RECEIVED

By Alameda County Environmental Health at 3:27 pm, Aug 08, 2013

MCG Investments, LLC c/o Kay & Merkle 100 The Embarcadero – Penthouse San Francisco, CA 94105 (415) 357-1200

April 18, 2013

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Environmental Health Services Environmental Protection, Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Letter of Transmittal for First Quarter 2013 Groundwater Monitoring Letter Report, Former McGrath Steel, 6655 Hollis Street, Emeryville, California 94608, ACEH Fuel Leak Case No. RO0000063, GeoTracker Global ID No. T0600102099

Dear Mr. Detterman:

As required in your letters of November 8, 2012, May 2, 2012, November 19, 2010 and April 7, 2006 for plume delineation and interim remediation at the above-referenced subject site, and proposed in the AllWest Environmental, Inc. *Additional Site Characterization Workplan Addendum* dated July 31, 2012, we submit this transmittal letter and accompanying *First Quarter 2012 Groundwater Monitoring* letter report.

I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

MCG Investments LLC, A California limited liability

Company

Walter F. Merkle Authorized Agent

AllWest Environmental, Inc.

Specialists in Physical Due Diligence and Remedial Services

530 Howard Street, Suite 300 San Francisco, CA 94105 Tel. 415.391.2510 Fax. 415.391.2008

April 18, 2013

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Environmental Health Services Environmental Protection, Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: First Quarter 2013 Groundwater Monitoring, Former McGrath Steel,

6655 Hollis Street, Emeryville, California 94608, ACEH Fuel Leak Case No.

RO000063, GeoTracker Global ID No. T0600102099

AllWest Project Number 13052.28

Dear Mr. Detterman:

AllWest Environmental, Inc. (AllWest) performed the First Quarter 2013 groundwater monitoring of well MW-3 on March 27, 2013 at the above-referenced subject site (Figures 1 and 2). The work was performed in response to the request by Alameda County Health Care Services Agency, Environmental Health Department (ACEH) in their letter of November 8, 2012 requesting the placement of the subject site on a quarterly groundwater monitoring interval in order to quickly gather contaminant trends and light non-aqueous phase liquid (LNAPL) trend data.

Purpose and Scope of Work

The purpose of the field activities performed by AllWest was to evaluate current groundwater conditions in monitoring well MW-3, which was installed in 1995 adjacent to former underground storage tanks (USTs) at the subject site (Figure 2). The scope of work was proposed in our *Additional Site Characterization and Interim Remedial Action Workplan* dated September 27, 2011 and our *Additional Site Characterization Workplan Addendum* dated July 31, 2012 (AllWest, September 2011 and July 2012). Site background information is also presented in the AllWest workplans (AllWest September 2011 and July 2012).

The scope of work performed included measuring free product, purging well MW-3, and collecting a groundwater sample for laboratory analysis.

Mr. Mark Detterman April 18, 2013 Page 2 of 4 Project Number 13052.28

Field Activities

On March 27, 2013, AllWest measured floating free product (LNAPL) thickness in monitoring well MW-3 using an electronic oil/water interface probe. LNAPL thickness in monitoring well MW-3 was measured at 0.2 feet. Three casing volumes (approximately 10 gallons) of water were then purged prior to sample collection using a disposable polyethylene bailer. Samples were collected in three 40 milliliter (ml) VOA vials and one 1-liter amber glass bottle, all preserved with hydrochloric acid (HCl). All groundwater samples were preserved by storing them in an ice chest cooled to 4°C with crushed ice immediately after their collection and during transportation to the laboratory. Purged groundwater was stored onsite in a 55-gallon drum pending test results for profiling to determine the proper disposal method.

Well construction, depth to water and product thickness data are included in Table 1. Standard operating procedures for groundwater monitoring well sampling are included in Attachment A. The purge log is included in Attachment B.

Analytical Results

The groundwater sample was transported in an iced cooler under chain of custody to a State of California certified independent analytical laboratory, McCampbell Analytical, Inc., (McCampbell) of Pittsburg, California. The groundwater sample collected from monitoring well MW-3 on March 27, 2013 was analyzed for total petroleum hydrocarbons as diesel (TPH-d) by EPA Method 8015B with silica gel clean-up, total petroleum hydrocarbons as gasoline (TPH-g) and volatile organic compounds (VOCs) by EPA Method 8260B, and polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270SW. TPH-mineral spirits (TPH-ms) analysis was discontinued, as authorized by the ACEH e-mail of March 26, 2013.

TPH-g and TPH-d were detected in the groundwater sample collected from MW-3 at respective concentrations of 100,000 micrograms per liter ($\mu g/L$) and 53,000 $\mu g/L$. Benzene, toluene, ethylbenzene and total xylenes were detected at respective concentrations of 5,900 $\mu g/L$, 16,000 $\mu g/L$, 3,700 $\mu g/L$ and 21,000 $\mu g/L$.

The fuel oxygenate methyl tertiary butyl ether (MTBE) was detected at a concentration of 2,400 μ g/L. Other VOCs detected were naphthalene, 1,2,4- trimethylbenzene, n-propyl benzene and 1,3,5-trimethylbenzene at respective concentrations of 990 μ g/L, 5,500 μ g/L, 630 μ g/L, and 1,700 μ g/L. The PAHs 1-methylnaphthalene, 2,-methylnaphthalene, and naphthalene were detected at respective concentrations of 640 μ g/L, 1,200 μ g/L, and 1,600 μ g/L. Naphthalene is an analyte in both the EPA Method 8260B and 8270C suites. A summary of groundwater sample analytical results is included in Table 2. Copies of the laboratory analytical and QA/QC reports and chain-of-custody records are included in Attachment C.

Environmental Screening Levels

To assess if the identified petroleum hydrocarbons in the groundwater pose a risk to human health and the environment, detected analyte concentrations were compared with their corresponding California Regional Water Quality Control Board, San Francisco Bay Region (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is a potential drinking water resource (RWQCB, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, *Tables A and F-1a*, Interim Final February 2013). Although not currently used as a drinking water resource, groundwater in the subject site vicinity has been designated as a potential drinking water resource in the SFRWQCB Basin Plan (December 2011).

TPH-g, TPH-d, benzene, toluene, ethylbenzene, total xylenes (BTEX), MTBE, 2-methylnaphthalene and naphthalene concentrations in the groundwater sample from MW-3 exceeded their respective ESLs of 100 μ g/L, 100 μ g/L, 1.0 μ g/L, 40 μ g/L, 30 μ g/L, 20 μ g/L, 5.0 μ g/L, 2.1 μ g/L and 6.2 μ g/L, where groundwater is a potential drinking water resource.

Concentrations were also compared with their corresponding SFRWQCB ESLs for commercial/industrial land use where groundwater is not a potential drinking water resource (RWQCB, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Tables B and F-1b, Interim Final, February 2013).

TPH-g, TPH-d, BTEX, MTBE, 2-methylnaphthalene, and naphthalene were detected in the groundwater sample from well MW-3 at concentrations exceeding their respective ESLs of 500 μ g/L, 640 μ g/L, 27 μ g/L, 130 μ g/L, 43 μ g/L, 100 μ g/L, 1,800 μ g/L, 2.1 μ g/L, and 24 μ g/L, where groundwater is not a potential drinking water resource (Table 2).

Conclusions and Recommendations

AllWest recommends continuation of quarterly groundwater monitoring in MW-3 pending site characterization. AllWest submitted an *Additional Site Characterization Workplan Addendum* dated July 31, 2012 to ACEH proposing additional subsurface investigation. The workplan was approved by ACEH in their letter of November 8, 2012. The subsurface investigation is scheduled to take place during the spring of 2013, with a report to be submitted by May 24, 2013. ACEH requested in a telephone conversation on March 14, 2013 that interim remediation of free product be implemented. AllWest recommends the installation of a passive product skimming device in monitoring well MW-3, with monthly removal of accumulated product.

If you have any questions, or would like to further discuss the above issues, please call me at (415) 391-2510, extension 109.

Mr. Mark Detterman April 18, 2013 Page 4 of 4 Project Number 13052.28

Sincerely,

AllWest Environmental, Inc.

Leonard P. Niles, R.G., C.H.G.

Senior Project Manager

NO.HG357 EXP. 3/31/14 A

CC: Walter F. Merkle, MCG Investments LLC

FIGURES:

Figure 1: Site Map

Figure 2: Site Plan with Boring and Well Locations

TABLES:

Table 1: Summary of Well Construction Details, Product Thickness and Groundwater

Elevation Data

Table 2: Summary of Groundwater Analytical Data

ATTACHMENTS:

Attachment A: Groundwater Monitoring Well Development and Sampling Standard Operating

Procedures

Attachment B: Groundwater Monitoring Well Development, Purging and Sampling Field Logs

Attachment C: Laboratory Analytical Reports and Chain-of-Custody Documents

FIGURES

	Legend	BORING AND WELL LOCATIONS	Scale: 1 in = 80 ft Photo: Google Earth	N↑
2012	MW-3 Existing Monitoring Well (ESC, 1995)			
E CHUS	MW-1 Former Monitoring Well (Clearprint /		D . =4040	
AllWest	ESC, Destroyed 2005)	Site Name: Former McGrath	Date: 7/18/12	Project
All West	■ B-1 Boring (Weiss Associates,1998)	Steel, 6655 Hollis Street, Emeryville, CA	By: Leonard Niles	Number:
	■ B-8 Boring (Weiss Associates, 2005)	,		13052.28
	Former USTs and Fuel Dispensers			

TABLES

TABLE 1

Summary of Well Construction Details,

Product Thickness and Groundwater Elevation Data

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 13052.28

Well Number	Casing Diameter (inches)	Borehole Diameter (inches)	Total Depth of Well (feet bgs)	Top-Bottom of Screen (feet bgs)	Screen Length (feet)	Top-Bottom of Filter Pack (feet bgs)
MW-3	2	8	29	9-29	20	7-29.5

Well Number	Date	TOC Elevation (feet msl)	Ground Surface Elevation (feet msl)	Depth to Groundwater (feet below TOC)	Product Thickness (feet)	Groundwater Surface Elevation (feet msl) ^a
NAME OF	10/17/1007	22.72	22.17	0.42	0.00	12.21
MW-3	10/17/1995	22.73	23.17	9.42	0.00	13.31
	11/21/1995	22.73	23.17	9.85	0.00	12.88
	12/23/1995	22.73	23.17	8.52	0.00	14.21
	1/15/1996	22.73	23.17	8.72	0.00	14.01
	2/16/1996	22.73	23.17	7.08	0.04	15.68
	3/28/1996	22.73	23.17	6.78	0.03	15.97
	8/22/2005	22.73	23.17	12.36	0.00	10.37
	12/20/2005	22.73	23.17	10.82	0.00	11.91
	9/14/2011*	22.73	23.17	11.05	3	13.93
_	7/30/2012	22.73	23.17	11.52	2.65	13.20
	8/2/2012	22.73	23.17	9.22	1.12	14.35
	12/18/2012	22.73	23.17	8.91	0.00	13.82
	3/27/2013	22.73	23.17	8.57	0.20	14.31

Notes:

Groundwater level measurement only, no sampling

below ground surface bgs TOC Top of Well Casing

Ground surface and TOC elevations surveyed to feet above mean sea level (msl) per City of Emeryville feet msl

Datum, BM#5 by Triad/Holmes Associates October 17, 1995.

Groundwater elevation corrected for free product thickness, assuming density of 0.75 for gasoline.

Not Measured NM

TABLE 2 Summary of Groundwater Analytical Data

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 13052.28

Sample / Field Point	Date Sampled	ТРН-д	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl benzene	Total Xylenes	МТВЕ	Other VOCs	PAHs/PNAs	
Name		(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	
MW-3	10/17/1995	8,600	ND <100	220	NA	730	2,100	270	1,400	NA	NA	NA	
MW-3	8/22/2005	39,000	NA	2,500	NA	3,100	3,800	1,100	4,700	7,200	Oxygenates - ND (varies)	NA	
(qualifiers)				L,Y									
MW-3	12/20/2005	54,000	NA	2,600	NA	6,000	10,000	1,700	9,600	12,000	Oxygenates - ND (varies)	NA	
(qualifiers)				L,Y									
MW-3	8/2/2012	27,000	14,000 d1	33,000 e4, e2	680 e4, e2	1,300	3,800	400	4,500	630	400 (TBA), 110 (trans-1,3-dichloropropene), 250 (naphthalene), 1,100 (1,2,4-trimethylbenzene), 280 (1,3,5-trimethylbenzene), ND (others - varies)	NA	
MW-3	12/18/2012	21,000	12,000 d1	2,600 e4	ND <250	830	1,400	450	2,600	840	140 (naphthalene), 630 (1,2,4-trimethylbenzene), 78 (n-propyl benzene), 190 (1,3,5-trimethylbenzene), ND (others - varies)	NA	
MW-3	3/27/2013	100,000	NA	53,000 e4, e2	NA	5,900	16,000	3,700	21,000	2,400	990 (naphthalene), 5,500 (1,2,4-trimethylbenzene), 630 (n-propyl benzene), 1,700 (1,3,5- trimethylbenzene), ND, reporting limits vary (others)	640 (1-methylnaphthalene), 1,200 (2-methylnaphthalene), 1,600 (napthalene), ND <100 (others)	
Commerci	QCB al/Industrial king water*	100	100	100	100	1.0	40	30	20	5.0	12 (TBA) 0.5 (1,3-dichloropropene) 6.2 (naphthalene) NE or vary (others)	2.1 (2-methylnaphthalene), 6.2 (napthalene), NE (others)	
Commerci ESLs, no	QCB al/Industrial on-drinking ater*	500	500	640	640	27	130	43	100	1,800	18,000 (TBA) 24 (1,3-dichloropropene) 24 (naphthalene) NE or vary (others)	2.1 (2-methylnaphthalene), 24 (napthalene), NE (others)	

TABLE 2

Summary of Groundwater Analytical Data

Former McGrath Steel 6655 Hollis Street Emeryville, California AllWest Project No. 13052.28

Sample / Field Point	Date Sampled	трн-д	TPH-ms	TPH-d	TPH-mo	Benzene	Toluene	Ethyl benzene	Total Xylenes	МТВЕ	Other VOCs	PAHs/PNAs
Name		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	$(\mu g/L)$

Notes:

All results are reported in micrograms per liter (µg/L) [equivalent to parts per billion (ppb)], except where noted.

TPH-g = Total petroleum hydrocarbons as gasoline, analytical method SW8015Bm, 10/17/95, 8/22/05 & 12/20/05; analytical method SW8260B on other dates.

TPH-ms = Total petroleum hydrocarbons as mineral spirits, analytical method SW8015Bm.

TPH-d = Total petroleum hydrocarbons as diesel, C10-C23, analytical method SW8015B with silica gel cleanup for 8/2/12 and 12/18/12.

TPH-mo = Total petroleum hydrocarbons as motor oil, C18-C36, analytical method SW8015B with silica gel cleanup.

MTBE = Methyl tert-butyl ether, analytical method SW8260B.

PAHs/PNAs = Polynuclear Aromatic Hydrocarbons, analytical method SW8270C-SIM

TBA = tertiary butyl alcohol, analytical method SW8260B

Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), analytical method SW8021B on 10/17/95 only; SW8260B on all other dates

VOCs = Volatile organic compounds, analytical method SW8260B

ND <100 = Not detected at or above listed reporting limit

NE - Not established

NA - Not analyzed

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is a potential drinking water resource from Tables A and F-1a, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. RWQCB, Interim Final February 2013.

San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial land use where groundwater is not a potential drinking water resource from Tables B and F-1b, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. RWQCB, Interim Final February 2013.

* The subject site lies within the Emeryville Brownfields Groundwater Management Zone, and has been designated as Groundwater Management Zone B by the SFRWQCB where groundwater is not used as a drinking water resource.

Laboratory Qualifiers:

- L lighter hydrocarbons contributed to the quantitation
- Y sample exhibits chromatographic pattern which does not resemble standard
- d1 weakly modified or unmodified gasoline is significant
- e2 diesel range compounds are significant; no recognizable pattern
- e4 gasoline-range compounds are significant

Attachment A

Groundwater Monitoring Well Development and Sampling

Groundwater monitoring wells will be developed with the combination of surging and pumping actions. The wells will be alternately surged with a surging block for five minutes and pumped with a submersible pump for two minutes. The physical characteristics of the groundwater, such as water color and clarity, pH, temperature, and conductivity, will be monitored during well development. Well development will be considered complete when the groundwater is relatively sediment-free and groundwater characteristic indicators are stabilized (consecutive readings within 10% of each other).

Groundwater will be sampled from the developed wells no sooner than 48 hours after well development to allow stabilization of groundwater conditions. Prior to groundwater sampling, a proper purging process will be performed at each well. The purpose of well purging is to remove fine grained materials from the well casing and to allow fresh and more representative water to recharge the well. Prior to well purging, an electric water depth sounder will be lowered into the well casing to measure the depth to the water to the nearest 0.01 feet. A clear poly bailer will then be lowered into the well casing and partially submerged. Upon retrieval of the clear bailer, the surface of the water column retained in the bailer will be carefully examined for any floating product or product sheen.

After all initial measurements are completed and recorded, the well will be purged by an electrical submersible pump or a bailer. A minimum of 3 well volumes of groundwater will be purged and groundwater characteristics (temperature, pH, and conductivity) monitored at each well volume interval. Purging is considered complete when indicators are stabilized (consecutive readings within 10% of each other) and the purged water is relatively free of sediments.

Groundwater sampling will be conducted after the water level has recovered to at least 80% of the initial level, recorded prior to purging. The groundwater sample will be collected by a disposable bailer. Upon retrieval of the bailer, the retained water will be carefully transferred to appropriate sample bottle furnished by the analytical laboratory. All sample bottles will have a Teflon lined septum/cap and be filled such that no headspace is present. Then the sample bottles will be labeled and immediately placed on ice to preserve the chemical characteristics of its content.

To prevent cross contamination, all groundwater sampling equipment that comes in contact with the groundwater will be thoroughly decontaminated prior to sampling. A disposable bailer will be used to collect the groundwater samples. Sample handling, storage, and transport procedures described in the following sections will be employed. All well development and purging water will be temporarily stored on-site in 55-gallon drums awaiting test results to determine the proper disposal method.

Attachment B

All West		PURGE TAI	BLE	WELL ID: $Mh - 3$ Page \perp of \perp					
SITE NAME: PROJECT NO: PURGED/SAM TIME SAMPL: DEPTH TO W.	MPLED BY: (). H ED: 1341	oulihan 57 (DTP 8.37')	LOCATION: Emergy le, CA DATE PURGED: 3/27/13 DATE SAMPLED: 3/27/13 DEPTH TO BOTTOM (feet): 29.47 WATER COLUMN HEIGHT (feet): 20.90						
ACTUAL PUR				3 VOLUME (gallons): 3					
DEVELOPMENT QUARTERLY BIANNUAL OTHER SAMPLE TYPE: Groundwater Surface Water Other									
CASING DIAMETER: 2" $\sqrt{3}$ " $\sqrt{3}$ " $\sqrt{3}$ " $\sqrt{0.38}$ $\sqrt{0.66}$ (gallons per foot): $\sqrt{3}$									
		FIELD MEAS							
VOLUME (gal)	TIME (deg	EMP PH (units)	CONDUCTI (umbos/o		TURBIDITY (NTU)				
4 6 8 10	1225 17	1.6 6.19 1.6 6.14 1.8 6.14 1.9 6.15 1.0 6.15	2090 1968 1945 1868		Silty Silty Silty Silty				
80% RECHAR	GE: Y/N	SAMPLE INF feet): 10.70 Ana SAMPLE TURBI BOTTLE/PRESERVA	alyses: VOCs IDITY: Sit-	TPH-a. TPH-d.	PAtts				
	PURGING EQUIP	PMENT		SAMPLING EQUIPMI	ENT				
Submersible Peristalitic I Purge Pump Other:	Centrifugal Pump								
Comments:	DTV 8.37	, Free produ	ct layer	0,2					

Attachment C

Analytical Report

All West Environmental, Inc	Client Project ID: #13052.28	Date Sampled: 03/27/13
530 Howard Street, Ste.300		Date Received: 03/28/13
350 Howard Bucci, Bici500	Client Contact: Christopher Houlihan	Date Reported: 04/05/13
San Francisco, CA 94105	Client P.O.:	Date Completed: 04/04/13

WorkOrder: 1303809

April 05, 2013

Dear Christopher:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #13052.28,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

AWA	1 1 1	CHAIN OF CUSTODY RECORD					
McCampbell /	Analytical, Inc.						
1534 Willow Pass Rd. / Pittsb	burg, Ca. 94565-1701	TURN AROUND TIME: RUSH 24 HR 48 HR 72 HR 5 DAY 10 DAY					
www.mccampbell.com / mc		GeoTracker EDF PDF EDD Write On (DW) EQuIS					
Telephone: (877) 252-9262 GLOBAL ID #7	Fox-00 103 099	Effluent Sample Requiring "J" flag UST Clean Up Fund Project []; Claim #					
Report To: (Wistopher Houlinan Company: All West	Carol @ allwest 1, com	Analysis Request					
530 Howard St. #300	Carol & allwest 1, com						
SF CA 94105	E-Mail: Choulinan Ballwest 1. com	or 8260) / MTBK (a gel Cleanu 64 / 5520 E/B&F) (B.1) (B.1) (Gongeners (Gongeners As) (10 / 6020) (10 / 6020) (10 / 6020)					
Tele: (415) 391-2510	Fax: ()	8 8 2 (6) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8					
	Project Name: _Purchase Order#	(418. 418. 3) (5) or 1) or 100					
Project Location: Energyille, CA Sampler Signature:	Purchase Order#						
SAMPLING	MATRIX METHOD	Gas (8021) Gas (8021) Oil & Grea Hydrocarb NLY (BPA NLY (BPA CB's; Aro NP Pesticid Acidic G1 200.7 / 2002 DISSOLVI DISSOLVI					
	PRESERVEI						
SAMPLE ID Location/ Field Point Name Date Time Time Time Sample Location/ Field Point Name Date Time Sample Time Time Sample Time Time Sample Time Time	Ground Water Waste Water Drinking Water Sea \ Water Soil Air Air HCL HNO,	sel (8) sel (8) (8) (8) (8) (8) (8) (8) (8) (8) (8)					
Name Date Time 3	W had Wat Ing V Nates	25.70 (2000)					
	Ground Water Waste Water Drinking Wate Sea \ Water Soil Air Air HCL HNO,	BTEX & TP II TP II as Diesel Total Petrolem MTBR / BTEX MTBR / BTEX BPA 505/608 / 808 EPA 507 / 814 EPA 507 / 814 EPA 524.2 / 62 EPA 525.2 / 62 EPA 8270 SIN CAM 17 Metal LUFT 5 Metal Metals (200.7 / Filter sample f					
MW-3 MW-3 3/27/3 1341 3	$\mathbb{X} + \mathbb{X} + \mathbb{X} + \mathbb{X}$						
MW-3 MW-3	311111171						
MW-3 MW-3	$\uparrow + + + + + + + + + + + + + + + + + + +$	} 					
)						
**MAI clients MUST disclose any dangerous chemicals know	wn to be present in their submitted samples in concen-	trations that may cause immediate harm or serious future health endangerment as a result of brief, t is subject to full legal liability for harm suffered. Thank you for your understanding and for allowing					
us to work safely.		24					
1/12/11/201/201/201	Received By: ICE/GOO	DO CONDITION					
		D SPACE ABSENT HLORINATED IN LAB					
3/K/12/530	APPI	PROPRIATE CONTAINERS					
11-110/15/0	Received By:	SERVED IN LAB					
and the same of	1 1.	VOAS O&G METALS OTHER HAZARDOUS: SERVATION pH<2					

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd

Pittsburg, CA 94565-1701

N - 27 - N	52-9262				W	orkO	rder:	1303809)	Cli	ientCo	de: AW	E				
		WaterTrax	WriteOn	✓ EDF	ШΕ	xcel		EQuIS	✓	Email	[HardCo	ру	ThirdPa	ırty	☐J-fla	ag
Report to:						Bi	II to:						Reque	ested TAT:		5 c	days
530 Howard	vironmental, Inc d Street, Ste.300 sco, CA 94105	cc: PO:	choulihan@allw #13052.28	est1.com			All W 530 I San	I Ramel /est Env Howard Franciso I@allwe	ironme Street, co, CA	Ste.30 94105				Received: Printed:		03/28/2 03/28/2	
									Re	questec	d Tests	(See lege	end be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1303809-001	MW-3		Water	3/27/2013 13:41		С	Α	А	В								

Test Legend:

1 8270D-PNA_W	2 GAS8260_W	3 PREDF REPORT	4 TPH(D)WSG_W	5
6	7	8	9	10
11	12			

The following SampID: 001A contains testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Zoraida Cortez

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	7 11 COL =	onmental, Inc				na i ime Receivea: 3/28/201	3 4:09:34 PW
Project Name:	#13052.28				LogIn R	Reviewed by:	Zoraida Cortez
WorkOrder N°:	1303809	Matrix: Water			Carrier:	Rob Pringle (MAI Courier)
		<u>Ch</u> a	ain of C	ustody (COC) Informati	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when rel	inquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with san	nple labels?	Yes	✓	No 🗆		
Sample IDs noted	d by Client on Co	OC?	Yes	✓	No \square		
Date and Time of	f collection noted	by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
			Sample	e Receip	t Information		
Custody seals int	tact on shipping	container/cooler?	Yes		No 🗌	NA 🗸	
Shipping containe	er/cooler in good	I condition?	Yes	✓	No \square		
Samples in prope	er containers/bot	tles?	Yes	✓	No \square		
Sample containe	rs intact?		Yes	✓	No 🗌		
Sufficient sample	e volume for indic	cated test?	Yes	✓	No 🗌		
		Sample Pre	servatio	n and H	old Time (HT) I	nformation	
All samples recei	ived within holdir	ng time?	Yes	✓	No 🗆		
Container/Temp	Blank temperatu	re	Coole	er Temp:	3.4°C	NA 🗌	
Water - VOA vial	s have zero hea	dspace / no bubbles?	Yes		No 🗌 1	No VOA vials submitted 🗹	
Sample labels ch	necked for correc	ct preservation?	Yes	✓	No 🗌		
Metal - pH accep	table upon recei	pt (pH<2)?	Yes		No 🗌	NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No \square		
		(Ice Ty	pe: WE	T ICE)		
* NOTE: If the "N	la" hay ia ahaak	ed, see comments below.					

All West Environmental, Inc	Client Project ID: #13052.28	Date Sampled: 03/27/13
520 Howard Street Ste 200		Date Received: 03/28/13
530 Howard Street, Ste.300	Client Contact: Christopher Houlihan	Date Extracted: 03/29/13
San Francisco, CA 94105	Client P.O.:	Date Analyzed: 03/29/13

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1303809

Lab ID											
Client ID				MW-3							
Matrix	-	Water Reporting									
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit				
Acetone	ND<10,000	1000	10	tert-Amyl methyl ether (TAME)	ND<500	1000	0.5				
Benzene	5900	1000	0.5	Bromobenzene	ND<500	1000	0.5				
Bromochloromethane	ND<500	1000	0.5	Bromodichloromethane	ND<500	1000	0.5				
Bromoform	ND<500	1000	0.5	Bromomethane	ND<500	1000	0.5				
2-Butanone (MEK)	ND<2000	1000	2.0	t-Butyl alcohol (TBA)	ND<2000	1000	2.0				
n-Butyl benzene	ND<500	1000	0.5	sec-Butyl benzene	ND<500	1000	0.5				
tert-Butyl benzene	ND<500	1000	0.5	Carbon Disulfide	ND<500	1000	0.5				
Carbon Tetrachloride	ND<500	1000	0.5	Chlorobenzene	ND<500	1000	0.5				
Chloroethane	ND<500	1000	0.5	Chloroform	ND<500	1000	0.5				
Chloromethane	ND<500	1000	0.5	2-Chlorotoluene	ND<500	1000	0.5				
4-Chlorotoluene	ND<500	1000	0.5	Dibromochloromethane	ND<500	1000	0.5				
1,2-Dibromo-3-chloropropane	ND<200	1000	0.2	1,2-Dibromoethane (EDB)	ND<500	1000	0.5				
Dibromomethane	ND<500	1000	0.5	1,2-Dichlorobenzene	ND<500	1000	0.5				
1,3-Dichlorobenzene	ND<500	1000	0.5	1,4-Dichlorobenzene	ND<500	1000	0.5				
Dichlorodifluoromethane	ND<500	1000	0.5	1,1-Dichloroethane	ND<500	1000	0.5				
1,2-Dichloroethane (1,2-DCA)	ND<500	1000	0.5	1,1-Dichloroethene	ND<500	1000	0.5				
cis-1,2-Dichloroethene	ND<500	1000	0.5	trans-1,2-Dichloroethene	ND<500	1000	0.5				
1,2-Dichloropropane	ND<500	1000	0.5	1,3-Dichloropropane	ND<500	1000	0.5				
2,2-Dichloropropane	ND<500	1000	0.5	1,1-Dichloropropene	ND<500	1000	0.5				
cis-1,3-Dichloropropene	ND<500	1000	0.5	trans-1,3-Dichloropropene	ND<500	1000	0.5				
Diisopropyl ether (DIPE)	ND<500	1000	0.5	Ethylbenzene	3700	1000	0.5				
Ethyl tert-butyl ether (ETBE)	ND<500	1000	0.5	Freon 113	ND<10,000	1000	10				
Hexachlorobutadiene	ND<500	1000	0.5	Hexachloroethane	ND<500	1000	0.5				
2-Hexanone	ND<500	1000	0.5	Isopropylbenzene	ND<500	1000	0.5				
4-Isopropyl toluene	ND<500	1000	0.5	Methyl-t-butyl ether (MTBE)	2400	1000	0.5				
Methylene chloride	ND<500	1000	0.5	4-Methyl-2-pentanone (MIBK)	ND<500	1000	0.5				
Naphthalene	990	1000	0.5	n-Propyl benzene	630	1000	0.5				
Styrene	ND<500	1000	0.5	1,1,1,2-Tetrachloroethane	ND<500	1000	0.5				
1,1,2,2-Tetrachloroethane	ND<500	1000	0.5	Tetrachloroethene	ND<500	1000	0.5				
Toluene	16,000	1000	0.5	1,2,3-Trichlorobenzene	ND<500	1000	0.5				
1,2,4-Trichlorobenzene	ND<500	1000	0.5	1,1,1-Trichloroethane	ND<500	1000	0.5				
1,1,2-Trichloroethane	ND<500	1000	0.5	Trichloroethene	ND<500	1000	0.5				
Trichlorofluoromethane	ND<500	1000	0.5	1,2,3-Trichloropropane	ND<500	1000	0.5				
1,2,4-Trimethylbenzene	5500	1000	0.5	1,3,5-Trimethylbenzene	1700	1000	0.5				
Vinyl Chloride	ND<500	1000	0.5	Xylenes, Total	21,000	1000	0.5				

Surrogate Recoveries (%) %SS2: 100 %SS1: 108 %SS3: 89

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

"When Quality Counts" http://www.mccar					pbell.com / E-mail: main@	mccampbell.com		
All West Environmental, Inc	Client Pr	roject ID:	#1305	2.28	Date Sampled:	03/27/13		
530 Howard Street, Ste.300					Date Received:	03/28/13		
330 Howard Street, Stc.300	Client Co	ontact: Cl	nristoph	er Houlihan	Date Extracted:	04/04/13		
San Francisco, CA 94105	Client P.	O.:			Date Analyzed:	04/04/13		
Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS								
Extraction Method: SW3510C	An	alytical Method	d: SW8270	C-SIM		Work Order: 1303	3809	
Lab ID	1303809-001C							
Client ID	MW-3					Reporting DF		
Matrix	W							
DF	200					S	W	
Compound			Conce	entration		ug/kg	μg/L	
Acenaphthene	ND<100					NA	0.5	
Acenaphthylene	ND<100					NA	0.5	
Anthracene	ND<100					NA	0.5	
Benzo (a) anthracene	ND<100					NA	0.5	
Benzo (b) fluoranthene	ND<100					NA	0.5	
Benzo (k) fluoranthene	ND<100					NA	0.5	
Benzo (g,h,i) perylene	ND<100					NA	0.5	
Benzo (a) pyrene	ND<100					NA	0.5	
Chrysene	ND<100					NA	0.5	
Dibenzo (a,h) anthracene	ND<100					NA	0.5	
Fluoranthene	ND<100					NA	0.5	
Fluorene	ND<100					NA	0.5	
Indeno (1,2,3-cd) pyrene	ND<100					NA	0.5	
l	l e	1			1		l .	

* water samples in µg/L, soil/sludge/solid san	mples in mg/kg. wip	e samples in ug/wipe.	product/oil/non-ague	eous liquid samples at	nd all TCLP & SPLP extr	acts are
			F			
Ireported in mg/L.						

Surrogate Recoveries (%)

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

#) surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

640

1200

1600

ND<100

ND<100

---#

---#

1-Methylnaphthalene

2-Methylnaphthalene

Naphthalene

Phenanthrene

Pyrene

%SS1

%SS2

Comments

0.5

0.5

0.5

0.5

0.5

NA

NA

NA

NA

NA

All West Environmental, Inc	Client Project ID: #13052.28	Date Sampled: 03/27/13
530 Howard Street, Ste.300		Date Received: 03/28/13
	Client Contact: Christopher Houlihan	Date Extracted 03/29/13
San Francisco, CA 94105	Client P.O.:	Date Analyzed 03/29/13

TPH(g) by Purge & Trap and GC/MS*

Extraction method: SW5030B Analytical methods: SW8260B Work Order: 1303809

nation method: B W		i mary treat metrice	B1102002		orn order.	1303007		
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	Comments		
001A	MW-3	w	100,000	100	98			

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

~ .		
All West Environmental, Inc	Client Project ID: #13052.28	Date Sampled: 03/27/13
530 Howard Street, Ste.300		Date Received: 03/28/13
, , , , , , , , , , , , , , , , , , ,	Client Contact: Christopher Houlihan	Date Extracted 03/28/13
San Francisco, CA 94105	Client P.O.:	Date Analyzed 04/02/13

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method:	SW3510C/3630C	An	nalytical methods: SW8015B		Work Ord	ler: 1303809
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments
1303809-001B	MW-3	W	53,000	10	100	e4.e2

Euo IB	Chefit IB	Wittin	(C10-C23)	D1	70 BB	Comments
1303809-001B	MW-3	W	53,000	10	100	e4,e2

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75936 WorkOrder: 1303809

EPA Method: SW8015B Extraction: SW3510C/3630C					Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	112	N/A	N/A	70 - 130
%SS:	N/A	625	N/A	N/A	N/A	97	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75936 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1303809-001B	03/27/13 1:41 PM	1 03/28/13	04/02/13 6:57 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75996 WorkOrder: 1303809

EPA Method: SW8260B Extraction: S	W5030B					;	Spiked Sam	ple ID:	1303791-002B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Crite		Criteria (%)
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	101	101	0	93.2	70 - 130	20	70 - 130
Benzene	ND	10	92.3	94.7	2.62	99.4	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	121	108	10.9	83.3	70 - 130	20	70 - 130
Chlorobenzene	ND	10	90	92.3	2.50	97.2	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	103	104	1.59	96.4	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	105	104	0.702	100	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	76.9	82.3	6.72	86.9	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	108	110	1.54	106	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	106	106	0	98.5	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	107	105	1.96	96.3	70 - 130	20	70 - 130
Toluene	ND	10	82.8	88.5	6.67	92.8	70 - 130	20	70 - 130
Trichloroethene	ND	10	83.8	88.5	5.42	92.4	70 - 130	20	70 - 130
%SS1:	108	25	111	110	0.808	107	70 - 130	20	70 - 130
%SS2:	102	25	102	101	0.559	101	70 - 130	20	70 - 130
%SS3:	90	2.5	95	92	2.82	95	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75996 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1303809-001A	03/27/13 1:41 PM	03/29/13	03/29/13 10:06 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 76141 WorkOrder: 1303809

EPA Method: SW8270C-SIM Extraction: S	Spiked Sample ID: N/A								
Analyte	Sample	Spiked	MS MSD		MS-MSD	LCS	Acceptance Criteria (%)		
, many c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzo (a) pyrene	N/A	10	N/A	N/A	N/A	81	N/A	N/A	30 - 130
Chrysene	N/A	10	N/A	N/A	N/A	77.6	N/A	N/A	30 - 130
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	91.9	N/A	N/A	30 - 130
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	81.5	N/A	N/A	30 - 130
Phenanthrene	N/A	10	N/A	N/A	N/A	78.1	N/A	N/A	30 - 130
Pyrene	N/A	10	N/A	N/A	N/A	83.9	N/A	N/A	30 - 130
%SS1:	N/A	25	N/A	N/A	N/A	111	N/A	N/A	30 - 130
%SS2:	N/A	25	N/A	N/A	N/A	106	N/A	N/A	30 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 76141 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1303809-001C	03/27/13 1:41 PM	1 04/04/13	04/04/13 4:09 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer