Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

Project H9042.Q

July 2, 2003

Mr. Jerry Harbert 46765 Mountain Cove Drive Indian Wells, California 92210

Subject: Groundwater Monitoring Report - First Quarter 2003

Harbert Transportation

19984 Meekland Avenue, Hayward, California

Dear Mr. Harbert:

This report describes groundwater monitoring activities conducted by Weber, Hayes and Associates at the former Harbert Transportation facility, 19984 Meekland Avenue, Hayward, California, during the first quarter 2003. This report has been prepared pursuant to a directive from the Alameda County Health Care Services Agency/Environmental Health Services (Environmental Health) regarding a release of petroleum hydrocarbons from underground storage tanks at the site.

EXECUTIVE SUMMARY

The groundwater monitoring event for the first quarter 2003 took place on March 21, 2003. Groundwater elevations at the site fell an average of approximately 1.11 feet since the previous quarter (December, 2002). The calculated groundwater flow direction on March 21, 2003 was to the west, which appears to be consistent with historical data. Groundwater analytical results from the first quarter 2003 indicate that dissolved PHC concentrations fluctuated somewhat; they increased in on-site wells, and a decreased in off-site wells. Dissolved PHC concentrations remained below our proposed site-specific cleanup goals.

Methyl-tert-Butyl Ether (MTBE) was not detected in the groundwater samples collected this quarter. MTBE has not been detected in soil or groundwater at the site. Groundwater samples in the third quarter 2000 were analyzed for the fuel oxygenates Di-isopropyl Ether, tertiary Butyl Alcohol, Ethyl tertiary Butyl Ether, and tertiary Amyl Methyl Ether. No fuel oxygenates were detected in these groundwater samples.

The groundwater samples collected this quarter were also analyzed for Halogenated Volatile Organic Compounds (HVOCs), because trace levels of the HVOCs trichloroethylene, tetrachloroethylene and 1, 2-dichloroethane had been detected in the original site investigation. None of these compounds were detected in the groundwater samples. 1, 1, 2-trichloroethane was detected at a maximum concentration of 9 micrograms per liter (μ g/L, parts per billion, ppb). This concentration is well below the Risk Based Screening Level of 930 ppb for Residential Indoor Air Impacts in coarse grained soils which we propose to use as the site-specific cleanup goal.

At this time we recommend:

Completing a Well/Conduit Search to confirm our hypothesis that shallow groundwater near
the site is not a drinking water source and that there are no nearby abandoned wells that

could serve as conduits to deeper groundwater. A Work Plan for the Well/Conduit Search was presented in our March 27, 2003 report and was approved by Alameda County Environmental Health on April 15, 2003. The Well/Conduit Search has begun, and results will be presented in the next monitoring report.

- Continuing quarterly groundwater monitoring while the Regional Board and Alameda County Environmental Health review the site-specific cleanup goals proposed in our March 27, 2003 report and the results of the Well/Conduit Search.
- Closing the fuel leak investigation and cleanup if the Well/Conduit Search confirms that shallow groundwater is not currently a drinking water source and deeper groundwater is not threatened. Site investigations and groundwater monitoring have shown that residual PHCs in soil and groundwater do not threaten human health or groundwater resources. Residual PHCs in shallow groundwater at the site will degrade to groundwater quality goals (drinking water Action Levels/Maximum Contaminant Levels).

INTRODUCTION

This report documents groundwater monitoring activities at the former Harbert Transportation facility, 19984 Meekland Avenue, Hayward, California (the site), during the first quarter 2003. This report has been prepared pursuant to a directive from the Alameda County Health Care Services Agency/Environmental Health Services (Environmental Health, August 8, 2000) regarding a release of petroleum hydrocarbons (PHCs) from underground storage tanks (USTs) at the site.

Environmental Health concurred with our first quarter 2002 recommendation to decrease the sampling frequency at selected monitoring wells. The current sampling schedule is:

Quarterly Monitoring Wells MW-3, 5, 6, 9, and 10

Semi-Annually Monitoring Wells MW-3, 5, 6, 7, 9, and 10 (Second Quarter)

Annually All Wells, MW-3 - 12 (Fourth Quarter)

Groundwater monitoring activities conducted during this quarter included:

- 1. Measuring groundwater levels and checking for the presence of free product in all of the monitoring wells associated with the site
- 2. Measuring the physical parameters of pH, temperature, electrical conductivity, and dissolved oxygen concentration in each well
- 3. Collecting groundwater samples from the appropriate monitoring wells
- 4. Submitting the groundwater samples to a state-certified analytical laboratory for analysis of dissolved PHC concentrations following proper chain-of-custody procedures
- 5. Determining groundwater elevations, flow direction, and gradient in the vicinity of the site
- 6. Mapping the extent of the dissolved PHC plume in groundwater beneath the site
- 7. Preparing this technical report

For completeness the groundwater samples collected this quarter were also analyzed for Halogenated Volatile Organic Compounds (HVOCs), because trace levels of some HVOCs were detected in the original site investigation. It is appropriate to check if any HVOCs remain as the site is now poised for closure. The only HVOC detected was 1, 1, 2-trichloroethane (1,1,2-TCA). 1,1,2-TCA was not detected in the initial site investigation. There is no evidence that 1,1,2-TCA was ever used at the site. 1,1,2-TCA was detected at a maximum concentration of 9 micrograms per liter (µg/L, parts per billion, ppb), well below the Risk Based Screening Level of 930 ppb for Residential Indoor Air Impacts in coarse grained soils which we propose to use as the site-specific cleanup goal. This site-specific cleanup goal is appropriate since shallow groundwater at the site is not a drinking water source and there is no nearby surface water that could be impacted.

SITE DESCRIPTION AND BACKGROUND

The site is located at the corner of Meekland Avenue and Blossom Way, a highly urbanized area in Alameda County California (Figure 1). The site is located at an elevation of approximately 55 feet above sea level. The site is relatively flat. The area of the site is approximately 21,000 square feet. The site is located approximately 2,500 feet south of San Lorenzo Creek, and approximately 15,000 feet east of the San Francisco Bay (see Figure 1). There are no ecologically sensitive areas (such as surface water or wetlands) or homes to endangered species within 1,000 feet of the site. Domestic water at the site and in the vicinity is provided by the East Bay Municipal Utilities District.

Past, Current and Anticipated Future Site Activities and Uses

The site was used primarily for commercial activities in the past. It has operated as a motor vehicle fueling station since the 1940's. Harbert Transportation used the site as a vehicle and fueling yard before selling the site to Durham Transportation in 1986. Durham used the site for similar activities.

The site is currently vacant. Anticipated future site uses are residential, so all Risk-Based Screening for contaminants at the site were based on residential land use. Residual concentrations of PHCs are below the residential Risk-Based Screening Levels, so no formal land use restrictions are necessary to protect human health (see below).

Summary of Site Investigations

In August 1989, four underground storage tanks (USTs) were removed from the site and properly disposed of. Soil and groundwater investigations at the site, conducted by Applied Geosystems, CTTS, and AGI Technologies, indicated that PHCs were present in soil and groundwater at the site. A list of reports documenting the soil and groundwater investigations is included in the Reference section. Twelve groundwater monitoring wells were installed by the former consultants. Ten of the monitoring wells still exist at the site (see Figure 2). Documentation indicates the other two monitoring wells were properly destroyed. Groundwater samples were not collected from the site

between September 1996 and September 2000. Documentation indicates that excavated soil from the UST removals was returned to the (reportedly plastic-lined) excavations (CTTS, November 1, 1992).

Documentation also indicates that two USTs were removed from the site in the early 1950's (CTTS, November 27, 1990). These USTs were located near the dispensers for the USTs removed in 1989.

Weber, Hayes and Associates initiated a groundwater monitoring program at the site in the third quarter 2000. The groundwater monitoring program continued on a quarterly basis to the present. Analytical data from the groundwater monitoring program indicate that shallow groundwater at the site has been impacted by PHCs. However, neither Methyl tert Butyl Ether (MTBE) nor other fuel oxygenates (Di-isopropyl Ether, tertiary Butyl Alcohol, Ethyl tertiary Butyl Ether, and tertiary Amyl Methyl Ether) have ever been detected in groundwater at the site.

On February 14, 2001, we collected soil samples from the site to determine the extent of PHCs remaining in the unsaturated zone in accordance with our September 7, 2000 Work Plan. The Work Plan was approved by Environmental Health on November 1, 2000. Analysis of the data collected indicated that the soils at the site were predominately fine grained, and confirmed that significant concentrations of PHCs remained in soils beneath the former dispensers and in the 1989 UST excavation which was backfilled with the excavated material. We recommended excavation of these residual PHCs as an Interim Remedial Action (Weber, Hayes and Associates, June 18, 2001). Environmental Health concurred with this recommendation in a letter dated June 26, 2001.

On January 7 - 10, 2002 we conducted an interim remedial action excavation using six foot diameter augers to remove contaminated soils from the subsurface. Approximately 670 cubic yards (yds³) of soil was removed from the subsurface. Approximately 594 yds³ of PHC-impacted soil was transported to an appropriate landfill for disposal. The remaining soil was verified not to contain any detectable PHCs, and was reused on-site as backfill material. A pump was installed in one of the large diameter boreholes and 3,000-gallons of PHC impacted water was removed from the subsurface and properly disposed of. Oxygen Release Compound® (ORC) was added to the saturated zone in each borehole to promote microbial growth and enhance the ability of aerobic microbes to degrade contaminants. Each borehole was backfilled with control density fill and clean fill soil to ground surface. This work was described in our February 8, 2002 report, Large Diameter Excavation and 4th Quarter 2001 Quarterly Groundwater Monitoring. The highest residual PHC concentrations in soil at the site after the source zone excavation are summarized in the table below.

Summary of Maximum Residual PHC Concentrations in Soil After Source Zone Excavation (mg/kg, ppm)

Chemical	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes
Highest Site Soil Concentrations	34	0.041	0.014	0.12	0.62

The highest residual PHC concentrations at the site are from a single confirmation soil sample collected after the source excavation in January 2002 (sample LD#16 SW-W). The majority of the confirmation samples collected after the source excavation did not contain any detectable PHCs.

In the first quarter 2002 we recommend that the frequency of sampling in monitoring well MW-7 be reduced to semi-annually (second and fourth quarters) and that the frequency of sampling in monitoring wells MW-4, 8, 11 and 12 be reduced to annually (fourth quarter only). Alameda County Environmental Health concurred with our recommendations in a telephone conversation on July 29, 2002.

In the fourth quarter 2002 (Weber, Hayes, and Associates, March 27, 2003) we presented site-specific soil and groundwater cleanup goals based on the California Regional Water Quality Control Board, San Francisco Bay Region's publication: *Application of Risk-Base Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater*. The site specific cleanup goals are summarized below.

Comparison of Site Specific Cleanup Goals/Tier 1 RBSLs to Site Data

Chemical	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes
Highest Site Soil Concentrations	, , ,		0.014 mg/kg	0.12 mg/kg	0.62 mg/kg
Soil Cleanup Goal			2.6 mg/kg	2.5 mg/kg	1.0 mg/kg
Groundwater Cleanup Goal	5,000 - 50,000 μg/L	5,800 μg/L	530,000 μg/L	170,000 μg/L	150,000 μg/L

Comparison of the site-specific cleanup goals for PHCs in soil with the highest residual concentrations of PHCs in soil indicate that residual concentrations of PHCs in soil were below site-specific cleanup goals and did not pose a threat to human health. There are no sensitive ecological habitats, such as surface water or wetlands, within three miles of the site, so the residual PHCs in soil do not pose a threat to the environment, either. PHC concentrations in groundwater were also below site-specific cleanup goals and did not pose a threat to human health.

In the fourth quarter 2002 we also presented a Work Plan for the Well/Conduit Search to confirm our assumption that shallow groundwater near the site is not a drinking water source and that there are no nearby abandoned wells that could serve as conduits to deeper groundwater. Environmental Health concurred with our Work Plan on April 15, 2003, and requested that the search be expanded to identify the presence of all wells within 1/2 mile radius of the site (i.e., monitoring and production wells; active, inactive, standby, destroyed, abandoned), provide details of their construction (where available), and an interpretation of their possible contribution to plume dispersal, should there be any. Environmental Health also requested that the Conduit Search include an evaluation of all potential preferential pathways (e.g., utilities, storm drains, etc.).

GROUNDWATER MONITORING - FIRST QUARTER 2003

The groundwater monitoring event for the first quarter 2003 took place on March 21, 2003. Field methods followed Weber, Hayes and Associates' standard field methodology for groundwater monitoring, which is described in Appendix A. Groundwater samples were collected from monitoring wells MW-3, 5, 6, 9 and 10 in accordance with directives from Environmental Health, and analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method 8015M, and benzene, toluene, ethylbenzene, and xylenes (BTEX), and Methyl tert Butyl Ether (MTBE) by EPA Method 8020. Samples with elevated detection limits or detections of MTBE were analyzed by EPA Method 8260 to confirm the presence of MTBE and provide the proper detection limit.

Groundwater samples from this quarterly monitoring event were also analyzed for Halogenated Volatile Organic Compounds (HVOCs) by EPA Method 8010 (by EPA Method 8260) for completeness because trace concentrations of some of these compounds were detected during the initial site investigation. We also analyzed a sample from groundwater monitoring well MW-3 for Total Dissolved Solids (TDS) by EPA Method 160.1. Groundwater with TDS in excess of 3,000 parts per million (milligrams per liter, ppm) is not suitable for use as a drinking water source.

Field data forms are also presented in Appendix A.

Free Product

Free product was not observed in any of the monitoring wells at the site. Free product has never been observed at the site.

Groundwater Elevation and Flow Direction

Groundwater elevations were calculated by subtracting the measured depth-to-groundwater from the top-of-casing elevations, which were surveyed by a state-licensed Land Surveyor. Field measurements and the calculated groundwater elevations for the site are summarized in Table 1. Groundwater elevations at the site fell an average of approximately 1.11 feet since the previous quarter (December 2002). Calculated groundwater elevations from the gauging data collected on March 21, 2003 are shown on Figure 2. Data from this quarter indicate that groundwater flow is to the west (see Figure 2). The calculated groundwater gradient on March 21, 2003 was approximately 0.002 feet per foot. Previous reports indicate that the groundwater flow direction in the vicinity of the site has generally been in a westerly direction. A table and figures summarizing previous depth to groundwater data are presented as Appendix B.

Groundwater Analytical Results

Groundwater samples were collected from five of the ten monitoring wells associated with the site this quarter, in accordance with directives from Environmental Health. The groundwater analytical results for this quarter are summarized below.

Summary of Petroleum Hydrocabon Groundwater Sample Analytical Results, March 21, 2003 (µg/L, ppb)

Well ID	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
MW-3	460	3.3	1.4	5.6	< 2.5	ND*
MW-5	4,800	190	82	370	700	< 5*
MW-6	1,200	6.3	< 5	54	< 10	ND*
MW-9	5,900	190	24	470	630	< 5*
MW-10	700	3.4	1.4	0.71	1	ND*
PQLs	50	0.5	0.5	0.5	1	1
AL/MCL	1,000	1	150	700	1,750	5
Groundwater Cleanup Goal	5,000 - 50,000	5,800	530,000	170,000	150,000	NA

^{* =} Confirmed by GC/MS method 8260, PQL = Laboratory's Practical Concentration Limit

The concentration of benzene in wells MW-3 and 10 exceed the groundwater quality goal/drinking water MCL of 1 part per billion (ppb), but were below the site-specific groundwater cleanup goal of 5,800 ppb.

The concentrations of TPH-g and benzene in wells MW-5 and 6 exceed the respective groundwater quality goal/drinking water Action Level (AL) / Maximum Contaminant Level (MCL), but were below their respective site-specific groundwater cleanup goals.

The concentration of TPH-g in well MW-9 slightly exceeded the site-specific groundwater cleanup goal of 5,000 ppb. We note that there is no Risk Based Screening Level for TPH-g, and that we proposed the site-specific cleanup goal for TPH-g based on the known propensity of gasoline-range petroleum compounds to degrade in situ, the distance of this site from sensitive ecological receptors, the assumption that shallow groundwater is not a drinking water source, and review of the Regional Board's *RBSL Document*. We assume that the TPH compounds will degrade to groundwater quality goals in a reasonable time frame. Since the drinking water ingestion and sensitive receptor exposure pathways are closed, there are no other exposure pathways (such as volatilization to indoor air) for TPH-g. Based on these criteria, a site-specific cleanup goal for TPH-g of up to 50,000 ppb would

be acceptable. The concentration of 5,900 ppb of TPH-g in well MW-9 does not pose a threat to human health or the environment.

No other PHCs exceed their respective groundwater quality goals/ALs or MCLs.

MTBE was not detected in any of the wells associated with the site.

Please see the Site Conceptual Model section for further discussion of the groundwater analytical results.

Analytical results for the groundwater samples collected by Weber, Hayes and Associates since the third quarter 2000 are summarized in Table 2. PHC concentrations detected in groundwater during the current monitoring event are shown on Figure 3. The extent of dissolved PHCs greater than 1,000 ppb TPH-g and 10 ppb benzene in groundwater are shown on Figure 4. A dissolved oxygen concentration contour map is presented as Figure 5. The decreasing trend in TPH-g and benzene concentrations in wells MW-5 and 9, along with groundwater elevations over time, are shown on Figures 6 and 7.

The laboratory's Certified Analytical Reports for the groundwater samples is presented as Appendix C. All laboratory quality control and quality assurance data were within acceptable limits. A table and figures summarizing analytical results of groundwater samples collected by previous consultants is presented as Appendix D (review of analytical data collected by previous consultants further illustrates the decreasing trend in dissolved PHC concentrations).

For completeness the groundwater samples collected this quarter were also analyzed for Halogenated Volatile Organic Compounds (HVOCs), because trace levels of tetrachloroethylene, trichloroethylene and 1, 2-dichloroethane were detected in the initial site investigation. It is appropriate to check if any of these compounds remain as the site is now poised for closure. Only 1, 1, 2-trichloroethane (1,1,2-TCA) was detected in the groundwater samples. 1,1,2-TCA was not detected in the initial site investigation. There is no evidence that 1,1,2-TCA was ever used at the site. No other HVOCs, including tetrachloroethylene, trichloroethylene and 1, 2-dichloroethane were detected. The concentrations of 1, 1, 2-trichloroethane detected this quarter are summarized below. The laboratory's Certified Analytical Report is presented in Appendix C.

Summary of HVOC Groundwater Sample Analytical Results, March 21, 2003 (µg/L, ppb)

Well ID	MW-3	MW-5	MW-6	MW-9	MW-10
1,1,2-Trichloroethane Concentration (ppb)	ND	5.3	3.9	5.3	9,0

We compared these concentrations of 1,1,2-TCA to the Risk Based Screening Level for residential land use for protection of human health based on indoor air impacts from 1,1,2-TCA in Table F-1 of Appendix 1 (Volume 2) of the Regional Board's RBSL Document. This is appropriate RBSL for the site because indoor air is the only complete exposure pathway at the site since groundwater is not used for drinking water in the vicinity of the site. For a more thorough discussion of the appropriateness of using RBSLs see our March 27, 2003 Report. The RBSL for indoor air impacts from 1, 1, 2-trichloroethane is 930 ppb in coarse grain soils. The soils at the site are fine grained; the RBSL for fine grained soils is 8,200 ppb. The entry for 1, 1, 2-trichloroethane in Table F-1 of the RBSL Document is presented as Appendix E. The concentrations of 1, 1, 2-trichloroethane at the site do not exceed the Risk Based Screening Levels, and do not pose a threat to human health.

The groundwater sample from well MW-3 contained 460 parts per million Total Dissolved Solids (TDS). This indicates that groundwater beneath the site does not exceed the TDS MCL for drinking water.

Dissolved Oxygen Measurements

Current and historic dissolved oxygen measurements collected at the site indicate generally lower levels of dissolved oxygen in PHC-impacted wells compared to levels in non-impacted, upgradient wells. The decrease in dissolved oxygen in the impacted wells is shown on the dissolved oxygen concentration contour map, Figure 5. We believe the depletion of dissolved oxygen in PHC-impacted wells, combined with the observed decrease in dissolved PHC concentrations over time (see Figures 6 and 7), indicates that natural attenuation of PHCs via biologic activity (bioremediation) is occurring in groundwater, with microbes using dissolved PHCs as a food source during aerobic respiration (Bushek and O'Reilly, 1995).

Summary of Quarterly Groundwater Monitoring Results

- Free product was not observed in any of the monitoring wells at the site.
- Groundwater elevations at the site fell an average of approximately 1.11 feet since the previous quarter (December 2002).
- The groundwater flow direction on March 21, 2003 was to the west at a gradient of approximately 0.002 feet per foot. This direction is in agreement with data collected by us and previous data collected by others at the site.
- Concentrations of dissolved PHCs in the on-site monitoring wells increased slightly compared to last quarter.

- Concentrations of dissolved PHCs in off-site monitoring wells decreased compared to last quarter.
- MTBE was not detected in any of the groundwater samples collected this quarter.
- TPH-g was detected at a concentration above the drinking water Action Level in on-site wells MW-5, 6, and 9. The concentrations of TPH-g were below the appropriate Risk Based Screening Level/site-specific cleanup level.
- Benzene was detected at a concentration above the drinking water MCL in wells MW-3, 5, 6, 9, and 10. The concentrations of benzene were below the appropriate Risk Based Screening Level/site-specific cleanup level.
- No other PHCs were detected above their respective water quality goals/drinking water Action Levels/Maximum Contaminant Levels.
- 1,1,2-Trichloroethane was detected in four of the five samples collected this quarter, but at concentrations well below the Risk Based Screening Level appropriate for the site.
- Total Dissolved Solids were measured at a concentration of 460 ppm in well MW-3.
- Current and historic measurements of dissolved oxygen collected at the site indicate aerobic bioremediation is occurring in the PHC-impacted groundwater.

SITE CONCEPTUAL MODEL

The Site Conceptual Model provides a compilation of our understanding of the existing site conditions:

- Soils encountered at the site generally consisted of fine grained materials: fat Clays and sandy Clays.
- Source zone PHC-impacted soil was removed from the site in January 2002. Approximately 594 yds³ of PHC-impacted soil was removed from the subsurface and transported to an appropriate landfill for disposal. The maximum residual PHC concentrations in soil are **below** the appropriate Risk Based Screening Levels/site-specific cleanup levels. See the Summary Table below and our March 27, 2003 *Report*.
- MTBE has not been detected in any of the soil or groundwater samples collected at the site.
- Dissolved PHCs are present in groundwater beneath the site, downgradient of the removed USTs, at concentrations that exceed groundwater quality goals/drinking water Action Levels and/or MCLs. The maximum residual PHC concentrations in groundwater are below the

appropriate Risk Based Screening Levels/site-specific cleanup levels. See the Summary Table below and our March 27, 2003 *Report*.

- Dissolved PHC concentrations show a general downward trend (see Table 2 and Figures 6 and 7).
- Natural attenuation/bioremediation has and will continue to remove PHCs from groundwater at the site, as evidenced by the general downward trend in PHC concentrations.

Comparison of Site Specific Cleanup Goals/Tier 1 RBSLs to Site Data

Chemical	ТРН-д	Benzene	Toluene	Ethylbenzene	Xylenes
Highest Site Soil Concentrations	• • • •		0.014 mg/kg	0.12 mg/kg	0.62 mg/kg
Soil Cleanup Goal	,		2.6 mg/kg	2.5 mg/kg	1.0 mg/kg
Highest Current 5,900 μg/L Groundwater Concentration		190 μg/L	24 μg/L	470 μg/L	700 μg/L
Groundwater Cleanup Goal	5,000 - 50,000 μg/L	5,800 μg/L	530,000 μg/L	170,000 µg/L	150,000 μg/L

RECOMMENDATIONS

At this time we recommend:

- Completing a Well/Conduit Search to confirm our assumption that shallow groundwater near the site is not a drinking water source and that there are no nearby abandoned wells that could serve as conduits to deeper groundwater. A Work Plan for the Well/Conduit Search was presented in our report dated March 21, 2003 and was approved by Alameda County Environmental Health on April 15, 2003. The Well/Conduit Search has begun, and results will be presented in the next monitoring report.
- Continuing quarterly groundwater monitoring while the Regional Board and Alameda County Environmental Health review the site-specific cleanup goals proposed in our March 27, 2003 report and the results of the Well/Conduit Search.
- Closing the fuel leak investigation and cleanup if the Well/Conduit Search confirms that shallow groundwater is not currently a drinking water source and deeper groundwater is not

threatened. Site investigations and groundwater monitoring have shown that residual PHCs in soil and groundwater do not threaten human health or groundwater resources. Residual PHCs in groundwater should degrade to groundwater quality goals (drinking water Action Levels/Maximum Contaminant Levels) in a reasonable amount of time.

SCHEDULE OF ACTIVITIES FOR THE FOLLOWING QUARTER

The following activities are scheduled for the next quarter:

- Quarterly groundwater monitoring according to the schedule agreed upon with Environmental Health. Groundwater monitoring will include measuring the depth-togroundwater, dissolved oxygen concentration, and physical parameters, and collecting samples from the appropriate monitoring wells and analyzing them for TPH-g, BTEX and MTBE by EPA Methods 8015M and 8020. All detections of MTBE will be confirmed by EPA Method 8260.
- Completing the Well/Conduit Search that began this quarter.

LIMITATIONS

Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic and engineering principles and practices. This warranty is in lieu of all others, either expressed or implied. The analysis and proposals in this report are based on sampling and testing which are necessarily limited. Additional data from future work may lead to modification of the opinions expressed herein.

Thank you for the opportunity to aid in the assessment and cleanup of this site. If you have any questions or comments regarding this project please call us at (831) 722 - 3580.

Sincerely yours,

Weber, Hayes And Associates

Chad N. Taylor Staff Geologist

omii Geologiai

And: Craig B. Drizin, P

Senior Engineer

___No. C 054081

Exp. /2.31.03

CIVIL

Weber, Hayes and Associates

Attachments

Table 1	Summary of Groundwater Elevation and PHC Analytical Data
Figure 1	Location Map
Figure 2	Site Plan with Groundwater Elevations
Figure 3	Site Plan with PHC Concentrations in Groundwater
Figure 4	Site Plan with Extent of TPH-g and Benzene in Groundwater
Figure 5	Site Plan with Dissolved Oxygen Contours
Figure 6	TPH-g and Groundwater Elevation MW-5 and MW-9
Figure 7	Benzene and Groundwater Elevation MW-5 and MW-9
Appendix A	Field Methodology for Groundwater Monitoring and Field Data Forms
Appendix B	Summary of Historical Depth to Groundwater Measurements, Groundwater
	Elevations, and Groundwater Flow Direction - AGI Technologies, Inc.
Appendix C	Certified Analytical Report - Groundwater Samples
Appendix D	Summary of Historical Groundwater Analytical Results - AGI Technologies, Inc.
Appendix E	Risk Based Screening Level for 1, 1, 2-Trichloroethane from Application of Risk-
	Based Screening Levels and Decision Making to Sites with Impacted Soil and
	Groundwater

c: Mr. Scott Seery, Alameda County Environmental Health

Mr. Jeff Lawson

Ms. Laurie Berger

Mr. Gregg Petersen, Durham Transportation

Mr. Chuck Headlee, San Francisco Bay Regional Water Quality Control Board

REFERENCES

AGI Technologies, August 29, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, September 19, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 1, 1995. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, August 16, 1995. Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 9, 1995. Work Plan Off-Site Contamination Assessment Harbert Transportation Inc. 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 29, 1995. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, April 30, 1996. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, January 6, 1997. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 4, 1998. Final Report Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

Alameda County Health Care Services Agency, Environmental Health Services, June 17, 1999. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Requests for Additions/Modifications to the Risk Assessment

Alameda County Health Care Services Agency, Environmental Health Services, July 11, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request

Alameda County Health Care Services Agency, Environmental Health Services, August 8, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request - Clarification

Alameda County Health Care Services Agency, Environmental Health Services, November 1, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

REFERENCES (continued)

Alameda County Health Care Services Agency, Environmental Health Services, November 15, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Review of Third Quarter 2000 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, December 4, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

Alameda County Health Care Services Agency, Environmental Health Services, February 21, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with work proposed in Fourth Quarter 2000 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, June 26, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with work proposed in First Quarter 2001 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, November 29, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Receipt of "Status Report-UST Assessment and Cleanup" dated November 6, 2001, Concur with work proposed in Second Quarter 2001 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, December 13, 2001. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with work proposed in Addendum to Interim Remedial Action and Modified Feasibility Study

Alameda County Health Care Services Agency, Environmental Health Services, January 14, 2002. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - 10% Increase in Interim Remedial Action Costs Acceptable

Alameda County Health Care Services Agency, Environmental Health Services, January 28, 2002. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Time Extension for Submitting Excavation / Interim Remedial Action Report

Alameda County Health Care Services Agency, Environmental Health Services, October 23, 2002. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with Recommendations to Continue Groundwater Monitoring and Calculate Active Cleanup Goals

Alameda County Health Care Services Agency, Environmental Health Services, April 15, 2003 (email). Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Concur with Recommendations for Well/Conduit Study, and increase search Radius to ½ Mile

REFERENCES (continued)

Applied Geosystems, July 20, 1986. Subsurface Environmental Investigation, Two Soil Borings, and Monitoring Well Installation

Bushek, Tim, and Kirk O'Reilly, March 1995; *Protocol for Monitoring Intrinsic Bioremediation in Groundwater*, Chevron Research and Development Company, Health, Environment, and Safety Group

California Regional Water Quality Control Board, San Francisco Bay Region, December 2001 Application of Risk-Base Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater Interim Final

CTTS, Inc., Toxic Technology Services, September 13, 1989. Report on Underground Tank Removal at 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 27, 1990. Phase II Report for Durham Transportation, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services. Amendment #1, Proposed Remediation for on Site Soil Contamination

CTTS, Inc., Toxic Technology Services, January 31, 1990. Report on Well Abandonment and Groundwater Monitoring Well Installations, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, July 2, 1990. Progress Report #1, Period Covering 3/23/90-6/30/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, August 2, 1990 Progress Report #2, Period Covering 7/l/90-7/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, September 21, 1990. Progress Report #3, Period Covering 8/l/90-8/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 12, 1990. Progress Report #4, Period Covering 9/l/90-10/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, December 28, 1990. Progress Report #5, Period Covering 11/l/90-11/30/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, January 25, 1991. Progress Report #7, Period Covering 1/l/91-1/31/91, 19984 Meekland Road, Hayward, California

REFERENCES (continued)

CTTS, Inc., Toxic Technology Services, February 11, 1991. Progress Report #6, Period Covering 12/l/90-12/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, February 19, 1991. Cost analysis, Remediation Alternatives 19984 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, April 4, 1991. Progress Report #8, Period Covering 2/l/91-3/31/91, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, June 30, 1991. Progress Report #11, Period Covering 6/l/91-6/30/9, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, September 30, 1991. Progress Report #12, Period Covering 7/l/91-9/30/91, Durham Transportation 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, April 2, 1991. Report of Additional Well Installlations 1998 4 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 1, 1992. Health and Safety Plan to Accompany Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 1, 1992. Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, January 21, 1993. Progress Report #17, Period Covering 10/l/92-12/31/92, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 10, 1993. Progress Report #18, Period Covering 12/l/92-1/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 29, 1993. Progress Report #19, Period Covering 2/l/93-2/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, April 1, 1993. Progress Report #20, Period Covering 3/l/93-3/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. March 10, 1993. Remediation Progress Report 1, Period Covering 12/l/92-1/31/93, 19984 Meekland Avenue, Hayward, California

REFERENCES (continued)

CTTS, Inc., Toxic Technology Services. July 16, 1993. Progress Report #21, Period Covering 4/1/93-6/30/93 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. October 11, 1993. Progress Report #22, Period Covering 6/l/93-9/30/93, 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, February 24, 1993. Progress Report #23, Period Covering 10/l/93-12/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

Howard, Philip, H. 1990. Handbook of Fate and Exposure Data for Organic Chemicals, Lewis Publishers. Inc., Chelsea, Michigan

Weber, Hayes and Associates, October 29, 1999. Clarification of Development of Risk Based Cleanup Standards - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, September 7, 2000. Work Plan for Soil and Groundwater Sampling - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, November 10, 2000. Groundwater Monitoring Report - Third Quarter 2000, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, January 30, 2001. Groundwater Monitoring Report - Fourth Quarter 2000, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, June 18, 2001. Additional Site Assessment and Groundwater Monitoring Report - First Quarter 2001, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, July 24, 2001. Groundwater Monitoring Report - Second Quarter 2001, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, November 6, 2001. Groundwater Monitoring Report - Third Quarter 2001, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, December 7, 2001. Addendum to Interim Remedial Action - 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, December 11, 2001. Feasibility Study and Modified Interim Remedial Action - 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, January 14, 2002. Facsimile with information regarding 10% Cost Overrun - Interim Remedial Action 19984 Meekland Avenue, Hayward, CA

REFERENCES (continued)

Weber, Hayes and Associates, February 8, 2002. Interim Remedial Action, Large-Diameter Auger Excavation Operations, and Fourth Quarter 2001 Quarterly Groundwater Monitoring, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, May 2, 2002. Groundwater Monitoring Report - First Quarter 2002, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, September 12, 2002. Groundwater Monitoring Report - Second Quarter 2002, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, December 27, 2002. Proposed Site-Specific Cleanup Goals, Groundwater Monitoring Report - Third Quarter 2002, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, March 27, 2003. Proposed Site-Specific Cleanup Goals - Revised, Groundwater Monitoring Report - Fourth Quarter 2002, 19984 Meekland Avenue, Hayward, CA

Table 2: Summary of Groundwater Elevation and PHC Analytical Data

Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca.

Weber, Hayes and Associates Project H9042

Monit	onng Point Informa	tion				·		Laborat	ory Analytical Re	sults			Field I	Measurements
Well	тос	Screen	Date	Depth to	Groundwater	Total Petroleum Hydrocarbons			Volatile Org.	anic Compoun	ds		Dissolved	Redox
I.D.	Elevation	Interval	Sampled	Groundwater	Elevation	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Fuel Oxygenates	Oxygen	Potential (ORP)
	(feet, NGVD)	(feet, bgs)		(feet, TOC)	(feet, NGVD)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mV)
MW-3	55.44	20 - 40?	Ĭ						1		1-3-3	(-3-9	13/20/	(474)
	1	i	03/21/03	22.41	33 03	460	33	1.4	5.6	< 2.5	ND*		0.15	-34
	1]	12/30/02	21.32	34 12	70	ND	ND	2.1	< 1	ND*	-	0.14	536
	}	!	08/27/02	23.87	31.57	350	0 56	1,1	14	3.4	ND		0.13	216
	1	Í	06/13/02 03/21/02	22 92 21 96	32.52	300	11	14	4	1.8	ND		0.14	194
			12/18/01	23 59	33 48 31,85	240 270	0 94 1 6	2.5 1.7	12	11 7	ND	<u> - </u>	0.1	
	1	į	09/20/01	24.16	31.28	380	17	2.6	13 32	5.4 8.9	ND ND	ļ		
	1	Ì	06/20/01	23 55	31.89	760	44	2.0	62	23	ND*		0.4	
		Į.	03/29/01	22.02	33 42	170	1.1	ND	10	1.6	ND ND	-	0.6	
		l	01/12/01	23 41	32.03	310	24	22	4.4	10	ND		0.6	
		ł.	09/27/00	23.09	32.35	430	ND	ND	44	ND	ND	ND	1	
MW-4	55.71	20 - 40?							<u> </u>					
		j	03/21/03	22 49	33.22				_	-	-		1.03	18
		l	12/30/02	21.50	34.21	ND	ND	ND	ИD	< 1	ND		0 41	368
			08/27/02	24.07	31,64				-			-	0 21	187
	H i	İ	06/13/02	23.15	32 56	ND	ND	ND	ND	ND	ND		0 20	392
	į į	j	03/21/02 12/18/01	22.15 23.80	33 56 31 91	ND ND	DZ DZ	ON	ND	ND	ND		0.2	
		ļ	09/20/01	24.32	31 39	ND ND	ND ND	0.9 ND	ND ND	ND ND	ND			
	1	ļ	06/20/01	23.74	31 97	ND ND	ND ND	ND	ND	ND ND	ND ND		0.4	
		l	03/29/01	22.22	33 49	ND ND	ND	4.2	ND	ND	ND		0.5	
	1	l	01/12/01	23 60	32 11	ND	ND	ND	ND	ND	ND		0.7	
			09/27/00	23.25	32 46	ND	ND	ND	ND	ND	ND	ND	2.5	<u> </u>
MW-5	56.03	25 - 45												
			03/21/03	22.99	33 04	4,800	190	82	370	700	*< 5	-	0.07	-72
		1	12/30/02	21.88	34 15	130	5.8	10	99	5,9	ND*	_	0.14	251
		ĺ	08/27/02 06/13/02	24.42 23.57	31 61 32 46	1,900 1,500	170	14	210	93	ND*		0.43	207
		1	03/21/02	24 69	31.34	360	24	16 9.4	120	110	ND"		0.06	144
			12/18/01	23.15	32.88	780	21	12	28 86	62 94	ND*		01	
	1	1	09/20/01	24.75	31 28	2,300	46	41	280	330	ND*	 	03	
		ļ	06/20/01	24.15	31 88	6,500	120	130	740	940	ND*	1 -		
			03/29/01	22.69	33 34	13,000	220	510	1000	2700	ND*	 	0.4	
		1	01/12/01	23.97	32 06	1,100	62	40	150	290	ND"		0.3	_
			09/27/00	23.69	32.34	18,000	840	2.9	1200	3500	< 30	ND	0.4	
MW-6	56.01	25 - 45	20/01/00											
		ļ	03/21/03	22 96	33 05	1,200	6.3	< 5	54	< 10	ND*		0.09	-45
	i I	I	12/30/02 08/27/02	21.91 24.44	34.10 31.57	670 1,300	2.5 < 2.5	< 1.25	29	2.7	ND*		0 15	321
		I	06/13/02	23.53	31.57	1,300	< 2.5 <1.25	7.2 4.7	210 67	55 5.3	ND'	ļ <u>-</u>	0.14	231
		I	03/21/02	23 11	32.90	750	077	1.2	39	3.2	< 1.5* ND*	 	0.53	233
	1	1	12/18/01	24 16	31.85	3,700	33	8.7	320	110	< 1.5*		0.1	
		•	09/20/01	24 72	31.29	2,500	11	8.6	240	94	ND*	 	0.3	
	1	İ	06/20/01	24 13	31.88	1,800	14	4.6	160	79	ND*	 	- 0.3	
		1	03/29/01	22.56	33.45	610	2.2	ND	37	4.6	ND*		0.5	
		}	01/12/01	23 97	32.04	2,300	16	3.5	290	83	ND*		0.5	
		1	09/27/00	23 56	32 45	1,300	ND	4.3	200	17	ND	ND	0.5	

A IORNH9042 hbiQMiQM200244029Qhtahi sis 4 4 4 9

Table 2: Summary of Groundwater Elevation and PHC Analytical Data

Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca.

Weber, Hayes and Associates Project H9042

Monito	oring Point Informa	rtion					* /	Laborat	tory Analytical Res	Sults	-		Field I	Measurements
Well	тос	Screen	Date	Depth to	Groundwater	Total Petroleum Hydrocarbons			Volatile Orga	nic Compoun	ds		Dissolved	Redox
LD.	Elevation	Interval	Sampled	Groundwater	Elevation	Gasoline	Benzene	Toluene	-Ethylbenzene	Xylenes	MTBE	Fuel Oxygenates	Oxygen	Potential (ORP)
	(feet, NGVD)	(feet, bgs)		(feet, TOC)	(feet, NGVD)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mV)
MW-7	56.66	25 - 45				12.72			1					
			03/21/03	23.50	33.16								0.51	20
			12/30/02	22 34	34.32	ДN	ND	ZD.	ND	< 1	ND*	-	0.17	370
	1		08/27/02	24.98	31.68				<u>=</u>			-	0.22	369
	!		06/13/02	24.07 23.05	32.59 33.61	ND ND	ND ND	ND ND	ND	NĐ	ND	-	0 20	370
			12/18/01	24 70	31.96	290	ND ND	ND	ND 119	ND 4.6	ND ND		0	
		1	09/20/01	25 27	31.39	290	0.98	ND	12	45	ND*	Ξ	04	-
		i :	06/20/01	24 68	31 98	430	2.4	096	30	9.7	ND*		<u> </u>	
			03/29/01	23.10	33 56	ND	ND	ND	ND	ND	ND		0.5	
		1	01/12/01	24 49	32 17	1,600	13	0.86	150	35	ND*	_	0.5	
			09/27/00	24 18	32 48	270	13	6.6	11	ND	ND	ND	0.5	
MW-8	56 16	20 - 40	02/04/00		20.05									
			03/21/03 12/30/02	22.91	33.25				<u> </u>		-		1 62	15
			08/27/02	21.79 24 43	34.37 31.73	ND -	ND	ND	ND	< 1	ND	-	1.36	365
			06/13/02	23.54	32.62	ND ND	ND	ND	- ND	ND ND	-		1 98	402
			03/21/02	22.51	33.65	ND	ND ND	ND ND	ND	ND ND	ND ND	-	1.96	394
			12/18/01	24.16	32.00	ND ND	ND	ND	ND I	ND ND	ND		24	
			09/20/01	24.68	31.48	QN	ND	ND	ND	ND ND	ND	 	1.6	
			06/20/01	24.09	32.07	ДN	ND	ND	ND	ND ND	ND		1.0	-
	1	İ	03/29/01	22.56	33.60	ND	ND	8.0	ND	ND	ND		1.9	
	1	1	01/12/01	23.93	32.23	ND	ND	ND	ND	ND	ND	_	2.1	_
			09/27/00	23 59	32.57	ND	ND	ИD	ND	ND	ИD	ND	1.9	
MW-9	55.21	20-40	03/21/03	22 17	20.04	C 000								
			12/30/02	22 17	33.04 34 12	5,900 2,800	190 140	24 25	470 200	630	*< 5		0.10	-84
		1	08/27/02	23 69	31 52	310	27	25 25	200	370 20	ND*		0.15	276
		1	06/13/02	22.76	32 45	5,100	140	21	490	300	< 1.5*		0.18 0.14	154 135
	H	1	03/21/02	21 76	33 45	510	26	46	50	52	ND		0.14	135
	i.		12/18/01	23 38	31 83	6,400	640	120	630	1300	< 1.5*		<u> </u>	_ _
		1	09/20/01	23.94	31 27	3,400	270	38	390	430	ND*	_	0.3	
			06/20/01	23.36	31.85	8,300	330	88	850	1700	< 0.6*	-		-
			03/29/01	21.61	33 60	1,600	110	14	240	150	ND*	-	0.4	
		1	01/12/01	23 17 22 90	32 04 32 31	10,000	550	110	1200	2200	ND*	=	0.5	-
MW-10	54.74	25 - 40	09/27/00	22 90	52 51	1,000	40	67	110	55	ND	ND	0.5	-
Military	J414	20-40	03/21/03	22.00	32 74	700	3.4	14	0.71		ND*			
		Į.	12/30/02	20.78	33 96	1,200	5.6	< 5	< 5	1 < 10	ND*	 	0.06 0.18	-62
		l	08/27/02	23 46	31.28	1,800	< 2.5	15	3.9	5	ND*	-	0 18	267 183
	1	i i	06/13/02	22.56	32 18	1,700	0.77	62	3.3	2.9	< 0.3*	 	0 28	201
			03/21/02	21 53	33 21	1,500	ND	11	3.1	ND	ND*		01	
		<u> </u>	12/18/01	21.11	33 63	1,500	7.9	29	ND	ND	< 0.6*			
	l ·		09/20/01	23.70	31.04	1,200	6	9.9	1.2	39	ND*	••	0.4	***
			06/20/01	23 17	31 57	810****	3	1,6	51	13	ND*			_
			03/29/01	21.63 22.99	33 11 31.75	600****	2	0 65	ND	0.72	ND	<u> </u>	0.5	
			09/27/00	22.72	32 02	530 880	3.7 ND	1.9 ND	2.1 ND	4.5	ND		0.6	
	J		_ JUNETINU]	<u> </u>	36 VE 1	000	, ND	ND	ווא די	ND I	ND	ND ND	0.4	<u> </u>

W-L-- 11---- 2 + +

Table 2: Summary of Groundwater Elevation and PHC Analytical Data

Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca.

Weber, Hayes and Associates Project H9042

Monito	ring Point Informa	tion					-	Laborat	ory Analytical Re	suits		. ,	Freid I	Measurements
Well	тос	Screen	Date	Depth to	Groundwater	Total Petroleum Hydrocarbons							Dissolved	Redox
I.D.	Elevation	ļnterval	Sampled	Groundwater	Elevation	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Fuel Oxygenates	Oxygen	Potential (ORP)
	(feet, NGVD)	(feet, bgs)		(feet, TOC)	(feet, NGVD)	(ug/L) ~	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(úg/L)	(ug/L)	(mg/L)	(mV)
MW-11	55.20	25 - 40	1					T			-			
			03/21/03	22.24	32.96	_	_	_	-	-		_	0.32	24
			12/30/02	21 11	34.09	ND	ND	ND	ND	<1	ND		0.16	374
			08/27/02	23.68	31,52		_	-					0.13	369
			06/13/02	22.78	32.42	ND	ND	ND	ND	ND	ND		0.15	380
			03/21/02	21 76	33 44	ND	ND	ND	ND	NĐ	ND	-	0.1	_
			12/18/01	23 39	31 81	ND	ND	0 56	ND	ND	ND			-
			09/20/01	23.87	31.33	ND	ND	ND	ND ND	ND	ND ND		0.4	
			06/20/01	23 39	31.81	ND	ND	ND	ND	NĐ	ND	-	-	
			03/29/01	21.84	33 36	ND	ND	4.5	ND	ND	ND	-	0.6	_
			01/12/01	23 21	31.99	ND	ND	21	ND	МĐ	ND	-	0.6	
N 11 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- FO 40	OF 10	09/27/00	22 43	32.77	63	ND	ND	ND	NĐ	ND	ND	0.6	-
MW-12	56.49	25 - 40	03/21/03	23.28	33 21	 			<u> </u>					
			12/30/02	23.28									1.23	22
		İ	08/27/02	24.68	34 33	ND	ND	ND	ND	< 1	ND		0.77	372
			06/13/02	23.86	31.81 32.63				-				0.60	410
	ļ .		03/21/02	22.86	32 63	ND ND	ND ND	ND ND	ND	ND	ND		0.51	400
			12/18/01	24.49	32 00	ND ND	ND	0.86	ND ND	ND	ND		0.7	
			09/20/01	24.95	31 54	ND ND	ND ND	ND	ND	ND	ND ND	-		
			06/20/01	24.47	32 02	ND ND	ND ND	ND	ND	ND ND	ND ND		0.7	
		ĺ	03/29/01	22.91	33 58	ND ND	ND ND	5	ND ND	ND	ND ND			
		1	01/12/01	24.28	32 21	ND	ND ND	11	ND	ND ND	ND ND		1	-
		ł	09/27/00	23.98	32.51	ND ND	ND	ND	ND	ND	ND ND	ND ND	1.2	
s implyer—vidit mu		Practical Quan			3 10 7 3 5		+0.5	0.5			1			
aren , ogiger ski					Carlo as Since 19-18	7.000	210	26.000	27,000				(c)_((3 = (0), 4)	- 11.6 (6 −6 , 7.2
	****	one-openie o	rearray Guar	S (when media) a decider 2	on that the telephology (1)	1. 7. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	1 4 MENDERS	20,000	₹€,000	200,000	NA	NA NA		I distribute the second

T.O.C = Top of Casing Elevation. Calculated groundwater elevation = TOC - Depth to Groundwater. Referenced to NGVD TPH-g = Total Petroleum Hydrocarbons as gasoline. MTBE = Methy - tert - Butyl Ether.

F.O 's = Fuel Oxygenates = Di-isopropyl ether (DIPE), tertiary Butyl Alcohol (TBA), Ethyl tertiary Butyl Ether (ETBE), tertiary armyl Methyl Ether (TAME)

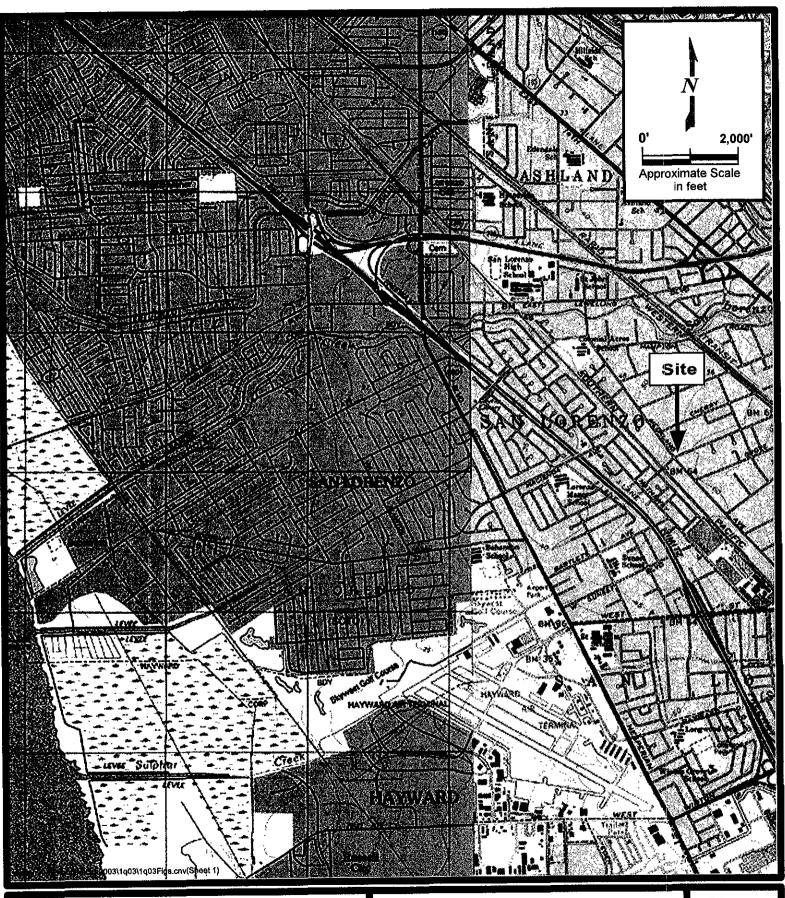
VOC's = Volatile Organic Compounds D.O. = Dissolved Oxygen

uq/l. = micrograms per liter, parts per billion, mq/L = milligrams per liter, parts per million

ND = Not Detected at the Practical Quantitation Limit (PQL); <X = Not Detected at the elevated PQL, X PQL elevated because of sample dilution

- = Data not collected or measured, or analysis not conducted

MCL = Maximum Contaminant Level for dinking water in California (Department of Health Services)

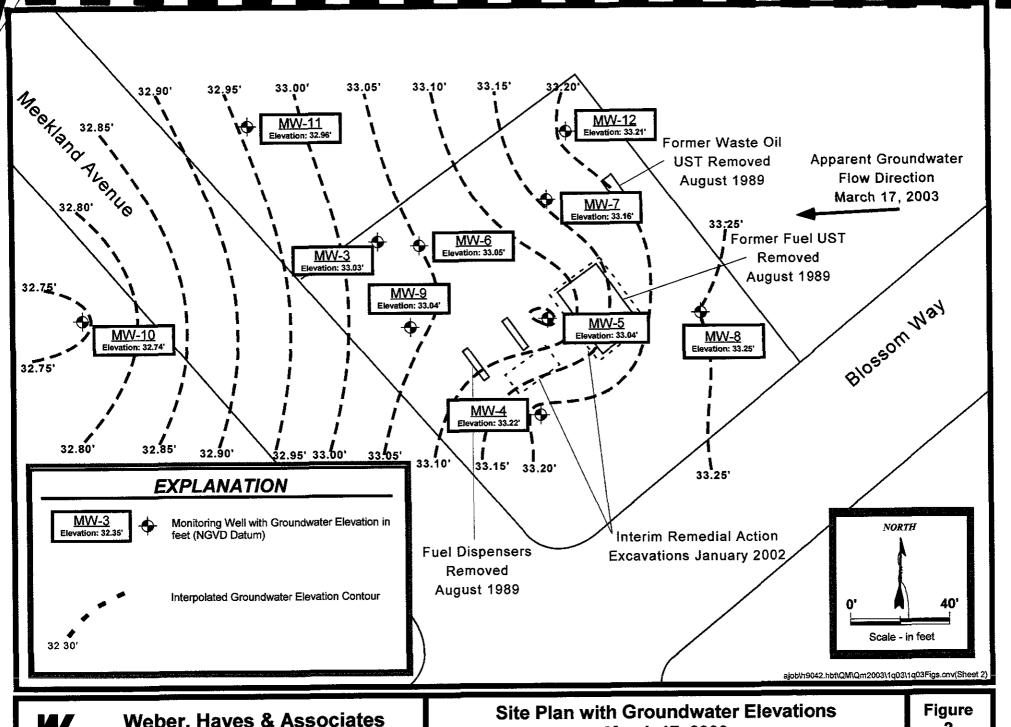

* Confirmed by GC/MS method 8260

** = Action Level

*** = Secondary MCL / water quality goal

AJOB\H9042 hbt\QM\QM2002\4e02\QMTabi xis

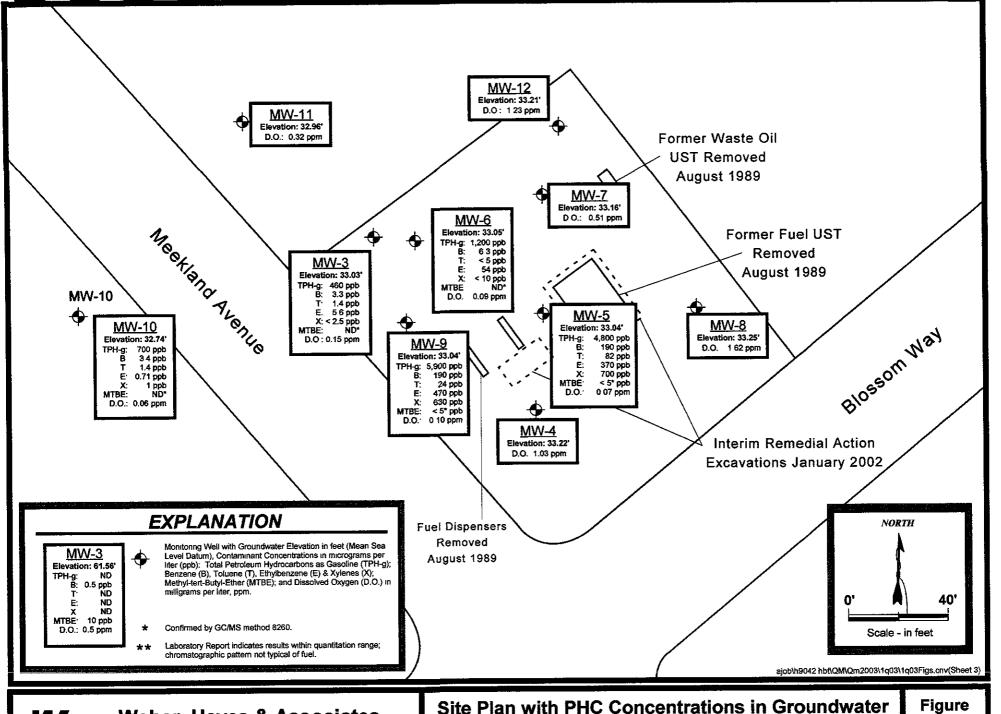
^{**** =} Laboratory Report indicates results within quantilation range; chromatographic pattern not typical of fuel



Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, Ca. 95076
(831) 722 - 3580 (831) 662 - 3100

Location Map

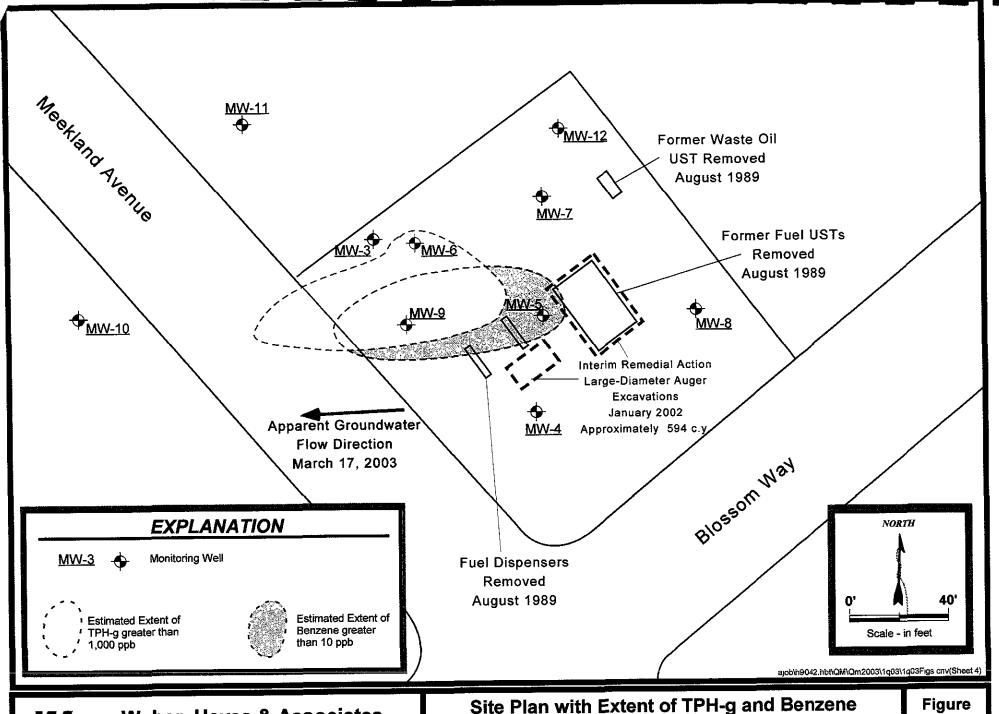
Former Harbert Transportation Facility 19984 Meekland Avenue Hayward, California Figure 1 Job # H9042



120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

March 17, 2003

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California **Project** H9042

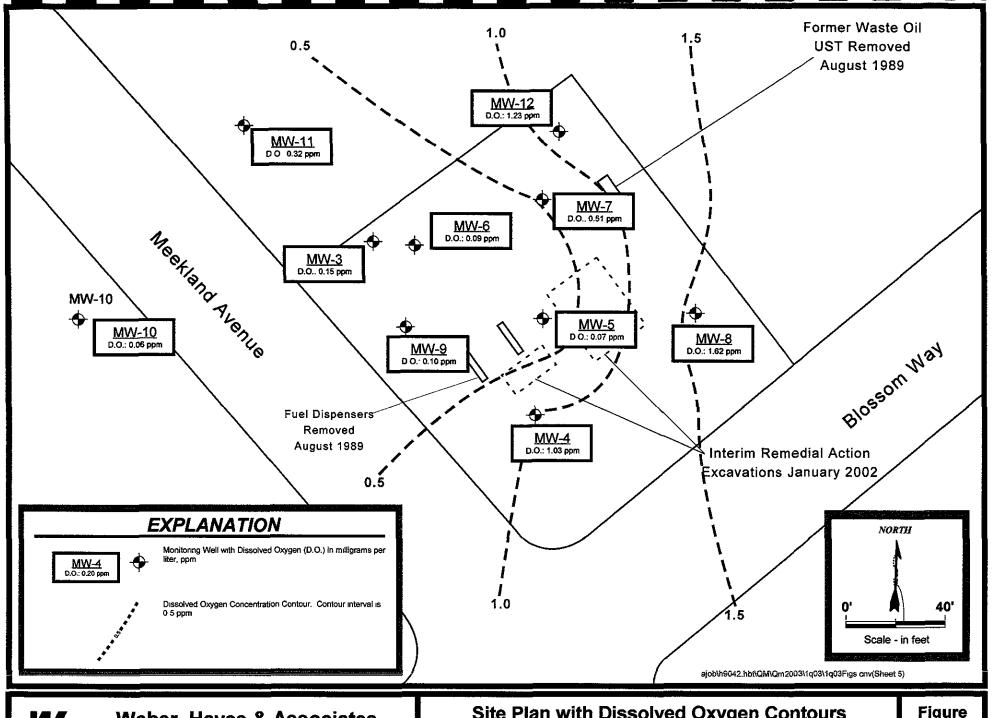


120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

Site Plan with PHC Concentrations in Groundwater March 17, 2003

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

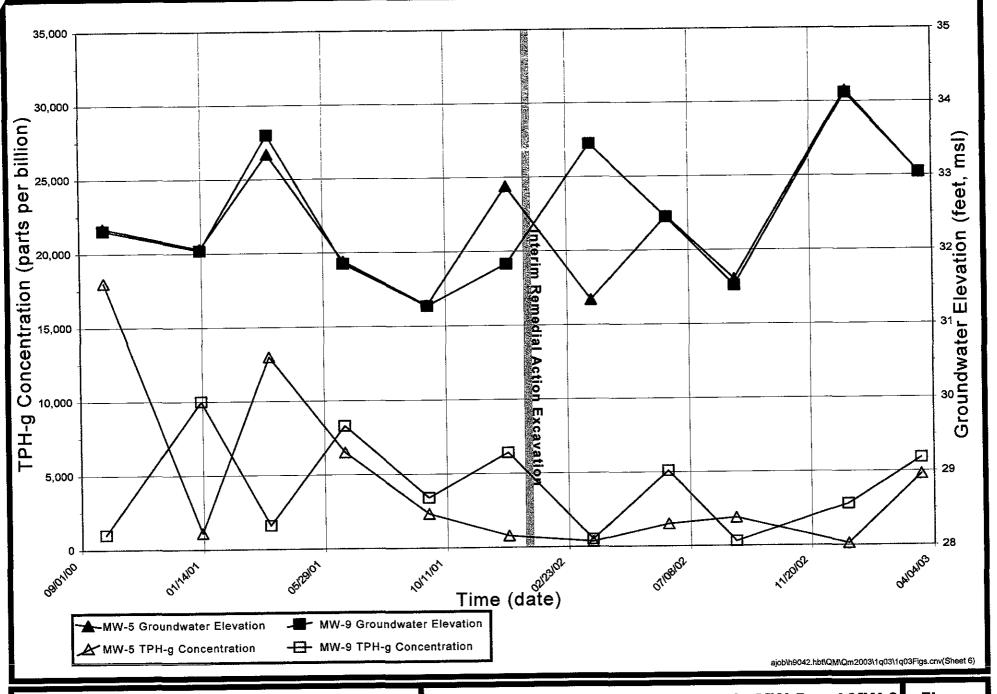
Figure 3 Project H9042



120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100 Site Plan with Extent of TPH-g and Benzen in Groundwater, March 17, 2003

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

Figure 4 Project H9042

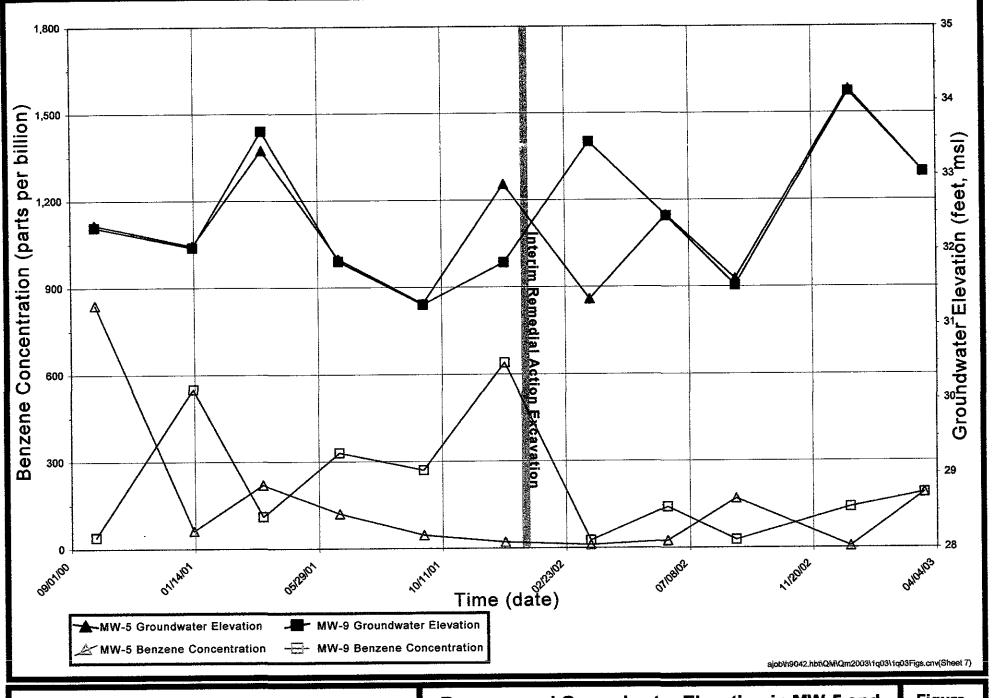


120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

Site Plan with Dissolved Oxygen Contours March 17, 2003

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

Figure 5 Project H9042


Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, Ca. 95076

(831) 722 - 3580 (831) 662 - 3100

TPH-g and Groundwater Elevation in MW-5 and MW-9
Through March 17, 2003

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

Figure 6 Project H9042

120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100 Benzene and Groundwater Elevation in MW-5 and MW-9 Through March 17, 2003

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California Figure 7 Project H9042

Appendix A

Field Methodologies for Groundwater Monitoring and Field Data Forms

Appendix A

Field Methodologies for Groundwater Monitoring

Weber, Hayes and Associates' groundwater monitoring field methodology is based on procedures specified in the *LUFT Field Manual*. The first step in groundwater well sampling is for Weber, Hayes and Associates field personnel to measure the depth-to-groundwater to the nearest hundredth (0.01) of a foot with an electric sounder. If the well appears to be pressurized, or the groundwater level is fluctuating, measurements are made until the groundwater levels stabilizes, and a final depth-to groundwater measurement is taken and recorded. After the depth-to-groundwater is measured, the well is then checked for the presence of free product with a clear, disposable polyethylene bailer. If free product is present, the thickness of the layer is recorded, and the product is bailed to a sheen. All field data (depth-to-groundwater, well purge volume, physical parameters, and sampling method) is recorded on field data sheets (see attached). Because removing free product may skew the data, wells that contain free product are not used in groundwater elevation and gradient calculations.

After measuring the depth-to-groundwater, each well, starting with the cleanest well (based on analytical results from the last sampling event), is purged with a low flow submersible electric pump. During purging the physical parameters of temperature, conductivity, pH, dissolved oxygen (D.O.) concentration, and Oxidation-Reduction Potential (ORP) of the purge water are monitored with a QED MP20 Micropurge Flow-Through-Cell and Meter to insure that these parameters have stabilized (are within ~ 15 percent of the previous measurement). The QED MP20 Meter is capable of contiguously monitoring the physical parameters of the purge water via the flow through cell and providing an alarm to indicate when the physical parameters have stabilized to the users specifications. Purging is determined to be complete (stabilized aquifer conditions reached) after the removal of approximately three to five well volumes of water or when the physical parameters have stabilized. Dissolved oxygen and ORP measurements are used as an indicator of intrinsic bioremediation within the contaminant plume. All field instruments are calibrated before use.

All purge water is stored on site in DOT-approved, 55-gallon drums for disposal by a state-licensed contractor pending laboratory analysis for fuel hydrocarbons.

After purging, the water level in the well is allowed to recover to 80 percent of its original depth before a sample is collected. After water level recovery, a groundwater sample is collected from each well with a new, disposable bailer, and decanted into the appropriate laboratory-supplied sample container(s). The sample containers at this site were 40-ml. vials. Each vial was filled until a convex meniscus formed above the vial rim, then sealed with a Teflon®-septum cap, and inverted to insure that there were no air bubbles or head space in the vial. All samples are labeled in the field and transported in insulated containers cooled with blue ice to state-certified laboratories under proper chain of custody procedures.

All field and sampling equipment is decontaminated before, between, and after measurements or sampling by washing in an Liqui-Nox and tap water solution, rinsing with tap water, and rinsing with distilled water.

Weber, Haves & Associates

Hydrogeology and Environmental Engineering

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

INDICATE ATTACHMENTS THAT APPLY

Data Sheets COC's

Site Map Photo Sheet

Chargeable Materials

h 21, 2003
042.Q
nditions:

FIELD WORK PLANNING: Performed on: March 20, 20032

Meet with project manager: X yes, or no.

Number of wells to be sampled: Six Wells, with D.O. in all wells Sample wells: MW-3, 5, 6, 9, and 10 for TPH-g, BTEX, MTBE, 1,2-DCA, PCE, and TCE, and TDS in MW-3.

Proposed sampling date: March 21, 2003

TIME:

Arrive onsite to perform 12th Quarter Monitoring Well Sampling.

Send all analytical to Entech Analytical Laboratory.

INITIALS:

CT-All sampling is conducted according to Standard Operating Procedure (SOP) 10I/

-Water Quality Sampling Information for each well sampled is recorded on following pages.

-Upon sampling, all samples are placed immediately in coolers containing blue ice.

-After sampling each well all equipment is decontaminated according to SOP 10B/.

-All purge water is properly disposed in 55-gallon drums to be purged at a later date.

V-All samples are recorded on field Chain-of-Custody Sheets for transport to Laboratory.

BEGIN CALIBRATION:

(ΔQED MP20 Flow Through Cell: Temp = 11.41 ς pH = 3.00 & 10.00, EC = 1.415 H Barometric Pressure = 750 D.O. % Saturation = 100, ORP = NA

BEGIN SAMPLING ALL WELLS:

40. MW-5 MW-10

-See information below for general monitoring well information this sampling round.

All well will be purged until the QED MP20 unit indicates that the water quality parameters (pH, Conductivity, Temp, D.O., and ORP) have stabilized to within ~ 15 % or once four casing volumes in the column requiring sampling have been removed(see Water Quality Sampling Field Forms for details). Wells will be purged from bottom-up and will follow standard operating procedures by WHA. Wells will be sampled using a bladder pump, or disposable bailer.

Signature of Field Personnel & Date

E:\AJOB\H9042.hbt\QM\QM2003\Iq03\QMFIELD.WPD

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

Floating Product (comments). Total Depth of Well D.O. (mg/L)ORP (mV) Location GW Depth (TOC) NOFP, Slight Odor 40 -34 22.41 0.15 MU.3 No FP, No Odor 40' MW.4 1.03 18 22.49 NOFP Moderate Odo. 45 ~72 0.07 MW.S 22.99 NOFF, Slyhtodor 45 -4 S MW.6 22.96 90.0 No FP. No odor 0.51 40. 20 MW.7 23. 50° 15 NOFP, No Odor 1.62 22.91 40. R.WM NoFP Slight - Moderte Odur -84 40 22,17 0.10 MW.9 -62 NOFP. 40 0.06 MW-10 22.00' 40 0.32 Ma FP, Na Odor 22.24 24 MWI 40. 22 No Fl, No Odur 1.23 23.28 MW.12 3/21/07 7 . APPROXIMATE GAL. 160 . HOW MANY PURGE DRUMS WERE LEFT ONSITE CALL BAYSIDE OIL ON TO HAVE DRUMS PURGED. DRUMS WILL BE PURGED ON **COMMENTS:**

E:\AJOB\H9042.hbt\QM\QM2003\1q03\QMFIELD.WPD

Signature of Field Personnel & Date

GROUNDWATER MONITORING WELL SAMPLING INFORMATION

Sample N	ame/No.: o.: Mいコ		<u> </u>				Sample L	.ocation: 🏲	1W·3	
Samplers	Name: C	heettylor					Recorded	by: CT	· · · · · · · · · · · · · · · · · · ·	
Purge Equ	uipment:	ı					Sample E	quipment:		
	-	sposable or Acı	ylic				X		ble Bailer	
χ	Whaler #							Whaler#		
	Bladder Pr Submersit			Bladder	Pump sible Pump					
Analyses		l (cricle all tha		Nur	nber and Ty		tle Used			
PH-gas BT	EX MTBE.	2-DCA, EDB, 826	9 Fuel Oxygenat	es TETE	•			(3 x 40m2)		
		TPH-Heating Oil								
ntrinsie Bio.		TDS						Some Poly	 	
Well Numi		Mus				W	ell Diame	ter: 2" with		
Depth to V		22.41	TOC						≟ (0.16 Ga	
Nell Depti		<u>,40.</u>	BGS or TOC						= (0.65 Ga	
leight W-	Column:	17. Sq ⁻	feet (well der	oth - depth	to water)			5"	= (1.02 Ga	llon/Fee
/olume in	Well:	2. \$144	gallons (casi	ng volume	X height)			6"	= (1.47 Ga	llon/Fee
Sallons to	purge:	11.23	gallons (volu	me X 4)				8"	= (2.61 Ga	llon/Fee
_ab:	Entech					Transpor	tation:	Deliver		
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	1	 		***************************************		
Time	Volume Purged	Temperature			pH	ORP	Tuek	oidity: Color,	Fines	Micropurge Paramater
(24 hr.)	(Gallons)	(°C)	(ms/cm)	(ppm)		(mV)	I Turk	naity. COIOI,	1 11100	Stabilized
0758	D	17.46	0.717	2.99	6.68	100	Low! C	ler-Brown	. MinocFine	
0759	ð	18.50	0.722	1.28	6.80	34	1	<u>leer-Brow</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	
0751	2	18.58	0.723	0.71	6.80	7		w. Clear, TraceFines		
O 8000	3	18.68	0.721	0.29	6.83	-14	1			
০৪০০	4	1 8.70	0.711	0.2.1	6.82	-23				
OSUL	6	18.74	0.738	0.18	6.81	-28				
0803	8	18-76	0.717	0.17	6.80	-30				
0505	100	18.76	6.716	0.16	6.79	- 32				
0806	12	18.75	0.718	0.15	6.78	- 34	\ \	V		
	·	W	ait for 80% w	ell volum	e recovery	prior to s		(m. 1		
		Calculate	e depth to wat	· · · · · · · · · · · · · · · · · · ·			ume recov	ery:	· · · · · · · · · · · · · · · · · · ·	
	Origina	Height of Water C		culate 80% o			44 0-	nth to water 1	T 97.	
	Origina	THEIGHT OF VVAICE C	// Ti- 2	<u>· · · </u>	1 10	- (vvan Depth)	<u> </u>	pario water <u>L</u>	ν. ()	
Talk iomi	1et monoures	depth to water,	a a . Cur fant	below TOC.		ا منافات المسال	80% of origina	al well coolee :	alumai Vaa	√ Na
				below TOC.		Is well within	80% of origina	al well casing vi al well casing vi	olume: Yes	√ No
ime: \\	1st measured	depth to water, depth to water,	<u>∖</u> G feet	below TOC.		Is well within	80% of origina	al well casing v	olume: Yes	Norta
				San	nple Well			······································		
Time [,]	0807		Sample ID:	м	1.3.3		Den	th: ኒ ኔ. Տ ዣ	feet he	low TOC
	<u> </u>		p	<u> </u>			Zop		1001.00	
Comments	. Wash	try Pudet.	Shilatod	٦						

GROUNDWATER MONITORING WELL SAMPLING INFORMATION

Project Na	ame/No.:	Hurbert To	rani portuti	on Maga	2.0		Date: 3/21/05			
Sample No				•			Sample Location: Mu.	6		
		hadT-ylor			,	· · · · · · · · · · · · · · · · · · ·	Recorded by: C+			
Purge Equ	ipment:						Sample Equipment:			
	•	sposable or Acı	rylic			χ Disposable Bailer				
X	Whaler#					Whaler #	-			
	Bladder P					Bladder Pum				
	Submersil	•	41-3-			Submersible				
		(cricle all tha 2-DCA) EDB ₁ 826		on DCC T	22		Number and Types 2. r (3 หน่อนเบเทว พ			
		TPH Heating Oil		85 (C-11			21/21/2000 000 100	[HC·J		
Intrinsic Bio-		, TI TI TOURING ON								
Well Numi		M W-6				V	/ell Diameter: <u>વ</u> with Ca	sing Volume of:		
Depth to V	Vater:	22.76	TOC							
Well Depti	h:	45·	BGS or TOC				4'' = (0).16 Gallon/Feet)).65 Gallon/Feet)		
Height W-	Column:	22.04	feet (well der	oth - depth	to water)			1.02 Gallon/Feet)		
Volume in	Well:	14, 326	gallons (casi	ng volume	X height)		6" = (1	1.47 Gallon/Feet)		
Gallons to	purge:	5 7.30	gallons (volu	_	0 ,		•	2.61 Gallon/Feet)		
Lab: E			. 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Transpor	,	· · · · · · · · · · · · · · · · · · ·		
	., ., .,			•						
Time	Volume	Temperature	Conductivity	D.O.		ORP		Micropurge		
(24 hr.)	Purged	(°C)	(ms/cm)	(ppm)	рН	(mV)	Turbidity: Color, Fine	Paramaters Stabilized		
((Gallons)	()	(////	(66)		(,		- Copinada		
0837	٥	18.04	0.731	0.92	6.68	- 51	High: Gray-Brown, Man	1F1-9		
0838	2	18:31	0.688	0.18	6.69	-28	High: Gray-Brown, Many Low! Clear-Brown, TA,	mifins		
0840	Ч	18.60	0.688	0.20	6.70	- 8	4	<u> </u>		
०४५।	Ь	18.82	0.611	۵.۱۲	6.72	6	Low Clear Trace F	ines		
0842	8	18.88	0.693	0.09	6.72]				
७४५५	10	18.93	0.692	0.17	6.75	7				
0850	20	11.11	0.655	0.36	6.69	-2.8				
0904	ય૦	17.11	0.691	0.01	6.65	-45	3 1			
STOP-	Paramete	5 5 Hobiliz	ed . Pone	amoletci				ŀ		
		W	ait for 80% w	ell volum	e recovery	prior to s	ampling.			
		Calculate	e depth to wa	ter (from T	OC), for 8	0% well vol	lume recovery:			
			Cal	culate 80% o	f orginal well	volume:	_			
	Origina	l Height of Water (Column = 12.c	<u>역</u> 'x 0.8 =	17.625.	- (Well Depth)) <u>45'</u> = Depth to water <u>27. 5</u>] ·		
Time: <u>ა የ ა අ</u>	1st measured	d depth to water, _	<mark>ヱ、১.57'</mark> feet	below TOC.			80% of original well casing volume			
Time:	1st measured	d depth to water, _ d depth to water, _	feet	below TOC.			80% of original well casing volume			
mne:	ist measured	a depth to water,	1-1 1001	below TOC.		is well within	80% of original well casing volume	7; res1\(\mathbf{q} > 1\)		
				San	npie Well					
-				Çan	INIC TAGII					
Time:	2907		Sample ID:	^	16.6		Depth: 23.57	feet below TOC		
Comments	: No 1	Hooting Prod.	t. Sl. 4	ador.						
		0								
	 									

GROUNDWATER MONITORING WELL SAMPLING INFORMATION

Project Na	ame/No.:	Harbert T	massatati	m /14	<u> </u>	·············	Date: 3/21/03	
Sample No.: Muss							Sample Location: Mພ-5	
Samplers Name: Chatyl							Recorded by: CT	
Purge Equipment: / Bailer: Disposable or Acrylic							Sample Equipment: X Disposable Bailer	
γ	χ Whaler # 3						X Disposable Baller Whaler #	
Bladder Pump							Bladder Pump	
Submersible Pump							Submersible Pump	
Analyses Requested (cricle all that apply): Number and Types of Bottle Use								
TPH-gas, BTEX (MTB), (1, 2-DOA, EDB, 8260 Fuel-Oxygenates (C.E., TC.E) ZY(3x40~1 VVX), 3/HCI)								
Intrincio Blo.		, TEM-Heating Oil						
							Vell Diameter: <u>५</u> ″ with Casing Volume of	
Depth to Water:		2299	TOC				2" = (0.16 Gallon/Feet	
Well Depth:		45'	BGS or TOC	~			4" = (0.65 Gallon/Feet	
Height W-	Height W-Column:		feet (well der	oth - depth	to water)		5" = (1.02 Gallon/Feet	
Volume in Well:		72.01.	gallons (casi	•	•		6" = (1.47 Gallon/Feet	
Gallons to purge:		57.27	gallons (volu	-	0 ,		8" = (2.61 Gallon/Feet	
	atech .					Transportation: Deliver		
Time	Volume	Tomporaturo	Conductivity	D.O.		ORP	Micropurge	
(24 hr.)	Purged (Gallons)	Temperature (°C)	(ms/cm)	(ppm)	pН	(mV)	Turbidity: Color, Fines Peramaters Stabilized	
0923	0	18.28	0.378	1.51	(.14	-6	High: Gray Bown, ManyFines Moderate: Brown, Madfues	
0924	2	18.64	0.385	0.21	6.70	-19	Moderate: Brown, Mad Fuer	
0926	ч	18.83	0.382	0.10	6.72	-44		
0927	L	18.93	6.348	0.08	6.72	-76		
0929	8	18.98	6.303	6.07	6.55	-69		
0930	ا ما	19.06	0.287	o.07	6.72	-66		
0937	20	19.04	0.351	0.37	6.76	-55		
0948	35	18,90	0.462	0.07	6.75	-72	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
570P -	Parameter	s Stabilized	T .			<u> </u>		
Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery:								
Calculate 80% of orginal well volume:								
Original Height of Water Column = 22.61 x 0.8 = 17.668 - (Well Depth) 45 = Depth to water 27-34								
Time: <u>0950</u> 1st measured depth to water, <u>39.24</u> feet below TOC. Is well within 80% of original well casing volume: Yes No Is well within 80% of original well and Yes No Is well within 80% of original well and Yes No Is well within 80% of original								
Time: <u>1005</u>	1st measured	depth to water,	27.37 feet	below TOC			80% of original well casing volume: Yes No	
				Sam	ple Well			
Time: toos Sample ID: Mu.\$							Depth: 27.37 feet below TOC	
Comments: No Floating Product. Moderate Odorn								
V								

GROUNDWATER MONITORING WELL SAMPLING INFORMATION

Project Na	ame/No.:	Hurbert -	[runggertat	10m H90	બર. લ		Date: 3/21/03	
Sample No	0.: Mw.1	۵.			***		Sample Location: Mավե	
Samplers		Chad Taylor	·				Recorded by:	
Purge Equ				······			Sample Equipment:	
	Bailer: Dis	sposable or Acı	rylic				χDisposable Bailer	
X	Whaler#_	3					Whaler #	
	Bladder P	•					Bladder Pump	
	Submersik						Submersible Pump	
		(cricle all tha					Number and Types of Bo	ttle Used:
		2-DCA EDB, 826		es (PCE	TCE)		Zx (3x40-1nay; m/Hci)	
Intrincio Blo.		, TPH-Heating Oil-	-				·	·
						1.8	Vall Diameters 117 with Coning V	
Well Numi		Wm.10				V	Vell Diameter: <u>4</u> with Casing V	
Depth to V			TOC				2'' = (0.16 Ge)	
Well Depti	h:	<u> ૧૦</u> .	BGS or TOC				4" = (0.65 Ga)	
Height W-	Column:	18.00.	feet (well dep	th - depth	to water)		5" = (1.02 Ga	allon/Feet)
Volume in	Well:	11.70	gallons (casi	ng volume	X height)		6" = (1.47 Ga	allon/Feet)
Gallons to	purae:		gallons (volui	_	- '		8" = (2.61 Ga	allon/Feet)
	it col		, 9	,		Transpor	_ ,	, ,
Edbi E.	11 667	•				Transpor	Deliver	
	Volume		0 1 11 11	D 0		000		Micropurge
Time	Purged	•	Conductivity	D.O.	рН	ORP	Turbidity: Color, Fines	Paramaters
(24 hr.)	(Gallons)	(°C)	(ms/cm)	(ppm)		(mV)		Stabilized
1012	0	18.05	0,941	4.38	દુ.પદ	-13	Moderate : Gry, ModFins	
1013	2	18.વ૪	0.916	0.71	6.96	-49	Low Clear, Trace Fines	
1014	ч	18-76	6.877	0.28	6.44	.45		
1016	6	18.91	0.875	0.18	6.45	-16		
1017	8	18.95	U.875	0.15	6.46	-71		
1018	lυ	1 8.18	6.873	0.17	6.41	-71		
1025	10	19.01	0.870	6.09	6.44	-15		
1035	3.5	18.80	0.873	0.06	6.47	-62		
STOP	- Parame	ters Stabilis	ed Purge C	uplete.				
		W	ait for 80% w	ell volum			ampling. lume recovery:	
		Calculate				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	lume recovery.	
				culate 80% o			illed more and memory.	
	Origina	I Height of Water C	Column = <u>18.6</u>	× 0.8 =	14.40	- (Well Depth)) <u>40'</u> = Depth to water <u>2.5.60</u> '	
								_
Time: 1037	1st measured	depth to water, _	22.16 feet	below TOC.		Is well within	80% of original well casing volume: Yes _	No
Time:	1st measured	i depth to water, _ i depth to water, _	feet	below TOC.		Is well within	80% of original well casing volume: Yes _ 80% of original well casing volume: Yes _ 80% of original well casing volume: Yes _	
Time: 14	1st measured	r depth to water, _	reet	below TOC.		is well within	80% of original well casing volume: Yes _	1407tri
				San	nple Well			
	.			Can	.pio 11011	\		
Time:	1037		Sample ID:		14.10		Depth: 22.16 feet b	elow TOC
Comments		61. 4. D. I	. h el 1	401				
COMMENTS	· •	Floating Prod	.441. A13"	יז ט (לטר.	·			
					· · · · · · · · · · · · · · · · · · ·			

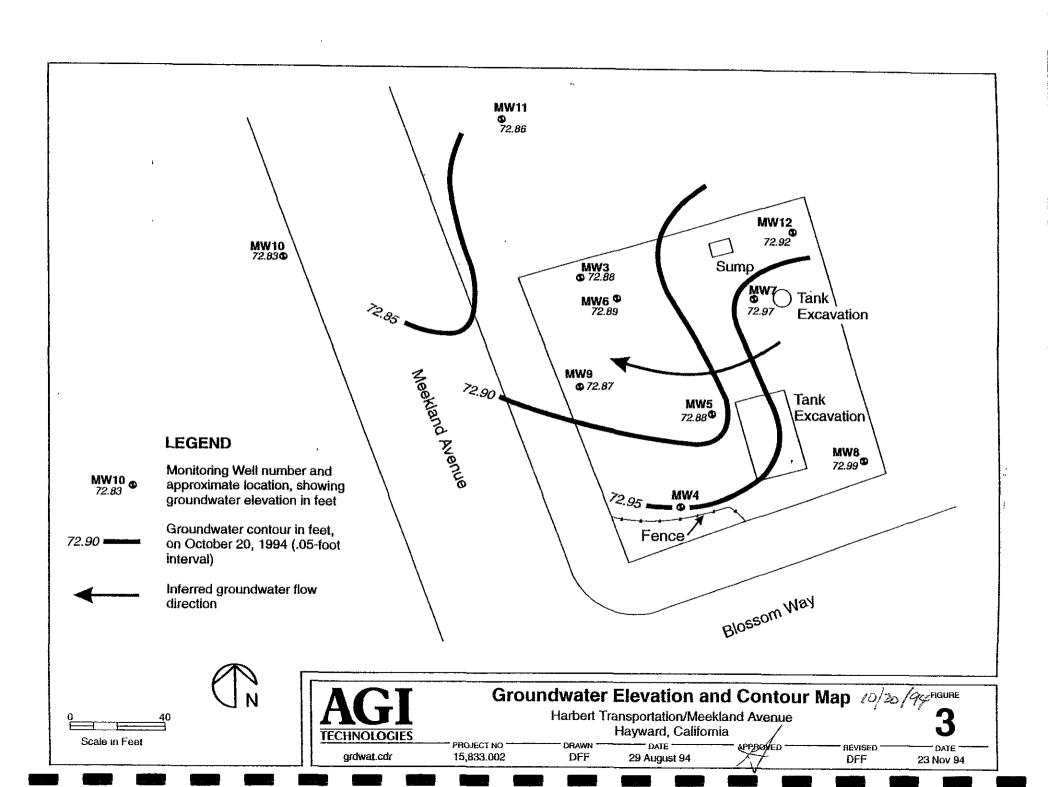
GROUNDWATER MONITORING WELL SAMPLING INFORMATION

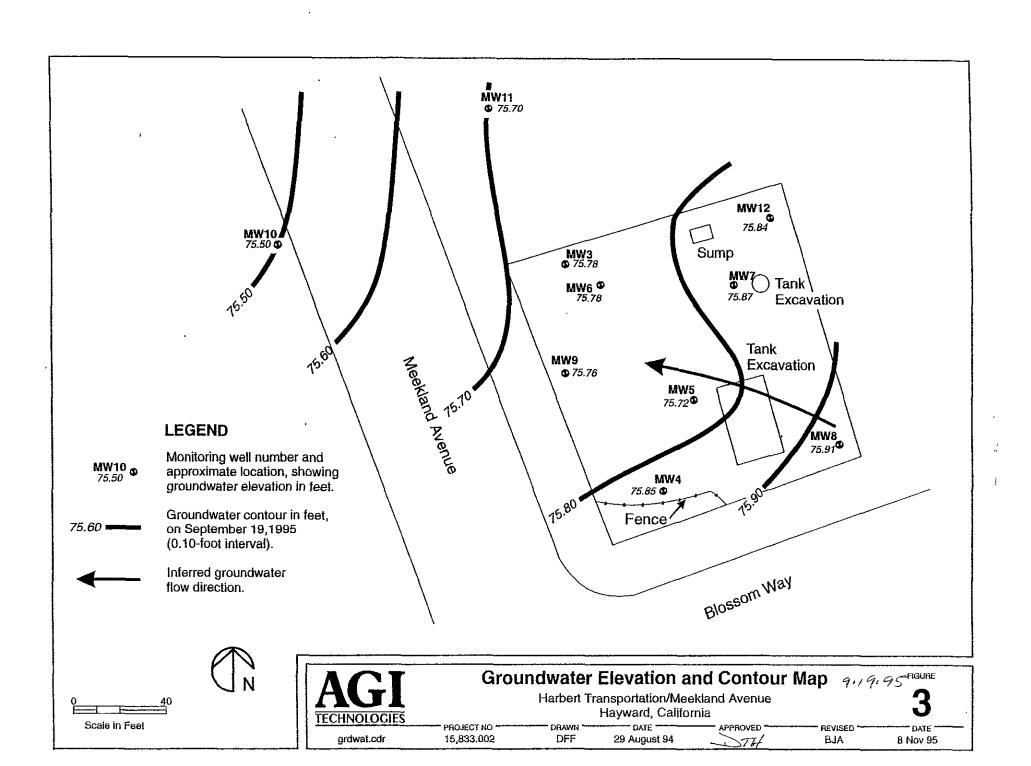
		Hurbert T	ransportation	on Hac	ч2. Q		Date: 3/21/03
Sample N	0.: Mu	·9					Sample Location: Mພ-9
		hedTylor					Recorded by: C
Purge Eq		,					Sample Equipment:
	-	sposable or Ac	rylic				X Disposable Bailer
<u> </u>	_Whaler # _. Bladder P						Whaler # Bladder Pump
	_Bladdel F Submersil						Submersible Pump
Analyses	_ Reauestea	d (cricle all tha	t apply):				Number and Types of Bottle Used
TPH-gas BT	EX MTBB, 1,	2-DCA, EDB, 826	0 Fuel Oxygenat	es PCE	TLE)		2x (3x40=1 4m/2 1/4)
		l, TPH-Heating Oil				<i>5</i> 4-	
Intrinsic Bio.	Parameters		. <u> </u>			H-04-0	
Well Num	ber:	Mw.9				N	/ell Diameter: _ ಀೣ~ with Casing Volume of
Depth to \	Nater:	12.17	TOC				2" = (0.16 Gallon/Feet
Well Dept	h:	40.	BGS or TOC				4" = (0.65 Gallon/Feet
Height W-	Column:	17.83	feet (well de	oth - depth	to water)		5" = (1.02 Gallon/Feet
Volume in		11. 5895	gallons (casi	•	,		6" = (1.47 Gallon/Feet
Gailons to		46.31	gallons (volu		J ,		8" = (2.61 Gallon/Feet
Lab:			. O = (: 31-4	,		Transpor	
	1- ~100	<u> </u>		•		.,	Della-
Tim-	Volume	Tomporatura	Conductivity	D.O.		ORP	Micropurge
Time (24 hr.)	Purged	/ºC\	(ms/cm)	(ppm)	pН	(mV)	Turbidity: Color, Fines Paramaters
(24111.)	(Gallons)	(0)	(1113/0111)	(ppm)		(1117)	Stabilized
11 04	Ó	18.72	0.681	1.63	6.14	- 84	Moderate: Gray, Modfmy
110 5	ર	18.80	0.137	0.37	6.74	-96	Moderate: Gray, Modfmy Low: Clear, TraceFines
1106	ч	11.20	0.619	0.15	6.78	`72	
1107	6	19.29	0.615	80.0	6.81	-75	
1108	8	19.32	0.619	0.08	6.81	·77	
1110	10	19.35	0.613	0.07	18.2	-78	
1116	20	19.31	0.600	0.24	6.81	~ 83	
·	32	19.38	0.623	0.10	6.79	-84	
STOP-	Paramete	rs Stubili	zed. Pury	e Complet	e.		
<u> </u>	<u></u>		ait for 80% w				
		Calculat			· · · · /		lume recovery:
	Orlada			culate 80% o) <u>40°</u> = Depth to water 25.74
	Origina	n neight of vvater t	20141MH = <u>1 ft 1</u>	x 0.0 -	10401	- (vveii Debiti	9 40 - Deptit to water 25.7-1
Time: 112 L	1st measured	d depth to water, _	12.31 feet	below TOC.		Is well within	80% of original well casing volume: Yes <u> </u>
Time:	1st measured	d depth to water,	feet	below TOC.			80% of original well casing volume: Yes No
Time: \u00a7	1st measured	d depth to water	19 feet	below TOC.		ls well within	80% of original well casing volume: Yes
				San	nple Well		
T :			Cample ID:		A G		Donth, as 33.
rime:	_1126		Sample ID:	^	<u> </u>		Depth: 22.72 feet below TOC
Comments	: N	o Floating Pr	odact. Sl.	t-Moden	te odar		
		0	0				
	 		·				- to the second

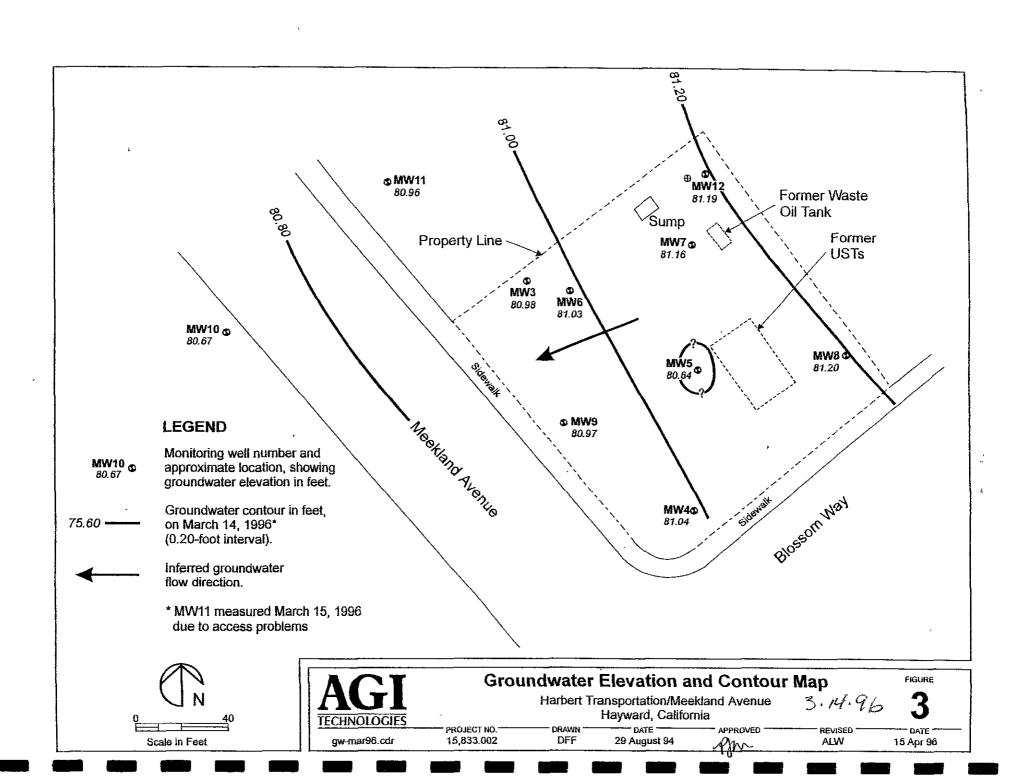
Groundwater Monitoring Report - First Quarter 2003 19984 Meekland Avenue, Hayward, California July, 2, 2003

Appendix B

Summary of Historical Depth to Groundwater Measurements, Groundwater Elevations, and Groundwater Flow Direction - AGI Technologies, Inc.




Table 1 Groundwater Elevation DataHarbert Transportation/Meekiand Avenue
Hayward, California


		Top of Casing	Depth to	Groundwater
Weil	Date	Elevation	Groundwater	Elevation
Number	Sampled	(feet)	(ft bgs)	(feet)
MW3	10/20/94	100.00	27.12	72.88
191943	09/15/95	100.50	24.22	75.78
	03/14/96		19.02	80.98
	09/26/96		23.61	76.39
MW4	10/20/94	100.27	27.32	72.95
"""	09/15/95		24.42	75.85
İ	03/14/96		19.23	81.04
	09/26/96		23.85	76.42
MW5	10/20/94	100.59	27.71	72.88
	09/15/95		24.87	75.72
	03/14/96		19.95	80.64
1	09/26/96		24.38	76.21
MW6	10/20/94	100.57	27.68	72,89
	09/15/95		24.79	75.78
1	03/14/96		19.54	81.03
	09/26/96		24.20	76.37
MW7	10/20/94	101.22	28.25	72.97
	09/15/95		25.35	75.87
	03/14/96		20.06	81.16
	09/26/96		24.75	76.47
MW8	10/20/94	100.72	27.73	72.99
	09/15/95		24.81	75.91
	03/14/96		19.52	81.20
	09/26/96		24.13	76.59
MW9	10/20/94	99.77	26.90	72.87
	09/15/95		24.01	75.76
	03/14/96		18.80	80.97
	09/26/96		23.50	76.27
MW10	10/20/94	99.29	26.46	72.83
	09/15/95		23.79	75.50
	03/14/96		18.62	80.67
	09/26/96		23.30	75.99
MW11	10/20/94	99.75	26.89	72.86
	09/15/95		24.05	75.70
	03/15/96		18.79	80.96
	09/26/96		23.53	76.22
MW12	10/20/94	101.03	28.11	72.92
]	09/15/95		25.19	75.84
	03/14/96		19.84	81.19
	09/26/96		24.57	76.46

Note:

ft bgs - Feet below ground surface.

Groundwater Monitoring Report - First Quarter 2003 19984 Meekland Avenue, Hayward, California July, 2, 2003

Appendix C

Certified Analytical Report - Groundwater Samples

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

April 02, 2003

Chad Taylor Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076

Order: 33750

Project Name: Harbert Transportation

Project Number: H9042.Q

Date Collected: 3/21/2003

Date Received: 3/24/2003

P.O. Number: H9042.Q

Project Notes: Report re-iisued to include MTBE by EPA 8260B results. Please disregard any previously

sumbitted data for work order 33750.

On March 24, 2003, samples were received under documentented chain of custody. Results for the following analyses are attached:

MatrixTestMethodLiquidEDF DeliverablesEDF

Gas/BTEX EPA 8015 MOD. (Purgeable)

EPA 8260B ### EPA 8260B ### EPA 8260B ### EPA 8260B ### EPA 8260B #### EPA 8260B

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Patti Sandrock QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 4/2/03

Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Chad Taylor

Certified Analytical Report

Order ID:	33750	Lab	Sample ID	: 3375	0-001		Client Sam	ple ID: MW	7-3	
Sample Time:	8:07 AM	Sa	mple Date	: 3/21/	/2003		יו	Matrix: Liqu	uid	
Parameter	Resu	lt Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	3	.3	2.5	0.5	1.25	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
Toluene	1	4	2.5	0.5	1.25	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
Ethyl Benzene	5	.6	2.5	0.5	1.25	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
Xylenes, Total	N	ID OI	2.5	1	2.5	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
·					Surroga	ıte	Surre	ogate Recovery	Contr	ol Limits (%)
				4-B	romofluore	benzene		141,2	65	- 135
				aa	a-Trifluoro	toluene		84.5	65	- 135
Comment:	High surrogate rece	overy for 4-I	3FB due to m	atrix inte	rference. Se	ee TFT resu	ilts.			
Parameter	Resu	lt Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	N	ID	l	1	1	μg/L	N/A	3/26/2003	WMS11995	EPA 8260B
					Surroga	ıte	Surre	gate Recovery	Contro	ol Limits (%)
				4-B	romofluoro	benzene		110.0	73	- 151
				Dib	romofluoro	methane		109.0	57	- 156
					Toluene-	-d8		110.0	77	- 150
Parameter	Resu	lt Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	46	50	2.5	50	125	μg/L	N/A	3/25/2003	WGC42794	EPA 8015 MOD (Purgeable)
					Surroga	ıte	Surro	gate Recovery	Contro	ol Limits (%)
				4-B	romofluoro	henzene		NR	65	- 135
								1114	05	- 133

DF = Dilution Factor

Comment:

ND = Not Detected

High surrogate recovery for 4-BFB due to matrix interference. See TFT results.

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/Q& Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 4/2/03 Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q Sampled By: Chad Taylor

Certified Analytical Report

		Certin	icu zxii	ary trea	rtepor	. L			
33750	Lab Sa	mple I	D: 3375	0-002		Client Sam	ple ID: MV	√- 5	
10:05 AM	Sam	ple Dat	te: 3/21/	2003		ľ	Matrix: Liq	uid	
Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
190		25	0.5	12.5	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
82		25	0.5	12.5	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
370		25	0.5	12.5	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
700		25	1	25	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
				Surroga	ate	Surre	ogate Recovery	Conta	ol Limits (%)
			4-B	romofluoro	benzene		110.3	65	5 - 135
Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ND		5	1	5	μg/L	N/A	3/26/2003	WMS11995	EPA 8260B
				Surroga		Surre	ogate Recovery	Conti	ol Limits (%)
			4-B	-			97 1	73	, ,
			Dib	romofluoro	methane		95.1	57	7 - 156
				Toluene	-d8		95.4	73	7 - 150
Due to high concentrat	ion of TPH	l as Gasol	ine, sample	e required a	as five fold	dilution.			
Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
4800		25	50	1250	μg/L	N/A	3/25/2003	WGC42794	EPA 8015 MOD. (Purgeable)
				Surroga	ate	Surre	ogate Recovery	Contr	ol Limits (%)
			4-B	romofluoro	benzene		118.0	65	5 - 135
	Result Result 190 82 370 700 Result ND Due to high concentrat Result	33750 Lab Sam Result Flag 190 82 370 700 Result Flag ND Due to high concentration of TPH Result Flag	10:05 AM Sample Date 10:05 AM Sample Date Result Flag DF 190	Sample ID: 3375 10:05 AM Sample Date: 3/21/ Result Flag DF PQL 190 25 0.5 82 25 0.5 370 25 0.5 700 25 1 4-B Result Flag DF PQL ND 5 1 4-B Dib Due to high concentration of TPH as Gasoline, sample Dib Result Flag DF PQL 4800 25 50	Sample ID: 33750-002	10:05 AM Sample ID: 33750-002	Result Flag DF PQL DLR Units Extraction Date	10:05 AM Sample ID: 33750-002 Client Sample ID: MW	Client Sample ID: MW-5 10:05 AM Sample Date: 3/21/2003 Matrix: Liquid

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 4/2/03 Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q Sampled By: Chad Taylor

Certified Analytical Report

Order ID: 33750		Lab Sample ID: 33750-003					Client Sample ID: MW-6			
Sample Time: 9:07 AM		Sam	ple Dat	te: 3/21/	2003			Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	6.3		10	0.5	5	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
Toluene	ND		10	0.5	5	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
Ethyl Benzene	54		10	0.5	5	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
Xylenes, Total	ND		10	1	10	μg/L	N/A	3/25/2003	WGC42794	EPA 8020
•					Surroga	ite	Surre	ogate Recovery	Contr	ol Limits (%)
				4-B	romofluoro	benzene		112.8	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	1	1	μg/L	N/A	3/26/2003	WMS11995	EPA 8260B
•					Surroga	, -	Surre	gate Recovery	Contr	ol Limits (%)
				4-B	romofluoro	benzene		99.0	73	- 151
				Dib	romofluoro	methane		107.0	57	- 156
					Toluene-	·d8		98.0	77	- 150
Parameter	Result	Flag	ÐF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	1200		10	50	500	μg/L	N/A	3/25/2003	WGC42794	EPA 8015 MOD. (Purgeable)
					Surroga	ıte	Surre	ogate Recovery	Contr	ol Limits (%)
				4-B	romofluoro	benzene		132.4	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 4/2/03 Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q Sampled By: Chad Taylor

Certified Analytical Report

Order ID:	33750	Lab Sa	ample ID:	3375	0-004		Client Sam	ple ID: MV	V-9	,
Sample Time:	11:26 AM	Sam	iple Date:	3/21/	/2003		I	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	190		10	0.5	5	μg/L	N/A	3/28/2003	WGC42801	EPA 8020
Toluene	24		10	0.5	5	μg/L	N/A	3/28/2003	WGC42801	EPA 8020
Ethyl Benzene	470		10	0.5	5	μg/L	N/A	3/28/2003	WGC42801	EPA 8020
Xylenes, Total	630		10	1	10	μg/L	N/A	3/28/2003	WGC42801	EPA 8020
					Surroga	te	Surre	ogate Recovery	Contr	ol Limits (%)
				4-B	romofluoro	benzene		142.7	65	5 - 135
				aa	a-Trifluoro	toluene		67.0	65	5 - 135
Comment:	High surrogate recover	y for 4-BF	B due to mat	rix inte	rference, Se	e TFT resu	ilts			
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		5	1	5	μg/L	N/A	3/26/2003	WMS11995	EPA 8260B
					Surroga			gate Recovery		ol Limits (%)
				4-B	romofluoro		2,	91.1	•	- 151
					romofluoro			92.6		- 156
					Toluene-			92.8		' - 150
Comment:	Due to high concentrat	ion of TPH	I as Gasoline	, sample			dilution			•••
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	5900		10	50	500	μg/L	N/A	3/28/2003	WGC42801	EPA 8015 MOD (Purgeable)
					Surroga	te	Surro	gate Recovery	Contr	ol Limits (%)
				4-B	romofluoro	benzene		187.2		- 135
				aaa	a-Trifluorot	oluene		92.3	65	- 135
Comment:	High surrogate recover	y for 4-BF	B due to mati	ix inter	ference. Se	e TFT resu	lts			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Chad Taylor Date: 4/2/03 Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q Sampled By: Chad Taylor

Certified Analytical Report

Order ID:	33750	Lab Sa	ample ID:	3375	0-005		Client Sam	ple ID: MW	7-10	
Sample Time:	10:37 AM	Sam	ple Date:	3/21/	/2003		ľ	Matrix: Liqu	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	3.4		i	0.5	0.5	μg/L	N/A	3/27/2003	WGC42800	EPA 8020
Toluene	1.4		1	0.5	0.5	μg/L	N/A	3/27/2003	WGC42800	EPA 8020
Ethyl Benzene	0.71		1	0.5	0.5	μ g /L	N/A	3/27/2003	WGC42800	EPA 8020
Xylenes, Total	1.0		1	1	1	μg/L	N/A	3/27/2003	WGC42800	EPA 8020
•					Surroga	te	Surre	ogate Recovery	Contr	ol Limits (%)
				4-B	romofluoro	benzene		87.7	65	- 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	1	1	μg/L	N/A	3/26/2003	WMS11995	EPA 8260B
					Surroga	, +	Surro	ogate Recovery	Contr	ol Limits (%)
				4-B	romofluoro			117.0	73	- 151
				Dib	romofluoro	methane		101.0	57	- 156
					Toluene-	d8		109.0	77	- 150
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	700		1	50	50	μg/L	N/A	3/27/2003	WGC42800	EPA 8015 MOD (Purgeable)
					Surroga	te	Surro	gate Recovery	Contr	ol Limits (%)
				4-B	romofluoro	benzene		132 4	65	- 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA7QC Marrager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC42794

Matrix: Liquid

Units:

μg/L

Date Analyzed:

3/25/2003

Parameter .	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Туре	% Recovery	RPD	RPD Limits	Recovery Limits
Test: T	PH as Gasoline										
TPII as Gasol		ND		250		244.	LCS	97.6			65.0 - 135 0
	Surrogate		Surrog	ate Recover	·y	Control 1	Limits (%)				
l	4-Bromofluorobe	enzene		77.8		65 -	135				
Test: B	TEX										
Benzene	EPA 8020	ND		8		8.51	LCS	106.4			65 0 - 135.0
Ethyl Benzene	EPA 8020	ND		8		8.84	LCS	110.5			65 0 - 135 0
Toluene	EPA 8020	ND		8		8.62	LCS	107.7			65.0 - 135.0
Xylenes, total	EPA 8020	ND		24		26.6	LCS	110.8			65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control l	Limits (%)				
	4-Bromofluorobe	nzene		95.9		65 -	135				
Test: N	TBE by EPA 8020)									
	EPA 8020	ND		8		8 37	LCS	104.6			65.0 - 135.0
[Surrogate		Surrog	ate Recover	y	Control I	Limits (%)				
	4-Bromofluorobe	nzene		95.9		65 -	135				
Test: T	PH as Gasoline										
TPH as Gasol	ne EPA 8015 M	ND		250		250 6	LCSD	100.2	2.67	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control I	Limits (%)				
	4-Bromofluorobo	nzene		79.5		65 -	135				
Test: B	TEX									· · ·	
Benzene	EPA 8020	ND		8		8.73	LCSD	109.1	2.55	25.00	65.0 - 135.0
Ethyl Benzend	EPA 8020	ND		8		8.74	LCSD	109.3	1.14	25.00	65.0 - 135.0
Toluene	EPA 8020	ND		8		8.5	LCSD	106.3	1.40	25.00	65.0 - 135.0
Xylenes, total	EPA 8020	ND		24		26.2	LCSD	109 2	1.52	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control I	imits (%)		•		
	4-Bromofluorobe	nzene		96.7		65 -	135				
Test: M	TBE by EPA 8020)									
Methyl-t-buty	•	ND		8		7.94	LCSD	99.3	5.27	25.00	65.0 - 135.0
, r-÷	Surrogate		Surroga	ate Recover	y	Control I	Limits (%)				
	4-Bromofluorobe	nzene	Ü	96.7	•	65 -	` `				1

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

Matrix:

WGC42800

Liquid

Units:

μg/L

Date Analyzed:

3/27/2003

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: TPH	as Gasoline		···								
TPH as Gasoline	EPA 8015 M	I ND		250		248.4	LCS	99.4			65.0 - 135.0
	Surrogate		Surrog	ate Recover	y	Control l	Limits (%)				
	4-Bromofluorob	enzene		77 0		65 -	135			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Test: BTE	X		_ ~								
Benzene	EPA 8020	ND		8		8.55	LCS	106.9			65.0 - 135.0
Ethyl Benzene	EPA 8020	ND		8		8.9	LCS	111.3			65.0 - 135.0
Toluene	EPA 8020	ND		8		8.57	LCS	107.1			65.0 - 135.0
Xylenes, total	EPA 8020	ND		24		26.8	LCS	111.7			65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control l	Limits (%)				
	4-Bromofluorob	enzene		98 4		65 -	135				
Test: MTH	BE by EPA 802	0	- · · · · · · · · · · · · · · · · · · ·	····				-			.
Methyl-t-butyl Etl	•	ND		8		8.58	LCS	107.3			65.0 - 135.0
	Surrogate		Surrog	ate Recover	 'y	Control 1	Limits (%)				
	4-Biomofluorob	enzene		98.4		65 -	135				
Test: TPH	as Gasoline									.,	,
TPH as Gasoline	EPA 8015 M	I ND		250		249.6	LCSD	99.8	0.48	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	·y	Control l	Limits (%)				
	4-Bromofluorob	enzene		77.0		65 -	135				
Test: BTE	X									,	
Benzene	EPA 8020	ND		8		8.43	LCSD	105.4	1.41	25 00	65.0 - 135 0
Ethyl Benzene	EPA 8020	ND		8		8.7	LCSD	108.7	2.27	25.00	65.0 - 135.0
Toluene	EPA 8020	ND		8		8.45	LCSD	105.6	1.41	25.00	65 0 - 135.0
Xylenes, total	EPA 8020	ND		24		26.2	LCSD	109.2	2.26	25.00	65.0 - 135 0
-	Surrogate		Surrog	ate Recover	y	Control I	Limits (%)				
	4-Bromofluorob	enzene		94.0		65 -	135				
Test: MTE	BE by EPA 802	0									
Methyl-t-butyl Eth		ND		8		7.72	LCSD	96 5	10.55	25 00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	у	Control I	limits (%)				
	4-Bromofluorob	enzene	8	94.0	•	65 -	. ,				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC42801

Matrix: Liquid

Units:

μg/L

Date Analyzed:

3/28/2003

Parameter	r	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Туре	% Recovery	RPD	RPD Limits	Recovery Limits
Test:	TPH	as Gasoline	****									
TPH as Gas	soline	EPA 8015 M	ND		250		260 8	LCS	104.3			65.0 - 135.0
[Surrogate		Surrog	ate Recover	ry	Control I	Limits (%)				
		4-Bromofluorobe	nzene		77.3		65 -	135				
Test:	BTE	X										
Benzene		EPA 8020	ND		8		8.46	LCS	105.8			65.0 - 135.0
Ethyl Benz	ene	EPA 8020	ND		8		8.78	LCS	109 7			65.0 - 135.0
Toluene		EPA 8020	ND		8		8.47	LCS	105.9			65.0 - 135.0
Xylenes, to	otal	EPA 8020	ND		24		26.4	LCS	110.0			65.0 - 135.0
Γ.		Surrogate		Surrog	ate Recover	у	Control 1	Limits (%)				
		4-Bromofluorobe	nzene		97.5		65 -	135				j
Test:		E by EPA 8020) ND		8		8.22	LCS	102.8		,	65.0 - 135.0
Methyl-t-bi	utyr Eth	er EPA 8020		Coord	ate Recover			Limits (%)	102.8			05.0 - 155.0
		Surrogate 4-Bromofluorobe	nzene	Surrog	ate Recover 97.5	У	65 -	` '				
,					77.5			100				
Test:		as Gasoline										
TPH as Gas	solme	EPA 8015 M	ND		250		259 8	LCSD	103.9	0.38	25.00	65.0 - 135.0
j		Surrogate		Surrog	ate Recover	·y		Limits (%)				
<u>L</u>		4-Bromofluorobe	nzene		90.3		65 -	135				
Test:	BTEX	X										
Benzene		EPA 8020	ND		8		8.31	LCSD	103.9	1 79	25.00	65.0 - 135.0
Ethyl Benze	ene	EPA 8020	ND		8		8.59	LCSD	107.4	2.19	25.00	65.0 - 135.0
Toluene		EPA 8020	ND		8		8.37	LCSD	104.6	1.19	25.00	65.0 - 135.0
Xylenes, to	otai	EPA 8020	ND		24		26.	LCSD	108.3	1.53	25.00	65.0 - 135.0
		Surrogate		Surrog	ate Recover	у	Control I	Limits (%)				
		4-Bromofluorobe	nzene		95.6		65 -	135				
Test:	МТВ	E by EPA 8020)			-		· · · · · · · · · · · · · · · · · · ·				
Methyl-t-bi			ND		8		7.89	LCSD	98.6	4.10	25.00	65.0 - 135.0
		Surrogate		Surrog	ate Recover	У	Control I	imits (%)				
		4-Bromofluorobe	nzene		95.6		65 -	135				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WMS11995

Matrix: Liquid

Units:

μg/L

Date Analyzed:

3/26/2003

Paramete	er	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: Methyl-t-l	MTBE b	y EPA 826 EPA 8260B			20		25.	LCS	125.0			54 0 - 130 5
	Su	rrogate		Surrog	ate Recover	ry	Control	Limits (%)	3.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4			
	4-1	Bromofluorob	enzene		105.0		73 -	151				
	Di	bromofluoron	nethane		93.2		57 -	156				
	To	luene-d8			103.0		77 -	150	-17 24 1 27			
Test:	MTBE b	y EPA 826 EPA 8260B			20		23.6	LCSD	118.0	5.76	25.00	54.0 - 130.5
[rrogate		Surrog	ate Recover			Limits (%)				
		Bromofluorob	enzene	•	104.0		73 -	151				
	Di	bromofluoron	nethane		91.0		57 -	156				
	То	luene-d8			104.0		77 -	150				

ELECTRONIC DELIVERABLE FORMAT:
Sampler: 11+1

Weber, Hayes & Associates Hydrogeology and Environmental Engineering

CHAIN -OF-CUSTODY RECORD

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

PROJECT NAME AND JOB #. Harbert Transportation / H9042.Q

SEND CERTIFIED RESULTS TO: Chad Taylor

						PAGE	OF	
		L	ABORATORY:	Entech				
		TURNA	ROUND TIME:	Standard	Five-Day	24hr Rush	48hr Rush	72hr Rush
			GLOBAL I.D.:	T060010	00475			
			REQUESTE	D ANALY	sis			
l Pe	troleum Hyd	rocarbons	Vola	tile Organic:	s	Add	litional Anal	ysis
Fuel	Purgeable Fuel Scan	Gasoline & BTEX- MTBE by EPA Method# 8015M-8-8020	1,2-DCA, TCE, and PCE by EPA Method# 8010 (by Method 8260)	TCE and PCE EPA Method# 8260	Oxygenates	Dissolved Physical and		,
		χ			3375	T) FF	/	

						SAMPLE CONTAINERS				REQUESTED ANALYSIS							
Field Point Name	Sample	Sample	Date	Time	ž	ļ		,		Total Pe	troleum Hyd	rocarbons	Vola	tile Organics	5	Add	itional Analysis
(GeoTracker)	Identification	Depth	Sampled	Sampled	Matrix	40 mL VOAs	1 Liter	mL	Liner Acetate or	Extractable Fuel	Purgeable Fue	Gasoline & BTEX- MTBE	1,2-DCA, TCE, and PCE by	TGE and PCE	Fuel Oxygenates	Total	Tillo 22. General,
						(preserved)	Amber Jars	Poly Bottle	Brass	Scan	Scan	by EPA Method# 8015M-8-8020	EPA Method# 8010 (by Method 8260)	EPA Method# 8260	EPA Method# 8260	Dissolved Solids	Physical and Inorganic Minerals
Mw.3	Wn-3	22-59	3 21 03	0807	A ₁	3						χ			3375	770	/
<u>Μω·5</u>	Mw.5	27.37		1005	10	3		1				X					-
MW.P	MAP	23.57		0907	$oldsymbol{oldsymbol{oldsymbol{eta}}}$	3						X				602 603	
Mw.9	MW.9	22.72	1	1126	11	3						x				DOY	
MW·10	MU 16	22.16	હ	1037	V							X				005	
												-			_		
					<u> </u>	 											
						 					<u> </u>						
													···				
		<u> </u>			L	İ	<u></u>		<u></u>								

RELEASED BY:	Date & Time	RECEIVED BY: Date & Time		SAMPLE CONDITI	ON:
1.) 417 1	35101 PS	3/24/03Q1D; VS	Ambient	Reingerated	Frozen
2.)		3/24/03 1/33	Ambient	Refrigerated	Frozen
3.)	-		Ambient	Refrigerated	Frozen
4)		→ ∪	Ambient	Refrigerated	
5)				•	Frozen
			Ambient	Refrigerated	Frozen

NOTES:

if MTBE is detected by EPA Method 8020, please confirm detections by EPA Method 8260 with a minimum detection limit of 5 ug/L, and report only confirmed 8260 detections

For MTBE-analyzed samples with non-detectable results (ND) but having elevated detection limits, please confirm by EPA Method #8260

Please use MDL (Minimum Detection Limit) for any diluted samples

ADDITIONAL COMMENTS

- Please produce and e-mail an EDF of these results to frances@weber-hayes.com.

CONTRACTOR OF CO.

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

March 28, 2003

Chad Taylor Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076

Order: 33749

Project Name: Harbert Transportation

Project Number: H9042.Q

Date Collected: 3/21/2003

Date Received: 3/24/2003

P.O. Number: H9042.Q

Project Notes:

On March 24, 2003, samples were received under documentented chain of custody. Results for the following analyses are attached:

 Matrix
 Test
 Method

 Liquid
 EDF Deliverables
 EDF

 EPA 8010 by EPA 8260B
 EPA 8260B

 PDF
 PDF

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Patti Sandrock QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 3/28/03 Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q Sampled By: Chad Taylor

Certified Analytical Report

Order ID: 33749		Lab Sam	ple ID:	33749-0	01	Clie	nt Sample ID:	MW-3	
Sample Time: 8:07 A	М	Sampl	e Date:	3/21/200)3		Matrix:	Liquid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
1,1,1-Trichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1,2,2-Tetrachloroethane	ND		1	0.5	0.5	μ g/L	3/26/2003	WMS11995	EPA 8260B
1,1,2-Trichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloropropane	ND		ì	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,3-Dichlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,4-Dichlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromodichloromethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromoform	ND		1	0.5	0.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Bromomethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Carbon Tetrachloride	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Chlorobenzene	ND		1	0.5	05	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroethane	ND		l	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroform	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloromethane	ND		1	1	1	μ g /L	3/26/2003	WMS11995	EPA 8260B
cis-1,2-Dichloroethene	ND		1	0.5	0.5	μg/Ĺ	3/26/2003	WMS11995	EPA 8260B
cis-1,3-Dichloropropene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Dibromochloromethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Dichlorodifluoromethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Freon 113	ND		ı	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Methylene Chloride	ND		l	5	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Tetrachloroethene	ND		ì	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
trans-1,2-Dichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
trans-1,3-Dichloropropene	ND		l	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Titchloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Trichlorofluoromethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Vinyl Chloride	ND		1	0.5	0.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
	Surrogato	:		Surroga	te Recovery	<i>;</i>	Control Limits ((%)	
	-	uorobenzene	•	1	10.0		65 - 135		
	Dibromofl	uoromethan	e	1	09.0		57 - 156		
	Toluene-d	8			10.0		77 - 150		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 3/28/03

Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number: H9042.Q Sampled By: Chad Taylor

Certified Analytical Report

Order ID: 33749	L	ab Sample ID	: 33749-0	002	Clie	nt Sample ID:	MW-5	
Sample Time: 9:07 AM	M	Sample Date	: 3/21/20	03		Matrix:	Liquid	
Parameter	Result	Flag DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
1,1,1-Trichloroethane	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1,2,2-Tetrachloroethane	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1,2-Trichloroethane	5.3	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethane	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethene	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichlorobenzene	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloroethane	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloropropane	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,3-Dichlorobenzene	ND	5	0.5	2.5	μ g/ L	3/26/2003	WMS11995	EPA 8260B
1,4-Dichlorobenzene	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromodichloromethane	ИD	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromoform	ND	5	0.5	2.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Bromomethane	ND	5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Carbon Tetrachloride	ND	5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chlorobenzene	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroethane	ND	5	1	5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Chloroform	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloromethane	ND	5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
cis-1,2-Dichloroethene	ND	5	0.5	2.5	$\mu g/L$	3/26/2003	WMS11995	EPA 8260B
cis-1,3-Dichloropropene	ND	5	0 5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Dibromochloromethane	ND	5	0.5	2.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Dichlorodifluoromethane	ND	5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Freon 113	ND	5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Methylene Chloride	ND	5	5	25	μg/L	3/26/2003	WMS11995	EPA 8260B
Tetrachloroethene	ND	5	0.5	2.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
trans-1,2-Dichloroethene	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
trans-1,3-Dichloropropene	ND	5	0.5	2.5	$\mu g/L$	3/26/2003	WMS11995	EPA 8260B
Trichloroethene	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Trichlorofluoromethane	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Vinyl Chloride	ND	5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
	Surrogate		Surroga	te Recovery		Control Limits ((%)	
	4-Bromofluor	robenzene	9	97.1		65 - 135		
	Dibromofluo	romethane	!	95.1		57 - 156		
	Toluene-d8		•	95.4		77 - 150		

Comment:

Sample diluted due to high concentrations of non-target compounds.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 3/28/03 Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q Sampled By: Chad Taylor

Certified Analytical Report

Order ID: 33749		Lab Sam	ple ID:	33749-0	03	Clie	nt Sample ID:	MW-6	
Sample Time: 10:05	AM	Sampl	e Date:	3/21/200)3		Matrix:	Liquid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
1,1,1-Trichlorocthane	ИD		1	0.5	0.5	$\mu g/L$	3/26/2003	WMS11995	EPA 8260B
1,1,2,2-Tetrachloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1,2-Trichloroethane	3.9		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloropropane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,3-Dichlorobenzenc	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,4-Dichlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromodichloromethane	ND		ı	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromoform	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromomethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Carbon Tetrachloride	ИD		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Chlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroform	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloromethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
cis-1,2-Dichloroethene	ИD		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
cis-1,3-Dichloropropene	ND		1	0.5	0.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Dibromochloromethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Dichlorodifluoromethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Freon 113	ND		1	i	i	μg/L	3/26/2003	WMS11995	EPA 8260B
Methylene Chloride	ND		1	5	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Tetrachloroethene	ND		ì	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
trans-1,2-Dichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
trans-1,3-Dichloropropene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Trichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Trichlorofluoromethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Vinyl Chloride	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
	Surrogat	e		Surroga	te Recovery		Control Limits ((%)	
	4-Biomof	luorobenzen)		0.0		65 - 135		
	Dibromof	luoromethan	e	1	07.0		57 - 156		
	Toluene-d	8		ç	0.80		77 - 150		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076 Attn: Chad Taylor Date: 3/28/03

Date Received: 3/24/2003

Project Name: Harbert Transportation Project Number: H9042.O

P.O. Number: H9042.Q

Sampled By: Chad Taylor

Certified Analytical Report

Order ID:	Order ID: 33749		Lab Sample ID: 33749-004			Clie	MW-9		
Sample Time:	11:26 AM	Sample l	Date:	3/21/200)3	_	Matrix: 1	Liquid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
1,1,1-Trichloroethane	ND		5	0.5	2.5	μ g/ L	3/26/2003	WMS11995	EPA 8260B
1,1,2,2-Tetrachloroetha	ne ND		5	0.5	2.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
1,1,2-Trichloroethane	5.3		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethane	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethene	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichlorobenzene	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloroethane	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,2-Dichloropropane	ND		5	0.5	2.5	$\mu g/L$	3/26/2003	WMS11995	EPA 8260B
1,3-Dichlorobenzene	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,4-Dichlorobenzene	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromodichloromethane	ND		5	0.5	2.5	μ g/ L	3/26/2003	WMS11995	EPA 8260B
Bromoform	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromomethane	ND		5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Carbon Tetrachloride	ND		5	1	5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Chlorobenzene	ND		5	0.5	2.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Chloroethane	ND		5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroform	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloromethane	ND		5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
cis-1,2-Dichloroethene	ND		5	0.5	2.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
cis-1,3-Dichloropropend	e ND		5	0.5	2.5	μ g /L	3/26/2003	WMS11995	EPA 8260B
Dibromochloromethane	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Dichlorodifluoromethan	ne ND		5	1	5	$\mu g/L$	3/26/2003	WMS11995	EPA 8260B
Freon 113	ND		5	1	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Methylene Chloride	ND		5	5	25	μ g /L	3/26/2003	WMS11995	EPA 8260B
Tetrachloroethene	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
trans-1,2-Dichloroethen	e ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
trans-1,3-Dichloroprope	ene ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Trichloroethene	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Trichlorofluoromethane	ND		5	0.5	2.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Vinyl Chloride	ND		5	0.5	2.5	$\mu g/L$	3/26/2003	WMS11995	EPA 8260B
	Surrogat	te		Surrogat	ie Recovery		Control Limits (%)	
	4-Bromot	fluorobenzene		9	1.1		65 - 135		
	Dibromot	fluoromethane		ç	2.6		57 - 156		
	Toluene-	38		ç	2.8		77 - 150		

Comment:

Sample diluted due to high concentrations of non-target compounds.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 3/28/03 Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q P.O. Number: H9042.Q

Sampled By: Chad Taylor

Certified Analytical Report

Order ID: 33749	L	ab Samp	ole ID:	33749-0	05	Clie	nt Sample ID:	MW-10	
Sample Time: 10:37	AM	Sample	Date:	3/21/200)3		Matrix:	Liquid_	
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
1,1,1-Trichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1,2,2-Tetrachloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1,2-Trichloroethane	9.0		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
1,1-Dichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
,2-Dichlorobenzene	ИD		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
,2-Dichloroethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
,2-Dichloropropane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
,3-Dichlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
,4-Dichlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromodichloromethane	ND		1	0.5	0.5	μ g/L	3/26/2003	WMS11995	EPA 8260B
Bromoform	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Bromomethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Carbon Tetrachtoride	ND		1	ł	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Chlorobenzene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloroform	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Chloromethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
ris-1,2-Dichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
cis-1,3-Dichloropropene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Dibromochloromethane	ND		1	0.5	0 5	μg/L	3/26/2003	WMS11995	EPA 8260B
Dichlorodifluoromethane	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Freon 113	ND		1	1	1	μg/L	3/26/2003	WMS11995	EPA 8260B
Methylene Chloride	ND		1	5	5	μg/L	3/26/2003	WMS11995	EPA 8260B
Fetrachloroethene	ND		1	0.5	0.5	$\mu g/L$	3/26/2003	WMS11995	EPA 8260B
rans-1,2-Dichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
rans-1,3-Dichloropropene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Frichloroethene	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
ichlorofluoromethane	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
Vinyl Chloride	ND		1	0.5	0.5	μg/L	3/26/2003	WMS11995	EPA 8260B
	Surrogate			Surrogat	e Recovery	•	Control Limits (%)	
	4-Bromofluo	robenzene		1	17.0		65 - 135		
	Dibromofluo	romethane		10	01.0		57 - 156		
	Toluene-d8			10	09.0		77 - 150		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WMS11995

Matrix: Liquid

Units:

μg/L

Date Analyzed:

3/26/2003

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: EPA 80	10 by EPA 8	3260B									
1,1-Dichloroethene	EPA 8260B	ND		20		17.4	LCS	87.0			58.7 - 116.5
Chlorobenzene ·	EPA 8260B	ND		20		19.4	LCS	97.0			80.4 - 112.0
Trichloroethene	EPA 8260B	ND		20		19.7	LCS	98.5			79.7 - 114.4
S	urrogate		Surrog	ate Recovei	ry	Control	Limits (%)				
4	-Bromofluorobe	enzene		105.0		73 -	151				
r	Dibromofluorom	ethane		93.2		57 -	156				
Т	oluene-d8			103.0		77 -	150			<u> </u>	
Test: EPA 80	10 by EPA 8	3260B									
1,1-Dichloroethene	EPA 8260B	ND		20		16.7	LCSD	83.5	4.11	25.00	58.7 - 116.5
Chlorobenzene	EPA 8260B	ND		20		18.6	LCSD	93.0	4.21	25.00	80.4 - 112.0
Trichloroethene	EPA 8260B	ND		20		18.9	LCSD	94.5	4.15	25.00	79.7 - 114.4
S	urrogate		Surrog	ate Recover	ry	Control 1	Limits (%)		, .		
4	-Bromofluorobe	enzene		104.0		73 -	151				
	Dibromofluorom	ethane		91.0		57 -	156				
1	oluene-d8			104.0		77 -	150				

Weber, Hayes & Associates Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076

CHAIN -OF-CUSTODY RECORD

PAGE OF

120 Westgate Dr., Watsonville, CA 9507 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

PROJECT	PROJECT NAME AND JOB #: Harbert Transportation / H9042.Q LABORATORY: Entech SEND CERTIFIED RESULTS TO: Chad Taylor																		
		-				···					·	-			_	7			
ELECTRONIC DELIVE			YES		1,,,,								TURNA	ROUND TIME:	Standard	Five-Day	24hr Rush	48hr Rush	72hr Rush
	111 2	لك	163	Ь.	ио						•			GLOBAL LD.:	T060010	0475			
Sampler:																			
Date:	3/21/03	1130																	
			-								·			55015075					
Find Dates						J.	s	AMPLE CO	ONTAINER	S	Total D.	.41		REQUESTE					
Field Point Name (GeoTracker)	Sample Identification	Sample Depth	Da Sam		Time Sampled	Matrix	40 mL	1 Liter	mi.	Liner	Total Pe	troleum Hyd	Gasolino & BTEX-	4 4 4 4 4 4 4 4 4	tile Organic		Add	litional Analys	sis
,			-	pied	- ampled	Ž	VOAs		ļ —	Acetate or		Purgeable Fuel	MTBE	1,2-DGA, TCE, and PCE by	TCE and PCE	Fuet Oxygenates	Total	Title 22. General,	j
					1		(preserved)	Amber Jars	Poly Bottle	Brass	Scan	Scan	by EPA Melbod# 8015M-8-8020	EPA Method# 8010 (by Method 8260)	EPA Method#	EPA Method# 8260	Dissolved Solids	Physical and inorganic	
M W - 3	M12.3	22.54	3/2	دوار	₹080	4,	3					1		X	1 225	0200	337	Minerals	
MW-2	<u>Mu-5</u>	27.37			0907	10	3							X			20/9	£02	<u>//</u>
Mrs. P	Muil	23.57	<u> </u>		1005		3							Y			<u> </u>	00	
Mrs.9	Musta	22.72			1126	Ш	3							X				609	7
MW-10	MW·10	22.16.	<u> </u>	· 	1077	4	3							X				005	=
		<u> </u>				_	<u> </u>												
		 	 -			<u> </u>	 				}								
							 												
								,			 -						ļ	<u> </u>	
								··							<u> </u>			 	
											 							 	
																		 	
		<u>!</u>				<u> </u>	<u> </u>				A CONTRACTOR			*****					——
11 88164	SED BY:															SAME	LE CONDITI		الدهد
NA CONTRACTOR			2 2	ate & T				A (7/_RECEI	V <u>ED BY:</u>		Date	&Time	26		<u> </u>	(circle 1)	241.	
0-11		•	4	710	<u>51025</u>			A Control	Na)	<i>i</i>) —		3/4	100010	28	Ambient	Refnge	rated	Frozen	
2.)	<u> </u>						~~	TXI	police	ko .		3240	3 1133		Ambient	Refnge	rated	Frozen	
3.)					-		7		 			. <u>-</u> !	.		Ambient	Refrige	erated	Frozen	
4)							~	$\overline{\mathcal{A}}$		····					Ambient	Reinge	erated	Frozen	
5.)					-								.		Ambient	Refnge		Frozen	
NOTES:		=							·		ADDI	TIONAL COM	MENTS					,	
If MTBE is detected by detections.	EPA Method 8020, please	confirm detection	ns by &P.	А Мета	od 8260 with a muni	mum de	etection limit of s	i ua/L. and ren	od only confirm	ned 8260			<u> </u>						
											- P	lease prod	uce and e-ma	ul an EDF of th	ese result	s to france:	s@weber-l	hayes.com.	. 1
	mples with non-detectable			levated o	detection limits, ple	ase cor	nirm by EPA Me	thod #8260,									-		
Please use MDL (Minut	num Detection (umit) for an	ly diluted sample	s.								1								

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

March 27, 2003

Chad Taylor

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Order:

33751

Date Collected:

3/21/2003

Project Name:

Harbert Transportation

Date Received:

3/24/2003

Project Number:

H9042.Q

P.O. Number:

H9042.Q

Project Notes:

On March 24, 2003, sample was received under documentented chain of custody. Results for the following analyses are attached:

Matrix

Method

Liquid

EDF Deliverables

EDF

PDF TDS

Test

PDF EPA 160.1

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Patti Sandrock QA/QC Manager

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 3/27/03

Date Received: 3/24/2003

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number: H9042.Q

Sampled By: Chad Taylor

Certified Analytical Report

Order ID: 3375		Lab Sa	mple ID:	33751-00	1	Client Sampl	e ID: MW-3	
Sample Time: 8:07	AМ	Sam	ple Date:	3/21/2003	3	Ma		
Parameter	Result	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
Total Dissolved Solids	460	1	10	10	mg/L	3/26/2003	WTDS030325	EPA 160.1

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Patti Sandrock, QA/QC Manager

Weber, Hayes & Associates Hydrogeology and Environmental Engineering

CHAIN -OF-CUSTODY RECORD

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

				,
LABORATORY:	Entech			
TURNAROUND TIME:	Standard Five-Da	24hr Rush	48hr Rush	72hr Rush
	T000040047#			

PAGE

OF 1

PROJECT	NAME AND JOB #:	Harbert T	ransportat	ion / H9042.	<u>.Q</u>						_	L	ABORATORY:	Entech				
SEND CERTIF	TED RESULTS TO:	Chad Tay	ior								_	TURNA	ROUND TIME:	Standard	d Five-Day	24hr Rush	48hr Rush	72hr Rush
ELECTRONIC DELIVE	RABLE FORMAT:	X	YES	МО									GLOBAL I.D.:	T060010	0475			
Sampler:	.111-1																•	
Date:	3/4/02																	
													REQUESTE	ED AMAL V	ele			
Field Point Name	0				×	s	AMPLE CO	ONTAINER	s	Total Pe	troleum Hyd	Ocarbons		tile Organic			itional Analy	
(GeoTracker)	Sample Identification	Sample Depth	Date Sampled	Time Sampled	Matrix	40 mL	1 Liter	2.50 mL	Liner			Gasoime & BTEX-	1,2-DCA, TCE, and PCE by		Fuel		Title 22.	Asre
					-	VOAs (preserved)	Amber Jars	Poly Bottle	Acetate or Brass	Extractable Fuel Scan	Purgeable Fuel Scan	MTBE	EPA Melhod# 8010	1	Oxygenates	Total Dissolved Solids	General, Physical and Inorganic	
Mu.3	Mw·s	22.59	3/21/03	0807	A			<u> </u>			227	8015M-8-8020	(by Method 8260)	8260	8260		Minerals	
		22.31	31411-7	3 801	A							01-CC1				Χ		
				ļ														
				<u> </u>				<u> </u>										
				<u> </u>	-										<u> </u>		 	
								<u> </u>				_						
										-								
				ļ														
		<u> </u>		 											<u> </u>			
								<u> </u>			<u> </u>						 	
RELEA	ASED BY:		Pate & T				Jan a		VED BY:		Date	& Time			SAME	LE CONDIT (circle 1)	ION:	
1.)		-	2/24/0	2 1025			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	A D			. 3/24	1910.10	mo	Ambrent	Refrige	erated	Frozen	
2)		-					XINA	alle	7		3/24/0	2 1159		Ambient	Refrige	rated	Frozen	
3)			-	·			\mathcal{A}^{-}							Ambient	Refrige	erated	Frozen	
5)		-					-							Ambient	Refnge	rated	Frozen	
		•												Ambient	Refinge	erated	Frozen	
NOTES:										ADDI	TIONAL COM	MENTS					Apr.	
detections	EPA Method 8020, please							ort only confirm	ned 8260	- P	lease prod	uce and e-ma	il an EDF of th	ese result	s to france:	s@weber-l	hayes.com	ւ
	mples with non-detectable			detection limits, ple	ase con	nfirm by EPA Me	thod #8260									-	3 · · · · · · · · · · · · · · · · · · ·	
Please use MDL (Minin	num Detection Limit) for a	y diluted sample	es		~~													

Groundwater Monitoring Report - First Quarter 2003 19984 Meekland Avenue, Hayward, California July, 2, 2003

Appendix D

Summary of Historical Groundwater Analytical Results - AGI Technologies, Inc.

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

43 W.O					V2-3-12-12-22	EPA Test Meth	ods				S. && 7474	
			8015 Modified			8020				8010		
								Total				
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Tojuene	Xylenes	/ JCE	PCE	1,2-DCA	Dther **
Well	Sampled		μg/L			μά/Ľ				Hall		μ g/L
MW1	07/86	42,000	NA	NA	5,500	NA	4,900	6,100	NA	NA	NA	
	03/90	, 27,000	NA	NA	2,700	491	840	800	ND	ND	ND	
İ	07/90	27,000	11,000	ND	4,000	ND	1,500	4,400	ND	ND	62	
	10/90	43,000	8,500	. ND	3,400	1,200	2,700	5,300	0.4	ND	26	
	01/91	22,000	2,700	ND	3,000	990	1,800	2,800	ND	ND	27	
ļ	04/91	42,000	3,100 ^a	NA	5,100	1,200	3,700	3,200	ND	ND	120	
	07/91	46,000	4,300 ^a	NA	6,500	830	2,900	3,700	ND	ND	64	
<u> </u>	10/91	27,000	4,300	NA	4,400	1,100	1,400	3,200	ND	ND	25	
	01/92	27,000	14,000	NA	3,300	1,200	1,600	3,800	ND	ND	24	
	04/92	33,600	11,000 🖺	NA	8,900	1,200	3,500	3,700	ND	ND	120	
	07/92	41,000	19,000 🖺	NA	5,600	1,300	2,600	4,000	ND	ND	49	
ļ	10/92	33,000	3,500 *	NA	4,400	1,200	2,100	4,000	ND	, ND	61	
MW3	11/89	29,000	NA	NA	4,600	680	1,100	1,100	ND	ND	36	Lead 40
	11/89	NA	NA	NA	NA.	NA	NA	NA	ND	ND	36	Lead 40
	03/90	12,000	NA	NA	2,300	59	300	490	ND	ND	ND	
	07/90	7,300	990	ND	5,200	ND	440	480	ND	ND	67	
	10/90	6,200	970	ND	75	7.5	150	250	ND	ND	48	
	10/90	NA.	NA	NA	NA	NA	NA	NA:	ND	ND	22	Lead 3
	01/91	4,600	680	ND	2,200	220	110.	89	ND	ND	40	- <i></i>
	04/91	8,300	640 🖁	NA	2,800	370	490	760	ND	ND	43	
	07/91	6,600	890 *	NA	2,000	250	230	380	ND	ND	29	
	10/91	6,300	1,700 ⁸	NA	2,000	410	330	550	ND	ND	27	
	01/92	4,000	790 *	NA	1,200	250	60	200	ND	ND	22	
	04/92	7,400	1,800 *	NA	730	370	180	640	ND	ND	19	
	07/92	3,000	2,400	NA	190	ND	2.8	410	ND	ND	30	
	10/92	5,000	970 ^a	NA	1,300	320	-45	340	ND	ND	26	
-	01/93	2,300	680 ^a	NA (2)	630	180	31	330	ND	ND	13	
	06/93	5,000	1,100	ND	730	240	43	380	ND	ND	13	

						EPA Test Metr	ods					
			8015 Modifie	đ		8020				8010		
								Total				
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		hâjt			μ g/ L				μg/L		րցն
MW4	11/89	ND	` NA	NA	33	1.3	1	5.2	NA	NA	NA	Lead 12
	03/90	ND	NA	NA	7.4	2	2	1.1	ND	ND	ND	Leau 12
	07/90	ND	ND	ND	ND.	ND	ND	ND	ND	ND	0.9	
	10/90	ND	ND	ND	ND.	ND	ND	ND	0.7	ND	0.5	
	01/91	80	ND	ND	9.2	2.4	1.7	0.7	ND	ND	ND	
	04/91	1,400	130 ª	NA	2,200	72	ND	17	ND	ND	ND	
	07/91	130	ND	NA	14	3.3	9.7	ND	ND	ND	0.81	
-	10/91	ND	ND	NA	5.3	1	ND	0.8	ND	ND	ND	
	01/92	ND	ND	NA	6.8	1.3	ND	ND	ND	ND	ND	,
	04/92	780	130 *	NA	ND.	51	ND	4.8	ND	ND	1.6	
	07/92	ND	ND	NA	ND.	ND	ND	ND	ND	ND	1.3	
	10/92	100	ND	NA	9.5	ND	ND	2.6	ND	· ND	ND	:
	01/93	960	240 ª	NA	200	41	4.6	9.4	ND	ND	1	
	06/93	650	140 *	ND	150	21	ND	ND	ND	ND	3.7	
MW5	10/90	9,600	1,900	ND	1,200	70	160	520	ND	ND	22	Lead 3
	01/91	10,000	1,200	ND	1,600	720	200	510	ND	ND	33	
	04/91	18,000	860 *	NA	2,500	550	580	500	ND	ND	61	ı
	07/91	15,000	2,200 *	NA	4,800	610	1,100	760	ЙD	ND	62	
	10/91	14,000	3,300 *	NA	5,000	530	820	800	ND	ND	49	
	01/92	12,000	1,900	NA	4,300	390	380	590	ND	ND	56	
	04/92	23,000	6,400	NA	8,600	ND	2,600	1,900	ND	ND	125	
	07/92	27,000	5,900 *	NA	6,000	ND	1,500	1,600	ND	ND	93	i
	10/92	13,000	2,100	NA	4,600	140	470	550	ND	ND	59	
	01/93	18,000	1,900 4	NA	5,800	560	1,900	1,600	ND	ND	110	,
	01/93	19,000	2,100	NA	4,600	370	1,600	1,400	ND	ND	120	
	06/93	22,000	2,900	ND	8,300	740	2,500	1,900	ND	ND	110]
	06/93	23,000	2,300 *	ND	9,600	730	3,000	1,900	ND	ND	110	

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

						EPA Test Met	nods					
			8015 Modifie	d		8020				8010		
	Date	₹PH-G	трн-о	TPH-MQ	Benzene	(2.000 m. (0.000 m. 000 m. (0.000 m.)	Tojuene	Total Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		μg/L			μ g/L				h g /L		բ ց/ Ը
MW6	10/90	27,000	4,700	ND	2,700	450	2,900	3,300	ND	ND	40	Lead 9
	01/91	7,200	1,600	ND	1,400	ND	200	830	ND	ND	23	Codd
	04/91	17,000	800 *	NA	2,800	610	1,200	1,800	ND	ND	53	
	07/91	11,000	1,400 ^a	NA	1,200	ND	380	750	ND	ND	29	
	10/91	4,800	1,600 *	NA	380	69	340	730	ND	ND	22	
	01/92	6,100	1,200 👚	NA	460	180	200	590	ND	ND	26	
	04/92	7,200	1,800 *	NA	340	350	460	920	ND	ND	30	
	07/92	8,600	1,700 ª	NA	1,300	380	280	1,100	ND	ND	35	
	10/92	1,600	110 =	NA	230	70	20	88	ND	ND	24	
	01/93	13,000	2,100 4	AM	2,500	370	540	2,400	ND	ND	36	
	06/93	7,400	1,900 *	ND	1,500	480	120	1,400	ND	ND	29	
MW7	10/90	14,000	2,700	ND	390	ND	18	1,200	ND	, 1.3	14	Lead 11
	01/91	4,500	1,400	ND	320	42	48	350	ND	ND	10	
	04/91	2,400	NA	NA	320	77	62	130	ND	0.6	11	
	07/91	2,000	910	NA	470	ND	24	88	ИD	ND	9.7	
	10/91	ND	370	NA	ND	ND	ND	ND	ND	0.68	4.5	
	01/92	1,100	290 -	NA	230	45	7	88	ND	3.5	6.4	
	04/92	1,700	520 *	NA	310	78	28	170	ND	0.5	3.2	
	07/92	1,900	590 ੈ	NA	410	78	21,	170	ND	2.1	8.7	
	07/92 (dup)	1,200	700	NA	21	1	2.6		ND	2	8.2	
	10/92	1,800	320	NA	410	31	11	75	ND	1	7.4	
	01/93	2,100	660	NA	390	100	21	270	ND	0.6	3.7	
	06/93	4,400	1,100 *	ND	830	330	49	620	ND	ND	8.6	

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

						EPA Test Met	ods .					
			8015 Modifi	ıd		8020				8010		
	Date	трн-с	TPH-D	ТРН-МО		en n		Total				
Well) FN-MU	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
	Sampled		μg/L			µg/L				µg/L		Hg/L
MW8	02/91	, ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	
	04/91	ΝĐ	ND	NA	ND	ND	ND	ND	ND	0.5	ND	
	07/91	ND	ND	NA	ND	ND	2	ND	ND	1.2	ND	
	10/91	ND	ND	NA	ND	ND	0.6	ND	ND	0.4	ND	
	01/92	ND	ND	NA	ND	ND	ND	ND	ND	0.68	ND	İ
	04/92	ND	ND	NA	ND	ND	ND	ND	ND	0.8	ND	
	07/92	ND	ND	NA	ND	ND	3.3	ND	ND	1.6	ND	
	10/92	ND	ND	NA	ND	ND	ND	ND	ND	1.4	ND	
	01/93	ND	ND	NA	ND	ND	ND	ND	ND	0.8	ND	
	06/93	ND	ND	ND	ND ND	ND	ND	ND	ND	1.4	ND	
MW9	02/91	6,000	1,600	NA	180	19	170	200	ND	ND	-13	
	04/91	4,200	410	NA	520	130	410	580	ND	, ND	26	
	07/91	1,900	180	NA	190	12	52	77	ND	6.5	12	j
	10/91	880	300	NA	160	31	44	83	ND	NĐ	10	
	01/92	380	120	NA	14	7.6	2.2	14	ND	ND	9.6	
	04/92	2,900	700	NA	510	80	260	260	МD	NĐ	11	
	07/92	4,400	1,300	NA	860	210	340	640	ND	ND	22	
	10/92	200	290 *	NA	6.8	1.4	2.1	7.8	ND	ND	12	
	01/93	8,500	740	NA	2,400	390	620	1,500	ND	ND	29	1
	08/93	8,200	1,300	ND	2,400	360	480	1,500	ND	ND	29	
MW10	01/92	13,000	3,700	NA	130	580	110	3,000	ND	ND	33	
	05/92	15,000	5,000 ^a	IVA	180	NĐ	18	2,700	ND	ND	20	
	05/92 (dup)	13,000	7,500 *	NA	240	490	65	2,500	ND	ND	22	
	07/92	8,100	4,400	NA	74	360	ND	1,100	ND	ND	29	
	10/92	3,200	1,500	NA	ND	NĎ	ND	320	ND	ND	25	
	01/93	7,500	2,200	NA	130	170	-20	710	ND	ND	18	
	06/93	8,000	2,100 ª	ND	69	7.9	ND	490	ND	ND	16	

Page 4 of 5

					600: 14 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12	EPA Test Met	nods					
			8015 Modifie	d		8020		Sec. 1997 Co. No. 1997		8010		
	Date	TPH-G	ТРН-О	трн-мо	an iki diri wa miliwatika	Ethylbenzene	Toluene	Total Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		μg/L			hâ\r				μg/L		μ g /Ľ
MW11	01/92	8,200	3,200 *	NA	23	250	ND	1,100	ND	ND	ND	- Arrana Mas- na minin
	04/92	160	1,200	NA	ND	ND	ND	ND	ND	ND	ND	
	07/92	2,100	710	NA	39	100	2.3	53	ND	ND	ND	
	10/92	660	220 *	NA	2.9	19	ND	3.8	ND	ND	ND	
	10/92	770	230	NA	3.2	26	ND	5.7	ND:	ND	ND	
	01/93	780	370 *	NA	10	2.1	ND	39	ND	ND	ND	
	06/93	2,500	160 ª	ND	27	99	ND	34	ND	ND	ND	
MW12	12/92	2,800	1,700 *	NA	14	ND	ND	ND	ND	ND	ND	
	06/93	1,100	750 *	ND	19	21	ND	57	ND	ND	ND	
B1	01/93	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	
	06/93	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
F3	02/93	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA.	
Well	12/89	1,800	NA	NA	200	24	18	34	ND	ND	0,15	Lead 2,100
Abandoned											۵,۱۰	2000 2,100
Average ^b		8,865	1,883	250	1,562	235	517	871	0.21	0.41	24.8	
Laboratory i Limit	Detection	50	50	500	0.5	0.5	0.5	0.5	0.4	0.4	0.4	

Notes:

- a) The detection for petroleum hydrocarbons as diesel appears to be due to the presence of lighter hydrocarbons rather than diesel.
- b) Average of sampled data, ND equals 1/2 detection limit.
- μg/L Micrograms per liter is approximately equivalent to parts per billion, depending on density of water.
- NA Not analyzed.
- ND Not detected.
- TPH-G Total petroleum hydrocarbons quantified as gasoline.
- TPH-D Total petroleum hydrocarbons quantified as diesel.
- TPH-MO Total petroleum hydrocarbons quantified as motor oil.

TCE - Trichloroethylene.

PCE - Tetrachioroethylene.

1,2-DCA - 1,2-Dichloroethane.

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

2.0					EPA.	Fest Metho	d s			
		8015	M		BETX 5030	/8020			8010	
	Date	TPH Gasoline	TPH Diesel	Benzene	Ethylbenzene	Toluene	Xylenes	1,2-DGA	PCE	TCE
Well	Sampled	µg/L	µg/L		µg/L			µg/L	µg/L	µg/L
мwз	07/28/94	7,700	970 ª	1,800	810	ND	600	22	ND	ND
	10/21/94	7,400	810	1,900	900	37	780	25	ND	ND
	09/15/95	ี่ NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW4	07/28/94	120	ND	7.9	0.7	1.1	ND	ND	ND	ND
	10/21/94	69	ND	3.4	ND	ND	ND	ND	ND ·	ND
	09/15/95	110	ND	2.5	ND	0.85	ND	2.3	ND	ND
	03/14/96	300	69 b	3.3	0.74	ND	ND	1.6	ND	ND
	09/26/96	ND	ND	ND	ND	ND	ND	1.2	, ND	ND
MW5	07/29/94	30,000	2,200 *	9,300	1,100	1,800	2,300	110	ND	ND
	10/21/94	23,000	1,500	7,900	780	1,500	2,900	85	ND	ND
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW6	07/29/94	15,000	2,100 b	3,100	1,100	71	2,000	37	ND	ND
	10/21/94	18,000	1,500	3,900	1,200	170	3,200	35	ND	ND
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW7	07/29/94	2,600	530 °	470	220	ND	310	2.7	6	ND
	10/21/94	1,700	280	290	140	4.5	240	1.8	0.74	ND
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

					EPA Tøl	it Meth	ods			
		8015	М		BETX 5030/80)20			8010	
	Date	TPH Gasoline	TPH Diesel	Benzene	Ethylbenzene T	oluene	Xylenes	1;2-DCA	PCE	TCE
Well	Sampled	hair	Hâ∖r		µg/L			µg/L	pg/L	µg/L
MW8	07/28/94	ND	78 ª	ND	ND	ND	ND	ND	ND	ND
	10/21/94	ND ·	ND	ND	ND ·	ND	ND	ND	0.72	ND
	09/15/95	ND	ND	ND	ND	ND	ND	ND	0.74	ND
	03/14/96	ND	ND	ND	ND	ND	ND	ND	0.63	ND
	09/26/96	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW9	07/28/94	6,000	1,300 °	90	170	27	370	26	ND	ND
	10/21/94	6,900	600	1,800	280	220	1,500	31	ND	ND
	09/15/95	NS	NS	NS	NS .	NS	NS	NS	NS	NS ·
	03/14/96	NŞ	NS	NS -	NS	NS	NS	NS	NS	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW10	07/28/94	6,700	2,000 6	99	180	57	430	13	ND	ND
	10/21/94	8,600	2,000	93	200	ND	680	12	ND	ND
	09/15/95	2,100	1,900	9.9	49	ND	4.9	ND	ND	ND
	03/14/96	6,800	2,000 b	64	. 98	ND	33	6.5	ND	ND .
	09/26/96	7,100	420	140	210	ND	32	9.1	ND	5.9
MW11	07/28/94	450	150 4	6.2	20	1.1	6.6	ND	ND	ND
	10/21/94	460	190	4.9	14	ND	12	ND	ND	ND
	09/15/95	9,600	550	130	180	ND	130	8.8	ND	5.6
	03/15/96	780	310 ^b	0.74	25	ND	1.8	ND	ND	ND
	09/26/96	480	710	ND	50	ND	ND	ND	ND	ND

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

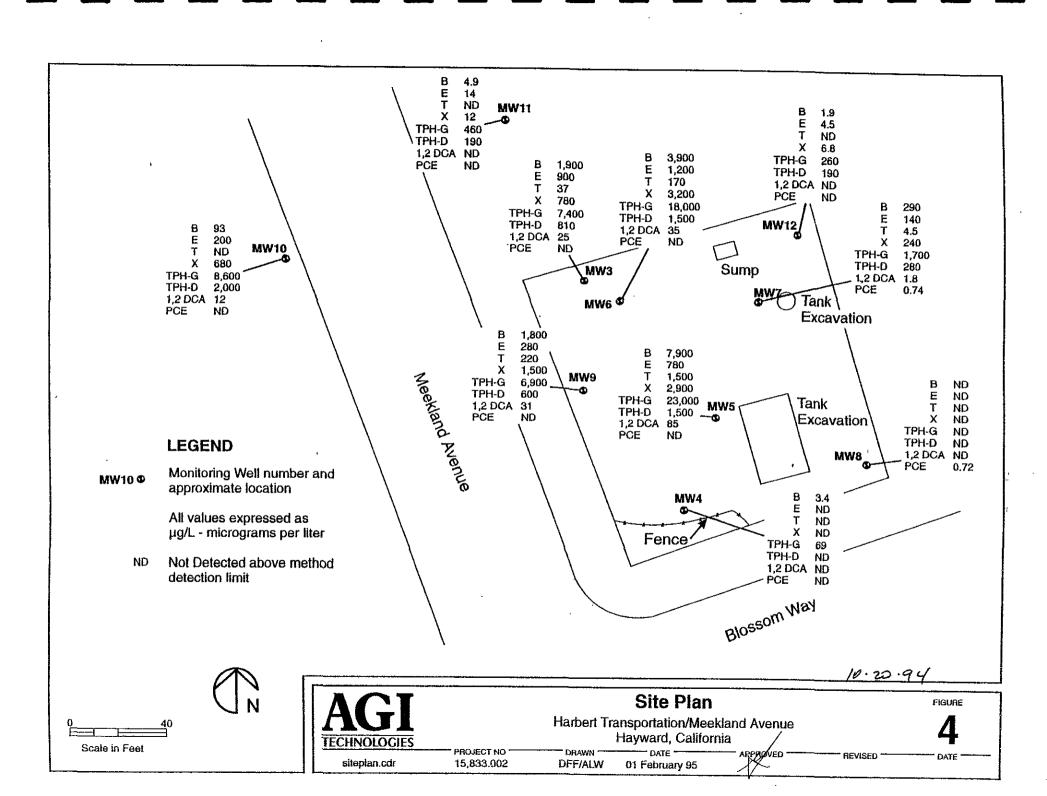
					EPA T	est Method				
		8015	M		BETX 5030/	8020			8010	
		TPH	TPH							
	Date	Gasoline	Diesel	Benzene E	thylbenzene	Toluene	Kylanes	1,2-DCA	PCE	TCE
Well	Sampled	hâlt	µg/L		µg/L			µg/L	µg/L	hâlL
	l l									
MW12	07/28/94	240	160	1.9	12	ND	5.8	ND	ND	ND
MW12	07/28/94 10/21/94	240 260	160 190	1.9 1.9	12 4.5	ND ND	5.8 6.8	ND ND	ND ND	ND ND
MVV12			•					1		i i
MVV12	10/21/94	260	190	1.9	4.5	ND	6.8	ND	ND	ND
MVV12	10/21/94 09/15/95	260 NS	190 NS	1.9 NS	4.5 NS	ND NS	6.8 NS	ND NS	ND NS	ND NS

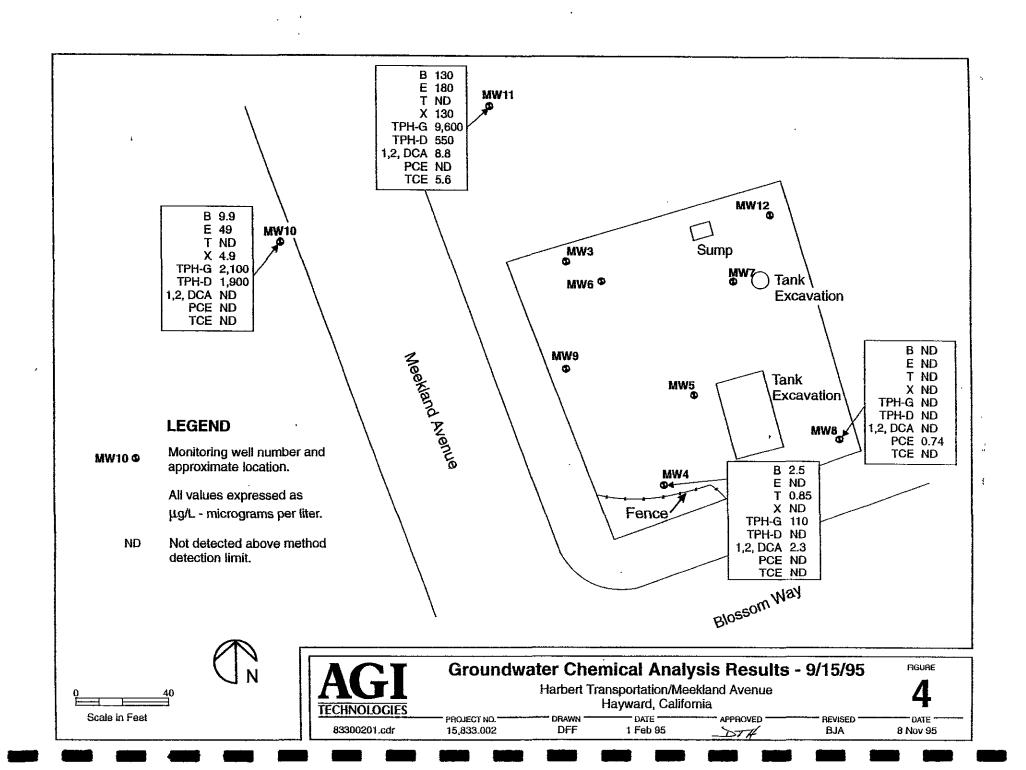
Notes:

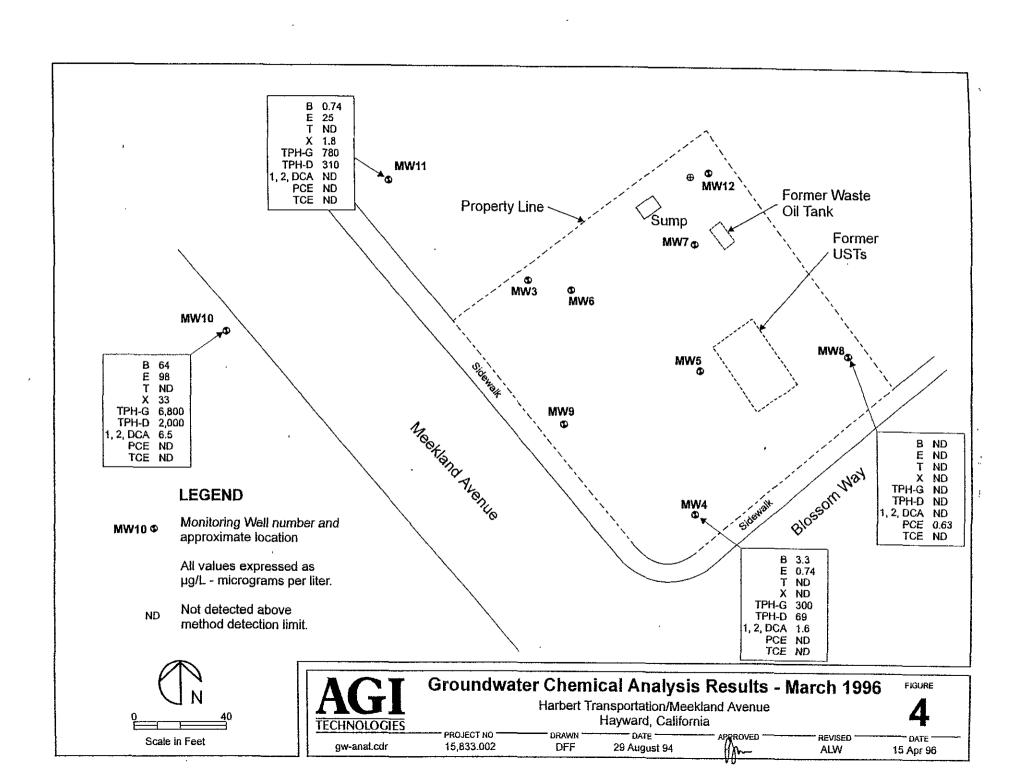
- a) Hydrocarbons quantified as diesel are primarily due to discrete peaks not indicative of diesel fuel.
- b) Hydrocarbons quantified as diesel are primarily due to the presence of a lighter petroleum product (C₆-C₁₂), possibly gasoline.
- c) Hydrocarbons quantified as diesel are due to the presence of a lighter petroleum product (C₆-C₁₂) and discrete peaks not indicative of diesel fuel. 1,2-DCE - 1,2-dichloroethane.

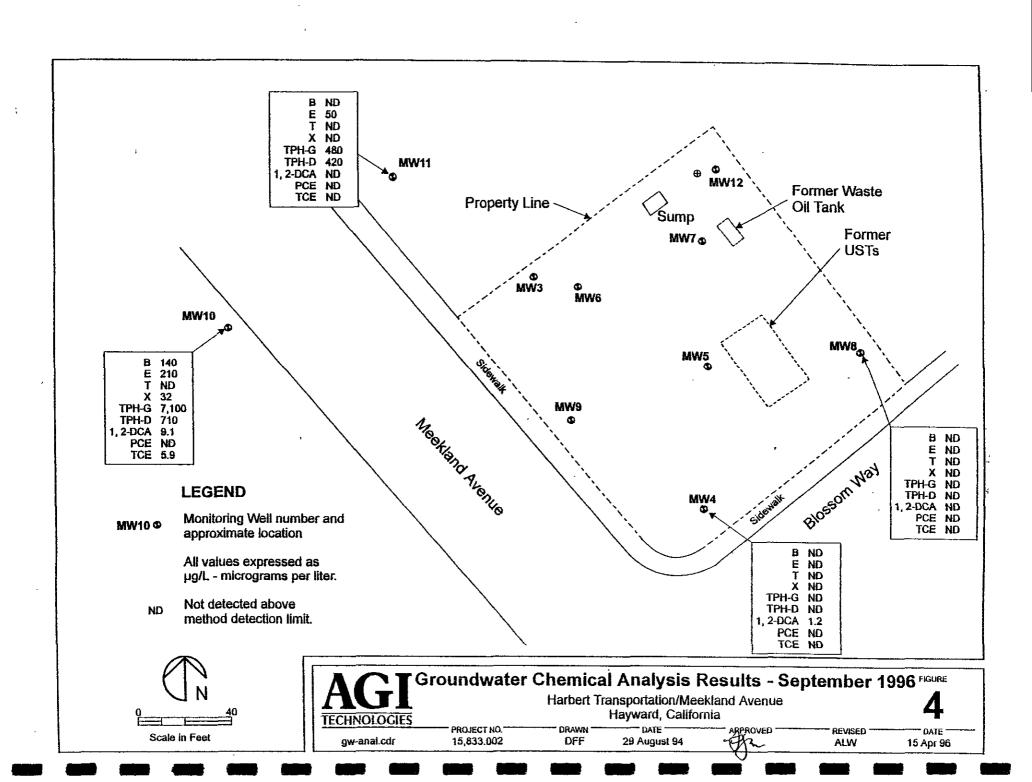
PCE - Tetrachloroethene.

TCE - Trichioroethene.


ND - Not detected at or above method detection limit.


NS - Not sampled.


TPH-Gasoline - Total petroleum hydrocarbons quantified as gasoline.


TPH-Diesel - Total petroleum hydrocarbons quantified as diesel.

μg/L - Micrograms per liter, equivalent to parts per billion.

Groundwater Monitoring Report - First Quarter 2003 19984 Meekland Avenue, Hayward, California July, 2, 2003

Appendix E

Risk Based Screening Level for 1, 1, 2-Trichloroethane from Application of Risk-Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater

TABLE F-1. COMPONENTS FOR GROUNDWATER SCREENING LEVELS (groundwater IS a current or potential drinking water resource) (ug/l)

	¹ Final RSBL Drinking Water Resource	Ceiling Value (taste & odors, etc.)	Human Toxicity	indoor Air Impacts	Aquatic Life Protection	² Elevated Threat to Surface Water
CHEMICAL PARAMETER	Threatened	Table I-1	Table F-3	USEPA Model	Table F-4a	Table F-4d
TETRACHLOROETHANE, 1,1,1,2-	1.3	50000	1.3	-	930	-
TETRACHLOROETHANE, 1,1,2,2-	1.0	500	1.0	640 (5400)	420	11
TETRACHLOROETHYLENE	5.0	170	5.0	170 (3200)	120	8.85
THALLIUM	2.0	50000	2.0		40	6.3
TOLUENE	40	40	150	76000 (530000 sol)	130	200000
TPH (gasolines)	100	100	100	-	500	200000
TPH (middle distillates)	100	100	100		640	
TPH (residual fuels)	100	100	100		640	<u> </u>
TRICHLOROBENZENE, 1,2,4-	50	3000	70	300000 soi	50	
TRICHLOROETHANE, 1,1,1-	62	970	200	77000 (1.3E+06 sol)	62	
TRICHLOROETHANE, 1,1,2-	5.0	50000	5.0	930 (8200)	9400	42
TRICHLOROETHYLENE	5.0	310	5.0	750 (13000)	360	81
TRICHLOROPHENOL, 2,4,5-	11	200	700	1200000 sol	11	
TRICHLOROPHENOL, 2,4,6-	0.50	100	0.50		970	6.5
VANADIUM	19	50000	63		19	

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

Letter of Transmittal

to:

Mr. Jerry Harbert

46765 Mountain Cove Drive Indian Wells, California 92210

from:

Craig Drizin

re:

Harbert Transportation, 19984 Meekland Avenue, Hayward, California

date:

July 2, 2003

Number of Copies	Date of Documents	Description
1	July 2, 2003	Groundwater Monitoring Report - First Quarter 2003

c: \ Mr. Scott Seery

Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502 - 6577

Mr. Jeff Lawson Silicon Valley Law Group 152 N. Third Street, Suite 900 San Jose, California 95112

Ms. Laurie Berger 905 Emerald Hill Road Redwood City, California 94061

Mr. Gregg Petersen Durham Transportation 9011 Mountain Ridge Drive, Travis Building, Suite 200 Austin, Texas 78759 - 7275

Mr. Chuck Headlee San Francisco Bay Regional Water Quality Control Board 1515 Clay Street, Suite 1400 Oakland, California 94612