

## Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 (831) 662-3100

Fax: (831) 722-1159

April 11, 2005 Project H9042.O

Mr. Jerry Harbert 46765 Mountain Cove Drive Indian Wells, California 92210

Subject:

Semi - Annual Groundwater Monitoring Report - First Quarter 2005

Harbert Transportation

19984 Meekland Avenue, Hayward, California

Dear Mr. Harbert:

This report describes groundwater monitoring activities conducted by Weber, Hayes and Associates (WHA) at the former Harbert Transportation facility, 19984 Meekland Avenue, Hayward, California, during the first quarter 2005.

This former tank site was recommended for regulatory closure by WHA in August 2003, due to completed remediation action and low residual concentrations of hydrocarbons. Alameda County Environmental Health (ACEH) requested additional information and a restart of semi-annual groundwater monitoring in a letter dated May 13, 2004. In response to Alameda County directives. WHA submitted a revised Site Conceptual Model, and a Workplan for additional investigation dated July 30, 2004. Alameda County Environmental Health reviewed this report and submitted comments and informational requests in their letter dated December 2, 2005. We submitted a Workplan Addendum dated January 27, 2005 to address the informational requests of ACEH. ACEH has reviewed and approved the Workplan Addendum in their email dated March 30, 2005.

#### **EXECUTIVE SUMMARY**

The groundwater monitoring event for the first quarter 2005 took place on March 23, 2005. Groundwater elevations at the site rose an average of approximately 4.15 feet since the last semi-annual groundwater monitoring activities were performed at the site (September 23, 2004). The calculated groundwater flow direction on March 23, 2005 was to the southwest, which is generally consistent with historical data. Groundwater analytical results from the first quarter 2005 indicate that dissolved PHC concentrations decreased up to two orders of magnitude in wells MW-5, 6, and 9. No detections of contaminants were discovered in any of the off-site wells. Only MW-9 marginally exceeded dissolved PHC concentrations above Alameda County's proposed cleanup goals for off-site plume migration (1,100 ppb TPH (g) detected in MW-9 versus goal of 1000 ppb).

Methyl - tert - Butyl Ether (MTBE) was not detected in any of the groundwater samples collected this quarter. MTBE has not been detected in soil or groundwater at the site. Groundwater samples were analyzed for the fuel oxygenates Di-isopropyl Ether, tertiary Butyl Alcohol, Ethyl tertiary Butyl Ether, and tertiary Amyl Methyl Ether this quarter. No fuel oxygenates were detected in these groundwater samples.

As per the revised sampling schedule issued by ACEH in their letter dated May 13, 2004, all groundwater samples were analyzed for the lead scavengers 1,2 Dichloroethane, and 1,2 Dibromoethane. Neither of these constituents were detected in any of the groundwater samples collected from the site during the last semi-annual groundwater monitoring event. Sampling for these compounds was not conducted this quarter.

Biological parameters were collected from a transect of wells (MW-3, 5, 8, 9, & 10) this quarter per our Workplan Addendum dated January 27, 2005. Overall, the relative concentrations of biological parameters measured on March 23, 2005 indicate that natural attenuation of dissolved petroleum hydrocarbons via biological remediation is occurring at this site through both aerobic, and anaerobic processes.

At this time, we recommend completing the tasks described in our Workplan Addendum dated January 27, 2005, including deep sampling of soil and groundwater (scheduled for April 18), and responding to ACEH comments in their March 2, 2005 letter, including creating additional geologic cross-sections, an estimate of residual hydrocarbon mass, and evaluation of contaminant trends over time.

#### INTRODUCTION

This report documents groundwater monitoring activities at the site during the first quarter 2005. This report has been prepared pursuant to a directive from the ACEH dated May 13, 2004 regarding a release of petroleum hydrocarbons (PHCs) from underground storage tanks (USTs) at the site.

The current sampling schedule is:

Semi-Annually All Monitoring Wells, MW-3 - 12 (First & Third Quarter's)

Groundwater monitoring activities conducted during this quarter included:

- 1. Measuring groundwater levels and checking for the presence of free product in all of the monitoring wells associated with the site
- 2. Measuring the physical parameters of pH, temperature, electrical conductivity, oxidation reduction potential, and dissolved oxygen concentration in each well
- 3. Collecting groundwater samples from the appropriate monitoring wells to be analyzed for PHC concentrations
- 4. Collecting groundwater samples from the appropriate monitoring wells to be analyzed for biological parameters per our *Workplan* Addendum dated January 27, 2005.
- 5. Submitting the groundwater samples to a state-certified analytical laboratory for analysis of dissolved PHC concentrations, and bio-parameters following proper chain-of-custody procedures
- 6. Determining groundwater elevations, flow direction, and gradient in the vicinity of the site

- 7. Mapping the extent of the dissolved PHC plume in groundwater beneath the site
- 8. Preparing this technical report

#### SITE DESCRIPTION AND BACKGROUND

The site is located at the corner of Meekland Avenue and Blossom Way, a highly urbanized area in Alameda County California (Figure 1). The site is located at an elevation of approximately 55 feet above sea level. The site is relatively flat. The area of the site is approximately 21,000 square feet. The site is located approximately 2,500 feet south of San Lorenzo Creek, and approximately 15,000 feet east of the San Francisco Bay (see Figure 1). There are no ecologically sensitive areas (such as surface water or wetlands) or homes to endangered species within 1,000 feet of the site. Domestic water at the site and in the vicinity is provided by the East Bay Municipal Utilities District.

#### Past, Current and Anticipated Future Site Activities and Uses

The site was used primarily for commercial activities in the past. It was operated as a motor vehicle fueling station since the 1940's. Harbert Transportation used the site as a vehicle and fueling yard before selling the site to Durham Transportation in 1986. Durham used the site for similar activities.

The site is currently vacant. The site s zoned Commercial but nevertheless, all Risk-Based Screening for contaminants at the site were based on criteria for residential land use (residential screening levels are much more restrictive that commercial criteria). Detected concentrations of PHCs are below the residential Risk-Based Screening Levels, so no formal land use restrictions are necessary to protect human health (see below).

#### Summary of Site Investigations & Remedial Activities

The subject site was operated as a motor vehicle fueling station since the 1940's. In the 1960s Harbert Transportation purchased the site and operated it as a vehicle fueling and maintenance facility until 1986. In 1986, Durham Transportation of Austin, Texas purchased the property and operated the site as a fueling and maintenance facility until 1989. A number of environmental investigations and remedial actions have since occurred at the subject site and are documented in the list of environmental reports referenced at the end of this report. Environmental tasks included removal of the fueling facility installation, groundwater pumping and remedial excavation, delineation of soil and groundwater contamination including the installation of a number of groundwater monitoring wells which currently includes eight onsite and 2 off-site wells (Figure 2)

<u>Underground Tank Closures and Initial Monitoring</u>: In August 1989, four underground storage tanks (USTs) were removed from the site. Applied Geosystems, CTTS, and AGI-Technologies completed preliminary subsurface investigations and concluded that soil and groundwater beneath the subject site were impacted by petroleum hydrocarbons (PHCs). Reports indicate that soils excavated following the UST removals were backfilled within a plastic-lined excavations (CTTS, November

1, 1992). Documentation also indicates that two additional USTs located adjacent to dispensers removed in 1989 were pulled in the early 1950's, and that a sump located in the northern portion of the site contained petroleum hydrocarbon contamination (CTTS, November 27, 1990). In March 1990 the site structures were demolished and removed and the site has remained undeveloped and unoccupied since that time. CTTS records indicate quarterly monitoring continued through June 1993, and subsequently decreased to twice in 1994 (third and fourth quarters), once in 1995 (third quarter) and twice in 1996 (first and third quarters).

<u>Groundwater Remediation</u>: Between approximately December 1, 1992 and December 31, 1993 onsite groundwater pump and treat remediation operations were reportedly conducted by CTTS Inc. Monitoring Wells MW-5, 6, and 7 were set up to pump groundwater from the subsurface through three carbon canisters inline with each other to a holding tank and ultimately to the sanitary sewer.

Source Removal - Interim Remedial Action: Soil sampling from a number of exploratory borings and groundwater sampling during ongoing monitoring indicated that elevated concentrations of fuel contamination was present at the former location of the former UST facility removed in 1989 (source). Specifically, sampling confirmed that significant concentrations of petroleum hydrocarbon contamination remained at two isolated areas:

- 1. beneath the former dispensers (removed 1989) at a location which previously contained two USTs that were removed in the early 1950's, and,
- 2. beneath the former excavation pit (excavated in 1989) which was reportedly backfilled with the excavated material (CTTS, November 1, 1992).

Despite the presence of elevated petroleum hydrocarbons at the source, groundwater monitoring showed the plume was limited in lateral extent and had no fuel oxygenates including MTBE.

An Interim Remedial Action (IRA) which included removal of the residual petroleum hydrocarbon contamination was approved and in January 2002, six foot- diameter augers were used to drill out 40 foot shafts of contaminated soils from the excavation footprint (former excavation pit and the dispenser areas - see Figure 2). The excavation successfully removed approximately 600 yds<sup>3</sup> contaminated soil from the vadose zone, the soil/groundwater interface, the smear zone. In addition, 400 pounds of Oxygen Release Compound<sup>®</sup> (ORC) was added to the saturated zone to enhance the ability of aerobic microbes to degrade contaminants (WHA report; February 8, 2002). Fourteen soil samples (12 sidewall and 2 base) confirmed that the remaining source soil was removed to target cleanup levels (see table below):

Maximum IRA Soil Sample Results
All results in parts per million (mg/kg, npm)

| Identification                     | трн-д | Benzene | Toluene | Ethyl-<br>benzene | Xylenes |
|------------------------------------|-------|---------|---------|-------------------|---------|
| Highest Soil Sample Concentrations | 34    | 0.041   | 0.014   | 0.12              | 0.6     |
| Sóil Cleanup Goal ESLs             | 100   | 0.044   | 2.9     | 3.3               | 1.5     |

<sup>-</sup> ESLs: Environmental Screening Levels, which were established by CRWQCB-SFBR

- This summary shows that residual soil concentrations are below ESLs.

Following source soil removal operations, the following data exists for the monitoring well network at the site:

- Groundwater concentrations in closest wells (MW-3, 5, 6, and 9) have continued to show generally decreasing concentration trendlines following source removal operations, although some normal oscillation in concentrations is apparent (see Table 1).
- The remaining upgradient and side gradient wells are now non-detect for constituents of concern and provide good definition regarding the lateral extent of contamination (wells MW-4, -7, -8, -11, and -12).
- Downgradient well MW-10 continues to show a continual decline in hydrocarbon concentrations (see Table 1).

Conclusions of Source Removal Activities: It is our opinion that the excavation of the soil contamination at the former underground tank locations, which included removal of fuel-impacted, saturated soils from the zone of fluctuating groundwater (smear zone), has significantly eliminated the primary source of ongoing groundwater contamination. Only one of the nine wells that make up the monitoring network currently contain elevated levels of Total Petroleum Hydrocarbons (TPH). Specifically, on-site well MW-9, located within 60 feet of the source, contained TPH-gas at a concentration of 1,100 parts per billion (ppb) and only one well, MW-5 - located only a few feet from the former fuel tank pit, contained low level detections of benzene (3.5 ppb, see Figure 3). All remaining wells contain only trace to non-detectable contaminant concentrations including downgradient well MW-10 located 175 feet from the source.

Proposed Risk-Based Cleanup Goals: A number of assessments of risk were completed to assess potential risk to human health and the environment using Risk-Based Cleanup Standards on the basis that shallow groundwater beneath the site was not used as a drinking water resource and there were no sensitive receptors within close proximity to the site that could be potentially impacted by residual petroleum hydrocarbon contamination (PHC). Preliminary communication with Roger Brewer at California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR) indicated that the revised site specific clean-up goals were sufficient and that it appeared that the site soil and groundwater concentrations were within the site clean-up goals (e-mail from Roger Brewer, April 18, 2003). A request for site closure was submitted in August 2003 which was subsequently denied in May 2004 in an ACEH Technical Memorandum requiring new clean-up goals and additional information (ACEH directive, dated May 13, 2004).

<sup>&</sup>lt;sup>1</sup>: California Regional Water Quality Control Board, San Francisco Bay Region's publication: Application of Risk-Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater (2002, revised 2003).

Subsequently, new cleanup goals for groundwater were submitted in the *Revised Site Conceptual Model* report dated July 30, 2004. The proposed cleanup goals were intended to be 10 times the State Maximum Contaminant Levels (MCLs) for drinking water with the exception of TPH which has no established MCL. This was in agreement with levels recommended by ACEH in the May 13, 2004 directive ("the goal of 10x the MCL would be considered a reasonable proposal" for a maximum plume concentration that may migrate beyond the boarders of the subject site, page 4, section 3). However, as requested in the ACEH directive dated December 20, 2004, we revised these proposed modified cleanup levels downward to be more conservative than MCLs for drinking water, and instead have based them on RWQCB-SFBR *Environmental Screening Levels*.

The modified cleanup levels listed below are site-specific concentrations proposed for this low-risk fuel release and are meant to achieve Basin Plan water quality objectives within a reasonable time period. The levels are to be the maximum plume concentrations at the property line of the subject site.

| Tab<br>- all con                            | ole: Proposed centrations in ug/L | Cleanup I<br>(parts per bil | evels<br>lion, ppb) - | ,                 | 1           |            |
|---------------------------------------------|-----------------------------------|-----------------------------|-----------------------|-------------------|-------------|------------|
|                                             | TPH-gas                           | Benzene                     | Toluene               | Ethyl-<br>Benzene | Xylenes     | МТВЕ       |
| State MCL's for Drinking Water:             | Not<br>Established                | 1                           | 100                   | 300               | 1750        | 13         |
| RWQCB-SFBR Final ESLs<br>(basis)            | 100<br>(T&O)                      | l<br>(DWT)                  | 40<br>(T&O)           | 30<br>(T&O)       | 13<br>(AHG) | 5<br>(T&O) |
| Proposed Cleanup Levels (10 Times the ESLs) | 1000                              | 10                          | 400                   | 300               | 130         | 50         |

- RWQCB-SFBR: California Regional Water Quality Control Board, San Francisco Bay Region
- Final ESL's= "Final" Environmental Screening Levels, based on the lowest (most conservative) screening level (T&O, DWT, or AHG) established by RWQCB-SFBR for the protection of groundwater quality.
- T&O= Taste & Odor; DWT= Drinking Water Toxicity AHG: Aquatic Habitat Goal
- <u>Proposed Cleanup Levels</u> based on shallow groundwater being a potential groundwater resource.

## Exposure pathways are limited and the risk to human health and the environment is considered insignificant due to the following conditions:

- Soil contamination has been satisfactorily remediated to health-based levels.
- Shallow groundwater contamination in access of proposed cleanup levels is limited to within the property boundaries and no documented shallow groundwater pumping occurs within 500 feet of the subject site which is well beyond the extent of the known plume limits.
- Deeper groundwater will be investigated during the current phase of drilling and sampling (*Workplan Addendum*, January 27, 2005).
- There is virtually no potential for indoor air impacts as: 1) there are no structures on the site; 2) the plume of dissolved contaminants in groundwater is aged gas (majority

of volatile compounds have degraded); 3) groundwater is encountered at relatively deep depths (30 feet bgs); and, 4) the source of shallow impacted soils has been removed and dissolved contaminants in groundwater are encountered below relatively low-permeability soils.

In addition, the Tier 1 screening level for protection of indoor air under a residential exposure scenario is set at 1,900 ug/L (ppb) for benzene in groundwater (RWQCB-ESLs, Table E-1a).

Conclusions of Summary of Previous Investigations: Based on ACEH Technical Memorandum (ACEH, Dec 2, 2004), WHA has revised the groundwater clean-up goals to levels directed by Alameda County Environmental Health which are protective of a drinking water supply. Our Revised Soil and Groundwater Investigation Workplan (January 27, 2005) targets data gaps identified in the response to comments and text portions of our January 27, 2005 Workplan Addendum report.

### **GROUNDWATER MONITORING - FIRST QUARTER 2005**

The groundwater monitoring event for the first quarter 2005 took place on March 23, 2005. Field methods followed Weber, Hayes and Associates' standard field methodology for groundwater monitoring, which is described in Appendix A. Field data forms are also presented in Appendix A. Groundwater samples were collected from all site monitoring wells in accordance with directives from Environmental Health dated May 13, 2004, and analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method GC/MS, and benzene, toluene, ethylbenzene, and xylenes (BTEX), Methyl tert Butyl Ether (MTBE), Fuel Oxygenates (Di-isopropyl Ether, tertiary Butyl Alcohol, Ethyl tertiary Butyl Ether, tertiary Amyl Methyl Ether, and Ethanol) by EPA Method 8260. Per our Workplan Addendum dated January 27, 2005, groundwater samples collected from wells MW-3, 5, 8, 9, and 10 were additionally analyzed for Bio-parameters including ORP, methane, nitrate, sulfate, and dissolved ferrous iron.

#### Free Product

Free product was not observed in any of the monitoring wells at the site. Free product has never been observed at the site.

#### **Groundwater Elevation and Flow Direction**

Groundwater elevations were calculated by subtracting the measured depth-to-groundwater from the top-of-casing elevations, which were surveyed by a state-licensed Land Surveyor. Field measurements and the calculated groundwater elevations for the site are summarized in Table 1. Groundwater elevations at the site rose an average of approximately 4.15 feet since the previous sampling event (September 23, 2005). Calculated groundwater elevations from the gauging data collected on March 23, 2005 are shown on Figure 2. Data from this quarter indicate that groundwater flow is to the southwest (see Figure 2). The calculated groundwater gradient on March 23, 2005 was approximately 0.002 feet per foot. Previous reports indicate that the groundwater flow direction in

the vicinity of the site has generally been in a westerly direction. See Table 1 for a summary of previous depth to groundwater data.

#### **Groundwater Analytical Results**

Groundwater samples were collected from all of the ten monitoring wells associated with the site this quarter, in accordance with the directive from Environmental Health dated May 13, 2004. The groundwater analytical results for this quarter are summarized below.

# Summary of Petroleum Hydrocabon Groundwater Sample Analytical Results, March 23, 2005 (µg/L, ppb)

| Well ID                                               | ТРН-д        | Benzene    | Toluene     | Ethylbenzene | Xylenes     | MTBE       |
|-------------------------------------------------------|--------------|------------|-------------|--------------|-------------|------------|
| MW-3                                                  | 540          | ND         | ND          | 2.0          | ND          | ND         |
| MW-4                                                  | ND           | ND         | ND          | ND           | ND          | ND         |
| MW-5                                                  | 120          | 3.5        | 0.67        | 4.5          | 9.3         | ND         |
| MW-6                                                  | 160          | ND         | ND          | 1.6          | ND          | ND         |
| MW-7                                                  | ND           | ND         | ND          | ND           | ND          | ND         |
| MW-8                                                  | ND           | ND         | ND          | ND           | ND          | ND         |
| MW-9                                                  | 1,100        | < 1        | < 1         | 48           | 31          | < 6        |
| MW-10                                                 | ND           | ND         | ND          | ND           | ND          | ND         |
| MW-11                                                 | ND           | ND         | ND          | ND           | ND          | ND         |
| MW-12                                                 | ND           | ND         | ND          | ND           | ND          | ND         |
| PQLs                                                  | 25           | 0.5        | 0.5         | 0.5          | 1           | 1          |
| MCL                                                   | 1,000        | 1          | 150         | 700          | 1,750       | 5          |
| RWQCB - SFBR<br>Final ESLs                            | 100<br>(T&O) | 1<br>(DWT) | 40<br>(T&O) | 30<br>(T&O)  | 13<br>(AHG) | 5<br>(T&O) |
| ACEH Proposed<br>Cleanup Goals<br>(10 times the ESLs) | 1000         | 10         | 400         | 300          | 130         | 50         |

- RWOCB-SFBR: California Regional Water Quality Control Board, San Francisco Bay Region
- Final ESL's= "Final" Environmental Screening Levels, based on the lowest (most conservative) screening level (T&O, DWT, or AHG) established by RWQCB-SFBR for the protection of groundwater quality.
- T&O= Taste & Odor; DWT= Drinking Water Toxicity AHG: Aquatic Habitat Goal
- Proposed Cleanup Levels based on shallow groundwater being a potential groundwater resource.

Only well MW-5 contained a concentrations of benzene that marginally exceeded the proposed cleanup levels of 1 part per billion (ppb). Well MW-5 was the only well to be impacted with benzene this quarter.

Only well MW-9 contained a concentration of TPH-g that marginally exceeded the proposed cleanup levels set at 1,000 ppb. No other wells exceeded this goal.

No other PHCs exceed their respective proposed cleanup levels

#### MTBE was not detected in any of the wells associated with the site.

ACEH considered reasonable proposed cleanup goals for contaminants that may migrate off-site to be no greater than 10 times that of the contaminants most conservative screening level. All offsite wells exhibited no contaminant concentrations this quarter. Only on-site well MW-9 marginally exceeded the respective "proposed cleanup goals" of 1000 ppb TPH (g), with 1,100 ppb TPH (g) detected.

Analytical results for the groundwater samples collected by Weber, Hayes and Associates since the third quarter 2000 are summarized in Table 1. PHC concentrations detected in groundwater during the current monitoring event are shown on Figure 3. The extent of dissolved PHCs greater than 1,000 ppb TPH-g and 10 ppb benzene in groundwater are shown on Figure 4. A dissolved oxygen concentration contour map is presented as Figure 5.

The laboratory's Certified Analytical Reports for the groundwater samples is presented as Appendix B. All laboratory quality control and quality assurance data were within acceptable limits. A table and figures summarizing analytical results of groundwater samples collected by previous consultants is presented as Appendix C (review of analytical data collected by previous consultants further illustrates the decreasing trend in dissolved PHC concentrations).

#### **Biological Parameters**

Monitoring wells MW-3, 5, 8, 9, and 10 were analyzed for bio-parameters during the recent groundwater monitoring event to provide further evidence of biodegradation. The laboratory's Certified Analytical Reports for the groundwater samples is presented as Appendix B. All laboratory quality control and quality assurance data were within acceptable limits.

#### Summary of Bio-Parameter Groundwater Sample Analytical Results, March 23, 2005

| Well I.D.                                    | ORP<br>(mV) | Dissolved Oxygen<br>(mg/L) | Methane<br>(μg/ml) | Nitrate<br>(mg/L) | Sulfate<br>(mg/L) | Ferrous Iron<br>(mg/L) |
|----------------------------------------------|-------------|----------------------------|--------------------|-------------------|-------------------|------------------------|
| MW-3                                         | 153         | 0.30                       | 0.048              | 6.2               | 29                | 1.2                    |
| MW-5                                         | 196         | 0.36                       | 0.027              | 5.1               | 35                | 0.30                   |
| MW-8                                         | 339         | 1.76                       | ND                 | 0.89              | 48                | ND                     |
| MW-9                                         | 237         | 0.21                       | 0.017              | 1.4               | 22                | ND                     |
| MW-10                                        | 167         | 0.23                       | ND                 | ND                | 1.8               | ND                     |
| Laboratory<br>Reporting /<br>Detection Limit | NA          | NA                         | 0.010              | 0.2               | 0.5               | 0.1                    |

NOTE: ORP and Dissolved Oxygen concentrations were measured in the field using a QED Model MP20 Flow Cell Meter.

During biodegradation certain electron acceptors such as dissolved oxygen, nitrate, and sulfate are consumed (i.e. reduced). As these particular electron acceptors are reduced as part of a microbially-catalyzed biodegradation process, an inverse correlation can be made between the contaminant and the electron acceptor (Buscheck & O'Reilly, 1995).

The evaluation of bio-parameters is intended to be qualitative. For instance, dissolved oxygen concentrations varying by > 2 ppm across a contaminant plume suggest the potential for aerobic biodegradation, and concentrations of alternative electron acceptors such as nitrate, sulfate, and ferrous iron varying more than several ppm may suggest that anaerobic process are also be contributing to the configuration of the contaminant plume (Buscheck & O'Reilly, 1995).

Bio-parameters obtained from clean upgradient well MW-8 are intended to provide some sense of site background concentrations, as this well has never been impacted with hydrocarbons. This well exhibits the highest D.O., ORP, and sulfate concentrations of the five transect wells included in the bio-parameter analysis, which should be expected as biodegradation of contaminants in not active in this well. Methane and ferrous iron concentrations in this well were not-detected at the laboratory's reporting / detection limit. Methane is a metabolic by-product of strongly anaerobic conditions (Buscheck & O'Reilly, 2002). The non-detect concentrations of these parameters can again be attributed to the lack of reducing biological activity. Contrary to all other biological parameters measured in well MW-8, the nitrate concentration is surprisingly low relative to all other wells in the transect. With the relatively non-reducing condition as indicated by all other parameters measured in this well, one would expect to have some of the highest nitrate concentrations.

On-site core impacted well MW-3, 5, and 9 exhibit comparable, and relatively lower concentrations of D.O., ORP, and sulfate relative to upgradient well MW-8. The relatively lower D.O.

concentrations, and detections of methane suggest that anaerobic biodegradation is occurring in the shallow aquifer surrounding these monitoring wells, as the environment for aerobic degradation appears to be limited in the necessary resources (i.e. D.O.). The detections of ferrous iron in wells MW-3, and 5 further suggests the activity of anaerobic bio-degradation, as ferric iron (Fe<sup>3+</sup>) is used as an electron acceptor during anaerobic biodegradation of petroleum hydrocarbons (Buscheck & O'Reilly, 1995).

Down-gradient well MW-10 exhibits some of the lowest concentrations of D.O., ORP, nitrate, and sulfate in comparison to the other transect wells. These lower concentrations suggest that downgradient aquifer is experiencing anaerobic biodegradation. However, methane and ferrous iron were not detected in well MW-10, suggesting the contradiction that anaerobic processes are not active in this well. The lower concentrations of anaerobic biodegradation indicators may be a result of this wells position in the anoxic shadow of the on-site impacted wells.

Overall, the relative concentrations of biological parameters measured on March 23, 2005 indicate that natural attenuation of dissolved petroleum hydrocarbons via biological remediation is occurring at this site through both aerobic, and anaerobic processes.

#### **Dissolved Oxygen Measurements**

Current and historic dissolved oxygen measurements collected at the site indicate generally lower levels of dissolved oxygen in PHC-impacted wells compared to levels in non-impacted, upgradient wells. The decrease in dissolved oxygen in the impacted wells is shown on the dissolved oxygen concentration contour map, Figure 5. We believe the depletion of dissolved oxygen in PHC-impacted wells, combined with the observed decrease in dissolved PHC concentrations over time, indicates that natural attenuation of PHCs via biologic activity (bioremediation) is occurring in groundwater, with microbes using dissolved PHCs as a food source during aerobic respiration (Bushek and O'Reilly, 1995).

#### **Summary of Quarterly Groundwater Monitoring Results**

- Free product was not observed in any of the monitoring wells at the site.
- Groundwater elevations at the site fell an average of approximately 4.15 feet since the previous sampling event (September 2004).
- The groundwater flow direction on March 23, 2005 was to the southwest at a gradient of approximately 0.002 feet per foot. This direction is in general agreement with data collected by us and previous data collected by others at the site.
- Concentrations of dissolved PHCs in on-site monitoring wells MW-5, and 6 decreased by up to two orders of magnitude since they were last sampled in September 2004.

- Concentrations in downgradient on-site well MW-9 decreased slightly compared to when it was last sampled in September 2004.
- The concentration of TPH-g in onsite well MW-3 increased slightly from when it was last sampled in September 2004.
- Concentrations of dissolved PHCs in off-site monitoring well MW-10 were not detected this quarter.
- MTBE was not detected in any of the groundwater samples collected this quarter.
- TPH-g was detected at a concentration of 1,100 pb in MW-9, exceeding Cleanup Goals of 1000 ppb.
- Fuel Oxygenates (Di-isopropyl Ether, tertiary Butyl Alcohol, Ethyl tertiary Butyl Ether, tertiary Amyl Methyl Ether, and Ethanol) were not detected in any groundwater samples collected this quarter.
- No other PHCs were detected above their respective cleanup goals.
- Current and historic measurements of dissolved oxygen collected at the site indicate aerobic bioremediation is occurring in the PHC-impacted groundwater.
- Biological parameters collected this sampling event indicate that natural attenuation of dissolved petroleum hydrocarbons via biological remediation is occurring at this site through both aerobic, and anaerobic processes.

#### RECOMMENDATIONS

At this time we recommend:

- Responding to ACEH Comments included in their March 2, 2005 letter, including creating
  additional geologic cross-sections, an estimate of residual hydrocarbon mass, and evaluation
  of contaminant trends over time.
- Completing our approved *Workplan* and *Workplan Addendum* dated July 30, 2004, and January 27, 2005, respectively.
- Obtain regulatory closure.

#### SCHEDULE OF ACTIVITIES FOR THE FOLLOWING QUARTER

If additional groundwater monitoring is required by ACEH, the following activities are scheduled for the third quarter 2005:

• Semi-annual groundwater monitoring according to the schedule directed by ACEH. Groundwater monitoring will include measuring the depth-to-groundwater, dissolved oxygen concentration, and physical parameters, and collecting samples from the appropriate monitoring wells and analyzing the for Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method GC/MS, and benzene, toluene, ethylbenzene, and xylenes (BTEX), Methyl tert Butyl Ether (MTBE), and Fuel Oxygenates (Di-isopropyl Ether, tertiary Butyl Alcohol, Ethyl tertiary Butyl Ether, tertiary Amyl Methyl Ether, and Ethanol) by EPA Method 8260.

#### LIMITATIONS

Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic and engineering principles and practices. This warranty is in lieu of all others, either expressed or implied. The analysis and proposals in this report are based on sampling and testing which are necessarily limited. Additional data from future work may lead to modification of the opinions expressed herein.

Thank you for the opportunity to aid in the assessment and cleanup of this site. If you have any questions or comments regarding this project please call us at (831) 722 - 3580.

Sincerely yours,

Weber, Hayes And Associates

Staff Geologist

Certified Hydrogeologist #373

#### Attachments

| Table 1                                                  | Summary of Groundwater Elevation and PHC Analytical Data                                                                                                                                               |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1<br>Figure 2<br>Figure 3<br>Figure 4<br>Figure 5 | Location Map Site Plan with Groundwater Elevations Site Plan with PHC Concentrations in Groundwater Site Plan with Extent of TPH-g and Benzene in Groundwater Site Plan with Dissolved Oxygen Contours |
| Appendix A<br>Appendix B                                 | Field Methodology for Groundwater Monitoring and Field Data Forms<br>Certified Analytical Report - Groundwater Samples                                                                                 |

Cc: Ms. Bob Schulze, Alameda County Environmental Health

Mr. Jeff Lawson Ms. Laurie Berger

Mr. Gregg Petersen, Durham Transportation

Mr. Roger Brewer, CRWQCB-San Francisco Bay Region

#### REFERENCES

AGI Technologies, August 29, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, September 19, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 1, 1995. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, August 16, 1995. Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 9, 1995. Work Plan Off-Site Contamination Assessment Harbert Transportation Inc. 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 29, 1995. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, April 30, 1996. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, January 6, 1997. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 4, 1998. Final Report Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

Alameda County Health Care Services Agency, Environmental Health Services, June 17, 1999. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Requests for Additions/Modifications to the Risk Assessment

Alameda County Health Care Services Agency, Environmental Health Services, July 11, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request

Alameda County Health Care Services Agency, Environmental Health Services, August 8, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request - Clarification

Alameda County Health Care Services Agency, Environmental Health Services, November 1, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

Alameda County Health Care Services Agency, Environmental Health Services, November 15, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Review of Third Quarter 2000 Groundwater Monitoring Report

#### REFERENCES (continued)

Alameda County Health Care Services Agency, Environmental Health Services, December 4, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

Alameda County Health Care Services Agency, Environmental Health Services, February 21, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with work proposed in Fourth Quarter 2000 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, June 26, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with work proposed in First Quarter 2001 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, November 29, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Receipt of "Status Report-UST Assessment and Cleanup" dated November 6, 2001, Concur with work proposed in Second Quarter 2001 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, December 13, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with work proposed in Addendum to Interim Remedial Action and Modified Feasibility Study

Alameda County Health Care Services Agency, Environmental Health Services, January 14, 2002. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - 10% Increase in Interim Remedial Action Costs Acceptable

Alameda County Health Care Services Agency, Environmental Health Services, January 28, 2002. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Time Extension for Submitting Excavation / Interim Remedial Action Report

Alameda County Health Care Services Agency, Environmental Health Services, October 23, 2002. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with Recommendations to Continue Groundwater Monitoring and Calculate Active Cleanup Goals

Alameda County Health Care Services Agency, Environmental Health Services, April 15, 2003 (e-mail). Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with Recommendations for Well/Conduit Study, and increase search Radius to ½ Mile

Alameda County Health Care Services Agency, Environmental Health Services, May 13, 2004 (letter).- Re: SWI, SCM and Case Closure Request for Durham Transportation, 19984 Meekland Avenue, Alameda County

Applied Geosystems, July 20, 1986. Subsurface Environmental Investigation, Two Soil Borings, and Monitoring Well Installation

Bushek, Tim, and Kirk O'Reilly, March 1995; Protocol for Monitoring Intrinsic Bioremediation in Groundwater, Chevron Research and Development Company, Health, Environment, and Safety Group

#### **REFERENCES** (continued)

Bushek, Tim, and Kirk O'Reilly, April 2002; Guidelines to Demonstrate MTBE Natural Attenuation, Chevron Texaco Research and Technology Company, Richmond, CA

California Regional Water Quality Control Board, San Francisco Bay Region, December 2001 Application of Risk-Base Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater Interim Final

CTTS, Inc., Toxic Technology Services, September 13, 1989. Report on Underground Tank Removal at 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 27, 1990. Phase II Report for Durham Transportation, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services. Amendment #1, Proposed Remediation for on Site Soil Contamination

CTTS, Inc., Toxic Technology Services, January 31, 1990. Report on Well Abandonment and Groundwater Monitoring Well Installations, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, July 2, 1990. Progress Report #1, Period Covering 3/23/90-6/30/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, August 2, 1990 Progress Report #2, Period Covering 7/1/90-7/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, September 21, 1990. Progress Report #3, Period Covering 8/1/90-8/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 12, 1990. Progress Report #4, Period Covering 9/l/90-10/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, December 28, 1990. Progress Report #5, Period Covering 11/l/90-11/30/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, January 25, 1991. Progress Report #7, Period Covering 1/l/91-1/31/91, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, February 11, 1991. Progress Report #6, Period Covering 12/l/90-12/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, February 19, 1991. Cost analysis, Remediation Alternatives 19984 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, April 4, 1991. Progress Report #8, Period Covering 2/1/91-3/31/91, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, June 30, 1991. Progress Report #11, Period Covering 6/l/91-6/30/9, 19984 Meekland Road, Hayward, California

#### **REFERENCES** (continued)

CTTS, Inc., Toxic Technology Services, September 30, 1991. Progress Report #12, Period Covering 7/l/91-9/30/91, Durham Transportation 19984 Meekland Road, Hayward, California

CTTS; Inc., Toxic Technology Services, April 2, 1991. Report of Additional Well Installlations 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 1, 1992. Health and Safety Plan to Accompany Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 1, 1992. Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, January 21, 1993. Progress Report #17, Period Covering 10/l/92-12/31/92, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 10, 1993. Progress Report #18, Period Covering 12/l/92-1/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 29, 1993. Progress Report #19, Period Covering 2/l/93-2/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, April 1, 1993. Progress Report #20, Period Covering 3/l/93-3/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. March 10, 1993. Remediation Progress Report 1, Period Covering 12/l/92-1/31/93, 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. July 16, 1993. Progress Report #21, Period Covering 4/l/93-6/30/93 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. October 11, 1993. Progress Report #22, Period Covering 6/l/93-9/30/93, 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, February 24, 1993. Progress Report #23, Period Covering 10/l/93-12/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

Howard, Philip, H. 1990. Handbook of Fate and Exposure Data for Organic Chemicals, Lewis Publishers. Inc., Chelsea, Michigan

Weber, Hayes and Associates, October 29, 1999. Clarification of Development of Risk Based Cleanup Standards - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, September 7, 2000. Work Plan for Soil and Groundwater Sampling - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, November 10, 2000. Groundwater Monitoring Report - Third Quarter 2000, 19984 Meekland Avenue, Hayward, CA

#### **REFERENCES** (continued)

Weber, Hayes and Associates, January 30, 2001. Groundwater Monitoring Report - Fourth Quarter 2000, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, June 18, 2001. Additional Site Assessment and Groundwater Monitoring Report - First Quarter 2001, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, July 24, 2001. Groundwater Monitoring Report - Second Quarter 2001, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, November 6, 2001. Groundwater Monitoring Report - Third Quarter 2001, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, December 7, 2001. Addendum to Interim Remedial Action - 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, December 11, 2001. Feasibility Study and Modified Interim Remedial Action - 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, January 14, 2002. Facsimile with information regarding 10% Cost Overrun - Interim Remedial Action 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, February 8, 2002. Interim Remedial Action, Large-Diameter Auger Excavation Operations, and Fourth Quarter 2001 Quarterly Groundwater Monitoring, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, May 2, 2002. Groundwater Monitoring Report - First Quarter 2002, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, September 12, 2002. Groundwater Monitoring Report - Second Quarter 2002, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, December 27, 2002. Proposed Site-Specific Cleanup Goals, Groundwater Monitoring Report - Third Quarter 2002, 19984 Meekland Avenue, Hayward, 'CA

Weber, Hayes and Associates, March 27, 2003. Proposed Site-Specific Cleanup Goals - Revised, Groundwater Monitoring Report - Fourth Quarter 2002, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, July 2, 2003. Groundwater Monitoring Report - First Quarter 2004, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, August 22, 2003. Fuel Leak Case Closure Request, Groundwater Monitoring Report - First Quarter 2004, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, July 30, 2004 Revised Site Conceptual Model, Former Durham Transportation Facility, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, July 30, 2004 Soil and Groundwater Investigation Workplan, Former Durham Transportation Facility, 19984 Meekland Avenue, Hayward, CA

#### **REFERENCES** (continued)

Weber, Hayes and Associates, October 14, 2004 Semi-Annual Groundwater Monitoring Report, Former Durham Transportation Facility, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, January 27, 2005 Workplan Addendum including An Updated Site Conceptual Model, and A Revised Soil & Groundwater Investigation Workplan, Former Durham Transportation Facility, 19984 Meekland Avenue, Hayward, CA

Table 1

Summary of Groundwater Elevation and PHC Analytical Data

Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca.

|                                                                                        |                                           |                               |                      |                |                            | Laboratory Analytical Results |              |              |                   |                |               | Field M                                          | leasurements:    |                                                  |                                                  |                                                  |                  |                        |
|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|----------------------|----------------|----------------------------|-------------------------------|--------------|--------------|-------------------|----------------|---------------|--------------------------------------------------|------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|------------------------|
|                                                                                        | ring Point Informat                       |                               | Date                 | Depth to       | Groundwater                | Total Petroleum               |              |              |                   | Volatile Organ | ic Compounds  |                                                  |                  |                                                  | <u> </u>                                         | avengers                                         | Dissolved        | Redox                  |
| Well                                                                                   | TOC                                       | Screen<br>Interval            | Sampled              | Groundwater    | Elevation                  | Hydrocarbons<br>Gasoline      | Benzene      | Toluene      | Ethylbenzene.     | Xylenes        | MTBE          | TBA                                              | Ethanol          | Fuel Oxygenates                                  | 1,2-DCA<br>(ug/L)                                | EDB<br>(ug/L)                                    | Oxygen<br>(mg/L) | Potential (ORI<br>(mV) |
| I.D.                                                                                   | Elevatioп<br>(feet, NGVD)                 | (feet, bgs)                   |                      | (feet, TOC)    | (feet, NGVD)               | (ug/L)                        | (ug/L)       | (ug/L)       | (ug/L)            | (ug/L)         | (ug/L)        | (ug/L)                                           | (ug/L)           | (ug/L)                                           | [ (ug/L)                                         | (092)                                            |                  |                        |
| иW-3                                                                                   | 55.44                                     | 20 - 40?                      | 20100105             | 20.40          | 35.28                      | 540                           | ND           | ND           | 2.0               | ND             | ND            | ND                                               | ND               | ND<br>ND                                         |                                                  | ND ND                                            | 0.30             | 153<br>112             |
|                                                                                        |                                           | •                             | 03/23/05             | 20.16<br>24.26 | 31.18                      | 160                           | ND           | ND           | 2.9               | ND<br>2.8      | ND*           | ND<br>                                           | ND               | - 100                                            | - 140                                            |                                                  | 0.18             | -2                     |
|                                                                                        |                                           | •                             | 06/24/03             | 22.53          | 32.91                      | 260                           | 3.3          | ND<br>1.4    | 5.6<br>5.6        | < 2.5          | ND*           |                                                  |                  | =                                                | -                                                |                                                  | 0.15             | -34<br>536             |
|                                                                                        | ļ                                         |                               | 03/21/03             | 22.41          | 33.03<br>34.12             | 460<br>70                     | ND ND        | ND           | 2.1               | < 1            | ND*           |                                                  |                  | = =                                              |                                                  | <del>                                     </del> | 0.14<br>0.13     | 216                    |
|                                                                                        |                                           |                               | 12/30/02<br>08/27/02 | 21.32<br>23.87 | 31.57                      | 350                           | 0.56         | 1.1          | 14                | 3.4<br>1.8     | ND<br>ND      |                                                  | <del>-</del> -   |                                                  |                                                  |                                                  | 0.14             | 194                    |
|                                                                                        |                                           |                               | 06/13/02             | 22.92          | 32.52                      | 300                           | 0.94         | 1.4<br>2.5   | 12                | 11.7           | ND            | -                                                | <u> </u>         | _                                                |                                                  |                                                  | 0.1              | <u> </u>               |
|                                                                                        |                                           | <b>]</b>                      | 03/21/02             | 21.96          | 33.48<br>31.85             | 240<br>270                    | 1.6          | 1.7          | 13                | 5.4            | ND            |                                                  | <b>-</b>         |                                                  | <del></del> -                                    |                                                  | 0.4              | <u>-</u>               |
|                                                                                        | N .                                       | 1                             | 12/18/01             | 23.59<br>24.16 | 31.28                      | 380                           | 1.7          | 2.6          | 32                | 8.9<br>23      | ND*           | <del>-</del> -                                   | <del></del>      | -                                                | _                                                |                                                  |                  |                        |
|                                                                                        |                                           |                               | 06/20/01             | 23.55          | 31.89                      | 760<br>170                    | 1.1          | 2.4<br>ND    | 62                | 1.6            | ND            |                                                  |                  |                                                  |                                                  | <u> </u>                                         | 0.7              | <u> </u>               |
|                                                                                        |                                           | 1                             | 03/29/01             | 22.02          | 33.42<br>32.03             | 310                           | 2.4          | 2.2          | 4.4               | 10             | ND            |                                                  | <u> </u>         | ND                                               | <del></del>                                      | <del></del>                                      | 1                |                        |
|                                                                                        |                                           |                               | 01/12/01             | 23.41          | 32.35                      | 430                           | ND           | ND           | 44                | NĐ             | ND            | <del> </del>                                     | <del></del> -    | - ND                                             | <del>                                     </del> |                                                  |                  |                        |
| MW-4                                                                                   | 55.71                                     | 20 - 40?                      |                      |                |                            | NE NE                         | ND           | ND           | ND                | ND ND          | ND            | ND                                               | ND               | ND                                               |                                                  |                                                  | 0.14             | 341<br>297             |
|                                                                                        |                                           | •                             | 03/23/05             | 20.45          | 35.26<br>31.24             | ND<br>ND                      | ND           | ND           | ND                | ND             | ND            | ND                                               | ND               | ND                                               | ND _                                             | ND -                                             | 1.01             | 22                     |
|                                                                                        |                                           | <b>A</b>                      | 09/23/04<br>06/24/03 | 24.47<br>22.74 | 32.97                      |                               |              |              |                   |                | <del> </del>  |                                                  |                  | <del> </del>                                     |                                                  |                                                  | 1.03             | 18                     |
|                                                                                        |                                           | 1                             | 03/21/03             | 22.49          | 33.22                      |                               | ND -         | ND           | ND ND             | < 1            | ND            |                                                  |                  |                                                  |                                                  | -                                                | 0.41             | 368<br>187             |
|                                                                                        |                                           |                               | 12/30/02             | 21.50          | 34.21<br>31.64             | ND                            | - ND         |              |                   |                |               | <u></u>                                          | <del> </del> -   | <u> </u>                                         | <del>                                     </del> | <del></del>                                      | 0.20             | 392                    |
|                                                                                        |                                           |                               | 08/27/02             | 24.07<br>23.15 | 32.56                      | ND                            | ND           | ND           | ND ND             | ND<br>ND       | ND<br>ND      | <del>                                     </del> |                  |                                                  | <del>  -</del>                                   |                                                  | 0.2              |                        |
|                                                                                        | N. C. |                               | 03/21/02             | 22.15          | 33.56                      | ND                            | ND ND        | 0.9          | ND ND             | ND             | ND            | <u> </u>                                         |                  |                                                  |                                                  |                                                  | 0.4              | <del></del>            |
|                                                                                        | ļ                                         | ]                             | 12/18/01             | 23.80          | 31.91<br>31.39             | ND<br>ND                      | ND           | ND           | ND                | ND             | ND            |                                                  | -                | <del> </del>                                     | <del>-</del>                                     |                                                  | U.4<br>—         |                        |
|                                                                                        |                                           | ļ                             | 09/20/01             | 24.32<br>23.74 | 31.97                      | ND                            | ND           | ND           | ND                | ND<br>ND       | ND<br>ND      | <del> </del>                                     |                  | <del> </del>                                     |                                                  |                                                  | 0.5              |                        |
|                                                                                        |                                           |                               | 03/29/01             | 22.22          | 33.49                      | ND ND                         | ND           | 4.2<br>ND    | ND<br>ND          | ND ND          | ND ND         |                                                  |                  | -                                                |                                                  |                                                  | 0.7              |                        |
|                                                                                        |                                           |                               | 01/12/01             | 23.60          | 32.11<br>32.46             | ND<br>ND                      | ND ND        | ND           | ND_               | ND             | ND            |                                                  |                  | ND                                               | <del> </del>                                     | <del>-</del> -                                   | 2.5              | <del></del>            |
|                                                                                        | 56.03                                     | 25 - 45                       | 09/27/00             | 23.25          | 32.46                      | 138                           |              |              | Ţ                 | 9.3            | ND            | ND                                               | GN               | ND                                               | <del>  -</del>                                   |                                                  | 0.36             | 196                    |
| MW-5                                                                                   | 50.03                                     | 25-45                         | 03/23/05             | 20.14          | 35.89                      | 7,000                         | 3.5<br>470   | 0.67         | 1,000             | 2,200          | < 6           | < 200                                            | < 2,000          | < 100                                            | < 10                                             | < 10                                             | 0.20             | 64<br>-67              |
|                                                                                        |                                           | <b>A</b>                      | 09/23/04             | 24.79          | 31.24<br>32.95             | 3,800                         | 100          | 58           | 310               | 670            | < 1.5*        |                                                  |                  | <del>                                     </del> | <del>                                     </del> |                                                  | 0.05             | -72                    |
|                                                                                        |                                           |                               | 06/24/03             | 23.08<br>22.99 | 33.04                      | 4,800                         | 190          | 82           | 370               | 700<br>5.9     | < 5*<br>ND*   | <del>  -</del> -                                 | <del>-</del> -   | +                                                |                                                  |                                                  | 0.14             | 251                    |
|                                                                                        | \\\                                       |                               | 12/30/02             | 21.88          | 34.15                      | 130                           | 5.8<br>170   | 1.0          | 9 9               | 93             | ND*           |                                                  |                  | -                                                | <u> </u>                                         |                                                  | 0.43             | 207<br>144             |
|                                                                                        |                                           |                               | 08/27/02             | 24.42          | 31.61<br>32.46             | 1,900<br>1,500                | 24           | 16           | 120               | 110            | ND*           |                                                  |                  | <del></del>                                      | <del>  -</del>                                   | <del>  -</del>                                   | 0.06             | - 1                    |
|                                                                                        |                                           | 1                             | 06/13/02             | 23.57<br>24.69 | 31.34                      | 360                           | 11           | 9.4          | 28                | 62<br>94       | ND*           | <del>-</del> -                                   | <del>  -</del> - | <del></del>                                      | <del>-</del>                                     |                                                  |                  |                        |
|                                                                                        |                                           | <del> </del>                  | 12/18/01             | 23.15          | 32.88                      | 780                           | 21<br>46     | 12           | 280               | 330            | ND*           |                                                  |                  |                                                  |                                                  | Τ-                                               | 0.3              | <del></del>            |
|                                                                                        |                                           |                               | 09/20/01             |                | 31.28<br>31.88             | 2,300<br>6,500                | 120          | 130          | 740               | 940            | ND*           |                                                  |                  | <del> </del>                                     | <del>+=</del> -                                  | <del>  -</del>                                   | 0.4              |                        |
|                                                                                        |                                           |                               | 06/20/01             | 24.15<br>22.69 | 33.34                      | 13,000                        | 220          | 510          | 1000              | 2700           | ND*           | <del>-</del> -                                   | <del> </del>     |                                                  | <u> </u>                                         |                                                  | 0.3              |                        |
|                                                                                        | -                                         |                               | 01/12/01             | 23.97          | 32.06                      | 1,100                         | 62<br>840    | 2.9          | 150<br>1200       | 3500           | < 30          |                                                  |                  | ND                                               |                                                  | <del>  -</del> -                                 | 0.4              | <del> </del>           |
|                                                                                        |                                           | <u> </u>                      | 09/27/00             | 23.69          | 32.34                      | 18,000                        |              |              |                   |                | 110           | ND                                               | ND               | ND                                               | <del>  _</del> _                                 | <del>  _</del>                                   | 0.19             | 166                    |
| MW-6                                                                                   | 56.01                                     | 25 - 45                       | 03/23/05             | 20.71          | 35.30                      | 160                           | ND           | ND           | 1.6<br>350        | ND 79          | ND<br>< 1.5   | < 50                                             | < 500            | < 25                                             | < 2.5                                            | < 2.5                                            | 0.16             | 34                     |
|                                                                                        |                                           |                               | 09/23/04             | 24.81          | 31.20                      | 4,400<br>1,500                | < 2.5<br>< 5 | < 2.5<br>< 5 | 350               | 15             | < 0.6*        |                                                  |                  |                                                  |                                                  |                                                  | 0.09             | -23<br>-45             |
|                                                                                        |                                           |                               | 06/24/03             |                | 32.95<br>33.05             | 1,200                         | 6.3          | < 5          | 54                | < 10           | ND*           | <del></del>                                      | <del>-</del> -   | <del></del>                                      | <del>-</del>                                     |                                                  | 0.09             | 321                    |
|                                                                                        |                                           |                               | 03/21/03             |                | 34.10                      | 670                           | 2.5          | < 1.25       | 29<br>210         | 2.7<br>55      | ND*<br>√D*    | -                                                | <u> </u>         |                                                  |                                                  |                                                  | 3 14             | 231                    |
|                                                                                        | <b>II</b><br>                             |                               | 38,27 02             | 24.44          | 31 57                      | 30C<br>30C                    | < 2.5        | 7 2          | 6                 | 5.3            | · < `5'       |                                                  |                  |                                                  |                                                  | ·                                                | 3 53             | 233                    |
|                                                                                        |                                           | -                             | 36,13,02             |                | 32 48<br>32 30             | 750                           | 3 7          | - 2          | 39                | 3.2            | NC*           |                                                  |                  |                                                  |                                                  |                                                  | - <del></del>    |                        |
|                                                                                        | ]                                         |                               | 33.21.02             | 24 16          | 31 85                      | 3.700                         | 33           | 8.7          | 320<br>240        | 110<br>94      | < 1.5°<br>ND* |                                                  |                  |                                                  |                                                  |                                                  | 2.3              |                        |
|                                                                                        |                                           |                               | 09/20:01             | 24.72          | 31 29                      | 2 50C<br>1 8CC                | -1           | 3 6          |                   | 7g             | NC.           | - <del>-</del>                                   |                  |                                                  |                                                  |                                                  | 7.5              | - <del>-</del>         |
|                                                                                        | į                                         |                               | 06 20 01             | 24 13<br>22 56 | 31 88<br>33 <del>1</del> 5 | 81C                           | 2.2          | NC _         | 37                | - ò            | VC.           | _ <del>.</del>                                   |                  |                                                  |                                                  |                                                  | 75               |                        |
|                                                                                        | i<br>I                                    |                               | 03 29 01             |                | 32 04                      | 2 300                         | 16           | 3.5          | 290               | 33             | ND*           |                                                  | <del></del>      | ND                                               |                                                  |                                                  | 3.5              | <del>-</del>           |
| 79-27 CC 3 56 32 45                                                                    |                                           |                               |                      |                |                            | . 000                         | \C<br>0 5    | 0.5          | 200<br><b>0 5</b> | 1              | 1             | 10                                               | 100              | 5                                                | 0.5                                              | 0.5                                              |                  | <del></del>            |
| Practical Quantitation Limit*  Maximum Contaminant Levels (MCLs) / Action Levels (Als) |                                           |                               |                      |                |                            | ^ 25 / 50<br>1 000            | 1            | 150          | 700               | 1 750          | ***5          | ** <b>1</b> 2                                    |                  |                                                  | 0.5                                              | 0.5                                              |                  |                        |
|                                                                                        |                                           |                               |                      |                | }                          | 1000<br>100 (T&O)             | 1 (DWT)      | 40 (T&O)     | 30 (T&O)          | 13 (AHG)       | 5 (T&O)       |                                                  |                  | <del></del>                                      |                                                  | <del></del>                                      |                  |                        |
|                                                                                        |                                           | WQCB-SFBR P<br>ed Cleanup Lev |                      |                |                            | 1 000                         | 10           | 400          | 300               | 130            | 50            |                                                  |                  |                                                  | <u> </u>                                         |                                                  |                  |                        |

Table 1

Summary of Groundwater Elevation and PHC Analytical Data

Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca.

| Monito                                | ning Point Informa                           | tion                  |                      |                |                | en delekaran elekti<br>Legara   |             |                       |                    | Laboratory An  | alytical Result |            |              |                 | wanted the state of the said o | a de la marco.<br>La marco de la | Field M      | easurements.    |
|---------------------------------------|----------------------------------------------|-----------------------|----------------------|----------------|----------------|---------------------------------|-------------|-----------------------|--------------------|----------------|-----------------|------------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| Well                                  | TOC                                          | Screen                | Date                 | Depth to       | Groundwater    | Total Petroleum<br>Hydrocarbons |             |                       |                    | Volatile Orgai | nic Compound    |            |              |                 | Lead Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | avengers                                                                                                                         | Dissolved    | Redox           |
| ED                                    | Elevation                                    | Interval              | Sampled              | Groundwater    | Elevation      | Gasoline                        | Benzene     | Toluene               | Ethylbenzene       | Xylenes        | МТВЕ            | TBA        | Ethanol      | Fuel Oxygenates | 1,2-DCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EDB.                                                                                                                             | Oxygen       | Potential (ORP) |
|                                       | (feet, NGVD)                                 | (feet, bgs)           |                      | (feet, TOC)    | (feet, NGVD)   | (ug/L)                          | (ug/L)      | (ug/L)                | (ug/L)             | (ug/L)         | (ug/L)          | (ug/L)     | (ug/L)       | (ug/L)          | (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/L)                                                                                                                           | (mg/L)       | (mV)            |
| MW-7                                  | 56.66                                        | 25 - 45               | 03/23/05             | 21.23          | 35.43          | ND                              | ND          | ND                    | ND                 | ND             | ND              | ND         | ND           | ND              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.16         | 279             |
|                                       |                                              | <b>A</b>              | 09/23/04<br>06/24/03 | 25.38<br>23.62 | 31.28<br>33.04 | ND<br>-                         | ND<br>-     | ND<br>                | 0.73               | ND<br>         | ND              | ND<br>-    | ND<br>-      | ND —            | ND<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND -                                                                                                                             | 0.90<br>0.58 | 301<br>32       |
|                                       |                                              |                       | 03/21/03<br>12/30/02 | 23.50<br>22.34 | 33.16<br>34.32 | –<br>ND                         | ND          | <br>ND                | <br>ND             | <br><1         | <br>ND*         | _          |              |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | 0.51<br>0.17 | 20<br>370       |
|                                       |                                              |                       | 08/27/02             | 24.98          | 31.68          |                                 | -           |                       | ī                  | _              | ~-              | -          | -            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                          | 0.22         | 369             |
|                                       |                                              |                       | 06/13/02<br>03/21/02 | 24.07<br>23.05 | 32.59<br>33.61 | ND<br>ND                        | ND<br>ND    | ND<br>ND              | ND<br>ND .         | ND<br>ND       | ND<br>ND        |            | -            | <del>-</del>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                | 0.20         | 370             |
|                                       |                                              |                       | 12/18/01<br>09/20/01 | 24.70<br>25.27 | 31.96<br>31.39 | 290<br>290                      | ND<br>0.98  | ND<br>ND              | 119<br>12          | 4.6<br>4.5     | ND*             | _          | - 1          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | -<br>0.4     |                 |
|                                       |                                              |                       | 06/20/01             | 24.68          | 31.98          | 430                             | 2.4         | 0.96                  | 30                 | 9.7            | ND*             | -          | -            | <u> </u>        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | -            |                 |
|                                       |                                              |                       | 03/29/01<br>01/12/01 | 23.10<br>24.49 | 33.56<br>32.17 | ND<br>1,600                     | ND<br>13    | ND<br>0.86            | ND<br>150          | ND<br>35       | ND*             | <u> </u>   |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-</u>                                                                                                                         | 0.5          | <del>-</del>    |
| MW-8                                  | 56.16                                        | 20 - 40               | 09/27/00             | 24.18          | 32.48          | 270                             | 13          | 6.6                   | 11                 | ND             | ND              |            |              | ND              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.5          |                 |
| 14144-0                               | 30.10                                        |                       | 03/23/05             | 20.70          | 35.46          | ND                              | ND          | ND                    | ND                 | ND             | ND              | ND         | ND           | ND              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | 1.76         | 339             |
|                                       |                                              | •                     | 09/23/04<br>06/24/03 | 24.81<br>23.03 | 31.35<br>33.13 | ND<br>—                         | ND -        | ND<br>-               | ND                 | ND<br>-        | ND<br>          | ND -       | ND<br>       | ND<br>          | ND<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND<br>-                                                                                                                          | 1.92<br>1.71 | 301<br>12       |
|                                       |                                              |                       | 03/21/03<br>12/30/02 | 22.91<br>21.79 | 33.25<br>34.37 | - ND                            | - ND        | nD                    | –<br>ND:           | -<br><1        | ~<br>ND*        |            |              | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                | 1.62<br>1.36 | 15              |
|                                       |                                              |                       | 08/27/02             | 24.43          | 31.73          |                                 | _           | _                     | <del>-</del>       | -              | -               | _<br>_     | -            | -               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | 1.98         | 365<br>402      |
|                                       |                                              |                       | 06/13/02<br>03/21/02 | 23.54<br>22.51 | 32.62<br>33.65 | ND<br>ND                        | ND ND       | ND<br>ND              | ND<br>ND           | ND<br>ND       | ND<br>ND        |            |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                | 1.96<br>2.4  | 394<br>         |
|                                       |                                              |                       | 12/18/01<br>09/20/01 | 24.16<br>24.68 | 32.00<br>31.48 | ND<br>ND                        | ND<br>ND    | ND<br>ND              | ND<br>ND           | ND<br>ND       | ND<br>ND        |            |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | -            |                 |
|                                       |                                              |                       | 06/20/01             | 24.09          | 32.07          | ND                              | ПD          | ND                    | ND                 | ND             | ND              | _<br>_     |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 1.6          |                 |
|                                       | 1                                            |                       | 03/29/01<br>01/12/01 | 22.56<br>23.93 | 33.60<br>32.23 | ND<br>ND                        | ND<br>ND    | 0.8<br>ND             | ND<br>ND           | ND<br>ND       | ND<br>ND        |            |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 1.9<br>2.1   | -               |
| MW-9                                  | 55.21                                        | 20 - 40               | 09/27/00             | 23.59          | 32.57          | ND                              | ND          | ND                    | ND                 | ND             | ND              | _          |              | ND              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                | 1.9          |                 |
| 14144-9                               | 55.21                                        |                       | 03/23/05             | 19.98          | 35.23          | 1,100                           | < 1         | < 1                   | 48                 | 31             | < 6             | < 20       | < 200        | < 10            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                | 0.21         | 237             |
|                                       |                                              | <b>A</b>              | 09/23/04<br>06/24/03 | 24.00<br>22.30 | 31.21<br>32.91 | 1,900<br>2,900                  | < 2.5<br>25 | < 2.5<br>9.1          | 230<br>230         | 180<br>270     | < 1.5<br>< 1.5* | < 50<br>   | < 500        | < 25<br>        | < 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 2.5<br>—                                                                                                                       | 0.26         | 190<br>-66      |
|                                       |                                              |                       | 03/21/03<br>12/30/02 | 22.17<br>21.09 | 33.04<br>34.12 | 5,900<br>2,800                  | 190<br>140  | 24<br>25              | 470<br>200         | 630<br>370     | < 5*<br>ND*     |            | = =          | <u> </u>        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                | 0.10<br>0.15 | -84<br>276      |
|                                       |                                              |                       | 08/27/02             | 23.69          | 31.52          | 310                             | 27          | 2.5                   | 20                 | 20             | ND*             |            |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.18         | 154             |
|                                       |                                              |                       | 06/13/02<br>03/21/02 | 22.76<br>21.76 | 32.45<br>33.45 | 5,100<br>510                    | 140<br>26   | 21<br>4.6             | 490<br>50          | 300<br>52      | < 1.5*<br>ND    | -          | -            | <del>-</del>    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | 0.14         | 135<br>—        |
|                                       |                                              |                       | 12/18/01<br>09/20/01 | 23.38<br>23.94 | 31.83<br>31.27 | 6,400<br>3,400                  | 640<br>270  | 120<br>38             | 630<br>390         | 1300<br>430    | < 1.5*<br>ND*   |            | _            | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.3          | -               |
|                                       |                                              |                       | 06/20/01             | 23.36          | 31.85          | 8,300                           | 330         | 88                    | 850                | 1700           | < 0.6*          |            | -            |                 | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                | _            | <del>-</del>    |
|                                       |                                              |                       | 03/29/01<br>01/12/01 | 21.61<br>23.17 | 33.60<br>32.04 | 1,600<br>10,000                 | 110<br>550  | 14<br>110             | 240<br>1200        | 150<br>2200    | ND*             |            | = -          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.4          |                 |
| MW-10                                 | 54.74                                        | 25 - 40               | 09/27/00             | 22.90          | 32.31          | 1,000                           | 40          | 6.7                   | 110                | 55<br>-        | ND              |            | -            | ND              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.5          |                 |
| 19134-10                              | J <del>-7</del> .1-4                         |                       | 03/23/05             | 19.67          | 35.07          | ND                              | ND          | ND                    | ND                 | ND             | ND              | ND         | ND           | ND              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.23         | 167             |
|                                       |                                              | <b>A</b>              | 09/23/04<br>06/24/03 | 23.81<br>22.21 | 30.93<br>32.53 | 600<br>750                      | ND<br>< 2.5 | ND<br>< 2.5           | ND<br>< 25         | ND<br>< 5      | ND<br>< 1.5*    | ND<br>-    | ND<br>-      | ND<br>-         | ND -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>-                                                                                                                          | 0.63         | 160<br>-22      |
|                                       |                                              |                       | 03/21/03<br>12/30/02 | 22.00<br>20.78 | 32.74<br>33.96 | 700<br>1,200                    | 3.4<br>5.6  | 1.4<br>< 5            | 0.71<br>< 5        | 1 < 10         | ND*             | _          |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.06<br>0.18 | -62<br>267      |
| ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' |                                              | 1. 12<br> -           | 08,27 02             | 23 46          | 3* 28          | 1 800                           | < 2.5       | 15                    | 3.3                | ā              | ND*             | -          |              | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | J 14         | 183             |
| }<br>                                 |                                              | ' -                   | 06 13/02 J           | 22 56<br>21 53 | 32 18<br>33 21 | 1 700<br>1 500                  | ) 77<br>ND  | . <u>82</u>           | 33                 | 2.9<br>ND      | < 0.3°<br>ND1   |            |              |                 | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | ე 28<br>ე f  | 20-             |
| :                                     |                                              | 1                     | 12.18/01<br>09/20/01 | 21 11<br>23 TO | 33 63<br>31 04 | 1 50C<br>1 20C                  | - 9<br>ô    | 2 <del>9</del><br>9 9 | ND<br>1 2          | \C<br>39       | < 3 6 T         |            |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | )1           | -               |
|                                       |                                              | <u>1</u><br>}         | 06/20/01             | 23 17          | 3 ' 57         | 3.0                             | 3           | i ĝ                   | 5.1                | -3             | ND.             |            |              |                 | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |              |                 |
| 1                                     | 03/29/01 21 63 33 11<br>31/12/01 22 99 31 75 |                       |                      |                |                |                                 | 3.7         | ) 65<br>1 3           | <u>ND</u>          | 0.72<br>4.5    | ND<br>ND        | 1          |              | i               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | ) 5<br>) ô   |                 |
|                                       |                                              |                       |                      |                |                |                                 | ND          | ND                    | ND                 | ND I           | ND              |            |              | ND              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  | ) i          |                 |
|                                       | Maximum Conta                                |                       |                      |                |                | <u>* 25 / 50</u><br>1,000       | 0.5         | 0.5<br>150            | 0 5<br>70 <b>0</b> | 1<br>1.750     | 1<br>***5       | 10<br>**12 | 100          | 5               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5<br>0.5                                                                                                                       |              |                 |
|                                       | RW                                           |                       | 100 (T&O)            | 1 (DWT)        | 40 (T&O)       | 30 (~&0)                        | 13 (AHG)    | 5 (T&O)               |                    |                | 1               |            |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |              |                 |
|                                       | <u>Proposed</u>                              | <u>Cleanup Levels</u> | (10 times th         | ne ESLs):      |                | 1.000                           | 10          | 400                   | 390                | 130            | 50              | - :        | <del>-</del> |                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |              |                 |

Table 1

Summary of Groundwater Elevation and PHC Analytical Data

Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca.

| Monito                    | ring Point Informat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion            |                      |                 |                             | Laboratory Analytical Results         |                |          |                     |                              |                                 |                                                    |                                                  | ,                                                 | Field I                                          | Measurements |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|-----------------|-----------------------------|---------------------------------------|----------------|----------|---------------------|------------------------------|---------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well                      | тос                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Screen          | Date                 | Depth to        | Groundwater                 | Total Petroleum<br>Hydrocarbons       |                |          |                     | Volatile Orga                | nic Compound                    | 's                                                 |                                                  | *                                                 | Lead Sca                                         | vengers      | Dissolved                   | Redox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I.D.                      | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Interval        | Sampled              | Groundwater     | Elevation -                 | Gasoline                              | Benzene        | Toluene  | Ethylbenzene        | Xylenes                      | MTBE                            | TBA                                                | Ethanol                                          | Fuel Oxygenates                                   | 1,2-DCA                                          | EDB.         | Oxygen                      | Potential (ORP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| `                         | (feet, NGVD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (feet, bgs)     |                      | (feet, TOC)     | (feet; NGVD)                | (ug/L)                                | (ug/L)         | (ug/L)   | (ug/L)              | (ug/L)                       | (ug/L)                          | (ug/L)                                             | (ug/L)                                           | . (ug/L)                                          | (ug/L)                                           | (ug/L)       | (mg/L)                      | (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MW-11                     | 55.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 - 40         |                      |                 |                             |                                       |                |          |                     |                              | }                               |                                                    |                                                  |                                                   |                                                  |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 03/23/05             | 19.93           | 35.27                       | ND                                    | ND             | ND       | ND                  | ND                           | ND                              | ND                                                 | ND                                               | _ND                                               | _                                                |              | 0.28                        | 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>A</b>        | 09/23/04             | 24.04           | 31.16                       | ND                                    | ND             | ND       | ND                  | ND                           | ND                              | ND                                                 | ND                                               | ND                                                | ND                                               | ДN           | 0.50                        | _301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 06/24/03             | 22.37           | 32.83                       | -                                     | _              |          | -                   | -                            |                                 |                                                    | -                                                |                                                   |                                                  | <b></b>      | 0.43                        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 03/21/03             | 22.24           | 32.96                       |                                       |                | _        | -                   |                              |                                 |                                                    |                                                  |                                                   |                                                  | -            | 0.32                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 12/30/02             | 21.11           | 34.09                       | DI                                    | ND             | ND       | ND                  | < 1                          | ND                              |                                                    |                                                  | -                                                 |                                                  |              | 0.16                        | 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 08/27/02             | 23.68           | 31.52                       | ~~                                    |                |          | -                   | -                            | _                               |                                                    |                                                  | -                                                 |                                                  | -            | 0.13                        | 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 06/13/02             | 22.78           | 32.42                       | ND                                    | ND             | ND       | ND                  | ND                           | ND                              |                                                    |                                                  |                                                   |                                                  |              | 0.15                        | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 03/21/02             | 21.76           | 33.44                       | ND                                    | ND ND          | ND       | ND                  | ND                           | ND_                             | <u> </u>                                           |                                                  | <b>-</b>                                          |                                                  |              | 0.1                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 12/18/01             | 23.39           | 31.81                       | ND                                    | ND             | 0.56     | ND                  | ND                           | ND                              | ļ <u>-</u>                                         |                                                  | <u></u>                                           | -                                                |              |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 09/20/01             | 23.87           | 31.33                       | ND                                    | ND ND          | ND       | ND                  | ND                           | ND                              |                                                    |                                                  |                                                   |                                                  |              | 0.4                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 06/20/01             | 23.39           | 31.81                       | ND                                    | ND ND          | ND       | ND_                 | ND                           | ND                              |                                                    |                                                  | _                                                 |                                                  | -            |                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 03/29/01             | 21.84           | 33.36                       | ND                                    | ND ND          | 4.5      | ND                  | ND                           | ND                              |                                                    |                                                  | -                                                 | <del></del>                                      | -            | 0.6                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 01/12/01             | 23.21           | 31.99                       | ND                                    | ND             | 2.1      | ND                  | ND                           | ND<br>NB                        |                                                    |                                                  | ' <del>-</del>                                    | <del></del>                                      |              | 0.6                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100                       | 50.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5             | 09/27/00             | 22.43           | 32.77                       | 63                                    | NĐ             | ND       | ND                  | ND                           | ND                              | <del>                                       </del> |                                                  | ND                                                |                                                  |              | 0.6                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-12                     | 56.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 - 40         | 00/00/05             | 04.00           | 05.47                       | N.D.                                  | - NB           | ND       | NE                  | ND                           | ND                              | ND                                                 | ND                                               | MD                                                |                                                  |              | 4.00                        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 03/23/05             | 21.02           | 35.47                       | ND<br>ND                              | ND<br>ND       | ND<br>ND | ND<br>ND            | ND<br>ND                     | ND<br>ND                        | ND<br>ND                                           | ND<br>ND                                         | ,ND<br>:ND                                        | ND ND                                            | -<br>ND      | 1.28<br>1.92                | 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>A</b>        | 09/23/04<br>06/24/03 | 25.16           | 31.33<br>33.08              | · · · · · · · · · · · · · · · · · · · |                |          |                     |                              |                                 |                                                    |                                                  |                                                   | 1                                                |              | 1.92                        | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      | 23.41           |                             |                                       | <del>  -</del> |          |                     |                              | -                               |                                                    | _                                                |                                                   |                                                  | _            | 1,23                        | 29<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 03/21/03<br>12/30/02 | 23.28<br>22.16  | 33.21<br>34.33              | <br>ND                                | ND ND          | ND       | ND                  | <u>-</u><br><1               | ND                              | <del> </del>                                       |                                                  |                                                   |                                                  |              | 0.77                        | 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| l i                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 08/27/02             | 24.68           | 31.81                       | ND                                    | - ND           |          |                     | <del></del>                  |                                 | <del>-</del>                                       |                                                  |                                                   |                                                  | -            | 0.60                        | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 06/13/02             | 23.86           | 32.63                       | ND                                    | ND             | ND       | ND                  | ND                           | ND                              | <del> </del>                                       | <del>                                     </del> |                                                   | <del>                                     </del> |              | 0.51                        | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 03/21/02             | 22.86           | 33.63                       | ND ND                                 | ND             | ND       | ND ND               | ND                           | ND                              | <del>                                     </del>   |                                                  |                                                   | <del>                                     </del> |              | 0.7                         | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 12/18/01             | 24.49           | 32.00                       | ND ND                                 | ND             | 0.86     | ND ND               | ND                           | ND                              | <del>                                     </del>   |                                                  |                                                   | <del></del>                                      | _            | 0.7                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 09/20/01             | 24.95           | 31.54                       | ND                                    | ND             | ND       | ND                  | ND                           | ND                              |                                                    |                                                  |                                                   |                                                  |              | 0.7                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | 06/20/01             | 24.47           | 32.02                       | ND                                    | ND             | ND       | ND                  | ND                           | ND                              |                                                    |                                                  | _                                                 | -                                                | _            | <u> </u>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 03/29/01             | 22.91           | 33.58                       | ND                                    | ND             | 5        | ND                  | ND                           | ND                              |                                                    | _                                                | _                                                 |                                                  |              | 1                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 01/12/01             | 24.28           | 32.21                       | ND                                    | ND             | 1.1      | ND ND               | ND                           | ND ND                           |                                                    |                                                  |                                                   | - 1                                              |              | 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 09/27/00             | 23.98           | 32.51                       | ND                                    | ND             | ND       | ND                  | ND                           | ND                              |                                                    |                                                  | ND                                                |                                                  | -            | 1,2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | ingresser in a comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Practical Quant | الصحيا               |                 | #12 197 J. C. C. L. HAT J.  | 25//50                                | 0.5            | 0.5      | <del></del>         | ra og kørlisit               | Přítukil i <b>T</b> řeskáne     | 2 10                                               | 100                                              |                                                   | 0.5                                              | 0.5          |                             | Logia ( ) and a function of the control of the cont |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      |                 |                             |                                       |                |          |                     |                              |                                 |                                                    |                                                  |                                                   |                                                  |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | RWQCB'SFBR Final ESUs (basis): 100 (F&O) 13 (AHG) 5 (F&O) 13 (AHG) 15 (F&O) |                 |                      |                 |                             |                                       |                |          |                     |                              |                                 |                                                    |                                                  |                                                   |                                                  |              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                      | he ESLs):       |                             | 1,000                                 | 10 2           | 400      | 300                 | 130                          | 50                              | #                                                  |                                                  |                                                   |                                                  |              | v                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Be a series of the series |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Areaman Fever   | g. (*10 umes: ii     | ueroraj. gagade | and the control of the same |                                       |                |          | Barres Andrews of 1 | . M. G. A. C. Service (1997) | - hart darting mental fortage v | Par differents branch to ye                        | - pgs 30 × 5 x = 30 x ⊃ €2°°                     | her the serve almost the serve of the model "to." | Piter Amer Antibiotomy                           | 2 x 2 y 7 7  | en marriage Tip, 2 motes of | recommendation of the state of  |

#### <u>NOTES:</u>

T.O.C. = Top of Casing Elevation. Calculated groundwater elevation = TOC - Depth to Groundwater Referenced to NGVD.

TPH-g = Total Petroleum Hydrocarbons as gasoline. MTBE = Methy - tert - Butyl Ether

F.O.'s = Fuel Oxygenates = Di-isopropyl ether (DIPE), tertiary Butyl Alcohol (TBA), Ethyl tertiary Butyl Ether (ETBE), tertiary amyl Methyl Ether (TAME)

1,2-DCA = 1,2-Dichloroethane

EDB= 1,2-Dibromoethane

VOC's = Volatile Organic Compounds. D.O. = Dissolved Oxygen

ug/L = micrograms per liter, parts per billion; mg/L = milligrams per liter, parts per million

ND = Not Detected at the Practical Quantitation Limit (PQL); <X = Not Detected at the elevated PQL, X. PQL elevated because of sample dilution.

– = Data not collected or measured, or analysis not conducted

MCL = Maximum Contaminant Level for drinking water in California (Department of Health Services).

RWQCB-SFBR = California Regional Water Quality Control Board San Francisco Bay Region

Final ESEs = "Final" Environmental Screening Levals, pased on the lowest, most conservative) screening level - "&C. DWT or AHG" established by PWQC8-SFBP for the protection of ground water quality

Proposed Cleanup Lavels = based on snallow groundwater being a potential groundwater resource

\* Confirmed by GC/MS method 3260

" = Action Level " = Secondar / MCL / water quality goal

= Laborator / Report Indicates, esuits within quantitation range chromatographic pattern not typical unfuol

▲= Groundwater samples collected unit for FP+1, 3 ≥5 publish or in section is a result the above tone is a result that a result the above tone is a result that a result the above tone is a result that a result the above tone is a result that a result the above tone is a result that a resu

Voter naves and Ness, was



ajob\h9042\figures\F1-loc.CNV



Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, Ca. 95076
(831) 722 - 3580 (831) 662 - 3100

### **Location Map**

Former Harbert Transportation Facility 19984 Meekland Avenue Hayward, California

**Figure** Job# H9042





## Weber, Hayes & Associates Hydrogeology and Environmental Engineering

120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

### Site Plan with Groundwater Elevations March 23, 2005

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California Figure 2 Project H9042





Weber, Hayes & Associates
Hydrogeology and Environmental Engineering

120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

## Site Plan with PHC Concentrations in Groundwater March 23, 2005

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

Figure 3 Project H9042





Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, Ca. 95076

(831) 722 - 3580 (831) 662 - 3100

Site Plan with Extent of TPH-g and Benzene in Groundwater, March 23, 2005

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California Figure 4 Project H9042





Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, Ca. 95076

(831) 722 - 3580 (831) 662 - 3100

Site Plan with Dissolved Oxygen Contours March 23, 2005

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California Figure 5 Project H9042

## Appendix A

Field Methodologies for Groundwater Monitoring and Field Data Forms

#### Appendix A

#### Field Methodologies for Groundwater Monitoring

Weber, Hayes and Associates' groundwater monitoring field methodology is based on procedures specified in the LUFT Field Manual. The first step in groundwater well sampling is for Weber, Hayes and Associates field personnel to measure the depth-to-groundwater to the nearest hundredth (0.01) of a foot with an electric sounder. If the well appears to be pressurized, or the groundwater level is fluctuating, measurements are made until the groundwater levels stabilizes, and a final depth-to groundwater measurement is taken and recorded. After the depth-to-groundwater is measured, the well is then checked for the presence of free product with a clear, disposable polyethylene bailer. If free product is present, the thickness of the layer is recorded, and the product is bailed to a sheen. All field data (depth-to-groundwater, well purge volume, physical parameters, and sampling method) is recorded on field data sheets (see attached). Because removing free product may skew the data, wells that contain free product are not used in groundwater elevation and gradient calculations.

After measuring the depth-to-groundwater, each well, starting with the cleanest well (based on analytical results from the last sampling event), is purged with a low flow submersible electric pump. During purging the physical parameters of temperature, conductivity, pH, dissolved oxygen (D.O.) concentration, and Oxidation-Reduction Potential (ORP) of the purge water are monitored with a QED MP20 Micropurge Flow-Through-Cell and Meter to insure that these parameters have stabilized (are within ~ 15 percent of the previous measurement). The QED MP20 Meter is capable of contiguously monitoring the physical parameters of the purge water via the flow through cell and providing an alarm to indicate when the physical parameters have stabilized to the users specifications. Purging is determined to be complete (stabilized aquifer conditions reached) after the removal of approximately three to five well volumes of water or when the physical parameters have stabilized. Dissolved oxygen and ORP measurements are used as an indicator of intrinsic bioremediation within the contaminant plume. All field instruments are calibrated before use.

All purge water is stored on site in DOT-approved, 55-gallon drums for disposal by a state-licensed contractor pending laboratory analysis for fuel hydrocarbons.

After purging, the water level in the well is allowed to recover to 80 percent of its original depth before a sample is collected. After water level recovery, a groundwater sample is collected from each well with a new, disposable bailer, and decanted into the appropriate laboratory-supplied sample container(s). The sample containers at this site were 40-ml. vials. Each vial was filled until a convex meniscus formed above the vial rim, then sealed with a Teflon®-septum cap, and inverted to insure that there were no air bubbles or head space in the vial. All samples are labeled in the field and transported in insulated containers cooled with blue ice to state-certified laboratories under proper chain of custody procedures.

All field and sampling equipment is decontaminated before, between, and after measurements or sampling by washing in an Liqui-Nox and tap water solution, rinsing with tap water, and rinsing with distilled water.



#### Weber, Hayes & Associates

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95078 (831) 722-3880 (831) 682-3100 Fax (831) 722-1159

Text Page 1 / 12.
INDICATE ATTACHMENTS THAT APPLY.

Site Map
Data Sheets
Geologic Logs
Photo Sheets
COC's
Chargesbla Materials

| Site Location: 19984 Meekland Avenue, Hayward, CA    Field Tasks:   Duilling   Sampling   Other (see below): Weather Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client: Harbert Transportation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date: March 23, 2005      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Personnel / Company On-Site:    Jered Chaney (Waber, Hayes and Associates: WHA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site Location: 19984 Meekland Avenue, Hayward, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Study #: <b>H9042.Q</b>   |
| FIELD WORK PLANNING: Performed on: March 22, 2005  Meet with Project Manager: X Yes No Number of Weis to be Sampleet: 10 weils, including depth to groundwater, DC, and ORP measurements in all weils.  Sample Weils: MW-3 through 12.  Analyze for: TPH-g, BTEX, Fuel Oxygenates by EPA Method GC-MS / 8269 in all weils, Bio-Parameters in wells  MW-3, 5, 5, 9, 8, 10 (Includes methane, nitrate, sulfate, & disolved ferrous iron).  Proposed Sampling Date: March 23, 2005  ON-SITE FIELD WORK:  Arrive on-site at 6720 to conduct 1 Quarter 2005 Quarterly Groundwater Monitoring Weil Sampling.  LABORATORY:  TC Send all analytical to: Entech Analytical Laboratory, 408,588,0200 - 3334 Victor Court, Santa Clara, CA  GROUNDWATER MONITORING FIELD WORK STANDARD OPERATING PROCEDURES:  Ininitial  T- All sampling is conducted according to Standard Operating Procedure (SOP) 10//  - All perfurent information regarding the well, including water quality physical parameters are recorded on the following pages.  - All samples are placed on a refigerated cooler immediately after sampling.  - All groundwater monitoring/purging/sampling equipment is decontaminated according to SOP 108/at the beginning of on-site work,  In botiveon each well, and at the end of work  - All purge water is propeerly containerized in 55-gailon drums, or another suitable container, for later removal by a licensed subcontractor.  - All samples are placed on field Chain-of-Custody sheets for documentation of proper transportation to the appropriate Laboratory.  INSTRUMENT CALIBRATION:  QED MP20 Flow Through Cell: Temperature 11-10-EPH 12-10-0 Oxidation Reduction Potential (ORP) 1-10-10-10-10-10-10-10-10-10-10-10-10-10                                                                                                                                                                                                                                                                                                                                                                        | Field Tasks: Drilling Sampling Other (see below):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weather Conditions:       |
| FIELD WORK PLANNING: Performed on: March 22, 2005  Meet with Project Manager: X Yes No Number of Weils to be Sampled: 10 wells, Including depth to groundwater, DO, and ORP measurments in all wells. Sample Wells: MW-3, through 12. Analyze for: TPH-g, BTEX, Fuel Oxygenates by EPA Method GC-MS / 8269 in all wells, Bio-Parameters in wells MW-3, 5, 5, 9, 8, 10 (Includes methane, nitrate, sulfate, & disolved ferrous bron).  Proposed Sampling Date: March 23, 2005  ON-SITE FIELD WORK:  Arrive on-site at ORD to conduct MM Quarter 2005 Quarterly Groundwater Monitoring Weil Sampling.  LABORATORY:  TC Send all analytical to: Entech Analytical Laboratory, 408.588.0200 - 3334 Victor Court, Santa Clara, CA  GROUNDWATER MONITORING FIELD WORK STANDARD OPERATING PROCEDURES: Including T- All sampling is conducted according to Standard Operating Procedure (SOP) 10V  - All performent information regarding the well, including water quarity physical parameters are recorded on the following pages.  - All samples are placed in a refigerated cooler immediately after sampling.  - All groundwater monitoring/purging/sampling apupment is decontaminated according to SOP 108/at the beginning of on-site work, in botiveen each well, and at the end of work  - All purge water is propeerly containerized in 55-gallon drums, or another suitable container, for later removal by a licensed subcontractor.  - All samples are placed in the end of work  - All samples are placed in the end of work  - All samples are recorded on field Chain-of-Custody sheets for documentation of proper transportation to the appropriate Laboratory.  INSTRUMENT CALIBRATION:  QED MP20 Flow Through Cell: Temperature = 11.10 EpH = 2.00 & Coddation Reduction Potential (ORP) = 4.12 AV                                                                                                                                                                                                                                                                                                               | 1 st Quarter 2005 Groundwater Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rain - to Partly Cloudy   |
| Mest with Project Manager: X   Yes No Number of Weils to be Samcled: 10 wells, including depth to groundwater, DO, and ORP measurments in all wells.  Sample Weils: MW-3 through 12.  Analyze for: TPH-g, BTEX, Fuel Oxygenates by EPA Method GC-MS / 8269 in all wells, Bio-Parameters in wells  MW-3, 5, 8, 9, & 10 (Includes methane, nitrate, sulfate, & disolved ferrous iron).  Proposed Sampling Date: March 23, 2005  ON-SITE FIELD WORK:  Arrive on-site at 6220 to conduct 15 Quarter 2005Quarterly Groundwater Monitoring Weil Sampling.  LABORATORY:  TC Send all analytical to: Entech Analytical Laboratory, 408.588.0200 - 3334 Victor Court, Santa Clara, CA  GROUNDWATER MONITORING FIELD WORK STANDARD OPERATING PROCEDURES:  Initial Court of the Sampling is conducted according to Standard Operating Procedure (SOP) 10V  - All pertinant information regarding the well, including water quality physical parameters are recorded on the following pages.  - All samples are placed in a refingerated cooler immediately after sampling.  - All groundwater monitoring/puring/sampling equipment is decontaminated according to SOP 108/st the beginning of on-site work, in botween each well, and at the end of work  - All purge water is propoerly containerized in 55-gallon drums, or another suitable container, for later removal by a licensed subcontractor.  - All samples are recorded on field Chain-of-Custody sheets for documentation of proper transportation to the appropriate Laboratory.  INSTRUMENT CALIBRATION:  QED MP20 Flow Through Cell: Temperature = 11 10 pt pH = 1 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Personnel / Company On-Site: Jered Chaney (Weber, Hayes and Associates: WHA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| GROUNDWATER MONITORING FIELD WORK STANDARD OPERATING PROCEDURES:  (Initial)  - All sampling is conducted according to Standard Operating Procedure (SOP) 101/  - All pertinant information regarding the well, including water quality physical parameters are recorded on the following pages.  - All samples are placed in a refrigerated cooler immediately after sampling.  - All groundwater monitoring/purging/sampling equipment is decontaminated according to SOP 108/at the beginning of on-site work, in between each well, and at the end of work  - All purge water is propoerly containerized in 55-gallon drums, or another suitable container, for later removal by a licensed subcontractor.  - All samples are recorded on field Chain-of-Custody sheets for documentation of proper transportation to the appropriate Laboratory.  INSTRUMENT CALIBRATION:  QED MP20 Flow Through Cell: Temperature = 11-105 pH = 1-00 & 100 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Meet with Project Manager:  Number of Wells to be Sampled:  Sample Wells:  Analyze for:  TPH-g, BTEX, Fuel Oxygenates by EPA Method GC-MS / 8269 in all wells, B  MW-3, 5, 8, 9, & 10 (Includes methane, nitrate, sulfate, & disolved ferrous includes methane)  Proposed Sampling Date:  March 23, 2005                                                                                                                                                                                                                                                                                                                                          | Bio-Parameters in wells   |
| - All sampling is conducted according to Standard Operating Procedure (SOP) 101/  - All pertinant information regarding the well, including water quality physical parameters are recorded on the following pages.  - All samples are placed in a refrigerated cooler immediately after sampling.  - All groundwater monitoring/purging/sampling equipment is decontaminated according to SOP 10B/at the beginning of on-site work, in between each well, and at the end of work  - All purge water is propoerly containerized in 55-gallon drums, or another suitable container, for later removal by a licensed subcontractor.  - All samples are recorded on field Chain-of-Custody sheets for documentation of proper transportation to the appropriate Laboratory.  INSTRUMENT CALIBRATION:  QED MP20 Flow Through Cell: Temperature = 11.105 pH = 1.00 & 1.00 pt = 1.00 | Send all analytical to: Entech Analytical Laboratory, 408.588.0200 - 3334 Victor Court, Santa Clara, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
| QED MP20 Flow Through Cell: Temperature = 11.76 EpH = 2.00 & 10.00 Electrical Conductivity = 119 110 Barometric Pressure = 160 100 D.O. % Saturation = 160 20 Oxidation Reduction Potential (ORP) = 649 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>All sampling is conducted according to Standard Operating Procedure (SOP) 10t/         <ul> <li>All pertinant information regarding the well, including water quality physical parameters are recorded on the following and samples are placed in a refrigerated cooler immediately after sampling.</li> <li>All groundwater monitoring/purging/sampling equipment is decontaminated according to SOP 10B/at the beginning in between each well, and at the end of work</li> <li>All purge water is propoerly containerized in 55-gallon drums, or another suitable container, for later removal by a literature.</li> </ul> </li> </ul> | of on-site work,          |
| D.O. % Saturation = 16626 Oxidation Reduction Potential (ORP) = 648 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INSTRUMENT CALIBRATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QED MP20 Flow Through Cell: Temperature = 11.70 EpH = 2.00 & Conductivity = 119 App App App App App App App App App Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Barometric Pressure = 160 |
| BEGIN SAMPLING WELLS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.O. % Saturation = 166% Oxidation Reduction Potential (ORP) = 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 AV                      |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mas 12, Mas & Mas 4, Mas 11, Mas 10, Mas 7, Mas 9, Mas 6, Mas 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |

All wells will be purged until the QED MP20 unit indicates that the physical parameters of the water (pH, Conductivity, Temp, D.O., and ORP) have stabilized to within ~ 15%, or once four casing volumes in the well column requiring sampling have been removed (see Groundwater Monitoring Well Sampling Field Data Sheet(s) for details). Wells will be purged form the bottom up and all WHA SOPs. Wells will only be sampling using a Bladder Pump or a disposable bailer, as per RWQCB guidlines.

Signature of Pield Personel & Date



Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Or , Watsonville, CA 95076
(831) 722-3580 (831) 662-3100
Fax. (831) 722-1169

| Location      | Groundwater Depth                                                        | Total Depth of Well | D.O. (mg/L) | ORP (mV)          | Floating Product (comments) |
|---------------|--------------------------------------------------------------------------|---------------------|-------------|-------------------|-----------------------------|
| N4.3          | S 0 .10,                                                                 | <u></u>             | 0.30        | 723               | No FP: No Odor              |
| MW.4          | 20.4\$'                                                                  | <u>40.</u>          | 6.14        | 841               | No FP; No Odor              |
| Hw.8          | 50.14 ·                                                                  | <u> </u>            | o.34        | 196               | No FP; No Odor              |
| Muia          | 50.31.                                                                   | 46'                 | PI,0        | 166               | No FP; No Oder              |
| Tw.7          |                                                                          | 40.                 | 0.16        | 21-7              | No FP; No Odor              |
| Wm.8          | Ze.70,                                                                   | 40'                 | 1-76.       | 339               | No FP; No Odor              |
| Muig          | 14.48.                                                                   | <u>46.</u>          | 0.2.        | 23}               | No FP; Sligat Odor          |
| 1140          | 14.61.                                                                   | <u> </u>            | 0.23        | 16.5              | NEFF Sliget to Mederate Ode |
| Holl          | 19.93'                                                                   | <u> 46'</u>         | 6,28        | 347               | NOFF; No Odor               |
| Mr.12         | 21,62'                                                                   | 40'                 | 1.28        | 323               | NoFP; No Odor               |
| <u>\</u>      |                                                                          |                     |             |                   |                             |
| $\overline{}$ |                                                                          |                     |             |                   |                             |
| \             | X                                                                        |                     |             |                   | !                           |
|               | 3/23/05                                                                  |                     |             |                   |                             |
|               |                                                                          |                     |             |                   |                             |
|               |                                                                          |                     |             |                   |                             |
|               |                                                                          |                     |             |                   |                             |
| CALL PURGE    | URGE DRUMS WERE LEFT ON WATER REMOVAL SUBCONT PROPERTY OF THE PURGED ON: | RACTOR ON:          | APPROXIMAT  | E VOLUME (gallon: | s): <b>100</b>              |
| COMMENTS      | . O1 1. E                                                                |                     |             | •                 |                             |

COMMENTS: Clear water Environmental Mangement Inc. to purposet purge water from 4 downs on site.

| Project Na                                 | ame/No.:      | На                                         | arbert Transp      | ortation /    | H9042.Q        |                   | Date:            | 31:               | 25 55                  |                  |                          |
|--------------------------------------------|---------------|--------------------------------------------|--------------------|---------------|----------------|-------------------|------------------|-------------------|------------------------|------------------|--------------------------|
| Sample No                                  | 0.:           |                                            | **                 | W-12-         |                |                   | Sample           |                   |                        |                  |                          |
| Samplers                                   | Name:         |                                            |                    | d Chaney      |                |                   | Record           | ed by             | : <i>J</i>             | С                |                          |
| Purge Equ                                  | uipment:      |                                            |                    |               |                |                   | Sample           | Equi              | pment                  | •                |                          |
| - '                                        | Bailer: Di    | sposable or Aci                            | rylic              |               |                |                   | х                |                   | -                      | able Bailer      |                          |
| ×                                          | Whaler#       | 1                                          |                    |               |                |                   |                  |                   |                        | ·#               |                          |
|                                            | Bladder P     |                                            |                    |               |                |                   |                  | I                 | Bladde                 | r Pump           |                          |
|                                            |               | Pump (Grundfu                              |                    |               |                |                   |                  | ;                 | Subme                  | ersible Pump     |                          |
|                                            |               | l (cricle all tha                          |                    |               |                |                   | N                | umbe              | r and `                | Types of Bot     | tle Used:                |
|                                            |               | 2 <del>- DOA; EDB</del> , <b>6</b> 26      |                    | es Methano    | t Etherneh     |                   | 3                | x 40 m            | L VOA's                | s w/ HCI         |                          |
|                                            |               | , TPH-Heating-Oil-                         |                    | ···           |                |                   |                  |                   |                        |                  | ····                     |
|                                            |               | Methane, Nitrate,                          | Sulfate; & Dissolv | red Ferrous I | ron-           |                   |                  |                   |                        | L Poly , 1 x 250 |                          |
| Well Numi                                  |               | 1163-12                                    |                    |               |                | V                 | Vell Diam        | eter: ˌ           | <u>*</u> wi            | ith Casing Vo    | olume of:                |
| Depth to V                                 | Vater:        | 21.62                                      | TOC                |               |                |                   |                  |                   | $\mathcal{Q}$          | 2" = (0.16 Ga    | lon/Feet)                |
| Well Depti                                 | h:            | 40.                                        | BGS or TOC         |               |                |                   |                  |                   | 2                      | 1" = (0.65 Ga    | llon/Feet)               |
| Height W-                                  | Column:       | 19.98'                                     | feet (well dep     | oth - depth   | to water)      |                   |                  |                   | ŧ                      | 5" = (1.02 Ga    | llon/Feet)               |
| Volume in                                  |               | 3,03                                       | gallons (casi      |               | -              |                   |                  |                   |                        | 6" = (1.47 Ga    | •                        |
| Gallons to                                 |               |                                            | gallons (volui     | _             | X (loight)     |                   |                  |                   |                        | •                | •                        |
|                                            |               |                                            | ganons (volu       | 1116 / 4)     |                |                   |                  |                   |                        | 3" = (2.61 Ga    | iioii/reet)              |
| Lab:                                       | Entech A      | naiyticai                                  |                    |               |                | Transpor          | tation:          |                   | Delive                 | <u>r</u>         |                          |
| ·                                          | Volume        |                                            |                    |               | T              | T                 | 1                |                   |                        |                  | 1                        |
| Time                                       | Purged        | Temperature                                | Conductivity       | D.O.          | pН             | ORP               | т.               | rhidit            | " Colo                 | r, Fines         | Micropurge<br>Paramaters |
| (24 hr.)                                   | (Gallons)     | (°C)                                       | (ms/cm)            | (ppm)         | PΠ             | (mV)              | ''               | irbidity          | 7. COIO                | i, rines         | Stabilized               |
| 6 \$11                                     | (Calloris)    | 14.13                                      | 0,655              | 4.64          | 6.24           | 304               | Laure            |                   | 42 244-4               | n, Niner Since   |                          |
|                                            |               |                                            |                    |               |                |                   |                  |                   |                        |                  |                          |
| 0813                                       |               | 15'88                                      | 6.653              | 3.03          | 6.43           | 312               | الفرية           | <u> </u>          | ms, FC                 | inor firms       |                          |
| 0812                                       | ٤             | 17.48                                      | <u> </u>           | <u> ४.५१</u>  | 6.48           | 316               |                  | $\longrightarrow$ |                        |                  |                          |
| <b>० स</b> । क                             | 3             | 18,044                                     | 0.683              | 1,99          | 6.47           | 318               |                  |                   |                        |                  |                          |
| 0812                                       | \$            | 18.11                                      | 6559               | 1.39          | 6.49           | 320               |                  |                   |                        |                  |                          |
| 6817                                       | 7             | 14,18                                      | 0.450              | 1- 28         | (4.RIB         | 323               | *                |                   |                        | Ψ                |                          |
| Stop!                                      | Rurga Co      | molada Pe                                  | ura, martians      | Septembil!    | zecl,          |                   |                  |                   |                        |                  |                          |
| 12                                         | ,             | ·                                          |                    |               |                |                   |                  |                   |                        |                  |                          |
| 3/23                                       | (65"          |                                            |                    |               |                |                   |                  |                   |                        |                  |                          |
|                                            | <u> </u>      | W                                          | ait for 80% w      | ell volum     | e recover      | prior to s        | ampling          |                   |                        |                  |                          |
|                                            |               |                                            | e depth to wat     |               |                |                   |                  |                   |                        |                  |                          |
|                                            |               |                                            | Cal                | culate 80% o  | f orginal well | volume:           |                  |                   |                        |                  |                          |
|                                            | Origina       | I Height of Water C                        | Column = 18.5      | x 0.8 =       | 15, 18         | - (Well Depth     | ) <b>40'</b> = [ | Depth to          | water_                 | 2.4.81           |                          |
|                                            |               |                                            |                    |               |                |                   |                  |                   |                        |                  |                          |
| Time: 6919                                 | 1of magaziros | d depth to water,                          | 41 A9: foot        | halaw TOO     |                | سلطفانين السينيسا | 000/ -f!         |                   |                        | volume: Yes      |                          |
| Time: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1st measured  | depth to water,<br>depth to water.         | feet               | below TOC.    |                | is well within    | 80% of orig      | inal wei          | ii casing<br>Il casino | volume: Yes      | No                       |
| Time:                                      | 1st measured  | l depth to water, _<br>l depth to water, _ | feet               | below TOC.    |                | Is well within    | 80% of orig      | inal wel          | II casing              | volume: Yes      | No                       |
|                                            |               |                                            | •                  |               |                |                   |                  |                   | Ū                      |                  |                          |
|                                            |               |                                            |                    | San           | nple Well      |                   |                  |                   |                        |                  |                          |
|                                            |               | ·                                          |                    |               |                |                   | ·                |                   |                        |                  | ···                      |
| Time:                                      | <b>₹618</b>   |                                            | Sample ID:         |               | 4110.15        |                   | . De             | epth: _           | 21.69                  | feet be          | low TOC                  |
|                                            |               |                                            |                    |               |                |                   |                  |                   |                        |                  |                          |
| Comments:                                  | · Not         | logiting produ                             | et; No C           | )dor          | ····           |                   |                  |                   |                        |                  |                          |
|                                            |               | , , –                                      | r                  |               |                |                   |                  |                   |                        |                  |                          |
|                                            |               |                                            |                    |               |                |                   |                  |                   |                        |                  |                          |

| Project Na          |                                        | Ha                                         | arbert Trans <u>r</u> | ortation /       | H9042.Q            |                  | Date:            | 3/23/05          | !                                     |                                                                                                               |
|---------------------|----------------------------------------|--------------------------------------------|-----------------------|------------------|--------------------|------------------|------------------|------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Sample N            | o,:                                    |                                            | HW                    |                  |                    |                  | Sample           | _ocation:        | hw.8                                  | ***                                                                                                           |
| Samplers            | Name:                                  |                                            | Jerec                 | d Chaney         |                    |                  | Recorde          | d by:            | IC                                    |                                                                                                               |
| Purge Equ           |                                        |                                            |                       |                  |                    |                  | Sample I         | Equipmen         |                                       |                                                                                                               |
|                     |                                        | sposable or Acı                            | <sup>-</sup> ylic     |                  |                    |                  | <u>x</u>         |                  | sable Bailer                          |                                                                                                               |
| <u>*</u>            | Whaler#                                |                                            |                       |                  |                    |                  |                  |                  | er#                                   |                                                                                                               |
|                     | Bladder P                              | ump<br>Pump (Grundfu                       | (a)                   |                  |                    |                  |                  |                  | er Pump:<br>ersible Pump              |                                                                                                               |
| Analyses            |                                        | l (cricle all tha                          |                       |                  |                    |                  | Mu               |                  | Types of Bo                           |                                                                                                               |
| •                   | -                                      | 2-DGA, EBB,(826                            |                       | tes Methano      | (Ethañol)          |                  |                  | 40 mL VOA        |                                       | tue oseu.                                                                                                     |
|                     |                                        | l, TPH-Heating Oil                         |                       | No.              |                    |                  |                  |                  |                                       |                                                                                                               |
| Bio Paramet         | ers including:                         | Methane, Nitrate,                          | Sulfate, & Dissol     | ved Ferrous      | ron                | 2 x              | 40 mL VOA        | 's, 1 x 250 n    | nL Poly , 1 x 25                      | 0 mL Amber                                                                                                    |
| Well Numi           | oer:                                   | MW.8                                       |                       |                  |                    | W                | ell Diame        | ter: <u>🐫 </u> w | ith Casing V                          | olume of:                                                                                                     |
| Depth to V          | Vater:                                 | 20.70'                                     | TOC                   |                  |                    |                  |                  |                  | 2" = (0.16 G                          |                                                                                                               |
| Well Depti          |                                        | 46'                                        | BGS or TOC            |                  |                    |                  |                  |                  | 4" = (0.65 G                          |                                                                                                               |
| Height W-           |                                        | 19.30                                      | feet (well der        |                  | to water)          |                  |                  |                  | 5" = (1.02 G                          | and the second name of the second |
| Volume in           |                                        | 12.54                                      | gallons (casi         | -                | •                  |                  |                  |                  | 6" = (1.47 G)                         |                                                                                                               |
|                     |                                        |                                            | , •                   | -                | v neiður)          |                  |                  |                  |                                       | •                                                                                                             |
| Gallons to          |                                        | 50-18                                      | gallons (volui        | III€ ∧ 4)        |                    | <b></b>          | _41.             |                  | 8" = (2.61 G                          | alion/Feet)                                                                                                   |
| Lab:                | Entech A                               | nalytical                                  |                       |                  |                    | Transport        | ation:           | Delive           | r                                     |                                                                                                               |
| F                   | Volume                                 | T                                          |                       |                  | 1                  | T I              |                  |                  |                                       | 7                                                                                                             |
| Time                | Purged                                 | Temperature                                |                       | D.O.             | pН                 | ORP              | Tur              | bidity: Colo     | or Fines                              | Micropurge<br>Paramaters                                                                                      |
| (24 hr.)            | (Gallons)                              | (°C)                                       | (ms/cm)               | (ppm)            | Pi'                | (mV)             | iui              | bidity. Cold     | л, г н es                             | Stabilized                                                                                                    |
|                     |                                        |                                            |                       |                  |                    |                  |                  | ~~···            |                                       |                                                                                                               |
| 6839                | 6                                      | 14.40                                      | 6.433                 | ₹•4€             | 6.48               | 343              | ادهدی            | - Lace           | traca Siras                           |                                                                                                               |
| <b>⊘84</b> 0        |                                        | 18.00                                      | 0.659                 | 2.19             | 6.80               | 311              |                  |                  |                                       |                                                                                                               |
| 0 940               | ı.                                     | 18.21                                      | 0.66.9                | 1.48             | C.80               | 341              |                  |                  |                                       |                                                                                                               |
| 0 442               | 4                                      | 18.28                                      | 0.663                 | C. 84            | 6.49               | 340              |                  |                  |                                       |                                                                                                               |
| ०४५६                | 8                                      | 18.28                                      | o.464                 | 1.33             | 6.47-              | 337              |                  |                  |                                       |                                                                                                               |
| <b>७ १</b> ५ ४      | 12                                     | 14.34                                      | 0.450                 | 1.71             | 6.72               | 335              |                  |                  |                                       |                                                                                                               |
| 0.820               | <i>1</i> 4                             | 1830                                       | ०५८।                  | 1-3G             | G. <del>3</del> 2, | <i>P6</i> 2      | <u> </u>         | 4                | 4                                     | <u>                                     </u>                                                                  |
| Stop.               | Yerge Co                               | Mplotes; Par                               | emphass S             | tar: fisher      | ۸                  |                  |                  |                  |                                       |                                                                                                               |
| 3/23/0              | 5                                      | * 1                                        |                       |                  | ļ                  |                  |                  |                  | !                                     |                                                                                                               |
|                     |                                        | W                                          | ait for 80% w         | ell volum        | e recover          | y prior to sa    | ampling.         |                  |                                       |                                                                                                               |
|                     |                                        |                                            | e depth to wat        |                  |                    |                  |                  | /ery:            |                                       |                                                                                                               |
|                     | ······································ |                                            | Cal                   | culate 80% o     | f orginal well     | volume:          |                  |                  | , , , , , , , , , , , , , , , , , , , | Morrowski                                                                                                     |
|                     | Origina                                | al Height of Water (                       | Column = 19.3         | <b>6</b> x 0.8 = | 13.44              | - (Well Depth)   | <b>46</b> ′ = De | epth to water    | *4,5 <u>C'</u>                        |                                                                                                               |
|                     |                                        |                                            |                       |                  |                    |                  |                  |                  |                                       |                                                                                                               |
| Time: <b>6\$5</b> 1 | 1st measurer                           | d depth to water,                          | 21.51 feet            | below TOC.       |                    | Is well within 8 | 30% of origin    | ıai well casino  | g volume: Yes                         | ✓ No                                                                                                          |
| Time:               | 1st measure                            | d depth to water.                          | feet                  | below TOC.       |                    | Is well within 8 | 30% of origin    | al well casing   | g volume: Yes                         | No                                                                                                            |
| Time:               | 1st measured                           | d depth to water, _<br>d depth to water, _ | feet feet             | below TOC.       |                    | Is well within 8 | 30% of origin    | al well casing   | g volume: Yes<br>g volume: Yes        | 17 0 WO                                                                                                       |
|                     |                                        |                                            |                       |                  |                    |                  |                  |                  |                                       |                                                                                                               |
|                     |                                        |                                            |                       | San              | nple Well          |                  |                  |                  |                                       |                                                                                                               |
|                     |                                        | -"                                         |                       |                  |                    |                  |                  |                  | ı                                     |                                                                                                               |
| Time:               | 0821                                   |                                            | Sample ID:            | <u></u>          | w 8                |                  | Dep              | oth: <b>21</b> 4 | tí feet b                             | elow TOC                                                                                                      |
|                     |                                        |                                            |                       |                  |                    |                  |                  |                  | 1                                     |                                                                                                               |
| Comments            | Noflo                                  | ating Product                              | ; No Ode              | sr               |                    |                  |                  | •                |                                       |                                                                                                               |
|                     |                                        | ,                                          |                       |                  |                    |                  |                  |                  | 1                                     |                                                                                                               |
|                     |                                        |                                            |                       |                  |                    |                  |                  |                  |                                       |                                                                                                               |

| Project Na                                                                                                                                | me/No.:        | На                                             | arbert Transp                    | ortation /              | H9042.Q         |                                           | Date:                                           | 3   2 3       | 105            |                                       |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------|----------------------------------|-------------------------|-----------------|-------------------------------------------|-------------------------------------------------|---------------|----------------|---------------------------------------|--|--|--|
| Sample No                                                                                                                                 | 0.:            |                                                | r                                | Sample Location: গাড়-৭ |                 |                                           |                                                 |               |                |                                       |  |  |  |
| Samplers Name: Jered Chaney                                                                                                               |                |                                                |                                  |                         | Recorded by: JC |                                           |                                                 |               |                |                                       |  |  |  |
| Purge Equipment:  Bailer: Disposable or Acrylic                                                                                           |                |                                                |                                  |                         |                 | Sample Equipment: Disposable Bailer       |                                                 |               |                |                                       |  |  |  |
| Υ.                                                                                                                                        | Whaler#        |                                                |                                  |                         |                 | Whaler #                                  |                                                 |               |                |                                       |  |  |  |
| Bladder Pump                                                                                                                              |                |                                                |                                  |                         |                 | Bladder Pump                              |                                                 |               |                |                                       |  |  |  |
| A                                                                                                                                         | •              | Pump (Grundfu                                  | •                                |                         |                 | Submersible Pump                          |                                                 |               |                |                                       |  |  |  |
| Analyses Requested (cricle all that apply):  Number and Types of Bottle Used                                                              |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
| TeH-gas, BTEX, MTBE) 1,2DCA, EDB 8260 Fuel Oxygenates Methanol, Ethanol 3 x 40 mL VOA's w/ HCl TeH-diesel, Teh-Meter Oil, Teh-Heating Oil |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
| Bio-Parameters including: Methane, Nitrate, Sulfate, & Dissolved Perrous from 2 x 40 mL VOA's, 1 x 250 mL Poly , 1 x 250 mL Amber         |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
|                                                                                                                                           |                |                                                |                                  |                         |                 |                                           |                                                 |               |                | <del></del>                           |  |  |  |
|                                                                                                                                           |                |                                                |                                  |                         |                 |                                           | Well Diameter: <u>₹"</u> with Casing Volume of: |               |                |                                       |  |  |  |
| Depth to Water:                                                                                                                           |                | 20,45'                                         | TOC                              |                         |                 | $C^{\dagger} = (0.16 \text{ Gallon/Fee})$ |                                                 |               |                |                                       |  |  |  |
| Well Depti                                                                                                                                |                | 40'                                            | BGS or TOC                       |                         |                 | 4" = (0.65 Gallon/Feet)                   |                                                 |               |                |                                       |  |  |  |
| Height W-                                                                                                                                 | Column:        | 19.85                                          | feet (well dep                   | oth - depth             | to water)       | 5" = (1.02 Gallon/Feet)                   |                                                 |               |                |                                       |  |  |  |
| Volume in                                                                                                                                 | Well:          | 3.12                                           | gallons (casing volume X height) |                         |                 |                                           | 6" = (1.47 Gallon/Feet)                         |               |                |                                       |  |  |  |
| Gallons to                                                                                                                                | purge:         | 12.51                                          | gallons (volui                   | me X 4)                 |                 |                                           |                                                 |               | 8" = (2.61 G   | allon/Feet)                           |  |  |  |
| Lab:                                                                                                                                      | Entech A       | <br>nalvtical                                  | '                                | •                       |                 | Transportation: Deliver                   |                                                 |               |                |                                       |  |  |  |
| Titalo                                                                                                                                    |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
| Time                                                                                                                                      | Volume         | Tomporaturo                                    | Conductivity                     | D.O.                    |                 | ORP                                       |                                                 |               |                | Micropurge                            |  |  |  |
| (24 hr.)                                                                                                                                  | Purged         | (°C)                                           | Conductivity (ms/cm)             |                         | pΗ              | (mV)                                      | Turl                                            | bidity: Cole  | or, Fines      | Paramaters                            |  |  |  |
| (24 111.)                                                                                                                                 | (Gallons)      | ( 0)                                           | (ITIS/CITI)                      | (ppm)                   |                 | (1117)                                    |                                                 |               |                | Stabilized                            |  |  |  |
| 0913                                                                                                                                      | 0              | 16.92                                          | ७.६५५                            | g., o                   | Gigy            | 342                                       | Laco;                                           | Clear         | Trucalline     | \$                                    |  |  |  |
| PIPO                                                                                                                                      | ŧ              | 18,68                                          | 6.650                            | 2.74                    | G,GG            | 373                                       |                                                 |               |                | · · · · · · · · · · · · · · · · · · · |  |  |  |
| ०९।\$                                                                                                                                     | 2.             | 18,47                                          | \$+@HA                           | 1.30                    | 6.65            | 344                                       |                                                 |               |                |                                       |  |  |  |
| 8316                                                                                                                                      | 3              | 12,83                                          | Ø, <b>443</b>                    | 15.0                    | <b>6</b> ,6ጉ    | <b>344</b>                                |                                                 | <u> </u>      |                |                                       |  |  |  |
| 4180                                                                                                                                      | ч              | 14'8₽                                          | 0,681                            | 0.77                    | 6.66            | 344                                       |                                                 |               |                |                                       |  |  |  |
| 6718                                                                                                                                      | ( <sub>r</sub> | 18,89                                          | o-453                            | 52.0                    | 80.0            | 343                                       |                                                 |               |                |                                       |  |  |  |
| <b>७ ५%।</b>                                                                                                                              | <del>Ģ</del>   | 18.43                                          | 0.65(*                           | 6,15                    | 4.43            | 341                                       |                                                 |               |                |                                       |  |  |  |
| 922                                                                                                                                       | 4)             | 18.94                                          | 424.0                            | 0.M                     | (¢-@5"          | 341                                       | *                                               | 4             | •              | 8000                                  |  |  |  |
| Stops                                                                                                                                     | Purge C        | omplute: Po                                    | wa metars                        | Sterbiliz               | ect.            |                                           |                                                 |               |                |                                       |  |  |  |
|                                                                                                                                           |                |                                                | ait for 80% w                    |                         |                 | prior to s                                | ampling.                                        |               |                | <del> </del>                          |  |  |  |
|                                                                                                                                           |                | Calculate                                      | e depth to wat                   | er (from T              | TOC), for 8     | 0% well vo                                | lume recov                                      | ery:          |                |                                       |  |  |  |
| -                                                                                                                                         |                |                                                |                                  | culate 80% o            |                 |                                           |                                                 |               |                |                                       |  |  |  |
| -                                                                                                                                         | Origina        | l Height of Water (                            | Column = <u>17.5</u>             | <b>5</b> ' x 0.8 =      | 12.64.          | (Well Depth                               | ) <b>ዓሪ</b> ን = De                              | pth to water  | 2436°          |                                       |  |  |  |
|                                                                                                                                           |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
| Time: 6923                                                                                                                                | 1st measured   | d depth to water, _                            | <b>4,32</b> feet                 | below TOC.              |                 | is well within                            | 80% of origin                                   | al well casin | ig volume: Yes | No                                    |  |  |  |
| Time:1st measured depth to water,feet below TOC. is well within 80% of original well casing volume: YesNoNoNo                             |                |                                                |                                  |                         |                 |                                           |                                                 |               | No             |                                       |  |  |  |
| lime:                                                                                                                                     | 1st measured   | d depth to water, _                            | teet                             | below TOC.              |                 | is well within                            | 80% of origin                                   | al well casin | g volume: Yes  | No                                    |  |  |  |
|                                                                                                                                           |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
|                                                                                                                                           | <del> </del>   |                                                |                                  | San                     | nple Well       |                                           |                                                 |               |                |                                       |  |  |  |
| Time:                                                                                                                                     | ০৭১১           |                                                | Sample ID:                       | <u> </u>                | <b>1</b> W. 4   |                                           | Dep                                             | oth: 21.1     | feet l         | below TOC                             |  |  |  |
|                                                                                                                                           |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
| Comments                                                                                                                                  | 1001           | gleating Practi                                | act; No O                        | don                     |                 |                                           |                                                 |               |                |                                       |  |  |  |
|                                                                                                                                           |                | <u>, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</u> |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |
|                                                                                                                                           |                |                                                |                                  |                         |                 |                                           |                                                 |               |                |                                       |  |  |  |

| Project N                                                                                                                                                                                                                                                  | <del></del>                                 | Н                   | larbert Transportation / H9042.Q |                                        |                      | Date: 3 (23) 65            |                                                  |               |                |                 | _                        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|----------------------------------|----------------------------------------|----------------------|----------------------------|--------------------------------------------------|---------------|----------------|-----------------|--------------------------|--|--|
| Sample No.:                                                                                                                                                                                                                                                |                                             |                     | ML                               |                                        | Sample Location: թատ |                            |                                                  |               | ı,             |                 |                          |  |  |
| Samplers Name: Jered Chaney                                                                                                                                                                                                                                |                                             |                     |                                  |                                        | Recorded by: JC      |                            |                                                  |               | ļ<br>          |                 |                          |  |  |
| Purge Eq                                                                                                                                                                                                                                                   | •                                           |                     | 0 .                              |                                        |                      | Sample Equipment:          |                                                  |               |                |                 |                          |  |  |
|                                                                                                                                                                                                                                                            | _ Baller: Di<br>_ Whaler #                  | sposable or Ac      | rylic                            | ;                                      |                      |                            | Disposable Ba                                    |               |                |                 |                          |  |  |
| <u> </u>                                                                                                                                                                                                                                                   |                                             |                     |                                  |                                        |                      | Whaler #                   |                                                  |               |                | <del> </del>    |                          |  |  |
| Bladder Pump Redi-flow Pump (Grundfus)                                                                                                                                                                                                                     |                                             |                     |                                  |                                        |                      | Bladder Pump Submersible P |                                                  |               |                |                 |                          |  |  |
| Analyses                                                                                                                                                                                                                                                   | Analyses Requested (cricle all that apply): |                     |                                  |                                        |                      |                            | Number and Types of                              |               |                |                 | tle lised:               |  |  |
| PH-gas_BTEX_MTBE 1,2-DGA, EDB, 6260 Fuel Oxygenates Methanol (Ethanol)                                                                                                                                                                                     |                                             |                     |                                  |                                        |                      |                            | 3 x 40 mL VOA's w/ HCl                           |               |                |                 | 0000.                    |  |  |
| TPH-diesel, TPH-Moter Oil, TPH-Heating Oil.  Bie Parameters including: Methanie, Nitrate, Sulfate, & Dissolved Ferrous Iron  2.x.40-mL-VOA's, 1-x-250-mL-Poly, 1-x-2                                                                                       |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                |                 |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                |                 |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             | <u>השתיוו</u>       |                                  |                                        |                      |                            | Well Diameter: 💇 with Casi                       |               |                |                 |                          |  |  |
| Depth to Water:                                                                                                                                                                                                                                            |                                             | TOC                 |                                  |                                        |                      | $2^{11} = (0.1)^{-1}$      |                                                  |               |                |                 | 16 Gallon/Feet)          |  |  |
| Well Depth:                                                                                                                                                                                                                                                |                                             | 40'                 | ۹۵' BGS or TOC                   |                                        |                      |                            | 4" = (0.6                                        |               |                |                 |                          |  |  |
| Height W-                                                                                                                                                                                                                                                  | Column:                                     | 20,63'              | feet (well de                    | oth - depth                            | to water)            |                            |                                                  |               |                | 2 Gallon/Feet)  |                          |  |  |
| Volume in Well:                                                                                                                                                                                                                                            |                                             | <u> </u>            | gallons (casing volume X height) |                                        |                      |                            |                                                  |               |                |                 | 47 Gallon/Feet)          |  |  |
| Gallons to                                                                                                                                                                                                                                                 | purge:                                      | 12.8                | gallons (volu                    | me X 4)                                |                      |                            |                                                  |               |                | 1               | llon/Feet)               |  |  |
| Lab:                                                                                                                                                                                                                                                       | Entech A                                    |                     |                                  |                                        |                      |                            |                                                  |               | 1              |                 |                          |  |  |
|                                                                                                                                                                                                                                                            | Tunoportation, Denver                       |                     |                                  |                                        |                      |                            |                                                  | -             | <del></del>    |                 |                          |  |  |
| Time                                                                                                                                                                                                                                                       | Volume                                      | Temperature         | Conductivity                     | D.O.                                   |                      | ORP                        |                                                  |               | ·              |                 | Micropurge               |  |  |
| (24 hr.)                                                                                                                                                                                                                                                   | Purged                                      | (°C)                | (ms/cm)                          | (ppm)                                  | рН                   | (mV)                       | Tur                                              | bidity: Co    | lor, Fines     |                 | Paramaters<br>Stabilized |  |  |
|                                                                                                                                                                                                                                                            | (Gallons)                                   | ` '                 |                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                      |                            |                                                  |               |                |                 | Stabilized               |  |  |
| £2P 0                                                                                                                                                                                                                                                      | <u>b</u>                                    | 15.86               | o.889                            | 7.24                                   | (0.4¢                | 343                        | Moderat                                          | a 1 Brac      | er, Mod.       | -3005           |                          |  |  |
| 6484                                                                                                                                                                                                                                                       | 1                                           | 13.53               | 0.851                            | 2.30                                   | 6.52                 | 544                        | Comme                                            | Clear 1       | Minor Fi       | ~#5             |                          |  |  |
| 0969                                                                                                                                                                                                                                                       | 2.                                          | 17.68               | 0.851                            | 1.50                                   | 6.51                 | 346                        |                                                  |               |                |                 |                          |  |  |
| 0 129                                                                                                                                                                                                                                                      | \$                                          | 13.34               | 0.861                            | 0.93                                   | 6.52                 | 346                        |                                                  |               |                |                 |                          |  |  |
| 1000                                                                                                                                                                                                                                                       | 4                                           | 13°81               | 6. <b>44</b> 4                   | 0×43                                   | 6.52                 | 347                        |                                                  |               |                |                 |                          |  |  |
| 1002                                                                                                                                                                                                                                                       | G                                           | 14.84               | 848                              | 6.40                                   | 6.50                 | 342                        |                                                  |               |                |                 |                          |  |  |
| 1004                                                                                                                                                                                                                                                       | 8                                           | 14.ዌር               | 6.848                            | 0.58                                   | 6.48                 | 347-                       | 1                                                |               | •              |                 | V                        |  |  |
| Stop:                                                                                                                                                                                                                                                      | Purga C                                     | amplate: Pa         | ranni lers                       | Start IIs                              | d                    |                            |                                                  |               | - <del>-</del> |                 |                          |  |  |
| 12x                                                                                                                                                                                                                                                        | 1 <b>*</b> 1                                | <b>7</b>            |                                  | THE WAR GOVERN                         | - in-                | <del> </del>               | <del>                                     </del> |               | <del></del>    | -               |                          |  |  |
| 3/27                                                                                                                                                                                                                                                       | 100                                         |                     | ait for 80% w                    | oll valum                              | o rocovori           |                            |                                                  | <del></del>   | _              |                 |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     | e depth to wat                   |                                        |                      |                            |                                                  | /erv:         | !              |                 |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     |                                  | culate 80% o                           |                      |                            |                                                  | ory.          |                |                 | -                        |  |  |
|                                                                                                                                                                                                                                                            | Origina                                     | I Height of Water C | column ≃ <b>१०.५</b>             | 3 × 0.8 =                              | i olginarweli<br>    | - (Well Depth              | ) <b>46</b> * = De                               | epth to water | * 42.83 ·      |                 |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                |                 |                          |  |  |
| Time: 1965                                                                                                                                                                                                                                                 | 1st measured                                | l depth to water,   | code feet                        | below TOC.                             |                      | ls well within             | 80% of origin                                    | al well casin | o volume:      | Yes *           | No                       |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                | Yes 🔀           | No                       |  |  |
| Time: 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, feet below TOC. |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                | <del>,</del> No |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     | •                                | _                                      |                      |                            |                                                  |               |                |                 | f                        |  |  |
| Sample Well                                                                                                                                                                                                                                                |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                |                 |                          |  |  |
| Time: 605 Sample ID: 1001 Depth: 2016 feet below TOC                                                                                                                                                                                                       |                                             |                     |                                  |                                        |                      |                            |                                                  |               | OW TOC         |                 |                          |  |  |
| ••••••                                                                                                                                                                                                                                                     | Teptil. George lest below I OC              |                     |                                  |                                        |                      |                            |                                                  |               | OW TOO         |                 |                          |  |  |
| Comments: No floating product: No Odor                                                                                                                                                                                                                     |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                |                 |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                |                 |                          |  |  |
|                                                                                                                                                                                                                                                            |                                             |                     |                                  |                                        |                      |                            |                                                  |               |                |                 |                          |  |  |

| Project Na  | ame/No.:       | На                                         | arbert Transp           | ortation /     | H9042.Q     |                                                    | Date:            | 3                    | 23  05        |                                                        |                                   |
|-------------|----------------|--------------------------------------------|-------------------------|----------------|-------------|----------------------------------------------------|------------------|----------------------|---------------|--------------------------------------------------------|-----------------------------------|
| Sample N    | o.:            |                                            | W19.10                  |                |             |                                                    | Sample           |                      |               | 1763.10                                                | ***                               |
| Samplers    | Name:          |                                            | Jered                   | d Chaney       |             |                                                    | Recorde          |                      | JC            | ***************************************                |                                   |
| Purge Equ   | uipment:       |                                            |                         |                |             |                                                    | Sample           |                      | ment:         |                                                        |                                   |
| •           | •              | sposable or Ac                             | rylic                   |                |             |                                                    | X                |                      |               | le Bailer                                              |                                   |
| *           | -<br>Whaler#   |                                            | •                       |                |             |                                                    |                  |                      | haler#        |                                                        |                                   |
| 1           | Bladder P      |                                            |                         |                |             |                                                    |                  |                      | adder F       |                                                        |                                   |
|             | Redi-flow      | Pump (Grundfu                              | ıs)                     |                |             |                                                    |                  |                      |               | ble Pump                                               |                                   |
| Analyses    | Requested      | d (cricle all tha                          | t apply):               |                |             |                                                    | Nı               | mber                 | and Ty        | pes of Bot                                             | tle Used:                         |
|             |                | 2-DCA, EDB, 626                            |                         | tes) Methanol  | Ethanol     |                                                    | 3 :              | 40 mL                | VOA's w       | / HCI                                                  |                                   |
|             |                | I, TPH-Heating Oil                         |                         |                |             |                                                    |                  |                      |               |                                                        |                                   |
| Bio Paramet | ers including! | Methane, Nitrate,                          | Sulfate, & Dissol       | ved Ferrous II | <u>on</u>   | 2 :                                                | x 40 mL VO       | 4's, 1 x             | 250 mL P      | oly , 1 x 250                                          | mL Amber                          |
| Well Num    | ber:           | Mesilo                                     | _                       |                |             | V                                                  | Vell Diam        | eter: <u>4</u>       | <u>*</u> with | Casing Vo                                              | lume of:                          |
| Depth to V  | Nater:         | 19.67                                      | TOC                     |                |             |                                                    |                  |                      |               | = (0.16 Ga                                             |                                   |
| Well Depti  |                | 46                                         | BGS or TOC              |                |             |                                                    |                  |                      |               | = (0.65 <u>G</u> a                                     |                                   |
| Height W-   |                | Zo.33°                                     | feet (well dep          |                | to water)   |                                                    |                  |                      | - Contraction | = (1.02 Ga                                             | Agramming Contribute by Amagan A. |
| Volume in   |                |                                            |                         |                | ,           |                                                    |                  |                      |               |                                                        | -                                 |
|             |                | 13.21                                      | gallons (casii          | _              | A neignt)   |                                                    |                  |                      |               | = (1.47 Ga                                             | •                                 |
| Gallons to  |                | \$2,85.                                    | gallons (volu           | me X 4)        |             |                                                    |                  |                      | 8"            | = (2.61 Ga                                             | llon/Feet)                        |
| Lab:        | Entech A       | nalytical                                  |                         |                |             | Transpor                                           | tation:          | Do                   | eliver        |                                                        |                                   |
|             |                |                                            |                         |                | ·           |                                                    |                  |                      |               |                                                        |                                   |
| Time        | Volume         | Temperature                                | Conductivity            | D.O.           |             | ORP                                                |                  |                      |               |                                                        | Micropurge                        |
| (24 hr.)    | Purged         | (°C)                                       | (ms/cm)                 | (ppm)          | рΗ          | (mV)                                               | Tu               | bidity:              | Color, F      | ines                                                   | Paramaters<br>Stabilized          |
|             | (Gallons)      | ( 4)                                       | (1110.011)              | (10 10 11 11)  |             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\             |                  |                      |               |                                                        | Otdolii2ed                        |
| 1023        | 8              | 17.48                                      | 0.461                   | 6.57           | <b>4,43</b> | 2.89                                               | Locas            | Clans                | , Tra         | ea Firm                                                |                                   |
| 1024        | 1              | 18.85                                      | 244.0                   | 2118           | 6.49        | 251                                                |                  |                      |               |                                                        |                                   |
| १७३५        | 7.             | 14.90                                      | 0.771                   | 1.25           | 6.51        | 423                                                |                  |                      | ·             |                                                        |                                   |
| 1050        | 4              | (8.89                                      | 6.767                   | o.3s           | 6.50        | 203                                                |                  |                      |               |                                                        |                                   |
| 1029        | 8              | 18.93                                      | ø. <b></b> ‡ <b>6</b> 4 | 0.23           | 6.48        | 180                                                |                  |                      |               |                                                        |                                   |
| 1031        | 12.            | 18.47                                      | 0,140                   | o. ሂ.ኒ         | 6.49        | १५१                                                |                  |                      |               |                                                        |                                   |
| 1035        | 17             | 19.00                                      | 0-755                   | 6.23           | 6.49        | 167                                                | 7                | •                    | (             | <i>l</i>                                               |                                   |
| Solop!      | Parga Co       | reporter; Par                              | implans St              | williand.      |             |                                                    |                  |                      |               |                                                        |                                   |
| 3/23/0      | _              | ,                                          |                         |                |             |                                                    |                  |                      |               |                                                        |                                   |
| 1 21201     | 1,4            | W                                          | ait for 80% w           | eli volume     | recover     | y prior to s                                       | ampling.         |                      |               |                                                        |                                   |
|             |                | Calculate                                  | e depth to wat          | er (from T     | OC), for 8  | 30% well vo                                        | lume reco        | very:                |               |                                                        |                                   |
|             |                |                                            | Cal                     | culate 80% of  | orginal wel | volume:                                            |                  |                      | <del></del>   |                                                        |                                   |
|             | Origina        | il Height of Water 0                       |                         |                |             |                                                    | ) <b>46'</b> = D | epth to v            | vater 23      | ±13°                                                   |                                   |
|             |                |                                            |                         |                |             |                                                    |                  |                      |               |                                                        |                                   |
| Time: 1034  | 1et moseuro    | d depth to water,                          | 19.39' feet             | below TOC.     |             | ls well within                                     | 90% of origin    | الميدامة             | anaina va     | lumai Vaa i                                            | No                                |
| Time:       | 1st measure    | d depth to water,                          | \ r feet                | below TOC.     |             | is well within                                     | 80% of origin    | naiwelio<br>naiwelio | casing vol    | lume: Yes <u>.                                    </u> | No                                |
| Time:       | 1st measured   | d depth to water, _<br>d depth to water, _ | feet                    | below TOC.     |             | Is well within<br>is well within<br>is well within | 80% of origin    | nal well o           | casing vo     | lume: Yes                                              | No                                |
| •           |                |                                            |                         |                |             |                                                    |                  |                      |               |                                                        | <i>t</i>                          |
|             |                |                                            |                         | Sam            | ple Well    |                                                    |                  |                      |               |                                                        |                                   |
|             |                |                                            |                         |                |             |                                                    | <del> </del>     |                      |               |                                                        |                                   |
| Time:       | 4801           |                                            | Sample ID:              | Musi           | (O          |                                                    | De               | oth:                 | 19.79         | feet be                                                | low TOC                           |
|             |                |                                            | •                       |                | · · · · · · |                                                    |                  |                      |               |                                                        |                                   |
| Comments    | : No C         | log ting Produc                            | t; Sliget               | to Node        | rate Ooks   | 1                                                  |                  |                      |               |                                                        |                                   |
| <del></del> |                | 1                                          | , - 1                   |                |             |                                                    |                  |                      |               |                                                        |                                   |
| ······      |                |                                            |                         |                |             |                                                    | ·                |                      |               | <del></del>                                            |                                   |

| Project Na       | ame/No.:                           | Н                                                           | arbert Transı                     | ortation /                             | H9042.Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | Date:                                              | 3/23/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                        |
|------------------|------------------------------------|-------------------------------------------------------------|-----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|
| Sample N         | o.:                                |                                                             |                                   | nus.z                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Location: มษา                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
| Samplers         | Name:                              |                                                             | Jered                             | d Chaney                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recorded by: JC                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
| Purge Equ        | _Bailer: Di<br>Whaler#<br>BladderP | ump                                                         |                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | Sample E                                           | quipment:Disposable BaWhaler #Bladder Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del> </del>    |                                        |
| Anglyses         |                                    | Pump (Grundfu                                               |                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | NI                                                 | Submersible F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                        |
|                  |                                    | i (cricle all tha<br><del>2 - DGA, EBB</del> , <b>6</b> 2i  |                                   | Tes Methene                            | LETTATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                                    | nber and Types of the state of  | ot Rott         | le Used:                               |
|                  |                                    | , TPH-Heating Oil                                           |                                   |                                        | The state of the s | ***                                                | U A                                                | 0 1110 1071 3 117 1107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ļ               |                                        |
| Bio Paramet      | ers-including:                     | Methane, Nitrate,                                           | <del>Sulfate, &amp; Dissel</del>  | ved-Ferrous-l                          | ron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-                                                 | c 40 mL VOA'                                       | s, 1 x 250 mL Poly ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 x 250         | mt: Amber                              |
| Well Num         | ber:                               | 7·WM                                                        | •                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                  | Vell Diamet                                        | er: 🏰 with Cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing Vo          | lume of:                               |
| Depth to V       | Nater:                             | 21.23                                                       | TOC                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    | 2" = (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 Gal          | Ion/Feet)                              |
| Well Dept        | h:                                 | 461                                                         | BGS or TOC                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    | 4'' = (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65 Gal          | lon/Feet)                              |
| Height W-        | Column:                            | 18.37                                                       | feet (well dep                    | oth - depth                            | to water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                                    | The state of the s | Martinicana and | lon/Feet)                              |
| Volume in        | Well:                              | 12,2                                                        | gallons (casii                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               | lon/Feet)                              |
| Gallons to       | purge:                             | 48.8                                                        | gallons (volu                     | -                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i               | lon/Feet)                              |
| Lab:             | Entech A                           |                                                             | . • • •                           | ,                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transpor                                           | tation:                                            | Deliver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y , ou.         | 101111 000                             |
|                  |                                    |                                                             |                                   | •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |
| Time<br>(24 hr.) | Volume<br>Purged<br>(Gallons)      | Temperature<br>(°C)                                         | Conductivity<br>(ms/cm)           | D.O.<br>(ppm)                          | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORP<br>(mV)                                        | Turb                                               | idity: Color, Fines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | Micropurge<br>Paramaters<br>Stabilized |
| 1416             | 0                                  | 16,42                                                       | 6.429                             | 2.13                                   | 6,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 276                                                | Lossi C                                            | lear. There has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **              |                                        |
| mt               | į                                  | 18.19                                                       | 0.552                             | 2.70                                   | Q.Q.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.30                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :               |                                        |
| (114             | 3                                  | 18.33                                                       | 0.654                             | 1.13-                                  | GG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.81                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
| UAC              | ч                                  | 18.40                                                       | o.451                             | 59.0                                   | 6-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 281                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
| 1124             | 8                                  | 18,44                                                       | 0,453                             | 0.26                                   | <b>4.59</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.83                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
| 11 27            | 12,                                | 18:46                                                       | 0-663                             | 0.24                                   | 6.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 280                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | į               |                                        |
| 1129             | 15                                 | 18.48                                                       | 0.654                             | 0,16                                   | G.\$G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 234                                                | rd.                                                | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | المستسما                               |
| Stopi            | Runge Co                           | Mpleta: P.                                                  | a maters                          | Ŝtabilizac                             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
| JC 3/2           | 1 , 1                              | · · · • · · · · · · · · · · · · · · · ·                     |                                   | 4-46                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>        |                                        |
| / 3/2            | 9/60                               | W                                                           | ait for 80% w                     | eli volum                              | e recover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y prior to s                                       | ampling.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
|                  |                                    |                                                             | e depth to wat                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    | ery:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | į.              |                                        |
|                  |                                    |                                                             |                                   | culate 80% o                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
|                  | Origina                            | l Height of Water (                                         | Column = <u>\\$.<del>13</del></u> | <u>►'</u> x 0.8 =                      | 18,01'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Well Depth                                        | ) <b>16′</b> = Dep                                 | th to water 🌉 🛂 🦅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | !               |                                        |
|                  |                                    | depth to water, _<br>depth to water, _<br>depth to water, _ |                                   | below TOC.<br>below TOC.<br>below TOC. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is well within<br>is well within<br>is well within | 80% of origina<br>80% of origina<br>80% of origina | I well casing volume:<br>I well casing volume:<br>I well casing volume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes Yes Yes     | * No<br>No<br>No                       |
|                  |                                    |                                                             |                                   | Sam                                    | nple Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |
| Time:            | 1130                               |                                                             | Sample ID:                        | ĺ                                      | 1w.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | Dept                                               | n: <b>21.91</b> f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eet bel         | low TOC                                |
| Comments         | : No Clas                          | trupos poduct                                               | ; No Oder                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>    |                                        |
|                  |                                    |                                                             |                                   |                                        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |

| Project Na                                                                           | ame/No.:                                                                                                                   | На                                                                                               | arbert Transp                                        | ortation /                             | H9042.Q                               |               | Date:              | 3 23                                             | o <i>\$</i> *                                                                                                                |                                                       |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|---------------------------------------|---------------|--------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Sample N                                                                             | o.:                                                                                                                        |                                                                                                  | Mu.                                                  | 3                                      |                                       |               | Sample L           |                                                  |                                                                                                                              |                                                       |
| Samplers                                                                             | Name:                                                                                                                      |                                                                                                  | Jered                                                | Chaney                                 | · · · · · · · · · · · · · · · · · · · |               |                    | <del></del>                                      | JC                                                                                                                           |                                                       |
| PH-gas, BT  Feld-diesel, T  Bio Paramet  Well Num  Depth to V  Well Deptl  Height W- | uipment: Bailer: Di Whaler # Bladder P Redi-flow Requested EX. M BD 1, FPH-Motor-Oil ers includinge ber: Vater: h: Column: | ump Pump (Grundfu d (cricle all tha 2—DGA, EDB, 626 , TPH-Heating Oil Methane, Nitrate, s ht-3 z | rylic<br>is)<br><b>t apply):</b><br>30 Füel Oxygenat | red Ferrous I                          | (ii)                                  |               | 3 x<br>c 40 mL VOA | Quipmer Dispo Whal Blado Subm nber and 40 mL VOA | osable Bailer er # der Pump nersible Pump I Types of Boi A's w/ HCI  with Casing V 2" = (0.16 Ga 4" = (0.65 Ga 5" = (1.02 Ga | I mL Amber<br>olume of:<br>allon/Feet)<br>allon/Feet) |
| Volume in                                                                            | Well:                                                                                                                      | 3.17-                                                                                            | gallons (casir                                       | ng volume                              | X height)                             |               |                    |                                                  | 6" = (1.47 Ga                                                                                                                | allon/Feet)                                           |
| Gallons to<br>Lab:                                                                   | purge:<br>Entech A                                                                                                         |                                                                                                  | gailons (volur                                       | me X 4)                                |                                       | Transpor      | tation:            | Deliv                                            | 8" = (2.61 Ga<br>rer                                                                                                         | allon/Feet)                                           |
| Time<br>(24 hr.)                                                                     | Volume<br>Purged<br>(Gallons)                                                                                              | Temperature<br>(°C)                                                                              | Conductivity<br>(ms/cm)                              | D.O.<br>(ppm)                          | рН                                    | ORP<br>(mV)   | Turk               | oidity: Col                                      | lor, Fines                                                                                                                   | Micropurge<br>Paramaters<br>Stabilized                |
| nst                                                                                  | ٥                                                                                                                          | 1745                                                                                             | 0.156                                                | 6.46                                   | 6.44                                  | 2.63          | Laur               | Char,                                            | Track frags                                                                                                                  |                                                       |
| 11\$2.                                                                               | į                                                                                                                          | 18.46                                                                                            | 0.357                                                | <b>4.55</b>                            | G-55                                  | 229           |                    |                                                  |                                                                                                                              |                                                       |
| ાડટ                                                                                  | 2.                                                                                                                         | 18.\$8                                                                                           | 6.450                                                | 14)                                    | 6.59                                  | \$1Ç          |                    |                                                  |                                                                                                                              |                                                       |
| # <b>5</b> 4                                                                         | 4                                                                                                                          | 1845                                                                                             | 6.744                                                | 0,46                                   | G.G(                                  | 183           |                    |                                                  |                                                                                                                              |                                                       |
| 11 <b>5</b> G                                                                        | G                                                                                                                          | 18.69                                                                                            | a-146                                                | 0-24                                   | 6.62                                  | +60.(         | <u> </u>           |                                                  |                                                                                                                              |                                                       |
| 1157                                                                                 | 8                                                                                                                          | 18.68                                                                                            | 0.544                                                | 6.34                                   | 4.60                                  | 183           | 4                  | 1                                                | <u> </u>                                                                                                                     |                                                       |
| Stop:                                                                                | Purga Co                                                                                                                   | mp when Pa                                                                                       | iquaters S                                           | لسهة لنعيد                             | <b>L</b> ,                            |               |                    |                                                  |                                                                                                                              |                                                       |
| 125                                                                                  |                                                                                                                            | ·                                                                                                |                                                      |                                        |                                       |               |                    |                                                  |                                                                                                                              |                                                       |
| \$127                                                                                | 100                                                                                                                        |                                                                                                  |                                                      | <del></del>                            |                                       |               |                    |                                                  |                                                                                                                              |                                                       |
|                                                                                      |                                                                                                                            |                                                                                                  | <b>ait for 80% w</b><br>e depth to wat               |                                        |                                       |               |                    | ery:                                             |                                                                                                                              |                                                       |
|                                                                                      | 1st measured                                                                                                               | Il Height of Water C<br>d depth to water,<br>d depth to water, _<br>d depth to water, _          | 2023 feet                                            | below TOC.<br>below TOC.<br>below TOC. |                                       | - (Well Depth | 80% of origina     | al well casir                                    | ng volume: Yes ng volume: Yes ng volume: Yes                                                                                 | No<br>No<br>No                                        |
|                                                                                      |                                                                                                                            |                                                                                                  | <del></del> .                                        | Jan                                    | Thie Mail                             |               |                    |                                                  |                                                                                                                              |                                                       |
| Time:                                                                                | <u> </u>                                                                                                                   |                                                                                                  | Sample ID:                                           | ŗ                                      | 14.3                                  |               | Dep                | th: <u>20-2</u> :                                | 3 feet be                                                                                                                    | elow TOC                                              |
| Comments                                                                             | : No Fla                                                                                                                   | orting Product                                                                                   | ti No Odo                                            | <u>c</u>                               |                                       |               |                    |                                                  |                                                                                                                              |                                                       |

| Project Na  | ame/No.:      | На                                         | arbert Transı     | ortation /                            | H9042.Q   |                                                  | Date:                                 | \${2\$ {e                               | 5\$                                              |                                         |
|-------------|---------------|--------------------------------------------|-------------------|---------------------------------------|-----------|--------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------|
| Sample N    | o.:           |                                            | m                 | 43.9                                  |           |                                                  | Sample L                              | ocation:                                | 2,0,29                                           | ì                                       |
| Samplers    | Name:         |                                            | Jered             | d Chaney                              |           |                                                  | Recorded                              | by: J                                   | С                                                |                                         |
| Purge Equ   |               |                                            |                   |                                       |           |                                                  | Sample E                              | quipment                                | :                                                |                                         |
|             |               | sposable or Ac                             | rylic             |                                       |           |                                                  | *                                     | *************************************** | able Baile                                       | r                                       |
| *           | Whaler#       |                                            |                   |                                       |           |                                                  | · · · · · · · · · · · · · · · · · · · |                                         | #                                                |                                         |
|             | Bladder P     | •                                          | )                 |                                       |           |                                                  |                                       |                                         | r Pump                                           |                                         |
| Analyses    | _             | Pump (Grundfu<br>d (cricle all tha         | •                 |                                       |           |                                                  | Num                                   |                                         | rsible Pur                                       | np<br><b>Bottle Used</b> :              |
|             |               | 2 DGA, EDB (826                            |                   | tes>Methano                           | (Ethanot  |                                                  |                                       | 10 mL VOA's                             |                                                  | bottle Used:                            |
|             |               | I, TPH-Heating Oik                         |                   |                                       | -         |                                                  |                                       |                                         | ,                                                |                                         |
| Bio Paramet | ers including | Methane, Nitrate,                          | Sulfate, & Dissol | ved Ferrous                           | ron       | 2                                                | x 40 mL VOA'                          | s, 1 x 250 m                            | L Poly , 1 x                                     | 250 mL Amber                            |
| Well Numi   | ber:          | 1714.9                                     | _                 |                                       |           | ٧                                                | Vell Diamet                           | er: <u>4*</u> wi                        | th Casing                                        | Volume of:                              |
| Depth to V  | Vater:        | 19.98                                      | TOC               |                                       |           |                                                  |                                       |                                         | '                                                | -<br>Gallon/Feet)                       |
| Well Depti  | h:            | 40'                                        | BGS or TOC        |                                       |           |                                                  |                                       |                                         | - AND THE PARTY NAMED IN                         | Gallon/Feet                             |
| Height W-   |               | 20.02                                      | feet (well der    |                                       | to water) |                                                  |                                       |                                         | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. | Gallon/Feet                             |
| Volume in   |               | 13.01                                      | gallons (casi     | ·                                     | •         |                                                  |                                       |                                         | · 1                                              | Gallon/Feet)                            |
| Gallons to  |               | 82.0                                       | gallons (volu     | -                                     | r noignty |                                                  |                                       |                                         |                                                  | Gallon/Feet)                            |
|             |               | <del></del>                                | galloris (volu    | 1116 X 4)                             |           | Tvanana                                          | 4.4                                   |                                         | ·                                                | Gallon/Feet)                            |
| Lab:        | Entech A      | naiyucai                                   |                   | •                                     |           | Transpor                                         | tation:                               | Delive                                  | <u> </u>                                         |                                         |
|             | Volume        | l                                          |                   |                                       | 1         | T                                                |                                       | • .:                                    |                                                  |                                         |
| Time        | Purged        | Temperature                                | •                 | ł                                     | pΗ        | ORP                                              | Turb                                  | idity: Colo                             | r. Fines                                         | Micropurge<br>Paramaters                |
| (24 hr.)    | (Gallons)     | (°C)                                       | (ms/cm)           | (ppm)                                 |           | (mV)                                             |                                       | ,                                       | ,                                                | Stabilized                              |
| 1224        | 0             | 17.40                                      | <b>G</b> IGGE     | G.34                                  | 6.12      | 280                                              | Lacor C                               | wor, Tra                                | save Druce                                       |                                         |
| 1425        | ı             | 18,40                                      | 0,614             | 1.82                                  | G-78      | 218                                              | 1                                     | 1                                       | 1                                                |                                         |
| 1286        | 2,            | 18.33                                      | 0.613             | 9.85                                  | 6.48      | 274                                              |                                       |                                         | 1                                                |                                         |
| 1228        | 4             | 19.08                                      | 0.6(0             | 0.40                                  | 6.81      | 230                                              |                                       |                                         | 1                                                |                                         |
| 1231        | 8             | 19.16                                      | o.630             | 0.21                                  | 6.34      | 3.61                                             |                                       | 1                                       | <del>                                     </del> |                                         |
| 1233        | 12            | 19,24                                      | 9.2.4.C           | 0,13                                  | 6.84      | 234                                              |                                       |                                         | <del>                                     </del> |                                         |
| 1236        | الو           | 19.25                                      | o.2,82.           | 0.81                                  | 6,84      | 485                                              | 1                                     |                                         | <del>                                     </del> | - Jumin                                 |
| Stopi       |               | mouta; Pa                                  | ······            |                                       |           | 40.                                              |                                       | <u> </u>                                | · · · · · · · · · · · · · · · · · · ·            |                                         |
| 120         |               | with contact to                            | Lebrandan y       | A LANGE BAT IN STATE                  | ····      | <del>                                     </del> | · · · · · · · · · · · · · · · · · · · |                                         |                                                  |                                         |
| 3/23/5      | \$            |                                            | 11.6 000/         |                                       |           |                                                  | <u> </u>                              |                                         |                                                  |                                         |
| •           |               |                                            | ait for 80% w     |                                       |           |                                                  |                                       |                                         | i i                                              |                                         |
|             |               | Calculate                                  | e depth to wat    | · · · · · · · · · · · · · · · · · · · |           |                                                  | iume recovi                           | ery:                                    |                                                  |                                         |
|             | Onini-        | lllaumht af 10/otas (                      |                   | culate 80% o                          |           |                                                  | \ <b>61</b> 44                        | . ()                                    | Phone was as a                                   |                                         |
|             | Origina       | il Height of Water (                       |                   | <u>44 </u> X U.O ⊶                    | 10.01     | (vveii Depin                                     | ) <u>105 =</u> Dep                    | om to water <u>s</u>                    | 4 5 4 5 E                                        |                                         |
| .0          |               |                                            |                   |                                       |           |                                                  |                                       |                                         |                                                  | ×                                       |
|             |               | d depth to water, _<br>d depth to water, _ |                   | below TOC. below TOC.                 |           | Is well within                                   | 80% of origina<br>80% of origina      | I well casing                           | volume: Ye                                       | es No                                   |
|             |               | d depth to water, _                        |                   | below TOC.                            |           | Is well within                                   | 80% of origina                        | il well casing<br>il well casing        | volume: Ye                                       | es No                                   |
|             |               |                                            |                   |                                       |           |                                                  | / <b>g</b>                            |                                         | 1                                                | ~ <u> </u>                              |
|             |               | <u>.</u>                                   |                   | San                                   | nple Well |                                                  |                                       |                                         |                                                  |                                         |
| Time        | .022          |                                            | Sample ID:        | **                                    |           | ·                                                | Dont                                  | ن ما                                    |                                                  | t holou: TOO                            |
| Time:       | 1234          |                                            | Sample ID:        | [3]                                   | W. 9      |                                                  | _ Dept                                | h: <b>Zo,</b> \$                        | 166                                              | t below TOC                             |
| Comments    | : B N         | Ju fluating                                | troduct:          | 81:944                                | Q dor     |                                                  |                                       |                                         | 1                                                |                                         |
|             | T             |                                            | <del>*</del>      |                                       | <u> </u>  |                                                  |                                       |                                         |                                                  |                                         |
|             |               |                                            |                   |                                       |           |                                                  |                                       |                                         |                                                  | *************************************** |

| Project N                                  | ame/No.:                              | На                                                  | arbert Transp               | ortation /             | /H9042.Q   |                                  | Date:           | 3 23            | 65                                    |                                                    |                                        |
|--------------------------------------------|---------------------------------------|-----------------------------------------------------|-----------------------------|------------------------|------------|----------------------------------|-----------------|-----------------|---------------------------------------|----------------------------------------------------|----------------------------------------|
| Sample N                                   | o.;                                   |                                                     | M                           | لسارته                 |            | ÷.                               | Sample          | e Locati        | on: M                                 | الساء (ج                                           |                                        |
| Samplers                                   | Name:                                 |                                                     | Jered                       | d Chaney               |            |                                  | Record          | led by:         | JC                                    |                                                    | P                                      |
| Purge Eq                                   | uipment:                              |                                                     |                             | ·                      |            |                                  |                 | e Equip         | nent:                                 |                                                    | ······································ |
|                                            |                                       | sposable or Aci                                     | rylic                       |                        |            |                                  | •               |                 | sposable                              | Bailer                                             |                                        |
| *                                          | Whaler#                               |                                                     |                             |                        |            |                                  |                 |                 | haler#_                               |                                                    |                                        |
|                                            | Bladder P                             |                                                     |                             |                        |            |                                  |                 |                 | adder Pu                              |                                                    |                                        |
|                                            |                                       | Pump (Grundfu                                       |                             |                        |            |                                  |                 |                 | ubmersib                              | •                                                  |                                        |
|                                            |                                       | (cricle all tha                                     |                             | _                      | -          |                                  |                 |                 |                                       |                                                    | tle Used:                              |
|                                            |                                       | 2-DGA, EDB(820                                      |                             | tes Methano            | i, Ethañol |                                  | 3               | 3 x 40 mL       | VOA's w/ I                            | ICI                                                |                                        |
|                                            | ····                                  | l <del>, TPH-Heating Olf</del><br>Methane, Nitrate, |                             | und Farrage            |            |                                  | - 40 1 14       | 041- 4          |                                       |                                                    |                                        |
| Well Num                                   |                                       |                                                     | ounate; or biason           | <del>vea-renoas-</del> | II.Q[]     |                                  | ····            |                 |                                       |                                                    | mt Amber                               |
| Depth to \                                 |                                       | 70.G<br>20.71'                                      | TOC                         |                        |            | V                                | veii Dian       | neter: <u>"</u> |                                       | _                                                  | olume of:<br>llon/Feet)                |
| Well Dept                                  |                                       | 40'                                                 | BGS or TOC                  |                        |            |                                  |                 |                 | · · · · · · · · · · · · · · · · · · · |                                                    | llon/Feet)                             |
| Height W-                                  |                                       | 19.29                                               | feet (well dep              |                        | to water)  |                                  |                 |                 |                                       |                                                    | llon/Feet)                             |
| Volume in                                  |                                       | 12.23                                               | gallons (casi               | •                      | •          |                                  |                 |                 |                                       |                                                    | llon/Feet)                             |
|                                            |                                       |                                                     | • •                         | _                      | A neight)  |                                  |                 |                 |                                       |                                                    | •                                      |
| Gallons to                                 |                                       |                                                     | gallons (volu               | me A 4)                |            | _                                |                 | _               |                                       | (2.61 Ga                                           | llon/Feet)                             |
| Lab:                                       | Entech A                              | naiyticai                                           |                             |                        |            | Transpor                         | tation:         | De              | eliver                                |                                                    |                                        |
|                                            | Volume                                |                                                     |                             | <u> </u>               | T          |                                  | T               |                 | ····                                  | ·                                                  | 1                                      |
| Time                                       | Purged                                |                                                     | Conductivity                | D.O.                   | pН         | ORP                              |                 | urhidity        | Color, Fi                             | nae                                                | Micropurge<br>Paramaters               |
| (24 hr.)                                   | (Gallons)                             | (°C)                                                | (ms/cm)                     | (ppm)                  |            | (mV)                             |                 | ar blatty.      | 00101, 111                            | 1100                                               | Stabilized                             |
| 1308                                       | 0                                     | ારેના                                               | ૦.૬૧૧                       | ₹,%5°                  | G-45       | 271                              | ليهدي           | , Class         | Mino                                  | Cian                                               |                                        |
| 18081                                      | 1                                     | 18.34                                               | O.G.39                      | 1-74                   | 4.52       | 242                              |                 |                 |                                       |                                                    |                                        |
| 1310                                       | 2.                                    | 18.50                                               | 0,642                       | Ø.%O                   | 6.52       | PPS                              |                 |                 |                                       |                                                    |                                        |
| 1458)                                      | 4                                     | 18.75                                               | 0.868                       | 0.51                   | 6.53       | 246                              |                 |                 |                                       |                                                    |                                        |
| 1314                                       | 8                                     | 17.00                                               | <b>ાપા</b> ય                | Z-32                   | 6.53       | 245                              |                 |                 |                                       |                                                    |                                        |
| 1316                                       | 12.                                   | 19.07                                               | <b>ዕ</b> ፡ <del>ዛ</del> ፯ ፯ | 2,60                   | 6.53       | 326,                             |                 |                 |                                       | · · · · · · · · · · · · · · · · · · ·              |                                        |
| 1325                                       | 25                                    | 1345                                                | 0-៤(-(,                     | o. 34                  | 6.54       | 17-5                             |                 |                 |                                       |                                                    |                                        |
| 1323                                       | 27                                    | 19.14                                               | 0.489                       | a" ( a)                | 6.53       | البرن                            | 1               | 4               |                                       | ļ                                                  | lumma.                                 |
| Stap:                                      |                                       | amplate; P                                          | •                           | tabilizar              |            |                                  |                 |                 |                                       | <del> </del>                                       |                                        |
| L                                          | , , , , , , , , , , , , , , , , , , , |                                                     | ait for 80% w               |                        |            | v prior to s                     | ampling         | <br>1.          |                                       |                                                    | <u></u>                                |
|                                            |                                       |                                                     | e depth to wat              |                        |            |                                  |                 |                 |                                       |                                                    |                                        |
|                                            |                                       |                                                     |                             | culate 80% o           |            |                                  |                 |                 |                                       | <del>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</del> |                                        |
|                                            | Origina                               | l Height of Water 0                                 |                             |                        |            |                                  | <u> 45'</u> =   | Depth to v      | vater 24                              | <b>56</b> '                                        |                                        |
|                                            |                                       |                                                     |                             |                        |            |                                  |                 |                 |                                       |                                                    |                                        |
| Time: 1328                                 | 1st measured                          | depth to water,                                     | <b>%1.2.5</b> feet          | below TOC.             |            | Is well within                   | 80% of ori      | ninal well r    | saelna volu                           | ma. Vae I                                          | No.                                    |
|                                            |                                       |                                                     |                             | below TOC.             |            | Is well within                   | 80% of original | ginal well o    | asing volu                            | me: Yes                                            | No                                     |
| Time: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1st measured                          | t depth to water, _<br>d depth to water, _          | feet                        | below TOC.             |            | ls well within<br>Is well within | 80% of orig     | ginal well d    | asing volu                            | me:Yes 🌋                                           | No                                     |
| •                                          |                                       |                                                     | •                           |                        |            |                                  |                 |                 |                                       |                                                    |                                        |
|                                            |                                       |                                                     |                             | San                    | nple Well  |                                  |                 |                 |                                       |                                                    |                                        |
| <b></b> ,                                  |                                       |                                                     |                             |                        | _          |                                  |                 |                 |                                       | _                                                  |                                        |
| l ime:                                     | 1328                                  |                                                     | Sample ID:                  |                        | 764.6      |                                  | _ D             | epth:           | Z L 25"                               | feet be                                            | low TOC                                |
| <b>^</b>                                   | . 0.                                  |                                                     |                             |                        |            |                                  |                 |                 |                                       |                                                    |                                        |
| Comments                                   | : No h                                | sating Product                                      | F. M. OG                    | yor                    |            |                                  |                 |                 |                                       |                                                    |                                        |
| <del></del>                                |                                       |                                                     | ·                           |                        |            | <del></del>                      |                 |                 |                                       |                                                    |                                        |
|                                            |                                       |                                                     |                             |                        |            |                                  |                 |                 |                                       |                                                    |                                        |

| Sample No.   Sample No.   Sample Location:   Nu.   Sample Recorded by:   JC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project N               | lame/No.:                               | Н                   | arbert Trans                            | portation .   | / H9042.Q      |                | Date:               | E  23   3                             | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|---------------------|-----------------------------------------|---------------|----------------|----------------|---------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------|
| Sample Name:   Jered Chaney   Recorded by:   JC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample N                | Vo.:                                    |                     | )                                       | いいい           |                |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                            |             |
| Purple Equipment:   Baller: Disposable or Acrylic   Whaler # 2   Disposable Baller   Wheler # 2   Disposable Baller   Wheler # 3   Disposable Baller   Wheler # 3   Bladder Pump   Rodd-flow Pump (Grundfus)   Submersible Pump   Number and Types of Bottle Used: 3 x 40 m. IVO3 x 1 x 250 ml. Poly, 1 x    | Samplers                | Name:                                   |                     | Jere                                    | d Chaney      |                |                |                     | ~                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Ballet   Pump   Service   Pump   Service   Pump   Service   Service   Pump   Service   | Purge Eq                |                                         |                     |                                         |               |                |                |                     | · · · · · · · · · · · · · · · · · · · | ent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del>                                  |             |
| Bladder Pump   Grundfus   Submersible Pump   Submersible Pump   Submersible Pump   Submersible Pump   Submersible Pump   Submersible Pump   Number and Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 3 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. VOA's wit Hot   Types of Bottle Used: 4 x 40 mt. Types of Bott   |                         | _Bailer: D                              | isposable or Ac     | rylic                                   |               |                |                |                     | Dis                                   | oosable Bai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ler                                          |             |
| Red-Flow Pump (Grundfus) Analyses Requested (cricic all that apply):  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PF-gas, BTS. MTDP the book edge (College of Market)  PR-gas, BTS. MTDP the book edge (College of Market)  Per gas, BTS. MTDP the book edge (College of Market)  Well Market:  Pump (Market)  Pump (Market) | <u>*</u>                |                                         |                     |                                         |               |                |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Analyses Requested (cricle all that apply):    Private Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   Private   P |                         | <del>,</del>                            |                     | 10)                                     |               |                |                |                     | Blac                                  | der Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |             |
| CPH-gas, BTEX_MTED   12 - Och - EDS GROUND COVERNESS   Methantol CETHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyses                |                                         |                     |                                         |               |                |                | Al.                 | Sub                                   | mersible P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ımp                                          |             |
| The depth   Hotel   The Heating   Displayments   The State   Sulfate   Sul   |                         |                                         |                     |                                         | ites Methant  | CETHANOD       |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r Bott                                       | le Used:    |
| Well Number:   Plus   ToC   20   19   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TP <del>H diesel,</del> | TPH Motor Qi                            | I, TPH-Heating Oil  |                                         |               |                |                |                     | 40 IIIL V                             | 27. 3 W/ 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |             |
| Well Dlameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                         | Methane, Nitrate,   | Sulfate, & Disso                        | lved Ferrous  | lrom)          | 2              | x 40 mL VO          | 4's, 1 x 25                           | mL Poly, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x 250 r                                      | nL Amber    |
| Depth to Water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Num                | ber:                                    | 716.5               | •                                       |               |                |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Well Depth:  Well Depth:  Well Depth:  Well Depth:  Well W-Column:  2-1.% feet (well depth - depth to water)  Solid and Feet)  Transportation:  Deliver  Transportation: | Depth to                | Water:                                  | 20,14               | TOC                                     |               |                |                |                     |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |             |
| Height W-Column: 24.6. feet (well depth - depth to water)  Volume in Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Well Dept               | h:                                      | 'ሄና'                | BGS or TOC                              | · ·           |                |                |                     |                                       | AND ADDRESS OF THE PARTY OF THE | The second named in column 2 is not a second | · ·         |
| Volume in Well:  Gallons to purge:  C-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Height W                | -Column:                                | 24.86               | feet (well de                           | pth - depth   | to water)      |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Gallons to purge:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volume in               | ı Well:                                 | 14.15               | gallons (casi                           | ing volume    | X height)      |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Lab: Entech Analytical  Time (24 hr.) Volume Purged (Gallons)  1404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gallons to              | purge:                                  | <b>44.43</b>        | •                                       | _             | ,              |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Time (24 hr.) ("C) (ms/cm) (ppm) pH (mV) Turbidity: Color, Fines Micropurge Parameter Statetized  1404 hr.) (gallons)  1404 C 18,144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                         |                     | . • • • • • • • • • • • • • • • • • • • |               |                | Transno        | rtation             | Deli                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i Gall                                       | on/reet)    |
| Time   Purged   Callons   Purged   Callons   Purged   Callons   Color   Colo   |                         |                                         |                     |                                         | _             |                | Папэро         | tation.             | Den                                   | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <del></del> |
| (24 hr.)   Purged (Gallons)   (°C)   (ms/cm)   (ppm)   pH   (mV)   Turbidity: Color, Fines   Parameters   Stabilized   S   | Time                    | 1                                       | Temperature         | Conductivity                            | ВΟ            |                | ODD            |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| 1406   O   18,114   0.057   9.48   G.81   271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                         |                     |                                         |               | pН             | I .            | Tur                 | bidity: Co                            | olor, Fines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | Paramaters  |
| 1416   18.56   0.057   9.01   6.80   282   1410   5   18.64   0.041   7.36   6.44   2.72   1416   15   18.56   0.282   4.32   6.44   2.76   1416   15   18.56   0.282   4.32   6.44   2.76   1423   2.5   18.64   0.278   1.48   6.66   2.36   1.42   2.36   1.434   4.9   18.65   0.366   6.71   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   1.76   |                         |                                         | ` '                 |                                         |               |                |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                            | Stabilized  |
| 1416   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                         |                     | 0.02+                                   | 4.48          | (0.8)          | 241            | Lacus               | Clear by                              | meety Miner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - France                                     |             |
| 1413   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1407                    | 1                                       | 18,64               | 420.0                                   | 9.01          | 6.86           | 242            |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | /           |
| 1416 15 18.56 0.282 4.32 6.14 276 1423 2.5 18.64 0.278 1.18 G.66 2.36 1434 45 18.65 0.386 0.36 6.11 186 1809: Range Omegata: Porameters Shahilited.  Wait for 80% well volume recovery prior to sampling.  Calculate depth to water (from TOC), for 80% well volume:  Original Height of Water Column = 24.86 × 0.8 = 13.88 - (Well Depth) 45' = Depth to water 25.11  Time: 1436 1st measured depth to water, 1502 1st measured depth to water, 1503 1st measur | 1416                    | ,5                                      | 1869                | 150,0                                   | 8.45          | G-84           | 272            | <u></u>             |                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |             |
| 1416 15 18.56 3.282 4.32 6.44 276 1423 25 18.64 0.278 1.28 G.66 2.36 1434 45 12.65 3.366 0.36 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 6.41 186 18.65 3.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0. | 1413                    | 10                                      | १८४५                | 0.114                                   | 7.36          | 6.19           | 142            | لريودين.            | Claur                                 | Minertin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                           | j           |
| 1434   45   18.65   0.356   0.36   6.41   196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1416                    | 15                                      | 18.54               | 0.585                                   | <b>પ</b> 32   | 6.14           | 246            |                     |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |             |
| Wait for 80% well volume recovery prior to sampling.  Calculate depth to water (from TOC), for 80% well volume recovery:  Calculate 80% of orginal well volume:  Original Height of Water Column = 14.4% x 0.8 = 13.58 - (Well Depth) 45 = Depth to water 25.11  Time: 1436 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes No 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes No 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes No 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of original well casing volume: Yes 1st measured depth to water, 15.60 feet below TOC. Is well within 80% of  | 1423                    | 25                                      | 18.64               | 6.278                                   | 1.78          | <b>ሬ.</b> ሬሬ   | 236            |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery:  Calculate 80% of orginal well volume: Original Height of Water Column = 14.36 x 0.8 = 13.38 - (Well Depth) 45" = Depth to water 25.11  Time: 1436 1st measured depth to water, 1562 1st measure |                         |                                         | 18.65               | 4-356                                   | 0.36          | 6.41           | 146            | 4                   | V                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | Vicendo     |
| Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery:  Calculate 80% of orginal well volume: Original Height of Water Column = 14.36 x 0.8 = 13.38 - (Well Depth) 45" = Depth to water 25.11  Time: 1436 1st measured depth to water, 1562 1st measure | Stup!                   | Runge C                                 | implete: Pa         | ramuters                                | Shabiliz      | ed.            |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Calculate depth to water (from TOC), for 80% well volume recovery:  Calculate 80% of orginal well volume:  Original Height of Water Column = 24.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 1                                       | ·                   |                                         |               |                |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Calculate depth to water (from TOC), for 80% well volume recovery:  Calculate 80% of orginal well volume:  Original Height of Water Column = 24.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                         | Wa                  | ait for 80% w                           | ell volume    | erecovery      | prior to s     | ampling.            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | لسيسس       |
| Original Height of Water Column = 24.44 x 0.8 = 14.85 - (Well Depth) 45 = Depth to water 25.11  Time: 1436   1st measured depth to water, 1st measured depth to w |                         |                                         | Calculate           | depth to wat                            | ter (from T   | OC), for 8     | 0% well vo     | lume recov          | ery:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Time: 1502 1st measured depth to water, 1st m |                         |                                         |                     | Cal                                     | culate 80% of | f orginal well | volume:        |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ************                                 |             |
| Time: 1567 1st measured depth to water, 1st m |                         | Origina                                 | I Height of Water C | olumn = <u> </u>                        | x 0.8 =       | 13.28.         | · (Well Depth  | )_ <b>48</b> " = De | pth to wate                           | er <b>25.11</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Time: 1567 1st measured depth to water, 1st m |                         |                                         |                     |                                         |               |                |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time: 1436              | 1st measured                            | depth to water,     | <b>34.30</b> feet                       |               | 1              | ls well within | 80% of origin       | al well cas                           | ing volume: Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es                                           | No w        |
| Sample Well  Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                         |                     |                                         |               | l              | s well within  | 80% of origin       | al well casi                          | ng volume: IY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es 🗸                                         | No          |
| Time: 1502 Sample ID: 116-5 Depth: 24-61 feet below TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | , 31 1110000100                         | dopui to water,     | leer                                    | Delow TOC.    | ļ              | s well within  | 80% of origin       | al well casi                          | ng volume: Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es XX                                        | , No        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                     |                                         | Sam           | ple Well       |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time <sup>.</sup>       | 1501.                                   |                     | Sample ID:                              | - Nit         | ک دما          |                | Δ                   | th. ∽                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
| Comments: No Floating product; No Odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 10-04                                   |                     | Jampio ID.                              | • •           |                |                | . Dep               | ın: <u>4</u>                          | ie! Tee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oled 15                                      | WIOC        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments:               | No CI                                   | leading production  | uct · Ma                                | () dot        |                |                |                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 117                   | <del></del>                             | 1                   | 1 1 - 0                                 |               |                |                |                     | · · · · · · · · · · · · · · · · · · · | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *************************************** | <del>- 1- 1</del>   |                                         | ··            | <del>v</del>   |                |                     |                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |             |

Semi-Annual Groundwater Monitoring Report - First Quarter 2005 19984 Meekland Avenue, Hayward, California April 11, 2005

## Appendix B

**Certified Analytical Report - Groundwater Samples** 

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Jered Chaney

Certificate ID: 42929 - 3/31/2005 8:54:17 AM

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Order: 42929

Project Name: Harbert Transportation

Project Number: H9042.Q

Date Collected: 3/23/2005

Date Received: 3/23/2005

P.O. Number: H9042.Q

### Subcontract Report

On March 23, 2005, samples were received under chain of custody for analysis. Entech subcontacted this work as listed below.

Matrix

Subcontract information

Liquid

Methane - Air Toxics LTD

Results and turn around time for subcontracted work is completely under control of the subcontract laboratory. If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.



### Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- · Laboratory Narrative;
- · Results; and
- · Chain of Custody (copy).

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0503458

Work Order Summary

CLIENT:

Mr. Simon Hague

BILL TO:

Ms. Laurie Glantz-Murphy

Entech Analytical Labs, Inc

Entech Analytical Labs, Inc

3334 Victor Ct

3334 Victor Ct

Santa Clara, CA 95054

Santa Clara, CA 95054

PHONE:

408-588-0200

P.O. #

42929

FAX:

408-588-0201

PROJECT#

42929

DATE RECEIVED:

03/24/2005

CONTACT:

Taryn Badal

DATE COMPLETED:

03/30/2005

TEST

01A 01AA 02A 03A 04A

FRACTION#

MW-3 MW-3 Duplicate

Mod. RSK-175 Mod. RSK-175 Mod. RSK-175

MW-5 MW-8

LCS

NAME

Mod. RSK-175 Mod. RSK-175

MW-9 MW-10 05A Lab Blank 06A

Mod. RSK-175 Mod. RSK-175

07A

Mod. RSK-175

CERTIFIED BY:

Sanda d. Fruman

03/30/05 DATE:

Laboratory Director

Certification numbers: AR DEQ - 03-084-0, CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/04, Expiration date: 06/30/05

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

#### LABORATORY NARRATIVE Modified RSK 175

#### Entech Analytical Labs, Inc Workorder# 0503458

Five VOA Vial-40 mL samples were received on March 24, 2005. The laboratory performed analysis via Modified RSK 175 for Methane using GC/FID. The method involves placing an aliquot of the sample in a headspace vial. The vial is then placed into HP7694 Headspace Autosampler equipped with oven, shaker and 1 mL sample loop. Sample is incubated and then equilibrated at 40°C for 15 minutes with high agitation. Finally, a direct injection of the headspace is performed. See the data sheets for the reporting limits for each compound.

| Requirement                      | RSK 175                                                                                                                                                                                                                                            | ATL Modifications                                                                                                                                                                                                                               |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Collection                | Collect sample in 60 mL crimp-top vial.                                                                                                                                                                                                            | Collect sample in 40 mE VOA vial.                                                                                                                                                                                                               |
| Headspace Generation             | Headspace is generated in 60 mL sample vial by displacing volume of liquid with Helium. The amount of liquid should be 10% of sample volume in bottle, up to 10 mL.                                                                                | 5.0 mL of sample is displaced with 5.0 mL Nitrogen and transferred to a Nitrogen purged and capped autosampler vial. Headspace is then generated in the autosampler vial.                                                                       |
| Sample Preparation               | Sample is shaken 5 min.<br>to equilibrate analyte<br>between headspace<br>and liquid phase.                                                                                                                                                        | Prior to injection, autosampler shakes sample for 15 min. while heating to 40°C.                                                                                                                                                                |
| Headspace Injection              | Syringe injection of 300 mL headspace into GC.                                                                                                                                                                                                     | Autosampler pressurizes sample to fill 1.0 mL loop with headspace sample.                                                                                                                                                                       |
| Calibration and Quantitation     | Direct injections of gas phase standards are used to obtain a Calibration Curve. Henry's Law is used to calculate mg of gas per Liter of water. Calculation requires recording total volume of serum bottle and headspace, and sample temperature. | Calibration standards are prepared by addition of a gaseous spike solution to clean water. Response factors are calculated for each level of a multi point calibration, and the mean is used to calculate quantitation for each target analyte. |
| Initial Calibration Curve (ICAL) | Linear regression                                                                                                                                                                                                                                  | % RSD = 30%, use average RF to quantify results</td                                                                                                                                                                                             |
| Lab Blanks                       | Blank subtraction is performed.                                                                                                                                                                                                                    | No blank subtraction; Lab Blank must be less than the Reporting Limit.                                                                                                                                                                          |
| Specified Detectors              | FID or ECD                                                                                                                                                                                                                                         | FID or TCD                                                                                                                                                                                                                                      |

#### Receiving Notes

A Temperature Blank was not included with the shipment. Temperature was measured on a representative sample and was not within 4±2 °C. Coolant in the form of blue ice was present. The discrepancy was noted

in the Sample Receipt Confirmation email/fax and the analysis proceeded.

#### **Analytical Notes**

There were no analytical discrepancies.

#### **Definition of Data Qualifying Flags**

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

#### SAMPLE NAME: MW-3

#### ID#: 0503458-01A

#### MODIFIED METHOD RSK-175 GC/FID

 Compound
 (ug/ml)
 (ug/ml)

 Methane
 0.010
 0.048

SAMPLE NAME: MW-3 Duplicate

#### ID#: 0503458-01AA

#### MODIFIED METHOD RSK-175 GC/FID

| File Name:<br>DII, Factor: |            | llection: 3/23/05<br>alysis: 3/29/05 04:52 PM |
|----------------------------|------------|-----------------------------------------------|
|                            | Rpt. Limit | Amount                                        |
| Compound                   | (ug/ml)    | (ug/ml)                                       |
| Methane                    | 0.010      | 0.052                                         |

#### SAMPLE NAME: MW-5

#### ID#: 0503458-02A

#### MODIFIED METHOD RSK-175 GC/FID

| File Name;<br>Dil. Factor: |            | lection: 3/23/05<br>alysis: 3/29/05 05:13 PM |
|----------------------------|------------|----------------------------------------------|
|                            | Rpt. Limit | Amount                                       |
| Compound                   | (ug/ml)    | (ug/ml)                                      |
| Methane                    | 0.010      | 0.027                                        |

### SAMPLE NAME: MW-8

#### ID#: 0503458-03A

#### MODIFIED METHOD RSK-175 GC/FID

| File Name: 7032909 Date of Collection: 3/23/05 Oil, Factor: 1.00 Date of Analysis: 3/29/05 05:35 PM |
|-----------------------------------------------------------------------------------------------------|
| Dit, Factor: Date of Analysis, 5/25/05 05/56 Five                                                   |
|                                                                                                     |

0.010

Not Detected

Container Type: VOA Vial-40 mL

Methane

### SAMPLE NAME: MW-9

#### ID#: 0503458-04A

#### MODIFIED METHOD RSK-175 GC/FID

| File Name.<br>DII. Factor: |            | ollection: 3/23/05<br>nalysis: 3/29/05 05:56 PM |
|----------------------------|------------|-------------------------------------------------|
|                            | Rpt. Limit | Amount                                          |
| Compound                   | (ug/ml)    | (ug/ml)                                         |
| Methane                    | 0.010      | 0.017                                           |

SAMPLE NAME: MW-10

#### ID#: 0503458-05A

#### MODIFIED METHOD RSK-175 GC/FID

| File Name<br>DII: Factor: |            | ollection: 3/23/05<br>nalysis: 3/29/05 06:17 PM |
|---------------------------|------------|-------------------------------------------------|
| <del></del>               | Rpt. Limit | Amount                                          |
| Compound                  | (ug/ml)    | (ug/mi)                                         |
| Methane                   | 0.010      | Not Detected                                    |

# SAMPLE NAME: Lab Blank ID#: 0503458-06A

#### MODIFIED METHOD RSK-175 GC/FID

| File Name:<br>Dil. Factor: |            | ollection: NA<br>nalysis: 3/29/05 03:27 PM |
|----------------------------|------------|--------------------------------------------|
|                            | Rpt. Limit | Amount                                     |
| Compound                   | (ug/ml)    | (ug/ml)                                    |
| Methane                    | 0.010      | Not Detected                               |

Container Type: NA - Not Applicable

### SAMPLE NAME: LCS

#### ID#: 0503458-07A

#### MODIFIED METHOD RSK-175 GC/FID

| File Name: 7032902 Date of Collection: NA Date of Analysis: 3/29/05 02:20 PM Date of Analysis: 3/29/05 02:20 PM |
|-----------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------|

| Compound | %Recove | ry |
|----------|---------|----|
| Methane  | 74      |    |

Container Type: NA - Not Applicable

CA ELAP #1-2346

3334 Victor Court, Santa Clara, CA 95054

(408) 588-0200

FAX (408) 588-0201

### Subcontract Chain of Custody

Subcentiact Last.

Enlech Project Name:

Data Sent:

lius liate:

PO Կարհետ։

Granics LTD

42929

3/23/05

3/3(0/05

42929

| Entech<br>Sample<br>Number | Customer Sangals<br>Name Field Point 1D | Mustix | Meihud                      | Collect<br>Date | Celles<br>Tims | Hertle Type | in exercised of |
|----------------------------|-----------------------------------------|--------|-----------------------------|-----------------|----------------|-------------|-----------------|
| OFA 12039-001              | MW-3                                    | Liquid | Methane - Air Toxics LTD    | 3/23/200        | JJ:5R          |             |                 |
| <b>ULA</b> 429293803       | MW-3                                    | Liquid | Metheno - Air Tanics LTD    | 3/23/200        | 15:02          |             |                 |
| <b>036</b> 415854-80€      | MW-8                                    | Láquid | Methano - Air Toxics LTD    | 3/23/200        | 8:51           |             |                 |
| GU/A42929-997              | M/V-9                                   | Liquid | Mathane - Air Textica LTD   | 3/23/200        | 12:37          |             |                 |
| Ø5042929-408               | MW-10                                   | Lajord | Metaline - Air Toxics (177) | 5/23/200        | 10.57          |             |                 |



| Re inquished By: | Received By:         | Data:    | Time: |
|------------------|----------------------|----------|-------|
| Speech Hachado   | California Overnight | 03-23-05 | 1830  |
| Reclammed By:    | Hernived Lly         | Dale:    | Time. |
|                  | Dans a. Thomas ATT.  | 3/24/05  | 940   |
| Relinquished By: | Roccived Liy         | Date:    | Time: |
| Cal Over B1008   | 0374453              | ,        | -     |

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Jered Chaney

Certificate ID: 42929 - 3/30/2005 5:58:55 PM

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Order Number: 42929

Project Name: Harbert Transportation

Project Number: H9042.Q

Date Received: 3/23/2005 4:27:55 PM

P.O. Number: H9042.Q

Certificate of Analysis - Final Report

Comments

Methane - Air Toxics LTD

Note: Subcontracted work will follow under separate cover.

On March 23, 2005, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Liquid <u>Test</u>

8260Petroleum

Method

EPA 8260B

Iron, Ferrous-Diss Nitrate as N SM 3500 - Fe EPA 300.0

Nitrate as N

Subcontract

Subcontract

EPA 300.0

Sulfate by IC TPH as Gasoline - GC/MS

GC-MS

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Laurie Glantz-Murphy Laboratory Director

Environmental Analysis Since 1983

3334 Victor Court, Santa Clara, CA 95054

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney Phone: (408) 588-0200

Fax: (408) 588-0201

Project Number: H9042,Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.Q Sample Collected by: Client

#### Certificate of Analysis - Data Report

| Lab #: 42929-001                       | Sample ID: MV | V-3  |    | ]               | Matrix: Liq | 11:58 AM  |            |               |           |  |  |  |
|----------------------------------------|---------------|------|----|-----------------|-------------|-----------|------------|---------------|-----------|--|--|--|
| Method: EPA 300.0 - Ion Chromatography |               |      |    |                 |             |           |            |               |           |  |  |  |
| Parameter                              | Result        | Flag | DF | Detection Limit | Units       | Prep Date | Prep Batch | Analysis Date | QC Batch  |  |  |  |
| Nitrate as N                           | 6.2           |      | 1  | 0.2             | mg/L        | N/A       | N/A        | 03/23/2005    | WIC050323 |  |  |  |
| Sulfate                                | 29            |      | 1  | 0.5             | mg/L        | N/A       | N/A        | 03/23/2005    | WIC050323 |  |  |  |

Analyzed by EQueja

Reviewed by: DQUEJA

Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter              | Result | Flag | DF | Detection Limit | , Units          | Prep Date | Prep Batch | Analysis Date | QC Batch   |
|------------------------|--------|------|----|-----------------|------------------|-----------|------------|---------------|------------|
| Benzene                | ND     | ·    | 1  | 0.5             | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Toluene                | ND     |      | 1  | 0.5             | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl Benzene          | 2.0    |      | 1  | 0.5             | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Xylenes, Total         | ND     |      | 1  | 0.5             | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Methyl-t-butyl Ether   | ND     |      | 1  | 1               | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl-t-butyl Ether    | ND     |      | 1  | 5               | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Butanol (TBA)     | ND     |      | 1  | 10              | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Diisopropyl Ether      | ND     |      | 1  | 5               | μg/L             | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Amyl Methyl Ether | ND     |      | 1  | 5               | . μg/L           | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethanol                | ND     |      | 1  | 100             | $\mu \text{g}/L$ | N/A       | N/A        | 03/24/2005    | WM82050324 |

| Surrogate            | Surrogate Recovery | Cont | rol | Li | mits (%) |
|----------------------|--------------------|------|-----|----|----------|
| 4-Bromofluorobenzene | 105                | 75   | j   | -  | 125      |
| Dibromofluoromethane | 108                | 75   | i   | -  | 125      |
| Toluene-d8           | 110                | 75   | ;   | -  | 125      |

Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag | DF       | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date       | QC Batch   |
|----------------------|--------------------|------|----------|-----------------|-------|-----------|------------|---------------------|------------|
| TPH as Gasoline      | 540                |      | 1        | 25              | μg/L  | N/A       | N/A        | 03/24/2005          | WMS2050324 |
| Surrogate            | Surrogate Recovery | Co   | ntrol Li | mits (%)        |       |           |            | Analyzed by: Tfulto | on         |
| 4-Bromofluorobenzene | 97.2               |      | 75 -     | 125             |       |           |            | Reviewed by: MTU    | J          |
| Dibromofluoromethane | 95.2               |      | 75 -     | 125             |       |           |            |                     |            |
| Toluene-d8           | 96.7               |      | 75 -     | 125             |       |           |            |                     |            |
|                      |                    |      |          |                 |       |           |            |                     |            |

Method: SM 3500 - Fe - Ferrous Iron

| Parameter     | Result | Flag | DF | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date | QC Batch  |
|---------------|--------|------|----|-----------------|-------|-----------|------------|---------------|-----------|
|               |        |      |    |                 |       |           |            |               |           |
| Iron, Ferrous | 1.2    |      | 2  | 0.2             | mg/L  | N/A       | N/A        | 03/25/2005    | WFE050325 |

Analyzed by: Rlazaro Reviewed by: DQUEJA

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.Q Sample Collected by: Client

#### Certificate of Analysis - Data Report

Lab #: 42929-002

Sample ID: MW-4

Matrix: Liquid Sample Date: 3/23/2005

9:23 AM

| Method: | EPA | 8260B - | Gas | Chromatography/ | Mass | Spectrometry | (GC/MS) |
|---------|-----|---------|-----|-----------------|------|--------------|---------|
|---------|-----|---------|-----|-----------------|------|--------------|---------|

| Prep Method: EPA | k 5030B - Purge-and- | Trap for A | Aqueous Samples |
|------------------|----------------------|------------|-----------------|
|------------------|----------------------|------------|-----------------|

| Prep Memou: EPA 503    | on - Large-sug-respica. | Aqueou                                                  | s <b>ઝ</b> થામણ | 53              |           |           |            |               |            |
|------------------------|-------------------------|---------------------------------------------------------|-----------------|-----------------|-----------|-----------|------------|---------------|------------|
| Parameter              | Result                  | Flag                                                    | DF              | Detection Limit | Units     | Prep Date | Prep Batch | Analysis Date | QC Batch   |
| Benzene                | ND                      |                                                         | 1               | 0.5             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Toluene                | ND                      |                                                         | 1               | 0.5             | · μg/L    | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl Benzenc          | ND                      |                                                         | 1               | 0.5             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Xylenes, Total         | ND                      |                                                         | 1               | 0.5             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Methyl-t-butyl Ether   | ND                      |                                                         | 1               | 1               | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl-t-butyl Ether    | ND                      |                                                         | 1               | 5               | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Butanol (TBA)     | ND                      |                                                         | 1               | 10              | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Diisopropyl Ether      | ND                      |                                                         | 1               | 5               | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Amyl Methyl Ether | ND                      |                                                         | 1               | 5               | $\mu g/L$ | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethanol                | ND                      |                                                         | 1               | 100             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Surrogate              | Surrogate Recovery      | Surrogate Recovery Control Limits (%)  Analyzed by. TAF |                 |                 |           |           |            |               |            |

| Surrogate            | Surrogate Recovery | Conti | ol l | Limi | ts (%) | ø |  | Analyzed by. TAF |
|----------------------|--------------------|-------|------|------|--------|---|--|------------------|
| 4-Bromofluorobenzene | 107                | 75    |      | . 1  | 25     |   |  | Reviewed by, MTU |
| Dibromofluoromethane | 107                | 75    |      | - 1  | 25     |   |  |                  |
| Toluene-d8           | 111                | 75    | -    | - 1  | 25     |   |  |                  |

Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag | DF    | ·   | Detection Limit | Units  | Prep Date | Prep Batch | Analysis Date       | QC Batch   |
|----------------------|--------------------|------|-------|-----|-----------------|--------|-----------|------------|---------------------|------------|
| TPH as Gasoline      | ND                 |      | 1     |     | 25              | " μg/L | N/A       | N/A        | 03/24/2005          | WMS2050324 |
| Surrogate            | Surrogate Recovery | Coi  | itrol | Lir | nits (%)        |        |           |            | Analyzed by. Tfulto |            |
| 4-Bromofluorobenzene | 98 6               | ,    | 75    | _   | 125             |        |           |            | Reviewed by: MTU    | J          |
| Dibromofluoromethane | 95.2               | •    | 75    | -   | 125             |        |           |            |                     |            |
| Toluene-d8           | 96.3               | ,    | 75    | -   | 125             |        |           |            |                     |            |

3334 Victor Court, Santa Clara, CA 95054

Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney Phone: (408) 588-0200

Fax: (408) 588-0201

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.Q Sample Collected by: Client

#### Certificate of Analysis - Data Report

| Sample ID: MW  | -5                       |             |                               | 1                                             | Matrix: Liq                                                         | uid Sample I                                                                      | Date: 3/23/2005                                                                                  | 3:02 PM                                                                                                                   |
|----------------|--------------------------|-------------|-------------------------------|-----------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Chromatography |                          |             |                               |                                               |                                                                     |                                                                                   |                                                                                                  |                                                                                                                           |
| Result         | Flag                     | DF          | Detection Limit               | Units                                         | Prep Date                                                           | Prep Batch                                                                        | Analysis Date                                                                                    | QC Batch                                                                                                                  |
| 5 1            |                          | j           | 0 2                           | mg/L                                          | N/A                                                                 | N/A                                                                               | 03/23/2005                                                                                       | WIC050323                                                                                                                 |
| 35             |                          | 1           | 0.5                           | mg/L                                          | N/A                                                                 | N/A                                                                               | 03/23/2005                                                                                       | WIC050323                                                                                                                 |
|                | Chromatography<br>Result | Result Flag | Chromatography Result Flag DF | Chromatography Result Flag DF Detection Limit | Chromatography Result Flag DF Detection Limit Units  5 1 1 0 2 mg/L | Chromatography Result Flag DF Detection Limit Units Prep Date  5 1 1 0 2 mg/L N/A | Chromatography Result Flag DF Detection Limit Units Prep Date Prep Batch  5 1 1 0 2 mg/L N/A N/A | Chromatography Result Flag DF Detection Limit Units Prep Date Prep Batch Analysis Date  5 1 1 0 2 mg/L N/A N/A 03/23/2005 |

Analyzed by: EQueja Reviewed by: DQUEJA

Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter              | Result | Flag | DF | Detection Limit | Units  | Prep Date | Prep Batch | Analysis Date | QC Batch   |
|------------------------|--------|------|----|-----------------|--------|-----------|------------|---------------|------------|
| Benzene                | 3.5    | ·    | 1  | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Toluene                | 0.67   |      | 1  | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl Benzene          | 4.5    |      | 1  | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Xylenes, Total         | 9 3    |      | 1  | 0.5             | μg/I_  | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Methyl-t-butyl Ether   | ND     |      | 1  | 1               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl-t-butyl Ether    | ND     |      | 1  | 5               | . μg/L | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Butanol (TBA)     | ND     |      | 1  | 10              | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Diisopropyl Ether      | ND     |      | 1  | 5               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Amyl Methyl Ether | ND     |      | 1  | 5               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethanol                | ND     |      | 1  | 100             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |

| Surrogate            | Surrogate Recovery | Con | tro | lL | imits (%) |
|----------------------|--------------------|-----|-----|----|-----------|
| 4-Bromofluorobenzene | 105                | 7   | 5   | -  | 125       |
| Dibromofluoromethane | 109                | 7   | 5   | -  | 125       |
| Toluene-d8           | 110                | 7   | 5   | -  | 125       |

#### Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag | DF     | D      | etection Limit | Units | Prep Date | Prep Batch | Analysis Date      | QC Batch   |
|----------------------|--------------------|------|--------|--------|----------------|-------|-----------|------------|--------------------|------------|
| TPH as Gasoline      | 120                |      | 1      |        | 25             | μg/L  | N/A       | N/A        | 03/24/2005         | WMS2050324 |
| Surrogate            | Surrogate Recovery | Cor  | trol l | Limits | (%)            |       |           |            | Analyzed by Tfulto | on         |
| 4-Bromofluorobenzene | 96.9               | ,    | 75 -   | 12:    | 5              |       |           |            | Reviewed by: MTU   | j          |
| Dibromofluoromethane | 96,2               | •    | 75 -   | 12:    | 5              |       |           |            |                    |            |
| Toluene-d8           | 95.5               | •    | 75 -   | 12:    | 5              | •     |           |            |                    |            |

Method: SM 3500 - Fe - Ferrous Iron

| Parameter     | Result | Flag DF | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date | QC Batch  |
|---------------|--------|---------|-----------------|-------|-----------|------------|---------------|-----------|
| Iton, Ferrous | 0.30   | 1       | 0.1             | mg/L  | N/A       | N/A        | 03/25/2005    | WFE050325 |

Analyzed by Rlazaro Reviewed by: DQUEJA

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney

Project Number: H9042.O

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.O Sample Collected by: Client

### Certificate of Analysis - Data Report

ab #: 42929-004

Sample ID: MW-6

Matrix: Liquid Sample Date: 3/23/2005

1:28 PM

Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

| Parameter             | Result | Flag | DF | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date | QC Batch     |
|-----------------------|--------|------|----|-----------------|-------|-----------|------------|---------------|--------------|
| Benzene               | ND     |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| l'oluene              | ND     |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| Ethyl Benzene         | 1.6    |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| Xylenes, Total        | ND     |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| Methyl-t-butyl Ether  | ND     |      | 1  | 1               | μg/L  | N/A       | N/A        | 03/24/2005    | . WMS2050324 |
| Ethyl-t-butyl Ether   | ND     |      | 1  | 5               | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| tert-Butanol (TBA)    | NĐ     |      | 1  | 10              | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| Drisopropyl Ether     | ND     |      | 1  | 5               | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| ert-Amyl Methyl Ether | ND     |      | ŀ  | 5               | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |
| Ethanol               | ND     |      | 1  | 100             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324   |

| Surrogate            | Surrogate Recovery | Contro | ıl Li | imits (%) | Analyzed | у ' | Tfulto |
|----------------------|--------------------|--------|-------|-----------|----------|-----|--------|
| 4-Bromofluorobenzene | 106                | 75     | -     | 125       | Reviewed | bу  | MTU    |
| Dibromofluoromethane | 111                | 75     | _     | 125       |          |     |        |
| Toluene-d8           | 110                | 75     | -     | 125       |          |     |        |

Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag DF    | Detection Limit | Units | Prep Date                             | Prep Batch | Analysis Date      | QC Batch   |
|----------------------|--------------------|------------|-----------------|-------|---------------------------------------|------------|--------------------|------------|
| TPH as Gasoline      | 160                | 1          | 25              | μg/L  | N/A                                   | N/A        | 03/24/2005         | WMS2050324 |
| Surrogate            | Surrogate Recovery | Control Li | nits (%)        |       | · · · · · · · · · · · · · · · · · · · |            | Analyzed by Tfulto | oh         |
| l-Bromofluorobenzene | 97.9               | 75 -       | 125             |       |                                       |            | Reviewed by, MTU   | J          |
| Dibromofluoromethane | 98.0               | 75 -       | 125             |       |                                       |            |                    |            |
| Toluene-d8           | 95.7               | 75 -       | 125             | •     |                                       |            |                    |            |

3334 Victor Court, Santa Clara, CA 95054

Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney

Phone: (408) 588-0200

Fax: (408) 588-0201

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.O Sample Collected by: Client

#### Certificate of Analysis - Data Report

Lab#: 42929-005

Sample ID: MW-7

Matrix: Liquid Sample Date: 3/23/2005

11:30 AM

Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

Pren Method: EPA 5030B - Purge-and-Tran for Aqueous Samples

| Parameter              | Result | Flag | DF | Detection Limit | Units  | Prep Date | Prep Batch | Analysis Date | QC Batch   |
|------------------------|--------|------|----|-----------------|--------|-----------|------------|---------------|------------|
| Benzene                | ND     | _    | 1  | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Toluene                | ND     |      | 1  | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl Benzene          | ND     |      | 1  | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Xylenes, Total         | ND     |      | 1  | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Methyl-t-butyl Ether   | ND     |      | 1  | 1               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl-t-butyl Ether    | ND     |      | 1  | 5               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Butanol (TBA)     | ND     |      | 1  | 10              | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Diisopropyl Ether      | ND     |      | 1  | 5               | . μg/L | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Amyl Methyl Ether | ND     |      | 1  | 5               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethanol                | ND     |      | 1  | 100             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |

| Surrogate            | Surrogate Recovery | Control Limits (%) | Analyzed by |
|----------------------|--------------------|--------------------|-------------|
| 4-Bromofluorobenzene | 103                | 75 - 125           | Reviewed b  |
| Dibromofluoromethane | 109                | 75 - 125           |             |
| Toluene-d8           | 110                | 75 - 125           |             |

Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag 1 | )F    | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date       | QC Batch   |
|----------------------|--------------------|--------|-------|-----------------|-------|-----------|------------|---------------------|------------|
| TPH as Gasoline      | ND                 |        | 1     | 25              | μg/L  | N/A       | N/A        | 03/24/2005          | WMS2050324 |
| Surrogate            | Surrogate Recovery | Contr  | ol Li | mits (%)        |       |           |            | Analyzed by: Tfulto | on         |
| 4-Bromofluorobenzene | 65.4***            | 75     | -     | 125             |       |           |            | Reviewed by: MTU    | J          |
| Dibromofluoromethane | 96.8               | 75     | -     | 125             |       |           |            |                     |            |
| Toluene-d8           | 95.5               | 75     | -     | 125             |       |           |            |                     |            |

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.O Sample Collected by: Client

#### Certificate of Analysis - Data Report

| Lab#:    | 42929-006 | Sample   | ID |
|----------|-----------|----------|----|
| Lav IT . | サムノムノーリリリ | Danibic. |    |

| Lab #: 42929-006        | Sample ID: MV                          | V-8  |    |                                       | ]      | Matrix: Liq | uid Sample I | Date: 3/23/2005 | 8:51 AM   |  |  |
|-------------------------|----------------------------------------|------|----|---------------------------------------|--------|-------------|--------------|-----------------|-----------|--|--|
| Method: EPA 300.0 - Ion | Method: EPA 300.0 - Ion Chromatography |      |    |                                       |        |             |              |                 |           |  |  |
| Parameter               | Result                                 | Flag | DF | Detection Limit                       | Units  | Prep Date   | Prep Batch   | Analysis Date   | QC Batch  |  |  |
| _ Nitrate as N          | 0.89                                   |      | 1  | 0.2                                   | ° mg/L | N/A         | N/A          | 03/23/2005      | WIC050323 |  |  |
| Sulfate                 | 48                                     |      | 1  | 0 5                                   | mg/L   | N/A         | N/A          | 03/23/2005      | WIC050323 |  |  |
|                         |                                        |      |    | · · · · · · · · · · · · · · · · · · · |        | •           |              | 1 1 11 TO 1     |           |  |  |

Analyzed by. EQueja Reviewed by. DQUEJA

Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

Pren Method: EPA 5030B - Purge-and-Tran for Aqueous Samples

| Parameter              | Result | Flag | DF | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date | QC Batch    |
|------------------------|--------|------|----|-----------------|-------|-----------|------------|---------------|-------------|
| Benzene                | ND     |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WM\$2050324 |
| Toluene                | ND     |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| Ethyl Benzene          | ND     |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| Xylenes, Total         | ND     |      | 1  | 0.5             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| Methyl-t-butyl Ether   | ND     |      | 1  | 1               | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| Ethyl-t-butyl Ether    | ND     |      | 1  | 5               | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| tert-Butanol (TBA)     | ND     |      | 1  | 10              | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| Diisopropyl Ether      | ND     |      | 1  | 5               | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| tert-Amyl Methyl Ether | ND     |      | 1  | 5               | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |
| Ethanol                | ND     |      | 1  | 100             | μg/L  | N/A       | N/A        | 03/24/2005    | WMS2050324  |

Analyzed by, TAF Surrogate Recovery Control Limits (%) Surrogate 106 125 4-Bromofluorobenzene Reviewed by: MTU 109 Dibromofluoromethane 75 125 109 Toluene-d8

#### Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag | DF       | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date       | QC Batch   |
|----------------------|--------------------|------|----------|-----------------|-------|-----------|------------|---------------------|------------|
| TPH as Gasoline      | ND                 |      | 1        | 25              | μg/L  | N/A       | N/A        | 03/24/2005          | WMS2050324 |
| Surrogate            | Surrogate Recovery | Coi  | ıtrol Li | mits (%)        |       |           |            | Analyzed by: Tfulto | on         |
| 4-Bromofluorobenzene | 97.5               | •    | 75 -     | 125             |       |           |            | Reviewed by MTC     | J          |
| Dibromofluoromethane | 96.3               | ,    | 75 -     | 125             |       |           |            |                     |            |
| Toluene-d8           | 95.0               | ,    | 75 -     | 125             |       |           |            | ,                   |            |

Method: SM 3500 - Fe - Ferrous Iron

| Parameter     | Result | Flag | DF | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date | QC Batch  |  |
|---------------|--------|------|----|-----------------|-------|-----------|------------|---------------|-----------|--|
| Iron, Ferrous | ND     |      | 1  | 0.1             | mg/L  | N/A       | N/A        | 03/25/2005    | WFE050325 |  |

Analyzed by Rlazaro Reviewed by. DQUEJA

3334 Victor Court, Santa Clara, CA 95054

Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney Phone: (408) 588-0200

Fax: (408) 588-0201

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.Q Sample Collected by: Client

#### Certificate of Analysis - Data Report

| Lab #: 42929-007                       | Sample ID: MV | V-9  |    |                 | ]     | Matrix: Liq | uid Sample l | Date: 3/23/2005    | 12:37 PM  |  |
|----------------------------------------|---------------|------|----|-----------------|-------|-------------|--------------|--------------------|-----------|--|
| Method: EPA 300.0 - Ion Chromatography |               |      |    |                 |       |             |              |                    |           |  |
| Parameter                              | Result        | Flag | DF | Detection Limit | Units | Prep Date   | Prep Batch   | Analysis Date      | QC Batch  |  |
| Nitrate as N                           | 1.4           |      | 1  | 0.2             | mg/L  | N/A         | N/A          | 03/23/2005         | WIC050323 |  |
| Sulfate                                | 22            |      | 1  | 0 5             | mg/L  | N/A         | N/A          | 03/23/2005         | WIC050323 |  |
|                                        |               |      |    |                 |       |             |              | Analyzed by EQueia |           |  |

Analyzed by EQueja
Reviewed by. DQUEJA

#### Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter                | Result            | Flag        | DF   | Detection Limit | Units  | Prep Date | Prep Batch Analysis Date |            | QC Batch   |
|--------------------------|-------------------|-------------|------|-----------------|--------|-----------|--------------------------|------------|------------|
| Benzene                  | ND                |             | 2    | 1               | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| Toluene                  | ND                |             | 2    | 1               | μg/I.  | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| Ethyl Benzene            | 48                |             | 2    | 1               | . μg/L | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| Xylenes, Total           | 31                |             | 2    | 1               | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| Methyl-t-butyl Ether     | ND                |             | 2    | 6               | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| Note: Methyl-t-butyl Etl | er is being repor | rted to the | MDL. |                 |        |           |                          |            |            |
| Ethyl-t-butyl Ether      | ND                |             | 2    | 10              | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| tert-Butanol (TBA)       | ND                |             | 2    | 20              | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| Diisopropyl Ether        | ND                |             | 2    | 10              | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| tert-Amyl Methyl Ether   | ND                |             | 2    | 10              | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |
| Ethanol                  | ND                |             | 2    | 200             | μg/L   | N/A       | N/A                      | 03/25/2005 | WMS2050325 |

| Surrogate            | Surrogate Recovery | Con | tre | d L | imits (%) | • | Analyzed by: TAF |
|----------------------|--------------------|-----|-----|-----|-----------|---|------------------|
| 4-Bromofluorobenzene | 106                |     | 75  | -   | 125       |   | Reviewed by MTU  |
| Dibromofluoromethane | 104                |     | 75  | -   | 125       |   |                  |
| Toluene-d8           | 110                |     | 75  | _   | 125       |   |                  |

#### Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag | DI    | 7  | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date       | QC Batch   |
|----------------------|--------------------|------|-------|----|-----------------|-------|-----------|------------|---------------------|------------|
| TPH as Gasoline      | 1100               |      | 2     |    | 50              | μg/L  | N/A       | N/A        | 03/25/2005          | WMS2050325 |
| Surrogate            | Surrogate Recovery | Co   | ntrol | Lh | nits (%)        |       |           |            | Analyzed by: Tfulto | OH.        |
| 4-Bromofluorobenzene | 97.8               |      | 75    | _  | 125             |       |           |            | Reviewed by: MTU    | J          |
| Dibromofluoromethane | 92.5               |      | 75    | -  | 125             |       |           |            |                     |            |
| Toluene-d8           | 95.6               |      | 75    | -  | 125             |       |           |            |                     |            |

#### Method: SM 3500 - Fe - Ferrous Iron

| Parameter     | Result | Flag | DF | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date | QC Batch  |
|---------------|--------|------|----|-----------------|-------|-----------|------------|---------------|-----------|
| Iron, Ferrous | ND     |      | 1  | 0.1             | mg/L  | N/A       | N/A        | 03/25/2005    | WFE050325 |

Analyzed by: Rlazaro
Reviewed by DQUEJA

3334 Victor Court, Santa Clara, CA 95054

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney Phone: (408) 588-0200

Fax: (408) 588-0201

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042,Q Sample Collected by: Client

Certificate of Analysis - Data Report

| Lab #: 42929-008 Sample ID: MW-10 | Matrix: Liquid | Sample Date: 3/23/2005 | 10:37 AM |
|-----------------------------------|----------------|------------------------|----------|
|-----------------------------------|----------------|------------------------|----------|

| Method: EPA 300,0 - Ion C | hromatography |      |    |                 |       |           |            |                  | ·····     |
|---------------------------|---------------|------|----|-----------------|-------|-----------|------------|------------------|-----------|
| Parameter                 | Result        | Flag | DF | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date    | QC Batch  |
| Nitrate as N              | ND            |      | 1  | 0.2             | mg/L  | N/A       | N/A        | 03/23/2005       | WIC050323 |
| Sulfate                   | 1.8           |      | 1  | 0 5             | mg/L  | N/A       | N/A        | 03/23/2005       | WIC050323 |
|                           |               |      |    |                 |       |           |            | Analyzed by POur |           |

Analyzed by EQueja

Reviewed by DQUEJA

Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| rich Memon: Ery 2020b - 1 | mgc-and-rapios | Aqueous | Santpi | L.3             |        |           |            |               |            |
|---------------------------|----------------|---------|--------|-----------------|--------|-----------|------------|---------------|------------|
| Parameter                 | Result         | Flag    | DF     | Detection Limit | Units  | Prep Date | Prep Batch | Analysis Date | QC Batch   |
| Benzen¢                   | ND             |         | 1      | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Toluene                   | ND             |         | 1      | 0 5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl Benzene             | ND             |         | 1      | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Xylenes, Total            | ND             |         | 1      | 0.5             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Methyl-t-butyl Ether      | ND             |         | 1      | 1               | » μg/L | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl-t-butyl Ether       | ND             |         | 1      | 5               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Butanol (TBA)        | ND             |         | 1      | 10              | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Diisopropyl Ether         | ND             |         | 1      | 5               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Amyl Methyl Ether    | ND             |         | 1      | 5               | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethanol                   | ND             |         | 1      | 100             | μg/L   | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| /                         |                |         |        |                 |        |           |            |               |            |

| Surrogate            | Surrogate Recovery | Con | tro | lLi | mits (%) | Analyzed by. TAF |
|----------------------|--------------------|-----|-----|-----|----------|------------------|
| 4-Bromofluorobenzene | 103                | 7   | 5   | -   | 125      | Reviewed by MTU  |
| Dibromofluoromethane | 110                | 7   | 5   | -   | 125      |                  |
| Toluene-d8           | 112                | 7   | 5   | -   | 125      | •                |

Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag | DF     | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date       | QC Batch   |
|----------------------|--------------------|------|--------|-----------------|-------|-----------|------------|---------------------|------------|
| TPH as Gasoline      | ND                 |      | 1      | 25              | μg/L  | N/A       | N/A        | 03/24/2005          | WMS2050324 |
| Surrogate            | Surrogate Recovery | Con  | trol I | imits (%)       |       | W-112     |            | Analyzed by: Tfulto | on .       |
| 4-Bromofluorobenzene | 95.6               | 7    | 5 -    | 125             | u     |           |            | Reviewed by. MTU    | J          |
| Dibromofluoromethane | 97.3               | 7    | 5 -    | 125             |       |           |            |                     |            |
| Toluene-d8           | 97 1               | 7    | 5 -    | 125             |       |           |            |                     |            |

| Method: SM 3500 - Fe - Ferrous I |    |
|----------------------------------|----|
|                                  | nn |

| Parameter                  | Result          | Flag         | DF      | Detection Limit  | Units | Prep Date | Prep Batch | Analysis Date | QC Batch  |  |
|----------------------------|-----------------|--------------|---------|------------------|-------|-----------|------------|---------------|-----------|--|
|                            |                 |              |         |                  |       |           |            |               |           |  |
| Iron, Ferrous              | ND              |              | 1       | 0 1              | mg/L  | N/A       | N/A        | 03/25/2005    | WFE050325 |  |
| Note: Samples were filtere | ed and preserve | l in the lah | upon re | eceint (3/23/05) |       |           |            |               |           |  |

Analyzed by Rlazaro Reviewed by DQUEJA

3334 Victor Court, Santa Clara, CA 95054

Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney Phone: (408) 588-0200

\_

Fax: (408) 588-0201

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.Q Sample Collected by: Client

#### Certificate of Analysis - Data Report

Lab#: 42929-009 Sample ID: MW-11

· Matrix: Liq

Matrix: Liquid Sample Date: 3/23/2005

10:05 AM

Method: EPA 8260B - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Result | Flag                                | DF                                     | Detection Limit                         | Units                                                                                                  | Prep Date                                                                                                                                                             | Prep Batch                                                                                                                                                                                                                  | Analysis Date                                                                                                                                                                                                                                                                     | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND     |                                     | 1                                      | 0.5                                     | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | 1                                      | 0.5                                     | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ИD     |                                     | 1                                      | 0.5                                     | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | 1                                      | 0.5                                     | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | 1                                      | 1                                       | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | 1                                      | 5                                       | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | 1                                      | 10                                      | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | 1                                      | 5                                       | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | 1                                      | 5                                       | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND     |                                     | i                                      | 100                                     | μg/L                                                                                                   | N/A                                                                                                                                                                   | N/A                                                                                                                                                                                                                         | 03/24/2005                                                                                                                                                                                                                                                                        | WMS2050324                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | ND | ND | ND 1 | ND 1 0.5 ND 1 1 5 ND 1 5 | ND 1 0.5 μg/L ND 1 1 μg/L ND 1 5 μg/L | ND 1 0.5 μg/L N/A ND 1 1 1 μg/L N/A ND 1 5 μg/L N/A | ND 1 0.5 μg/L N/A N/A ND 1 1 0.5 μg/L N/A N/A ND 1 1 μg/L N/A N/A ND 1 5 μg/L N/A N/A | ND 1 0.5 μg/L N/A N/A 03/24/2005 ND 1 1 μg/L N/A N/A 03/24/2005 ND 1 1 μg/L N/A N/A 03/24/2005 ND 1 5 μg/L N/A N/A 03/24/2005 ND 1 5 μg/L N/A N/A 03/24/2005 ND 1 1 5 μg/L N/A N/A 03/24/2005 ND 1 5 μg/L N/A N/A 03/24/2005 ND 1 5 μg/L N/A N/A 03/24/2005 ND 1 5 μg/L N/A N/A 03/24/2005 |

| Surrogate            | Surrogate Recovery | Co | atro | d Li | mits (%) |   |  |  | Analyzed by: | TA |
|----------------------|--------------------|----|------|------|----------|---|--|--|--------------|----|
| 4-Bromofluorobenzene | 104                |    | 75   | -    | 125      |   |  |  | Reviewed by  | M  |
| Dibromofluoromethane | 110                |    | 75   | -    | 125      |   |  |  |              |    |
| Toluene-d8           | 110                |    | 75   | -    | 125      | • |  |  |              |    |

Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

Prep Method: EPA 5030B - Purge-and-Trap for Aqueous Samples

| Parameter            | Result             | Flag | DF       | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date       | QC Batch   |
|----------------------|--------------------|------|----------|-----------------|-------|-----------|------------|---------------------|------------|
| TPH as Gasoline      | ND                 |      | 1        | 25              | μg/L  | N/A       | N/A        | 03/24/2005          | WMS2050324 |
| Surrogate            | Surrogate Recovery | Co   | ntrol I. | imits (%)       |       |           |            | Analyzed by. Tfuite | on         |
| 4-Bromofluorobenzene | 95.7               |      | 75 -     | 125             |       |           |            | Reviewed by: MTU    | J          |
| Dibromofluoromethane | 97.4               |      | 75 -     | 125             | •     |           |            |                     |            |
| Toluene-d8           | 95.9               |      | 75 -     | 125             |       |           |            |                     |            |

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Jered Chaney

Project Number: H9042.Q

Project Name: Harbert Transportation

Date Received: 3/23/2005 P.O. Number: H9042.Q Sample Collected by: Client

#### Certificate of Analysis - Data Report

| Lab#: 42929-010   | Sample ID: MW-12      | Matrix: Liquid | Sample Date: 3/23/2005 | 8:18 AM      |
|-------------------|-----------------------|----------------|------------------------|--------------|
| Lab m . 12/2/ 010 | Dulliple XXXI AXXII X | 2.2004.200     |                        | 0.10 . 1.7.1 |

| Method: EPA | 8260B - Gas Chromatography/Ma  | iss Spec | trometry  | (GC/MS)       |
|-------------|--------------------------------|----------|-----------|---------------|
| rep Method: | EPA 5030B - Purge-and-Trap for | Aqueou   | ıs Sample | es            |
| Parameter   | Result                         | Flag     | DF        | Detection Lim |

| Parameter             | Result | Flag | DF | Detection Limit | Units     | Prep Date | Prep Batch | Analysis Date | QC Batch   |
|-----------------------|--------|------|----|-----------------|-----------|-----------|------------|---------------|------------|
| Benzene               | ND     |      | i  | 0.5             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| 'oluene               | ND     |      | 1  | 0 5             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethyl Benzene         | ND     |      | 1  | 0.5             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Xylenes, Total        | ND     |      | 1  | 0.5             | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| fethyl-t-butyl Ether  | ND     |      | 1  | 1               | μg/L      | N/A       | . N/A      | 03/24/2005    | WMS2050324 |
| Ethyl-t-butyl Ether   | ND     |      | 1  | 5               | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| tert-Butanol (TBA)    | ND     |      | 1  | 10              | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Dissopropyl Ether     | ND     |      | 1  | 5               | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| ert-Amyl Methyl Ether | ND     |      | 1  | 5               | μg/L      | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| Ethanol               | ND     |      | i  | 100             | $\mu g/L$ | N/A       | N/A        | 03/24/2005    | WMS2050324 |
| <del></del>           |        |      |    |                 |           |           |            |               | 1          |

| Surrogate            | Surrogate Recovery | Control Limits (%) | Analyzed by: TAF |
|----------------------|--------------------|--------------------|------------------|
| -Bromofluorobenzene  | 103                | 75 - 125           | Reviewed by MTU  |
| Dibromofluoromethane | 112                | 75 - 125           |                  |
| Toluene-d8           | 110                | 75 - 125           | !                |
|                      |                    |                    |                  |

#### Method: GC-MS - Gas Chromatography/Mass Spectrometry (GC/MS)

| Prep Method: | EPA 5030B - Purge-and-Trap for Aqueous Samples |  |
|--------------|------------------------------------------------|--|
|--------------|------------------------------------------------|--|

| Prep Method: EPA 5030 | rep Method: ErA 5030B - Purge-and-1 rap for Aqueous Samples |      |       |     |                 |       |           |            |                     |            |  |  |  |  |
|-----------------------|-------------------------------------------------------------|------|-------|-----|-----------------|-------|-----------|------------|---------------------|------------|--|--|--|--|
| Parameter             | Result                                                      | Flag | DI    | F   | Detection Limit | Units | Prep Date | Prep Batch | Analysis Date       | QC Batch   |  |  |  |  |
| 'PH as Gasoline       | ND                                                          |      | 1     |     | 25              | μg/L  | N/A       | N/A        | 03/24/2005          | WMS2050324 |  |  |  |  |
| Surrogate             | Surrogate Recovery                                          | Co   | ntrol | Liı | nits (%)        |       |           |            | Analyzed by: Tfulto | n          |  |  |  |  |
| -Bromofluorobenzene   | 99.0                                                        |      | 75    | -   | 125             |       |           |            | Reviewed by: MTU    |            |  |  |  |  |
| Dibromofluoromethane  | 99.0                                                        |      | 75    | -   | 125             |       |           |            |                     |            |  |  |  |  |
| Toluene-d8            | 95.7                                                        |      | 75    | -   | 125             |       |           |            |                     |            |  |  |  |  |

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

### Quality Control - Method Blank Liquid

QC Batch ID: WMS2050324

Validated by: MTU - 03/28/05

QC Batch ID Analysis Date: 3/24/2005

| Method Blank           | Meth       | od: EPA 8260E  | 3      |     |      |       |
|------------------------|------------|----------------|--------|-----|------|-------|
| Parameter              |            |                | Result | ÐF  | PQLR | Units |
| Benzene                |            |                | ND     | . 1 | 0 50 | μg/L  |
| Diisopropyl Ether      |            |                | ND     | 1   | 5.0  | μg/L  |
| Ethanol                |            |                | ND     | 1   | 100  | μg/L  |
| Ethanol                |            |                | ND     | 1   | 100  | μg/L  |
| Ethyl Benzene          |            |                | ND     | 1   | 0.50 | μg/L  |
| Methyl-t-butyl Ether   |            |                | ND     | 1   | 1.0  | μg/L  |
| tert-Amyl Methyl Ether |            |                | ND     | 1   | 5.0  | μg/L  |
| tert-Butanol (TBA)     |            |                | ND     | 1   | 10   | μg/L  |
| tert-Butanol (TBA)     |            |                | ND     | 1   | 10   | μg/L  |
| Toluene                |            |                | ND     | . 1 | 0.50 | μg/L  |
| Xylenes, Total         |            |                | ND     | 1   | 0.50 | μg/L  |
| Surrogate for Blank    | % Recovery | Control Limits |        |     |      |       |
| 4-Bromofluorobenzene   | 105        | 75 - 125       |        |     |      |       |
| Dibromofluoromethane   | 108        | 75 - 125       |        |     |      |       |
| Toluene-d8             | 110        | 75 - 125       |        |     |      |       |

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

### **Quality Control - Laboratory Control Spike / Duplicate Results**

Liquid

Reviewed by. MTU - 03/28/05

QC BatchID: WMS2050324

Analysis Date: 3/24/2005

| Method: EPA 8260     | В          |         |          | Conc. Units: µg/L |             |            |     |            |                 |  |  |
|----------------------|------------|---------|----------|-------------------|-------------|------------|-----|------------|-----------------|--|--|
| Parameter            | ВІ         | ank (Mi | DL) S    | Spike Amt         | SpikeResult | % Recovery | RPD | RPD Limits | Recovery Limits |  |  |
| 1,1-Dichloroethene   |            | < 0.2   |          | 20                | 20          | 101        |     |            | 80 - 120        |  |  |
| Benzene              |            | < 0.2   |          | 20                | 20          | 98.2       |     |            | 80 - 120        |  |  |
| Chlorobenzene        |            | < 0.2   |          | 20                | 20          | 98.4       | ,   |            | 80 - 120        |  |  |
| Methyl-t-butyl Ether |            | < 0.3   |          | 20                | 19 ·        | 96.8       |     |            | 80 - 120        |  |  |
| Toluene              |            | < 0.2   |          | 20                | 20          | 102        |     |            | 80 - 120        |  |  |
| Tuchloroethene       |            | <0.2    |          | 20                | 20          | 100        | =   |            | 80 - 120        |  |  |
| Surrogate            | % Recovery | Conti   | ol Limit | s                 |             |            |     |            |                 |  |  |
| 4-Bromofluorobenzene | 104        | 75      | - 125    |                   |             |            |     |            |                 |  |  |
| Dibromofluoromethane | 106        | 75      | - 125    |                   |             |            |     |            | ;               |  |  |
| Toluene-d8           | 109        | 75      | - 125    |                   |             |            |     |            |                 |  |  |

| Method: EPA 8260B<br>LCSD | Conc. Units: µg/L |           |             |            |     |            |                 |  |  |  |
|---------------------------|-------------------|-----------|-------------|------------|-----|------------|-----------------|--|--|--|
| Parameter                 | Blank (MDL)       | Spike Amt | SpikeResult | % Recovery | RPD | RPD Limits | Recovery Limits |  |  |  |
| 1,1-Dichloroethene        | <0.2              | 20        | 21          | 104        | 3.1 | 25.0       | 80 - 120        |  |  |  |
| Benzene                   | < 0.2             | 20        | 20          | 101        | 2.8 | 25.0       | 80 - 120        |  |  |  |
| Chlorobenzene             | <0.2              | 20        | 20          | 102        | 3.2 | 25.0       | 80 - 120        |  |  |  |
| Methyl-t-butyl Ether      | < 0.3             | 20        | 22          | 108        | 11  | 25.0       | 80 - 120        |  |  |  |
| Toluene                   | < 0.2             | 20        | 21          | 105        | 3.1 | 25.0       | 80 - 120        |  |  |  |
| Trichloroethene           | < 0.2             | 20        | 21          | 103        | 3.2 | 25.0       | 80 - 120        |  |  |  |

| Surrogate            | % Recovery | Cont | rol | Limits |
|----------------------|------------|------|-----|--------|
| 4-Bromofluorobenzene | 106        | 75   | -   | 125    |
| Dibromofluoromethane | 108        | 75   | -   | 125    |
| Toluene-d8           | 108        | 75   | -   | 125    |
|                      |            |      |     |        |

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

### Quality Control - Matrix Spike / Duplicate Results Liquid

QC Batch ID: WMS2050324

Reviewed by: MTU - 03/28/05

QC Batch ID Analysis Date: 3/24/2005

| Method EPA 8260B                     |                  |                 | 9               |                  |            |     | Conc. Un      | its: μg/L          |
|--------------------------------------|------------------|-----------------|-----------------|------------------|------------|-----|---------------|--------------------|
| MS SampleNumber: 42929-010 Parameter | Sample<br>Result | Spike<br>Amount | Spike<br>Result | Analysis<br>Date | % Recovery | RPD | RPD<br>Limits | Recovery<br>Limits |
| Benzene                              | ND               | 20              | 20.1            | 3/24/2005        | 100        |     |               | 65 - 135           |
| Methyl-t-butyl Ether                 | ND               | 20              | 21.6            | 3/24/2005        | 108        |     |               | 65 - 135           |
| Toluene                              | ND               | 20              | 20.8            | 3/24/2005        | 104        |     |               | 65 - 135           |
| Surrogate % Recovery                 | Control Limits   |                 |                 |                  |            |     |               |                    |
| 4-Bromofluorobenzene 104             | 75 - 125         |                 | •               |                  |            |     |               |                    |
| Dibromofluoromethane 110             | 75 - 125         |                 |                 |                  |            |     |               |                    |
| Toluene-d8 108                       | 75 - 125         |                 |                 |                  |            |     |               |                    |
| MSD                                  |                  |                 |                 |                  |            |     |               |                    |
| SampleNumber: 42929-010<br>Parameter | Sample<br>Result | Spike<br>Amount | Spike<br>Result | Analysis<br>Date | % Recovery | RPD | RPD<br>Limits | Recovery<br>Limits |
| Benzene                              | ND               | <b>2</b> 0      | 20.5            | 3/24/2005        | 103        | 2.0 | 25            | 65 - 135           |
| Methyl-t-butyl Ether                 | ND               | 20              | 20,7            | 3/24/2005        | 103        | 4.1 | 25            | 65 - 135           |
| Toluene                              | ND               | 20              | 21.4            | 3/24/2005        | 107        | 2.8 | 25            | 65 - 135           |
| Surrogate % Recovery                 | Control Limits   |                 |                 |                  |            |     |               |                    |
| 4-Bromofluorobenzene 103             | 75 - 125         |                 |                 |                  |            |     |               |                    |
| Dibromofluoromethane 108             | 75 - 125         |                 |                 |                  |            |     |               |                    |
| Toluene-d8 108                       | 75 - 125         |                 |                 |                  |            |     |               |                    |

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

### **Quality Control - Method Blank** Liquid

QC Batch ID: WMS2050325

Validated by: MTU - 03/29/05

QC Batch ID Analysis Date: 3/25/2005

| Method Blank           | Metl       | od: EPA 82601  | В      |     |       |           |     |
|------------------------|------------|----------------|--------|-----|-------|-----------|-----|
| Parameter              |            |                | Result | DF  | PQLR  | Units     |     |
| Benzene                |            |                | ND     | 1   | 0.50  | μg/L      |     |
| Diisopropyl Ether      |            |                | ND     | 1   | 5.0   | μg/L      |     |
| Ethanol                |            |                | ND     | · 1 | 100 . | μg/L      | ı   |
| Ethyl Benzene          |            |                | ND     | 1   | 0.50  | μg/L      |     |
| Methyl-t-butyl Ether   |            |                | ND     | 1   | 1.0   | $\mu g/L$ |     |
| tert-Amyl Methyl Ether |            |                | ND     | 1   | 5 0   | μg/L      |     |
| tert-Butanol (TBA)     |            |                | ND     | 1   | 10    | μg/L      | '   |
| Toluene                |            |                | ND     | 1   | 0.50  | μg/L      |     |
| Xylenes, Total         |            |                | ND     | 1   | 0.50  | μg/L      | 0   |
| Surrogate for Blank    | % Recovery | Control Limits |        |     |       |           | !   |
| 4-Bromofluorobenzene   | 112        | 75 - 125       |        |     |       |           | 0   |
| Dibromofluoromethane   | 103        | 75 - 125       |        | •   |       |           |     |
| Toluene-d8             | 108        | 75 - 125       |        |     |       |           | II. |

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

#### **Quality Control - Laboratory Control Spike / Duplicate Results**

Liquid

Reviewed by: MTU - 03/29/05

QC BatchID: WMS2050325 Analysis Date: 3/25/2005

| Method: EPA 8260<br>LCS | В          |            |           | Conc. Units: µg/L |            |         |            |                 |  |  |  |  |
|-------------------------|------------|------------|-----------|-------------------|------------|---------|------------|-----------------|--|--|--|--|
| Parameter               | В          | lank (MDL) | Spike Amt | SpikeResult       | % Recovery | RPD     | RPD Limits | Recovery Limits |  |  |  |  |
| 1,1-Dichloroethene      |            | <0.2       | 20        | 21                | 106        |         |            | 80 - 120        |  |  |  |  |
| Benzene                 |            | < 0.2      | 20        | 21                | 103        |         |            | 80 - 120        |  |  |  |  |
| Chlorobenzene           |            | <02        | 20        | 20                | 106        |         |            | 80 - 120        |  |  |  |  |
| Methyl-t-butyl Ether    |            | < 0.3      | 20        | 21                | 105        |         |            | 80 - 120        |  |  |  |  |
| Toluene                 |            | < 0.2      | 20        | 21                | 105        |         |            | 80 - 120        |  |  |  |  |
| Trichloroethene         |            | <0.2       | 20        | 21 "              | 105        |         |            | 80 - 120        |  |  |  |  |
| Surrogate               | % Recovery | Control Li | mits      | <u> </u>          | <u>.</u>   |         |            |                 |  |  |  |  |
| 4-Bromofluorobenzene    | 106        | 75 - 1     | 25        |                   |            |         |            |                 |  |  |  |  |
| Dibromofluoromethane    | 111        | 75 - 1     | 25        |                   |            |         |            |                 |  |  |  |  |
| Toluene-d8              | 108        | 75 - 1     | 25        |                   |            |         |            |                 |  |  |  |  |
| Method: EPA 8260        | В          |            |           |                   | Conc. Un   | its: µg | /L         |                 |  |  |  |  |

| Method: EPA 8260B<br>LCSD |             |           |             | Conc. Un   | its: µg | /L         |                 |
|---------------------------|-------------|-----------|-------------|------------|---------|------------|-----------------|
| Parameter                 | Blank (MDL) | Spike Amt | SpikeResult | % Recovery | RPD     | RPD Limits | Recovery Limits |
| 1,1-Dichloroethene        | <0.2        | 20        | 20 *        | 98.9       | 7.0     | 25.0       | 80 - 120        |
| Benzene                   | <0.2        | 20        | 20          | 98.9       | 4.4     | 25.0       | 80 - 120        |
| Chlorobenzene             | < 0.2       | 20        | 19          | 96.1       | 4.0     | 25.0       | 80 - 120        |
| Methyl-t-butyl Ether      | <0,3        | 20        | 21          | 105        | 0.58    | 25.0       | 80 - 120        |
| Toluene                   | <0.2        | 20        | 20          | 100        | 4.5     | 25.0       | 80 - 120        |
| Trichloroethene           | <0.2        | 20        | 20          | 100        | 4.9     | 25.0       | 80 - 120        |

| Surrogate            | % Recovery | Control L | Limits |
|----------------------|------------|-----------|--------|
| 4-Bromofluorobenzene | 106        | 75 - 1    | 125    |
| Dibromofluoromethane | 109        | 75 - 1    | 125    |
| Toluene-d8           | 108        | 75 - 1    | 125    |
|                      |            |           |        |

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

### **Quality Control - Matrix Spike / Duplicate Results** Liquid

QC Batch ID: WMS2050325

Reviewed by: MTU - 03/29/0\$

QC Batch ID Analysis Date: 3/25/2005

| Method EPA 8260B                           |                  |                 |                   |                  |            |     | Cone. Un      | its: μg/L       |
|--------------------------------------------|------------------|-----------------|-------------------|------------------|------------|-----|---------------|-----------------|
| MS<br>SampleNumber: 42895-002<br>Parameter | Sample<br>Result | Spike<br>Amount | Spike<br>Result   | Analysis<br>Date | % Recovery | RPD | RPD<br>Limits | Recovery        |
| Benzene                                    | ND               | 20              | 20.7              | 3/25/2005        | 103        |     |               | 65 - 135        |
| Methyl-t-butyl Ether                       | ND               | 20              | 20.7              | 3/25/2005        | 103        |     |               | 65 - 135        |
| Toluene                                    | ND               | 20              | 21.2              | 3/25/2005        | 106        |     |               | 65 - 135        |
| Surrogate % Recovery                       | Control Limits   |                 | , , , , , , , , , |                  | -          |     |               | !               |
| 4-Bromofluorobenzene 105                   | 75 - 125         |                 |                   |                  |            |     |               |                 |
| Dibromofluoromethane 106                   | 75 - 125         |                 |                   |                  |            |     |               |                 |
| Toluene-d8 108                             | 75 - 125         |                 | 6                 |                  |            |     |               | •               |
| MSD                                        |                  |                 |                   |                  |            |     | *             | 1               |
| SampleNumber: 42895-002<br>Parameter       | Sample<br>Result | Spike<br>Amount | Spike<br>Result   | Analysis<br>Date | % Recovery | RPD | RPD<br>Limits | Recovery Limits |
| Benzene                                    | ND               | 20              | 20.7              | 3/25/2005        | 104        | 0.2 | 25            | 65 - 135        |
| Methyl-t-butyl Ether                       | ND               | 20              | 20.5              | 3/25/2005        | 102        | 1.0 | 25            | 65 - 135        |
| Toluene                                    | ND               | 20              | 21 4              | 3/25/2005        | 107        | 0.9 | 25            | 65 - 135        |
| Surrogate % Recovery                       | Control Limits   |                 |                   |                  |            |     |               | i               |
| 4-Bromofluorobenzene 106                   | 75 - 125         |                 | •                 |                  |            |     |               |                 |
| Dibromofluoromethane 103                   | 75 - 125         |                 |                   |                  |            |     |               |                 |
| Toluene-48 108                             | 75 - 125         |                 |                   |                  |            |     |               |                 |

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

### **Quality Control - Method Blank**

Liquid

OC Batch ID: WFE050325

Validated by: DQUEJA - 03/30/05

QC Batch ID Analysis Date: 3/25/2005

Method Blank

Method: SM 3500 - Fe

Parameter

Result

DF

POLR

Units

Iron, Ferrous

ND

1

0.10

Conc. Units: mg/L

Conc. Units: mg/L

mg/L

### **Quality Control - Laboratory Control Spike / Duplicate Results**

Liquid

Reviewed by: DQUEJA - 03/30/05 QC BatchID: WFE050325

Analysis Date: 3/25/2005

Method: SM 3500 - Fe

Blank (MDL)

Spike Amt 0.40

SpikeResult 0.39

% Recovery 97.9

RPD **RPD** Limits Recovery Limits

75 - 125

Method: SM 3500 - Fe

LCSD

LCS

Parameter

Iron, Ferrous

Parameter Iron, Ferrous Blank (MDL) <0.1

< 0.1

Spike Amt 0.40

SpikeResult 0.42

% Recovery 106

RPD 8.1

**RPD** Limits

Recovery Limits

75 - 125

#### Quality Control - Matrix Spike / Duplicate Results Liquid

QC Batch ID: WFE050325

QC Batch ID Analysis Date: 3/25/2005

Reviewed by: DQUEJA - 03/30/05

Method SM 3500 - Fe

SampleNumber: Parameter Iron, Ferrous

42929-006

Sample Result ND

Spike Amount 0.50

Spike Result 0.581

Analysis Date 3/25/2005

% Recovery 116

RPD

RPD Recovery Limits Limits 75 - 125

Conc. Units: mg/L

MSD

SampleNumber: Parameter Iron, Ferrous

42929-006

Sample Result ND

Spike Amount 0.50

Spike Result 0.568

Analysis Date 3/25/2005

% Recovery 114

RPD RPD Limits 2.2

Recovery Limits 75 - 125

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

### **Quality Control - Method Blank**

Liquid

QC Batch ID: WIC050323

Validated by: LGLANTZ - 03/30/05

QC Batch ID Analysis Date: 3/23/2005

Method Blank Method: EPA 300.0

 Parameter
 Result
 DF
 PQLR
 Units

 Nitrate as N
 ND
 1
 0.20
 mg/L

 Sulfate
 ND
 1
 0.50
 mg/L

### Quality Control - Laboratory Control Spike / Duplicate Results

Liquid

Reviewed by: DQUEJA - 03/30/05

QC BatchID: WIC050323

Analysis Date: 3/23/2005

| Method: EPA 300.0 |             |           |             | Conc. Un   | its: mg | g/L        |                 |
|-------------------|-------------|-----------|-------------|------------|---------|------------|-----------------|
| Parameter         | Blank (MDL) | Spike Amt | SpikeResult | % Recovery | RPD     | RPD Limits | Recovery Limits |
| Nitrate as N      | < 0.01      | 2.3       | 2.4 °       | 106        |         |            | 75 - 125        |
| Sulfate           | < 0.1       | 15        | 16          | 107        |         |            | 75 - 125        |

Method: EPA 300.0 Conc. Units: mg/L

LCSD

| Parameter    | Blank (MDL) | Spike Amt | SpikeResult | % Recovery | RPD | RPD Limits | Recovery Limits |
|--------------|-------------|-----------|-------------|------------|-----|------------|-----------------|
| Nitrate as N | < 0.01      | 2.3       | 2.4         | 108        | 1.2 | 25.0       | 75 - 125        |
| Sulfate      | <0.1        | 15        | 16          | 109        | 2.5 | 25 0       | 75 - 125        |

### Quality Control - Matrix Spike / Duplicate Results Liquid

QC Batch ID: WIC050323

Reviewed by: DQUEJA - 03/30/05

QC Batch ID Analysis Date: 3/23/2005

| Method EPA 300.0<br>MS                     |                  |                 |                 |                  |            |     | Conc. Un      | its: mg/L          |
|--------------------------------------------|------------------|-----------------|-----------------|------------------|------------|-----|---------------|--------------------|
| MS<br>SampleNumber: 42929-008<br>Parameter | Sample<br>Result | Spike<br>Amount | Spike<br>Result | Analysis<br>Date | % Recovery | RPD | RPD<br>Limits | Recovery<br>Limits |
| Nitrate as N                               | 0.154            | 4 0             | 3.75            | 3/23/2005        | 89.9       |     |               | 75 - 125           |
| Sulfate                                    | 1.80             | 20              | 22.5            | 3/23/2005        | 104        |     |               | 75 - 125           |
| MSD                                        |                  |                 |                 |                  |            |     |               | <u> </u>           |
| SampleNumber: 42929-008<br>Parameter       | Sample<br>Result | Spike<br>Amount | Spike<br>Result | Analysis<br>Date | % Recovery | RPD | RPD<br>Limits | Recovery<br>Limits |
| Nitrate as N                               | 0.154            | 4 0             | 3.86            | 3/23/2005        | 92.6       | 2.9 | 25            | 75 - 125           |
| Sulfate                                    | 1.80             | 20              | 23.0            | 3/23/2005        | 106        | 2.4 | 25            | 75 - 125           |



# Weber, Hayes & Associates Hydrogeology and Environmental Engineering

#### **CHAIN -OF-CUSTODY RECORD**

120 Westgate Dr., Watsonville, CA 95076

|                       |                  |           | (831) 722-35<br>Fax: | 580 (831) (<br>(831) 722-115 |        | 100                 |             |                       |                 |            |                                                |                                          |                      |                               |                                  |                                                           | 1 OF 1                                                 |
|-----------------------|------------------|-----------|----------------------|------------------------------|--------|---------------------|-------------|-----------------------|-----------------|------------|------------------------------------------------|------------------------------------------|----------------------|-------------------------------|----------------------------------|-----------------------------------------------------------|--------------------------------------------------------|
| PROJECT               | NAME AND JOB #:  | Harbert 7 |                      |                              |        |                     |             |                       |                 |            |                                                | LAB                                      | ORATORY:             | Entech                        | Analytic                         | al                                                        |                                                        |
| SEND CERTIF           | FIED RESULTS TO: | Weber, H  | aves & Ass           | ociates - A                  | ttent  | ion: .lerec         | l Chaney    |                       |                 | **         | =                                              |                                          | UND TIME:            |                               |                                  |                                                           |                                                        |
| ELECTRONIC DELIVE     |                  |           | YES _                | NO                           |        |                     | Unancy      |                       |                 |            | -                                              |                                          | OBAL I.D.:           |                               | tandard Five                     | -Day                                                      | 48hr Rush 72hr Rush                                    |
| Sampler:              | Jered Chaney     |           |                      |                              |        |                     |             |                       |                 |            |                                                |                                          |                      |                               |                                  |                                                           |                                                        |
| Date:                 | 3 23 0           | S         |                      |                              |        |                     |             |                       |                 |            |                                                | ,                                        |                      |                               |                                  |                                                           |                                                        |
|                       |                  |           |                      |                              |        |                     | SAMPLE CO   | NTAINERS              | 3               |            |                                                |                                          | REQUEST              | ED ANAL                       | YSIS                             |                                                           |                                                        |
| Field Point Name      | Sample           | Sample    | Date                 | Time                         | Matrix | 40 mL               | 40 mL       | 1 050 -1              | 252             | Total      | Petroleum Hydro                                | carbons                                  | Fuel                 | Volatile                      | Organics                         |                                                           | Bio-Parameters                                         |
| (Geo Tracker)         | Identification   | Depth     | Sampled              | Sampled                      | Ma     | VOAs<br>(preserved) | VOAs        | 250 mL<br>Poly Bottle | 250 mL<br>Amber | TPH-Dresel | Total Recoverable<br>Petroleum<br>Hydrocarbons | TPH-Gasoline<br>by EPA Method GC<br>- MS | Oxygenates &<br>BTEX | EDB<br>EPA Method#<br>8260    | Methanol<br>EPA Method#<br>8015M | 1,2-DCA by<br>EPA Method#<br>8260                         | Methane, Nitrate, Sulfate, &<br>Dissolved Ferrous Iron |
| nu 3                  | Mus.3            | 20.23     | 3 23 ot              | #53                          | Ą      | 3                   | 2.          | 1                     | ,               |            | <u> </u>                                       | ¥                                        | ~                    |                               | 129-1                            | 1 1                                                       | X                                                      |
| 5-1ca-ri              | 14hr-4           | #1.52     | 1                    | 0723                         | ,      |                     | <del></del> | -                     | 1               |            | -                                              | <u>*</u>                                 | ×                    |                               | 6                                | ĈŹ.                                                       | <u> </u>                                               |
| れいら                   | TW-5             | 24.61     |                      | 1502                         |        | 3                   | Z.,         | ı                     | 1               |            |                                                | *                                        | ×                    |                               | 1                                | 03                                                        | <b>X</b> -                                             |
| 17h2-6                | 760.6            | 21.52°    |                      | 1328                         |        | 2                   |             |                       |                 |            |                                                | *                                        | *                    | -                             |                                  |                                                           |                                                        |
| 150° 3                | 74607            | 21.91     |                      | #30                          |        | 3                   |             |                       |                 |            |                                                | ×                                        | *                    | -                             | F.                               | 0 <u>v</u><br>02                                          |                                                        |
| 8.WM                  | Frut             | 24.74"    |                      | 0851                         |        | 3                   | Z           |                       | 1               |            |                                                | X                                        | ×                    |                               | Ċ                                | 06<br>07<br>08                                            | ×                                                      |
| 76-q                  | Herd             | to-ST     |                      | 1237                         |        | 3                   | 2           | ŧ                     | 4               |            |                                                | <.                                       | ×                    |                               | Ę                                | 67                                                        | ×                                                      |
| 7144-10               | thereo.          | 19-19     |                      | 1237·                        |        | 3                   | 2           | 3                     | 1               |            |                                                | X.                                       | ×                    |                               | E.                               | 200                                                       | X                                                      |
| recent                | Plant.           | 20.16     |                      | 1405                         |        | 3                   |             |                       |                 |            |                                                | *                                        | ×                    |                               | C                                | 09                                                        |                                                        |
| NOR                   | He42             | Zi.aq.    | 4                    | 0.845                        | •      | 3                   |             |                       |                 |            |                                                | *                                        | X                    |                               |                                  | ić                                                        |                                                        |
|                       |                  |           |                      |                              |        |                     |             |                       |                 |            |                                                |                                          |                      |                               |                                  |                                                           |                                                        |
| 1.) RELEA 1.) 2.) 3.) | SED BY:          | -         | Date & Ti            |                              |        |                     | Joseph      | RECEIV                | ED BY:          |            | Date 8                                         | Time<br>5 1616                           |                      | Ambient<br>Ambient<br>Ambient | SA                               | MPLE CONDIT<br>(circle 1)<br>Refrigerated<br>Refrigerated |                                                        |
| 4.)                   |                  |           | -                    |                              |        | <del></del>         | ~           |                       |                 |            | _                                              | _                                        |                      | Ambiont                       |                                  | Deference                                                 | F                                                      |

Ambient Refrigerated Frozen NOTES: ADDITIONAL COMMENTS If MTBE is detected by EPA Method 8020, please confirm detections by EPA Method 8260 with a minimum detection limit of 5 ug/L, and report only confirmed 8260 Please produce and email an EDF of these results to frances@weber-hayes.com For MTBE-analyzed samples with non-detectable results (ND) but having elevated detection limits, please confirm by EPA Method #8260. - Fuel Oxygenates should include MtBE, DIPE, TAME, ETBE, TBA & Ethanol. Please use MDL (Minimum Detection Limit) for any diluted samples. - Lab to filter & acidify Dissolved Ferrous Iron sample (250 mL Amber)

CA ELAP # I-2346

3334 Victor Court, Santa Clara, CA 95054

(408) 588-0200

FAX (408) 588-0201

### **Subcontract Chain of Custody**

Subcontract Lab:

Entech Project Name:

Date Sent:

Due Date:

PO Number 42929

An Toxics LTD

42929

3/23/05 3/30/05

| Entech<br>Sample<br>Number | Customer Sample<br>Name/Field Point ID | Matrix | Method                    | Collect<br>Date | Collect<br>Time | Bottle Type | Preservative |
|----------------------------|----------------------------------------|--------|---------------------------|-----------------|-----------------|-------------|--------------|
| 42929-001                  | MW-3                                   | Liquid | Methane - Air Toxics LTD  | 3/23/200        | 11:58           | ,           |              |
| 42929-003                  | MW-5                                   | Liquid | Methane - Air Toxics LTD  | 3/23/200        | 15:02           |             |              |
| 42929-006                  | MW-8                                   | Liquid | Methane - Air Toxics LTD  | 3/23/200        | 8.51            |             |              |
| 42929-007                  | MW-9                                   | Liquid | Methane - Air Toxics LTD  | 3/23/200        | 12.37           |             |              |
| 42929-008                  | MW-10                                  | Liquid | Metalune - Air Toxics LTD | 3/23/200        | 10:37           |             |              |

| Relinquished By: | Received By:         | Date:    | Time, |
|------------------|----------------------|----------|-------|
| Soseph Machado   | California Overnight | 03-23-05 | 1830  |
| Reliquisted By:  | Received By:         | Date:    | Time: |
| Relinquished By: | Received By:         | Date:    | Time: |
|                  |                      |          |       |