RO-04

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159 June 18, 2001 Project H9042.O

Mr. Jerry Harbert 46765 Mountain Cove Drive Indian Wells, California 92210 Mo 10 10 101

Subject:

Additional Site Assessment and Groundwater Monitoring Report - First

Quarter 2001

Harbert Transportation

19984 Meekland Avenue, Hayward, California

Dear Mr. Harbert:

This report describes additional site assessment and groundwater monitoring activities conducted by Weber, Hayes and Associates at the former Harbert Transportation facility, 19984 Meekland Avenue, Hayward, California, during the first quarter 2001. This report has been prepared pursuant to a directive from the Alameda County Health Care Services Agency/Environmental Health Services regarding a release of petroleum hydrocarbons from underground storage tanks at the site.

The additional site assessment entailed collecting soil samples from throughout the site. Laboratory analyses of these samples indicate there are residual petroleum hydrocarbons in unsaturated soils near the removed underground storage tanks and dispensers.

Concentrations of dissolved petroleum hydrocarbons in groundwater have decreased by an order of magnitude since 1996, but remain above groundwater quality goals. The results of the additional site assessment indicate there is a limited area of petroleum hydrocarbon contaminated soil that is a likely source of continuing groundwater degradation. We recommend that this soil be excavated as an Interim Remedial Action.

EXECUTIVE SUMMARY

This report describes an additional site assessment and groundwater monitoring activities for the first quarter 2001 conducted at the former Harbert Transportation facility located at 19984 Meekland Avenue, Hayward, California. This report has been prepared pursuant to a directive from the Alameda County Health Care Services Agency/Environmental Health Services (Environmental Health) regarding a release of petroleum hydrocarbons (PHCs) from underground storage tanks (USTs) at the site.

On February 14, 2001, we collected 36 soil samples from the site to determine the extent of PHCs remaining in the unsaturated zone in accordance with our September 7, 2000 Work Plan. The Work Plan was approved by Environmental Health in letters dated November 1, 2000 and December 4, 2000.

Laboratory analyses of the soil samples indicated that low levels of Total PHCs, benzene, toluene, ethylbenzene, and xylenes (BTEX) remain in unsaturated zone soils in the central portion of the site (near the USTs that was removed in 1989). Fairly high levels of PHCs and BTEX remain in soils around the dispensers for the UST that was removed in 1989, and the UST that was removed in 1954. MTBE was not detected in any of the soil samples.

The groundwater monitoring event for the first quarter 2001 took place on March 29, 2001. The calculated groundwater flow direction on March 29, 2001 was to the southeast, which appears to be consistent with historical data. Groundwater analytical results from first quarter 2001 indicate that dissolved PHCs are present at concentrations that exceed water quality goals in on-site monitoring wells downgradient of the removed underground storage tanks (USTs) at the site.

MTBE was not detected in the groundwater samples collected this quarter. MTBE has not been detected in groundwater at the site. Groundwater samples in the third quarter 2000 were analyzed for the fuel oxygenates Di-isopropyl Ether, tertiary Butyl Alcohol, Ethyl tertiary Butyl Ether, and tertiary Amyl Methyl Ether. No fuel oxygenates were detected in these groundwater samples.

A review of historical data indicates a decrease of at least an order of magnitude in dissolved PHC concentrations at the site since September 1996.

Cleanup goals for some PHCs detected at the site have already been developed and approved by Environmental Health and the Regional Water Quality Control Board (see table, page 4). Concentrations of PHCs detected during this investigation exceed these site-specific cleanup levels in soil.

Soil removed during the 1989 UST removal was placed back into the excavation. We were unable to sample this tank backfill soil because the UST excavation is only partially backfilled, and our drill rig could not get into or drill under the partially filled tank excavation. Based on the significant concentrations of hydrocarbons in well MW-5, which is next to and immediately downgradient of the tank pit (see Figure 5) it appears likely there are significant amounts of residual PHCs in the soil in the tank backfill.

We recommend:

- Continuing quarterly groundwater monitoring of dissolved PHC concentrations at the site.
- Calculating additional cleanup levels for those PHCs which have not yet had cleanup levels set (ethylbenzene, xylenes, and TPH-g, see table, page 4), for comparison with concentrations after the interim remedial excavation.
- Excavation of source zone PHC-contaminated soils as an Interim Remedial Action.

INTRODUCTION

This report documents additional site assessment and groundwater monitoring activities at the former Harbert Transportation facility, 19984 Meekland Avenue, Hayward, California (the site), during the first quarter 2001. This report has been prepared pursuant to a request from the Alameda County Health Care Services Agency/Environmental Health Services (Environmental Health, August 8, 2000) regarding a release of petroleum hydrocarbons (PHCs) from underground storage tanks (USTs) at the site.

This report describes a soil investigation to define the extent of residual PHCs in the unsaturated zone at the site and groundwater monitoring activities for the first quarter 2001.

The soil investigation included:

- 1. Obtaining soil boring permits from Alameda County Public Works Agency
- 2. Drilling nine soil borings, collecting soil samples for laboratory analyses, and preparing geologic logs of the lithology encountered
- 3. Submitting 36 soil samples to a state-certified analytical laboratory for analysis of PHC concentrations following proper chain-of-custody procedures
- 4. Preparing cross-sections of the site lithology
- 5. Mapping the extent of PHCs in the unsaturated zone
- 6. Preparing this report

Groundwater monitoring activities conducted during this quarter included:

- 1. Measuring groundwater levels and checking for the presence of free product in all of the monitoring wells associated with the site
- 2. Measuring the physical parameters of pH, temperature, electrical conductivity, and dissolved oxygen concentration in each well
- 3. Collecting groundwater samples from each of the monitoring wells
- 4. Submitting 10 groundwater samples to a state-certified analytical laboratory for analysis of dissolved PHC concentrations following proper chain-of-custody procedures
- 5. Determining groundwater elevations, flow direction, and gradient in the vicinity of the site
- 6. Mapping the extent of the dissolved PHC plume in groundwater beneath the site
- 7. Preparing this report

Site Description And Background

The site is located at the corner of Meekland Avenue and Blossom Way in Alameda County California, at an elevation of approximately 55 feet above sea level (Figure 1). The site is relatively flat and is currently vacant.

The site was operated as a motor vehicle fueling station since the 1940's. Harbert Transportation used the site as a vehicle and fueling yard before selling the site to Durham Transportation in 1986.

In August 1989, four underground storage tanks (USTs) were removed from the site and properly disposed of. Soil and groundwater investigations at the site, conducted by Applied Geosystems, CTTS, and AGI Technologies, indicated that PHCs were present in soil and groundwater at the site. A list of reports documenting the soil and groundwater investigations is included in the Reference section. Ten groundwater monitoring wells currently exist at the site (Figure 2). Groundwater samples were not collected from these wells between September 1996 and September 2000. Documentation indicates that excavated soil from the UST removals was returned to the (reportedly plastic-lined) excavations (CTTS, November 1, 1992).

Documentation also indicates that two USTs were removed from the site in the early 1950's (CTTS, November 27, 1990). These USTs were located near the dispensers for the USTs removed in 1989.

SUMMARY OF QUARTERLY ACTIVITIES

Additional Site Assessment

On August 8, 2000, we met with Environmental Health and San Francisco Regional Water Quality Control Board (Regional Board) staff to discuss the site status and future work. Environmental Health and Regional Board staff agreed with our recommendations for soil sampling and groundwater monitoring, and suggested developing soil and groundwater cleanup goals for all PHCs detected at the site. Environmental Health and Regional Board staff conditionally approved the following cleanup levels for the site:

Approved Soil Cleanup Levels (mg/Kg, ppm)

Chemical	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes
Surface Soil		0.118	150	7-	
Sub-Surface Soil	1,000	0.118	150		

actually 1777 1

At the request of Environmental Health and Regional Board staff, we prepared a Work Plan (Weber, Hayes and Associates, September 7, 2000) for soil sampling to assess the current extent of PHCs in unsaturated soil at the site. The Work Plan was approved by Environmental Health in letters dated November 1, 2000 and December 4, 2000.

On February 14, 2001, we collected soil samples from the site to determine the extent of PHCs remaining in the unsaturated zone in accordance with our September 7, 2000 Work Plan. The boring locations are shown on Figure 2.

The soil samples were collected from boring drilled under permits issued by the Alameda County Public Works Agency. Copies of the Boring Permits are presented as Appendix A. The borings were drilled according to our standard soil sampling methodology which is described in Appendix B. Boring logs are presented as Appendix C.

Soils encountered at the site consisted of:

- A fat Clay from the ground surface to approximately 5 to 10 feet below the ground surface
- Sandy Clay from approximately 5 to 10 feet below the ground surface to approximately 20 feet below the ground surface
- A fat Clay from approximately 20 feet below the ground surface to a depth of approximately 45 feet below the ground surface.

Geologic cross sections are presented on Figure 3.

MTBE was not detected in any of the soil samples.

Laboratory analyses of the soil samples collected from borings DP-2, 3, and 9 indicate that PHCs remain in unsaturated zone soils adjacent to the USTs removed in 1989 and the dispensers removed in 1989/the USTs removed in 1954.

Boring DP-1 contained low levels of toluene and xylenes at 2 feet bgs and low levels of ethylbenzene and/or xylenes at 24 and 27 feet bgs. We believe that the shallow (2 feet bgs) contamination in this boring defines the edge of the contamination in the former dispenser area, and that the deeper (24 to 27 feet bgs) contamination in this boring is due to PHCs in groundwater.

Boring DP-4 was drilled in the former waste oil tank excavation. Low levels of toluene, ethylbenzene and xylenes were detected in the sample collected at 2 feet below the ground surface (bgs) in this boring. No PHCs were detected in deeper soil samples in this boring.

Boring DP-5 was drilled in the area identified as a sump that contained PHCs. No PHCs were detected in the soil samples collected from this boring.

PHCs were not detected in borings DP-6, 7, and 8, to the northwest, northeast and southeast of the USTs removed in 1989.

As requested by Environmental Health (December 4, 2000), a grab groundwater sample was collected from DP-9, located west (downgradient) of the apparent source area/MW-5, to check for MTBE. MTBE was not detected in this water sample. Concentrations of TPH-g and BTEX in this sample were similar to concentrations of these constituents in well MW-5.

The soil sample analytical results are summarized in Table 1. Laboratory analytical results are also summarized on Figures 2 and 3. The laboratory's Certified Analytical Report is presented as Appendix D.

Soil removed during the 1989 UST removal was placed back into the excavation. We planned to sample this soil, but were unable to drill in the UST excavation because it was only partially filled, and therefore we could not get the drill rig into the hole. Borings DP-3 and DP-8 were drilled next to the tank excavation. Based on the significant hydrocarbon concentrations in groundwater in well MW-5, next to the excavation, it appears likely there are significant amounts of residual PHCs in the tank backfill.

Groundwater Monitoring

The groundwater monitoring event for the first quarter 2001 took place on March 29, 2001. Field methods followed Weber, Hayes and Associates' standard field methodology for groundwater monitoring, which is described in Appendix E. Groundwater samples were collected from all monitoring wells at the site in accordance with directives from Environmental Health, and analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method 8015M, and benzene, toluene, ethylbenzene, and xylenes (BTEX), and Methyl tert Butyl Ether (MTBE) by EPA Method 8020. Samples with elevated detection limits or detections of MTBE were analyzed by EPA Method 8260 to confirm the presence of MTBE and provide the proper detection limit. Field data forms are also presented in Appendix E.

Free Product

Free product was not observed in any of the monitoring wells at the site.

Groundwater Elevation and Flow Direction

Groundwater elevations were calculated by subtracting the measured depth-to-groundwater from the top-of-casing elevations, which were surveyed by a state-licensed Land Surveyor. Field measurements and the calculated groundwater elevations for the site are summarized in Table 2. Calculated groundwater elevations from the gauging data collected on March 29, 2001 are shown on Figure 4. Data from this quarter indicate that groundwater flow is to the southwest (see Figure 4). The calculated groundwater gradient on March 29, 2001 was to the west at approximately 0.002 feet per foot. Previous reports indicate that the groundwater flow direction in the vicinity of the site

has generally been in a westerly direction. A table and figures summarizing previous depth to groundwater data is presented as Appendix F.

Groundwater Analytical Results

Groundwater samples were collected from all of the monitoring wells associated with the site this quarter, in accordance with directives from Environmental Health. The groundwater analytical results for this quarter are summarized below.

Summary of Groundwater Sample Analytical Results, March 29, 2001 (µg/L, ppb)

Well ID	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW-3	170	1.1	ND	10	1,6	ND
MW-4	ND	ND	4.2	ND	ND	ND
MW-5	13,000	220	510	1,000	2,700	ND*
MW-6	610	2.2	ND	37	4.6	ND*
MW-7	ND	ND	ND	ND	ND	ND
MW-8	ND	ND	0.8	ND	ND	ND
MW-9	1,600	110	14	240	150	ND*
MW-10	600	2	0.65	ND	0.72	ND
MW-11	ND	ND	4.5	ND	ND	ND
MW-12	ND	ND	5.0	ND	ND	ND
AL/MCL	1,000	1	150	700	1,750	5

^{* =} Confirmed by GC/MS method 8260

The concentrations of TPH-g, benzene, toluene, ethylbenzene, and xylenes in well MW-5 exceed the respective groundwater quality goals/drinking water Action Levels (ALs)/ Maximum Contaminant Levels (MCLs).

The concentrations of TPH-g and benzene in well MW-9 exceed the groundwater quality goals/AL/MCLs.

The concentrations of benzene in well MW-3, 6, and 10 slightly exceed the groundwater quality goal/MCL of 1 microgram per liter (μ g/L).

MTBE was not detected in any of the wells associated with the site.

Please see the Conclusions section for a discussion of the groundwater analytical results.

The current groundwater sample analytical results are summarized in Table 2. PHC concentrations detected in groundwater during the current monitoring event are shown on Figure 5. The extent of dissolved PHCs greater than 1,000 ppb TPH-g and 5 ppb benzene in groundwater are shown on Figure 6.

The Certified Analytical Report for the groundwater samples is presented as Appendix G. All laboratory quality control and quality assurance data were within acceptable limits. A table and figures summarizing historical groundwater analytical results is presented as Appendix H.

Dissolved Oxygen Measurements

Dissolved oxygen field measurements were collected to monitor bioremediation of PHCs in groundwater. Measurements indicate lower levels of dissolved oxygen in PHC impacted wells compared to levels in non-impacted, upgradient wells. We believe this, combined with the observed decrease in dissolved PHC concentrations over time, indicates that natural attenuation of PHCs via bioremediation is occurring in groundwater, with microbes using dissolved PHCs as a food source during aerobic respiration (see Bushek and O'Reilly, 1995, Table 2 and Figure 5).

SUMMARY

- Soil samples were collected on February 14, 2001 to define the extent of residual PHCs in the unsaturated zone at the site.
- Soils encountered at the site consisted of fat Clays and sandy Clays.
- MTBE was not detected in any of the soil samples.
- PHCs remain in unsaturated zone soils adjacent to the USTs removed in 1989 and the dispensers removed in 1989/the USTs removed in 1954.
- Free product was not observed in any of the monitoring wells at the site.
- The groundwater flow direction on March 29, 2001 was to the west at a gradient of approximately 0.002 feet per foot. This direction is in general agreement with data collected by us in the past two quarters and previous data collected by others at the site.
- MTBE was not detected in any of the groundwater samples collected this quarter.
- TPH-g, and BTEX were detected above their respective AL/MCLs in on-site well MW-5, which is located downgradient of the removed USTs.
- TPH-g and benzene were detected above their respective AL/MCL in on-site well MW-9.
- Benzene was detected at a concentration slightly above the MCL in wells MW-3, 6, and 10.
- Measurements of dissolved oxygen indicated aerobic bioremediation is occurring in the PHC-impacted wells.

SITE CONCEPTUAL MODEL

The Site Conceptual Model (SCM) provides a compilation of our understanding of the existing site conditions. Please refer to Figures 2, 3, 4, 5, and 6:

- Soils encountered at the site generally consisted of fat Clays and sandy Clays. The predominance of these fine grained materials indicate that cleanup of PHCs at the site would **NOT** be amenable to soil vapor extraction or related technologies.
- Significant concentrations of PHCs are present in the soils beneath the former dispensers and are believed present in the 1989 UST excavation which was backfilled with the excavated material. We believe that excavation of these residual PHCs as an Interim Remedial Action is appropriate.
- A review and comparison of historical groundwater analytical data with the current and
 recent data suggests there has been a reduction in PHC concentrations at the site of at least
 an order of magnitude since September 1996 (see Table 2, Figure 5, and Appendix H).
 However, dissolved PHC concentrations remain above ALs/MCLs twelve years after the
 removal of the USTs.
- PHCs are present in two on-site wells downgradient of the removed USTs at concentrations above groundwater quality goals.
- The highest concentrations of PHCs in groundwater are in well MW-5, which is located immediately downgradient of removed USTs.
- We believe that natural attenuation/bioremediation has and will continue to remove PHCs from groundwater at the site. However, the USTs were removed almost twelve years ago and groundwater at the site still exceeds ALs/MCLs/groundwater quality goals.
- MTBE has not been detected in any of the soil or groundwater samples collected at the site.

RECOMMENDATIONS

Because no corrective actions have taken place at the site in the twelve years since the USTs have been removed, we recommend that the following Interim Remedial Actions take place at the site as soon as approved by the appropriate regulatory agencies:

• Continuing quarterly groundwater monitoring of dissolved PHC concentrations at the site.

- Calculating additional cleanup levels for those PHCs which have not yet had cleanup levels set (ethylbenzene, xylenes, and TPH-g, see table, page 4), for comparison with concentrations after the interim remedial excavation.
- Excavating the residual PHCs in unsaturated soil as shown of Figure 6. The estimated volume of soil to be removed is 980 cubic yards.
- Placing Oxygen Releasing Compound in the bottom of the excavation to stimulate natural attenuation/biodegradation of residual PHCs in groundwater.

WORK PLAN FOR INTERIM REMEDIAL ACTION

Due to limited access and space at the site, we recommend that the PHC-contaminated soil be characterized for landfill acceptance before excavation begins by analyzing soil samples from the proposed excavation areas prior to excavation. After landfill acceptance is secured, the excavated soils can be loaded directly onto trucks and hauled to the landfill. This eliminates the need to handle the soil twice (once at excavation, and again to load it).

Pre-field Services

We will prepare a site Health and Safety plan, clear underground utilities in the proposed excavation area through Underground Service Alert, coordinate with the excavation and transport contractors, and coordinate with the landfill.

Landfill Acceptance Samples

Two soil borings will be drilled in each proposed excavation area. Soil samples will be collected from each boring at depths of approximately 5, 10, 15, and 20 feet below the ground surface (bgs). A four-point composite sample from each proposed excavation will be submitted for laboratory analysis of TPH-g and BTEX for landfill acceptance of the soil. See Figure 6 for the proposed excavation areas.

Excavate Residual PHC-Contaminated Soil

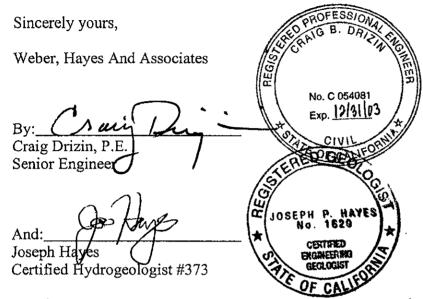
After landfill acceptance is obtained the contaminated-soil will be excavated to a depth of approximately 25 feet bgs, or until all readily accessible PHC-contaminated soil is removed, based on soil sample analytical results and field observations. The excavation will take place in the fall (if possible) when water levels are likely lowest so soils from the smear zone will be accessible. The excavation will be dewatered as necessary to allow excavation to 25 feet bgs, which should remove the smear zone. Extracted water will be disposed of properly, either by hauling for recycling or processing through the sanitary sewer system. The total excavation volume will be approximately 980 cubic yards of soil. A field geologist from Weber, Hayes and Associates will observe the excavation and log the excavation sidewalls.

When the readily accessible PHC-contaminated soil has been removed, soil samples will be collected from each side wall and the base of each of the excavations and analyzed for TPH-g and BTEX to confirm the removal of PHC-contaminated soil. The sidewall samples will be collected at approximately 10-foot intervals. Two bottom samples will also be collected and analyzed from each excavation.

Oxygen Releasing Compound will be placed in the bottom of the excavations to stimulate natural attenuation/biodegradation of residual PHCs. The excavations will then be backfilled with clean imported fill (pea gravel in the saturated zone) and compacted.

A summary of the excavation project, including final size, disposition of removed soils and groundwater, confirmation (sidewall/base) and landfill acceptance sample analytical results will be presented in the appropriate groundwater monitoring report.

SCHEDULE OF ACTIVITIES FOR THE FOLLOWING QUARTER


The following activities are scheduled for the next quarter:

- Quarterly groundwater monitoring of all monitoring wells as directed by Environmental Health, including measuring the depth-to-groundwater, dissolved oxygen concentration, and physical parameters, and collecting samples from all wells and analyzing them for TPH-g, BTEX and MTBE by EPA Methods 8015M and 8020. All detections of MTBE will be confirmed by EPA Method 8260.
- Calculating cleanup levels for PHCs in soil and groundwater at the site for comparison with concentrations after the interim remedial excavation.
- Beginning the Interim Remedial Action excavations, after approval by Environmental Health and cost pre-approval by the UST Cleanup Fund.

LIMITATIONS

Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic and engineering principles and practices. This warranty is in lieu of all others, either expressed or implied. The analysis and proposals in this report are based on sampling and testing which are necessarily limited. Additional data from future work may lead to modification of the opinions expressed herein,

Thank you for the opportunity to aid in the assessment and cleanup of this site. If you have any questions or comments regarding this project please call us at (831) 722 - 3580.

Attachments:

Table 1: Summary of Soil Sample Analytical Results

Table 2: Summary of Groundwater Elevation and PHC Analytical Data

Figure 1: Location Map

Figure 2: Site Plan with Driven Probe Locations and Soil Sample Analytical Results

Figure 3: Geologic Cross Section AA' and BB'
Figure 4: Site Plan with Groundwater Elevations

Figure 5: Site Plan with PHC Concentrations in Groundwater

Figure 6: Site Plan with Extent of TPH-g and Benzene in Groundwater

Appendix A Boring Permits

Appendix B Soil Sampling Methodology

Appendix C Boring Logs

Appendix D Certified Analytical Report - Soil Samples

Appendix E: Field Methodology for Groundwater Monitoring and Field Data Forms

Appendix F: Summary of Historical Depth to Groundwater Measurements, Groundwater

Elevations, and Groundwater Flow Direction - AGI Technologies, Inc.

Appendix G: Certified Analytical Report - Groundwater Samples

Appendix H: Summary of Historical Groundwater Analytical Results - AGI Technologies, Inc.

c: Mr. Amir Gholami, Alameda County Environmental Health

Mr. Jeff Lawson

Ms. Laurie Berger

Mr. Gregg Petersen, Durham Transportation

Mr. Chuck Headlee, San Francisco Bay Regional Water Quality Control Board

REFERENCES

AGI Technologies, August 29, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, September 19, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 1, 1995. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, August 16, 1995. Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 9, 1995. Work Plan Off-Site Contamination Assessment Harbert Transportation Inc. 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 29, 1995. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, April 30, 1996. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, January 6, 1997. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 4, 1998. Final Report Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

Alameda County Health Care Services Agency, Environmental Health Services, June 17, 1999. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Requests for Additions/Modifications to the Risk Assessment

Alameda County Health Care Services Agency, Environmental Health Services, July 11, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request

Alameda County Health Care Services Agency, Environmental Health Services, August 8, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request - Clarification

Alameda County Health Care Services Agency, Environmental Health Services, November 1, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

REFERENCES (continued)

Alameda County Health Care Services Agency, Environmental Health Services, November 15, 2000.

Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Review of Third Quarter 2000 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, December 4, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

Applied Geosystems, July 20, 1986. Subsurface Environmental Investigation, Two Soil Borings, and Monitoring Well Installation

Bushek, Tim, and Kirk O'Reilly, March 1995; Protocol for Monitoring Intrinsic Bioremediation in Groundwater, Chevron Research and Development Company, Health, Environment, and Safety Group

CTTS, Inc., Toxic Technology Services, September 13, 1989. Report on Underground Tank Removal at 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 27, 1990. Phase II Report for Durham Transportation, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services. Amendment #1, Proposed Remediation for on Site Soil Contamination

CTTS, Inc., Toxic Technology Services, January 31, 1990. Report on Well Abandonment and Groundwater Monitoring Well Installations, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, July 2, 1990. Progress Report #1, Period Covering 3/23/90-6/30/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, August 2, 1990 Progress Report #2, Period Covering 7/l/90-7/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, September 21, 1990. Progress Report #3, Period Covering 8/1/90-8/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 12, 1990. Progress Report #4, Period Covering 9/l/90-10/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, December 28, 1990. Progress Report #5, Period Covering 11/l/90-11/30/90, 19984 Meekland Road, Hayward, California

REFERENCES (continued)

CTTS, Inc., Toxic Technology Services, January 25, 1991. Progress Report #7, Period Covering 1/l/91-1/31/91, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, February 11, 1991. Progress Report #6, Period Covering 12/l/90-12/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, February 19, 1991. Cost analysis, Remediation Alternatives 19984 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, April 4, 1991. Progress Report #8, Period Covering 2/l/91-3/31/91, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, June 30, 1991. Progress Report #11, Period Covering 6/l/91-6/30/9, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, September 30, 1991. Progress Report #12, Period Covering 7/l/91-9/30/91, Durham Transportation 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, April 2, 1991. Report of Additional Well Installlations 1998 4 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 1, 1992. Health and Safety Plan to Accompany Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 1, 1992. Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, January 21, 1993. Progress Report #17, Period Covering 10/l/92-12/31/92, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 10, 1993. Progress Report #18, Period Covering 12/l/92-1/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 29, 1993. Progress Report #19, Period Covering 2/l/93-2/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, April 1, 1993. Progress Report #20, Period Covering 3/l/93-3/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

REFERENCES (continued)

CTTS, Inc., Toxic Technology Services. March 10, 1993. Remediation Progress Report 1, Period Covering 12/l/92-1/31/93, 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. July 16, 1993. Progress Report #21, Period Covering 4/l/93-6/30/93 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. October 11, 1993. Progress Report #22, Period Covering 6/l/93-9/30/93, 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, February 24, 1993. Progress Report #23, Period Covering 10/l/93-12/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

Howard, Philip, H. 1990. Handbook of Fate and Exposure Data for Organic Chemicals, Lewis Publishers. Inc., Chelsea, Michigan

Weber, Hayes and Associates, October 29, 1999. Clarification of Development of Risk Based Cleanup Standards - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, September 7, 2000. Work Plan for Soil and Groundwater Sampling - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, November 10, 2000. Groundwater Monitoring Report - Third Quarter 2000, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, January 30, 2001. Groundwater Monitoring Report - Fourth Quarter 2000, 19984 Meekland Avenue, Hayward, CA

Table 1: Summary of Soil Sample Analytical Results

Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, CA Weber, Hayes and Associates Project H9042

	I		8 35 6	T	P	3 103	ž. z. (£
Investigation & Date	Sample ID	Sample Depth	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
intestigation & Sate	, sample 12	(fèet,bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil Sampling	DP-1a	2	ND	ND	0.010	ND	0.025	ND
Additional Site Assessment	f	23	ND	ND	ND	ND	ND	ND
(February 14, 2001)	g @ 24'	24	ND	ND	ND	ND	0.007	ND
Completed by Weber, Hayes and Associates	g@27'	27	ND	ND	ND	0.007	0.015	ND
and EnProbe Inc.	DP-2a	2	ND	ND	0.019	0.020	0.13	ND
	d	13.5	1,800	< 0.5	4.5	19	270	ND*
	е	18.5	8,700	18	720	230	1,600	< 0.5*
	g	24	1,800	3.5	52	39.0	250	ND*
	DP-3a	2	ND	ND	0.017	0.006	0.054	ND
	ь	7.5	ND	ND	0.063	0.020	0.12	ND
	e	18 5	ND	ND	ND	ND	ND	ND
	g	· 27.5	, 18	0.036	0.067	0.070	0.060	ND*
	DP-4a	2	ND	ND	0.014	0.008	0.058	ND
	e	19.5	ND	ND	ND	ND	ND	ND
	g @ 25'	25	ND	ND	ND	ND	ND	ND
	g @ 27'	27	ND	ND	ND	ND	QИ	ND
	DP-5a	2	ND	ND	ND	ND	ИD	ND
	d	12	ND	ND	ND	ND	ИD	ND
	f	20	ND	ND	ИD	ND	ND	ND
	g	24	ND	ND	ND	ND	ND	ND
	DP-6a	2	ND	ND	ND	ND	ND	ND
	d	14	ND	ND	ND	ND	ND	ND
	e	18	ND	ND	ND	ND	ND	ND
	g	24	ND	ND	ND	0.009	ИD	ND
	DP-7a	2	ND	ND	ND	ND	מא	ND
	d	14	ND	ND	ND	ND	QИ	ND
	е	18	ND	ND	ND	ND	ND	ND
ļ	g	24 .	ND	ND	ND	ДИ	СIИ	ND
	DP-8a	2	ND	ND	ND	ND	ND	ND
	d	13	ND	ND	ND	МD	ИD	ND
	е	18	ND	ND	ND	ND	ND	ND
	g	24	ND	ND	ИD	ND	NID	ND
	DP-9a	2	ND	ND	ND	ND	NID	ND
	ď	13	ND	ND	ND	ND	ИD	ND
	e	18	ND	ND	ND	N.D	ИD	ND
	g	24	18	0.020	0.020	0.19	0.30	ND*
Laboratory's Practical Quantit	ation Limits:		1	0.005	0.005	0 005	0.005	C 0:05:

NOTES:

TPH-g: Total Petroleum Hydrocarbons as gasoline

BTEX: B: Benzene, T' Toluene, E: Ethylbenzene, and X: Total Xylenes.

MTBE: Methyl-tert-Butyl Ether.

bgs: below ground surface

ND: Not detected at or above the lab's practical quantitation limit.

<X: Not detected at the elevated PQL, X. PQL elevated due to laboratory dilution.

*: MTBE Analysis confirmed by EPA Method 8260.

Table 2: Summary of Groundwater Elevation and PHC Analytical Data Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca. Weber, Hayes and Associates Project H9042

Well	Date	Screened Interval	Surveyed T.O.C.	Depth to Groundwater	Calculated Groundwater			Laborat	ory Analytical I	Results			
I.D.		(feet below ground surface)	Elevation (feet)	(feet below ground surface)	Elevation (feet)	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	MTRE (wg/L)	F.O.'s (ug/L)	D.O. (mg/L)
MW-3		20 - 40?	\$5.44										
	29-Mar-2001	ا		22.02	33 42	170	- 11	מא	10	1.6	ND		0.6
	12-Jan-2001] 1		23.41	32 03	310	2.4	2.2	4,4	10	ND		07
	27-Sep-2000			23 09	32.35	430	ND	NĐ	44	ND	ДИ	ND	10
MW-4		20 - 40 '	55.71										
	29-Mar-2001	!		22,22	33.49	ND	ND	4.2	ND	ND	ДИ		0.5
	12-Jan-2001	ļ		23.60	32 11	ND	NĐ	ND	ND	ND	ND		0.7
	27-Sep-2000			23,25	32 46	ND	ND	ND	ND	ND	ND	ND	2.5
MW-5		25 - 45	56.03					_					
	29-Mar-2001			22 69	33.34	13,000	220	510	1,000	2,700	ND+		0.4
ļ	12-Jan-2001]		23.97	32.06	1,100	62	40	150	290	ND*		0.3
	27-Sep-2000	}		23,69	32 34	18,000	840	29	1,200	3,500	< 30	ND	0.4
MW-6		25 - 45	56.01			<u> </u>							
	29-Mar-2001			22.56	33 45	610	2.2	מא	37	4.6	ND+		0.5
	12-Jan-2001]		23.97	32,04	2,300	16	3.5	290	83	ND*		0.5
	27-Sep-2000			23.56	32,45	1,300	NĎ	4.3	200	17	ND	ND	0.5
MW-7		25 - 45	56 66										
	29-Mar-2001	<u> </u>		23.10	33.56	ДИ	ND	ND	ND	ND	ИD		0.5
	12-Jan-2001	ļ		24.49	32.17	1,600	13	0.86	150	35	ND∗		0.5
	27-Sep-2000			24 18	32.48	270	13	6.6	11	ND	ИD	ND	0.5
MW-8		20 - 40	56 16										
	29-Mar-2001			22.56	33 60	ND	ND	0.8	ND	ND	ND		1.9
	12-Jan-2001			23.93	32.23	ND	ND	ND	ND	ND	ИД		2.1
	27-Sep-2000			23,59	32.57	ND	ND	ND	ND	ND	ND	ND	1.9
MW-9		20 - 40	55 21				,						
	29-Mat-2001	[[21 61	33.60	1,600	110	14.0	240	150	ND*		0.4
	12-Jan-2001	}		23 17	32 04	10,000	550	1100	1,200	2,200	ND*		0.5
	27-Sep-2000			22 90	32.31	1,000	40	6.7	110	55	ND	ND	0.5
MW-10		25 - 40	54.74					,		-			
ļ	29-Mar-2001			21.63	33.11	600****	2	0.65	ND	0.72	ND		0.5
	12-Jan-2001			22.99	31.75	530	3.7	1.9	2,1	4.5	ND		0.6
	27-Sep-2000	<u> </u>		22,72	32.02	880	ND	ND	ND	ND	ND	NĐ	04
MW-11		25 - 40	55 20		1 								
	29-Mar-2001			21 84	32,90	ND	ND	4.5	ND	ND	ND		06
	12-Jan-2001	1		23 21	31 53	ND	ND	21	ND	ND	ND		06
	27-Sep-2000			22 43	32 31	63	ND	ND	ND	ND	ND	ND	0.6
MW-12		25 - 40	56 49				,						
	29-Mar-2001			22.91	33 58	ND	ND	5.0	ND	ND	ND		1.0
	12-Jan-2001			24.28	32.21	ND	ND	1.1	ND	ND	ND		1,0
0. 10 Julius	27-Sep-2000	<u> </u>		23 98	32.51	ND	ND	ND	ND	ND	ND	ND	1.2
42328454	Laborato	ry's Practical	Quantitatio	n Limit (PQL):		50	0.5	0.5	0.5	^ 0.5 €	5 5 5 F	5 5	Pield
20.1- May 1	State N	Taximum Cor	ıtaminant L	evel (MCL):	N NOWL YOUNG	1,000**	î	150	700	1,750	53.	0.5	Instrument

TO C = Top of Casing Elevation Calculated groundwater elevation = TOC - Depth to Groundwater Referenced to NGVD

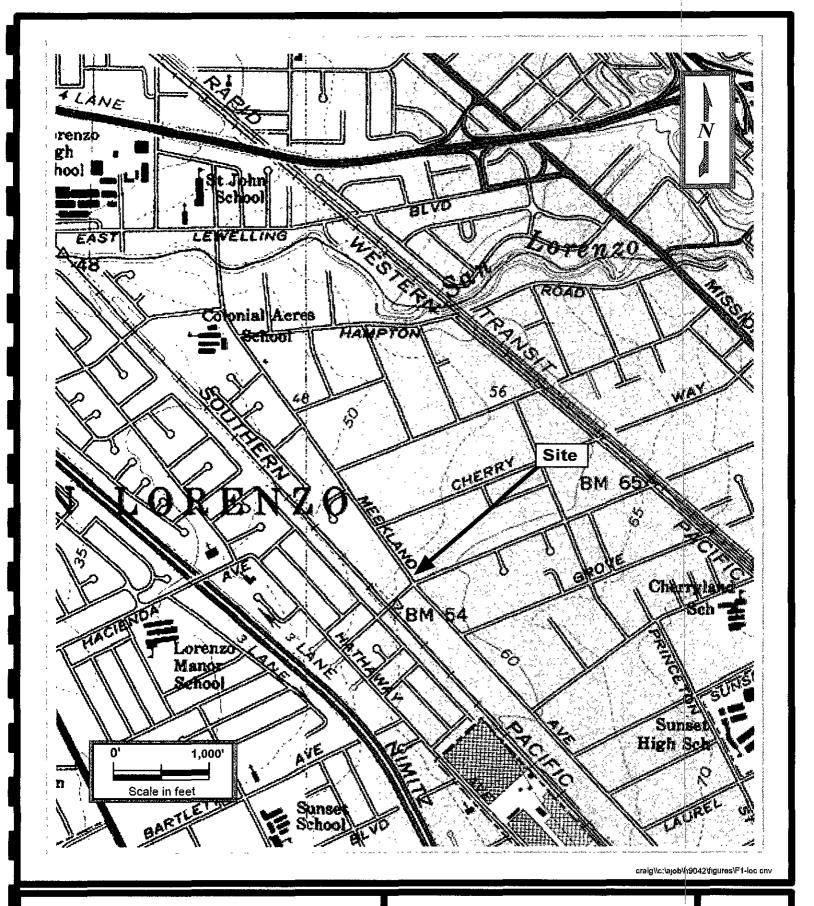
TPH-g = Total Petroleum Hydrocarbons as gasolme. MTBE = Methy - tert - Butyl Ether

F O 's = Fuel Oxygenates = Di-isopropyl chier (DIFE), tortiary Butyl Alcohol (TBA), Ethyl tertiary Butyl Ether (ETBE), tertiary anyl Methyl Ether (TAME)

VOC's = Volathle Organic Compounds. D O = Dissolved Oxygen

ug/L = micrograms per liter, parts per billion; mg/L = milligrams per liter, parts per million

ND = Not Detected at the Practical Quantitation Limit (PQL), <X = Not Detected at the elevated PQL, X PQL elevated because of sample dilution

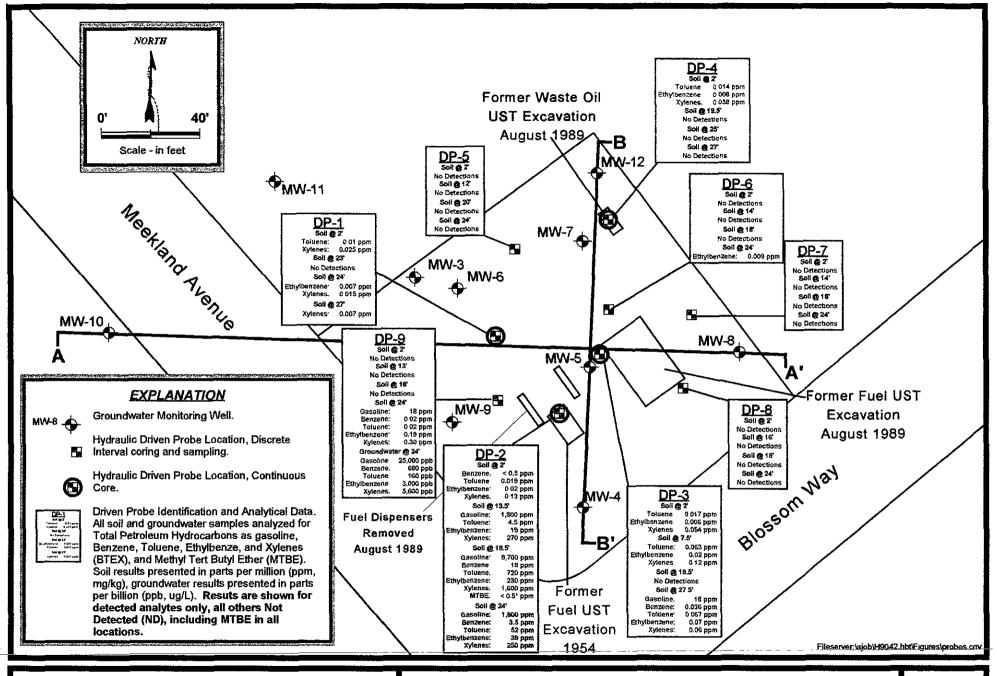

^{-- =} Data not collected or measured, or analysis not conducted

MCL = Maximum Contaminant Level for drinking water in California (Department of Health Services)

^{*} Confirmed by GC/MS method 8260

^{*** =} Secondary MCL / water quality goal ** = Action Level

^{**** =} Laboratory Report indicates results within quantitation range, chromatographic pattern not typical of fuel



Weber, Hayes & Associates dydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

LOCATION MAP

Former Harbert Transportation Facility 19984 Meekland Avenue Hayward, California

Figure Project H9042.Q

Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100 Site Plan with Driven Probe Locations and Soil Sample Analytical Results, February 14, 2001

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California Figure 2 Project H9042

Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, Ca. 95076
(831) 722 - 3580 (831) 662 - 3100

Oriented at North 88 West DP-3 projected 2' north A' MW-5 MW-8 MW-10 hyibenzene ND

Horizontal Scale = 1-inch = 30-feet Vertical Scale = 1-inch = 15-feet

30'

A-A' and B-B' show 2x vertical exaggeration

LEGEND:

Asphalt.

Fat CLAY, very dark grayish brown to dark gray (10 YR 3/2 to 4/1), damp to wet, firm soft to firm, moderate to high plasticity, no dilatency, low toughness, dominantly clay with few fine to medium grained sands.

Sandy CLAY, brown to very dark grayish brown (10 YR 4/3 to 3/2), dry to damp, no to moderate plasticity, no dilatency, mostly clay with some fien to medium grain sands, subangular.

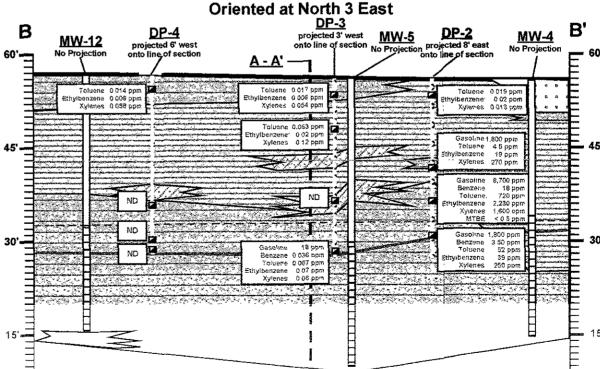
Clavey SAND, color varies, yellowish brown to dark gray (10 YR 3/6 to 5/1), dry to saturated, medium dense, mostly fine grained sands, subangular, 35-40 % clay, slight plasticity.

Poorly Graded SAND with Gravel, fill material. Geologic contact, dashed were inferred.

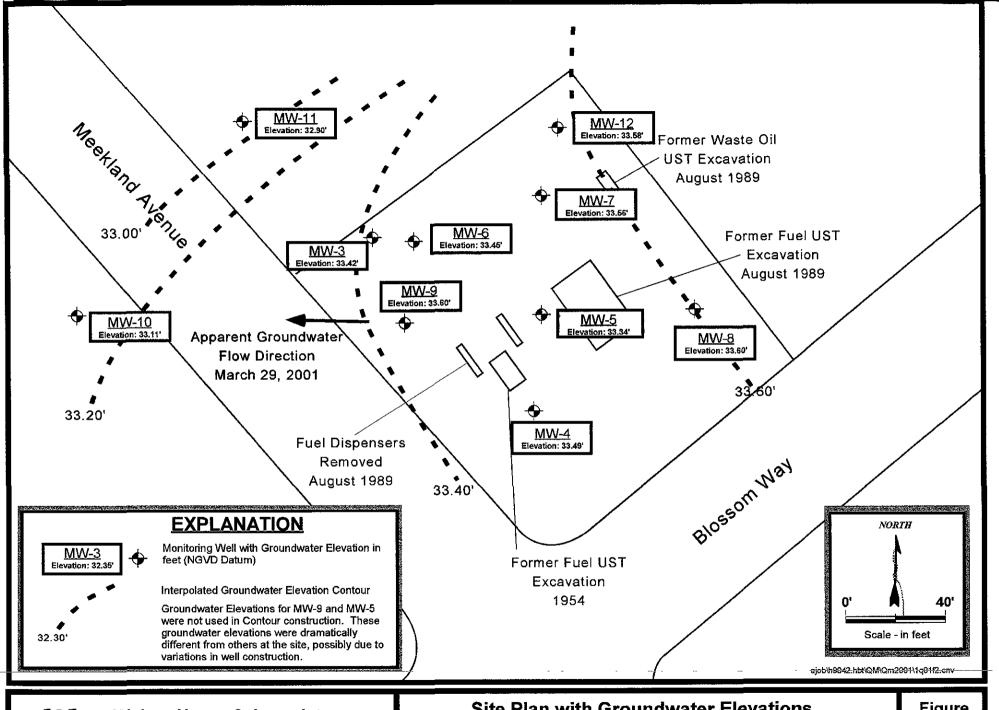
Soil sample analyzed at this depth. Cement Seal, used in sealing driven probe borings.

Excavated Native Soil used as Backfill in UST Excavation

Soil Sample Analytical Results. All soil samples were analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g), Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Methyl Tert Butyl Ether (MTBE). Resuts are shown for detected analytes only, all others Not Detected (ND), including MTBE in all locations.


Monitoring well location, designation, completion depth and screened interval

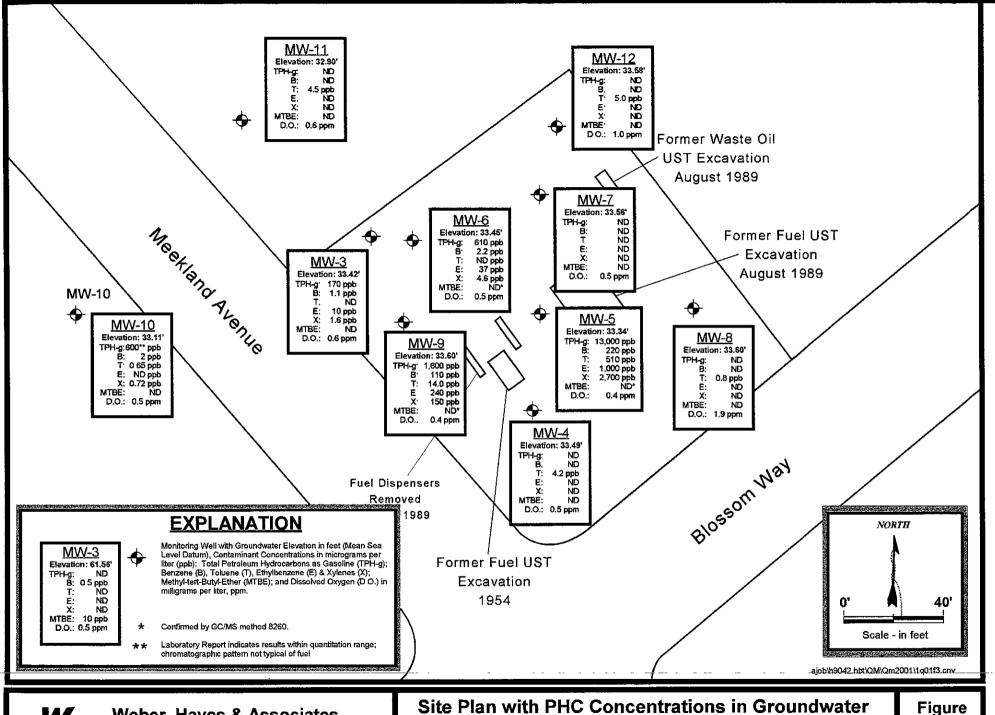
Groundwater elevation in monitoring wells from March 29, 2001 groundwater monitoring event


First Encountered Groundwater elevation from Hydrau ic Driven Probe-investigation. February 14, 2001

Gasoune 1,800 ppm Toluene 45 ppm nyibenzene 19 ppm Xylenes 270 ppm

See Figure 2 for plan view of geologic cross sections A-A and B-B Lithology compiled from Geologic Logs MW 4-5-8-10 and 12 (completed by others), and DP-1-4 All elevations are referenced to National Geodetic Vertical Datum of 1929 Mean Sea Level (MSL)

NOTES

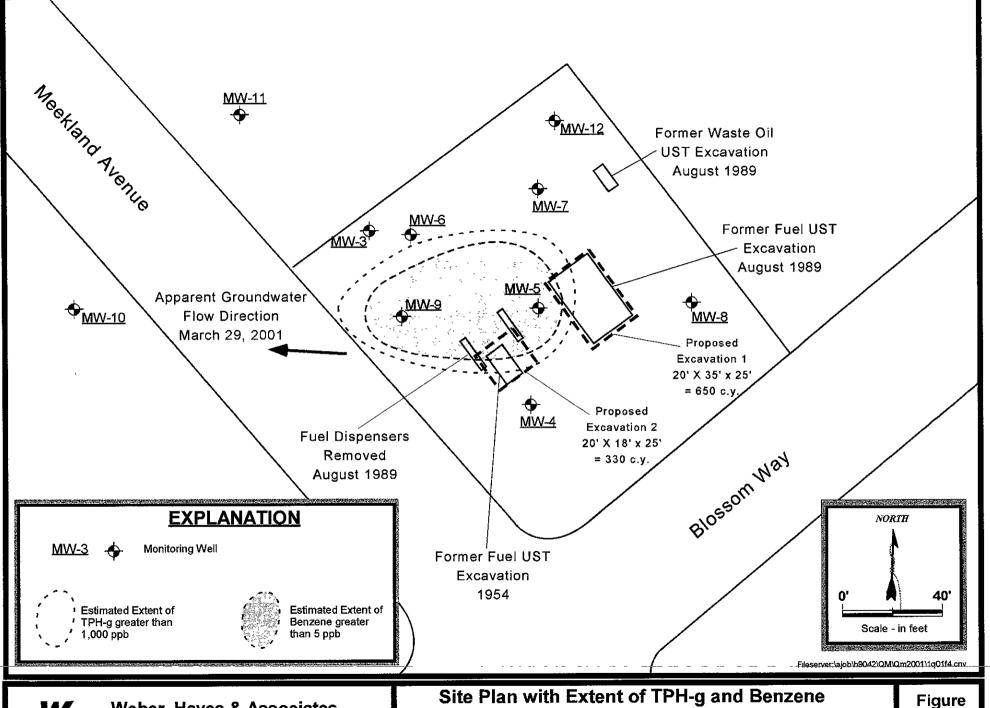


Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

Site Plan with Groundwater Elevations March 29, 2001

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

Figure 4 Project H9042



Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

Site Plan with PHC Concentrations in Groundwater March 29, 2001

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California **Project** H9042

Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100 Site Plan with Extent of TPH-g and Benzene in Groundwater, March 29, 2001

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

Figure 6 Project H9042

Appendix A

Boring Permits

P. 02

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

199 ELMBURST ST. HAYWARD CA. 94544-1195

PHONE (\$10) 6784-1895

MARLON MACALLANES/FRANK CODE (\$10-708-18-8)

FAN (\$10)782-1935

DRILLING PERMIT AI	PPLICATION
FOR APPLICANT TO COMPLETE	for office use
LOCATION OF PROJECT! HAMMARD CALIFORNIA SUSTE	PERMIT NUMBER WOV - 095
For a Street Print	PERMIT CONDITIONS Circles Permit Requirements Apply
CLIENT Name WESTS DE GAS (A % BOYAH FEBRUES Address F.C. BOX 2311 Phone 650 852-462 CHY APTAS CA 710 95001 APPLICANT/CONSULFANT Nums WEBER HAYES AND ASSOCIATES FOR BOYAN FEBRUE Address 1/20 VESTGATE DRIVE Phone 623 722-1356	A. GENERAL i A perint apollondon should be submitted so as to arrive at the ACPWA office five days prior to proposed starting date.
TYPE OF PROJECT Well Construction Cathodic Protection Cathodic Protection Cathodic Protection Cathodic Protection Cathodic Protection	approved date 3. NATER SUPPLY WELLS 1. Minimum surface seal thickness is two lockes of coment grout placed by tremic. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for demostic and industrial
Water Supply Mentioring II Contamination Well Destruction PROPOSED WATER SUPPLY WELL USE New Contamin Comments Mulicipal Of Contamination Elimination Drigation II Contamination Elimination Elimination Drigation II Contamination Elimination Elimination II Contamination Elimination Elimination II Contamination II Cont	rvoits un'est a lesser depth is specially approved. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of current grout placed by trainic. 2. Minimum seal depth for monitoring wells is the
Industrial (1 Other (1) BRILLING METHOD: Mud Rotney (1 Air Rotney (1) Auges (1) Cibia (1) Other M.—Driven Proges	maximum depth practicable or 20 feet. D. DEOTECHNICAL Backhil Sore hole by tremic with comount groun or comum growlessed indicates the control of the cont
ORILLER'S NAME ENVIOLAMENTAL CANTRIL ASSOCIATES ORILLER'S LICENSE NO. C-57: 695970	or with compacted entangs. E. CATHODIC Fill hale anode zone with congreta placed by remix. F. WELL DESTRUCTION
Exp. 9-30-02	See attacted requirements for destruction of shallow wells. Send a map of work site. A different permit apprication is required for wells deeper than 45 feet. G. SPECIAL CONDITIONS
WELL PROJECTS Dell Role Districts In. Maximum Craing Blanoter in. Dopth ft. Surface Seal Dupth ft. Owner's Well Number	NOTE: One application must be submitted for each well or well destruction. Multiple borings on one application are conspicable
CECTECHNICAL PROJECTS Number of Burings Holo Djumeter 1.75 in. Depth 235 it.	rapid chite-zmoi
ESTIMATED STARTING DATE 2 14 01 CM	APPROVED DATE 2-60
I horeby agree to comply with all conditions of this pormit and Alameda County Ordinane APPLICANT'S SIGNATURE FOR FORMAN THE BOAN SOPER DATE (73)	6 No. 73-68.
PLEASE PRINT NAME AGON BIErra () WESTER HOME BOWS IN	in

Appendix B

Soil Sampling Methodology

Appendix B

Soil Sampling Methodology

The exploratory borings were vibrated/hydraulically driven using 4-foot long Geo-Probe nickel-plated sampling probes fitted with clear acetate liners. No drill cuttings were produced using the Geo-Probe system, since the unit is hydraulically pushed into the soil. This sampling device allows for either continuous or discrete sampling.

Soil samples were obtained for lithologic logging purposes and possible laboratory analysis. The soil samples were logged by an experienced geologist or engineer using the Unified Soil Classification System (USCS). An Organic Vapor Analyzer (Photoionization Detector - PID) was used during drilling for site safety purposes and for field screening soil samples for the presence of volatile organic compounds. Vapor readings in parts per million (ppm) were recorded on the boring logs.

For a discrete core sample, the sampler remained completely sealed by using a closed piston stop-pin while it is pushed or driven to the desired sampling depth. Once at the desired depth, the piston stop-pin at the top end of the sampler was removed by means of extension rods inserted down the inside diameter of the probe. The extension rods were manually controlled from the surface and enabled the driller to open the piston. Once the piston was open and extension rods were removed, the piston was retracted into the sample probe as the probe was driven to collect the sample. For continuous sampling the sampler remained open as it was driven into undisturbed soil for it's entire 4-foot length.

At this site both discrete and continuous samples were collected with the Geo-probe sampler. Materials retrieved by the sampler were logged by the field geologist, noting in particular the lithology of the soils, moisture content, and any unusual odor or discoloration. After examination, the liner containing undisturbed soils was cut at the desired sample interval (based on odor, discoloration, and/or the approved sampling plan) with a decontaminated blade. The sample was protected at both ends with Teflon tape, sealed with non-reactive caps, taped, and immediately stored in an insulated container cooled with blue ice. Selected samples were transported under appropriate chain-of-custody documentation to a State certified laboratory for analysis.

The remaining portion of the sample was stored in a sealed plastic bag for field screening of hydrocarbon odors and/or volatile organic compounds by the PID.

Upon completion of drilling, the exploratory boreholes were grouted according to county regulations with a county inspector onsite.

All drilling equipment was steam cleaned prior to arriving on site to prevent possible transfer of contamination from another site. The sampling probe and all other soil sampling equipment were thoroughly cleaned between each sampling event by washing in a Liqui-Nox or Alconox solution followed by a double rinsing with distilled water to prevent the transfer of contamination.

All soil sampling and handling protocol followed the guidelines presented in the October 1989 revision of the State Water Resources Control Board *LUFT Field Manual*.

Appendix C

Boring Logs

Geologic Symbols and Terms

	Major Divisions	Sy	mbols	Descriptions
		gw 🚻		Well Graded Gravels, little or no fines
	Gravels (More than 1/2 of	GP		Poorly Graded Gravels, little or no fines
Soils	coarse fraction > no. 4 sieve size)	GM		Silty Gravels, gravel-silt mixtures
ined 9		GC		Clayey Gravels, gravel-clay mixtures
e Grai		sw		Well Graded Sand, little to no fines
Coarse Grained Soils	Sands (More than 1/2 of coarse fraction < no. 4 sieve size)	SP		Poorly Graded Sand
		SM		Silty Sand, sand-silt mixtures
		sc		Clayey Sand, sand-clay mixtures
oils	Silts and Clays	ML		Silt or Very Fine Sands, rock flour, with slight plasticity
sed Sc	Liquid Limit < 50%	CL		Inorganic Clay with high plasticity, lean clay
Fine Grained Soils	Silts and Clays	мн		Inorganic Sandy Clay or Silt, elastic silts
Fine	Liquid Limit > 50%	СН		Inorganic Sandy Clay or Silt, with high plasticity, fat clays

Symbols and Terms

- First encountered groundwater

- Stabilized groundwater

- Stabilized groundwater

- Sample interval

Trace = < 5%
Few = 5 - 10%
Little = 15 - 20%
Some = 30 - 45%
Dominantly = > 50%

- Soil sample sent to laboratory for targeted analysis

- Water sample sent to laboratory for targeted analysis

SOIL DENSITY/CONSISTENCY								
SANDS & GRAVELS	BLOWS/FT.	SILTS & CLAYS	BLOWS/FT.					
VERY LOOSE	0 - 4	VERY SOFT	0-2					
LOOSE	4 - 10	SOFT	2 - 4					
MED. DENSE	10 - 30	FIRM	4 - 8					
DENSE	30 - 50	STIFF	8 - 16					
VERY DENSE	> 50	VERY STIFF	16 - 32					
		HARD	> 32					

Well Construction Details:

- Bentonite Seal

- Filter Pack

- Cement Seal

- Screened Interval

Blow count is the number of blows required to drive a 2-inch diameter California Modified Split-Spoon Sampler the last 12 inches of an 18 inch sample interval by a 140-pound hammer free-falling 30 inches.

ags = above ground surface bgs = below ground surface

PID = Photo-Ionization Detector ppmv = parts per million by volume

USCS = Unified Soil Classification System

GEOLOGIC LOG

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California

LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

DP-1

Sheet 1 of 2

DP-1a DP-1a DP-1a DP-1a DP-1a DP-1a DP-1a DP-1b DP-1b DP-1c Thin lenses of fine grained sands with some clays. Thin lenses of fat clays with trace sands. DP-1b DP-1c Thin lenses of fat clays with trace sands. DP-1c DP-1c DP-1c Thin lenses of fat clays with trace sands. DP-1c Thin lenses of fat clays with trace sands. DP-1c DP-1c								
DP-1a DP-1a DP-1a DP-1a DP-1a DP-1a DP-1b DP-1b DP-1b DP-1c DP	Depth (feet)	Sampling Interval	Sample Analyzed	&	Groundwater Depth	Lithologic Pattern	uscs	(Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, HC odor.)
DP-1b DP-1b DP-1c CL Sandy CLAY, brown (10 YR 4/3), damp, moderate plasticity, no dilatency, contains some subrounded sands, no odor, no dilatency, contains some subrounded sands with some clays. Thin lenses of fat clays with trace sands. DP-1d DP-1f DP-1g DP-1g DP-1g DP-1g DP-1g DP-1g DP-1h DP-1h				DP-1a				Fat CLAY, very dark grayish brown (10 YR 3/2), moist to wet, firm, moderate to high plasticity, no dilatency, low toughness, dominantly clay with few fine grained sands, subrounded grains,
DP-1d DP-1d DP-1d DP-1e DP-1e DP-1f - Thin lenses of fine grained sands with some clays. Thin lenses of fat clays with trace sands. - Thin lenses of fat clays with trace sands. - Thin lenses of fat clays with trace sands. - Color change to gray (10 YR 4/1) associated with hydrocarbon contamination, moderate hydrocarbon odor. - Color change to gray (10 YR 4/1), damp to moist, soft, very high planting in the property of the planting in the property of the planting in the property of the planting in the planting	5 - 6 - 7 - 7 -			DP-1b			CL	Sandy CLAY, brown (10 YR 4/3), damp, moderate plasticity, no dilatency, contains some subrounded sands, no odor, no
DP-1d DP-1e DP-1e DP-1f DP-1g	⊦			DP-1c				
DP-1f DP-1f Color change to gray (10 YR 4/1) associated with hydrocarbon contamination, moderate hydrocarbon odor. CH Eat CLAY, dark -gray (10 YR 4/1), damp to moist, soft, very high plasticity, no dilatency, low toughness, trace sands, discolored due to hydrocarbons, moderate to high odor. DP-1g DP-1g DP-1h DP-1h	-13 - -13 - -14 - -15 -			DP-1d				- Thin lenses of fine grained sands with some clays.
DP-1f Color change to gray (10 YR 4/1) associated with hydrocarbon contamination, moderate hydrocarbon odor. CH DP-1g DP-1g DP-1g DP-1g DP-1g DP-1h DP-1h				DP-1e				- Thin lenses of fat clays wiht trace sands.
DP-1g	-21 - -21 - -22 -			DP-1f		**************************************		contamination, moderate hydrocarbon odor.
DP-1g DP-1h DP-1h	 24 -			DP-1g	▼		СН	plasticity, no dilatency, low toughness, trace sands, discolored
	- 27 - - 28 - - 29 -	<u> </u>		-	•		10, 2016 adds 100 ages 400 ages 400 ages 500 ag	- Moisture increase to wet, groundwater encountered.
	- -30 -	<u> </u>						

GEOLOGIC LOG

Exploratory Borehole

JOB NO.: H9042.B

CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California

DATE: February 14, 2001

LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

DP-1

Sheet 2 of 2

Depth (feet)	Sample Analyzed	. OAV nata (bbwa)	Groundwater Depth	Lithologic Pattern	USCS	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, HC odor.)
31 - 32 - 33 -		DP-1h			СН	Fat CLAY, dark-gray (10 YR 4/1), damp to moist, soft, very high plasticity, no dilatency low toughness, trace sands, discolored due to hydrocarbons, moderate to high odor.
34	1				sc	Poorly Graded Clayey SANDS, gray (10 YR 5/1), wet, medium dense, slight plasticity, fine grained sands, sub rounded, 30% clays, discoloration, moderate to high odor.
35 - 36 - 37 - 38 -		DP-1i			CH	Fat CLAY, brown (10YR 5/4), damp, moderate plasticity, no dilatency, contains few to some sands, no odor, no discoloration.
39 -		DP-1j			e word name a same was a man grown to the same a same a same a same and a same	
42 - 43 - 44 - 45 - 45 - 45 - 45		DP-1k				
46 —	•					Boring terminated at 46 feet bgs. Backfill with Portland Cement Slurry to ground surface.

GEOLOGIC LOG

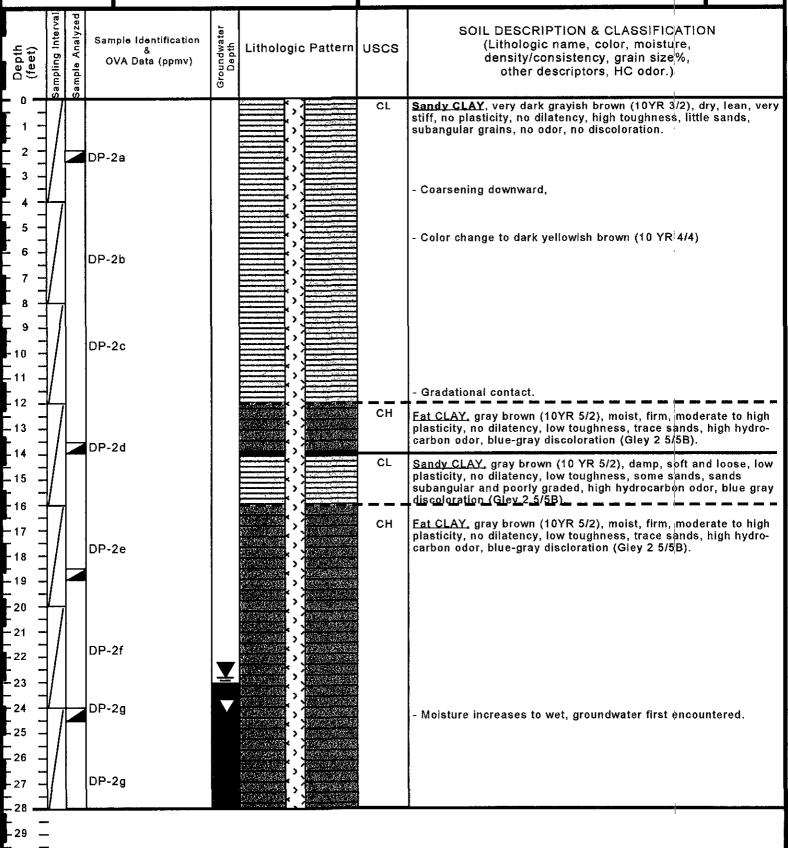
Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California

LOGGED BY: C. Taylor SAMPLED BY: C. Taylor


DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

DP-2

Sheet 1 of 1

30

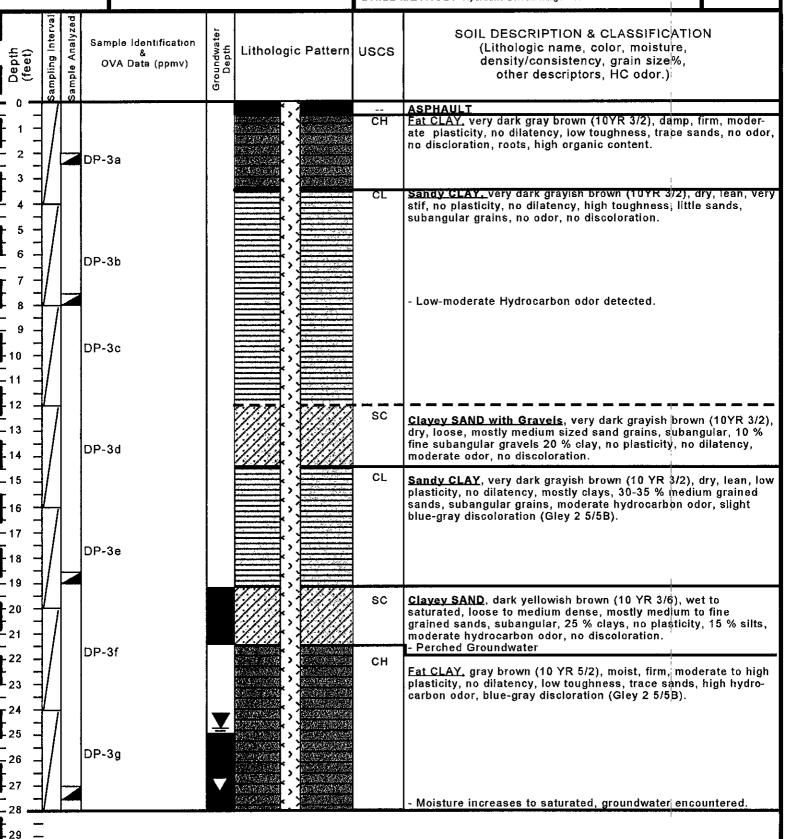
GEOLOGIC LOG

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California LOGGED BY: C. Taylor SAMPLED BY: C. Taylor


DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

DP-3

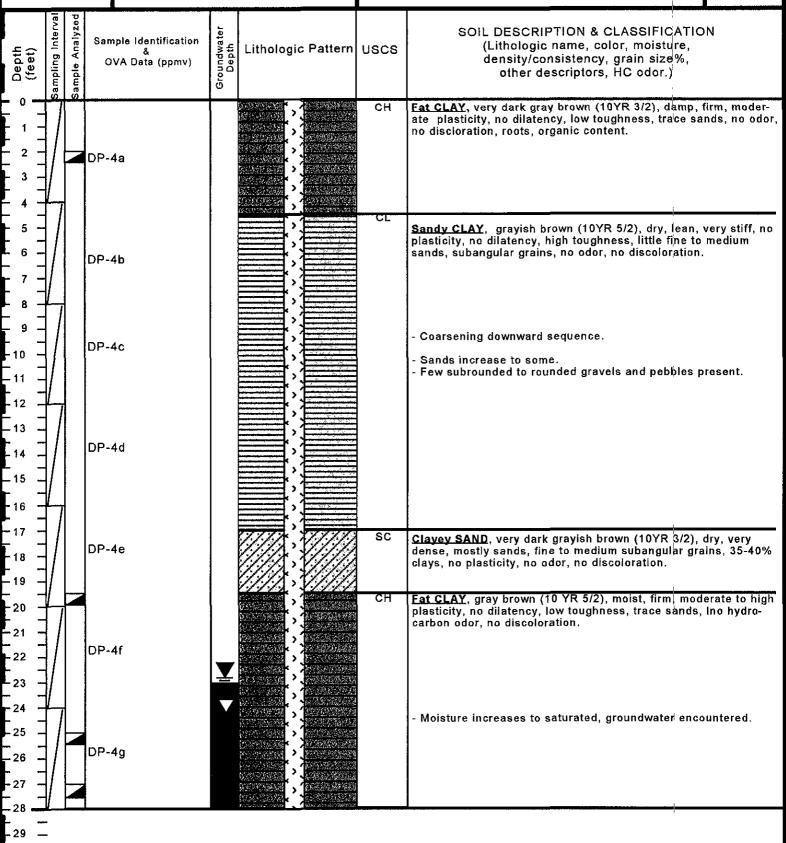
Sheet 1 of 1

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

CLIENT: Harbert Transportation


LOCATION: 19984 Meekland Avenue, Hayward, California

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

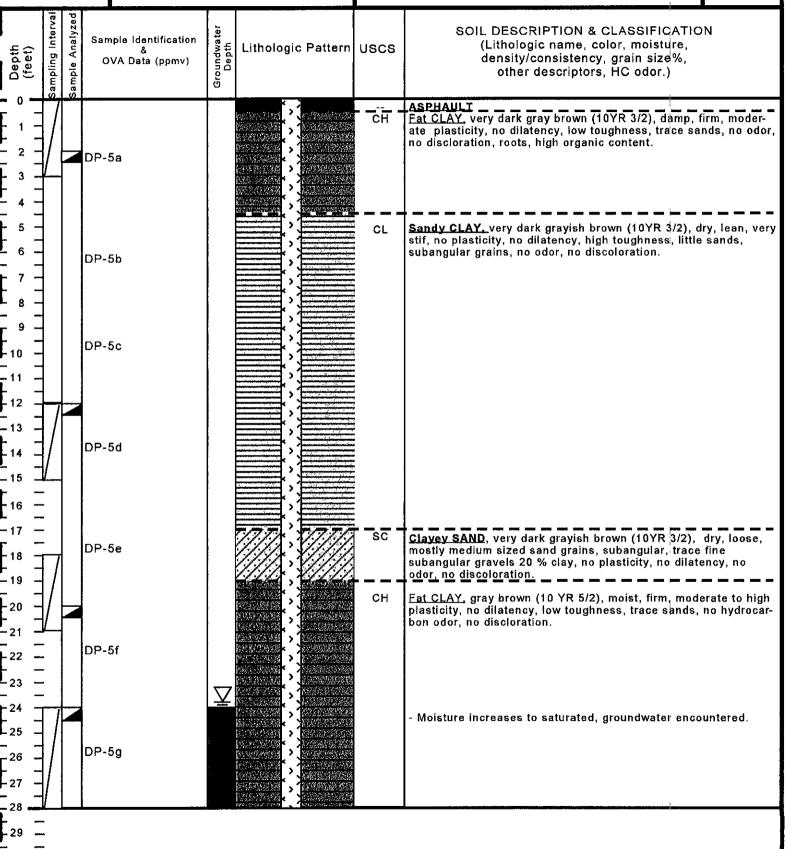
BORING #

DP-4

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001 CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California


LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

DP-5

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

DP-6

			DRILL	METHOD: Hydraulic Driven Large Bore and Macro-Core Probes
E & ~ S	Grandwater (bbms) Soundwater (beth	Lithologic Pattern	uscs	SOIL DESCRIPTION & CLASSIFICATION (Lithologic name, color, moisture, density/consistency, grain size%, other descriptors, HC odor.)
DP-	6a		CH	<u>Fat CLAY</u> , very dark gray brown (10YR 3/2), damp, firm, moderate plasticity, no dilatency, low toughness, trace sands, no odor, no discloration, roots, high organic content.
DP-	-6b		CL	Sandy CLAY, very dark grayish brown (10YR 3/2), dry, lean, very stif, no plasticity, no dilatency, high toughness, little sands, subangular grains, no odor, no discoloration.
9 - -10 - -11 - -12 -	-6c			
13 - 14 - 15 - 16 -	-6d			
-17 - -18 - -19 - -20 -	-6e			
DP-	-6f	; ; ;	CH	Fat CLAY, gray brown (10 YR 5/2), moist, firm, moderate to high plasticity, no dilatency, low toughness, trace sands, no hydrocarbon odor, no discloration.
DP. 25 — DP. 26 — — — — — — — — — — — — — — — — — — —	-6g			- Moisture increases to saturated, groundwater encountered.
- 28 - - 29 - - 30 -				

- 30

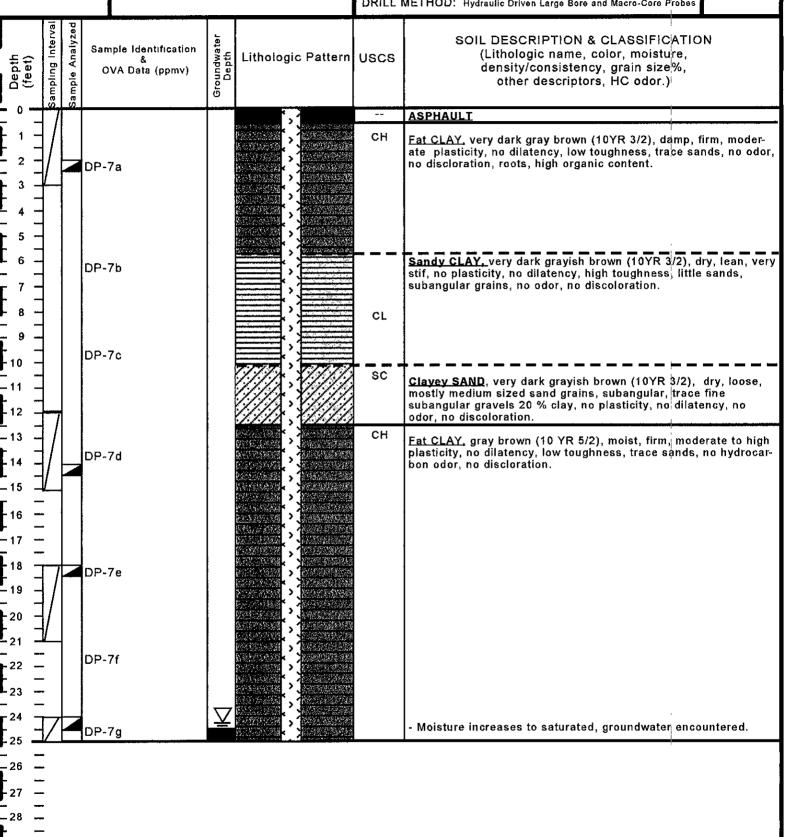
GEOLOGIC LOG

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California


LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

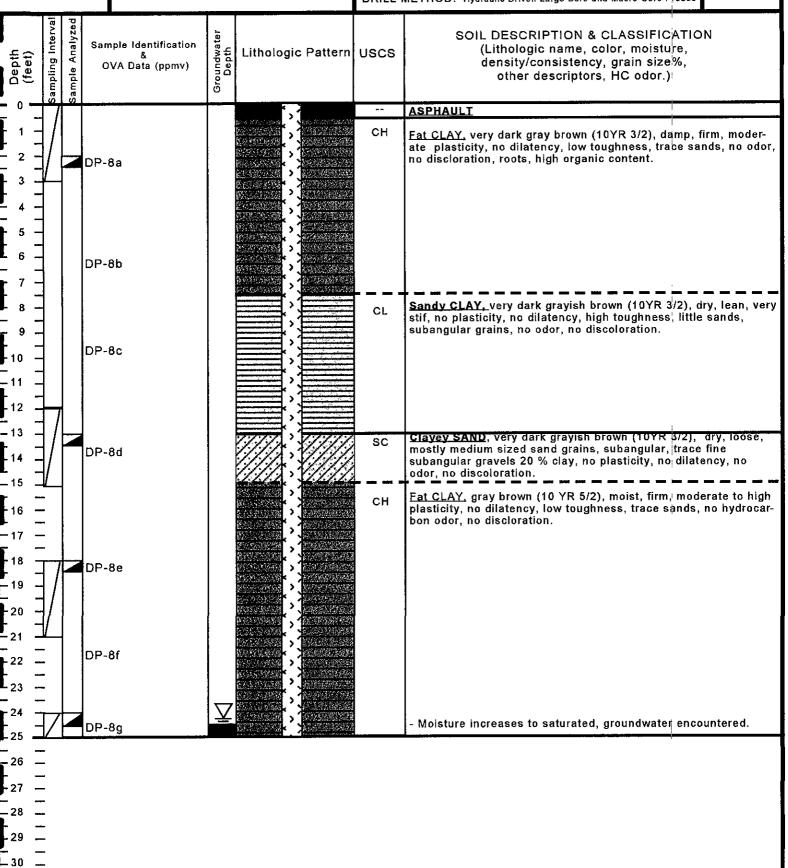
DP-7

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

CLIENT: Harbert Transportation

LOCATION: 19984 Meekland Avenue, Hayward, California


LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

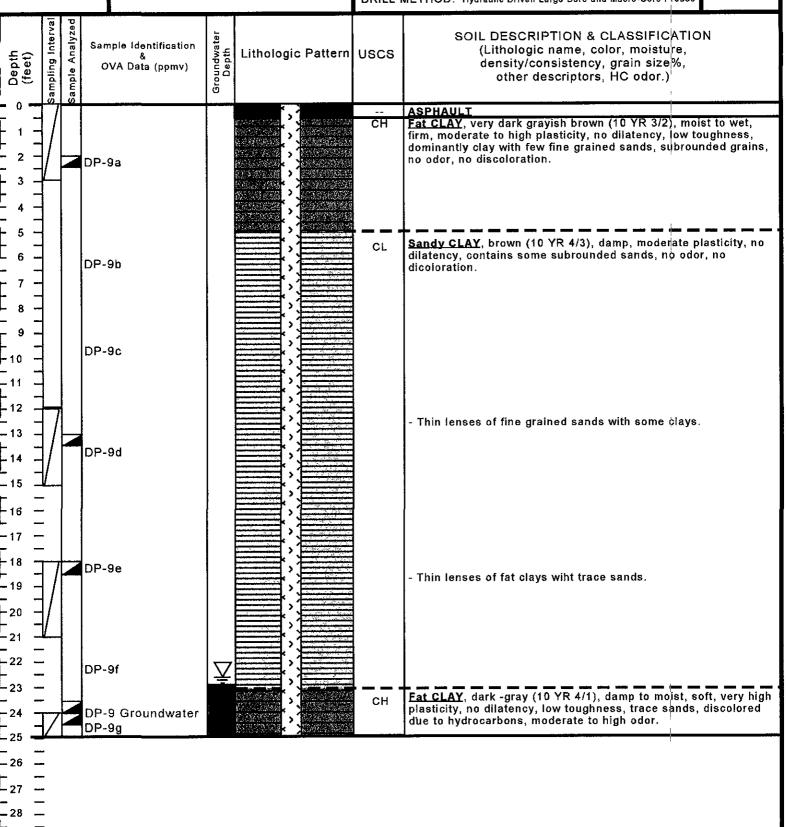
BORING #

DP-8

Exploratory Borehole

JOB NO.: H9042.B DATE: February 14, 2001

CLIENT: Harbert Transportation


LOCATION: 19984 Meekland Avenue, Hayward, California LOGGED BY: C. Taylor SAMPLED BY: C. Taylor

DRILLER: En Probe (Dennis)

DRILL METHOD: Hydraulic Driven Large Bore and Macro-Core Probes

BORING #

DP-9

Additional Site Assessment Report and Groundwater Monitoring - First Quarter 2001 19984 Meekland Avenue, Hayward, California June 18, 2001

Appendix D

Certified Analytical Report - Soil Samples

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes & Associates

MAR 1 1 2001

ECEIVE

March 01, 2001

Chad Taylor Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076

Order: 24432

Project Name: Harbert Transportation

Date Collected: 2/14/01 Date Received: 2/15/01

P.O. Number:

Project Number: H9042.B

Project Notes:

On February 15, 2001, samples were received under documentented chain of custody. Results for the following analyses are attached:

Method <u>Matrix</u> EPA 8260B MTBE by EPA 8260B Liquid EPA 8260B Solid

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Michelle L. Anderson Lab Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 03/01/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Client Sample ID: DP-2d **Order ID: 24432** Lab Sample ID: 24432-006 Matrix: Solid Sample Time: Sample Date: 2/14/01 Analysis Date OC Batch ID Method Flag DF MDL DLR Units Result Parameter SMS2010222 EPA 8260B Methyl-t-butyl Ether ND 50 0.5 25 μg/Kg 2/27/01

Comment:

Sample diluted due to high concentrations of non-target hydrocarbons.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director Environmental Analysis Since 1983

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 03/01/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sam	ple ID:	24432-0	07	Clie	nt Sample ID:	DP-2e	Í
Sample Time:		Sampl	e Date:	2/14/01			Matrix:	Solid	
Parameter	Result	Flag	ÐF	MDL	DLR	Units	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1000	0.5	500	μg/Kg	2/27/01	SMS2010222	EPA 8260B

Comment: Sample diluted due to high concentrations of non-target hydrocarbons.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 03/01/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432 Lab Sample ID: 24432-008 Client Sample ID: DP-2g Matrix: Solid Sample Time: **Sample Date: 2/14/01** Parameter Result Flag DF MDL DLR Units Analysis Date QC Batch ID Method 100 2/27/01 SMS2010222 EPA 8260B ND 0.5 50 μg/Kg Methyl-t-butyl Ether

Comment:

Sample diluted due to high concentrations of non-target hydrocarbons

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 03/01/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Client Sample ID: DP-3g

Lab Sample ID: 24432-012 Order ID: 24432

Sample Time:		Sampl	e Date:	2/14/01			Matrix:	Solid	
Parameter Methyl-t-butyl Ether	Result ND	Flag	DF 1	PQL 5	DLR 5	Units µg/Kg	Analysis Date 2/27/01	QC Batch ID SMS2010222	Method EPA 8260B
	Surrogate	e		Surroga	te Recover	y	(%)	Ī	
	4-Bromofluorobenzene		e		89		65 - 135		1
	Dibromof	luoromethan	e		95		65 - 135		!
	Toluene-d	18			97		65 - 135		:

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 03/01/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sam	ple ID:	24432-0	36	Clie	Client Sample ID: DP-9g				
Sample Time:		Sampl	e Date:	2/14/01			Matrix:	Solid			
Parameter	Result	Flag	DF	MDL	DLR	Units	Analysis Date	QC Batch ID	Method		
Methyl-t-butyl Ether	ND		5	0.5	2.5	μg/Kg	2/27/01	SMS2010222	EPA 8260B		
	Surrogat	e		Surrogat	te Recover	y	Control Limits	(%)			
	4-Bromof	luorobenzene	•		88		65 - 135				
	Dibtomof	luoromethan	e		92		65 - 135				
	Toluene-d	8			98		65 - 135				

Comment:

Sample diluted due to high concentrations of non-target hydrocarbons

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Order ID: 24432

Date: 03/01/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Client Sample ID: DP-9

Lab Sample ID: 24432-037

DLR

3

MDL

0.3

Matrix: Liquid

Sample Time:

Methyl-t-butyl Ether

Sample Date: 2/14/01

DF

10

Units μg/L

Analysis Date 2/27/01

QC Batch ID WMS2010226

Method **EPA 8260B**

Comment:

Parameter

Sample diluted due to high concentrations of non-target hydrocarbons.

Flag

Result

ND

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis per formed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

February 22, 2001

Chad Taylor Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076

Order: 24432

Date Collected: 2/14/01

Project Name: Harbert Transportation

Date Received: 2/15/01

Project Number: H9042.B

P.O. Number:

Project Notes:

On February 15, 2001, samples were received under documentented chain of custody. Results for the following analyses are attached:

Matrix

Liquid Gas/BTEX/MTBE EPA 8015 MOD. (Purgeable)

EPA 8020

Solid

EPA 8015 MOD. (Purgeable)

EPA 8020

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Michelle L. Anderson

Lab Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-001		Client Sam	ple ID: DP-	·1a	! !
Sample Time:		Sam	ple Dat	e: 2/14/	01		I	Matrix: Soli	d	i i
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0 005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	0.010		1	0.005	0 005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	0.025		1	0 005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		108	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0 05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surre	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		108	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	-			65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-002		Client Sam	ple ID: DP-	·1f	
Sample Time:		Sam	ple Dat	te: 2/14/	01		ľ	Matrix: Soli	d	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	otoluene		96	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surre	ngate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	otoluene		96	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		106	6:	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

100

Certified Analytical Report

Order ID: 24432 Lab Sample ID: 24432-003 Client Sample ID: DP-1g @ 24

Order ID: 24432		Lab Sa	impie II	D: 2443	2-003		Chent Sam	ipie id: DP-	-1g @ 24	
Sample Time:		Sam	ple Dat	e: 2/14/	01			Matrix: Sol	id	į J
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Tolucne	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Ethyl Benzenc	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Xylenes, Total	0.007		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluore	otoluene		102	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
,					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		102	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	/ Contro	Limits (%)

aaa-Trifluorotoluene

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

65 - 135

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-004		Client San	i ple ID: Di	P-1g @ 27'		
Sample Time:		Sam	ple Da	te: 2/14/	01			Matrix: Sc	olid		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Đate	QC Batch ID	Method	
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020	
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020	
Ethyl Benzene	0.007		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020	
Xylenes, Total	0.015		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020	
					Surrog	ate	Surr	ogate Recover	ry Contr	ol Limits (%)	
				aa	a-Trifluoro	otoluene		96	65	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020	
•					Surrog	ate	Surr	ogate Recove	ry Contr	ol Limits (%)	
				aa	a-Trifluoro	otoluene		96	65	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8015 MOD (Purgeable)	
					Surrog	ate	Surr	ogate Recove	ry Contr	ol Limits (%)	
				aa	a-Trifluoro	porotoluene 88			65 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432 Sample Time:			mple I	D: 2443	2-005		Client Sam	ple ID: DP-	2a	
Sample Time:		Sa						I		
Dumbie rimer		Sam	ple Dat	e: 2/14/	01		I	Matrix: Soli	d	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Toluene	0.019		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Ethyl Benzene	0 020		1	0.005	0 005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Xylenes, Total	0.13		1	0.005	0 005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
					Surrog	ate	Surre	ogate Recovery	Control	Limits (%)
				aaa	a-Trifluoro	otoluene		118	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
•					Surrog	ate	Surre	ogate Recovery	Control	Limits (%)
				aaa	a-Trifluoro	otoluene		118	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ИD		1	1	1	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Control	Limits (%)
				aaa	a-Trifluore	otoluene		114	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	ımple I	D: 24432	2-006		Client Sam	ple ID: DP	2d	
Sample Time:		Sam	ple Dat	e: 2/14/	01		1	Matrix: Soli	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1000	0.0005	0.5	mg/Kg	N/A	2/16/01	SGC4010216	EPA 8020
Toluene	4.5		1000	0.0005	0.5	mg/Kg	N/A	2/16/01	SGC4010216	EPA 8020
Ethyl Benzene	19		1000	0.0005	0.5	mg/Kg	N/A	2/16/01	SGC4010216	EPA 8020
Xylenes, Total	270		1000	0.001	1	mg/Kg	N/A	2/16/01	SGC4010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aaa	ı-Trifluoro	otoluene		78	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1000	0.005	5	mg/Kg	N/A	2/16/01	SGC4010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aas	a-Trifluoro	otoluene		78	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	1800		1000	0.050	50	mg/Kg	N/A	2/16/01	SGC4010216	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				aaa	a-Trifluoro	otoluene		71	6:	5 - 135

Comment:

Sample required methanol extraction due to high concentrations of target hydrocarbons.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24	1432	Lab Sa	mple II	D: 2443	2-007		Client Sam	ple ID: DP	-2e	
Sample Time:		Sam	ple Dat	e: 2/14/	01			Matrix: Sol	id	<u> </u>
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	18		5000	0.0005	2.5	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020
Toluene	720		5000	0.0005	2 5	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020
Ethyl Benzene	230		5000	0.0005	2.5	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020
Xylenes, Total	1600		5000	0.001	5	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aaa	a-Trifluoro	otoluene		94	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		5000	0.005	25	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020
, , , , , , ,					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aaa	a-Trifluoro	otoluene		94	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	8700		5000	0.050	250	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aaa	a-Trifluor	otoluene		95	65	- 135
Comment: Sa	ample required metha	nol extrac	tion due to	o high conc	entrations	of target	hydrocarbons.			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Člara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	ample I	D: 2443	2-008		Client Sam	ple ID: DP-	2g		
Sample Time:		Sam	ıple Dat	e: 2/14/	01	Matrix: Solid					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	3.5		2500	0.0005	1.25	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020	
Toluene	52		2500	0.0005	1.25	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020	
Ethyl Benzene	39		2500	0.0005	1.25	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020	
Xylenes, Total	250		2500	0.001	2.5	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020	
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)	
				aaa	a-Trifluoro	otoluene		96	6:	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		2500	0.005	12.5	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8020	
,					Surrog		Surr	ogate Recovery	Conti	ol Limits (%)	
				aaa	a-Triffuoro	otoluene		96	6:	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Gasoline	1800		2500	0.050	125	mg/Kg	N/A	2/17/01	SGC4010216	EPA 8015 MOD (Purgeable)	
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)	
				aaa	a-Trifluor	otoluene		89	6:	5 - 135	

Comment:

Sample required methanol extraction due to high concentrations of target hydrocarbons.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-009		Client Sam	ple ID: DP-	-3a	
Sample Time:		Sam	ple Dat	te: 2/14/	01		I	Matrix: Soli	id	:
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Toluene	0.017		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Ethyl Benzene	0.006		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Xylenes, Total	0.054		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluore	otoluene		118	65	135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0 05	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
,,. ·, ·					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		118	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8015 MOI (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		123	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-010		Client Sam	ple ID: DP-	·3b	
Sample Time:		Sam	ple Dat	te: 2/14/	01		I	Matrix: Soli	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0 005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	0.063		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	0.020		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	0.12		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ť					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluor	otoluene		93	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
• •					Surrog	ate	Surre	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro			93	65	• •
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluor	otoluene		104	6:	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Attn: Chad Taylor

Watsonville, CA 95076

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

									!
	Lab Sa	mple I	D: 2443	2-011		Client Sam	ple ID: DP-	-3e	!
	Sam	ple Dat	te: 2/14/	01		ĺ	Matrix: Sol	id	
Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ND		1	0.005	0.005	mg/Kg	N/A	2/22/01	SGC1010216	EPA 8020
ИD		1	0.005	0.005	mg/Kg	N/A	2/22/01	SGC1010216	EPA 8020
ND		1	0.005	0.005	mg/Kg	N/A	2/22/01	SGC1010216	EPA 8020
ND		1	0 005	0.005	mg/Kg	N/A	2/22/01	SGC1010216	EPA 8020
				Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
			aa	a-Trifluoro	otoluene		99	65	- 135
Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ND		1	0.05	0.05	mg/Kg	N/A	2/22/01	SGC1010216	EPA 8020
				Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
			aa	a-Trifluoro	otoluene		99	65	- 135
Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ND		1	1	1	mg/Kg	N/A	2/22/01	SGC1010216	EPA 8015 MOD. (Purgeable)
				Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
			aa	a-Trifluor	otoluene		111	65	- 135
	ND ND ND ND Result	Result Flag ND ND ND ND ND ND ND ND ND Result Flag ND	Result Flag DF ND 1 ND	Lab Sample ID: 2443 Sample Date: 2/14/ Result Flag DF PQL ND	Lab Sample ID: 24432-011 Sample Date: 2/14/01 Result Flag DF PQL DLR ND	Lab Sample ID: 24432-011 Sample Date: 2/14/01 Result Flag DF PQL DLR Units	Result Flag DF PQL DLR Units Extraction Date	Lab Sample ID: 24432-011 Client Sample ID: DP-Sample Date: 2/14/01 Matrix: Solidaria: Solidar	Lab Sample ID: 24432-011 Client Sample ID: DP-3e

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D : 2443	2-012		Client Sam	ple ID: DP-	3g	
Sample Time:		Sam	ple Da	te: 2/14/	01		I	Matrix: Soli	d	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	0.036		25	0.0005	0.0125	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Toluene	0.067		25	0.0005	0.0125	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Ethyl Benzene	0.070		25	0.0005	0.0125	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
Xylenes, Total	0.060		25	0.001	0.025	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
•					Surroga	ate	Surr	ogate Recovery	Conti	rol Limits (%)
				aa	a-Trifluoro	toluene		87	6	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		25	0.005	0.125	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8020
• ,					Surroge	ate	Surr	ogate Recovery	Conti	rol Limits (%)
				aa	a-Trifluoro	toluene		87	6.	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	18		25	0.050	1 25	mg/Kg	N/A	2/20/01	SGC4010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Cont	rol Limits (%)
				aa	a-Trifluoro	toluene		79	6	5 - 135

Comment:

Sample required methanol extraction due to high concentrations of target hydrocarbons.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-013		Client Sam	iple ID: DP-	4a	
Sample Time:		Sam	ple Da	te: 2/14/	01]	Matrix: Soli	id	!
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	0.014		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	0.008		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	0.058		1	0.005	0 005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluoro	otoluene		119	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/K.g	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog		Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		119	65	- 135
Parameter	Result	Fing	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluore	otoluene		134	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-014		Client Sam	ple ID: DP-	4e	
Sample Time:		Sam	ple Dat	e: 2/14/	01		Ι	Matrix: Soli	d	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Conti	rol Limits (%)
				aa	a-Trifluoro	otoluene		90	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Contr	rol Limits (%)
				aa	a-Trifluoro	otoluene		90	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Conti	rol Limits (%)
				aa	a-Trifluor	otoluene		110	6	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-015		Client Sam	ple ID: DP	-4g @ 25'	
Sample Time:		Sam	ple Dat	te: 2/14/	01]	Matrix: Sol	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluenc	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluoro	otoluene		110	65	- 135
Parameter -	Result	Flag	ÐF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
••••••••••••					Surrog		Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluoro	otoluene		110	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluore	otoluene		133	65	- 135

DF = Dilution Factor ND = Not Detected DLR = Detection Limit Reported PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-016		Client Sam	ple ID: DP-	-4g @ 27'	
Sample Time:		Sam	ple Dat	te: 2/14/	01		1	Matrix: Soli	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0 005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surre	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	otoluene		87	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	otoluene		87	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surre	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		90	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

					•					.i
Order ID: 24432		Lab Sa	mple I	D: 2443	2-017		Client Sam	ple ID: Di	P-5a	
Sample Time:		Sam	ple Dat	te: 2/14/	01		ĺ	Matrix: Sc	olid	<u> </u>
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recover	ry Contro	Limits (%)
				aa	a-Trifluore	otoluene		94	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
,					Surrog	ate	Surr	ogate Recover	ry Contro	Limits (%)
				aa	a-Trifluor	otoluene		94	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOE (Purgeable)
					Surrog	ate	Surr	ogate Recover	ry Contro	Limits (%)
				aa	a-Trifluor	otoluene		114	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01
Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-018		Client Sam	ple ID: DP-	·5d	
Sample Time:		Sam	ple Dat	te: 2/14/	10		I	Matrix: Soli	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluore	otoluene		111	6:	5 - 135
Parameter	Result	Flag	DF	PQI.	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	nte	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluor	otoluene		111	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aaa-Trifluorotolue				135	65 - 135	

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-019		Client Sam	ple ID: DP	-5f	
Sample Time:		Sam	ple Dat	te: 2/14/	01		I	Matrix: Sol	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	7 Contro	Limits (%)
				aa	a-Trifluor	otoluene		107	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aaa	a-Trifluoro	otoluene		107	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surre	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluor	toluene		132	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Mickelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	imple I	D: 2443	2-020		Client Sam	ple ID: DP	-5g	
Sample Time:		Sam	ple Dat	te: 2/14/	01]	Matrix: Soli	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		Ī	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluor	otoluene		91	6	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0 05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				ลละ	a-Trifluoro	otoluene		91	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surre	gate Recovery	Conti	ol Limits (%)
				aaa	a-Trifluoro	toluene		109	65	•

DF = Dilution Factor ND = Not Detected

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432 Lab Sam			ımple I	mple ID: 24432-021			Client Sample ID: DP-6a Matrix: Solid			
Sample Time:		Sample Date: 2/14/01								
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0 005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020
Toluenc	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020
Ethyl Benzene	ИD		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020
				Surrogate			Surrogate Recovery Control			l Limits (%)
				aaa-Trifluorotoluen				159	65	- 135
Parameter	Result	Flag	ÐF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020
				Surrogate			Surrogate Recovery Control			Limits (%)
				aaa-Trifluorotoluene			159		65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8015 MOD. (Purgeable)
				Surrogate		ate	Surrogate Recovery		Control Limits (%)	
				aa	a-Trifluoro	otoluene		194	65	- 135
Comment: Sur	Surrogate recovery out of control limits due to matrix interference.									

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michaele L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	ımple I	D : 2443	2-022		Client San				
Sample Time:		Sam	ple Dat	te: 2/14/	01		Matrix: Solid				
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020	
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020	
Ethyl Benzene	ND		1	0 005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020	
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020	
					Surrog	ate	Surr	ogate Recove	ry Contr	ol Limits (%)	
				aa	a-Trifluore	otoluene		141	65	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020	
					Surrog	ate	Surr	ogate Recove	ery Contr	ol Limits (%)	
				aa	a-Trifluor	otoluene		141	65	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8015 MOD. (Purgeable)	
					Surrog	ate	Surr	ogate Recove	ery Contr	ol Limits (%)	
				aa	a-Trifluor	otoluene		170	65	5 - 135	

Comment:

Surrogate recovery out of control limits due to matrix interference.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-023		Client Sam	-6e		
Sample Time:		Sam	ple Dat	te: 2/14/	01		I	Matrix: Sol	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluenc	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0 005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		96	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluoro	otoluene		96	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		ì	1	1	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluor	otoluene		116	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michele L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 2	4432	Lab Sa	ample I	D : 2443	32-024		Client San	nple ID:	P-6g			
Sample Time:		San	ple Da	te: 2/14	/01		Matrix: Solid					
Parameter	Result	Flag	ÐF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020		
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020		
Ethyl Benzene	0.009		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020		
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020		
					Surrog	ate	Surr	ogate Recove		rol Limits (%)		
				aa	a-Trifluoro	otoluene		35	-	5 - 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8020		
					Surroga	ate	Surre	ogate Recove		ol Limits (%)		
				aaa	a-Trifluoro	otoluene		35	6:			
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/16/01	SGC1010216B	EPA 8015 MOI (Purgeable)		
					Surroga	ıte	Surre	gate Recover	ry Contr	ol Limits (%)		
				aas	ı-Trifluoro	toluene		13	65	5 - 135		
Comment: Su	rrogate recovery out o	of control l	limits due	to matrix	interferenc	ng.						

DF =	≃ Dilu	tion F	actor
------	--------	--------	-------

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-025		Client Sam	'-7a		
Sample Time:		Sam	ple Dat	te: 2/14/	01]	Matrix: So	lid_	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
•					Surrog	ate	Surr	ogate Recover	y Contro	Limits (%)
				aa	a-Trifluoro	otoluene		110	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recover	y Contro	Limits (%)
				aa	a-Trifluoro	otoluene		110	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	I	mg/Kg	N/A	2/16/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recover	y Contro	l Limits (%)
				aa	a-Trifluoro	otoluene		134	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	ample I	D: 2443	2-026		Client Sample ID: DP-7d				
Sample Time:		Sam	ple Dat	te: 2/14/	01		ſ	Matrix: Sol	id		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
Ethyl Benzene	ND		I	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
					Surrog	ate	Surr	ogate Recovery	Contr	rol Limits (%)	
				aa	a-Trifluor	otoluene		100	6:	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
					Surrog	ate	Surr	gate Recovery	Contr	ol Limits (%)	
				aai	a-Trifluor	otoluene		100	6:	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8015 MOD (Purgeable)	
					Surrog	ate	Surre	gate Recovery	Contr	ol Limits (%)	
				aaa	a-Trifluor	otoluene		5 - 135			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-027		Client Sam	P-7e		
Sample Time:		Sam	ple Dat	te: 2/14/	01		I	Matrix: S	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ИD		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
					Surrog	ate	Surr	ogate Recove	ry Contro	l Limits (%)
				aa	a-Trifluoro	otoluene		123	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ИD		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
					Surrog	ate	Surr	ogate Recove	ry Contro	l Limits (%)
				aa	a-Trifluoro	otoluene		123	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surr	ogate Recove	ry Contro	l Limits (%)
				aa	a-Trifluoro	otoluene		149	65	- 135

Comment:

Surrogate recovery out of control limits due to matrix interference.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Micheliez. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-028		Client Sample ID: DP-7g				
Sample Time:		Sam	ple Dat	te: 2/14/	01		I	Matrix: Soli	ld		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzenc	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)	
				aa	a-Trifluor	otoluene		103	6:	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020	
					Sarrog	ate	Surr	ogate Recovery	Солы	ol Limits (%)	
				aa	a-Trifluoro	otoluene		103	6:	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8015 MOD. (Purgeable)	
					Surrog	ate	Surr	ogate Recovery	Conti	ol Limits (%)	
				aa	a-Trifluor	otoluene		109	6:	5 - 135	

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sample ID: 24432-029						Client Sample ID: DP-8a				
Sample Time:		Sam	ple Dat	te: 2/14/	01		Matrix: Solid					
Parameter	Result	Flag	ÐF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
,					Surrog	ate	Surr	ogate Recover	y Contro	Limits (%)		
				aa	a-Trifluoro	otoluene		110	65	- 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
· · · · · · , · · · · · · · ,					Surrog		Surr	ogate Recover	y Contro	Limits (%)		
				aa	a-Trifluoro	otoluene		110	65	- 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8015 MOD (Purgeable)		
					Surrog	ate	Surr	ogate Recover	y Contro	Limits (%)		
				aa	a-Trifluor	otoluene		134	65	- 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432 Lab Sample ID: 24432-030 Client Sample ID: DP-8d										
Sample Time:		Sam	ple Dat	e: 2/14/	01		I	Matrix: S	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
					Surrog	ate	Surre	ogate Recove	ry Contr	ol Limits (%)
				aa	a-Trifluor	otoluene		129	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
					Surrog	nte	Surre	ogate Recove	ry Contr	ol Limits (%)
				aa	a-Trifluor	otoluene		129	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surr	ogate Recove	ry Contr	ol Limits (%)
				ลล	a-Trifluor	otoluene		155	65	5 - 135

DF = Dilution Factor

Comment:

ND = Not Detected

Surrogate recoverey out of control limits due to matrix interference.

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-031		Client Sam			
Sample Time:		Sam	ple Dat	te: 2/14/	01]	Matrix: So	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
•					Surrog	ate	Surr	ogate Recove	ry Contro	Limits (%)
				aa	a-Trifluor	otoluene		146	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8020
monific to my billion					Surrog		Surr	ogate Recove	ry Contro	Limits (%)
				aa	a-Trifluor	otoluene		146	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/17/01	SGC1010216B	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recove	ery Contro	Limits (%)
				aa	a-Trifluor	otoluene		177	65	- 135

Comment: Surrogate recovery out of control limits due to matrix interference.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	ample I	D: 2443	2-032		Client Sample ID: DP-8g					
Sample Time:		Sam	ple Da	te: 2/14/	01	Matrix: Solid						
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
·					Surrog	ate	Surr	ogate Recovery	Conti	rol Limits (%)		
				aa	a-Trifluor	otoluene		95	6:	5 - 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020		
					Surrog		Surr	ogate Recovery	Conti	rol Limits (%)		
				aa	a-Trifluor	otoluene		95	6:	5 - 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Gasoline	ND		i	1	1	mg/Kg	N/A	2/17/01	\$GC1010216	EPA 8015 MOD. (Purgeable)		
					Surrog	ate	Surr	ogate Recovery	Conti	rol Limits (%)		
				aa	a-Trifluor			92	6:	5 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-032		Client Sam	iple ID: DP-	·8g	
Sample Time:		Sam	ple Dat	te: 2/14/	01		1	Matrix: Soli	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
,					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	otoluene		95	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
atomy: Comp. were					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluore	otoluene		95	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8015 MOI (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluor	otoluene		92	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michiele L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	ımple I	D: 2443	2-033		Client Sam	ple ID: DP-	·9a	
Sample Time:		Sam	ple Da	te: 2/14/	01]	Matrix: Soli	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluore	otoluene		106	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		ì	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
, ,					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluor	otoluene		106	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluor	toluene		129	65 - 135	

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01
Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-034		Client Sam	ple ID: DP-	9d	 -
Sample Time:		Sam	ple Dat	te: 2/14/	01		I	Matrix: Soli	d	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/K.g	N/A	2/17/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluoro	otoluene		100	65	- 135
Parameter	Result	Flag	ÐF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
,.					Surrog		Surr	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluor	otoluene		100	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		i	1	1	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	Limits (%)
				aa	a-Trifluor	otoluene		94	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	mple I	D: 2443	2-035		Client Sam	ple ID: DP	-9e	
Sample Time:		Sam	ple Dat	te: 2/14/	01]	Matrix: Sol	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Toluene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Ethyl Benzene	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
Xylenes, Total	ND		1	0.005	0.005	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		110	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	0.05	0.05	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	otoluene		110	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	1	1	mg/Kg	N/A	2/17/01	SGC1010216	EPA 8015 MOD. (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		94	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076 Attn: Chad Taylor

Date: 02/22/01 Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 2	4432	Lab Sa	mple I	D: 2443	2-036		Client Sam	ple ID: DP	.9g	
Sample Time:		Sam	ple Da	te: 2/14/	01]	Matrix: Sol	id	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	0.020		25	0.0005	0.0125	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020
Toluene	0.020		25	0.0005	0.0125	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020
Ethyl Benzene	0.19		25	0.0005	0.0125	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020
Xylenes, Total	0.30		25	0.001	0.025	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluoro	toluene		88	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		25	0.005	0.125	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8020
					Surrog	ate	Surr	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluoro	otoluene		88	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	18		25	0.050	1.25	mg/Kg	N/A	2/20/01	SGC4010220	EPA 8015 MOD (Purgeable)
					Surrog	ate	Surr	ogate Recovery	Contro	l Limits (%)
				aa	a-Trifluoro	toluene		66	65	- 135
Comment: Sa	ample required methar	nol extract	ion due t	o high cond	entrations	of target h	ydrocarbons.			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 02/22/01

Date Received: 2/15/01

Project Name: Harbert Transportation

Project Number: H9042.B

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 24432		Lab Sa	ımple II	D: 2443	2-037		Client Sam	ple ID: DP	-9	
Sample Time:		Sam	ple Dat	e: 2/14/	01		I	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	680		200	0.5	100	μg/L	N/A	2/16/01	WGC2010216	EPA 8020
Toluene	160		200	0 5	100	μg/L	N/A	2/16/01	WGC2010216	EPA 8020
Ethyl Benzene	3000		200	0.5	100	μg/L	N/A	2/16/01	WGC2010216	EPA 8020
Xylenes, Total	5600		200	0 5	100	μg/L	N/A	2/16/01	WGC2010216	EPA 8020
					Surroga	ite	Surr	ogate Recovery	z Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		94	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		200	5	1000	μg/Ĺ	N/A	2/16/01	WGC2010216	EPA 8020
					Surroga	ite	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		94	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	25000		200	50	10000	μg/L	N/A	2/16/01	WGC2010216	EPA 8015 MOD. (Purgeable)
					Surroga	ite	Surr	ogate Recovery	Conti	ol Limits (%)
				aaa-Trifluorotoluen					65 - 135	

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

SGC1010216

Matrix: Solid

Units:

mg/Kg

Date Analyzed:

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: TP	H as Gasoline										
TPH as Gasolin	e EPA 8015 M	ND		0.561		0.565	LCS	100.7			65.0 - 135.
	Surrogate		Surrog	ate Recove	ry	Control l	Limits (%)				
	aaa-Trifluorotoli	uene		104		65 -	135				
Test: BT	EX										
Benzene	EPA 8020	ND		0.0062		0.004	LCS	64.5			65.0 - 135
Ethyl Benzene	EPA 8020	ND		0.0078		0 007	LCS	89.7			65 0 - 135.
Toluene	EPA 8020	ND		0.0358		0 031	LCS	86.6			65.0 - 135.
Xylenes, total	EPA 8020	ND		0.043		0.040	LCS	93.0			65.0 - 135.
	Surrogate		Surrog	ate Recove	ry	Control l	Limits (%)				
	aaa-Trifluorotol	nene		95		65 -	135				
Test: M7	BE by EPA 802	0				***					
	Ether EPA 8020	ND		0.062		0.053	LCS	85.5			65 0 - 135.
,	Surrogate		Surrog	ate Recove	ry	Control I	Limits (%)			/ = · · · · · · · · · · · · · · · · · ·	
	aaa-Triffuorotol	uene		95		65 -	135		··		
Test: TP	H as Gasoline										
TPH as Gasolin		ND		0.561		0.524	LCSD	93.4	7.53	30.00	65.0 - 135.
	Surrogate		Surrog	ate Recove	ry	Control l	Limits (%)				
	aaa-Trifluorotol	uene		98		65 -	135				
Test: BT	EX		-								
Benzene	EPA 8020	ND		0.0062		0.004	LCSD	64.5	0.00	30.00	65.0 - 135.
Ethyl Benzene	EPA 8020	ND		0.0078		0.006	LCSD	76.9	15.38	30.00	65.0 - 135.
Toluene	EPA 8020	ND		0.0358		0.030	LCSD	83.8	3.28	30.00	65.0 - 135.
Xylenes, total	EPA 8020	ND		0.043		0.039	LCSD	90.7	2.53	30.00	65.0 - 135.
	Surrogate		Surrog	ate Recove	ry	Control	Limits (%)				
	aaa-Trifluorotol	uene		88		65 -	135				
Test: M	TBE by EPA 802	0				·					
	Ether EPA 8020	ND		0 062		0.047	LCSD	75.8	12.00	30.00	65.0 - 135.
, L	Surrogate		Surrog	ate Recove	ry	Control 3	Limits (%)				
	aaa-Trifluorotol	uene	_	88		65 -	135				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

SGC1010216B

Matrix:

Solid

Units:

mg/Kg

Date Analyzed:

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: Tl	H as Gasoline										
TPH as Gasolii	e EPA 8015 M	ND		0.561		0.514	LCS	91.6			65.0 - 135 0
	Surrogate		Surrog	ate Recover	у	Control	Limits (%)				
	aaa-Trifluorotol	iene		99	•	65 -					
Test: B	TEX										
Benzene	EPA 8020	ND		0.0062		0.004	LCS	64.5			65.0 - 135.0
Ethyl Benzene	EPA 8020	ND		0.0078		0.006	LCS	76. <i>9</i>			65 0 - 135.0
Toluene	EPA 8020	ND		0.0358		0.030	LCS	83.8			65 0 - 135.0
Xylenes, total	EPA 8020	ND		0.043		0.040	LCS	93.0			65.0 - 135.0
	Surrogate		Surrog	ate Recover	y	Control 1	Limits (%)	 			
	aaa-Trifluorotoli	iene		89		65 -	135				
Test: M'	TBE by EPA 802	0									
Methyl-t-butyl	Ether EPA 8020	ND		0.062		0.043	LCS	69.4			65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control I	lmits (%)				
	aaa-Trifluorotolu	iene		89		65 -	135				
Test: TP	H as Gasoline										
TPH as Gasolir	e EPA 8015 M	ND		0.561		0.553	LCSD	98.6	7.31	30.00	65 0 - 135,0
	Surrogate		Surrog	ate Recover	у	Control 1	imits (%)	· · · · · · · · · · · · · · · · · · ·			
	aaa-Triffuorotolu	iene	~=	106		65 -	135				
Test: B7	EX										
Benzene	EPA 8020	ND	1	0.0062		0.004	LCSD	64.5	0.00	30.00	65 0 - 135,0
Ethyl Benzene	EPA 8020	ND	1	0.0078		0.007	LCSD	89.7	15.38	30.00	65 0 - 135,0
Toluene	EPA 8020	ND		0.0358		0.031	LCSD	86.6	3.28	30.00	65.0 - 135.0
Xylenes, total	EPA 8020	ND		0.043		0.039	LCSD	90.7	2 53	30 00	65 0 - 135,0
	Surrogate		Surroga	ite Recover	у	Control I	imits (%)	-			
	aaa-Trifluorotolu	ene		95		65 -	135				
Test: M'	TBE by EPA 8020)									
	Ether EPA 8020	ND		0.062		0.050	LCSD	80,6	15.05	30.00	65.0 - 135.0
	Surrogate		Surroge	ite Recover	y	Control I	imits (%)				
	aaa-Trifluorotolu	ene	_	95		65 -					[

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

SGC4010216

Matrix: Solid

Units:

mg/Kg

Date Analyzed:

Paramet	er	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Туре	% Recovery	RPD	RPD Limits	Recovery Limits
Test:		as Gasoline										
TPH as G	iasoline	EPA 8015 M	ND		0.561		0.565	LCS	100.7			65.0 - 135.0
		Surrogate		Surrog	ate Recover	ry		Limits (%)				
Į		aaa-Trifluorotoli	iene		106		65 -	135				
Test:	BTE	X+MTBE										
Benzene		EPA 8020	ND		0 0062		0.006	LCS	96.8			65.0 - 135.0
Ethyl Ber	izenc	EPA 8020	ND		0 0078		0.007	LCS	89.7			65.0 - 135.0
Toluene		EPA 8020	ND		0.0358		0.031	LCS	86.6			65.0 - 135.0
Xylenes,	total	EPA 8020	ND		0.043		0.036	LCS	83.7			65.0 - 135.0
-		Surrogate		Surrog	ate Recover	ту	Control 1	Limits (%)				
		aaa-Trifluorotolu	iene		104		65 -	135				
Test:	TPH	as Gasoline					•					
TPH as G	asoline	EPA 8015 M	ND		0.561		0.529	LCSD	94.3	6.58	30.00	65.0 - 135.0
[Surrogate		Surrog	ate Recover	ту	Control 1	Limits (%)				
ĺ		aaa-Trifluorotoli	iene		104		65 -	135				
Test:	BTE	X+MTBE			,							
Benzene		EPA 8020	ND		0,0062		0.007	LCSD	112.9	15.38	30.00	65.0 - 135.0
Ethyl Bei	nzene	EPA 8020	ND		0.0078		0 007	LCSD	89.7	0 00	30.00	65 0 - 135.0
Toluene		EPA 8020	ND		0.0358		0.031	LCSD	86.6	0.00	30.00	65 0 - 135.0
Xylenes,	total	EPA 8020	ND		0.043		0.035	LCSD	81.4	2.82	30.00	65.0 - 135.0
1		Surrogate		Surrog	ate Recover	ry	Control 1	Limits (%)				
		aaa-Trifluorotoli	iene		103		65 -	135				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

SGC4010220

Matrix:

Solid

Units:

mg/Kg

Date Analyzed:

2/20/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: TPH	as Gasoline				<u> </u>						
TPH as Gasoline	EPA 8015 M	ND		0.561		0.505	LCS	90.0			65.0 - 135.0
	Surrogate		Surrog	ate Recover	у.	Control	Limits (%)				
	aaa-Trifluorotolu	uene		104		65 -	135				
Test: BTE	X										
Benzene	EPA 8020	ND		0.0062		0.006	LCS	96.8			65.0 - 135.0
Ethyl Benzene	EPA 8020	ND		0.0078		0.006	LCS	76.9			65 0 - 135.0
Toluene	EPA 8020	ND		0.0358		0.030	LCS	83.8			65.0 - 135.0
Xylenes, total	EPA 8020	ND		0.043		0.035	LCS	81.4			65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control	Limits (%)				
L	aaa-Trifluorotol	uene		101		65 -	135				
Test: MTI Methyl-t-butyl Et	BE by EPA 802 her EPA 8020	0 ND		0 062		0.056	LCS	90.3			65.0 - 135,0
, L	Surrogate	- "	Surrog	ate Recover	'v	Control l	Limits (%)				
	aaa-Trifluorotoli	uene		101		65 -					
Test: TPH	as Gasoline										
TPH as Gasoline	EPA 8015 M	ND		0.561		0.497	LCSD	88.6	1.60	30.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	.у	Control 1	Limits (%)				
	aaa-Trifluorotoli	uene		102		65 -	135				
Test: BTE	X	-	•								
Benzene	EPA 8020	ND		0.0062		0.006	LCSD	96.8	0.00	30.00	65.0 - 135.0
Ethyl Benzene	EPA 8020	ND		0.0078		0.006	LCSD	76.9	0.00	30.00	65.0 - 135.0
Toluene	EPA 8020	ND		0.0358		0.030	LCSD	83.8	0 00	30.00	65.0 - 135.0
Xylenes, total	EPA 8020	ND		0.043		0.034	LCSD	79.1	2.90	30.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	.у	Control 1	Limits (%)			·	
	aaa-Trifluorotoli	uene	Ü	101	,	65 -	. ,				
Test: MTI	BE by EPA 802	0					•				
Methyl-t-butyl Et		ND		0,062		0.058	LCSD	93.5	3.51	30.00	65.0 - 135.0
· [Surrogate		Surrog	ate Recover	·y	Control]	Limits (%)				
	aaa-Trifluorotoli	iene		101	-	65 -	` '				İ

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC2010216

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

Parameter		Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Туре	% Recovery	RPD	RPD Limits	Recovery Limits
Test:	TPH a	s Gasoline			•				•			
TPH as Gas	soline	EPA 8015 M	ND		561		490.0	LCS	87.3			65.0 - 135.0
Γ		Surrogate		Surrog	ate Recover	·y	Control l	Limits (%)				
		aaa-Trifluorotolu	iene		104		65 -	135				
Test:	BTEX		**									
Benzene		EPA 8020	ND		6.2		7.09	LCS	114,4			65.0 - 125.0
Ethyl Benze	ene	EPA 8020	ND		7.8		6.98	LCS	89.5			65.0 - 135.0
Toluene		EPA 8020	ND		35.8		33.7	LCS	94.1			65.0 - 135.0
Xylenes, tot	tal	EPA 8020	ND		43		38.6	LCS	89.8			65.0 - 135.0
		Surrogate		Surrog	ate Recovei	.у	Control l	Limits (%)				
L.,		aaa-Trifluorotolı	iene		116		65 -	135				
Test:	МТВЕ	by EPA 802	0									
		r EPA 8020	ND		52.8		54.9	LCS	104.0			65.0 - 135.0
		Surrogate		Surrog	ate Recover	у	Control l	Limits (%)				
		aaa-Trifluorotolı	icne		116		65 -	135				
Test:	TPH a	s Gasoline		· · · · · · · · · · · · · · · · · · ·								
TPH as Gas	soline	EPA 8015 M	ND		561		467.8	LCSD	83.4	4.64	25 00	65.0 - 135.0
[Surrogate		Surrog	ate Recover	у	Control 1	Limits (%)				
Ĺ		aaa-Trifluorotolu	iene		102		65 -	135				
Test:	BTEX											
Benzene		EPA 8020	ND		6.2		5.99	LCSD	96.6	16.82	25.00	65.0 - 125.0
Ethyl Benzo	ene	EPA 8020	ND		7.8		7.46	LCSD	95.6	6.65	25.00	65.0 - 135.0
Toluene		EPA 8020	ND		35.8		32.8	LCSD	91.6	2.71	25.00	65.0 - 135.0
Xylenes, tot	tal	EPA 8020	ND		43		37.6	LCSD	87.4	2.62	25.00	65.0 - 135.0
<u> </u>		Surrogate		Surrog	ate Recover	. У	Control 1	Limits (%)				
		aaa-Trifluorotolu	iene		103		65 -	135				
Test:	MTBF	E by EPA 8020	0									
		EPA 8020	ND		52,8		54.9	LCSD	104.0	0.00	25.00	65.0 - 135.0
آ آ		Surrogate		Surrog	ate Recover	у	Control I	Limits (%)				
		aaa-Trifluorotolu	iene		103	•	65 -					

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

SMS2010222

Matrix: Solid

Units:

μg/Kg

Date Analyzed:

2/23/01

Parameter	Method	Blank Result	Spike Sample ID	Splke Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: EPA	8260B							,			
1,1-Dichloroethene	EPA 8260B	ND		25		22.5	LCS	90.0			65.0 - 135.0
Benzene	EPA 8260B	ND		25		20.8	LCS	83.2			65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		25		21.9	LCS	87.6			65.0 - 135.0
Methyl-t-butyl Ethe	er EPA 8260B	ND		25		23.6	LCS	94.4			65.0 - 135.0
Toluene	EPA 8260B	ND		25		21.9	LCS	87.6			65.0 - 135.0
Trichloroethene	EPA 8260B	ND		25		22.0	LCS	88.0			65.0 - 135.0
	Surrogate		Surrog	ate Recover	r y	Control I	Limits (%)				
ĺ	4-Bromofluorob	enzene		98		5 6 -	131				1
	Dibiomofluoron	nethane		98		55 -	156				
	Toluene-d8			97		65 -	141				
Test: EPA 8	3260B										
1,1-Dichloroethene	EPA 8260B	ND		25		21.8	LCSD	87.2	3.16		65.0 - 135.0
Benzene	EPA 8260B	ND		25		20.8	LCSD	83.2	0.00		65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		25		21.5	LCSD	86.0	1.84		65.0 - 135.0
Methyl-t-butyl Ethe	r EPA 8260B	ND		25		22.5	LCSD	90.0	4.77		65.0 - 135.0
Toluene	EPA 8260B	ND		25		21.7	LCSD	86.8	0.92		65.0 - 135.0
Trichloroethene	EPA 8260B	ND		25		21.4	LCSD	85.6	2.76		65.0 - 135.0
	Surrogate		Surroga	ate Recover	y	Control I	imits (%)				
	4-Bromofluorob	enzene	_	96		56 -	131				
	Dibromofluoron	nethane		97		55 -	156				
	Toluene-d8			98		65 -	141				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WMS2010226

Liquid Matrix:

Units:

μg/L

Date Analyzed:

2/27/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: EPA 8	3260B										
1,1-Dichloroethene	EPA 8260B	ИD		20		18.7	LCS	93.5			65.0 - 135.0
Benzene	EPA 8260B	ND		20		17.7	LCS	88.5			65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		20		18.1	LCS	90.5			65.0 - 135.0
Methyl-t-butyl Ethe	r EPA 8260B	ND		20		19.2	LCS	96.0			65.0 - 135.0
Toluenc	EPA 8260B	ND		20		18.6	LCS	93.0			65.0 - 135.0
Trichloroethene	EPA 8260B	ND		20		17.4	LCS	87.0			65.0 - 135.0
	Surrogate		Surrog	ate Recover	·y	Control I	Limits (%)				
	4-Bromofluorol	enzene		94		65 -	135				
	Dibromofluoror	nethane		94		57 -	139				1
	Toluene-d8			96		65 -	135				
Test: EPA 8	260B							***************************************			
1,1-Dichloroethene	EPA 8260B	ND		20		18.4	LCSD	92.0	1.62	25.00	65.0 - 135.0
Benzene	EPA 8260B	ND		20		17.0	LCSD	85.0	4.03	25.00	65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		20		17.5	LCSD	87.5	3.37	25.00	65.0 - 135.0
Methyl-t-butyl Ethe	r EPA 8260B	ND		20		18.6	LCSD	93.0	3.17	25.00	65.0 - 135.0
Toluene	EPA 8260B	ND		20		18.3	LCSD	91.5	1.63	25.00	65.0 - 135.0
Trichloroethene	EPA 8260B	ND		20		16.9	LCSD	84.5	2.92	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control I	imits (%)				
	4-Bromofluorob	enzene		95		65 -	135				
	Dibromofluoron	nethane		96		57 -	139				
	Toluene-d8			97		65 -	135				i

CHAIN -OF-CUSTODY RECORD

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

lease use MDL (Minimum Detection Limit) for MTBE for diluted samples if necessary to obtain the 0.05 mg/Kg dtection limit

PAGE OF

PROJECT NAME AND JOB #	Harbert Tra	nsportation /	H9042.B			<u> </u>	-	LAI	BORATORY:	Entech A	nalytical		
SEND CERTIFIED RESULTS TO:	Chad Taylo	r					-	TURNAR	DUND TIME:	Normal	24hr Rush	48hr Rush	72hr Rush
		SAM	IPLE CO	NTAINE	RS			REQUE	STED AN	ALYSIS			
						Total Pe	troleum Hydroca	rbons	Volatile	Organics	Add	litional Anal	ysis
Sample ID# & Depth	Date	40 mL VOAs (preserved)	1 Liter Amber Jars	mL Poly Bottle	Liner Acetate or Brass	Extractable Fuel-Scan (w/Standard Silica-Gel-Cleanup)	Purgeable Fuel-Scan (w/MTBE & BTEX)	Gasoline & MTBE-BTEX by EPA Method# 8015M-&-8020	MTBE by EPA Method# 8260	SOLVENTS by EPA Method# 8010	Fuel Oxygenates by EPA Method 8260	Title 22: General, Physical and Inorganic Minerals	
DP - 1 a ' 2'	21401				1			X				244	2-00
DP-1 F " 23'	1				ì			χ					20
DP-1 gQ24" 24"					1			λ			· ·		003
DP-1902': 27'					١			X					20
DP-2a , Z'					1			Ϋ́	·				005
DP -21 13.5'					1			X					006
DP-Ze 18.5'					1			X					20
DP-24; 24!					1			χ					000
DP -39 , 21					1			X					009
DP -36 1 7.5'					1			Х					010
DP-3e, 18.5"					1			Х					04
DP-3g 27.5°	<u> </u>							X					0/2
RECEIVED BY:	Date	& Time			Ri	ELEASED BY:		Date &	Time	SAM	PLE CONDITIO	IN:	
.) Sampler:	-2/14/0	1		11-	 			2/15/01	1200_	Ambient	Refingerated) Frozen	
) Oky 50t09	<u> </u>	10/ 120	√	(mfm	1	1 5009		2/15/0	1/300	O Ambient	Refigerated	* Frozen	
Mars Griston	-2/19	5/6/ 13a	~		-1000	7 7		2/15	<u>101 i</u> 30	Ambient	Refingerated	Frozen	
)	<u>-</u>	<u>-</u>						- -	<u> </u>	Ambient	Refrigerated	Frozen	
.)	<u> </u>	<u>-</u>			· · · · · · · · · · · · · · · · · · ·			<u> </u>		Ambient	Refngerated	Frozen	
NOTES - Lab to complete the i	following if	box is che	cked:							Additi	ional Comm	ents	
If MTBE is detected by EPA Method 8020, pleas	se confirm detecti	ions by EPA Meth	od 8260 with	a detection li	mit of 0 05 mg	y/Kg, and report only co	onfirmed 8260 detectio	ns					
For MTBE-analyzed samples with non-detectable	e results (ND) bu	t having elevated	detection limi	ts please co	nfirm by EPA	Method #8260, with a	detection limit of 0.05 i	mg/Kg	1				

CHAIN -OF-CUSTODY RECORD

LABORATORY: Entech Analytical

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax. (831) 722-1159

PROJECT NAME AND JOB #: Harbert Transportation / H9042.B

Please use MDL (Minimum Detection Limit) for MTBE for diluted samples if necessary to obtain the 0 05 mg/Kg dtection limit

PAGE 7 OF 4

SEND CERTIFIED RESULTS TO:	Chad Taylo	r					-	TURNAR	OUND TIME:	Normal	24hr Rush	48hr Rush	72hr Rush
		SAM	IPLE CO	NTAINE	RS			REQUE	STED AN	ALYSIS			
	Ì				Total Pe	Total Petroleum Hydrocarbons			Organics	Add	itional Analy	/sis	
Sample ID# & Depth	Date	40 mL VOAs (preserved)	1 Liter Amber Jars	mL Poly Bottle	Liner Acetate or Bras		Purgeable Fuel-Scan (wMTBE & BTEX)	Gasoline & MTBE-BTEX by EPA Method# 8015M-8-8020	MTBE by EPA Method# 8260	SOLVENTS by EPA Method# 8010	Fuel Oxygenates by EPA Method 8260	Title 22: General, Physical and Inorganic Minerals	
DP-4 a · 2'	2/11/01							X				2443	2-013
DP-4e 11.5	1				1			Х					014
DP-4 g (25' 25'								X					45
DP -4 9 B27 27'					i			Χ					016
DP-5 q , Z'					l			Χ					017
DP -5 d , 12'					1			X		 			018
DP-5 f. 20'								Х					019
DP-5 g 24'								×					020
DP-6 a 2		i.			1			X					021
DP-69 14'					1		_	Χ					022
DP-6 e : 18'					1			Х					023
DP-6 g 24'	<u> </u>				1			X					024
RECEIVED BY: Sampler: LI++ MSDOG MOCACOM	- 4140 1-2/01 - 2/15 	191300	*	L.I.	<u>-}-</u> [RELEASED BY:		Date & - 2/15/0	Time 12&- / /30°C	Ambient (PLE CONDITIO (circle 1) Refrigerated Refrigerated Refrigerated Refrigerated	Frozen Frozen Frozen Frozen Frozen Frozen	
NOTES - Lab to complete the i	following if	box is che	cked:							Additi	onal Comm	ents	
If MTBE is detected by EPA Method 8020, pleas													
For MTBE-analyzed samples with non-detectable	ie results (ND) bu	t having elevated	detection limi	ts please co	nfirm by EP	A Method #8260, with a	detection limit of 0 05 i	ng/Kg	1				

CHAIN -OF-CUSTODY RECORD

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax (831) 722-1159

PAGE 3 OF 4

PROJECT NAME	AND JOB#	: Harb	ert Tra	nsportation /	H9042.B				_	LAE	ORATORY:	Entech A	nalytical		
SEND CERTIFIED RE	ESULTS TO:	: Chac	d Taylo	r					•	TURNARO	OUND TIME:	Normal	24hr Rush	48hr Rush	72hr Rush
	**-	VOAs													
								Total Pe	troleum Hydroca	irbons	Volatile	Organics	Add	itional Analy	/sis
Sample ID# & I	Depth	D	ate	VOAs	Amber	Poly	Acetate	Fuel-Scan (w/Standard	Fuel-Scan. (w/MTBE & BTEX)	MTBE-BTEX by EPA Method# 8015M-&8020	by EPA	. √by EPA	Oxygenates by EPA	General, Physical and Inorganic	
DP-7a ,	z '	211	101				1		1	1	<u> </u>			24432	-025
DP-7d:	14'	1	i				1							, , = 1	
DP-7e	18'						1								
DP -7 q +	24'						١			х					
DP-8 a	2'						1								
DP-84:	13'						1			1					
DP-8 e	18'	1					١								· -
DP -8 9 #	24'						١								
DP-9 a #	z'						1								
DD-99 x	121						1								
DP-9 e	18'						1		,						
DP-9 4 *	24'	'	V		-		1								036
RECEIVED B	<u>Y:</u> -		$-\overline{I}$		>	114	RI	ELEASED BY:		77		-	(circle 1)	_	
Ohnso?		- - 2	3	1 ,	,	Su	1500	9		Histo	<u> 13</u> 0	C Ambient	-	~,	
Mara G	riskis	_ =	4115	<u> </u>	—	==				<u>-</u>		Ambient	Refngerated	Frozen	
		=								<u>-</u>		Ambient	Refrigerated	Frozen	
		- -								· 		Ambient	Refrigerated	Frozen	
NOTES - Lab to com	plete the	follov	ving it	f box is che	cked:		· · · · · · · · · · · · · · · · · · ·					Additi	onal Comm	ents	
If MTBE is detected by EPA Met	hod 8020, pleas	se confir	m detect	ions by EPA Meth	od 8260 with	a detection lii	mit of 0 05 mg	g/Kg, and report only co	onfirmed 8260 detectio	ris					
For MTBE-analyzed samples wit	h non-detectab	le result:	s (ND) bu	t having elevated	detection lim	ts please coi	nfirm by EPA	Method #8260, with a c							
Please use MDL (Mınımum Dete	ction Limit) for I	MTBE fo	or diluted	samples if necess	ary to obtain	the 0.05 mg/l	(g dtection lin	na							

1) 2.)

CHAIN -OF-CUSTODY RECORD

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

PAGE 4 OF 4

PROJECT NAME AND JOB #	t. Harbert Tra	nsportation /	H9042.B					LAE	BORATORY:	Entech A	nalytical		
SEND CERTIFIED RESULTS TO	: Chad Taylo	<u> </u>					-	TURNARO	OUND TIME:	Normal	24hr Rush	48hr Rush	72hr Rush
		SAM	PLE CO	NTAINE	₹\$			REQUE	STED AN	ALYSIS			
						Total Pe	troleum Hydroca	rbons	Volatile	Organics	Add	itional Anal	ysis
Sample ID# & Depth	Date	40 mL VOAs (preserved)	1 Liter Amber Jars	Poly Bottle	Liner Acetate or Brass	Extractable Fuel-Scan (w/Standard Silica-Gel-Cleanup)	Purgeable Fuel-Scan (w/MTBE & BTEX)	Gasoline & MTBE-BTEX by EPA Method# 8015M-8-8020	MTBE by EPA Method# 8260	SQLVENTS by EPA Method# 8010	Fuel Oxygenates by EPA Method 8260	Title 22: General, Physical and Inorganic Minerals	
DP-9 24	2/14/01	5						Χ			L	4432	037
				-									
										<u> </u>			-
										<u> </u>			
	<u> </u>		-	,									
RECEIVED BY:	Date	& Time			Ri	ELEASED BY:		I Date &	Time	SAM	PLE CONDITIO	DN:	
1) Sampler:	-2/14/01	1700 -	-	1-1	<u> </u>		·	-2/15/01	1200 -	Ambient C	Refngerated	Frozen	
2) Ay 5009 -	_ <i>3\15\</i> 2	(1200)	<u>, </u>		Lui 5	009		2/15/01	<u> </u>	Ambient	Refngerated	Frozen	
3) Mara Gusli	j -2/1	5101 1300	-					<u>-</u>		Ambient	Refrigerated	Frozen	
4.)	_	<u> </u>	-							Ambient	Refingerated	Frozen	
5.)	<u>-</u>	<u> </u>	-	•				<u>-</u>		Ambient	Refingerated	Frozen	
NOTES - Lab to complete the	_				***************************************		1			Additi	onal Comm	ents	
If MTBE is detected by EPA Method 8020, plea X For MTBE-analyzed samples with non-detectat							ly confirmed 8260 det	ections					
X Please use MDL (Minimum Detection Limit) for		_	uotodiun IIIII	ы рнеазе COI	mur by EPA	MEGIUG #6200.							

Additional Site Assessment Report and Groundwater Monitoring - First Quarter 2001 19984 Meekland Avenue, Hayward, California June 18, 2001

Appendix E

Field Methodologies for Groundwater Monitoring and Field Data Forms Additional Site Assessment Report and Groundwater Monitoring - First Quarter 2001 19984 Meekland Avenue, Hayward, California June 18, 2001

Appendix E

Field Methodologies for Groundwater Monitoring

Weber, Hayes and Associates' groundwater monitoring field methodology is based on procedures specified in the *LUFT Field Manual*. The first step in groundwater well sampling is for Weber, Hayes and Associates field personnel to measure the depth-to-groundwater to the nearest hundredth (0.01) of a foot with an electric sounder. If the well appears to be pressurized, or the groundwater level is fluctuating, measurements are made until the groundwater levels stabilizes, and a final depth-to groundwater measurement is taken and recorded. After the depth-to-groundwater is measured, the well is then checked for the presence of free product with a clear, disposable polyethylene bailer. If free product is present, the thickness of the layer is recorded, and the product is bailed to a sheen. All field data (depth-to-groundwater, well purge volume, physical parameters, and sampling method) is recorded on field data sheets (see attached). Because removing free product may skew the data, wells that contain free product are not used in groundwater elevation and gradient calculations.

After measuring the depth-to-groundwater, each well, starting with the cleanest well (based on analytical results from the last sampling event), is purged of approximately three to five well volumes of water. Purging is accomplished either by hand bailing or with a low flow submersible electric pump. During purging the physical parameters of temperature, conductivity, pH, and Oxidation-Reduction Potential (ORP) of the purge water are monitored with field instruments to insure that these parameters have stabilized (are within 15 percent of the previous measurement). The dissolved oxygen content of the groundwater from each well is measured with a YSI Model 57 field meter (equipped with a membrane covered Clark-type polarographic sensor probe, with built-in thermistors for temperature compensation). Dissolved oxygen and ORP measurements are used as an indicator of intrinsic bioremediation within the contaminant plume. All field instruments are calibrated before use.

All purge water is stored on site in DOT-approved, 55-gallon drums for disposal by a state-licensed contractor pending laboratory analysis for fuel hydrocarbons.

After purging, the water level in the well is allowed to recover to 80 percent of its original depth before a sample is collected. After water level recovery, a groundwater sample is collected from each well with a new, disposable bailer, and decanted into the appropriate laboratory-supplied sample container(s). The sample containers at this site were 40-ml. vials. Each vial was filled until a convex meniscus formed above the vial rim, then sealed with a Teflon®-septum cap, and inverted to insure that there were no air bubbles or head space in the vial. All samples are labeled in the field and transported in insulated containers cooled with blue ice to state-certified laboratories under proper chain of custody procedures.

All field and sampling equipment is decontaminated before, between, and after measurements or sampling by washing in an Liqui-Nox and tap water solution, rinsing with tap water, and rinsing with distilled water.

 $P:\AJOB\H9042.hbt\QM\Qm2001\1QFL.wpd$

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

INDICATE ATTACHMENTS THAT APPLY Data Sheets COC's Site Map Photo Sheet Chargeable Materials

Job Name: Harbert Transportation	Date: 3/29/01	399
Field Location: 19984 Meekland Avenue, Hayward	Study #: H9042.Q	······································
Field Tasks: Drilling Sampling Sother 1st Quarter 2001 Well Sampling	Weather Conditions: Mostly Cloudy	
Personnel/Company onsite: (Weber, Hayes and Associates) Cha		
FIELD WORK PLANNING: Performed on: 3/29/01 3/21/01 Meet with project manager: X yes, or no. Number of wells to be sampled: Ten Wells, with D.O in all wells Sample wells: MW-3, 4, 5, 6, 7, 8, 9, 10, 11, 12 for TPH-g, BTEX Proposed sampling date: 3/29/01 TIME: 0600 Arrive onsite to perform _ 5+ Quarter Monitoring Well Sampling COMMENTS: Send all analytical to Entech Analytical Laboratory.		11 3000
INITIALS: -All sampling is conducted according to Standard Operating Procedure -Water Quality Sampling Information for each well sampled is recorded. -Upon sampling, all samples are placed immediately in coolers contained. -After sampling each well all equipment is decontaminated according to the coolers according to the coolers. -All purge water is properly disposed in 55-gallon drums to be purged to the coolers. -All samples are recorded on field Chain-of-Custody Sheets for transposed.	ed on following pages. ning blue ice. to SOP 10B/. at a later date.	
BEGIN CALIBRATION:	·	
7 pH, EC, Temp Meter # 1: Temp = 59.7%, pH = 7.00 & 10.00, EC =	141344/2	
Dissolved Oxygen Meter: Red-line , Zero , Temp = 15°C Therefore, 16.08 mg/L = Solubility of	Oxygen in fresh water.	
BEGIN SAMPLING ALL WELLS:		
-See information below for general monitoring well information this sa	nmpling round.	
COMMENTS: All well will be purged of four casing volumes in the column requiring sampling (see Water Qualipurged from bottom-up and will follow standard operating procedures by WHA. Wells will be sa		
P:\AJOB\H9042.hbt\QM\Qm2001\1QFL.wpd	3/21/0, Signature of Field Personnel	& Date

Hydrogeology and Environmental Engineering

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

Location	GW Depth (TOC)	Total Depth of Well	D.O. (mg/L)	Floating Product (comments).
Mw·3	22,021	40'	0.6	NoFP, Noodor
Mw.4	22.221	40'	0.5	Noff, N. Olor
Mu·5	22.61'	ч 5'	0.4	NoFR, Modente Odor
Mw·6	22.56'	45'	0.5	Noth, Styltolor
MW-7	23.101	40'	0.5	NoFP, No Odor
MW.8	27.56'	40'	1.9	N.FP, Nooder
MW.9	2.1.61'	40'	0.4	NoFP, Moderate Odor.
MW-10	21.63'	40'	0.5	NoFP, Very Slight Odor.
MW-II	Z I. 84'	40'	۵. ۲	NoFP. No Odor
Mw· 12	22.91'	40'	1. 0	NoFP, No odor
				
	> 2 4 01			
<u>\</u>	Jane,			

HOW MANY PURGE DRUMS WERE LEFT ONSITE \S . APPROXIMATE GAL. 345. CALL BAYSIDE OIL ON $4/2/o_1$ TO HAVE DRUMS PURGED. DRUMS WILL BE PURGED ON $4/3-6/o_1$.

COMMENTS:

Signature of Field Personnel & Date

Project N	lame/No.:	Harbert Trau	sportation /	H 4042.Q	Date: 3 29 01
	اه.: Mن.				Sample Location: പ്രം ദ
Samplers	Name: C	hudtyln			Recorded by: G
Purge Eq	uipment:	1			Sample Equipment:
·····	_Bailer: Di	sposable or Acr	ylic		χ Disposable Bailer
X	_Whaler#_	2_			Whaler#
	_Bladder P	ump			Bladder Pump
	_Submersit	ole Pump			Submersible Pump
		d (cricle all that			Number and Types of Bottle Used:
		2-DCA, EDB, 8260	Fuel Oxygenate	s	5x40mLvOA's
	e l, Stoddard io. Paramet		·		
Well Num			·		Well Diameter: with Casing Volume of:
Depth to		MU.3 22.02	тос		2" = (0.16 Gallon/Feet)
Well Dept		40'	BGS or TOC)	4" = (0.65 Gallon/Feet)
Height W	-Column:	17.98'	feet (well de	pth - depth t	o water) 5" = (1.02 Gallon/Feet)
Volume ir		2.8768	gallons (cas	ing volume λ	K height) 6" = (1.47 Gallon/Feet)
Gallons to	o purge:	IĮ-51	gallons (volu	ıme X 4)	8" = (2.61 Gallon/Feet)
Lab: £	ntach		· · · · · · · · · · · · · · · · · · ·	<u>-</u>	Transportation: Courter
	Volume		I		
Time (24 hr.)	Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	pH	Turbidity: Color, Fines D.O. (ppm)
ረ ነየ ዕ	0	610	64.3	6.48	Moderate: Light Drown, MinorFrag 1-3
૭ ૧૫૫	2	bez	65.0	6. 54	Low: Clear- Brown, TraceFing 1-2
0945	Ч	607	65.2	6.59	Moderate: Light Brown, MinorFrag 1-3 Low: Clear-Brown, TraceFrag 1-2 Low: Clear, TraceFines 0.7
0946	Ь	614	65.3	1.61	0.6
0947	ક	605	65.4	6.62	0.6
0948	10	60%	6 5.4	6.62	0.6
0949	12	615	65.4	1.65	V V 0.6
STOP-	Punc	Complete.	W-A A	~ 80%	Well Recovery. Sec Details Below.
Yor 3h					
	<u>,, , , , , , , , , , , , , , , , , , ,</u>	Wait for 8	30% well v	olume rec	overy prior to sampling.
		Calculate de	pth to water	(from TOC),	for 80% well volume recovery:
				e 80% of orgina	
	Original He	eight of Water Colum	nn = <u>17·11'</u>	x 0.8 = 14.38	- (Well Depth) 40' = Depth to water 25.62'
Time: <u>0151</u>	1st measure	ed depth to water, 7	27. 91' fee	t below TOC.	Is well within 80% of original well casing volume: Yes No
Time: \	-	ed depth to water, <		below TOC.	Is well within 80% of original well casing volume. Yes NoNo
Time: \sum cr		ed depth to water, _	_ ~	below TOC.	Is well within 80% of original well casing volume: Yes No
				Sample \	Well
Time:	0951		Sample ID:	Mw	Depth: 22.91 feet below TOC
Comments	ε: λ Δ.	Floating Prod	Land Land	مال	
_ J	. 10 2	Tree	(44) 100	(107	
<u>carriero</u>	กลเมอก-กราว	ממי			WATER BOTTOM

Sample N					२Date: ३ २५ ०। Sample Location		
Samplers	Name: C	had Taylor			Recorded by:	7	
Purge Eq		1			Sample Equipme	nt:	
	Bailer: Dis	sposable or Acr	ylic		Y Dis	posable Bailer	
ĸ	_ Whaler#_	1			Wh	aler#	
	Bladder Pı	ump			Bla	dder Pump	
	Submersib	ole Pump			Sul	omersible Pump	
Analyses	Requested	(cricle all tha	t apply):		Number and Type	es of Bottle Used:	
PH-gas o BT	EXMTBE +	2 DCA, EDB, 8260	Fuel Oxygenate	s	5 840~1	LV OA'S	· · · · · · · · · · · · · · · · · · ·
F PI I-dies e	l, Stoddard	Solven t					
ntrinsic B	o. Paramet	ers-			·····		
Nell Num	ber:	μ. μ			Well Diameter:	7 with Casing	Volume of:
Depth to		22.22'	TOC).16 Gallon/Feet
Well Dept		40'	BGS or TOC		a ventari	,).65 Gallon/Feet
leight W⋅ /olume ir		17.78' Z.8448	feet (well de gallons (casi				l.02 Gallon/Feet l.47 Gallon/Feet
Gallons to		11. 38	gailons (vasi gailons (volu		(noight)		2.61 Gallon/Feet
.ab: E		.,,	. ,	,	Transportation:	•	
.au. р	ut = m			•	Transportation:	Courter	
Time	Volume Purged	Conductivity	Temperature	nU	Turbidib	: Color, Fines	D.O. (ppm)
(24 hr.)	(Gailons)	(µs/cm)	(°F)	pH	Turbidity	: Color, Pines	D.O. (ppm)
0729	0	495	58.3	6.47	High! Light-Br	man, Muny Fins	1. 3
0736	2	585	62.1	6.60			0.8
0757	P	621	63.3	6.64	\$	d Oraca, Minur Firs	0.6
0131	ь	629	43.3	6.65	Low Clear-B	mun Miner Fives	0.6
0741	8	6 38	63.9	6.45		rown, Trace Fines	0.6
0742	10	6 <i>5</i> 0	64.2	6.65	!	TraceFines	0.5
o 744	12	651	642	6.69	↓ ↓	<u>'</u>	0.5
STOP-	Pune	Complete.	wit for 8	10% well	Recovery Se	e Detils Below	<u>, </u>
\a 3/2	الما ما	<u> </u>	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
(0) 31		Wait for a	1	olume rec	overy prior to s	amnling	<u>,l</u>
					for 80% well volum		
				e 80% of orgina			
	Original He	ight of Water Colur		-		01 = Depth to water 25	71'
·	4-4		20 11		1 11 111	A modeline I	Va. /
ïme: <u>0746</u> ïme: <u>√</u>		d depth to water, _				f original well casing volun f original well casing volun	
	1 1 ot mageura	d depth to water, _ d depth to water, _	or feet	helow TOC		f original well casing volun	
	rat measule	a dopui to water, "		LIGIOW TOO.	is well within 00 /6 0	. Chymici won casing volui	.5. 100110
				Sample \	<i>N</i> ell		
Time	A 7.17		Sample ID:	Mus	4	Depth: 22.33'	feet helow TOC
mine:	0746		Cample ID.	1,20	 	очин <u>автия</u>	FOOL MOIONA LOC

y Volume of: 0.16 Gallon/Fee 0.65 Gallon/Fee 1.02 Gallon/Fee 1.47 Gallon/Fee 2.61 Gallon/Fee
).16 Gallon/Fee).65 Gallon/Fee I.02 Gallon/Fee I.47 Gallon/Fee
0.65 Gallon/Fee 1.02 Gallon/Fee 1.47 Gallon/Fee
1.02 Gallon/Fee 1.47 Gallon/Fee
1.47 Gallon/Fee
2.61 Gallon/Fee
1
D.O. (ppm)
0.3
0.6 0.5
16
0.3
0.5
0.4
0.4
0.4
0.4
160
.152
ne: Yes No
ne: YesNo
ne: YesNo_
feet below TO

1231 0 5 419 440 66.8 67.4 6.58 65 Hgh. Gry, M. M. Moderate: Gry, Gry, Gry, Gry, Gry, Gry, Gry, Gry,	roject Na	me/No.: \	turbert The	sportson	H9042.P	Date	3/29/01			
Purge Equipment: Bailer: Disposable or Acrylic X Whaler # Z + 3 Bladder Pump Submersible Pump Analyses Requested (cricle all that apply): Number and Types of Bottle Used: PH-gas, FTEX MTBE 1, 2 PGA, EDB, 8289 Fuel Oxygenates TPH-diesel, Stoddard Selvent Intrinsic Bio, Parameters Well Number: Well Number: Well Number: Purget (3.65 Gallon/F Height W-Column: 21.41' feet (well depth - depth to water) Yolume in Well: Gallons to purge: 5 x 4 6 x 1 0 0 5 Transportation: Time Purged (Gallons) (Gallons) Transportation: Time Purged (Gallons) Transportation: Transportation: Dec. Time Purged (Gallons) Transportation: Time Purged (Gallons) Transportation: Time Purged (Gallons) Transportation: Time Purged (Gallons) Transportation: Do. (p) Transportation: Transportation: Transportation: Transportation: Transportation: Do. (p) Transportation: Do. (p)						Samı	ole Locat	ion: Mu	. 6	
Purge Equipment: Bailer: Disposable or Acrylic X Disposable Bailer Whaler # Z + 3 Bladder Pump Submersible Pump Analyses Requested (cricle all that apply): Number and Types of Bottle Used: TPH-gas, FTEX MTBE 1, 2-BCA, EDB, 8280-Fuel Oxygenates TPH-diesel, Steddard Solvent Intrinsic Bio, Parametere Well Number: Well Number: Well Depth: 4 5' BGS or TOC Well Depth: 4 5' BGS or TOC Height W-Column: 21.41' feet (well depth - depth to water) Yolume in Well: Gallons to purge: 5 7 4 gallons (volume X 4) Transportation: Time Purged (Gellons) Wolume Purged (Gellons) Transportation: Transportation: Transportation: Depth Turbidity: Color, Fines D.O. (p) 123 juli D 5 414 66 67 4 6 5 6.55 Hab. Conv. Medical Conv. Medic	amplers l	Name: 🤇	had Tayla			Reco	rded by:	G		
TPH-gas,	urge Equi	ipment: Bailer: Dis Whaler#_ Bladder Po	/ sposable or Acr +3 ump			Samı	Χ	Disposable Whaler # _ Bladder Pi	ump	
Well Number: Mu. 6 Well Diameter: Ψ' with Casing Volume of: Depth to Water: 22 56° TOC 2" = (0.16 Gallon/F Well Depth: 4 5° BGS or TOC 4" = (0.65 Gallon/F Height W-Column: 21.44° feet (well depth - depth to water) 5" = (1.02 Gallon/F Volume in Well: 13.136 gallons (casing volume X height) 6" = (1.47 Gallon/F Gallons to purge: 55.74 gallons (volume X 4) 8" = (2.61 Gallon/F Lab: Entern Transportation: Conductivity (μs/cm) Temperature (°F) pH Turbidity: Color, Fines D.O. (pp. 123 1241) 1233 1241 0 5 419 40 63.64 6.58 14 12 12 12 12 12 12 12 12 12 12 12 12 12	PH-gas,(BTE PH-diesel,	X(MTBE)1, Stoddard	2 DCA, EDB, 8260 Solvent		8-	Numi		• •		
Depth to Water: 72 56 TOC 2" = (0.16 Gallon/F	trinsic Bio	<u>. Paramete</u>	ors-							
Time Purged (24 hr.) Volume Purged (Gallons) Conductivity (µs/cm) PH Turbidity: Color, Fines D.O. (pg (24 hr.) Color Col	epth to W /ell Depth eight W-C olume in \	/ater: :: Column: Well:	72 56' 4 5' 21.44' 13.136	BGS or TOC feet (well de gallons (cas	pth - depth t ing volume)	o wate	r)	: <u> </u>	2" = (0.7) $4" = (0.6)$ $5" = (1.6)$ $6" = (1.4)$	16 Gallon/Feet) 55 Gallon/Feet) 02 Gallon/Feet) 17 Gallon/Feet)
1233 1241 0 5 419 66.8 67.4 67.5 66.8 67.5 67	ab: ۲	Entech				Trans	portation	1: Con	ner-	
1253 20 25 421 439 67.6 67.9 6.76 6.73 Loui Clear Tractions 0.7 0.	I	Purged	•		рН		Turb	idity: Color, F	ines	D.O. (ppm)
125 241 10 15 436 924 67.5 66.8 6.61 6.61 Low: Cher. Burn Thee Clar. Trackers 0.7 0. 1253 258 20 25 421 439 67.6 67.9 6.76 673 Low: Clar. Trackers 1.0 0.	237	0 5	417	66.8	6.58	11-7	· Gry 1	1 Y Em	Fe: Gry Modfine	0.2
1253 258 20 25 421 434 676 673 Loui Cleur, True Fire 1.0 0	.,	10	1136	17.5	1.19	L 0-1	Cleor Bu	Times _		
	253	20/25	J21	67.5	(26	الم	<u> . Cl « »</u>	· Tue Fin	Le or Times From	
1302 30 428 67.1 6.68 Low: Clear, Truce Fire 0.7	1302	30	428	67.1	6.68					0.7
1306 35 445 67.5 6.72 0.6	1306	35	244	67.5	6.72					0.6
1311 40 441 67.4 6.70	1311	40	441	67.4	6.70		i			GD.5
1316 45 425 66.8 6.67	1316	45	425	66.8	6.67					0.5
1320 50 450 66.7 6.70 0.5	1320	50	450	66.7	6.70					0.5
1324 55 450 67.0 665 1	1754	5 5	450	67.0	6 65	J	√.	\		0.5
Wait for 80% well volume recovery prior to sampling.		,					•	-	_	
Calculate depth to water (from TOC), for 80% well volume recovery:			Calculate de					ume recov	ery:	
Calculate 80% of orginal well volume: Original Height of Water Column = 21.4% x 0.8 = 17.192 - (Well Depth) 45' = Depth to water 27.86'		Original He	ight of Water Colur		•			45' = De	pth to water <u> </u>	<u>81</u> *
Time: 376 1st measured depth to water, 72.67 feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes No. Is well within 80% of original well casing volume: Yes No. No. No. No. No. No. No. No. No. No. No.						ls w	ell within 80	% of original	well casing volume:	Yes No
Sample Well					Sample \	Vel l				
Time: 1326 Sample ID: Mu-1 Depth: 22.67' feet below T	Time: _	1326		Sample ID:	Mul			De	oth: 22.67° fe	eet below TOC
Comments: No Float & Product. Slight Odor.	omments:	<u>_\\\</u> _	Float n P	modual. SI	1.74 Odo	r				

Samplers	Name:	h.d Taylor	r		Recorded by	ı: Cτ	
Purge Eq		/ /	·		Sample Equi		
ruige Eq	=	sposable or Acr	vlic		γ		
χ	_ Whaler # _	-	JC				
	- Bladder Pi					_ Whaler # _ Bladder Pump	
	_ Submersib	ole Pump				Submersible Pump	
Analyses	Requested	d (cricle all tha	t apply):		Number and	Types of Bottle Used:	
		2-DCA, EDB, 8260		s		OAL V OA'S	
TPH diese	l, Stoddard	- Solve nt					
Intrinsie B	lo. Paramet	ers					
Well Num Depth to \ Well Dept Height W- Volume ir	Water: h: Column: Well:	Mu.7 23.10 40' 16.90'	TOC BGS or TOC feet (well de gallons (casi	pth - depth t ing volume)	o water)	$ \begin{array}{r} 4" = 0 \\ 5" = 0 \\ 6" = 0 \end{array} $.16 Gallon/Fee .65 Gallon/Fee .02 Gallon/Fee .47 Gallon/Fee
Gallons to		4 3. 94	gallons (volu	me X 4)		,	.61 Gailon/Fee
Lab: ‡	For Acid				Transportation	on: Courier	
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	рH	Ти	D.O. (ppm)	
1128	0 5	475	73.1	6.62	Hyhi Lyhta	0.7 0.6	
1135	(ပ	457	70.c	6.82	Low: Cle	-r-Brown, Minorfins	0,5
1138	15	460	69.4	6.80		TuceFus	0.5
141	20	457	70.1	6-78			0.6
1145	15	441	61.2	6.87			<i>b</i> . 5
1,(૧ લ	70	५९६	69-3	6.82			0.3
1152	35	445	19.5	6.78			0.5
1156	40	૫૬૦	7000	6.74			0.3
1500	45	451	61.2	6.71	1 1	V	0,5
	<u> </u>	Wait for	80% well vo	olume rec	overy prior	to sampling.	
		Calculate de	epth to water	(from TOC),	for 80% well v	olume recovery:	
				e 80% of orgina		15 11.00 - 0.00 - 0.10	101
	Original He	eight of Water Colur	nn = 16.40	χ 0.8 = 13.8	- (Well Dept	h) <u> </u>	16
Time: 1202	1st measure	ed depth to water, _	73 . ዛል¹ feet	below TOC.		80% of original well casing volum	"
Time:	_ 1st measure ⊶C	ed depth to water, <u>_</u> ed depth to water, _	feet er	below TOC.		80% of original well casing volum	
Time:	1st measure	ed depth to water, _	teet	Delow TOC.	is well within 8	80% of original well casing volum	e: YesNo
				Sample \	Vell		
				<u> </u>			
							1

Project Na	ame/No.:	Harbert Tra	"sportation	H 9042.6	Dat	e: 3/21/01				
Sample N					Sar	nple Location: Mယ·&				
Samplers	Name: C	h.d Taylor			Red	orded by: CT				
Purge Equ		1			Sar	ple Equipment:				
	Bailer: Dis	sposable or Acr	ylic			X Disposable B	ailer			
Υ	Whaler#					Whaler #				
	Bladder Pr	ump				Bladder Pump				
	Submersib	ole Pump				Submersible i	Pump			
Analyses	Requested	l (cricle all that	apply):		Nur	nber and Types of Bottl	e Used:			
TPH-gas (Bf	EX VITBE 4,	2-DGA, EDD, 0260	Fuel Oxygenate	s		5x40mLVOA'S	··· · · · · · · · · · · · · · · · · ·			
	l, Stoddard					***************************************				
Intrinsic Bi	o. Paramet	er s								
Well Numi	·	W17-8	· T OO		Wel	Diameter: <u>५ "</u> v				
Depth to V Well Depti		22.56'	TOC BGS or TOC	2				6 Gallon/Feet) Gallon/Feet		
Height W-		17.44'	feet (well de		o wa	er)		2 Gallon/Feet)		
Volume in		11.336	gallons (casi		(hei	iht)		7 Gallon/Feet)		
Gallons to	· -	4 \$. 34	gallons (volu	ıme X 4)			`	31 Gallon/Feet)		
Lab:	Entroh				Trai	sportation: Course	٣			
Time	Volume	Conductivity	Temperature	<u> </u>	ļ —					
(24 hr.)	Purged (Gallons)	(µs/cm)	(°F)	pН		Turbidity: Color, Fines		D.O. (ppm)		
0636	0/5	457 467	54.4	6.71	M	ide note: Brown, Moder	3 - M.w.d-w	1.7		
0643	10	489	62.0	6.84	l. o.	Clerry Trace Fire	4 -	1.5 1.8		
0643	13	490	62.1	6.83			•	1:1		
0651	20	488	62.1	6.79	h a	wi Clear True	c tines	1.4		
0622	25	479	61.3	6.81	1.9					
0659	ક૦	496	61.9	6.83				1.8		
2050	35	5 vs	62.2	6.86				1.9		
0707	40	५ ०५	623	6.84				1. 9		
<i>IIF</i> 0	45	445	62.2	6.84			1	1. 9		
0715	Бо	488	62.1	6.82	V	J	Ţ.	1.9		
011,5					ove	ry prior to sampling				
						0% well volume recovery				
				te 80% of orgina						
	Original He	ight of Water Colun	nn = <u>17.44°</u>	x 0.8 = 13.9.	٤2.	· (Well Depth) <u>40'</u> = Depth t	o water <u>26. 6</u>	55'		
- 43.5			07'			W 1111 0007 6 11 1 W				
		ed depth to water, _ ed depth to water.				well within 80% of original well well within 80% of original well				
Time:	1st measure	ed depth to water, _ ed depth to water, _	्द _{feel}	t below TOC.	ls	well within 80% of original well	casing volume:	Yes No cq		
										
				Sample \	Veil					
Time:	0717		Sample ID:	Mω	8	Depth.	23.871 fe	et below TOC		
-										
Comments.		Jo Flooting	Product.	No Odo.	<u>- </u>			· · · · · · · · · · · · · · · · · · ·		

		Hobert Tomas	mhm /119	042.Q		3/29/11	75.00					
	10.: Mu				Sampl	e Location:	MU.9		<u> </u>			
Samplers	Name: C	-holtoyl.			Record	ded by: 🗷	<u> </u>					
Purge Eq		I			Sample	e Equipmer	nt:					
	Bailer: Di	sposable or Acı	ylic			<u>∕</u> Dis	oosable Bailer					
х	_Whaler#						aler#					
	Bladder P	•					der Pump					
<u>, , , , , , , , , , , , , , , , , , , </u>	Submersil	ole Pump			 .		mersible Pump					
	_	d (cricle all tha					s of Bottle Use	d:				
		2-DGA, EDB, 8260	Fuel Oxygenate	29		5 K40nLV 01	1.7		<u> </u>			
	l, Stoddard o . Paramet								<u> </u>			
Vell Num		······································			381-35 PS		U*		, , , , ,			
Depth to \		MU.9	тос		wen D	iameter:	<u> ዓ"</u> with C "2	asing volul '_ = (0.16 G				
Well Dept		40,	BGS or TOC	2				= (0.65 G				
leight W		18.391	_	pth - depth t	o water)		5"	= (1.02 G)	allon/Fee			
/olume ir		11. 9935	gallons (cas	ing volume >			6"	= (1.47 G)	allon/Fee			
Sallons to	purge:	47. 81	gallons (volu	ıme X 4)			8"	= (2.61 G	allon/Fee			
.ab: g	Entech			_	Transp	ortation:	Courser					
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	рН		Turbidity:	Color, Fines	E	.O. (ppm)			
1505	0 5	459	459 66.8 70.9 6.70 Hgh. Dork Comp. Many Fire D. 2									
510 15 15	10 15	466 451	302	6.73 6.71	Lou: C	Je-c, Tree	Fue 2 Lusi Class, Tme	5 0	5 0.4			
1527	20	469	72.1	6.69			Tuece Fing.	411.)	0. q			
153.5	25	471	71.8	6.68	1	0,4						
1543	30	467	61.5	6.69					0.5			
1551	35	462	69.3	6.69					0. 3			
1600	40	465	67.7	6.67		-		······				
		460	69.6						0.4			
1610	45			6.71					0.4			
1620	50	Y 58 Wait for 5	<u>। ४१.५</u> 30% well v	6.49	OVOTV	prior to s	y ampling		0,4			
			pth to water		_	=						
				te 80% of orgina								
	Original He	eight of Water Colur		-) = Depth to water	25,21				
ime: <u>1623</u>		ed depth to water, _		t below TOC.	ls wel	l within 80% of	original well casing	volume: Yes	No			
ime: 📐		ed depth to water, _	\	t below TOC.	ls wel	l within 80% of	original well casing	volume: Yes	No_			
ime: <u>\</u> 9	1st measure	ed depth to water, _	\ 4	t below TOC	ls wel	l within 80% of	original well casing	volume: Yes	N978			
				_								
_				Sample \	Vell							
Time:	1623		Sample ID:	Mu.	9		Depth: 21.8	<u>'5'</u> feet b	elow TOC			
Comments	: Nof	1.4. 2 11	Mode	1. cs1								
omments	. 1001	10-1-1 T-wil-T.	1 1 09 1	J- Udv,					+			
	GIH2O-OSLW	192							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

Project N	ame/No.:	Harbert Trun	sport for	19042.0	Date:	3/29/01					
Sample N			•				: MW.10				
Samplers	Name:	Chaltyt-			Recor	ded by:	7				
Purge Eq	Bailer: Di Whaler# BladderPi	ump	ylic		Samp	Wh	sposable Bailer naler # adder Pump				
	Submersik	ole Pump				Su	bmersible Pump				
(PH-gas BT	· · · · · · · · · · · · · · · · · · ·	l (cricle all that 2-DCA, EDB, 8260 Solvent		\$	Numb		es of Bottle Used:				
-Intrinsic Bi	o. Paramet	ers									
Well Num Depth to V Well Dept Height W- Volume in Gallons to	Vater: h: Column: ı Well:	MU-10 Z1.63' 40' 18.37' 11. 9405 47.76	TOC BGS or TOC feet (well de gallons (casi gallons (volu	pth - depth t ing volume :	o water)	4" = (0.6) $5" = (1.6)$ $6" = (1.4)$	Volume of: 16 Gallon/Feet) 65 Gallon/Feet) 02 Gallon/Feet) 17 Gallon/Feet) 61 Gallon/Feet)			
Lab: £	Entreh			•	Trans	oortation:	Cowier				
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	pΗ			: Color, Fines	D.O. (ppm)			
1024	0 5	812 594	64.1 68.9	6.65	High: Comy-Brown, Many Front 0.2 O.6 Low: Clear-Brown, Minor 0.5 Low: Clear-Brown, Minor 0.5 Low: Clear-Brown, Minor						
1039 1033	10 15	590 587	681 632	6.60	Low Clear-Brown Miner O.5						
1036	20	5 8l	66-9	6.54			Tuccfines	٥.4			
1039	25	590	67.2	6. 5 4				0.5			
/०५3	30	586	67.1	6. 55				0.5			
1047	2.5	587	67.0	6.56				0.3			
1050	Чo	6 62	67.6	6.59				0.6			
1053	45	5 91	67.2	6.62				0.4			
1057	5 0	612	68.7	6.72	V	V	V	0-5			
			30% well vo		_						
		Calculate de	pth to water	·	•		e recovery:				
	Original He	ight of Water Colun		e 80% of orgina x ก.ล. = . 14. <i>6</i>			o' = Depth to water 2.5.	30'			
Time:	1st measure	ed depth to water, _ ed depth to water, _ ed depth to water, _	て1. 58' _{feel}	below TOC.	ls we	ell within 80% o	of original well casing volume: of original well casing volume: of original well casing volume:	Yes No			
				Sample \	Vell						
Time:	1054		Sample ID:			·10	Depth: 72 / 581 fe	et below TOC			
Comments	: NoFl	waty Product	. Vary 5	light of	ю,						

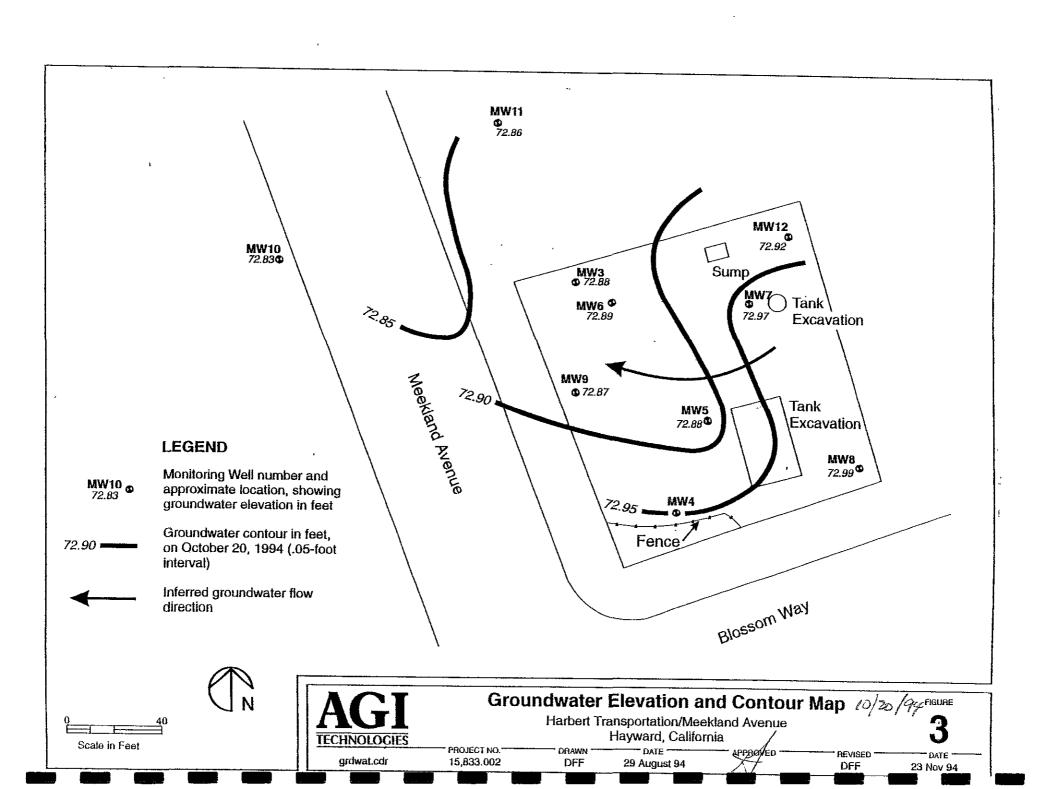
Samplers	Name /	hada	_		Recorded by: CT		
		hadTaylor	<u> </u>				
Purge Eq		sposable or Acr	rdio		Sample Equipment: × Disposal		
76	_ baller. Dis Whaler#	•	yiic		Whaler #		
X	_ Wridiei # _ Bladder Pi				Bladder i		
	Submersit	•				ible Pump	
Analyses	-	l (cricle all tha	t annly):		Number and Types of I	•	
		2-DCA, EDB, 8260		es.	5x40~LVOA		
	ol, Stoddard		. doi on/gonda		ON TO MOUNT	<u>• </u>	
	io. Paramet						
Well Num	ber:	Mw·II			Well Diameter: 2"	with Casing \	/olume of:
Depth to 1		21.841	TOC			2" = (0.1	16 Gallon/Fee
Well Dept		40'	BGS or TOC		en westers)		55 Gallon/Fee
Height W-		18.16' 2.9056	_feet (well de gallons (cas)2 Gallon/Fee 17 Gallon/Fee
Gallons to		11.62	_gallons (volu		y		31 Gallon/Fee
Lab:	Entech			.	Transportation: C	ourter	
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	рН	Turbidity: Color,	D.O. (ppm)	
0852	v	(63	63.0	6.53	High! Light Brown	Moderte Fry	& 3. 4
0853	2	8 ኔኒ	649	6.61			1.7
0855	ų	888	65.4	6.64	Moderate: Light o	man, Modfins	1-1
0887	6	871	65.3	6-60	Low: Clear- Brown	0.6	
0858	&	8 <i>5</i> ५	65.4	6.59	Lowi Clear, T		0.6
6859	10	875	65.7	6.59			06
0901	12	904	66.7	6.63	1 1		0.6
STOP-	Punge C	omplete. h	-it for	70% We	Recovery - See Do	tely Bolow.	
		185 16 6 6	200/ "				
					covery prior to samp		
		Calculate de		`	for 80% well volume reco	very:	
	Original Ha	ight of Motor Colum		-	al well volume: <u>78°</u> - (Well Depth) <u> 40'</u> = □	conth to water 7 5 U	2'
	Onginal ne	ight of Water Colur	IIII = <u> </u>	x 0.0 - 17.2	co - (Well Deptil) - 70 - D	eptir to water	<u>-</u>
Time: 09 03	1st measure	ed depth to water, _	21.48' fee	t below TOC.	Is well within 80% of origina	ıl well casing volume:	Yes No_
Time:	•	d depth to water, _		t below TOC.	ls well within 80% of origina	ıl well casing volume:	Yes No_
Time: \4	1st measure	d depth to water, _	<u>्रथ</u> fee	t below TOC.	Is well within 80% of origina	il well casing volume:	YesNo
				Sample	Well		
Time:	0903		Sample ID:	W	<i>∆•11</i> □	epth: <u>21.98</u> fe	et below TO
		Floating Pro					İ

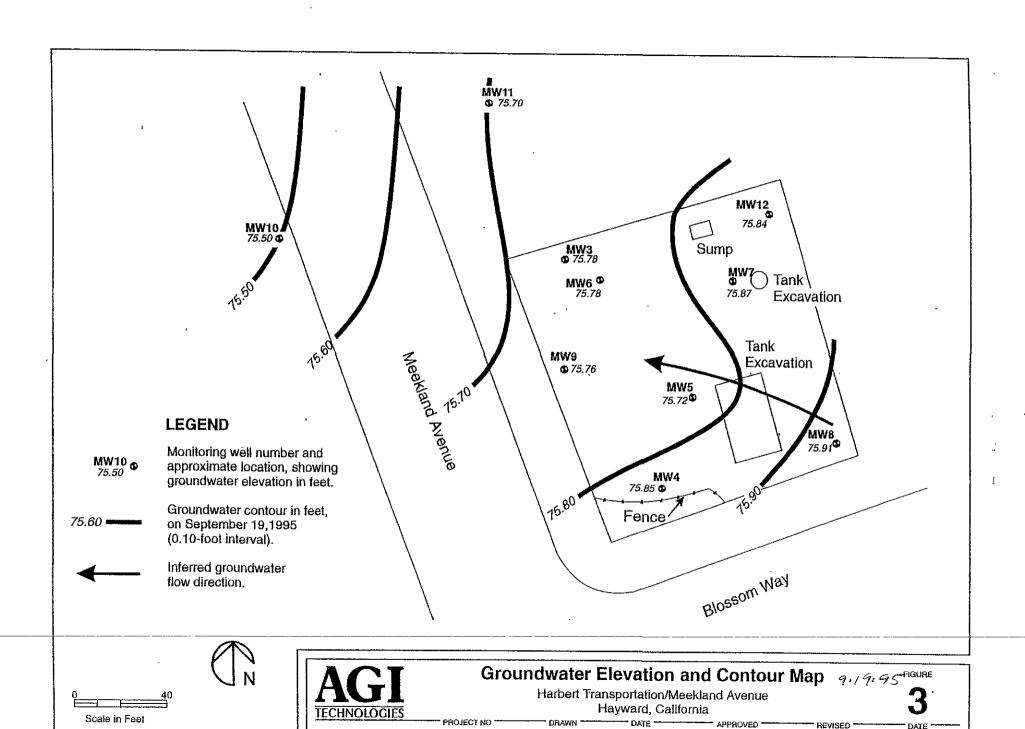
CI- N	.	· 1	portion H		Camani			_		
	lo.: Mu·						on: Mավ	.7		
Samplers	Name: (had Taylor			Recorded by: C3 Sample Equipment: Disposable Bailer Whaler #					
Purge Eq	•		11 -							
1.	_Bailer: Dis _Whaler#_	sposable or Acr	ylic							
X	_ Wilalei # _ Bladder Pi	•					/vrialei # _ 3ladder Pι			
	Submersib	•					Submersib	•		
∆nalvses	-	· I (cricle all that	apply):		Numbe	r and Ty	nes of Bo	ottle Used:		
		2-DOA, EDB, 8260		s		_	I U ON'S			
	i, Stoddard									
ntrinsic Bi	o Paramet	ete						· · · · · · · · · · · · · · · · · · ·		
Well Num Depth to \ Well Dept Height W- Volume in Gallons to	Water: h: Column: Well: p purge:	MW·12 22.91' 40' 17.09' 2.7344 10.99	TOC BGS or TOC feet (well de gallons (casi gallons (volu	pth - depth to ing volume >	o water)			4" = (0.6 5" = (1.0 6" = (1.4 8" = (2.6	/olume of: 16 Gallon/Feet 55 Gallon/Feet 12 Gallon/Feet 17 Gallon/Feet 11 Gallon/Feet	
_ab: 🕻	to teck			•	Transp	ortation	: <u>Co</u> ,	urier		
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	pН		D.O. (ppm)				
\$804	0	466	60.0	6.49	L. 3:	Clear	- Brown,	MinorFins	2.0	
6805	2	545	67.2	6.55				rce Fines	0.7	
0807	ч	541	63.0	6.57					0-7	
0809	6	5 54	63.3	6.59					0.8	
0810	8	555	63.6	6.61					0.9	
DRII	(8	5 56	8.28	6.61					1.0	
0813	12	5 56	63.8	6.62			,		1.0	
•							<i>~</i>	l d. R.l.	1,0	
<u> 570P-</u> \		Complete.	1 -t Far 8	D/o Well	الاددب	mry.	Sec De	p. 15 peros.		
			30% well vo			*	-	_		
		Calculate de	pth to water				ıme recov	ery:	· · · · · · · · · · · · · · · · · · ·	
	Original He	ight of Water Colun		e 80% of orgina x 0.8 = <u>13.6</u>			니아 = De	oth to water 24.3	<u>3</u> '	
ime: O8 5 ime: \u	1st measure	d depth to water, _ d depth to water, _ d depth to water, _	feet		ls weil	within 80%	% of original	well casing volume: well casing volume: well casing volume:	YesNo	
	······			Sample \	Veil					
Time:	0813		Sample ID:	Wo.	12		De	oth: <u>27.40'</u> fe	et below TOC	

Additional Site Assessment Report and Groundwater Monitoring - First Quarter 2001 19984 Meekland Avenue, Hayward, California June 18, 2001

Appendix F

Summary of Historical Depth to Groundwater Measurements, Groundwater Elevations, and Groundwater Flow Direction - AGI Technologies, Inc.



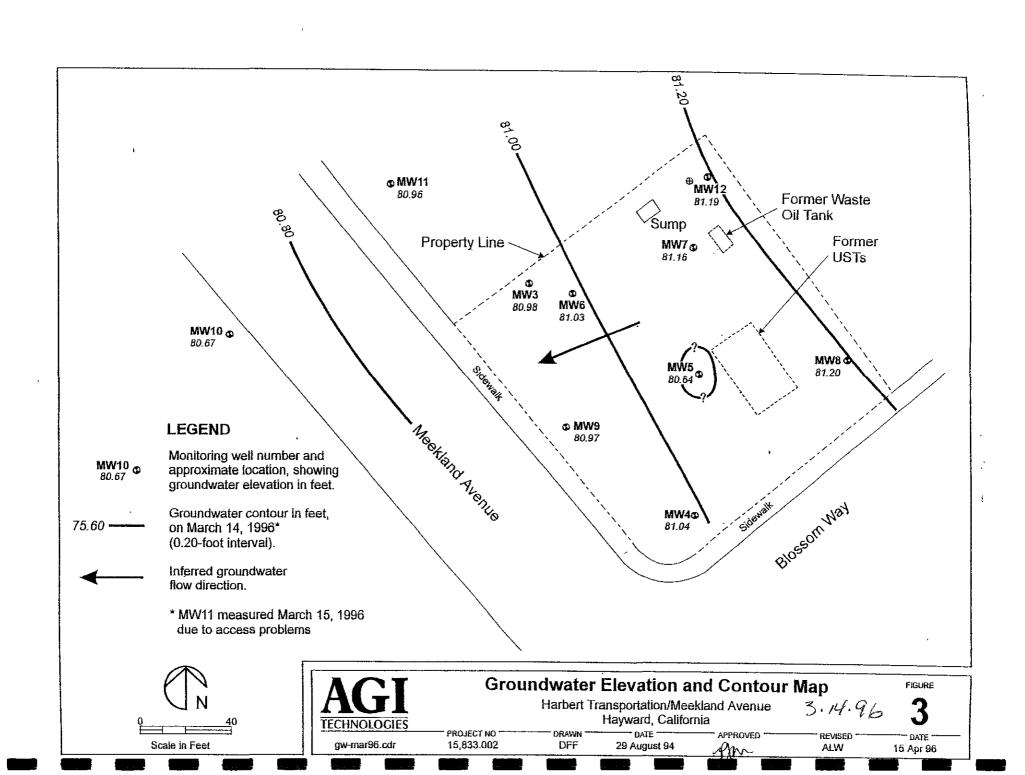

Table 1
Groundwater Elevation Data
Harbert Transportation/Meekland Avenue
Hayward, California

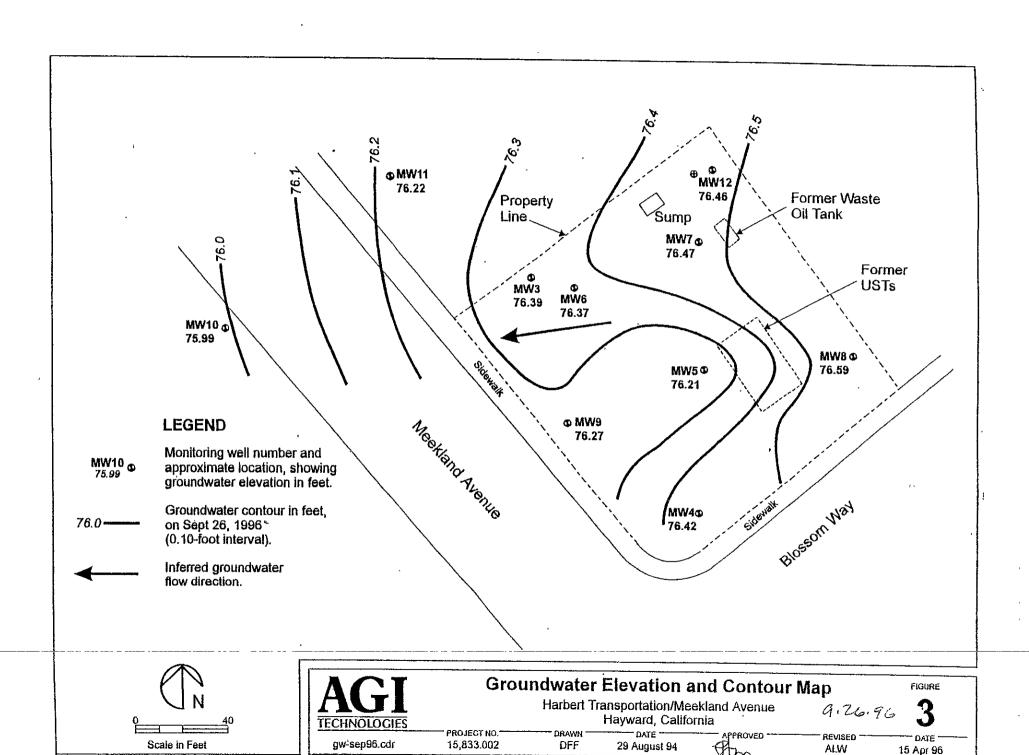
		Top of Casing	Depth to	Groundwater
Well	Date	Elevation	Groundwater	Elevation
Number	Sampled	(feet)	(ft bgs)	(feet)
MW3	10/20/94	100.00	27.12	72.88
10.000	09/15/95	100.50	24.22	75.78
	03/14/96		19.02	80.98
,	09/26/96		23.61	76.39
MW4	10/20/94	100.27	27.32	72.95
1	09/15/95	1441	24.42	75.85
	03/14/96		19.23	81.04
	09/26/96		23.85	76,42
MW5	10/20/94	100.59	27.71	72,88
	09/15/95		24.87	75.72
	03/14/96		19.95	80.64
	09/26/96		24.38	76.21
MW6	10/20/94	100.57	27.68	72.89
1	09/15/95		24.79	75.78
	03/14/96		19.54	81.03
[09/26/96		24.20	76,37
MW7	10/20/94	101.22	28.25	72.97
	09/15/95		25.35	75.87
	03/14/96		20.06	81.16
<u>'</u>	09/26/96		24,75	76.47
MW8	10/20/94	100.72	27.73	72.99
	09/15/95		24.81	75.91
	03/14/96		19.52	81.20
	09/26/96		24.13	76.59
MW9	10/20/94	99.77	26.90	72.87
	09/15/95		24.01	75.76
	03/14/96	İ	18.80	80.97
	09/26/96		23.50	76.27
MW10	10/20/94	99.29	26.46	72.83
	09/15/95		23.79	75.50
	03/14/96		18.62	80.67
	09/26/96		23.30	75.99
MW11	10/20/94	99.75	26.89	72.86
	09/15/95		24.05	75.70
	03/15/96		18.79	80.96
104/40	09/26/96	404.00	23.53	76.22 70.00
MW12	10/20/94	101.03	28,11	72.92
	09/15/95		25.19	75,84
	03/14/96		19.84	81.19
Li	09/26/96		24,57	76.46

Note:

ft bgs - Feet below ground surface.

DFF


29 August 94


BJA

8 Nov 95

15,833.002

grdwat.cdr

Additional Site Assessment Report and Groundwater Monitoring - First Quarter 2001 19984 Meekland Avenue, Hayward, California June 18, 2001

Appendix G

Certified Analytical Report - Groundwater Samples

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

April 17, 2001

Chad Taylor Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076

Order: 25018 Date Collected: 3/29/01
Project Name: Harbert Transportation Date Received: 3/30/01
Project Number: H9042.Q P.O. Number: H9042.Q

Project Notes:

On March 30, 2001, samples were received under documentented chain of custody. Results for the following analyses are attached:

 Matrix
 Test
 Method

 Liquid
 MTBE by EPA 8260B
 EPA 8260B

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Michelle L. Anderson

Lab Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/17/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sam	ple ID:	25018-0	03	Clie	Client Sample ID: MW-5			
Sample Time:	Sample Date: 3/29/01						Matrix: Liquid			
Parameter	Result	Flag	DF	MDL	DLR	Units	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		10	0.3	3	μg/L	4/11/01	WMS3010410	EPA 8260B	
	Surrogate	e		Surrogat	te Recover	y	Control Limits	(%)		
	4-Bromof	luorobenzen	e		112		65 - 135			
	Dibromof	luoromethan	e		101		57 - 139			
	Toluene-d	18			113		65 - 135			

Comment:

Sample diluted due to high concentrations of non-target analytes

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/17/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sample ID:			04	Clie	Client Sample ID: MW-6			
Sample Time:		Sampl	e Date:	: 3/29/01 Matrix: Liquid						
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		1	5	5	μg/L	4/11/01	WMS3010410	EPA 8260B	
	Surrogate	e		Surroga	te Recover	y	Control Limits	(%)		
	4-Bromof	luorobenzen	C		112		65 - 135		ļ	
	Dibromof	luoromethan	e		103		57 - 139			
	Toluene-d	8			113		65 - 135			

DF = Dilution Factor ND = Not Detected

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/17/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018	der ID: 25018 Lab Sample					Clie	Client Sample ID: MW-9			
Sample Time:		Sampl	ample Date: 3/29/01 Matrix: Liquid							
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method	
Methyl-t-butyl Ether	ND		1	5	5	μg/L	4/11/01	WMS3010410	EPA 8260B	
	Surrogat	e		Surroga	te Recover	y	Control Limits	(%)		
	4-Bromof	luorobenzen	e		112		65 - 135			
	Dibromof	luoromethan	e		108		57 - 139			
	Toluene-c	18			112		65 - 135			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Enteeh Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

April 10, 2001

Chad Taylor
Weber, Hayes and Associates
120 Westgate Drive
Watsonville, CA 95076

Order: 25018 Date Collected: 3/29/01
Project Name: Harbert Transportation Date Received: 3/30/01
Project Number: H9042.Q P.O. Number: H9042.Q

Project Notes:

On March 30, 2001, samples were received under documentented chain of custody. Results for the following analyses are attached:

MatrixTestMethodLiquidGas/BTEX/MTBEEPA 8015 MOD. (Purgeable)

EPA 80

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Michelle L. Anderson

Lab Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple ID	: 2501	8-001		Client Sam	ple ID: MV	V-3	
Sample Time:		Sam	ple Date	: 3/29/	01		I	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	1.1		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
Toluene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
Ethyl Benzene	10		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
Xylenes, Total	1.6		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
					Surroga	ıte	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		91	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μ g /L	N/A	4/5/01	WGC4010404	EPA 8020
•					Surroga		Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		91	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	170		1	50	50	μg/L	N/A	4/5/01	WGC4010404	EPA 8015 MOD. (Purgeable)
					Surroga	ite	Surr	ogate Recovery	Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		86	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple II	2501	8-002		Client Sam	ple ID: M	W-4	
Sample Time:		Sam	ple Dat	e: 3/29/	01]	Matrix: Li	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Toluene	4.2		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Ethyl Benzene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Xylenes, Total	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
•					Surroga	ite	Surr	ogate Recover	ry Contro	l Limits (%)
				aaa	a-Trifluoro	toluene		98	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
, ,					Surroga		Surr	ogate Recovei	ry Contro	Limits (%)
				aaa	a-Trifluoro	toluene		98	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	4/5/01	WGC4010405	EPA 8015 MOD (Purgeable)
					Surroga	te	Surre	ogate Recover	ery Control Limits (%)	
				aaa	a-Triffuoro	toluene		100	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple ID	2501	8-003		Client Sam	ple ID: MV	V-5	
Sample Time:		Sam	ple Date	3/29/	01			Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	220		100	0.5	50	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
Toluene	510		100	0.5	50	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
Ethyl Benzene	1000		100	0.5	50	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
Xylenes, Total	2700		100	0.5	50	μg/L	N/A	4/5/01	WGC4010404	EPA 8020
•					Surroge		Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		93	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		100	5	500	μ g /L	N/A	4/5/01	WGC4010404	EPA 8020
					Surroga		Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		93	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	13000		100	50	5000	μg/L	N/A	4/5/01	WGC4010404	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surre	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		95	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01

Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple II	2501	8-004		Client Sam	ple ID: M	W-6	
Sample Time:		Sam	ple Dat	e: 3/29/	01		1	Matrix: Lie	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	2.2		2	0.5	1	μg/L	N/A	4/9/01	WGC4010405	EPA 8020
Toluene	ND		2	0.5	1	μg/L	N/A	4/9/01	WGC4010405	EPA 8020
Ethyl Benzene	37		2	0.5	1	μg/L	N/A	4/9/01	WGC4010405	EPA 8020
Xylenes, Total	4.6		2	0.5	1	μg/L	N/A	4/9/01	WGC4010405	EPA 8020
•					Surroga	ate	Surr	ogate Recover	y Contro	l Limits (%)
				aa	a-Trifluoro	toluene		87	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		2	5	10	μg/L	N/A	4/9/01	WGC4010405	EPA 8020
					Surroga	ate	Surr	ogate Recover	y Contro	l Limits (%)
				aa	a-Trifluoro	toluene		87	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasolme	610		2	50	100	μg/L	N/A	4/9/01	WGC4010405	EPA 8015 MOD. (Purgeable)
					Surroga	ate	Surr	ogate Recover	y Contro	Limits (%)
				aa	a-Trifluoro	toluene		73	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01

Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number: H9042.Q Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple ID	: 2501	8-005		Client Sam	ple ID: M	W-7				
Sample Time:		Sam	ple Date	: 3/29/	/01	Matrix: Liquid							
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method			
Benzene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020			
Toluene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020			
Ethyl Benzene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020			
Xylenes, Total	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020			
·					Surroga	ite	Surr	ogate Recove	ry Conti	ol Limits (%)			
				aa	a-Trifluoro	toluene		99	6:	5 - 135			
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method			
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020			
					Surroga	ite	Surr	ogate Recove	ry Conti	ol Limits (%)			
				aa	a-Trifluoro	toluene		99	6:	5 - 135			
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method			
TPH as Gasoline	ND		1	50	50	μ g /L	N/A	4/5/01	WGC4010405	EPA 8015 MOD. (Purgeable)			
					Surrogs	ıte	Surr	ogate Recove	ry Conti	ol Limits (%)			
				aa	a-Trifluoro	toluene		101	6:	5 - 135			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01

Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple ID:	2501	8-006		Client Sam	ple ID: M	W-8	
Sample Time:		Sam	ple Date:	3/29/	01		ľ	Matrix: Li	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Toluene	0.80		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Ethyl Benzene	ND		1	0 5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Xylenes, Total	ND		1	0.5	0 5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
					Surroga	te	Surre	ogate Recover	y Contro	l Limits (%)
				aa	a-Trifluoto	toluene		103	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
, ,					Surroga		Surre	ogate Recover	y Contro	l Limits (%)
				aa	a-Trifluoro	toluene		103	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	4/5/01	WGC4010405	EPA 8015 MOD. (Purgeable)
					Surroga	te	Surro	gate Recover	y Contro	l Limits (%)
				aaa	a-Trifluoro	toluene		105	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple ID:	2501	8-007		Client Sam	ple ID: MV	V-9	
Sample Time:		Sam	ple Date:	3/29/	01]	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	110		10	0.5	5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Toluene	14		10	0.5	5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Ethyl Benzene	240		10	0.5	5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Xylenes, Total	150		10	0.5	5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
					Surroga		Surr	ogate Recovery	Conti	rol Limits (%)
				aa	a-Trifluoro	toluene		95	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		10	5	50	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
					Surroga		Surre	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		95	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	1600		10	50	500	μg/L	N/A	4/6/01	WGC4010405	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surre	ogate Recovery	Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		93	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple ID:	2501	8-008		Client Sam	ple ID: M	W-10	
Sample Time:		Sam	ple Date:	3/29/	/01		1	Matrix: Lic	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	2.0		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Foluene	0.65		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Ethyl Benzene	ND		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Xylenes, Total	0.72		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
					Surroga	ıte	Surre	ogate Recover	y Contro	l Limits (%)
				aa	a-Trifluoro	toluene		96	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
					Surroga	ite	Surr	ogate Recover	y Contro	I Limits (%)
				aa	a-Trifluoro	toluene		96	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	600	x	1	50	50	μg/L	N/A	4/6/01	WGC4010405	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surre	gate Recovery	y Contro	l Limits (%)
				aa	a-Trifluoro	toluene		81	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01 Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple II): 2501	8-009		Client Sam	ple ID: MV	V-11	
Sample Time:		Sam	ple Dat	e: 3/29/	01]	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Toluene	4.5		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Ethyl Benzene	ND		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
Xylenes, Total	ND		1	0.5	0.5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
					Surroga	ite	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		94	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	4/6/01	WGC4010405	EPA 8020
					Surroga		Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		94	6:	5 - 135
Parameter Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	4/6/01	WGC4010405	EPA 8015 MOD (Purgeable)
					Surroga	ıte	Surr	ogate Recovery	Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		100	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 04/10/01

Date Received: 3/30/01

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Client

Certified Analytical Report

Order ID: 25018		Lab Sa	mple ID:	2501	8-010		Client Sam	ple ID: M	W-12	
Sample Time:		Sam	ple Date:	3/29/	01		1	Matrix: Li	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Toluene	5.0		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Ethyl Benzene	ИD		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
Xylenes, Total	ND		1	0.5	0.5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
•					Surroga	ite	Surre	ogate Recover	y Contro	ol Limits (%)
				aaa	a-Trifluoro	toluene		95	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	4/5/01	WGC4010405	EPA 8020
					Surroga	ite	Surre	ogate Recover	y Contro	l Limits (%)
				aaa	a-Trifluoro	toluene		95	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	4/5/01	WGC4010405	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surre	ogate Recover	y Contro	l Limits (%)
				aaa	a-Trifluoro	toluene		97	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

STANDARD LAB QUALIFIERS (FLAGS)

All Entech lab reports now reference standard lab qualifiers. These qualifiers are noted in the adjacent column to the analytical result and are adapted from the U.S. EPA CLP program. The current qualifier list is as follows:

Qualifier	Description
(Flag)	
U	Compound was analyzed for but not detected
J	Estimated value for tentatively identified compounds or if result is below PQL but above MDL
N	Presumptive evidence of a compound (for Tentatively Identified Compounds)
В	Analyte is found in the associated Method Blank
E	Compounds whose concentrations exceed the upper level of the calibration range
D	Multiple dilutions reported for analysis; discrepancies between analytes may be due to dilution
X	Results within quantitation range; chromatographic pattern not typical of fuel

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC4010404

Matrix: Liquid

Units: µg/L

Date Analyzed: 4/4/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: TPF	I as Gasoline										
TPH as Gasoline	EPA 8015 M	ND		561		452.3	LCS	80.6			65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control l	Limits (%)				
	aaa-Trifluorotoh	uene		97		65 -	135				
Test: BTE	EX										
Benzene	EPA 8020	ND		6.2		5.99	LCS	96.6			65.0 - 135.0
Ethyl Benzene	EPA 8020	ND		7.8		7.10	LCS	91.0			65.0 - 135.0
Toluene	EPA 8020	ND		35.8		33.8	LCS	94.4			65.0 - 135.0
Xylenes, total	EPA 8020	ND		43		37.2	LCS	86.5			65.0 - 135.0
	Surrogate		Surrog	ate Recover	y	Control I	Limits (%)				
	aaa-Trifluorotol	uene		100		65 -	135				
	BE by EPA 802										
	her EPA 8020			52.8		50.7	LCS	96.0			65.0 - 135.0
[Surrogate		Surrog	ate Recover	'Y	Control I	Limits (%)				
	aaa-Trifluorotolu	iene		100	· 	65 -	135				
Test: TPI	I as Gasoline										
TPH as Gasoline	EPA 8015 M	ND		561		459.7	LCSD	81.9	1.62	25.00	65.0 - 135.0
[Surrogate		Surreg	ate Recover	У	Control I	imits (%)				
	aaa-Trifluorotoli	iene		96		65 -	135				
Test: BTE											
Benzene	EPA 8020	ND		6.2		6.12	LCSD	98.7	2.15	25.00	65.0 - 135.0
Ethyl Benzene	EPA 8020	ND		7.8		7.30	LCSD	93.6	2.78	25.00	65.0 - 135.0
Toluene	EPA 8020	ND		35.8		33.2	LCSD	92.7	1.79	25.00	65.0 - 135.0
Xylenes, total	EPA 8020	ND		43		36.8	LCSD	85.6	1.08	25.00	65.0 - 135.0
f	Surrogate		Surrog	ate Recover	y	Control I	Limits (%)				
	aaa-Trifluorotoli	iene		101		65 -	135				
Test: MTl	BE by EPA 802	0					•				
Methyl-t-butyl Et		ND		52.8		49.5	LCSD	93.8	2.40	25.00	65 0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control I	Limits (%)				
1	aaa-Trifluorotolu	iene	Ü	101		65 -	135				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC4010405

Matrix: Liquid

Units:

μg/L

Date Analyzed:

4/5/01

Paramet	er	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test:	TPH	as Gasoline										
TPH as C	Basoline	EPA 8015 M	ND		561		457.2	LCS	81.5			65.0 - 135.0
		Surrogate		Surrog	ate Recover	у	Control	Limits (%)				
:		aaa-Trifluorotoli	iene		97		65 -	135				
Test:	BTE	X				•					•	
Benzene		EPA 8020	ND		6.2		6.07	LCS	97.9			65.0 - 135.0
Ethyl Be	nzene	EPA 8020	ND		7.8		7.09	LCS	90.9			65.0 - 135.0
Toluene		EPA 8020	ND		35.8		33.9	LCS	94.7			65.0 - 135.0
Xylenes,	total	EPA 8020	ND		43		37.1	LCS	86.3			65.0 - 135.0
		Surrogate		Surrog	ate Recover	·y	Control !	Limits (%)				
		aaa-Trifluorotoli	iene		101		65 -	135				
Test:		BE by EPA 802 her EPA 8020	0 ND		52.8		53.2	LCS	100.8			65.0 - 135.0
ivicinyi-i-	outyl Bu	Surrogate	IND	Curroa	ate Recovei			Limits (%)				35.0 155.0
		aaa-Trifluorotoli	iene	Surrog	101	y	65 -					
Test:		as Gasoline	NID		561		453.3	LCSD	80.8	0.86	25.00	65.0 - 135.0
TPH as C	iasoline	EPA 8015 M	ND_	a					80.8	0.80	23.00	03.0 - 133.0
		Surrogate		Surrog	ate Recover	у		Limits (%)				
		aaa-Trifluorotoli	ienc		95		65 -	133		··-		
Test:	BTE											
Benzene		EPA 8020	ND		62		6.10	LCSD	98.4	0.49	25.00	65.0 - 135.0
Ethyl Ber	nzene	EPA 8020	ND		7.8		7.13	LCSD	91.4	0.56	25.00	65.0 - 135.0
Toluene		EPA 8020	ND		35.8		33.5	LCSD	93.6	1.19	25.00	65.0 - 135.0
Xylenes,	total	EPA 8020	ND		43		37.1	LCSD	86.3	0.00	25.00	65.0 - 135.0
		Surrogate		Surrog	nte Recovei	У		Limits (%)				
		aaa-Trifluorotoli	iene		100		65 -	135				
Test:		SE by EPA 802 ler EPA 8020	0 ND		52.8		52.4	LCSD	99,2	1,52	25.00	65.0 - 135.0
[- 30,1 2/11	Surrogate		Sproo	ate Recover	'V		Limits (%)				
		aaa-Trifluorotoli		206	100	J	65 -	, ,				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

Matrix:

WMS3010410

Liquid

Units:

μg/L

Date Analyzed:

4/10/01

Parameter N	1ethod	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: MTBE by	EPA 826	0B			· ·						
Methyl-t-butyl Ether EF	A 8260B	ND		20		20.8	LCS	104.0			65.0 - 135.0
Sur	rogate		Surrog	ate Recover	у	Control 1	Limits (%)				
4-Bt	omofluorob	enzene		98		65 -	135				
Dibi	romofluoron	nethane		101		57 -	139				
Tolu	iene-d8			98		65 -	135	· · ·			
Test: MTBE by	EPA 826	0B									
Methyl-t-butyl Ether EF		ND		20		18.5	LCSD	92 5	11.70	25.00	65.0 - 135.0
Sur	rogate		Surrog	ate Recover	у	Control 1	Limits (%)				
4-Br	romofluorob	enzene		101		65 -	135				
Dibr	omofluoron	ethane		105		57 -	139				
Tolu	iene-d8			99		65 -	135				

Weber, Hayes & Associates

CHAIN -OF-CUSTODY RECORD

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

	1	1
PAGE) OF	1
77.02	• 01	<u> </u>

91 MAR 30	3 13:21
-----------	---------

PROJECT NAME AND JOB #	Harbert Transportation / H9042.Q

LABORATORY: Entech Analytical

SEND CERTIFIED RESULTS TO: Chad Taylor

TURNAROUND TIME: Normal 24hr Rush 48hr Rush 72hr Rush

			SAM	IPLE CO	NTAINEI	RS	REQUESTED ANALYSIS								
							Total Petroleum Hydrocarbons			Volatile	Organics	Additional Analysis			
Sample ID# & Depth		Date	40 mL VOAs (preserved)	1 Liter Amber Jars	mL Poly Bottle	Liner Acetate or Brass	Extractable Fuel-Scan (w/Standard Silica-Gel-Cleanup)	Purgeable Fuel-Scan (w/MTBE & BTEX)	Gasoline & MTBE-BTEX by EPA Method# 8015M-8-8020	MTBE by EPA Method# 8260	SOLVENTS by EPA Method# 8010	Fuel Oxygenates by EPA Method 8260	Title 22: General, Physical and Inorganic Minerals		
Mu. 3	22-91	3/29/01	5						L x				25018	-001	
Mu-4	22.33'	1	5			-			у					002	
Mu·5	22.81		5						X					003	
Mul	22.67		5						Х					004	
Mu-7	23.48'		5						Х					005	
Mu.s	23.87		5						Х					006	
MU-9	21.851		5						λ			-		007	
Mula	21.58		5						Х					008	
Mw·II	21. 7 81		5						Х					009	
AUIZ	21-90	₩	5						Χ					010	
					1										

RECEIVED BY:	Date & Time	RELEASED BY:	Date & Time	SAI	MPLE CONDITION (circle 1)	i:
1.) Sampler:	-3/21/01/1930 -	· .L.\ -+	-3/30 on 1210-	Ambient	Refrigerated	Frozen
2) 50(5 MIKE	053001 1212	595 MIKE- WORD COUR	VZ:	Ambient	Refrigerated	Frozen
3. Jogoli Verchado	3/30/01 1322			Ambient	Refrigerated	Frozen
4)		-	<u>-</u>	Ambient	Refrigerated	Frozen
5.)	<u> </u>		<u> </u>	Ambient	Refrigerated	Frozen

NOTES - Lab to complete the following if box is checked:

Additional Comments

If MTBE is detected by EPA Method 8020, please confirm detections by EPA Method 8260 with a minimum detection limit of 5 ug/L, and report only confirmed 8260 detections

For MTBE-analyzed samples with non-detectable results (ND) but having elevated detection limits please confirm by EPA Method #8260.

Please use MDL (Minimum Detection Limit) for any diluted samples

Additional Site Assessment Report and Groundwater Monitoring - First Quarter 2001 19984 Meekland Avenue, Hayward, California June 18, 2001

Appendix H

Summary of Historical Groundwater Analytical Results - AGI Technologies, Inc.

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

						EPA Test Meth	ods				I	
			8015 Modifie	đ		8020				8010		
	2.7							Total				
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		μg/L			μg/L				HQ/L		µg/L
MW1	07/86	42,000	NA	NA	5,500	NA	4,900	6,100	NA	NA	NA	<u> </u>
	03/90	27,000	NA	NA	2,700	491	840	800	ND	ND	ND	
	07/90	27,000	11,000	ND	4,000	ND	1,500	4,400	ND	ND	62	
1	10/90	43,000	8,500	, ND	3,400	1,200	2,700	5,300	0.4	ND	26	
	01/91	22,000	2,700	ND	3,000	990	1,800	2,800	ND	ND	27	
	04/91	42,000	3,100 *	NA	5,100	1,200	3,700	3,200	ND	ND	120	
	07/91	46,000	4,300 ^a	NA	6,500	830	2,900	3,700	ND	ND	64	
	10/91	27,000	4,300 🖁	NA	4,400	1,100	1,400	3,200	ND	ND	25	
	01/92	27,000	14,000 *	NA	3,300	1,200	1,600	3,800	ND	ND	24	
	04/92	33,000	11,000 =	NA	8,900	1,200	3,500	3,700	ND	ND	120	
	07/92	41,000	19,000 *	NA	5,600	1,300	2,600	4,000	ND	ND	49	
	10/92	33,000	3,500	NA	4,400	1,200	2,100	4,000	ND	, ND	61	
MW3	11/89	29,000	NA	NA	4,600	680	1,100	1,100	ND	, ND	36	Lead 40
	11/89	NA	NA	NA	NA.	NA	NA	NA	ND	ND	36	
	03/90	12,000	NA	NA -	2,300	59	300	490	ND	ND	ND	Lead 40
	07/90	7,300	990	ND	5,200	ND	440	480	ND	ND	67	
	10/90	6,200	970	ND	75	7.5	150	250	ND	ND	48	
	10/90	NA	NA	NA	NA.	NA	NA	NA	ND	ND	22	1 and 3
	01/91	4,600	680	ND	2,200	220	110,	89	ND	ND	40	Lead 3
	04/91	8,300	640 ª	NA	2,800	370	490	760	ND	ND	43	
	07/91	6,600	890 ª	NA	2,000	250	230	380	ND	ND	29	
	10/91	6,300	1,700 ^a	NA	2,000	410	330	550	ND	ND	27	
	01/92	4,000	790 *	NA	1,200	250	60	200	ND	ND	27	
	04/92	7,400	1,800	NA	730	370	180	640	ND	ND_	19	
	07/92	3,000	2,400 *	NA	190	ND	2.8	410	ND	ND	30	
	10/92	5,000	970 ^a	NA	1,300	320	45	340	ND	ND	26	
	01/93	2,300	680 🖁	NA (2)	630	180	31	330	ND	ND	13	
	06/93	5,000	1,100 *	ND	730	240	. 43	380	ND	ND	13	

						EPA Test Met	ad s				1	
			8015 Modifie	d		8020				8010		
	Date	TPH-G	TRUB	Tours	_			Total				
Well		itino.	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
Sec. 4 811 (25)	Sampled		μց/Լ		(*************************************	hg/L				μg/L		μ g/L
MW4	11/89	ND	NA	NA	33	1.3	1	5.2	NA	NA	AIA	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	03/90	ND	NA	NA	7.4	2	2	1.1	ND	ND	NA	Lead 12
	07/90	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10/90	ND	ND	ND	ND	ND	ND	. ND	0.7	ND	0.9 0.5	
	01/91	80	ND	ND	9.2	2.4	1.7	0.7	ND	ND	ND	
	04/91	1,400	130 *	NA	2,200	72	ND	17	ND	ND	ND	
	07/91	130	ND	NA	14	3.3	9.7	ND	ND	ND	0.81	
	10/91	ND	ND	NA	5.3	1	ND	0.8	ND	ND	. ND	
	01/92	ND	ND	NA.	6.8	1.3	ND	ND	ND	ND	ND	
	04/92	780	130 *	NA	ND	51	ND	4.8	ND	ND	1.6	
	07/92	ND	ND	NA	ND	ND	МD	ИD	ND	ND	1.3	
	10/92	100	ИŊ	NA	9.5	ND	ИD	2.6	ND	, ND	ND	
	01/93	960	240 ª	NA	200	41	4.6	9.4	ND	ND	1	
	06/93	650	140	ND	150	21	ND	ND	ND	ND	3.7	
MW5	10/90	9,600	1,900	ND	1,200	70	160	520	ND	ND	22	Lead 3
	01/91	10,000	1,200	ИD	1,600	720	200	510	ND	ND	33	Lead 2
	04/91	18,000	860 ^R	NA	2,500	550	580	500	ND	ND	61	
	07/91	15,000	2,200	NA .	4,800	610	1,100	760	ND	ND	62	
	10/91	14,000	3,300 *	NA	5,000	530	820	800	ND	ND	49	
	01/92	12,000	1,900	NA	4,300	390	380	590	ND	ND	56	
	04/92	23,000	6,400	NA	8,600	ND	2,600	1,900	ND	П	125	
	07/92	27,000	5,900	NA	6,000	ND	1,500	1,600	ND	ND	93	
	10/92	13,000	2,100 ^a	NA	4,600	140	470	550	ND	ND	59	
	01/93	18,000	1,900	NA	5,800	560	1,900	1,600	ND	ND ND	- 110	
	01/93	19,000	2,100 ª	NA	4,600	370	1,600	1,400	ND	ND	120	
	06/93	22,000	2,900 ⁸	ND	8,300	740	2,500	1,900	ND	ND	110	!
L	06/93	23,000	2,300 ª	ND	9,600	730	3,000	1,900	ND	ND	110	

						EPA Test Meth	ods				200 S S S S	(Meta) 18 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19
			8015 Modifie	d.		8020				8010		
Well	Date Sampled	ŢPH-G	TPH-D μg/L	TPH-MO	Benzene	Ethylbenzene µg/L	Toluene	Total Xylenes	TGE	PCE µg/L	1,2-DCA	Other
MW6	10/90	27,000	4,700	ND	2,700	/ · · · · · · · · · · · · · · · · · · ·	0.000	0.000	***			µ g /L
	01/91	7,200	1,600	ND	2,700 1,400	450	2,900	3,300	ND	ND	40	Lead 9
	04/91	17,000	800			ND	200	830	ND	ИD	23	
	07/91	11,000	1,400	NA NA	2,800	610	1,200	1,800	ND	ND	53	
	10/91	4,800	1,600 ^a		1,200	ND	380	. 750	ND	ND	29	
	01/92	6,100	1,200	NA MA	380	69	340	730	ND	ND	22	
	04/92	-	1,200 1,800 ⁸	NA	460	180	200	590	ND	ND	26	
	07/92	7,200		NA	340	350	460	920	ND	ND	30	
	10/92	8,600	1,700 ^a 110 ^a	NA	1,300	380	280	1,100	ND	. ND	35	
		1,600		NA	230	70	20	88	ND	ND	24	
	01/93	13,000	2,100	NA	2,500	370	540	2,400	ИD	ND	36	
A 41 A 67	06/93	7,400	1,900	ND	1,500	480	120	1,400	ND	ND	29	
MW7	10/90	14,000	2,700	ND	390	ND	18	1,200	ND	, 1.3	14	Lead 11
	01/91	4,500	1,400	ND	320	42	48	350	ND	ND	10	
	04/91	2,400	NA .	NA	320	77	62	130	ND	0.6	11	
	07/91	2,000	910 "	NA	470	ND	24	88	ND	ND	9.7	
	10/91	ИD	370	NA	ND	ND	ND	ND	ND	0.68	4.5	
	01/92	1,100	290	NA	230	45	7	88	DN	3.5	6.4	
	04/92	1,700	520	NA	310	78	28	170	ND	0.5	3.2	
	07/92	1,900	590	NA	410	78	21	170	ND	2.1	8.7	
	07/92 (dup)	1,200	700 -	NA	21	1	2.6	90	ND	2	8.2	
	10/92	1,800	320 *	NA	410	31	11	75	ND	1	7.4	
	01/93	2,100	660 ^a	NA	390	100	21	270	ND	0.6	3.7	
	06/93	4,400	1,100 a	ND	830	330	49	620	ND	ND	8.6	

						EPA Test Meth	od s				720.000 A	
			8015 Modifie	ď		8020				8010		
	Date	TPH-G	TPH-D	TOU NO		_		Total				
Well	Sampled		account and a second	TPH-MO	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
· (3/34/4/2000/30/30/30	Sampled	161.83039 millio	μ ä /L			μg/L,				µg/L		Hg/L
MW8	02/91	ND	ND	NA	ND	ND	ND	ND	ND	ND	A I D	<u> </u>
	04/91	ND	ДИ	NA	ND	ND	ND	ND	ND	0.5	ND	
	07/91	ND	ND	NA	ND	ND	2	ND	ND	1.2	ND	
	10/91	ND	ND	NA	ND	ND	0.6	ND	ND	0.4	ND	
	01/92	ND	ND	NA	ND	ND	ND	ND	ND	0.4	ND	
	04/92	DN	ND	NA	ND	ND	ND	ND	ND	0.8	ND	
	07/92	ND	ND	NA	ND	ND	3.3	ND	ND	1.6	ND	
	10/92	ND	ND	NA	ND	ND	ND	ND	ND	1.6	ND	
	01/93	ND	ND	NA	ND	ND	ND	ND	ND	0.8	. ND	
	06/93	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	
MW9	02/91	6,000	1,600	NA	180	19	170	200	ND	ND	ND -13	
	04/91	4,200	410 *	NA	520	130	410	580	ND	, ND	26	
	07/91	1,900	180 "	NA	190	12	52	77	ND	6.5	12	
	10/91	880	300	NA	160	31	44	83	ND	ND	10	
	01/92	380	120 *	NA	14	7.6	2.2	14	ND	ND	9.6	
	04/92	2,900	700	NA :	-510	80	260	260	NĐ	ND	11	
	07/92	4,400	1,300	NA	860	210	340	640	ND	ND	22	
	10/92	200	290	NA	6.8	1.4	2.1	7.8	ND	ND	12	
	01/93	8,500	740	NA	2,400	390	620	1,500	ND	ND	29	
	06/93	8,200	1,300 *	ND	2,400	360	480	1,500	ND	ND	29	
MW10	01/92	13,000	3,700 *	NA	130	580	110	3,000	ND	ND	33	
	05/92	15,000	5,000	NA	180	ND	18	2,700	ND	ND	20	
	05/92 (dup)	13,000	7,500	NA	240	490	65	2,500	ND	ND	22	
	07/92	8,100	4,400 ª	NA	74	360	ND	1,100	ND	ND	29	
	10/92	3,200	1,500	NA	ND	ДИ	ND	320	ND	ND	25	
	01/93	7,500	2,200	NA	130	170	· 20	710	ND	ND	18	
	06/93	8,000	2,100	ND	69	7.9	ND	490	ND	ND	16	

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

						EPA Test Meth	ods					
		8	015 Modified			8020				8010		
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Total Xylenes	TCE	PCE	1,2-DCA	00
Well	Sampled		μg/L							μg/L	I,A-DCA	Other pg/L
MW11	01/92	8,200	3,200 *	NA	23	250	ND	1,100	ND	ND	ND	
	04/92	160	1,200	NA	ND	ND	ND	DI	ND	ND	ND	
	07/92	2,100	710 *	NA	39	100	2.3	53	ND	ND	ND	
	10/92	660	220	NA	2.9	19	ND	3.8	ND	ND	ND	
	10/92	770	230	NA	3.2	26	ND	5.7	ND	ND	ND	
	01/93	780	370	NA (10	2.1	ИD	39	ND	ND	ND	
	06/93	2,500	160	ND	27	99	ND	34	ND	ND	ND	
MW12	12/92	2,800	1,700	NA	14	ND	ИD	ND	ND	ND	ND	
	06/93	1,100	750	ND	19	21	ND	57	ND	ND	. ND	
B1	01/93	ИD	ND	NA	ND	ND	ND	ИD	ND	ND	ND	
	06/93	ND	ND	_ND	. ND	ND	ND	ND	ND	ND	ND	
F3	02/93	NA	NA	NA	NA	NA	NA	NA	NA	, NA	NA NA	
Well Abandoned	12/8 9 1	1,800	NA	NA	200	24	18	34	ND	ND	0.15	Lead 2,100
Average b		8,865	1,883	250	1,562	235	517	871	0.21	0.41	24.8	
Laboratory Limit	Detection	50	50	500	0.5	0.5	0.5	0.5	0.4	0.4	0.4	

Notes:

- a) The detection for petroleum hydrocarbons as diesel appears to be due to the presence of lighter hydrocarbons rather than diesel.
- b) Average of sampled data, ND equals 1/2 detection limit.

μg/L. - Micrograms per liter is approximately equivalent to parts per billion, depending on density of water.

NA - Not analyzed.

ND - Not detected

TCE - Trichloroethylene.

TPH-G - Total petroleum hydrocarbons quantified as gasoline.

PCE - Tetrachloroethylene.

TPH-D - Total petroleum hydrocarbons quantified as diesel.

1,2-DCA - 1,2-Dichloroethane.

TPH-MO - Total petroleum hydrocarbons quantified as motor oil.

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

					EPA?	est Metho	ds			
		8015	М		BETX 5030	/8020			8010	
	Date	TPH Gasoline	TPH Diesel	Benzene	Ethylbenzene	Toluene	Xylenes	1,2-DCA	PCE	TCE
Well	Sampled	hâlr	µg/L		μg/L			hã/r	µg/L	µg/L
MW3	07/28/94	7,700	970 4	1,800	810	ND	600	22	ND	ND
1	10/21/94	7,400	810	1,900	900	. 37	780	25	ND	ND
[09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW4	07/28/94	120	ND	7.9	0.7	1.1	ND	ND	ND	ND
1	10/21/94	69	ND	3.4	ND	ND	ND	ND	ND ·	ND
	09/15/95	110	ND	2.5	ND	0.85	ND	2.3	ND	ND
	03/14/98	300	69 b	3.3	0.74	ND	ND	1.6	ND	ND
	09/26/96	ND	ND	ND	ND	ND	ND	1.2	'ND	ND
MW5	07/29/94	30,000	2,200 4	9,300	1,100	1,800	2,300	110	ND	ND
	10/21/94	23,000	1,500	7,900	780	1,500	2,900	85	ND	ND
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
1	09/26/96	NS	NS	หธ	NS	NS	NS	NS	NS	NS
MW6	07/29/94	15,000	2,100 b	3,100	1,100	71	2,000	37	ND	ND
	10/21/94	18,000	1,500	3,900	. 1,200	170	3,200	35	ND	ND
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW7	07/29/94	2,600	530 °	470	220	ND	310	2.7	6	ND
	10/21/94	1,700	280	290	140	4.5	240	1.8	0.74	ND
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

					EPA T	est Metho	ds			
		8015	М		BETX 5030/	8020			8010	
	Date	TPH Gasoline	TPH Diesel	Benzene	Ethylbenzene	Toluene	Xylenes	1,2-DGA	PCE	TGE
Welf	Sampled	pg/L	hâ\r		µg/L			µg/L	µg/L	µg/L
MW8	07/28/94	ND	78 ^a	ND	ND	ND	ND	ND	ND	ND
	10/21/94	ND	ND	ND	ND	ND	ND	ND	0.72	ND ND
	09/15/95	ND	ND	ND	ND	ND	ND	ND	0.72	ND
	03/14/96	, ND	ND	ND	ND	ND	ND	ND.	0.63	ND
	09/26/96	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW9	07/28/94	6,000	1,300 6	90	170	27	370	26	· ND	ND
	10/21/94	6,900	600	1,800	280	220	1,500	31	ND	ND
	09/15/95	NS	NS	NS	NS	. NS	NS	NS	NS	NS
	03/14/96	NŞ	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW10	07/28/94	6,700	2,000 6	99	180	57	430	13	ND	ND
	10/21/94	8,600	2,000	93	200	ND	680	12	ND	ND
	09/15/95	2,100	1,900	9.9	49	ND	4.9	ND	ND	ND
	03/14/96	6,800	2,000 b	64	· 98	ND	33	6.5	ND	ND
	09/26/96	7,100	420	140	210	ND '	32	9.1	ND	5.9
MW11	07/28/94	450	150	6.2	20	1.1	6.6	ND	ND	ND
	10/21/94	460	190	4.9	14	ND	12	ND	ND	ND
	09/15/95	9,600	550	130	180	ND	130	8.8	ND	5.6
	03/15/96	780	310 b	0.74	25	ND	1.8	ND	ИD	ND
	09/26/96	480	710	ND	50	ND	ND	ND	ND	ND

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

		8045	u		EPA 1 BETX 5030	est Method	8		8010	
	Date	TPH Gasoline	TPH Diesel	Benzene E	thylbenzene		Kylenes	1,2-DGA	PCE	TÇE
	Sampled	µg/L	µg/L 400		µg/L			μg/L	hâlf	µg/L
MW12	07/28/94 10/21/94 09/15/95	240 260 NS	160 190 NS	1.9 1.9 NS	12 4.5 NS	ND ND NS	5.8 6.8 NS	ND ND NS	ND ND NS	ND ND NS
	03/14/96 09/26/96	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Method Detection Limit		50	50	0.6	0.5	0.5	0.5	0.5	0.5	0.5

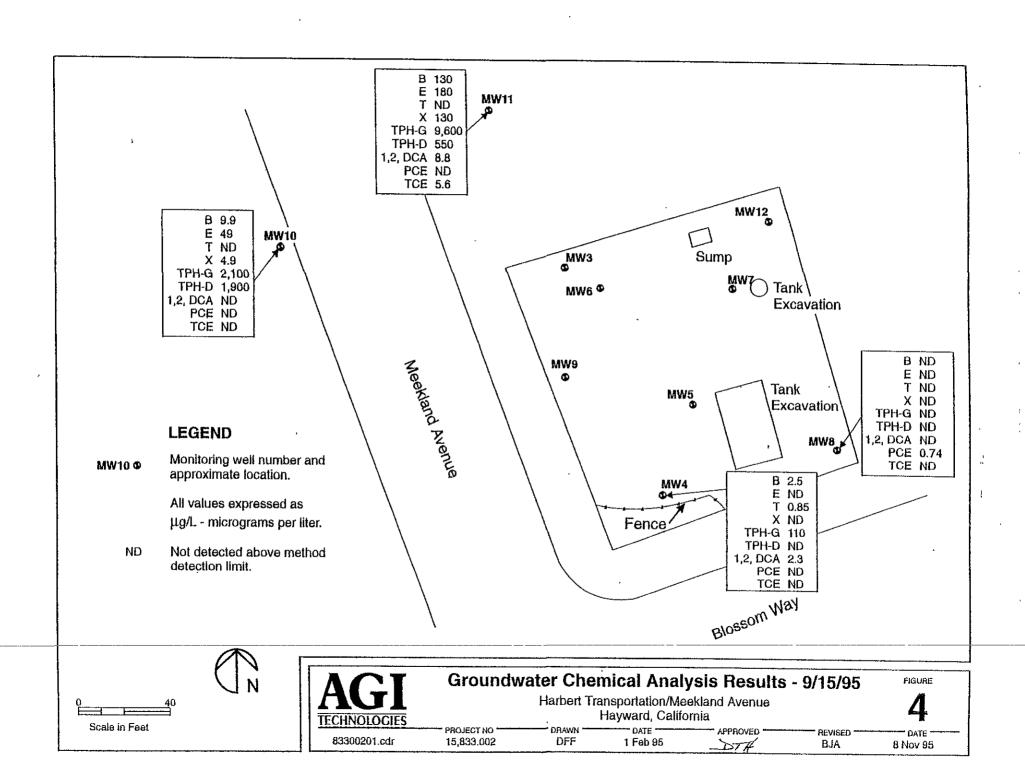
Notes:

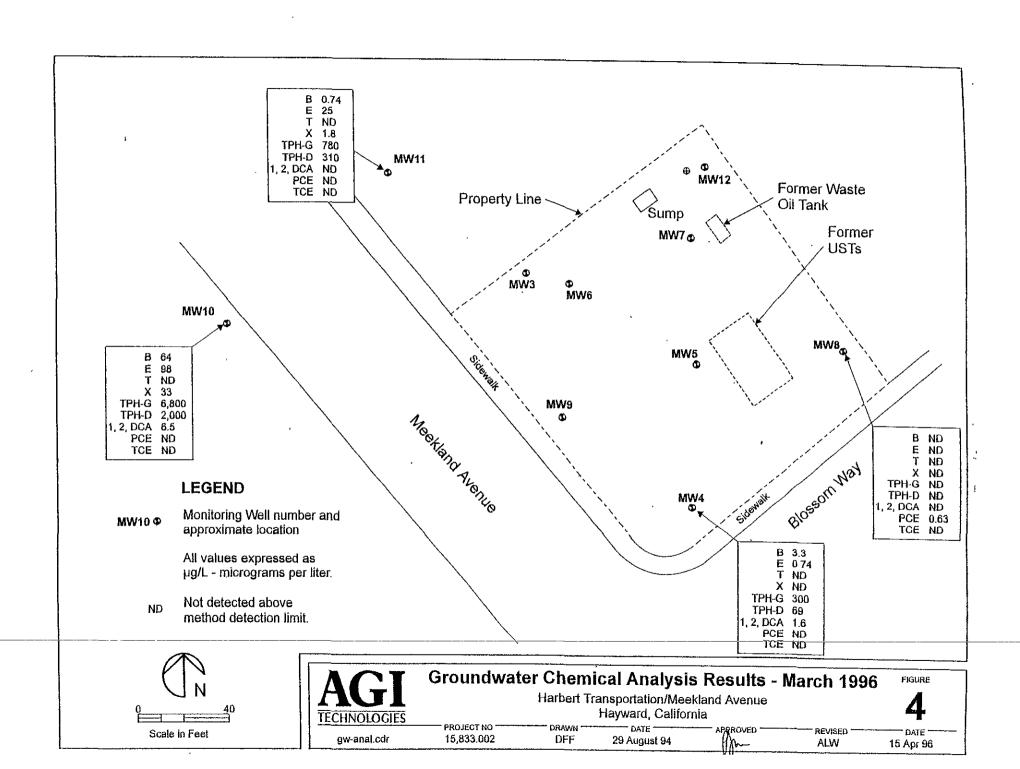
- a) Hydrocarbons quantified as diesel are primarily due to discrete peaks not indicative of diesel fuel.
- b) Hydrocarbons quantified as diesel are primarily due to the presence of a lighter petroleum product (C₈-C₁₂), possibly gasoline.
- c) Hydrocarbons quantified as diesel are due to the presence of a lighter petroleum product (C₆-C₁₂) and discrete peaks not indicative of diesel fuel. 1,2-DCE 1,2-dichloroethane.

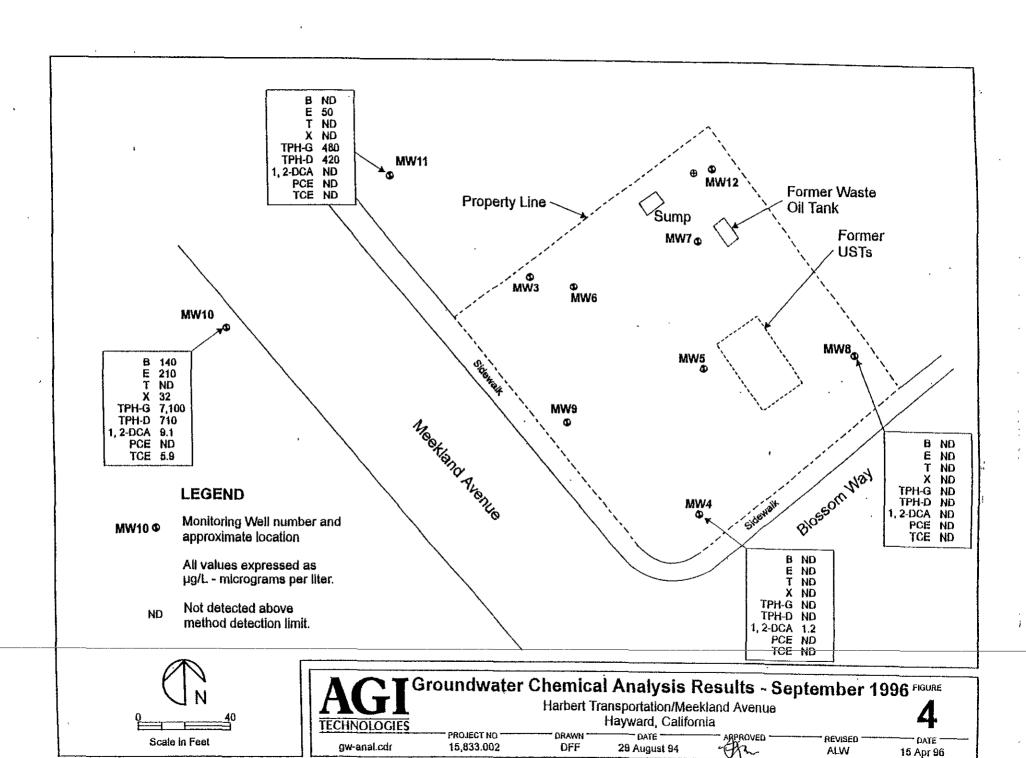
PCE - Tetrachloroethene.

TCE - Trichloroethene.

ND - Not detected at or above method detection limit.


NS - Not sampled.


TPH-Gasoline - Total petroleum hydrocarbons quantified as gasoline.


TPH-Diesel - Total petroleum hydrocarbons quantified as diesel.

μg/L - Micrograms per liter, equivalent to parts per billion.

