LOV 47

August 5, 1999

SO NOS -6 PH 3: 00

QUARTERLY GROUNDWATER MONITORING REPORT JULY 20, 1999 GROUNDWATER SAMPLING ASE JOB NO. 3389

a t

Lerer Brothers Transmission 6340 Christie Ave. Emeryville, CA 94608

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1 Lerer Brothers Transmission 6340 Christie Ave. Emeryville, CA 94608

Responsible Party
Rick Gold
P.O. Box 117820
Burlingame, CA 94011-7820

Environmental Consulting Firm
Aqua Science Engineers, Inc. (ASE)
208 W. El Pintado
Danville, CA 94583
Contact: Robert Kitay, Senior Geologist
(925) 820-9391

Agency Review
Alameda County Health Care Services
1131 Harbor Bay Pkwy., Suite 250
Alameda, CA 94502
Contact: Ms. Susan Hugo
(510) 567-6700

California Regional Water Quality Control Board (RWQCB) San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, CA 94612 Contact: Mr. Chuck Headlee (510) 622-2433

The following is a report detailing the results of the July 20, 1999 quarterly groundwater sampling at the above-referenced site. This sampling was conducted as required by the RWQCB. ASE has prepared this report on behalf of Mr. Rick Gold, owner of the property.

- 1 -

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On July 20, 1999, ASE environmental scientist Ian Reed measured the depth to water in each site groundwater monitoring well using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. There was no free-floating product or sheen present in any well. Groundwater elevation data is presented as Table One.

TABLE ONE
Groundwater Elevation Data

Well I.D.	Date of Measurement	Top of Casing Elevation (relative to project datum)	Depth to Water (feet)	Groundwater Elevation (project data)
MW-1	1-28-99 3-29-99 7-20-99	10.00	4.85 4.85 5.08	5.15 5.15 4.92
MW-2	1-28-99 3-29-99 7-20-99	9.96	4.17 3.89 4.30	5.79 6.07 5.66
MW-3	1-28-99 3-29-99 7-20-99	9.25	4.23 4.41 3.86	5.02 4.84 5.39

A groundwater potentiometric surface map is presented as Figure 2. The groundwater flow direction is to the southeast with a gradient of approximately 0.014-feet/foot. This groundwater flow direction is not consistent with the expected flow direction to the west.

3.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Prior to sampling, each monitoring well was purged of four well casing volumes of groundwater using a dedicated bailer. Slight petroleum hydrocarbon odors were present during the purging and sampling of the groundwater monitoring wells. The parameters pH, temperature and conductivity were monitored during the well purging. Samples were not collected until these parameters stabilized. Groundwater samples were collected from each well using dedicated polyethylene bailers. The samples were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid. The samples were capped without headspace, labeled and placed in coolers with wet ice for transport to Chromalab, Inc. of Pleasanton, California (ELAP 1094) under appropriate chain-of-custody documentation. Well sampling field logs are presented in Appendix A.

The groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) by EPA Method 5030/8015M, benzene, toluene, ethylbenzene and total xylenes (collectively known as BTEX) by EPA Method 8020 and methyl tertiary butyl ether (MTBE) by EPA Method 8020. The analytical results for this sampling period are presented in Table Two. The certified analytical report and chain-of-custody documentation are included as Appendix B.

Lerer Brothers Transmission - July 1999 Groundwater Sampling

TABLE TWO
Certified Analytical Results of GROUNDWATER Samples
All results are in parts per billion

Well ID & Dates Sampled	TPH-G	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Lead
N 4337 1						•	
<u>MW-1</u>	700	22	0.0	• •			
1-28-99	730	22	3.3	24	61	< 5.0	< 5.0
3-29-99	950	37	5.7	27	60	< 5.0	
7-20-99	970	4 0	5.4	67	120	< 5.0	
<u>MW-2</u>							
1-28-99	710	20	180	14	67	< 5.0	< 5.0
3-29-99	500	8.6	44	4.3	25	< 5.0	
7-20-99	510	8.4	4 4	6.0	3 1	< 5.0	
<u>MW-3</u>							
1-28-99	< 50*	< 0.5	< 0.5	< 0.5	0.69	< 5.0	< 5.0
3-29-99	130	1.9	8.2	1.4	7.1	< 5.0	
7-20-99	170	< 0.5	1.9	< 0.5	0.89	< 5.0	
DHS MCL	NE :		150	7.00	# 1 ,7 50 - 36		15
EPA METHOD	5030/ 8015M	8020	8020	8020	8020	8020	6010

Notes:

NE = DHS MCL not established

DHS MCL = California Department of Health Services maximum contaminant level for drinking water.

Non-detectable concentrations noted by the less than sign (<) followed by the laboratory detection limit.

4.0 CONCLUSIONS

The groundwater flow direction beneath this site is to the southeast at a gradient of 0.014 feet/foot. This groundwater flow direction is generally consistent with previous flow directions to the south but is not consistent with the expected flow direction to the west. Hydrocarbon concentrations detected in groundwater samples collected from all three monitoring wells are similar to previous results. Benzene concentrations in groundwater samples collected from monitoring wells MW-1 and MW-2 exceeded the California Department of Health Services (DHS) maximum contaminant

^{* =} Hydrocarbons uncharacteristic of gasoline detected in the gasoline range at 68 ppb. -- = Not analyzed

level (MCL) for drinking water. MTBE has not been detected in any groundwater sample collected in the past three quarters.

5.0 RECOMMENDATIONS

ASE recommends continued monitoring of the site on a quarterly basis. The next scheduled event is October1999.

6.0 REPORT LIMITATIONS

The results presented in this report represent the conditions at the time of the groundwater sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services to Lerer Brother Transmission Service, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Ian Reed

Environmental Scientist

Robert E. Kitay, R.G., R.E.A.

Senior Geologist

Roll E. Kitas

Attachments: Figures 1 and 2

Appendices A and B

cc: Ms. Susan Hugo, Alameda County Health Care Services Agency

Mr. Chuck Headlee, RWQCB, San Francisco Bay Region

FIGURES

SITE LOCATION MAP

6340 Christie Avenue Emeryville, California

Aqua Science Engineers

Figure 1

APPENDIX A

Well Sampling Field Logs

WELL SAMPLING FIELD LOG

Project Name and Addre	iss: Le	her		
Job #:	Date		7-70-	99
Well Name: MW-/	Samp	lad by	, 1 manual 1	
Total depth of well (feet)	17-66	Well die	motor (inches)	~ A
Debut to water before 25	ampling (feef).	C 40		
Thickness of floating pro	duct if any:		·	
Depth of well casing in	water (feet):	72,58	·	
multiper of gallons per w	ell casing volun	ne (gallone).	2	
Number of well casing v	olumes to be re	emoved:	4	
Req'd volume of groundy	vater to be nuro	ed before co.	malina (11)	0
redarbinetic naga to Dillag	the well:	المسلمين المرام	1	
rune Evacuation Degan;	12.aD	Time Evacua	otion Finial 1	
PP- On Millio OI	PIUDHOWARE THE	.ueu.	4	
Did the well go dry?:	∧10	After how m	<u> </u>	
Time samples were colle	cted: 12	7.5	ramy gamons:	
Depth to water at time of	f sampling:	17 71		
Percent recovery at time	of sampling.	00:1		
Samples collected with:	dadi.	(cd 1 1 - 1		
Sample color:	<u> </u>	Odon	<u></u>	
Date of sampling: 7-20-99				
Total depth of well (feet): 17.64 Well diameter (inches): 2 Depth to water before sampling (feet): 5.08 Thickness of floating product if any: Depth of well casing in water (feet): 12.58 Number of gallons per well casing volume (gallons): 2 Number of well casing volumes to be removed: 4 Req'd volume of groundwater to be purged before sampling (gallons) Equipment used to purge the well: dedicated dedicate				
CHEMICAL DATA	·			
Volume Purged Te	mp nH	O- 1 .		
2	7.9			
5				
4	<u></u>	(6.7	<i>L</i>	
<u> </u>	<u> </u>			
			~ ~~~	
SAMPLES COLLECTED				
Sample # of containers Volume	NO 8			
$M\omega$ -1 3 $\frac{\omega}{4}$	UMI VOH!	Pres leed?	Analysis	
		nev V		
				<u> </u>

WELL SAMPLING FIELD LOG

Project Name and Address:	Leher
Job #:	Date of sampling: 7-20-99 Sampled by: 1772
Well Name: Mr-2	Sampled by: 1772
Total deput of well freely	10.90 Well dismotor Court 1
Deput to water defore sample	ing (feet). 4.5
Thickness of floating product	if any:
Depth of well casing in water	if any:
runner of gallons bel well	Casing Volume (gallone). 7 H
realition of well casing volum	nes to be removed.
red a volume of groundwater	to be purged before sampling (gallong). Θ (
- EGUIDIIGH - HSEO - 10 - HHTTP - Tha	wall distinct
Time Evacuation Began: 12	Time Evacuation Finish 1
Tropiosimate volume of graf	INAWaler burged: 10
Did the well go dry?: No	After how many gallons:
Time samples were collected	1.2.55
	11111111111111111111111111111111111111
Percent recovery at time of	sampling:
Samples collected with:	sampling:
Sample color:gray	Odor: Classe 81
Description of sediment in sa	ample:
CHEMICAL DATA	
Volume Purged Temp	pH Conductivity
2 2 3 68.4	5.78 - 760
71.2	5.81 765
3 68.4	5.80 762
SAMPLES COLLECTED	
Sample # of containers Volume & Mu-2 3 610 MI	VIAS HCL Analysis

WELL SAMPLING FIELD LOG

Project Name and Address: Leher Job #: Date of sampling:
Job #: Date of sampling:/
Well Name: Mu-5 Sampled by: ITZ.
Total depth of well (feet): 14 to Well diameter (inches): 25th
Depth to water before sampling (feet): 386
Thickness of floating product if any:
Depth of well casing in water (feet): 10.9
Number of gallons per well casing volume (gallons): 1.85
Number of well casing volumes to be removed: 4
Req'd volume of groundwater to be purged before sampling (gallons): 7.4
Equipment used to purge the well: dedicated bitter
Time Evacuation Began: 1300 Time Evacuation Finished: 1326
Approximate volume of groundwater purged:
Did the well go dry?: NO After how many gallons: - Time samples were collected: 1330 Depth to water at time of sampling: 14.80
Time samples were collected: 1330
Depth to water at time of sampling: 14.80
Percent recovery at time of sampling:
Samples collected with: dedicated Sailer
Sample color: gray Odor: Slight
Description of sediment in sample:
CHEMICAL DATA Volume Purged Temp pH Conductivity
1
2 5.76 760 14.80
2 68.8 5.76 740 14.80 3 69.4 5.97 790
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 (67.8 71.6(?) 5.87 810 14.80
Sample # of containers Volume & type container Pies Iced? Analysis
Sample # of containers Volume & type container Pies Iced? Analysis

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation Environmental Services (SDB)

Date: July 29, 1999

Aqua Science Engineers, Inc. 208 West El Pintado Road Danville, CA 94526

Attn.: Mr. lan T. Reed

Project: 3389

Lerer

Site: 634

6340 Christie Ave

Dear Mr. Reed,

Attached is our report for your samples received on Wednesday July 21, 1999. This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after August 20, 1999 unless you have requested otherwise. We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919.

Sincerely,

Pierre Monette

Environmental Services (SDB)

Submission #: 1999-07-0340

Gas/BTEX and MTBE

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville

CA 94526

Attn: Ian T. Reed

Phone. (925) 820-9391 Fax: (925) 837-4853

Project #: 3389

Project: Lerer

Site:

6340 Christie Ave

Samples Reported

Sample ID	Matrix	Date Sampled	Lab #
MW-1	Water	07/20/1999 12:55	1
MW-2	Water	07/20/1999 12:25	2
MW-3	Water	07/20/1999 13:30	3

1220 Quarry Lane * Pleasanton, CA 94566-4756 Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Submission #: 1999-07-0340

Environmental Services (SDB)

ĩo. Aqua Science Engineers, Inc. Test Method:

8020

8015M

Attn., Ian T Reed

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID.

MW-1

Lab Sample ID: 1999-07-0340-001

Project.

3389

Received.

07/21/1999 17:50

Lerer

Site

6340 Christie Ave

Extracted:

07/23/1999 10:42

Sampled:

07/20/1999 12:55

QC-Batch:

1999/07/23-01.01

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	970	50	ug/L	1.00	07/23/1999 10:42	
Benzene	40	0.50	ug/L	1 00	07/23/1999 10:42	
Toluene	2 a	0.50	ug/L	1.00	07/23/1999 10:42	
Ethyl benzene	67	0 50	ug/L	1.00	07/23/1999 10.42	
Xylene(s)	120	0.50	ug/L	1.00	07/23/1999 10:42	
MTBE	ND	5.0	ug/L	1.00	07/23/1999 10:42	
Surrogate(s)						
Trifluorotoluene	95.1	58-124	%	1 00	07/23/1999 10:42	
4-Bromofluoropenzene-FID	115.5	50-150	%	1.00	07/23/1999 10:42	

Submission #: 1999-07-0340

Environmental Services (SDB)

Ξo. Aqua Science Engineers, Inc. Test Method:

8020 8015M

Attn. lan T Reed

Prep Method

5030

Gas:BTEX and MTBE

Sample ID:

MW-2

Lab Sample ID: 1999-07-0340-002

Project:

3389 Lerer Received.

07/21/1999 17 50

Site:

6340 Christie Ave

Extracted:

07/26/1999 10 55

Sampled:

07/20/1999 12:25

Matrix:

Water

QC-Batch:

1999/07/26-01.01

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	510	50	ug/L	1.00	07/26/1999 10:55	
Benzene	8.4	0.50	ug/L	1.00	07/26/1999 10.55	
Toluene	44	0 50	ug/L	1.00	07/26/1999 10:55	
Ethyl benzene	6.0	0 50	ug/L	1.00	07/26/1999 10:55	
Xylene(s)	31	0 50	ug/L	1.00	07/26/1999 10:55	
MTBE	ND	5 0	ug/L	1.00	07/26/1999 10:55	
Surrogate(s)						
Trifluorotoiuene	74.1	58-124	%	1.00	07/26/1999 10:55	
4-Bromofluorobenzene-FID	86.5	50-150	%	1.00	07/26/1999 10:55	

Aqua Science Engineers, Inc.

Environmental Services (SDB)

Test Method:

8020

8015M

Submission #: 1999-07-0340

Attn., Ian T. Reed

To:

Prep Method:

: 5030

Gas/BTEX and MTBE

Sample ID:

MW-3

LED Campi

Lab Sample ID: 1999-07-0340-003

Project:

3389

Received:

07/21/1999 17 50

Ojcot.

Lerer

Site:

6340 Christie Ave

Extracted:

07/23/1999 11 35

Sampled:

07/20/1999 13:30

QC-Batch:

1999/07/23-01 01

Matrix:

Water

Compound	Result	Rep Limit	Units	Dilution	Analyzed	Flag
Gasoline	170	50	ug/L	1.00	07/23/1999 11 35	
Benzene	ND	0.50	ug/L	1.00	07/23/1999 11 35	
Toluene	19	0 50	ug/L	1.00	07/23/1999 11:35	
Ethyl benzene	ND	0 50	ug/L	1.00	07/23/1999 11:35	
Xylene(s)	0.89	0 50	ug/L	1.00	07/23/1999 11.35	
MTBE	ND	5 0	ug/L	1.00	07/23/1999 11.35	
Surrogate(s)						
Trifluorotoluene	79.3	58-124	%	1.00	07/23/1999 11 35	
4-Bromofluorobenzene-FID	79.5	50-150	%	1.00	07/23/1999 11:35	

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Test Method

8020

8015M

Attn.: Ian T Reed

To:

Prep Method:

5030

Batch QC Report Gas/BTEX and MTBE

Method Blank

Water

QC Batch # 1999/07/23-01.01

Submission #: 1999-07-0340

MB:

1999/07/23-01.01-001

Date Extracted: 07/23/1999 06:31

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Gasoline	ND	50	ug/L	07/23/1999 06.31	
Benzene	ND	0.5	ug/L	07/23/1999 06 31	
Toluene	ND	0.5	ug/L	07/23/1999 06.31	
Ethyl benzene	ND	0.5	ug/L	07/23/1999 06 31	
Xylene(s)	ND	0.5 -	ug/L	07/23/1999 06.31	
MTBE	ND	5 0	ug/L	07/23/1999 06.31	
Surrogate(s)					
Trifluorotoluene	73 6	58-124	%	07/23 1999 06 31	
4-Bromofluorobenzene-FiD	64 8	50-150	%	07/23/1999 06 31	

Submission #: 1999-07-0340

Environmental Services (SDB)

To. Aqua Science Engineers, Inc.

Test Method:

8020 8015M

Attn.: Jan T Reed

Prep Method

5030

Batch QC Report Gas/BTEX and MTBE

Method Blank

Water

QC Batch # 1999/07/26-01.01

MB:

1999/07/26-01.01-001

Date Extracted: 07/26/1999 06.33

Compound	Result	Rep.Limit	Units	Analyzed	Flag	
Gasoline	ND	50	ug/L	07/26/1999 06:33		
Benzene	ND	0.5	ug/L	07/26/1999 06:33		
Toluene	ND	0.5	ug/L	07/26/1999 06:33		
Ethyl benzene	ND	0.5	ug/L	07/26/1999 06:33		
Xylene(s)	ND	0.5	ug/L	07/26/1999 06.33		
MTBE	ND	5.0	ug/L	07/26/1999 06 [.] 33		
Surrogate(s)						
Trifluorotoluene	81.0	58-124	%	07/26/1999 06 33		
4-Bromofluoropenzene-FID	76.4	50-150	%	07/26/1999 06.33		
				_		

Aqua Science Engineers, Inc.

Environmental Services (SDB)

Test Method:

8015M

Submission #: 1999-07-0340

8020

Attn. Ian T. Reed

To.

Prep Method

5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 1999/07/23-01.01

LCS. LCSD. 1999/07/23-01.01-002 1999/07/23-01.01-003 Extracted: 07/23/1999 17.25 Extracted. 07/23/1999 17 53

Analyzed: 07/23/1999 17.25 Analyzed: 07/23/1999 17 53

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	ery [%]	RPD	Ctrl, Lim	its [%]	Fla	gs gs
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Gasoline	476	528	500	500	95.2	105 6	10 4	75-125	20		
Benzene	99 3	90.7	100 0	100.0	99 3	90 7	9.1	77-123	20		
Toruene	96 8	90 0	100 0	100.0	96 8	90 0	7.3	78-122	20		
Ethyl benzene	97 0	87 7	100.0	100.0	97 0	87 7	10 1	70-130	20		
Xyrene(s)	284	259	300	300	94 7	86 3	93	75-125	20		
Surrogate(s)											
Tritluprotoluene	516	462	500	500	103 2	92 4		58-124			
4-Bromofluoropenzene-FI	428	441	500	500	85 6	88 2		50-150			

Environmental Services (SDB)

Test Method

Submission #: 1999-07-0340

Aqua Science Engineers, Inc.

8015M 8020

Attn: Ian T. Reed

To:

Prep Method

5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 1999/07/26-01.01

LCS:

1999/07/26-01.01-002

Extracted: 07/26/1999 07:00

Analyzed:

07/26/1999 07 00

LCSD. 1999/07/26-01.01-003 Extracted: 07/26/1999 07:53

Analyzed: 07/26/1999 07:53

Conc. [ug/L		Exp.Conc.	[ug/L] Recovery [RPD	Ctrl Lim	its [%]	Flags		
LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD	
532	537	500	500	106.4	107.4	0 9	75-125	20			
92 6	91.6	100 0	100.0	92.6	91 6	1.1	77-123	20			
92 9	98.0	100.0	100 0	92.9	98.3	56	78-122	20			
89 9	90.3	100 0	- 100.0	89.9	90 3	0.4	70-130	20			
264	265	300	300	0.88	88 3	0.3	75- 23	20			
467	445	500	500	93 4	89 0		58-124				
465	478	500	500	93 0	95 €		50-130				
	532 92 6 92 9 89 9 264 467	LCS LCSD 532 537 92 6 91 6 92 9 98 0 89 9 90 3 264 265	LCS LCSD LCS 532 537 500 92 6 91 6 100 0 92 9 98 0 100.0 89 9 90 0 100 0 264 265 300 467 445 500	LCS LCSD LCS LCSD 532 537 500 500 92 6 91 6 100 0 100.0 92 9 98 0 100.0 100 0 89 9 90 0 100 0 100.0 264 265 300 300 467 445 500 500	LCS LCSD LCS LCSD LCS 532 537 500 500 106.4 92.6 91.6 100.0 100.0 92.6 92.9 98.0 100.0 100.0 92.9 89.9 90.3 100.0 100.0 89.9 261 265 300 300 88.0 467 245 500 500 93.4	LCS LCSD LCS LCSD LCS LCSD 532 537 500 500 106.4 107.4 92.6 91.6 100.0 100.0 92.6 91.6 92.9 98.0 100.0 100.0 92.9 98.3 89.9 90.3 100.0 100.0 89.9 90.3 264 265 300 300 88.0 88.3 467 245 500 500 93.4 89.0	LCS LCSD LCS LCS D LCS LCSD [%] 532 537 500 500 106.4 107.4 0.9 92.6 91.6 100.0 100.0 92.6 91.6 1.1 92.9 98.0 100.0 100.0 92.9 98.3 5.6 89.9 90.3 100.0 100.0 89.9 90.3 0.4 264 265 300 300 88.0 88.3 0.3 467 445 500 500 93.4 89.0	LCS LCSD LCS LCS LCSD [%] Recovery 532 537 500 500 106.4 107.4 0.9 75-125 92.6 91.6 100.0 100.0 92.6 91.6 1.1 77-123 92.9 98.0 100.0 100.0 92.9 98.3 5.6 78-122 89.9 90.3 100.0 100.0 89.9 90.3 0.4 70-130 26.1 26.5 300 300 88.0 88.3 0.3 75-23 467 44.5 500 500 93.4 89.0 58-124	LCS LCSD LCS LCSD [%] Recovery RPD 532 537 500 500 106.4 107.4 0.9 75-125 20 92.6 91.6 100.0 100.0 92.6 91.6 1.1 77-123 20 92.9 98.0 100.0 100.0 92.9 98.3 5.6 78-122 20 89.9 90.3 100.0 -100.0 89.9 90.3 0.4 70-130 20 26.1 26.5 300 300 88.0 88.3 0.3 75-23 20 467 24.5 500 500 93.4 89.0 58-124	LCS LCSD LCS LCSD [%] Recovery RPD LCS 532 537 500 500 106.4 107.4 0.9 75-125 20 92.6 91.6 100.0 100.0 92.6 91.6 1.1 77-123 20 92.9 98.0 100.0 100.0 92.9 98.3 5.6 78-122 20 89.9 90.3 100.0 100.0 89.9 90.3 0.4 70-130 20 26.1 26.5 300 300 88.0 88.3 0.3 75-25 20 467 44.5 500 500 93.4 89.0 58-124	

Aqua Science Engineers, Inc. 208 W. El Pintado Road Danville, CA 94526 (925) 820-9391

Chain of Custody

FAX (925) 837-4853											_		PAG	E	<u> </u>	F	<u> </u>
SAMPLER (SIGNATURE) (P.	PRC	PROJECT NAME Lerer										JOB NO 3389					
1 at Rosel 925-820	-9391	1	DRESS					Ave				····	DAT	E _ 7	-20	-99	
ANALYSIS REQUEST			ONS			SS					S (0	6					
SPECIAL INSTRUCTIONS	T X		KRB(VTICS	S	SANIC	ļ			ES	IORL 1814	VE * 815	ES				ĺ
Λ	3E & E		VI OC	ROM/	ANIC	: 0RC		(5)	S (c	icib (o	SPH (EPA	ORII (EP/	NAT				ш
Matroed	TPH-GAS / IATBE & BTEX (EPA 5030/8015-8020) TPH-GASOLINE	(EPA 5030/8015) TPH·DIESEL (EPA 3510/8015)	PURGEABLE HALOCARBONS (EPA 601/8010)	PURGEABLE AROMATICS (EPA 6(2/8022)	VOLATE ORGANICS (EPA 624/8240)	SEMI-YOLATILE ORGANICS (EPA 623/8270)	OIL & GREASE (EPA 5520)	LUFT METALS (5) (EPA 6010+7000)	CAM 17 METALS (EPA 6010+7000)	PCBs & PESTICIDES (EPA 608/8080)	ORGANOPHOSPHORUS PESTICIDES (EPA 8140)	ORGANOCHLORINE HERBICIDES (EPA 8150)	FUEL OXYGENATES (EPA 8260)				COMPOSITE
	-GAS A 503C	1 5030 1 DIES 1 3510	GEAE	GEAE .6.2%	A715.E	10/1-II	3, GRE 1, 5520	T ME	1 17 N 1 6010	3s & 1 A 601	SAN	3AN(3BIC	L 0) A 82()MMC
SAMPLE ID DATE TIME MATRIX SAMPLE	EPH S	(EP/ TPH (EP/	PUR (EPA	PUR (EPA	VOL (EPA	SEN (EPA	OIL (EPA	LUF (EP/	CAN (EP/	PCE (EP	OR(PES	HE GR	FUE (EP				<u> </u>
MW-1 7-20-49 1255 water 3		-															
MW-2 7-20-99 1225 water 3																	<u> </u>
MW-3 7-20-49 1330 water 3	X												_				!
			<u> </u>														
															_		.
							_										
		_									-				-		
	 						_										
	-										-						
						<u> </u>	T					 _		j			
RELINQUISHED BY: RECEIVED BY	<i>t -</i>		INQUIS		3 Y	_>	REC	EIVED 	BY LA	BORA	TORY —	COi	MMEN	I'S			
(signature) (time) (signature)	_1110_		191			175	2 16	use	Ha	hur	glor	_					
(unite) (signature)	(ti	me) (sign	a(urc) پر مبھر	_ 		(time) (sign	ature) // -		, 6	/ (time	ا (ت	- 1				
Jan T Read 7-70-99 Morras (printed name) (date) (printed name)	174.	G	7/1/	150	7 7:	21.49	1.	Har	VI M	gtor	1 17.	50 ;	y alay	TAI			
	/	Ne) (huu	ico nan	16)		(Gate)		liron	ilab-	- 41	נומנ) תכיק אהר	,					İ
Company- ASE Company- Q	round/	Com	ted nam	(L1	ana		Com	pany-			79 49						