ORIGINAL

Alameda County

OCT 0 5 2005

Environmental Heath

Ro 5

76 Broadway Sacramento, CA 95818 phone 916.558.7676 fax 916.558.7639

September 30, 2005

Mr. Don Hwang Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Document Transmittal

Fuel Leak Case No. RO0000058 76 Station 6129 3420 35th Avenuc Oakland, California

Dear Mr. Hwang:

Please find attached ATC's Quarterly Summary Report - Third Quarter 2005, dated 9/30/05, and TRC's Quarterly Monitoring Report (July through September 2005), dated 9/2/05 for the above referenced site. I declare, under penalty of perjury, that to the best of my knowledge the information and/or recommendations contained in the attached proposal or report are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely.

Thomas H. Kosci

Site Manger, Risk Management and Remediation

ConocoPhillips

76 Broadway, Sacramento, CA 95818

Attachment

cc: Dave Evans, ATC

6602 Owens Dr. Suite 100 Pleasanton, California 94588 www.atc-enviro.com 925.460.5300

> CERTIFIED **ENGINEERING** GEOLOGIST

September 30, 2005

Mr. Donald Hwang Alameda County Department of Public Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re:

Quarterly Summary Report – Third Quarter 2005

76 Service Station No. 6129 / WNO 4583
3420 35th Avenue
Oakland, CA

Dear Mr. Hwang:

On behalf of ConocoPhillips Company, ATC Associates Inc. is forwarding the quarterly summary report for the above referenced facility.

Sincerely,

ATC ASSOCIATES INC

David A. Evans

Senior Project Manager

Janine Weber-Band, PhD

Senior Geologist

Attachment:

Site Plan

Groundwater Monitoring Report, prepared by TRC (9-2-05)

Cc:

Mr. Thomas Kosel – ConocoPhillips (electronic copy only)

QUARTERLY SUMMARY REPORT Third Quarter 2005

76 Service Station No. 6129 / WNO 4583 3420 35th Avenue Oakland, CA

City/County ID#

Case No. RO# 000058

County:

Alameda

BACKGROUND & ACTIVITY

Alameda County

OCT 0 5 2005

Environmental Health

According to Kaprealian Engineering, Inc. (KEI), in 1989, two 10,000-gallon gasoline USTs and one 550-gallon waste oil UST were removed from the site. Analytical results of soil samples collected beneath the former gasoline USTs, used-oil UST and product piping indicated that low concentrations of petroleum hydrocarbons were present in each of the sampling areas. Three groundwater monitoring wells (MW-1 through MW-3) were installed in 1989 to depths of approximately 44 feet below ground surface (bgs).

In 1990, four soil borings (EB1 through EB4) were drilled at the site in the vicinity of MW-3 in an attempt to define the hydrocarbon impact to soil. Based on the results of the soil sampling, approximately 230 cubic yards of soil were excavated from an area between the dispenser islands and around well MW-3 in 1991. Excavation was performed so as to not destroy well MW-3. Analytical results from confirmation soil samples indicated that the majority of the impacted soil had been removed.

On November 12 and 13, 2003, as part of a due diligence investigation, four soil borings (SB-1 and SB-3 through SB-5) were drilled to total depths of approximately 31.5 to 36.5 feet bgs. Proposed boring SB-2 was unable to be installed due to the presence of subsurface utilities and/or structures. Groundwater was encountered in the borings at a depth of approximately 35 feet bgs. Methyl tertiary butyl ether (MtBE) was reported at concentrations varying from 0.37 to 0.41 milligrams per kilogram (mg/kg) in the soil samples collected between 26 and 31 feet bgs. All other constituents were reported below the laboratory reporting limit for the soil samples analyzed. The three existing groundwater wells were sampled on November 13, 2003, and the analytical results indicated the presence of MtBE at concentrations between 240 and 3,700 micrograms per liter (ug/l), with the most elevated concentrations occurring in wells MW-2 (2,100 ug/l) and MW-3 (3,700 ug/l).

SENSITIVE RECEPTORS

A 1,000 foot radius well search was completed as requested on September 28, 2004 by the Alameda County Public Works Agency (ACPWA). The results indicated a 6-inch diameter irrigation well located at 3397 Arkansas St, 800 feet west-northwest of the site drilled in August 1977 to a total depth of 62 feet (water level at 18 feet) owned by Arthur Smith as reported by the Alameda County Health Care Services updated July 30, 1984.

MONITORING AND SAMPLING

Groundwater monitoring and sampling activities were conducted at the site from January 1990 through May 1991. Sampling activities were re-initiated during the third quarter 2004. The monitoring well network is scheduled to be sampled on a quarterly basis.

During the most recent groundwater monitoring event, conducted on July 27, 2005, depth to groundwater ranged from 27.33 feet (MW-1) to 27.51 feet (MW-2) below top of casing (TOC). The groundwater flow direction was toward the west at a gradient of 0.03 ft/ft, consistent with historic events. During the July 2005 sampling event, maximum detectable hydrocarbon concentrations were as follows: TPPH (<1,000 ug/l in MW-3), benzene (<10 ug/L in MW-3), and MtBE (1,400 ug/l in MW-3).

REMEDIATION STATUS

In 1991, based on the results from borings EB1 through EB4, approximately 230 cubic yards of soil were excavated from the area between the dispensers and the pumps islands around MW-3.

Remediation is not currently being conducted at the site.

CHARACTERIZATION STATUS

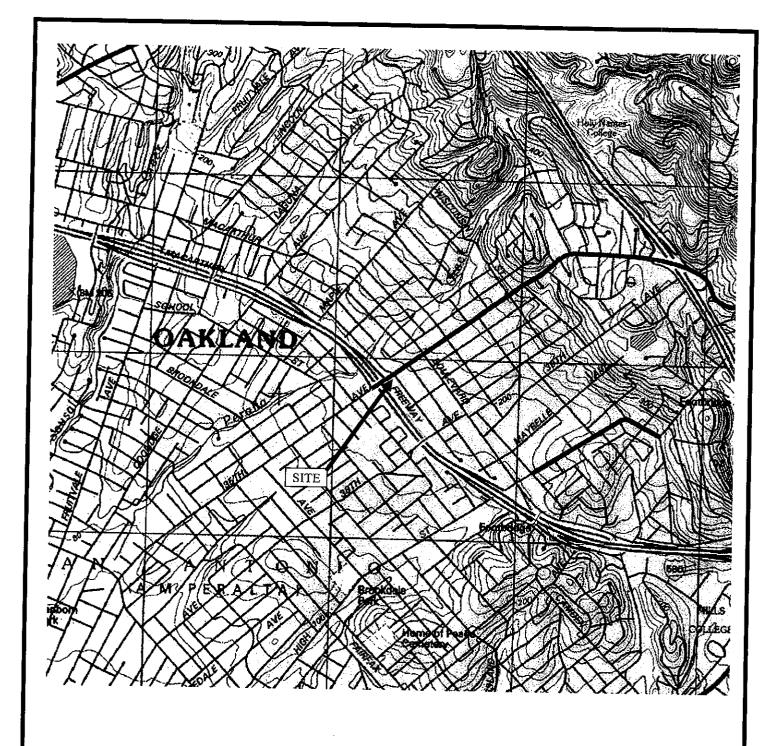
Hydrocarbon concentrations in the soil and groundwater have not been delineated. MtBE in soil and groundwater are above ESL's. Additional assessment activity has been proposed to delineate both the vertical and horizontal extent (up and down gradient) of the MtBE plumes.

RECENT CORRESPONDENCE

1. ATC prepared a Work Plan titled *Work Plan Addendum – Site Assessment Activity*, dated June 13, 2005, to the Alameda County Department of Public Health recommending four monitor wells be installed in addition to three soil borings.

THIS QUARTER ACTIVITIES (Third Quarter 2005)

1. TRC performed the quarterly monitoring and sampling event at the site.


WASTE DISPOSAL SUMMARY

No waste was generated during the quarter.

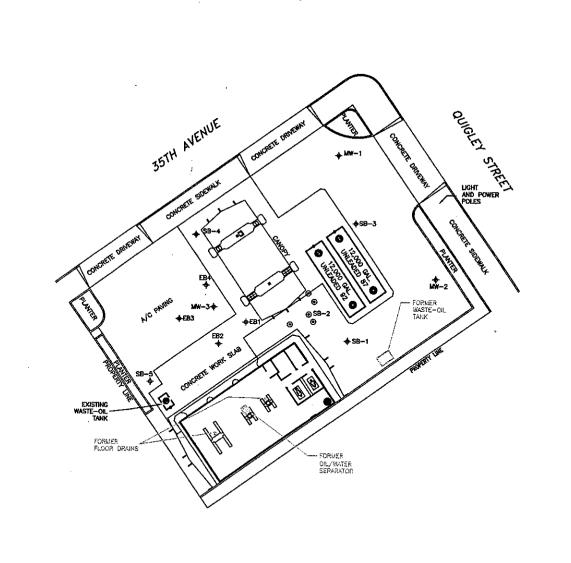
NEXT QUARTER ACTIVITIES (Fourth Quarter 2005)

- 1. TRC will conduct the quarterly groundwater monitoring and sampling event at the site.
- 2. Upon approval of the Work Plan dated June 13, 2005, ATC will complete four monitor wells and three soil borings.

CONSULTANT: ATC Associates Inc.

SOURCE: USGS OAKLAND WEST QUADRANGLE, CALIFORNIA (7.5 MINUTE SERIES) TOPOGRAPHIC MAP. OBTAINED FROM THE 2000 NATIONAL GEOGRAPHIC TOPO! SOFTWARE.

6602 Owens Drive, Suite 100 Pleasanton, CA 94588 (925) 460-5300


PROJECT NO: 75.75118,4583

DESIGNED BY: DE SCALE:N/A REVIEWED BY: DE DRAWN BY: EC DATE: 03/05 FILE: 6129 SITE VIC

FIGURE 1

SITE VICINITY MAP

76 STATION 6129 3420 35th AVENUE OAKLAND, CALIFORNIA

LEGEND

GROUNDWATER MONITORING WELL

SB-5- SOIL BORING LOCATIONS (2003)

SB-2 @ ATTEMPTED SOIL BORING

B1 + SOIL BORING LOCATIONS (1990)

GASOLINE UNDERGROUND
STORAGE TANK

DISPENSER ISLAND

HOIST

Approximate Scale

30 0 30 fee
Subject to Surveyors verification

BASE MAP REFERENCE:
MODIFIED FROM SITE PLAN SUPPLIED BY
MILLER BROOKS, EMIRONMENTAL INC.

6602 Owens Drive, Suite 100 Pleasonton, CA 94568 (925) 460-5300

SCALE AS SHOWN DRAWING DATE ACAD FILE 6129-sife plan

SITE MAP

September 2, 2005

ConocoPhillips Company 76 Broadway Sacramento, CA 94563

ATTN:

MR. THOMAS KOSEL

SITE:

76 STATION 6129 3420 35TH AVENUE

OAKLAND, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2005

Dear Mr. Kosel:

Please find enclosed our Quarterly Monitoring Report for 76 Station 6129, located at 3420 35th Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

Anju Farfan

QMS Operations Manager

CC: Mr. Dave Evans, ATC Associates Inc. (2 copies)

Enclosures: 20-0400/6129R05.QMS

QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2005

76 Station 6129 3420 35th Avenue Oakland, California

Prepared For:

Mr. Thomas Kosel CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, CA 94563

By:

Senior Project Geologist, Irvine Operations September 2, 2005

	LIST OF ATTACHMENTS	*
Summary Sheet	Summary of Gauging and Sampling Activities	
Tables	Table Key Table 1: Current Fluid Levels and Selected Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 3: Additional Analytical Results	
Figures	Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPPH Concentration Map Figure 4: Dissolved-Phase Benzene Concentration Map Figure 5: Dissolved-Phase MTBE Concentration Map	
Graphs	Groundwater Elevations vs. Time Benzene Concentrations vs. Time MTBE 8260B Concentrations vs. Time	
Field Activities	General Field Procedures Groundwater Sampling Field Notes	
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records	
Statements	Purge Water Disposal Limitations	

Summary of Gauging and Sampling Activities July 2005 through September 2005 76 Station 6129 3420 35th Ave. Oakland, CA

Project Coordinator: Thomas Kosel Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Valentina Tobon
Date(s) of Gauging/Sampling Event: 07/27/05	Toboli
Sample Points	
Groundwater wells: 3 onsite, 0 offsite Purging method: Bailer	Wells gauged: 3 Wells sampled: 3
Purge water disposal: Onyx/Rodeo Unit 100 Other Sample Points: 0 Type: n/a	
Liquid Phase Hydrocarbons (LPH) Wells with LPH: 0 Maximum thickness (feet): n	7-
LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	/a Method: n/a
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum: 2: Average groundwater elevation (relative to available le Average change in groundwater elevation since previo Interpreted groundwater gradient and flow direction: Current event: 0.025 ft/ft, southwest Previous event: 0.03 ft/ft, west (05/17/05)	ocal datum): 74.07 feet
Selected Laboratory Results	
Wells with detected Benzene: 0 We Maximum reported benzene concentration: n/a	lls above MCL (1.0 μg/l): n/a
Wells with TPPH 8260B 0	
Wells with MTBE 2 Max	ximum: 1,400 μg/l (MW-3)
Notes:	

TABLES

TABLE KEY

STANDARD ABREVIATIONS

-- not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons

Trace = less than 0.01 foot of LPH in well

μg/l = micrograms per liter (approx. e3quivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND < = not detected at or above laboratory detection limit
TOC = top of casing (surveyed reference elevation)

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction TPH-D = total petroleum hydrocarbons with diesel distinction

TPPH = total purgeable petroleum hydrocarbons
TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether

1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey.

REFERENCE

TRC began groundwater monitoring and sampling 76 Station 6129 in August 2004.

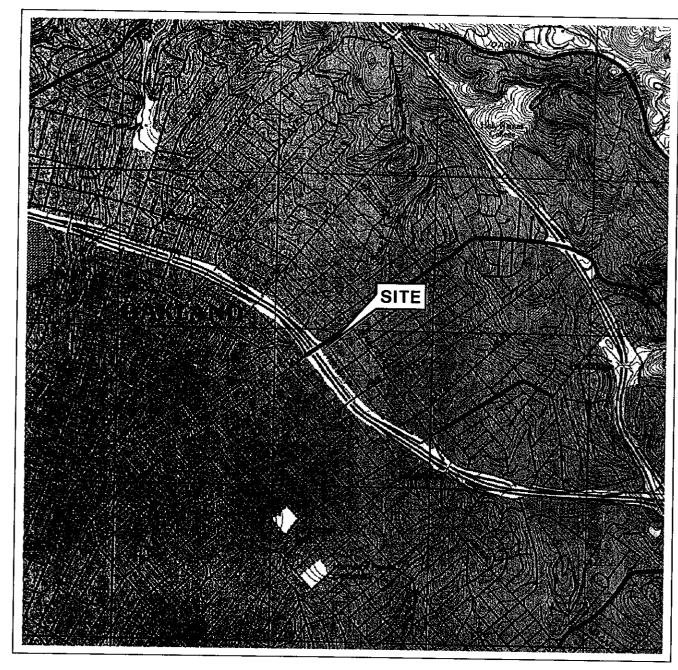
Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 27, 2005
76 Station 6129

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	
MW-1	5 100.04		2.22					***			<u> </u>	(1.6.7)	
07/27/0	5 102.24	27.33	0.00	74.91	-0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	
MW-2 07/27/0	5 102.16	27.51	0.00	74.65	-2.98		ND -500						
MW-3	- 10-110	21.51	,	74.03	-2.90		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10	580	
07/27/0	5 100.00	27.35	0.00	72.65	-1.74		ND<1000	ND<10	ND<10	ND<10	ND<20	1400	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through July 2005
76 Station 6129

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	· (μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-1													
01/05/9						ND		ND	ND	ND	ND		
05/11/9						ND		ND	7.1	ND	ND		
08/09/9		*-			'	ND		ND	ND	ND	ND		
11/14/9						ND	. ***	ND	ND	ND	ND		
02/12/9						ND	·	0.32	ND	ND	ND		
05/09/9	1					ND		ND	ND	ND	ND	-	
11/13/0	3				***		180	ND<1.0	ND<1.0	ND<1.0	ND<2.0	240	
08/27/0	4 102.24	30.65	0.00	71.59		**	ND<50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/23/0	4 102,24	29.35	0.00	72.89	1.30		ND<50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	
02/09/0:	5 102.24	26.89	0.00	75.35	2.46		ND<50		ND<0.50			9.3	
05/17/0:	5 102.24	26.56	0.00	75.68	0.33		ND<50			ND<0.50		1.9	
07/27/0:	5 102.24	27.33	0.00	74.91	-0.77		ND<50			ND<0.50		ND<0.50	
MW-2					•						1.2 2,0	1.2 -0.50	
01/05/90)					ND		ND	ND	ND	ND		
05/11/90)				· 	ND		ND	ND	ND	ND		
08/09/90)			**		ND		ND	ND	ND	ND		
11/14/90)					ND		ND	ND	ND	ND .		
02/12/91						ND		ND	0.42	ND	0.51		
05/09/91						ND		ND	ND	ND	ND		
11/13/03					**		ND<2000	ND<20	ND<20	ND<20	ND<40	2100	
08/27/04	102.16	30.28	0.00	71.88			950	ND<5.0	ND<5.0	ND<5.0	ND<10	1400	
11/23/04	102.16	28.75	0.00	73.41	1.53		53			ND<0.50	ND<1.0		
02/09/05	102.16	26.08	0.00	76.08	2.67			ND<0.50		ND<0.50		4.2	
05/17/05	102.16	24,53	0.00	77.63	1.55				ND<0.50		ND<1.0 ND<1.0	400 330	

6129


Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through July 2005
76 Station 6129

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	ТРН-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μ g /l)	(μ g /l)	(µg/l)	
MW-2 07/27/0	continued 05 102.16		0.00	74.65	-2.98		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10	580	
MW-3													
01/05/9	00		0.00			ND		ND	ND	ND	ND		
05/11/9	00					ND		ND	ND	ND	ND		
08/09/9	90					ND		ND	ND	ND	ND	==	
11/14/9	0			**		ND		ND	ND	ND	ND		
02/12/9	1				**	ND		ND	ND	ND	ND		
05/09/9	1					ND		ND	ND	ND	ND		
11/13/0	3						2600	ND<20	ND<20	ND<20	ND<40	3700	
08/27/0	4 100.00	29.61	0.00	70.39			1700	ND<10	ND<10	ND<10	ND<20	2600	
11/23/0	4 100.00	28.48	0.00	71.52	1.13		1500	ND<10	ND<10	ND<10	ND<20	1800	
02/09/0	5 100.00	26.45	0.00	73.55	2.03		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0	2100	
05/17/0	5 100.00	25.61	0.00	74.39	0.84		ND<1000	ND<0.50	ND<0.50		ND<1.0	1200	
07/27/0	5 100.00	27.35	0.00	72.65	-1.74		ND<1000		ND<10	ND<10	ND<20	1400	

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 6129

Date Sampled	EDC	EDB	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Ethanol 8260B
	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)
MW-1							-
11/13/03	ND<4.0	ND<4.0	ND<4.0	ND<200	ND<4.0	ND<4.0	ND<1000
08/27/04	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	ND<0.50	
11/23/04	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	ND<0.50	ND<50
02/09/05	ND<0.50	ND<0.50	ND<0.50				ND<50
05/17/05	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0,50	ND<0.50	ND<50
07/27/05	ND<0.50	ND<0.50		ND<5.0	ND<0,50	ND<0.50	ND<50
07/27/03	112 < 0.50	1412~0.50	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50
MW-2							
11/13/03	ND<80	ND<80	ND<80	ND<4000	ND<80	ND<80	ND<20000
08/27/04	ND<5.0	ND<5.0	ND<5.0	ND<50	24	ND<5.0	ND<500
11/23/04	ND<0.50	ND<0.50	ND<0.50	ND<5.0	18	ND<0.50	ND<50
02/09/05	ND<5.0	ND<5.0	ND<5.0	ND<50	19	ND<5.0	ND<500
05/17/05	ND<0.50	ND<0,50	ND<0.50	ND<5.0	12	ND<0.50	
07/27/05	ND<5.0	ND<5.0	ND<5.0	140			ND<50
		1.5 5.0	112 -5.0	140	16	ND<5.0	ND<500
MW-3	NT .00						
11/13/03	ND<80	ND<80	ND<80	ND<4000	ND<80	ND<80	ND<20000
. 08/27/04	ND<10	ND<10	ND<10	ND<100	ND<20	ND<10	ND<1000
11/23/04	ND<10	ND<10	ND<10	ND<100	ND<20	ND<10	ND<1000
02/09/05	ND<10	ND<10	ND<10	130	ND<10	ND<10	ND<1000
05/17/05	ND<10	ND<10	ND<10	ND<100	ND<10	ND<10	ND<1000
07/27/05	ND<10	ND<10	ND<10	360	ND<10	ND<10	ND<1000
						2	

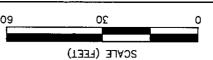
FIGURES

1/4 1/2 3/4 1 MILE SCALE 1:24,000

SOURCE:

United States Geological Survey 7.5 Minute Topographic Map: Oakland East Quadrangle

TRC


VICINITY MAP

76 Station 6129 3420 35th Avenue Oakland, California

FIGURE 1

5-WM ♦ 72.65

NASTE-OIL EXISTING

1-WM ↑ 16.47

PLANTER

TRC

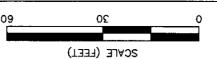
FIGURE 2

Oakland, California 3420 35th Avenue 76 Station 6129

July 27, 2005 CONTOUR MAP GROUNDWATER ELEVATION

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. UST = underground storage tank.

NOTES:


General Direction of Groundwater Flow

74.50 —— Groundwater Elevation Contour

Groundwater Elevation (feet)

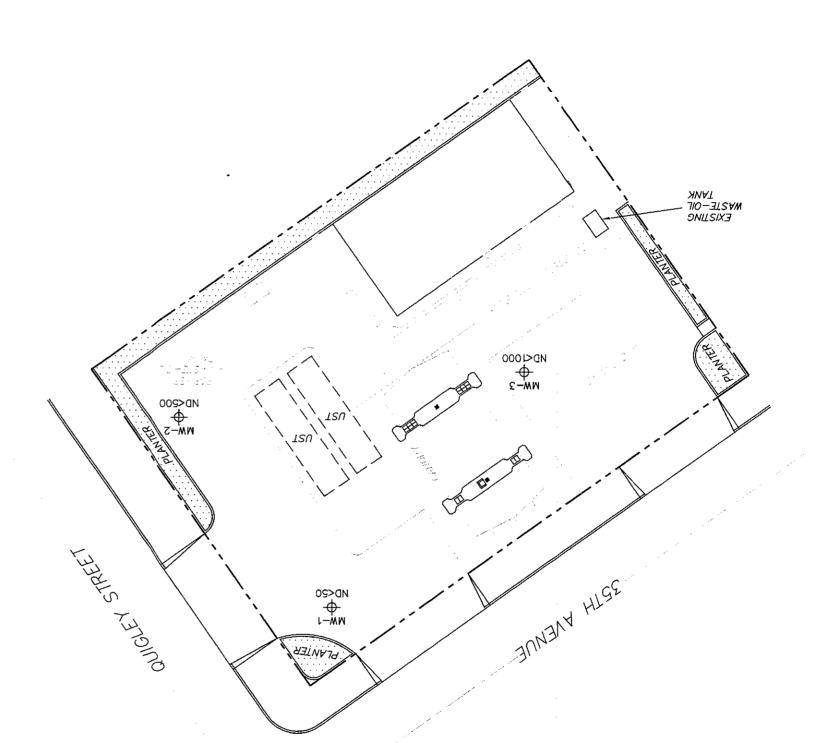
MW-3 & Monitoring Well with

FECEND

TRC FIGURE 3

76 Station 6129 3420 35th Avenue Oakland, California

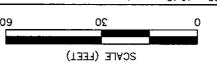
CONCENTRATION MAP DISSOLVED-PHASE TPPH July 27, 2005


TPPH = total purgeable petroleum hydrocarbons. $\mu g / l$ = micrograms per liter. MD = not defected at limit indicated on official laboratory report. UST = underground storage tank. Results obtained using EPA Method 8260B.

NOTES

MW-3 + Monitoring Well with Dissolved-Phase TPPH Concentration (µg/l)

CECEND


N

MW-3

JUNJUA HTZE

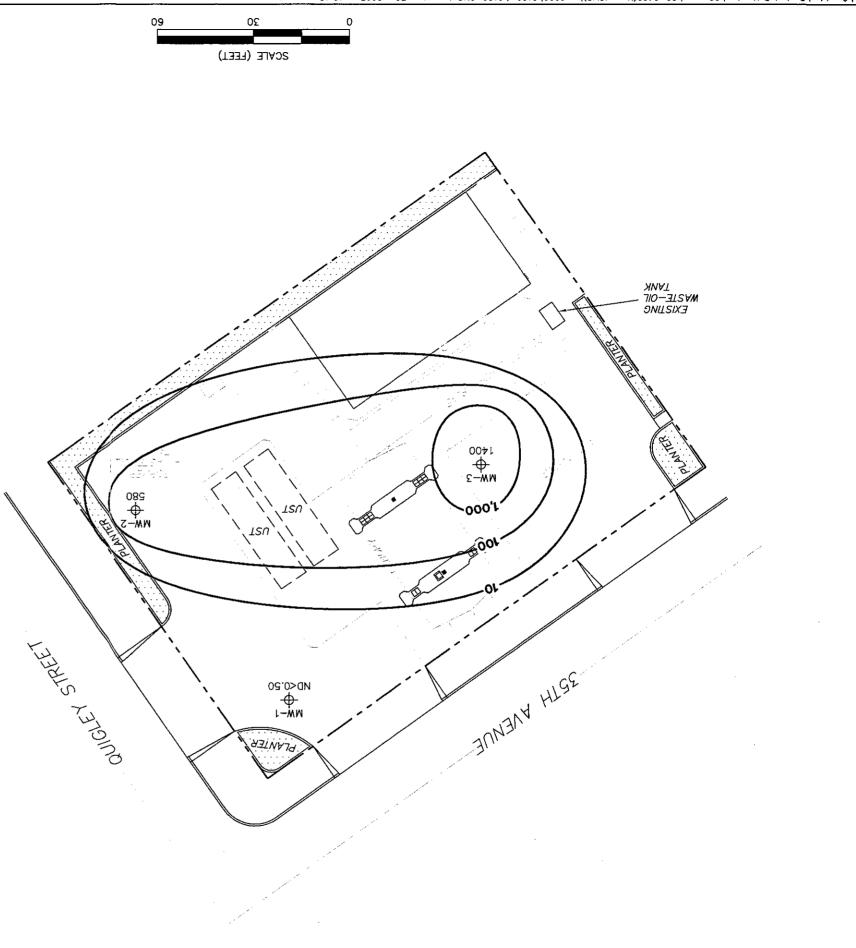
NASTE-OIL EXISTING

MW-1 ⊕ ND<0.50

PLANTER

TRC FIGURE 4

> Oakland, California 3420 35th Avenue


July 27, 2005 CONCENTRATION MAP

76 Station 6129

 $\mu g/l = micrograms$ per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank.

MW-3 + Monitoring Well with Dissolved-Phase Benzene Concentration (µg/l) **TECEND**

NOTES:

TRC

FIGURE 5

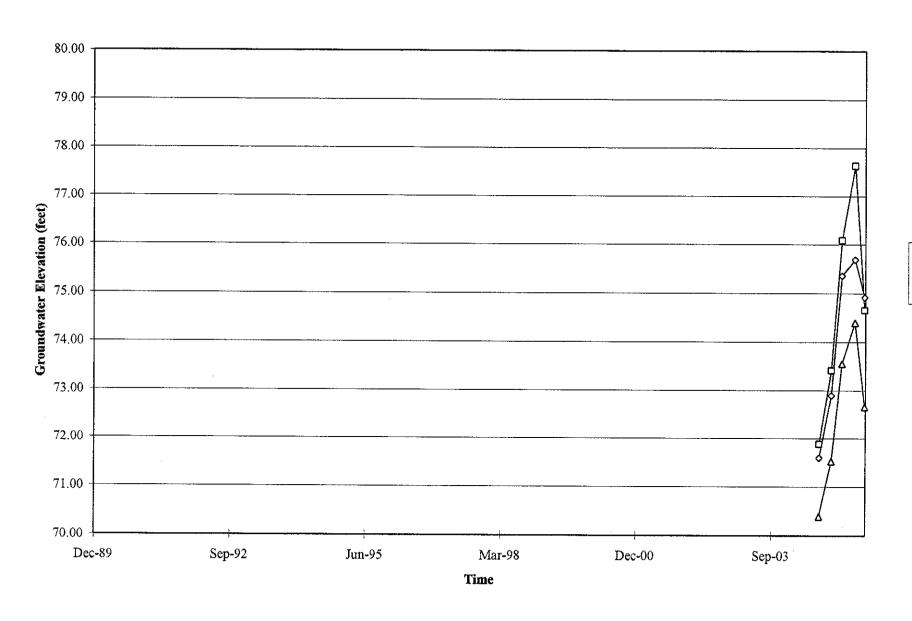
76 Station 6129 3420 35th Avenue Oakland, California

CONCENTRATION MAP LIGGOLVED-PHASE MTBE July 27, 2005

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methy tertiary buty ether. $\mu g/l = micrograms$ per liter. $\lambda MD = 0$ not detected at limit indicated on official laboratory report. $\lambda MD = 0$ underground storage official laboratory report. $\lambda MD = 0$ method 8260B.

NOTES

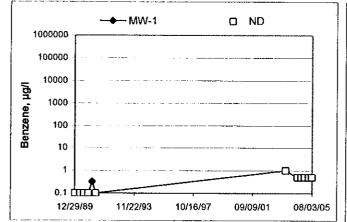
_000_Dissolved—Phase MTBE Contour (µg/l)

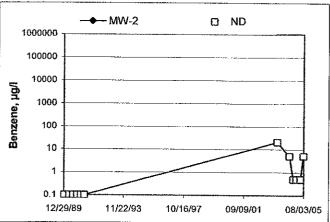

MW-3 + Monitoring Well with
Dissolved-Phase MTBE
Concentration (µg/I)

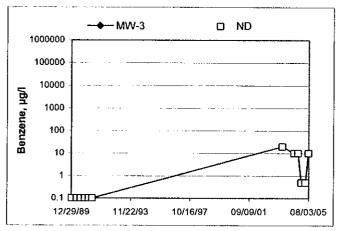
FECEND

N

GRAPHS

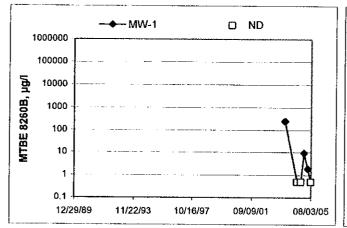

Groundwater Elevations vs. Time 76 Station 6129

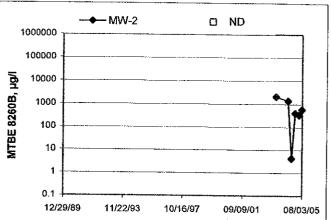


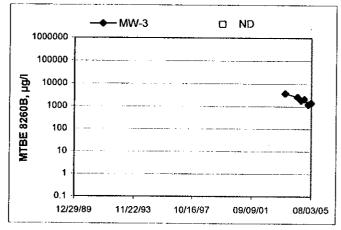

→ MW-1 - MW-2 - MW-3

Benzene Concentrations vs Time

76 Station 6129







MTBE 8260B Concentrations vs Time

76 Station 6129

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric of pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

Technician: Danie | Nick Job #/Task #: (105000) | FA20

Date: 7-27-05

Site # 629

11

Project Manager A. Collins

Page ____of __(

	Time			Depth	Depth	Product	Time	
Well#	Gauged	TOC	Total Depth	to Water	to Product	Thickness (feet)	Sampled	Misc. Well Notes
mw-1	0836		4344	27:33			1004	2"
mw-2	0845	~	44.18				0954	2"
mw-3	0852		13.18	27-35		<u> </u>	1020	2"
								<u> </u>
				,\$.				
	,							
							, , , , , , , , , , , , , , , , , , ,	
							,	
					,			
						<u> </u>	,	
								· · · · · · · · · · · · · · · · · · ·
							·	
			·					
FIELD DAT	COMPLE	TE	axiac		cgc	WE	LL BOX 96	NDITION SHEETS
	<u> </u>				· · · · · · · · · · · · · · · · · · ·			
NTT CERTIF	ICATE		MANIFES	T	DRUM INV	ENTORY	TRAF	FIO CONTROL
States of Estate								

GROUNDWATER SAMPLING FIELD NOTES

Technician: Daniel NICK Date: 7-27-65 Site: 6/29 Project No.: 410 5000) HB Well No .: MN-Purge Method: Depth to Water (feet): Depth to Product (feet): 43.44 LPH & Water Recovered (gallons): Total Depth (feet): Casing Diameter (Inches): Water Column (feet): 80% Recharge Depth (feet): 30.55 1 Well Volume (gallons):

Time	Time	Depth	Volume	Conduc-	Temperature			
Start	Stop	To Water	Purged	tivity		рН	Turbidity	D .O.
		(feet)	(gallons)	(uS/cm)	(F, ©)			
0902			3	606	20.	6.95		
<u> </u>			6	598	20.6	6.89		
	0949		9	594	20.4	7.02	·	
					1			
Stat	ic at Time Sa	mpled	T	otal Gallons Pu	urged		Time Sampl	
28		İ	7		1004			
omments:					٠,		•	
•				- · · · · · · · · · · · · · · · · · · ·				
					 			·····

Well No.: MW-2	Purge Method: HB
Depth to Water (feet): 27-51	Depth to Product (feet):
Total Depth (feet): 44.18	LPH & Water Recovered (gallons):
Water Column (feet): 16.67	Casing Diameter (Inches): 2"
80% Recharge Depth (feet): 30.84	1 Well Volume (gallons): 3

	27.99	<u> </u>	9	<u> </u>	0	9 54		
	atic at Time Sa	mpled	4	otal Gallons P	- -	<u></u>	Time Sampl	ed
· · · · · · · · · · · · · · · · · · ·	0946		9	575	19.9	683		. . .s
	·		6	591	19.9	6.89	4	
0930			3	503	19.8	7.10		
		(feet)	(gallons)	(uS/cm)	(F, ©)			
Time Start	Time Stop	Depth To Water	Volume Purged	Conduc- tivity	Temperature -	ρН	Turbidity	D.O.

GROUNDWATER SAMPLING FIELD NOTES

Technician: Daniel Nick Date: 7-27-05 6129 41050001 Project No.: Site:_ HB mw-3 Purge Method:_ Well No.: ____ 27.35 Depth to Product (feet): Depth to Water (feet): 43.18 LPH & Water Recovered (gallons): Total Depth (feet): Casing Diameter (Inches): Water Column (feet): 80% Recharge Depth (feet): 30.51 1 Well Volume (gallons):

Start	Stop .	Depth To Water (feet)	Purged (gallons)	tivity (uS/cm)	Temperature	рН	Turbidity	D .O.
0954			3	499	70.6	7.12		
<u> </u>			6	505	21.2	697		
	1015		9	514	20.3	7.17		
					į		<u> </u>	
					,			
Stati	ic at Time San	npled	To	otal Gallons Pu	irged		Time Samp	led
	2.00		9		1020			·
Comments:		·					·	
	<u></u>							

Well No.:	Purge Method:
Depth to Water (feet):	Depth to Product (feet):
Total Depth (feet):	LPH & Water Recovered (gallons):
Water Column (feet):	Casing Diameter (Inches):
80% Recharge Depth (feet):	1 Well Volume (gallons):

Time	Time	Depth	Volume	Conduc-	Temperature	oU	Turbidity	· D.O.
Start	Stop	To Water	Purged	tivity		ρН	Turbidity	0.0.
1.34	1.45	(feet)	(gallons)	(uS/cm)	(F,C)			
								÷
·								
Static at Time Sampled		Total Gallons Purged				Time Sampled		
			<u> </u>		,			
omments:								
ommenes.								

TRC Alton Geoscience-Irvine

August 15, 2005

21 Technology Drive Irvine, CA 92718

Attn.:

Anju Farfan

Project#: 41050001FA20

Project:

Conoco Phillips # 6129

Site:

3420 35th Ave., Oakland

Attached is our report for your samples received on 07/27/2005 16:45

This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after 09/10/2005 unless you have requested otherwise.

We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919.

You can also contact me via email. My email address is: dsharma@stl-inc.com

Sincerely,

Dimple Sharma **Project Manager**

thaema-

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Site: 3420 35th Ave., Oakland

Samples Reported

Sample Name	Date Sampled	- Matrix	Lab#
MW-1	07/27/2005 10:04	Water	1
MW-2	07/27/2005 09:54	Water	2
MW-3	07/27/2005 10:20	Water	3

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Site: 3420 35th Ave., Oakland

Prep(s): 5030B Test(s): 8260B Sample ID: MW-1 Lab ID: 2005-07-0742 - 1 Sampled: 07/27/2005 10:04 Extracted: 8/10/2005 14:56 8/10/2005 15:12 Matrix: Water QC Batch#: 2005/08/10-1A.65 2005/08/10-1B.64 pH: <2

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
GRO (C6-C12)	ND	50	ug/L	1.00	08/10/2005 14:56	
Benzene	ND	0.50	ug/L	1.00	08/10/2005 14:56	
Toluene	ND	0.50	ug/L	1.00	08/10/2005 14:56	
Ethylbenzene	ND	0.50	ug/L	1.00	08/10/2005 14:56	
Total xylenes	ND	1.0	ug/L	1.00	08/10/2005 14:56	
tert-Butyl alcohol (TBA)	ND	5.0	ug/L	1.00	08/10/2005 14:56	
Methyl tert-butyl ether (MTBE)	ND	0.50	ug/L	1.00	08/10/2005 14:56	
Di-isopropyl Ether (DIPE)	ND	0.50	ug/L	1.00	08/10/2005 15:12	
Ethyl tert-butyl ether (ETBE)	ND	0.50	ug/L	1.00	08/10/2005 14:56	
tert-Amyl methyl ether (TAME)	ND	0.50	ug/L	1.00	08/10/2005 14:56	
1,2-DCA	ND	0.50	ug/L	1.00	08/10/2005 14:56	
EDB	ND	0.50	ug/L	1.00	08/10/2005 14:56	
Ethanol	ND	50	ug/L	1.00	08/10/2005 14:56	
Surrogate(s)						
1,2-Dichloroethane-d4	102.0	73-130	%	1.00	08/10/2005 14:56	
1,2-Dichloroethane-d4	96.9	73-130	%	1.00	08/10/2005 15:12	
Toluene-d8	90.8	81-114	%	1.00	08/10/2005 15:12	i
Toluene-d8	93.2	81-114	%	1.00	08/10/2005 14:56	

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience- Irvine

Attn.: Anju Farfan

Matrix:

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Site: 3420 35th Ave., Oakland

Test(s): Prep(s): 5030B

Sample ID: MW-2

Water

Sampled: 07/27/2005 09:54

Lab ID:

8260B

2005-07-0742 - 2

Extracted:

8/10/2005 15:22

8/10/2005 20:48

QC Batch#: 2005/08/10-1A.65

2005/08/10-2A.68

Analysis Flag: L2, pH: <2 (See Legend and Note Section)

Compound	Conc.	RL.	Unit	Dilution	Analyzed	Flag
GRO (C6-C12)	ND	500	ug/L	10.00	08/10/2005 15:22	
Benzene	ND	5.0	ug/L	10.00	08/10/2005 15:22	
Toluene	ND	5.0	ug/L	10.00	08/10/2005 15:22	
Ethylbenzene	ND	5.0	ug/L	10.00	08/10/2005 15:22	
Total xylenes	ND	[10	ug/L	10.00	08/10/2005 15:22	
tert-Butyl alcohol (TBA)	140	50	ug/L	10.00	08/10/2005 15:22	
Methyl tert-butyl ether (MTBE)	580	5.0	ug/L	10.00	08/10/2005 15:22	
Di-isopropyl Ether (DIPE)	16	5.0	ug/L	10.00	08/10/2005 20:48	
Ethyl tert-butyl ether (ETBE)	ND	5.0	ug/L	10.00	08/10/2005 15:22	
tert-Amyl methyl ether (TAME)	ND	5.0	ug/L	10.00	08/10/2005 15:22	
1,2-DCA	ND	5.0	ug/L	10.00	08/10/2005 15:22	
EDB	ND	5.0	ug/L	10.00	08/10/2005 15:22	
Ethanol	ND	500	ug/L	10.00	08/10/2005 15:22	
Surrogate(s)		j				
1.2-Dichloroethane-d4	109.9	73-130	%	10.00	08/10/2005 15:22	
1,2-Dichloroethane-d4	107.8	73-130	%	10.00	08/10/2005 20:48	
Toluene-d8	98.3	81-114	%	10.00	08/10/2005 20:48	
Toluene-d8	95.7	81-114	%	10.00	08/10/2005 15:22	

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Site: 3420 35th Ave., Oakland

Prep(s): 5030B

Sample ID: MW-3

MVV-3

Sampled: 07/27/2005 10:20

Matrix: Wa

Water

Test(s): 8260B

Lab ID:

2005-07-0742 - 3

Extracted:

8/10/2005 15:49

8/

8/10/2005 16:02

QC Batch#: 2005/08/10-1A.65

2005/08/10-1A.65 2005/08/10-1B.64

pH: <2

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
GRO (C6-C12)	ND	1000	ug/L	20.00	08/10/2005 15:49	
Benzene	ND	10	ug/L	20.00	08/10/2005 15:49	
Toluene	ND	10	ug/L	20.00	08/10/2005 15:49	
Ethylbenzene	ND	10	ug/L	20.00	08/10/2005 15:49	
Total xylenes	ND	20	ug/L	20.00	08/10/2005 15:49	
tert-Butyl alcohol (TBA)	360	100	ug/L	20.00	08/10/2005 15:49	
Methyl tert-butyl ether (MTBE)	1400	10	ug/L	20.00	08/10/2005 15:49	
Di-isopropyl Ether (DIPE)	ND	10	ug/L	20.00	08/10/2005 16:02	
Ethyl tert-butyl ether (ETBE)	ND	10	ug/L	20.00	08/10/2005 15:49	
tert-Amyl methyl ether (TAME)	ND	10	ug/L	20.00	08/10/2005 15:49	
1,2-DCA	ND .	10	ug/L	20.00	08/10/2005 15:49	
EDB	ND	10	ug/L	20.00	08/10/2005 15:49	
Ethanol	ND	1000	ug/L	20.00	08/10/2005 15:49	
Surrogate(s)		1				
1,2-Dichloroethane-d4	104.9	73-130	%	20.00	08/10/2005 16:02	
1,2-Dichloroethane-d4	103.4	73-130	%	20.00	08/10/2005 15:49	
Toluene-d8	97.2	81-114	%	20.00	08/10/2005 15:49	
Toluene-d8	92.7	81-114	%	20.00	08/10/2005 16:02	

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Batch QC Report	
BUILDING CONTROL OF THE CONTROL OF T	
Prep(s): 5030B	
Method Blank Water QC Batch # 2005/08/10-1A.65	
MB: 2005/08/10-1A.65-043	
	1

Compound	Conc.	RL	Unit	Analyzed	Flag
GRO (C6-C12)	ND	50	ug/L	08/10/2005 09:43	
Benzene	ND	0.5	ug/L	08/10/2005 09:43	
Toluene	ND	0.5	ug/L	08/10/2005 09:43	
Ethylbenzene	ND	0.5	ug/L	08/10/2005 09:43	
Total xylenes	ND	1.0	ug/L	08/10/2005 09:43	
tert-Butyl alcohol (TBA)	ND	5.0	ug/L	08/10/2005 09:43	
Methyl tert-butyl ether (MTBE)	ND	0.5	ug/L	08/10/2005 09:43	
Di-isopropyl Ether (DIPE)	ND	0.5	ug/L	08/10/2005 09:43	
Ethyl tert-butyl ether (ETBE)	ND	0.5	ug/L	08/10/2005 09:43	
tert-Amyl methyl ether (TAME)	ND	0.5	ug/L	08/10/2005 09:43	
1.2-DCA	ND	0.5	ug/L	08/10/2005 09:43	
EDB	ND	0.5	ug/L	08/10/2005 09:43	
Ethanol	ND	50	ug/L	08/10/2005 09:43	
Surrogates(s)				00/40/0005 00/40	
1,2-Dichloroethane-d4	100.8	73-130	%	08/10/2005 09:43	
Toluene-d8	94.8	81-114	%	08/10/2005 09:43	<u> </u>

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

		Batch QC Re	oort	
Prep(s): 5030)B			Test(s): 8260B
Method Blan		Water	QC	Batch # 2005/08/10-1B.64
MB: 2005/08/	I0-1B.64-013		i garatari garatari garatar	xtracted: 08/10/2005 09:13
				Attacled, 00/10/2005 09.15

Compound	Conc.	RL	Unit	Analyzed	Flag
GRO (C6-C12)	ND	50	ug/L	08/10/2005 09:13	<u> </u>
tert-Butyl alcohol (TBA)	ND	5.0	ug/L	08/10/2005 09:13	
Methyl tert-butyl ether (MTBE)	ND	0.5	ug/L	08/10/2005 09:13	
Di-isopropyl Ether (DIPE)	ND	0.5	ug/L	08/10/2005 09:13	
Ethyl tert-butyl ether (ETBE)	ND	0.5	ug/L	08/10/2005 09:13	
tert-Amyl methyl ether (TAME)	ND	0.5	ug/L	08/10/2005 09:13	
1,2-DCA	ND	0.5	ug/L	08/10/2005 09:13	
EDB	ND	0.5	ug/L	08/10/2005 09:13	
Benzene	ND	0.5	ug/L	08/10/2005 09:13	
Toluene	ND	0.5	ug/L	08/10/2005 09:13	
Ethylbenzene	ND	0.5	ug/L	08/10/2005 09:13	
Total xylenes	ND	1.0	ug/L	08/10/2005 09:13	
Ethanol	ND	50	ug/L	08/10/2005 09:13	
Surrogates(s)	1				
1,2-Dichioroethane-d4	91.8	73-130	%	08/10/2005 09:13	
Toluene-d8	91.0	81-114	\ %	08/10/2005 09:13	

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Batch QC Report
AND THE PROPERTY OF THE PROPER
Test(s): 8260B
Water QC Batch # 2005/08/10-2A:08
Method Blank Water US Batch # 2003/06/10-24/96
NR. 2005/09/10 24 68-017
MB: 2005/08/10-2A.68-017

Compound	Conc.	RL	Unit	Analyzed	Flag
GRO (C6-C12)	ND	50	ug/L	08/10/2005 20:17	
Methyl tert-butyl ether (MTBE)	ND	0.5	ug/L	08/10/2005 20:17	
Di-isopropyl Ether (DIPE)	ND	0.5	ug/L	08/10/2005 20:17	
Ethyl tert-butyl ether (ETBE)	ND	0.5	ug/L	08/10/2005 20:17	
1.2-DCA	ND	0.5	ug/L	08/10/2005 20:17	
EDB	ND	0.5	ug/L	08/10/2005 20:17	
Benzene	ND	0.5	ug/L	08/10/2005 20:17	
Toluene	ND	0.5	ug/L	08/10/2005 20:17	
Ethylbenzene	ND	0.5	ug/L	08/10/2005 20:17	
Total xylenes	ND	1.0	ug/L	08/10/2005 20:17	
Surrogates(s)			١,,,	00/40/2005 20:17	
1,2-Dichloroethane-d4	98.4	73-130	%	08/10/2005 20:17	
Toluene-d8	105.0	81-114	%	08/10/2005 20:17	

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Site: 3420 35th Ave., Oakland

		Batch QC Report	
Prep(s): 5030B			Test(s): 8260B
Laboratory Conf LCS 2005/0	18/10-1A.65-011	Water Extracted: 08/10/	# 2005/08/10-1A.65 I: 08/10/2005 08:11
LCSD	The state of the s		

Compound	Conc. ug/L		Exp.Conc.	Recovery %		RPD	Ctrl.Limits %		Flags	
·	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Methyl tert-butyl ether (MTBE) Benzene Toluene	23.2 26.0 26.9		25 25 25	92.8 104.0 107.6			65-165 69-129 70-130			
Surrogates(s) 1,2-Dichloroethane-d4 Toluene-d8	454 488		500 500	90.8 97.6			73-130 81-114			

A part of Severn Trent Pic

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

	Batch QC Report	
Prep(s): 5030B		Test(s); 8260B
Laboratory Control Spike	Water was a second	QC Batch # 2005/08/10-1B.64
LCS 2005/08/10-18.64-049	Extracted: 08/10/2005	Analyzed: 08/10/2005 08:49
LCSD		

Compound	Conc.	ug/L	Exp,Conc.	Recov	ery %	RPD	Ctrl.Lin	nits %	Fla	ıgs
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Methyl tert-butyl ether (MTBE) Benzene Toluene	19.7 22.6 22.8		25 25 25	78.8 90.4 91.2			65-165 69-129 70-130	20 20 20		
Surrogates(s) 1,2-Dichloroethane-d4 Toluene-d8	411 446		500 500	82,2 89.2			73-130 81-114	i i		

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Batch QC R	eport
Prep(s): 5030B	Test(s): 8260B
Laboratory Control Spike Wate	
LCS 2005/08/10-2A.68-051 Extracted:	08/10/2005 Analyzed: 08/10/2005 19:51

Compound	Conc.	ug/L	Exp.Conc.		Recovery %		Ctrl.Limits %		Flags	
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Methyl tert-butyl ether (MTBE) Benzene Toluene	30.3 27.0 25.3		25 25 25	121.2 108.0 101.2			65-165 69-129 70-130	20 20 20		
Surrogates(s) 1,2-Dichloroethane-d4 Toluene-d8	420 509		500 500	84.0 101.8			73-130 81-114			

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

	Batch QC Report		
Prep(s): 5030B			Test(s): 8260B
Matrix Spike (MS / MSD)	Water	QC Bato	h # 2005/08/10-1A.65
MS/MSD.		Lab ID:	2005-08-0101 - 006
MS: 2005/08/10-1A.65-001	Extracted; 08/10/2005	Analyzed:	08/10/2005 11:01
MSD: 2005/08/10-1A 65-027	Extracted: 08/10/2005	Dilution:	1.00
	EXTRACTED. 00/10/2003	Analyzed; Dilution:	08/10/2005 11:27 1.00

Compound	Conc.		ıg/L	Spk.Leve	F	Recovery	%	Limit	s %	Flags		
·	MS	MSD	Sample	ug/L	мѕ	MSD	RPD	Rec.	RPD	MS	MSD	
Methyl tert-butyl ether	19.9	23.7	ND	25	79.6	94.8	17.4	65-165	20			
Benzene	21.4	23.4	ND	25	85.6	93.6	8.9	69-129	20			
Toluene	23.6	24.3	ND	25	94.4	97.2	2.9	70-130	20			
Surrogate(s)		1										
1,2-Dichloroethane-d4	473	503		500	94.6	100.6	1	73-130				
Toluene-d8	490	487		500	98.0	97.4		81-114				

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

	Batch QC Report		
Prep(s): 5030B			Test(s): 8260B
Matrix Spike (MS / MSD)	Water	QC Bate	h # 2005/08/10-1B.64.
MS/MSD		Lab ID:	2005-08-0101 - 003
MS: 2005/08/10-1B.64-055	Extracted: 08/10/2005	Analyzed: Dilution:	08/10/2005 11:55 1.00
MSD: 2005/08/10-1B.64-019	Extracted: 08/10/2005	Analyzed: Dilution;	08/10/2005 12:19 1.00

	Conc.		ıg/L	Spk.Leve	R	ecovery	%	Limit	s %	Flags		
Compound		MSD	Sample	ug/L	мѕ	MSD	RPD	Rec.	RPD	MS	MSD	
Methyl tert-butyl ether Benzene Toluene	25.9 30.0 26.8	21.3 23.7 24.0	ND ND ND	25 25 25	103.6 120.0 107.2	85.2 94.8 96.0	19.5 23.5 11.0	65-165 69-129 70-130	20 20 20		R4	
Surrogate(s) 1,2-Dichloroethane-d4 Toluene-d8	505 439	505 464		500 500	101.0 87.7	101.1 92.8		73-130 81-114				

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

	Batch QC Report		
Prep(s): 5030B			Test(s): 8260B
Matrix Spike (MS / MSD)	Water	QC Bato	:h # 2005/08/10-2A.68
MW-2 >> MS		Lab ID:	2005-07-0742 - 002
MS: 2005/08/10-2A.68-013	Extracted: 08/10/2005	Analyzed;	08/10/2005 21:13
MSD: 2005/08/10-2A.68-039	Extracted: 08/10/2005	Dilution: Analyzed:	10.00 08/10/2005 21:39
		Dilution	10.00

Compound	Conc.	(ug/L		R	ecovery	%	Limit	s %	Flags		
	MS	MSD	Sample	ug/L	мѕ	MSD	RPD	Rec.	RPD	MS	MSD	
Methyl tert-butyl ether Benzene Toluene	712 270 246	732 256 231	531 ND ND	250 250 250	72.4 108.0 98.4	80.4 102,4 92.4	10.5 5.3 6.3	65-165 69-129 70-130	20 20 20			
Surrogate(s) 1,2-Dichloroethane-d4 Toluene-d8	416 520	422 479		500 500	83.2 104.0	84.3 95.7	:	73-130 81-114				

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience-Irvine

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips # 6129

Received: 07/27/2005 16:45

Site: 3420 35th Ave., Oakland

Legend and Notes

Analysis Flag

L2

Reporting limits were raised due to high level of analyte present in the sample.

Result Flag

R4

RPD exceeded method control limit; % recoveries within limits.

STL-San Francisco

ConocoPhillips Chain Of Custody Record

111369

1220 Quarry Lane

Pleasanton, CA 94566

(925) 484-1919 (925) 484-1096 fax

ConocoPhillips Site Manager:
INVOICE REMITTANCE ADDRESS:
CONOCOPHILLIPS
Attn: Dee Hutchinson
Attn: Dee Hutchinson
Attn: South Harbor, Suite 200
Sata Ana, CA. 92704

ConocoPhillips Work Order Number

45837RC501

ConocoPhillips Cost Object

DATE: 7-27-03

TRC	Valid Value IP:				CUNDOGRALLIPS SITE NUMBER 6129 ETE ADDRESS (2004 and Cap)									TO600101465										
21 Technology Drive, trvine CA 92618 PROJECT CONTACT (Harteneys or PCF, Properties):				۔ ا	3120 35TH Are. Oakla-d								Thomas Kosel											
Anju Farfan TCCCTHONE: FAX: 949-341-7440 \$49-753-0111	e wait: afarfar		olutions.	com	1	Peter Thomson, TRC 949-341-7408 pthomson@trosolutions.com								LAB USE CALLY										
SAMPLER HAMELET I FRINCE MICK	CONSULT	1	CTHUMBER 101/FA20	l										f	REQUE	STE) AN	ALY	sEs					
SPECIAL INSTRUCTIONS OR NOTES. First Point name only required if different from Lie Sample Jennification/Field Point Lie Jennification Lie Jennif	HECKBO I Sample SAMI	X FECO	S NEEDED		6015m - TPHd Extractable	BZ60B - TPHQ/BTEX/MBE	8250B . TFHg / BTEX / 8 Oxygenales	6260B - TPHg / BTEX / 8 byxgerates	82508 - Full Scan VOCs (does not include oxygenates)	(270C - Semi-Voluties	BO15M / BOZ1B - TPHy/BTEX/M(BE	Lead Drotal DSTLC DTCLP	TFPH	2,22	80xy 5 hy 82608									FIELD NOTES: Container/Preservative or PTD Readings or Laboratory Notes
W\w-L		1064	Gw	3	T								*	4	+				İ					3YEAS WITHCL
mw-2		1954																						A construction of the Cons
5 m m v - 3	<u> </u>	1020	V	Y									4	U	V									V
							ļ								cartir cons					21 (P.) 24 (C.)				
																310	j. ir	8-210						
	19 ⁻² Av., 1		Avail (a).								100	48.5			OS SIN		jeć:			Merit Philosoph				
		Sulfat Diago	. Narijsk							.	20								*****		2.9			
				i içindir.						().				- 40	len di		g de es							
THE CONTROL OF THE CO											l periodir								N.		(), 15 (), 15			The second secon
Particular Communication Commu	L		Electricas D		L	L	l side	0256		ZeA)					e for the Local Gibbs	1	3-06				in in Rojeki		ered ∫ More	
Sail Christophy			Received to	44		tos tos	Æ.	ر درو	ر در	e dia Più								7-3 72	7 2	7/	グ		les Jes	///o
1000 Sept. 100 S	(46 miles 7 - 7 6	64 G	College College College		76		4	3//	4	6							Ž	2		/				

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R -149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid -phase hydrocarbons was accumulated separately in drums for transportation and disposal by Filter Recycling, Inc.

Limitations

The fluid level monitoring and groundwater sampli ng activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed condit ions. If actual conditions differ from those described in this report, our office should be notified.