-ZA	
Charge Code: NWRTB- 0 3	517	8 O-0- LAB			THU	- Diesel by EPA 8015 N	Z ±	Ethanol by EPA 82608, Foll in Caluel	10 %			2050 424 81	2/5	
				BC Labora	/ '	PA 8	P S	260E	鱼			0850 for 80	"	
This is a LEGAL document.	ALL fields r	nust be filled out	CORRECTLY and	Project Manage 4100 Atlas Court, Ba	r: Molly Meyers kersfield, CA 93308	by E	G by GGIMB	Ethanol by EPA 8260B, EPA 8260B,	100			Analysis.	500 1/4	
COMPLETELY.				Phone No. 6		ese	by 6	by El	17			Post purges	2/28 21	
	SAMPLE	ID .	4			١	ַט אַ	anol 1 826	17			1:me/103 jor 8	- Dence	
Field Point Name	Matrix	DTW	Date (yymmdd)	Sample Time	# of Containers	TPH	TPH BTE	Eths	F			ettunal Hi Notes / Comm	ents	
M/1-1A	ADS-A	-1	12 05 20	1125	5	X	\forall	$ \rtimes $	X					
1111-1B	W-S-A	-2	İ	1157	1	T	1							
11111 3 A	W-S-A	- 3		0850 /1103			Π							
1111 27				1317			H^-	11						
<u> UW - ZB</u>	W-S-A	- 4	-1/	1017		++	H	++-	+	-				
/MW - 3H	W-S-A		- 1 /	1//2		H_{λ}	1/		 					
MW- 3P3	W-S-A	70	/	1142		\mathbb{A}	<u>v</u>	TV	\ \					
	W-S-A								 					
	W-S-A				ISTRIBUTION									
	W-S-A			100	Me									
	W-S-A			K10 2	SUB-OUT 🗀									
	W-S-A													
	W-S-A													
Relinguished By / Cor	npany	Date / Time:	1415	Relinquished By Com	npany Date / Time :			Relinquis	hed By_	Compa	any	Date / Time:		
(Aul) T	RC	5/20/19	- Stoved	Ham Bogan Bo	clab 5/21/12	2 1	830	II	uls	734	- CAM	5-21-12	21:30	
Received By Con	npany	Date / Time:	1 + gri yrie 10		npany Date / Time :		V V	Received	Ву	Comp		Date / Time:		
Da hy Bogan a	BeLAZ	5-21-17	2 1405	I della B	CUB 5-21-12	18	1,30	Ko	m-	BU	ab	5-21-12 2	2130	

Chain of Custody and Cooler Receipt Form for 1209293 Page 2 of 2

BC LABORATORIES INC.	;	SAMPLE	RECEIP	T FORM	Rev.	. No. 12	06/24/08	Page _ \	01			
Submission #: \209243												
SHIPPING INFOF Federal Express □ UPS □ BC Lab Field Service ሺ Other [SHIPPING CONTAINER Ice Chest 其 None □ Box □ Other □ (Specify)											
Refrigerant: Ice 🗹 Blue Ice 🗆	None	□ Oth	er 🗆 C	omment	s:							
Custody Seals Ice Chest □	Containe		None 🕱	Commer	nts:							
All samples received? Yes 🗗 No □	All samples	containers	intact? Ye	ser No □	, jř	Descripti	on(s) mate	h COC? Y	es∕⁄2 No i			
COC Received	All samples containers intact? Yes No Description(s) materials: No Descrip								Date/Time <u>5-21-12</u> Analyst Init <u>KIQ</u> 2136			
,					SAMPLE N	UMBERS	1,					
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10		
QT GENERAL MINERAL/ GENERAL PHYSICAL	-											
PT PE UNPRESERVED	-									<u> </u>		
QT INORGANIC CHEMICAL METALS	-			-						-		
PT INORGANIC CHEMICAL METALS				*						ļ		
PT CYANIDE	, P									 		
PT NITROGEN FORMS	1	•								-		
PT TOTAL SULFIDE					1			ļ		 		
20z. NITRATE / NITRITE					-					-		
PT TOTAL ORGANIC CARBON	<u> </u>											
PT TOX									l			
PT CHEMICAL OXYGEN DEMAND										 		
PtA PHENOLICS	+									-		
40ml VOA VIAL TRAVEL BLANK	A.2	A 30	A3 1	A3	A3.	A2 1	- ()	. ()	(
40ml VOA VIAL QT EPA 413.1, 413.2, 418.1	11.0	110	112	.,,	110							
PT ODOR												
RADIOLOGICAL										1		
BACTERIOLOGICAL							, , , , , , , , , , , , , , , , , , , ,			1		
40 ml VOA VIAL- 504												
QT EPA 508/608/8080												
QT EPA 515.1/8150						Ť	1.5					
QT EPA 525												
QT EPA 525 TRAVEL BLANK												
100ml EPA 547												
100ml EPA 531.1										ļ		
QT EPA 548												
QT EPA 549				(
QT EPA 632					1							
QT EPA 8015M										1		
QT AMBER	800	BC	BC	B0	BC	BC						
8 OZ. JAR			ļ	<u> </u>			·			ļ		
32 OZ. JAR			ļ							-		
SOIL SLEEVE			<u> </u>	ļ				_	 			
PCB VIAL			ļ				 	ļ	 	-		
PLASTIC BAG	<u>.</u>	ļ			ļ		ļ			-		
FERROUS IRON			<u> </u>	·			<u> </u>	-	 			
ENCORE	Į.	l		l	ı	1	I	1	1			

Arcadis

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1209293-01 COC Number:

Project Number: 3737 Sampling Location: ---

Sampling Point: MW-1A-W-120520

Sampled By: TRCI

Receive Date: 05/21/2012 21:30 **Sampling Date:** 05/20/2012 11:25

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MW-1A

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1209293-02 COC Number: ---

Project Number: 3737 Sampling Location: ---

Sampling Point: MW-1B-W-120520

Sampled By: TRCI

Receive Date: 05/21/2012 21:30 **Sampling Date:** 05/20/2012 11:57

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MW-1B

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1209293-03 COC Number: ---

Project Number: 3737
Sampling Location: ---

Sampling Point: MW-2A-W-120520

Sampled By: TRCI

Receive Date: 05/21/2012 21:30

Sampling Date: 05/20/2012 11:03 **Sample Depth:** ---

Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MW-2A

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1209293-04 COC Number:

Project Number: 3737 Sampling Location: ---

Sampling Point: MW-2B-W-120520

TRCI

Sampled By:

Receive Date: 05/21/2012 21:30 **Sampling Date:** 05/20/2012 12:17

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MW-2B

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1209293-05 COC Number: ---

Project Number: 3737 Sampling Location: ---

Sampling Point: MW-3A-W-120520

Sampled By: TRCI

Receive Date: 05/21/2012 21:30 **Sampling Date:** 05/20/2012 11:15

Sample Depth: --
Lab Matrix: Water

Sample Type: Groundwater

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MW-3A

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1209293-06 COC Number: ---

Project Number: 3737
Sampling Location: ---

Sampling Point: MW-3B-W-120520

Sampled By: TRCI

Receive Date: 05/21/2012 21:30

Sampling Date: 05/20/2012 11:42

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T06019745736 Location ID (FieldPoint): MW-3B

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Arcadis 2999 Oak Rd, Suite 300 Walnut Creek, CA 94597

06/05/2012 15:41 Reported:

Project: 3737 Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1	209293-01	Client Sample	e Name:	3737, MW-1A	A-W-120520, 5/20/2012	11:25:00AM		
0		D ! !	1114	DOL	8.6 - 4.1I	МВ	Lab	- "
Constituent Benzene		Result 18	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run #1
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		<u>·</u> 1
n-Butylbenzene		6.0	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		5.2	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene		0.59	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropropan	е	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 12	09293-01 Clie	nt Sample N	ame:	3737, MW-	1A-W-120520, 5/20/2012	11:25:00AM		
Constituent		esult	Units	PQL	Method	MB Bias	Lab Quals	Run #
1,1-Dichloropropene	K	ND ND	ug/L	0.50	EPA-8260	ND	Quais	Run #1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		5.1	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		25	ug/L	0.50	EPA-8260	ND		1
p-lsopropyltoluene		2.1	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		26	ug/L	0.50	EPA-8260	ND		1
Naphthalene		1.6	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		39	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		0.81	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoroe	thane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		2.7	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		0.76	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		39	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Project Number: 351780

BCL Sample ID:	1209293-01	Client Sampl	e Name:	3737, MW-1A-W-12	0520, 5/20/2012	11:25:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petro	oleum	1600	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4	(Surrogate)	111	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate	e)	99.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzen	e (Surrogate)	111	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	05/29/12	05/30/12 19:09	MGC	MS-V5	1	BVE2096

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1209293-01	Client Sampl	e Name:	3737, MW-1A-W-12	20520, 5/20/2012 1	1:25:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		380	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogat	re)	78.0	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	05/23/12	06/05/12 12:46	MWB	GC-2	1	BVF0064

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1209293-02	Client Sampl	e Name:	3737, MW-1	B-W-120520, 5/20/2012	11:57:00AM		
				201	••	MB	Lab	_ "
Constituent Benzene		Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run #
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		<u>·</u> 1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropro	ppane	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		24	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene	•	ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene	<u> </u>	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1209293-02	Client Sampl	e Name:	3737, MW-1	B-W-120520, 5/20/2012	11:57:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
1,1-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND	Quais	1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
p-Isopropyltoluene		ND	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		0.75	ug/L	0.50	EPA-8260	ND		1
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluor	oethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1

Reported: 06/05/2012 15:41

2999 Oak Rd, Suite 300Project: 3737Walnut Creek, CA 94597Project Number: 351780Project Manager: Leah Ackerman

BCL Sample ID:	1209293-02	Client Sampl	e Name:	3737, MW-1B-W-12	0520, 5/20/2012	11:57:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petrol Hydrocarbons	leum	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4	(Surrogate)	105	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate	e)	100	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	e (Surrogate)	90.5	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	05/29/12	05/30/12 18:46	MGC	MS-V5	1	BVE2096	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1209293-02	Client Sampl	e Name:	3737, MW-1B-W-12	20520, 5/20/2012 1	1:57:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		ND	ug/L	40	EPA-8015B/FFP	ND		1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate	e)	51.2	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	05/23/12	06/04/12 19:32	MWB	GC-2	1	BVF0064

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 12	209293-03	Client Sampl	e Name:	3737, MW-2A	A-W-120520, 5/20/2012	11:03:00AM		
• "		·		DOI		МВ	Lab	_ "
Constituent Benzene		Result 250	Units ug/L	PQL 5.0	Method EPA-8260	Bias ND	Quals A01	Run #1
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		2
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		2
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		2
Bromoform		ND	ug/L	0.50	EPA-8260	ND		2
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		2
n-Butylbenzene		0.99	ug/L	0.50	EPA-8260	ND		2
sec-Butylbenzene		2.2	ug/L	0.50	EPA-8260	ND		2
tert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		2
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		2
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		2
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		2
Chloroform		ND	ug/L	0.50	EPA-8260	ND		2
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		2
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		2
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		2
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		2
1,2-Dibromo-3-chloropropan	e	ND	ug/L	1.0	EPA-8260	ND		2
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		2
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		2
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		2
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		2
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		2
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		2
1,1-Dichloroethane		0.52	ug/L	0.50	EPA-8260	ND		2
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		2
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		2
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		2
trans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		2
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		2
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		2
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		2
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		2

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 120	9293-03 Client Sar	nple Name:	3737, MW-	2A-W-120520, 5/20/2012	11:03:00AM		
	<u> </u>				МВ	Lab	
Constituent 1,1-Dichloropropene	Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run #
cis-1,3-Dichloropropene	ND ND	ug/L	0.50	EPA-8260	ND ND		2
	ND		0.50	EPA-8260	ND ND		
trans-1,3-Dichloropropene Total 1,3-Dichloropropene	ND ND	ug/L ug/L	1.0	EPA-8260	ND ND		2
	31	-	0.50	EPA-8260	ND ND		2
Ethylbenzene Hexachlorobutadiene	ND	ug/L		EPA-8260			2
Isopropylbenzene	10	ug/L ug/L	0.50 0.50	EPA-8260	ND ND		2
							2
p-Isopropyltoluene	ND ND	ug/L	0.50	EPA-8260	ND		2
Methylene chloride	ND	ug/L	1.0	EPA-8260	ND	404	2
Methyl t-butyl ether	290	ug/L	5.0	EPA-8260	ND	A01	1
Naphthalene	2.5	ug/L	0.50	EPA-8260	ND		2
n-Propylbenzene	8.1	ug/L	0.50	EPA-8260	ND		2
Styrene	ND	ug/L	0.50	EPA-8260	ND		2
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50	EPA-8260	ND		2
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	EPA-8260	ND		2
Tetrachloroethene	ND	ug/L	0.50	EPA-8260	ND		2
Toluene	3.2	ug/L	0.50	EPA-8260	ND		2
1,2,3-Trichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		2
1,2,4-Trichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		2
1,1,1-Trichloroethane	ND	ug/L	0.50	EPA-8260	ND		2
1,1,2-Trichloroethane	ND	ug/L	0.50	EPA-8260	ND		2
Trichloroethene	ND	ug/L	0.50	EPA-8260	ND		2
Trichlorofluoromethane	ND	ug/L	0.50	EPA-8260	ND		2
1,2,3-Trichloropropane	ND	ug/L	1.0	EPA-8260	ND		2
1,1,2-Trichloro-1,2,2-trifluoroet	hane ND	ug/L	0.50	EPA-8260	ND		2
1,2,4-Trimethylbenzene	1.2	ug/L	0.50	EPA-8260	ND		2
1,3,5-Trimethylbenzene	ND	ug/L	0.50	EPA-8260	ND		2
Vinyl chloride	ND	ug/L	0.50	EPA-8260	ND		2
Total Xylenes	3.1	ug/L	1.0	EPA-8260	ND		2
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	ND		2
t-Butyl alcohol	2400	ug/L	100	EPA-8260	ND	A01	1
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	ND		2
Ethanol	ND	ug/L	250	EPA-8260	ND		2

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1209293-03	Client Sampl	e Name:	3737, MW-2A-W-12	0520, 5/20/2012	11:03:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		2
Total Purgeable Petro	oleum	2100	ug/L	50	Luft-GC/MS	ND		2
1,2-Dichloroethane-d4	(Surrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4	(Surrogate)	95.6	%	76 - 114 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate	e)	96.9	%	88 - 110 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate	e)	101	%	88 - 110 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene	e (Surrogate)	97.1	%	86 - 115 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	e (Surrogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260			2

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	05/29/12	05/30/12 19:31	MGC	MS-V5	10	BVE2096	
2	EPA-8260	05/29/12	05/30/12 12:25	MGC	MS-V5	1	BVE2096	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 06/05/2012 15:41

Project: 3737

Project Number: 351780
Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1209293-03	Client Sampl	e Name:	3737, MW-2A-W-12	20520, 5/20/2012 1	1:03:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		470	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogat	e)	88.5	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	05/23/12	06/05/12 13:10	MWB	GC-2	1	BVF0064	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1	209293-04	Client Sampl	e Name:	3737, MW-2E	3-W-120520, 5/20/2012	12:17:00PM		
Canatituant		Desuit	l lie!4e	DO!	Me4heed	MB	Lab	B "
Constituent Benzene		Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run #1
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		<u>·</u> 1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
ert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropropa	ne	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND	·	1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
rans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND	<u> </u>	1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 12	09293-04	Client Sample	e Name:	3737, MW-2E	3-W-120520, 5/20/2012	12:17:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
1,1-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND	Quais	Run #1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
sopropylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
o-Isopropyltoluene		ND	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		3.0	ug/L	0.50	EPA-8260	ND		1
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1209293-04	Client Sampl	e Name:	3737, MW-2B-W-12	0520, 5/20/2012	12:17:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petrole Hydrocarbons	um	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		97.8	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	(Surrogate)	95.3	%	86 - 115 (LCL - UCL)	EPA-8260			1

	-		Run		-			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	05/29/12	05/30/12 17:39	MGC	MS-V5	1	BVE2096	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1209293-04	Client Sampl	e Name:	3737, MW-2B-W-12	20520, 5/20/2012 1	2:17:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		ND	ug/L	40	EPA-8015B/FFP	ND		1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate	e)	40.3	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	05/23/12	06/04/12 20:20	MWB	GC-2	1	BVF0064

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1	209293-05	Client Sampl	e Name:	3737, MW-3A	-W-120520, 5/20/2012	11:15:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		45	ug/L	0.50	EPA-8260	ND	Quais	1
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		2.8	ug/L	0.50	EPA-8260	ND		1
ert-Butylbenzene		0.62	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
,2-Dibromo-3-chloropropa	ne	ND	ug/L	1.0	EPA-8260	ND		1
,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
,2-Dichloroethane		0.85	ug/L	0.50	EPA-8260	ND		1
,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
sis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
rans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
otal 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 120	09293-05 Clien	t Sample Name:	3737,	MW-3A-W-120520, 5/20/20)12 11:15:00AN	Л	
Constituent	D.	sult Unit	s PQL	Method	MB	Lab	D #
1,1-Dichloropropene		ND ug/L		EPA-8260	Bias ND	Quals	Run #1
cis-1,3-Dichloropropene		ND ug/L		EPA-8260	ND		1
trans-1,3-Dichloropropene	1	ND ug/L		EPA-8260	ND		1
Total 1,3-Dichloropropene		ND ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		30 ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		20 ug/L	0.50	EPA-8260	ND		1
p-lsopropyltoluene		l.8 ug/L	0.50	EPA-8260	ND		1
Methylene chloride	ľ	ND ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether	0	.54 ug/L	0.50	EPA-8260	ND		1
Naphthalene	:	2.0 ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		25 ug/L	0.50	EPA-8260	ND		1
Styrene	1	ND ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane	1	ND ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane	1	ND ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene	1	ND ug/L	0.50	EPA-8260	ND		1
Toluene	:	2.2 ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene	1	ND ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene	1	ND ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane	ı	ND ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane	ı	ND ug/L	0.50	EPA-8260	ND		1
Trichloroethene	ı	ND ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane	1	ND ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane	!	ND ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoroe	thane !	ND ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene	ı	ND ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene	0	.76 ug/L	0.50	EPA-8260	ND		1
Vinyl chloride	!	ND ug/L	0.50	EPA-8260	ND		1
Total Xylenes	:	2.5 ug/L	. 1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol	;	25 ug/L	. 10	EPA-8260	ND		1
Diisopropyl ether		ND ug/L	0.50	EPA-8260	ND		1
Ethanol	1	ND ug/L	250	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1209293-05	Client Sampl	e Name:	3737, MW-3A-W-12	20520, 5/20/2012	11:15:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petro	oleum	2200	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4	(Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate	e)	99.9	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzen	e (Surrogate)	114	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	05/29/12	05/30/12 18:02	MGC	MS-V5	1	BVE2096	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 06/05/2012 15:41

Project: 3737

Project Number: 351780
Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1209293-05	Client Sampl	e Name:	3737, MW-3A-W-12	20520, 5/20/2012 1	1:15:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		340	ug/L	40	EPA-8015B/FFP	ND	A52	1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surroga	te)	64.5	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	05/23/12	06/05/12 13:33	MWB	GC-2	1	BVF0064

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1209293-06	Client Sampl	e Name:	3737, MW-3	B-W-120520, 5/20/2012	11:42:00AM		
0		D. "	11. "	DO:		MB	Lab	.
Constituent Benzene		Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run #
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropro	pane	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane	ı	ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene	•	ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene)	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID: 1209293-	06 Client Sample	e Name:	3737, MW-3	B-W-120520, 5/20/2012	11:42:00AM		
Occupatitoring		11. "	DO:	8.8 41 1	MB	Lab	.
Constituent 1,1-Dichloropropene	Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run # 1
cis-1,3-Dichloropropene	ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
trans-1,3-Dichloropropene	ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene	ND	ug/L	1.0	EPA-8260	ND		<u>'</u> 1
Ethylbenzene	ND	ug/L	0.50	EPA-8260	ND		<u>.</u> 1
Hexachlorobutadiene	ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
p-Isopropyltoluene	ND	ug/L	0.50	EPA-8260	ND		1
Methylene chloride	ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Naphthalene	ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Styrene	ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene	ND	ug/L	0.50	EPA-8260	ND		1
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene	ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene	ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane	ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol	ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Ethanol	ND	ug/L	250	EPA-8260	ND		1

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

BCL Sample ID:	1209293-06	Client Sampl	e Name:	3737, MW-3B-W-12	20520, 5/20/2012	11:42:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petrol Hydrocarbons	leum	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4	(Surrogate)	109	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate	e)	97.6	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	e (Surrogate)	92.7	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	05/30/12	05/30/12 18:24	MGC	MS-V5	1	BVE2124	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	1209293-06	Client Sampl	e Name:	3737, MW-3B-W-12	20520, 5/20/2012 1	1:42:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Diesel (FFP)		ND	ug/L	40	EPA-8015B/FFP	ND		1
TPH - Motor Oil		ND	ug/L	100	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate	e)	57.7	%	37 - 134 (LCL - UCL)	EPA-8015B/FFP			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	05/23/12	06/04/12 21:06	MWB	GC-2	1	BVF0064

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL Lab Quals	
QC Batch ID: BVE2096						
Benzene	BVE2096-BLK1	ND	ug/L	0.50		
Bromobenzene	BVE2096-BLK1	ND	ug/L	0.50		
Bromochloromethane	BVE2096-BLK1	ND	ug/L	0.50		
Bromodichloromethane	BVE2096-BLK1	ND	ug/L	0.50		
Bromoform	BVE2096-BLK1	ND	ug/L	0.50		
Bromomethane	BVE2096-BLK1	ND	ug/L	1.0		
n-Butylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
sec-Butylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
tert-Butylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
Carbon tetrachloride	BVE2096-BLK1	ND	ug/L	0.50		
Chlorobenzene	BVE2096-BLK1	ND	ug/L	0.50		
Chloroethane	BVE2096-BLK1	ND	ug/L	0.50		
Chloroform	BVE2096-BLK1	ND	ug/L	0.50		
Chloromethane	BVE2096-BLK1	ND	ug/L	0.50		
2-Chlorotoluene	BVE2096-BLK1	ND	ug/L	0.50		
4-Chlorotoluene	BVE2096-BLK1	ND	ug/L	0.50		
Dibromochloromethane	BVE2096-BLK1	ND	ug/L	0.50		
1,2-Dibromo-3-chloropropane	BVE2096-BLK1	ND	ug/L	1.0		
1,2-Dibromoethane	BVE2096-BLK1	ND	ug/L	0.50		
Dibromomethane	BVE2096-BLK1	ND	ug/L	0.50		
1,2-Dichlorobenzene	BVE2096-BLK1	ND	ug/L	0.50		
1,3-Dichlorobenzene	BVE2096-BLK1	ND	ug/L	0.50		
1,4-Dichlorobenzene	BVE2096-BLK1	ND	ug/L	0.50		
Dichlorodifluoromethane	BVE2096-BLK1	ND	ug/L	0.50		
1,1-Dichloroethane	BVE2096-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BVE2096-BLK1	ND	ug/L	0.50		
1,1-Dichloroethene	BVE2096-BLK1	ND	ug/L	0.50		
cis-1,2-Dichloroethene	BVE2096-BLK1	ND	ug/L	0.50		
trans-1,2-Dichloroethene	BVE2096-BLK1	ND	ug/L	0.50		
Total 1,2-Dichloroethene	BVE2096-BLK1	ND	ug/L	1.0		
1,2-Dichloropropane	BVE2096-BLK1	ND	ug/L	0.50		
1,3-Dichloropropane	BVE2096-BLK1	ND	ug/L	0.50		
2,2-Dichloropropane	BVE2096-BLK1	ND	ug/L	0.50		
1,1-Dichloropropene	BVE2096-BLK1	ND	ug/L	0.50		

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL Lab Quals	
QC Batch ID: BVE2096						
cis-1,3-Dichloropropene	BVE2096-BLK1	ND	ug/L	0.50		
trans-1,3-Dichloropropene	BVE2096-BLK1	ND	ug/L	0.50		
Total 1,3-Dichloropropene	BVE2096-BLK1	ND	ug/L	1.0		
Ethylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
Hexachlorobutadiene	BVE2096-BLK1	ND	ug/L	0.50		
Isopropylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
p-Isopropyltoluene	BVE2096-BLK1	ND	ug/L	0.50		
Methylene chloride	BVE2096-BLK1	ND	ug/L	1.0		
Methyl t-butyl ether	BVE2096-BLK1	ND	ug/L	0.50		
Naphthalene	BVE2096-BLK1	ND	ug/L	0.50		
n-Propylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
Styrene	BVE2096-BLK1	ND	ug/L	0.50		
1,1,1,2-Tetrachloroethane	BVE2096-BLK1	ND	ug/L	0.50		
1,1,2,2-Tetrachloroethane	BVE2096-BLK1	ND	ug/L	0.50		
Tetrachloroethene	BVE2096-BLK1	ND	ug/L	0.50		
Toluene	BVE2096-BLK1	ND	ug/L	0.50		
1,2,3-Trichlorobenzene	BVE2096-BLK1	ND	ug/L	0.50		
1,2,4-Trichlorobenzene	BVE2096-BLK1	ND	ug/L	0.50		
1,1,1-Trichloroethane	BVE2096-BLK1	ND	ug/L	0.50		
1,1,2-Trichloroethane	BVE2096-BLK1	ND	ug/L	0.50		
Trichloroethene	BVE2096-BLK1	ND	ug/L	0.50		
Trichlorofluoromethane	BVE2096-BLK1	ND	ug/L	0.50		
1,2,3-Trichloropropane	BVE2096-BLK1	ND	ug/L	1.0		
1,1,2-Trichloro-1,2,2-trifluoroethane	BVE2096-BLK1	ND	ug/L	0.50		
1,2,4-Trimethylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
1,3,5-Trimethylbenzene	BVE2096-BLK1	ND	ug/L	0.50		
Vinyl chloride	BVE2096-BLK1	ND	ug/L	0.50		
Total Xylenes	BVE2096-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BVE2096-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BVE2096-BLK1	ND	ug/L	10		
Diisopropyl ether	BVE2096-BLK1	ND	ug/L	0.50		
Ethanol	BVE2096-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BVE2096-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BVE2096-BLK1	ND	ug/L	50		
		·				

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project Number: 351780

Project Manager: Loop Acker

Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVE2096						
1,2-Dichloroethane-d4 (Surrogate)	BVE2096-BLK1	107	%	76 - 11	4 (LCL - UCL)	
Toluene-d8 (Surrogate)	BVE2096-BLK1	99.1	%	88 - 11	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BVE2096-BLK1	94.9	%	86 - 11:	5 (LCL - UCL)	
QC Batch ID: BVE2124						
Benzene	BVE2124-BLK1	ND	ug/L	0.50		
Bromobenzene	BVE2124-BLK1	ND	ug/L	0.50		
Bromochloromethane	BVE2124-BLK1	ND	ug/L	0.50		
Bromodichloromethane	BVE2124-BLK1	ND	ug/L	0.50		
Bromoform	BVE2124-BLK1	ND	ug/L	0.50		
Bromomethane	BVE2124-BLK1	ND	ug/L	1.0		
n-Butylbenzene	BVE2124-BLK1	ND	ug/L	0.50		
sec-Butylbenzene	BVE2124-BLK1	ND	ug/L	0.50		
tert-Butylbenzene	BVE2124-BLK1	ND	ug/L	0.50		
Carbon tetrachloride	BVE2124-BLK1	ND	ug/L	0.50		
Chlorobenzene	BVE2124-BLK1	ND	ug/L	0.50		
Chloroethane	BVE2124-BLK1	ND	ug/L	0.50		
Chloroform	BVE2124-BLK1	ND	ug/L	0.50		
Chloromethane	BVE2124-BLK1	ND	ug/L	0.50		
2-Chlorotoluene	BVE2124-BLK1	ND	ug/L	0.50		
4-Chlorotoluene	BVE2124-BLK1	ND	ug/L	0.50		
Dibromochloromethane	BVE2124-BLK1	ND	ug/L	0.50		
1,2-Dibromo-3-chloropropane	BVE2124-BLK1	ND	ug/L	1.0		
1,2-Dibromoethane	BVE2124-BLK1	ND	ug/L	0.50		
Dibromomethane	BVE2124-BLK1	ND	ug/L	0.50		
1,2-Dichlorobenzene	BVE2124-BLK1	ND	ug/L	0.50		
1,3-Dichlorobenzene	BVE2124-BLK1	ND	ug/L	0.50		
1,4-Dichlorobenzene	BVE2124-BLK1	ND	ug/L	0.50		
Dichlorodifluoromethane	BVE2124-BLK1	ND	ug/L	0.50		
1,1-Dichloroethane	BVE2124-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BVE2124-BLK1	ND	ug/L	0.50		
1,1-Dichloroethene	BVE2124-BLK1	ND	ug/L	0.50		
cis-1,2-Dichloroethene	BVE2124-BLK1	ND	ug/L	0.50		
trans-1,2-Dichloroethene	BVE2124-BLK1	ND	ug/L	0.50		

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

1,2-Dichloropropane BVI 1,3-Dichloropropane BVI 2,2-Dichloropropane BVI 1,1-Dichloropropene BVI cis-1,3-Dichloropropene BVI trans-1,3-Dichloropropene BVI Ethylbenzene BVI Hexachlorobutadiene BVI Isopropylbenzene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1 E2124-BLK1 E2124-BLK1	ND ND	ug/L		
1,2-Dichloropropane BVI 1,3-Dichloropropane BVI 2,2-Dichloropropane BVI 1,1-Dichloropropene BVI cis-1,3-Dichloropropene BVI trans-1,3-Dichloropropene BVI Ethylbenzene BVI Hexachlorobutadiene BVI Isopropylbenzene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1		ug/L		
1,3-Dichloropropane 2,2-Dichloropropane BVI 1,1-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene BVI Total 1,3-Dichloropropene Ethylbenzene BVI Hexachlorobutadiene BVI Isopropylbenzene p-Isopropyltoluene Methylene chloride Methyl t-butyl ether Naphthalene BVI Naphthalene BVI Naphthalene		ND	•	1.0	
2,2-Dichloropropane BVI 1,1-Dichloropropene BVI cis-1,3-Dichloropropene BVI trans-1,3-Dichloropropene BVI Total 1,3-Dichloropropene BVI Ethylbenzene BVI lsopropylbenzene BVI lsopropylbenzene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
1,1-Dichloropropene BVI cis-1,3-Dichloropropene BVI trans-1,3-Dichloropropene BVI Total 1,3-Dichloropropene BVI Ethylbenzene BVI Hexachlorobutadiene BVI Isopropylbenzene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI		ND	ug/L	0.50	
cis-1,3-Dichloropropene BVI trans-1,3-Dichloropropene BVI Total 1,3-Dichloropropene BVI Ethylbenzene BVI lsopropylbenzene BVI sopropylbenzene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
trans-1,3-Dichloropropene BVI Total 1,3-Dichloropropene BVI Ethylbenzene BVI Hexachlorobutadiene BVI Isopropylbenzene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
Total 1,3-Dichloropropene BVI Ethylbenzene BVI Hexachlorobutadiene BVI Isopropylbenzene BVI p-Isopropyltoluene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
Ethylbenzene BVI Hexachlorobutadiene BVI Isopropylbenzene BVI p-Isopropyltoluene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
Hexachlorobutadiene BVI Isopropylbenzene BVI p-Isopropyltoluene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	1.0	
Isopropylbenzene BVI p-Isopropyltoluene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
p-Isopropyltoluene BVI Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
Methylene chloride BVI Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
Methyl t-butyl ether BVI Naphthalene BVI	E2124-BLK1	ND	ug/L	0.50	
Naphthalene BVI	E2124-BLK1	ND	ug/L	1.0	
·	E2124-BLK1	ND	ug/L	0.50	
n-Propylbenzene BVI	E2124-BLK1	ND	ug/L	0.50	
	E2124-BLK1	ND	ug/L	0.50	
Styrene BVI	E2124-BLK1	ND	ug/L	0.50	
1,1,1,2-Tetrachloroethane BVI	E2124-BLK1	ND	ug/L	0.50	
1,1,2,2-Tetrachloroethane BVI	E2124-BLK1	ND	ug/L	0.50	
Tetrachloroethene BVI	E2124-BLK1	ND	ug/L	0.50	
Toluene BVI	E2124-BLK1	ND	ug/L	0.50	
1,2,3-Trichlorobenzene BVI	E2124-BLK1	ND	ug/L	0.50	
1,2,4-Trichlorobenzene BVI	E2124-BLK1	ND	ug/L	0.50	
1,1,1-Trichloroethane BVI	E2124-BLK1	ND	ug/L	0.50	
1,1,2-Trichloroethane BVI	E2124-BLK1	ND	ug/L	0.50	
Trichloroethene BVI	E2124-BLK1	ND	ug/L	0.50	
Trichlorofluoromethane BVI	E2124-BLK1	ND	ug/L	0.50	
1,2,3-Trichloropropane BVI	E2124-BLK1	ND	ug/L	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	E2124-BLK1	ND	ug/L	0.50	
1,2,4-Trimethylbenzene BVI	E2124-BLK1	ND	ug/L	0.50	
1,3,5-Trimethylbenzene BVI	E2124-BLK1	ND	ug/L	0.50	
Vinyl chloride BVI	E2124-BLK1	ND	ug/L	0.50	
Total Xylenes BVI	E2124-BLK1	ND	ug/l	1.0	
t-Amyl Methyl ether BVI	L4 144-DLI\ I	ND	ug/L	1.0	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVE2124						
t-Butyl alcohol	BVE2124-BLK1	ND	ug/L	10		
Diisopropyl ether	BVE2124-BLK1	ND	ug/L	0.50		
Ethanol	BVE2124-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BVE2124-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BVE2124-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BVE2124-BLK1	114	%	76 - 114	4 (LCL - UCL)	
Toluene-d8 (Surrogate)	BVE2124-BLK1	98.9	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BVE2124-BLK1	101	%	86 - 115	5 (LCL - UCL)	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

			•				-	Control I	imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BVE2096										
Benzene	BVE2096-BS1	LCS	27.000	25.000	ug/L	108		70 - 130		
Bromodichloromethane	BVE2096-BS1	LCS	26.600	25.000	ug/L	106		70 - 130		
Chlorobenzene	BVE2096-BS1	LCS	25.610	25.000	ug/L	102		70 - 130		
Chloroethane	BVE2096-BS1	LCS	26.740	25.000	ug/L	107		70 - 130		
1,4-Dichlorobenzene	BVE2096-BS1	LCS	25.090	25.000	ug/L	100		70 - 130		
1,1-Dichloroethane	BVE2096-BS1	LCS	27.800	25.000	ug/L	111		70 - 130		
1,1-Dichloroethene	BVE2096-BS1	LCS	28.230	25.000	ug/L	113		70 - 130		
Toluene	BVE2096-BS1	LCS	25.020	25.000	ug/L	100		70 - 130		
Trichloroethene	BVE2096-BS1	LCS	25.170	25.000	ug/L	101		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BVE2096-BS1	LCS	10.740	10.000	ug/L	107		76 - 114		
Toluene-d8 (Surrogate)	BVE2096-BS1	LCS	9.9200	10.000	ug/L	99.2		88 - 110		
4-Bromofluorobenzene (Surrogate)	BVE2096-BS1	LCS	10.190	10.000	ug/L	102		86 - 115		
QC Batch ID: BVE2124										
Benzene	BVE2124-BS1	LCS	27.710	25.000	ug/L	111		70 - 130		
Bromodichloromethane	BVE2124-BS1	LCS	28.220	25.000	ug/L	113		70 - 130		
Chlorobenzene	BVE2124-BS1	LCS	26.210	25.000	ug/L	105		70 - 130		
Chloroethane	BVE2124-BS1	LCS	27.220	25.000	ug/L	109		70 - 130		
1,4-Dichlorobenzene	BVE2124-BS1	LCS	26.650	25.000	ug/L	107		70 - 130		
1,1-Dichloroethane	BVE2124-BS1	LCS	28.330	25.000	ug/L	113		70 - 130		
1,1-Dichloroethene	BVE2124-BS1	LCS	28.790	25.000	ug/L	115		70 - 130		
Toluene	BVE2124-BS1	LCS	25.540	25.000	ug/L	102		70 - 130		
Trichloroethene	BVE2124-BS1	LCS	26.330	25.000	ug/L	105		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BVE2124-BS1	LCS	10.810	10.000	ug/L	108		76 - 114		
Toluene-d8 (Surrogate)	BVE2124-BS1	LCS	9.7800	10.000	ug/L	97.8		88 - 110		
4-Bromofluorobenzene (Surrogate)	BVE2124-BS1	LCS	10.230	10.000	ug/L	102		86 - 115		

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

								Cont	rol Limits	
	Source	Source		Spike			Percent		Percent	Lab
Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
Lloo	d aliant camp	lo: N								
	•		00.470	05.000			440		70 400	
					_	3.6		20		
						3.0		20		
MS					_					
MSD	1209283-01	ND	27.430	25.000	ug/L	2.2	110	20	70 - 130	
MS	1209283-01	ND	27.800	25.000	ug/L		111		70 - 130	
MSD	1209283-01	ND	25.970	25.000	ug/L	6.8	104	20	70 - 130	
MS	1209283-01	ND	28.890	25.000	ug/L		116		70 - 130	
MSD	1209283-01	ND	27.140	25.000	ug/L	6.2	109	20	70 - 130	
MS	1209283-01	ND	28.130	25.000	ug/L		113		70 - 130	
MSD	1209283-01	ND	25.310	25.000	ug/L	10.6	101	20	70 - 130	
MS	1209283-01	ND	29.630	25.000	ug/L		119		70 - 130	
MSD	1209283-01	ND	28.550	25.000	ug/L	3.7	114	20	70 - 130	
	1209283-01	ND	30.050	25 000			120		70 - 130	
					_	4.0		20		
						1.0				
					_	5 A		20		
						3.4		20		
					_					
MSD	1209283-01	ND	26.090	25.000	ug/L	4.9	104	20	70 - 130	
MS	1209283-01	ND	10.810	10.000	ug/L		108		76 - 114	
MSD	1209283-01	ND	10.930	10.000	ug/L	1.1	109		76 - 114	
MS	1209283-01	ND	9.9900	10.000	ug/L		99.9		88 - 110	
MSD	1209283-01	ND	10.030	10.000	ug/L	0.4	100		88 - 110	
MS	1209283-01	ND	10.310	10.000	ug/L		103		86 - 115	
MSD	1209283-01	ND	10.180	10.000	ug/L	1.3	102		86 - 115	
Liso	d client comp	lo: N								
_	•		20.040	25 000	//		115		70 120	
					_	6.1		20		
						0.1		20		
					-	4.0				
MSD	1209463-01	ND	31.640	25.000	ug/L	4.8	127	20	70 - 130	
MS	1209463-01	ND	28.730	25.000	ug/L		115		70 - 130	
MSD	1209463-01	ND	29.830	25.000	ug/L	3.8	119	20	70 - 130	
MS	1209463-01	ND	28.480	25.000	ug/L		114		70 - 130	
MSD	1209463-01	ND	29.690	25.000	ug/L	4.2	119	20	70 - 130	
MS	1209463-01	ND	28.390	25.000	ug/L		114		70 - 130	
MSD	1209463-01	ND	29.410	25.000	ug/L	3.5	118	20	70 - 130	
MS	1209463-01	ND	29.140	25.000	ua/L		117		70 - 130	
MSD	1209463-01	ND	31.510	25.000	ug/L	7.8	126	20	70 - 130	
	MS MSD MS	Type Sample ID Used client samp MS 1209283-01 MSD 1209463-01	Type Sample ID Result Used client sample: N MS 1209283-01 ND MSD 1209283-01	Type Sample ID Result Result Used client sample: N MS 1209283-01 ND 29.470 MSD 1209283-01 ND 28.430 MS 1209283-01 ND 28.040 MSD 1209283-01 ND 27.430 MS 1209283-01 ND 27.800 MSD 1209283-01 ND 25.970 MS 1209283-01 ND 28.890 MSD 1209283-01 ND 28.130 MSD 1209283-01 ND 28.130 MSD 1209283-01 ND 29.630 MSD 1209283-01 ND 29.630 MSD 1209283-01 ND 29.630 MSD 1209283-01 ND 28.550 MS 1209283-01 ND 27.520 MSD 1209283-01 ND 27.520 MSD 1209283-01 ND 27.410 MSD 1209283-01<	Type Sample ID Result Added Used client sample: N MS 1209283-01 ND 29.470 25.000 MSD 1209283-01 ND 28.430 25.000 MS 1209283-01 ND 28.040 25.000 MSD 1209283-01 ND 27.430 25.000 MSD 1209283-01 ND 27.800 25.000 MSD 1209283-01 ND 25.970 25.000 MSD 1209283-01 ND 28.890 25.000 MSD 1209283-01 ND 28.130 25.000 MSD 1209283-01 ND 28.130 25.000 MSD 1209283-01 ND 29.630 25.000 MSD 1209283-01 ND 29.630 25.000 MSD 1209283-01 ND 28.550 25.000 MSD 1209283-01 ND 28.860 25.000 MSD 1209283-01 ND 27.	Type Sample ID Result Result Added Units	Type Sample ID Result Added Units RPD Used client sample: N MS 1209283-01 ND 29.470 25.000 ug/L 3.6 MS 1209283-01 ND 28.430 25.000 ug/L 3.6 MS 1209283-01 ND 28.040 25.000 ug/L 2.2 MS 1209283-01 ND 27.430 25.000 ug/L 6.8 MSD 1209283-01 ND 25.970 25.000 ug/L 6.8 MSD 1209283-01 ND 25.970 25.000 ug/L 6.2 MS 1209283-01 ND 28.130 25.000 ug/L 6.2 MS 1209283-01 ND 28.130 25.000 ug/L 10.6 MS 1209283-01 ND 29.630 25.000 ug/L 10.6 MSD 1209283-01 ND 28.500 25.000 ug/L 4.0	Type Sample ID Result Added Units RPD Recovery Used client sample: N MS 1209283-01 ND 29.470 25.000 ug/L 3.6 114 MS 1209283-01 ND 28.430 25.000 ug/L 3.6 114 MS 1209283-01 ND 28.430 25.000 ug/L 2.2 110 MS 1209283-01 ND 27.430 25.000 ug/L 2.2 110 MS 1209283-01 ND 27.800 25.000 ug/L 6.8 104 MS 1209283-01 ND 28.890 25.000 ug/L 6.2 109 MS 1209283-01 ND 28.130 25.000 ug/L 6.2 109 MS 1209283-01 ND 28.500 25.000 ug/L 10.6 101 MS 1209283-01 ND 28.550 25.000 ug/L 119	Source Type Sample ID Result Result Added Units RPD Recovery RPD	Type

Reported: 06/05/2012 15:41

2999 Oak Rd, Suite 300 Project: 3737
Walnut Creek, CA 94597 Project Number: 351780
Project Manager: Leah Ackerman

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

	_		-			-				
								Cont	rol Limits	
	Source	Source		Spike			Percent		Percent	Lab
Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
Use	d client samp	ole: N								
— MS	1209463-01	ND	30.460	25.000	ug/L		122		70 - 130	
MSD	1209463-01	ND	31.430	25.000	ug/L	3.1	126	20	70 - 130	
MS	1209463-01	ND	28.280	25.000	ug/L		113		70 - 130	
MSD	1209463-01	ND	28.970	25.000	ug/L	2.4	116	20	70 - 130	
MS	1209463-01	ND	28.650	25.000	ug/L		115		70 - 130	
MSD	1209463-01	ND	28.990	25.000	ug/L	1.2	116	20	70 - 130	
MS	1209463-01	ND	10.410	10.000	ug/L		104		76 - 114	
MSD	1209463-01	ND	11.280	10.000	ug/L	8.0	113		76 - 114	
MS	1209463-01	ND	10.030	10.000	ug/L		100		88 - 110	
MSD	1209463-01	ND	10.010	10.000	ug/L	0.2	100		88 - 110	
MS	1209463-01	ND	10.320	10.000	ug/L		103		86 - 115	
MSD	1209463-01	ND	10.550	10.000	ug/L	2.2	106		86 - 115	
	MS MSD MS MSD MS MSD MS MSD MS MSD MS MSD	Type Sample ID Used client samp MS 1209463-01 MSD 1209463-01 MSD 1209463-01 MS 1209463-01 MS 1209463-01 MS 1209463-01 MS 1209463-01 MSD 1209463-01 MSD 1209463-01 MSD 1209463-01 MSD 1209463-01 MSD 1209463-01 MSD 1209463-01	Type Sample ID Result Used client sample: N MS 1209463-01 ND MSD 1209463-01 ND MSD 1209463-01 ND MS 1209463-01 ND MSD 1209463-01 ND MSD 1209463-01 ND MSD 1209463-01 ND MSD 1209463-01 ND MS 1209463-01 ND MSD 1209463-01 ND MSD 1209463-01 ND MSD 1209463-01 ND MS 1209463-01 ND	Type Sample ID Result Result Used client sample: N MS 1209463-01 ND 30.460 MSD 1209463-01 ND 31.430 MS 1209463-01 ND 28.280 MSD 1209463-01 ND 28.970 MS 1209463-01 ND 28.650 MSD 1209463-01 ND 10.410 MSD 1209463-01 ND 11.280 MS 1209463-01 ND 10.030 MSD 1209463-01 ND 10.010 MS 1209463-01 ND 10.010	Type Sample ID Result Result Added Used client sample: N MS 1209463-01 ND 30.460 25.000 MSD 1209463-01 ND 31.430 25.000 MS 1209463-01 ND 28.280 25.000 MSD 1209463-01 ND 28.970 25.000 MSD 1209463-01 ND 28.950 25.000 MSD 1209463-01 ND 10.410 10.000 MSD 1209463-01 ND 10.410 10.000 MS 1209463-01 ND 11.280 10.000 MSD 1209463-01 ND 10.030 10.000 MSD 1209463-01 ND 10.010 10.000 MS 1209463-01 ND 10.010 10.000	Type Sample ID Result Result Added Units Used client sample: N MS 1209463-01 ND 30.460 25.000 ug/L MSD 1209463-01 ND 31.430 25.000 ug/L MS 1209463-01 ND 28.280 25.000 ug/L MSD 1209463-01 ND 28.970 25.000 ug/L MSD 1209463-01 ND 28.950 25.000 ug/L MSD 1209463-01 ND 10.410 10.000 ug/L MSD 1209463-01 ND 11.280 10.000 ug/L MS 1209463-01 ND 10.030 10.000 ug/L MSD 1209463-01 ND 10.010 10.000 ug/L MS 1209463-01 ND 10.010 10.000 ug/L MS 1209463-01 ND 10.010 10.000 ug/L	Type Sample ID Result Added Units RPD Used client sample: N MS 1209463-01 ND 30.460 25.000 ug/L 3.1 MSD 1209463-01 ND 31.430 25.000 ug/L 3.1 MS 1209463-01 ND 28.280 25.000 ug/L 2.4 MS 1209463-01 ND 28.970 25.000 ug/L 2.4 MSD 1209463-01 ND 28.650 25.000 ug/L 1.2 MS 1209463-01 ND 28.990 25.000 ug/L 1.2 MS 1209463-01 ND 10.410 10.000 ug/L 8.0 MS 1209463-01 ND 11.280 10.000 ug/L 8.0 MS 1209463-01 ND 10.030 10.000 ug/L 0.2 MS 1209463-01 ND 10.010 10.000 ug/L 0.2 MS	Type Sample ID Result Added Units RPD Recovery Used client sample: N MS 1209463-01 ND 30.460 25.000 ug/L 3.1 122 MSD 1209463-01 ND 31.430 25.000 ug/L 3.1 126 MS 1209463-01 ND 28.280 25.000 ug/L 2.4 116 MS 1209463-01 ND 28.970 25.000 ug/L 2.4 116 MS 1209463-01 ND 28.650 25.000 ug/L 1.2 116 MS 1209463-01 ND 28.990 25.000 ug/L 1.2 116 MS 1209463-01 ND 10.410 10.000 ug/L 8.0 113 MS 1209463-01 ND 10.030 10.000 ug/L 8.0 113 MS 1209463-01 ND 10.010 10.000 ug/L 0.2 100 <td>Source Source Spike RPD Percent Recovery RPD Used client sample: N 1209463-01 ND 30.460 25.000 ug/L 122 122 MSD 1209463-01 ND 31.430 25.000 ug/L 3.1 126 20 MS 1209463-01 ND 28.280 25.000 ug/L 13.1 126 20 MS 1209463-01 ND 28.970 25.000 ug/L 2.4 116 20 MS 1209463-01 ND 28.650 25.000 ug/L 1.2 116 20 MS 1209463-01 ND 28.990 25.000 ug/L 1.2 116 20 MS 1209463-01 ND 10.410 10.000 ug/L 1.2 116 20 MS 1209463-01 ND 10.030 10.000 ug/L 8.0 113 MS 1209463-01 ND 10.030 10.000</td> <td>Type Sample ID Result Added Units RPD Recovery RPD Recovery Use-Client sample: N MS 1209463-01 ND 30.460 25.000 ug/L 122 70 - 130 MSD 1209463-01 ND 31.430 25.000 ug/L 3.1 126 20 70 - 130 MS 1209463-01 ND 28.280 25.000 ug/L 1113 70 - 130 MS 1209463-01 ND 28.970 25.000 ug/L 2.4 116 20 70 - 130 MS 1209463-01 ND 28.650 25.000 ug/L 1.2 116 20 70 - 130 MS 1209463-01 ND 28.990 25.000 ug/L 1.2 116 20 70 - 130 MS 1209463-01 ND 10.410 10.000 ug/L 1.2 116 20 70 - 130 MS 1209463-01 ND 10.410</td>	Source Source Spike RPD Percent Recovery RPD Used client sample: N 1209463-01 ND 30.460 25.000 ug/L 122 122 MSD 1209463-01 ND 31.430 25.000 ug/L 3.1 126 20 MS 1209463-01 ND 28.280 25.000 ug/L 13.1 126 20 MS 1209463-01 ND 28.970 25.000 ug/L 2.4 116 20 MS 1209463-01 ND 28.650 25.000 ug/L 1.2 116 20 MS 1209463-01 ND 28.990 25.000 ug/L 1.2 116 20 MS 1209463-01 ND 10.410 10.000 ug/L 1.2 116 20 MS 1209463-01 ND 10.030 10.000 ug/L 8.0 113 MS 1209463-01 ND 10.030 10.000	Type Sample ID Result Added Units RPD Recovery RPD Recovery Use-Client sample: N MS 1209463-01 ND 30.460 25.000 ug/L 122 70 - 130 MSD 1209463-01 ND 31.430 25.000 ug/L 3.1 126 20 70 - 130 MS 1209463-01 ND 28.280 25.000 ug/L 1113 70 - 130 MS 1209463-01 ND 28.970 25.000 ug/L 2.4 116 20 70 - 130 MS 1209463-01 ND 28.650 25.000 ug/L 1.2 116 20 70 - 130 MS 1209463-01 ND 28.990 25.000 ug/L 1.2 116 20 70 - 130 MS 1209463-01 ND 10.410 10.000 ug/L 1.2 116 20 70 - 130 MS 1209463-01 ND 10.410

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVF0064						
TPH - Diesel (FFP)	BVF0064-BLK2	ND	ug/L	40		
TPH - Motor Oil	BVF0064-BLK2	ND	ug/L	100		
Tetracosane (Surrogate)	BVF0064-BLK2	51.2	%	37 - 134	(LCL - UCL)	

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 Reported: 06/05/2012 15:41

Project: 3737
Project Number: 351780

Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Laboratory Control Sample

								Control L	imits		
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: BVF0064											
TPH - Diesel (FFP)	BVF0064-BS2	LCS	270.13	500.00	ug/L	54.0		52 - 128			

2999 Oak Rd, Suite 300 Walnut Creek, CA 94597 **Reported:** 06/05/2012 15:41

Project: 3737

Project Number: 351780
Project Manager: Leah Ackerman

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Precision & Accuracy

								Control Limits				
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BVF0064	Use	d client samp	le: N									
TPH - Diesel (FFP)	MS	1110024-92	ND	415.99	500.00	ug/L		83.2		50 - 127		
	MSD	1110024-92	ND	318.85	500.00	ug/L	26.4	63.8	24	50 - 127		
Tetracosane (Surrogate)	MS	1110024-92	ND	14.123	20.000	ug/L		70.6		37 - 134		
	MSD	1110024-92	ND	11.022	20.000	ug/L	24.7	55.1		37 - 134		

Arcadis Reported: 06/05/2012 15:41

2999 Oak Rd, Suite 300 Project: 3737
Walnut Creek, CA 94597 Project Number: 351780

Project Manager: Leah Ackerman

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit
RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A52 Chromatogram not typical of diesel.