99 APR 26 PH 2: 53, 11 1/10 A

99 APR 26

April 22, 1999

QUARTERLY GROUNDWATER MONITORING REPORT MARCH 29, 1999 GROUNDWATER SAMPLING ASE JOB NO. 3389

a t

Lerer Brothers Transmission 6340 Christie Ave. Emeryville, CA 94608

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1 Lerer Brothers Transmission 6340 Christie Ave. Emeryville, CA 94608

Responsible Party
Rick Gold
P.O. Box 117820
Burlingame, CA 94011-7820

Environmental Consulting Firm
Aqua Science Engineers, Inc. (ASE)
208 W. El Pintado
Danville, CA 94583
Contact: Robert Kitay, Senior Geologist
(925) 820-9391

Agency Review
Alameda County Health Care Services
1131 Harbor Bay Pkwy., Suite 250
Alameda, CA 94502
Contact: Ms. Susan Hugo
(510) 567-6700

California Regional Water Quality Control Board (RWQCB)
San Francisco Bay Region
1515 Clay Street, Suite 1400
Oakland, CA 94612
Contact: Mr. Chuck Headlee
(510) 622-2433

The following is a report detailing the results of the March 29, 1999 quarterly groundwater sampling at the above-referenced site. This sampling was conducted as required by the RWQCB. ASE has prepared this report on behalf of Mr. Rick Gold, owner of the property.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On March 29, 1999, ASE staff geologist Greg Schramm measured the depth to water in each site groundwater monitoring well using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. A sheen was observed on the groundwater surface in monitoring well MW-3. Groundwater elevation data is presented as Table One.

TABLE ONE
Groundwater Elevation Data

Well I.D.	Date of Measurement	Top of Casing Elevation (relative to project datum)	Depth to Water (feet)	Groundwater Elevation (project data)
MW-1	1-28-99 3-29-99	10.00	4.85 4.85	5.15 5.15
MW-2	1-28-99 3-29-99	9.96	4.17 3.89	5.79 6.07
MW-3	1-28-99 3-29-99	9.25	4.23 4.41	5.02 4.84

A groundwater potentiometric surface map is presented as Figure 2. The groundwater flow direction is to the south with a gradient of approximately 0.002-feet/foot. This groundwater flow direction and gradient are generally consistent with previous findings, but is not consistent with the expected flow direction to the west.

3.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Prior to sampling, each monitoring well was purged of four well casing volumes of groundwater using a dedicated bailer. Petroleum hydrocarbon odors were not present during the purging and sampling of the groundwater monitoring wells. The parameters pH, temperature and conductivity were monitored during the well purging. Samples were not collected until these parameters stabilized. Groundwater samples were collected from each well using dedicated polyethylene bailers. The samples were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid. The samples were capped without headspace, labeled and placed in coolers with wet ice for transport to Chromalab, Inc. of Pleasanton, California (ELAP #1094) under appropriate chain-of-custody documentation. Well sampling field logs are presented in Appendix A.

The well purge water was placed in 55-gallon steel drums, labeled, and left on-site for temporary storage. These drums were removed from the site by Ecologix Environmental Services of Chico, California on April 21, 1999 for disposal at McKittrick Waste Treatment of McKittrick, California.

The groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) by EPA Method 5030/8015M, benzene, toluene, ethylbenzene and total xylenes (collectively known as BTEX) by EPA Method 8020 and methyl tertiary butyl ether (MTBE) by EPA Method 8020. The analytical results for this sampling period are presented in Table Two. The certified analytical report and chain-of-custody documentation are included as Appendix B.

TABLE TWO
Certified Analytical Results of GROUNDWATER Samples
All results are in parts per billion

Well ID & Dates Sampled	TPH-G	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Lead
) / IV 1							
<u>MW-1</u>		_					
1-28-99	730	22	3.3	24	61	< 5.0	< 5.0
3-29-99	950	3 7	5.7	2 7	60	< 5.0	
MW-2							
1-28-99	710	20	180	14	67	< 5.0	. 5 0
3-29-99	500	8.6	44	4.3			< 5.0
5 2 5 7 7	500	0.0	3,	4.3	2 5	< 5.0	
<u>MW-3</u>							
1-28-99	< 50*	< 0.5	< 0.5	< 0.5	0.69	< 5.0	< 5.0
3-29-99	130	1.9	8.2	1.4	7.1	< 5.0	
DTSC MCLs	- NE		is	700	1.750	3.5¥	15
			and state A. L. Chester				
EPA	5030/	8020	8020	8020	8020	8020	6010
METHOD	8015M				0020	0020	0010

Notes:

NE = DTSC MCLs and RALs not established

DTSC MCLs = California Department of Toxic Substances Control maximum contaminant level for drinking water.

Non-detectable concentrations noted by the less than sign (<) followed by the laboratory detection limit.

4.0 CONCLUSIONS

Hydrocabon concentrations detected in groundwater samples collected from monitoring wells MW-1 and MW-3 are slightly higher than last quarter. Conversely, hydrocabon concentrations detected in groundwater samples collected from monitoring well MW-2 are lower than the previous quarter. Benzene concentrations in groundwater samples collected from all three monitoring wells exceeded the California Departement of Toxic Substances Control (DTSC) maximum contamination level (MCL) for drinking water. MTBE was not detected in any groundwater sample collected this quarter.

^{* =} Hydrocarbons uncharacteristic of gasoline detected in the gasoline range at 68 ppb.

^{-- =} Not analyzed

^{¥ =} DTSC interim action level; MCL not established

5.0 RECOMMENDATIONS

ASE recommends continued monitoring of the site on a quarterly basis. The next scheduled event is July 1999.

6.0 REPORT LIMITATIONS

The results of this report represent the conditions at the time of the groundwater sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services to Lerer Brother Transmission Service, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

No. 6586

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Greg Schramm Staff Geologist

Robert E. Kitay, R.G., R.E.A.

Senior Geologist

Attachments: Figures 1 and 2

Appendices A and B

cc: Ms. Susan Hugo, Alameda County Health Care Services Agency

Mr. Chuck Headlee, RWQCB, San Francisco Bay Region

FIGURES

SITE LOCATION MAP

6340 Christie Avenue Emeryville, California

Aqua Science Engineers

Figure 1

(5.15') Groundwater Elevation (relative to site datum)

NORTH

<u>SCALE</u> 1" = 30" LERER BROTHERS
TRANSMISSION PROPERTY
6340 CHRISTIE AVENUE
EMERYVILLE, CALIFORNIA

AQUA SCIENCE ENGINEERS, INC.

FIGURE 2

APPENDIX A

Well Sampling Field Logs

WELL SAMPLING FIELD LOG

Project Name and Address: Lever Bros., 6340 Christie Ave	
Job #:	
ampled by	
Total depth of well (feet): 18.42 17.69 Well diameter (inches): 2	
Dopin to water berne sympling fleets. 2 VG. UVS	
Thickness of floating product if any:	
Dobdii di well casilly ili Waler (reet).	
Number of gallons per well casing volume (gallons): 2.05	
Number of well casing volumes to be removed: 4	
Reg'd volume of groundwater to be purged before	
Req'd volume of groundwater to be purged before sampling (gallons):	2
Time Evacuation Began: 13:55 Time Evacuation Finished: 14:20 Approximate volume of groundwater purged: 9.5)
Production of groundwater purged: 4.5	
Time samples were collected: 14:25 After how many gallons	
Depth to water at time of sampling: Percent recovery at time of sampling:	
Samples collected with: dedicuted bailer	
Sample color: Clesi Odor: More Description of sediment in sample:	
Description of sediment in sample: grey	
CHEMICAL DATA	
OLLENIONE BATA	
Volume Purged Temp	
Conductivity	
7	
<u> </u>	
4	
<u>62.0</u> 6.53 4000	
SAMPLES COLLECTED	
OMMA BES COLLECTED	
Sample # of containers Volume & 1985	
Muscl 3 Pres leed? Analysis	
MW-1 3 40 ml VOA ACI - 8020/8015	
	-
4 50.	
5 water	

WELL SAMPLING FIELD LOG

	Address: Lecer Bros., 6340 cl	hristie Aue
Well Name: MW-	Sampled hu	
Total denth of well	(feet): (d (1)	
Depth to water bef	ore sampling (feet): 3.89	er (inches): 2
Thickness of floating	ng product if any:	<u>,</u>
- DODUL OF MEH CASIN	lo in Water (test), IV. \2	
realition of dallone	ner well cacing volume (ant).	
Reg'd volume of gr	oundwater to be purged before sampling the well:	
THE EVACUATION Re	egan: 100°40° mi r	
Approximate volum	e of groundwater purged:	Finished: 14:5'3
Did the well go dry	7: No After how	
Time samples were	collected: 14:55	gallons:
Depth to water at t	ime of sampling:	
Percent recovery at	time of access	
Samples collected v	vith: dediculed baller	
Sample color: 71	200	
Description of sedin	nent in sample. gren	
	, stephen	
CHEMICAL DATA		
	,	
Volume Purged	Temp pH Conductivity	
	59.0 6.47 Conductivity	
2	59.8 6.52 3340	_
	59.7 6.23 7250	_
<u> </u>	59.8 4.23 3350 3360	
<u>\$</u>		
		-
SAMPLES COLLECT	LED	
Sample # of containers	Volume & type consider Pres leed? Analy	
Mw-2 3	C-1/1 m // \(\frac{1}{1}\) \(\frac{1}{1}\) \(\frac{1}{1}\)	20/8012 V213
	902	2/00/3
		- Marie Print State (1980) (1980) (1980) (1980) (1980) (1980) (1980) (1980) (1980) (1980) (1980) (1980) (1980)

3.60

WELL SAMPLING FIELD LOG

Project Name and Ad	dress: <u>Lerer</u>	Bros., 6340	Christie Ave
Well Name: MIA 2	Dat	e of sampling:	meter (inches): 2
Total depth of well (for	San	npled by: <u>GS</u>	· · · · · · · · · · · · · · · · · · ·
Depth to water before	(fort):	Well diar	neter (inches): 2
Thickness of floating	nroduct if		
Thickness of floating Depth, of well casing	product if any: _	Lu 3.4	
Number of gallone ner	in water (leet).		
Number of well casing	well casing voi	ume (gallons):	1.67
Number of well casing Rea'd volume of groun	dwater to be an	removed:4	
			pling (gallons): 6.6
Approximate volume of	n: <u>(5*08</u>	Time Evacuat	ion Finished: 15.25
Time samples were as	110-1-1	Arter now Ins	any gallons:
Depth to water at time	of sampling -		
Depth to water at time Percent recovery at tir Samples collected with	ne of sampling.		
Samples collected with	· dads 1 1 6		
Sample color:Clear	(sheen)	Odoi. None	**************************************
Sample color: Clear Description of sedimen	t in sample: (-900	. — · . — · . — · — · — · — · — · .
CHEMICAL DATA		and the second	
Volume Purged	Temp pH	Conductivi	
	57.9 4.13	<u> 1555</u>	
2	52.5 Cit		
	52.L_ 6.15		
<u> </u>	Se.6 6.20		
CIMPLEC CALLEAMOR			To the state of th
SAMPLES COLLECTEI)		
Sample # of containers Vi	oluma e.		
	olume & type contrain 40 ml VOA	Dies feed) A	nalysis
	TO ME VOH	- HCI	8020/8015
		i	

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

CHROMALAB, INC.

Environmental Services (SDB)

April 7, 1999

Submission #: 9903453

AQUA SCIENCE ENGINEERS, INC

Atten: Gerald Sasse

Project: LERER BROS

Received: March 31, 1999

Project#: 3389

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-1

Spl#: 234843

Sampled: March 30, 1999

Matrix: WATER

Run#:18172

Analyzed: April 2, 1999

ANALYTE GASOLINE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE (%)	DILUTION FACTOR
MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	950 N.D. 37 5.7 27 60	50 5.0 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D. N.D.	93 66 80 78 81 81	1 1 1 1 1

Craig Huntzinger

Analyst

Michael Verona

Laboratory Operations Manager

CHROMALAB, INC.

Environmental Services (SDB)

April 7, 1999

Submission #: 9903453

AQUA SCIENCE ENGINEERS, INC

Atten: Gerald Sasse

Project: LERER BROS

Received: March 31, 1999

Project#: 3389

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-2

Spl#: 234844

Sampled: March 30, 1999

Matrix: WATER

Run#:18172 Analyzed: April 2, 1999

ANALYTE GASOLINE	RESULT	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK DILUTIO SPIKE FACTOR (%)	
MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	500 N.D. 8.6 44 4.3 25	50 5.0 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D.	93 1 66 1 80 1 78 1 81 1	

Craig Huntzinger

Analyst

Michael Verona

Laboratory Operations Manager

CHROMALAB, INC.

Environmental Services (SDB)

April 7, 1999

Submission #: 9903453

AQUA SCIENCE ENGINEERS, INC

Atten: Gerald Sasse

Project: LERER BROS

Received: March 31, 1999

Project#: 3389

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-3

Sp1#: 234845

Sampled: March 30, 1999

Matrix: WATER

Run#:18200

Analyzed: April 2, 1999

ANALYTE GASOLINE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE (%)	DILUTION FACTOR
MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	130 N.D. 1.9 8.2 1.4 7.1	50 5.0 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D. N.D.	101 111 106 105 102 99	1. 1 1. 1. 1. 1.

Craig Huntzinger

Analyst

Michael Verona

Laboratory Operations Manager

7707471/2 1011

Aqua Science Engineers, Inc. 208 W. El Pintado Road

925) 820-9391 FAX (925) 837-4853	.	na							SL	. () (IJ	J			,	,
								· · · · · · · · · · · · · · · · · · ·								= <u></u> _
	PHONE NO.	.	OJECT.				B5 05			_ .			JOB	NO.	384	
	-4341	AL	DRESS	<u>(43</u>	YOC	hristi	بلا⊈ م	<u> </u>					DAT	E	3/30	
ANALYSIS REQUEST	\perp \times		NO.	တ္	•	<u>SS</u>					S. (ôt	(0)				
PECIAL INSTRUCTIONS	CPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	(EPA 5030/8015) TPH-OIESEL (EPA 3510/8015)	PURGEABLE HALOCARBONS (EPA 601/8010)	PURGEABLE AROMATICS (EPA 602/8020)	VOLATILE ORGANICS (EPA 624/8240)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	EASE 0)	LUFT METALS (5) (EPA 6010+7000)	CAM 17 METALS (EPA 6010+7000)	PCBs & PESTICIDES (EPA 608/8080)	ORGANOPHOSPHORUS PESTICIDES (EPA 8140)	ORGANOCHLORINE HERBICIDES (EPA 8150)	FUEL OXYGENATES (EPA 8260)			OSITE
AMPLE ID DATE TIME MATRIX NO. OF	TPH-GA (EPA 500 TPH-GA	(EPA 500 TPH-DIE	PURGEA EPA 601	PURGEA EPA 602	OLATIL EPA 624	SEMI-VO EPA 625	OIL & GREASE (EPA 5520)	UFT ME EPA 601	SAM 17 N EPA 601	CBs & EPA 60	DRGAN ESTICI)RGAN(FERBIC	UELO) EPA 82	<i>:</i>		COMPOSITE
MW-1 3/30 14:25 Water 3	X						-				O II.	0 1	<u> </u>	 		
mw-2 / [4:55]			 													
nw-3 / 15.30 /	1						-						,			
										-						
		ા _ મેં લિંગ્સેલ્ _	798540)		1.5								7 C	e .	-	
		CLĪĒMĪ - bue:	HOE		*1							- 0	\leftarrow	CH	-	
		KEF #:	ซ์47ช์773 เรือชีย์	17								_	70	071		
		_														
							1	1		-						_
INQUISHED BY: RECEIVED BY:	J120		INQUIS	HED B	Y:	70[RECE	EIVED I	BY LA	BORA	FORY:	 				
nature) (time) (signature)	(lin	nc) (sigr	nature)			(time)) (signa	turg)			(time	7	day) · J ~ .	/ -	
reg Sarama 3/31 B MON	run 3-31 9	79 1	8 111	ermu	3.3	1. 94	(signa	Tare	ede:	s 3,	131/50	1				
(date) (printed name)	(da	(c) (prin	ted nam	c)		(date)	(printe	d name	c) (-		(date)	7				-
pany- ASE Company-Chy	mad	Com	pany- 4	hra	made	0_	Comp	uon any-	- <i>M</i>							