

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100

Fax: (831) 722-1159

Letter of Transmittal

to:

Mr. Amir K. Gholami

Alameda County Environmental Health Services

1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502 - 6577

from:

Craig Drizin

re:

Harbert Transportation, 19984 Meekland Avenue, Hayward, California

date:

January 9, 2001

Number of Copies	Date of Documents	Description
1	January 30, 2001	Groundwater Monitoring Report - Fourth Quarter 2000

c: Mr. Jerry Harbert 46765 Mountain Cove Drive Indian Wells, California 92210

> Mr. Jeff Lawson Silicon Valley Law Group 152 N. Third Street, Suite 900 San Jose, California 95112

Ms. Laurie Berger 905 Emerald Hill Road Redwood City, California 94061

Mr. Gregg Petersen Durham Transportation 9011 Mountain Ridge Drive, Travis Building, Suite 200 Austin, Texas 78759 - 7275

Mr. Chuck Headlee San Francisco Bay Regional Water Quality Control Board 1515 Clay Street, Suite 1400 Oakland, California 94612

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 (831) 662-3100

Fax: (831) 722-1159

January 30, 2001 Project H9042.Q

Mr. Jerry Harbert 46765 Mountain Cove Drive Indian Wells, California 92210

Subject:

Groundwater Monitoring Report - Fourth Quarter 2000

Harbert Transportation

19984 Meekland Avenue, Hayward, California

Dear Mr. Harbert:

This report describes groundwater monitoring activities conducted by Weber, Hayes and Associates at the former Harbert Transportation facility, 19984 Meekland Avenue, Hayward, California, during the fourth quarter 2000. This report has been prepared pursuant to a request from the Alameda County Health Care Services Agency/Environmental Health Services regarding a release of petroleum hydrocarbons from an underground storage tank at the site.

EXECUTIVE SUMMARY

The groundwater monitoring event for the fourth quarter 2000 took place on January 12, 2001. The previous groundwater monitoring event took place on September 27, 2000 (Weber, Hayes and Associates, November 9, 2000).

The calculated groundwater flow direction on January 12, 2001 was to the southeast, which appears to be consistent with historical data.

Groundwater analytical results from fourth quarter 2000 indicate that dissolved petroleum hydrocarbons (PHCs) are present at concentrations that exceed water quality goals in on-site monitoring wells downgradient of the removed underground storage tanks (USTs) at the site.

Neither MTBE nor any other fuel oxygenate were detected in the groundwater samples collected this quarter.

A review of historical data indicates a decrease of at least an order of magnitude in dissolved PHC concentrations at the site since September 1996.

We recommend:

- Continuing quarterly groundwater monitoring of dissolved PHC concentrations at the site.
- Collecting soil samples from the site to determine the extent of PHCs remaining in the unsaturated zone. We submitted a Work Plan for soil sampling dated September 7, 2000. The Work Plan was approved by Environmental Health in letters dated November 1, 2000 and December 4, 2000.

• Evaluating soil and groundwater sample analytical data to determine if active cleanup of PHCs in either soil or groundwater at the site is necessary. This should include developing site-specific cleanup goals for all of the PHCs detected in soil and groundwater at the site. Cleanup goals for some PHCs detected at the site have already been developed and approved by Environmental Health and the Regional Water Quality Control Board.

INTRODUCTION

This report documents quarterly monitoring of dissolved petroleum hydrocarbon (PHC) concentrations in groundwater, groundwater elevations and flow direction at the former Harbert Transportation facility, 19984 Meekland Avenue, Hayward, California (the site), during the fourth quarter 2000. This report has been prepared pursuant to a request from the Alameda County Health Care Services Agency/Environmental Health Services (Environmental Health, August 8, 2000) regarding a release of PHCs from underground storage tanks (USTs) at the site.

Groundwater monitoring activities conducted during this quarter included:

- 1. Measuring groundwater levels and checking for the presence of free product in all monitoring wells.
- 2. Measuring the physical parameters of pH, temperature, electrical conductivity, and dissolved oxygen concentration in each well.
- 3. Collecting groundwater samples from each of the monitoring wells.
- 4. Submitting the groundwater samples to a state-certified analytical laboratory for analysis of dissolved PHC concentrations following proper chain-of-custody procedures.
- 5. Determining groundwater elevations, flow direction, and gradient in the vicinity of the site.
- 6. Mapping the extent of the dissolved PHC plume in groundwater beneath the site.
- 7. Preparing this summary report.

Site Description And Background

The site is located at the corner of Meekland Avenue and Blossom Way in Alameda County California, at an elevation of approximately 55 feet above sea level (Figure 1). The site is relatively flat and is currently vacant.

The site was operated as a motor vehicle fueling station since the 1940's. Harbert Transportation used the site as a vehicle and fueling yard before selling the site to Durham Transportation in 1986.

In August 1989, four underground storage tanks (USTs) were removed from the site and properly disposed of. Soil and groundwater investigations at the site, conducted by Applied Geosystems, CTTS, and AGI Technologies, indicated that PHCs were present in soil and groundwater at the site. A list of reports documenting the soil and groundwater investigations is included in the Reference section. Ten groundwater monitoring wells currently exist at the site (Figure 2). Groundwater samples were not collected from these wells between September 1996 and September 2000.

Documentation indicates that excavated soil from the UST removals was returned to the (plastic-lined) excavations (CTTS, November 1, 1992).

Documentation also indicates that two USTs were removed from the site in the early 1950's, and that a sump located in the northern portion of the site contained PHCs (CTTS, November 27, 1990) (see Figure 2).

We prepared a Work Plan (Weber, Hayes and Associates, September 7, 2000) for soil sampling to assess the current extent of PHCs in unsaturated soil at the site. The Work Plan was approved by Environmental Health in letters dated November 1, 2000 and December 4, 2000.

SUMMARY OF QUARTERLY ACTIVITIES

The groundwater monitoring event for the fourth quarter 2000 took place on January 12, 2001. Field methods followed Weber, Hayes and Associates' standard field methodology for groundwater monitoring, which is described in Appendix A. Groundwater samples were collected from all monitoring wells at the site in accordance with directives from Environmental Health, and analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method 8015M, and benzene, toluene, ethylbenzene, and xylenes (BTEX), and Methyl tert Butyl Ether (MTBE) by EPA Method 8020. Samples with elevated detection limits or detections of MTBE were analyzed by EPA Method 8260 to confirm the presence of MTBE and provide the proper detection limit. Field data forms are also presented in Appendix A.

Free Product

Free product was not observed in any of the monitoring wells at the site.

Groundwater Elevation and Flow Direction

Groundwater elevations were calculated by subtracting the measured depth-to-groundwater from the top-of-casing elevations, which were surveyed by a state-licensed Land Surveyor. Field measurements and the calculated groundwater elevations for the site are summarized in Table 1. Calculated groundwater elevations from the gauging data collected on January 12, 2001 are shown on Figure 2. Data from this quarter indicate that groundwater flow is to the southwest (see Figure 2). The calculated groundwater gradient on January 12, 2001 was to the southwest at approximately 0.002 feet per foot. Previous reports indicate that the groundwater flow direction in the vicinity of the site has generally been in a northwesterly to southwesterly direction. A table and figures summarizing previous depth to groundwater data is presented as Appendix B.

Groundwater Analytical Results

Groundwater samples were collected from all of the monitoring wells associated with the site this quarter, in accordance with directives from Environmental Health. The groundwater analytical results for this quarter are summarized below.

Summary of Groundwater Sample Analytical Results, January 12, 2001 (µg/L, ppb)

Well ID	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
MW-3	310	2.4	2.2	4.4	10	ND
MW-4	ND	ND '		ND	ND	ND
MW-5	1,100	62	40	150	290	ND*
MW-6	2,300	16	3.5	290	83	ND*
MW-7	1,600	13	0.86	150	35	ND*
MW-8	ND	ND	ND	ND	ND	ND
MW-9	10,000	550	110	1,200	2,200	ND*
MW-10	530	3.7	1.9	2.1	4.5	ND
MW-11	ND	ND	2.1	ND	ND	ND
MW-12	ND	ND	1.1	ND	ND	ND
AL/MCL	1,000	1	150	700	1,750	5

^{* =} Confirmed by GC/MS method 8260

The concentrations of TPH-g, benzene, ethylbenzene, and xylenes in well MW-9 exceed the respective groundwater quality goals/drinking water Action Levels (Als)/ Maximum Contaminant Levels (MCLs).

The concentrations of TPH-g and benzene in well MW-5, 6, and 7 exceed the groundwater quality goals/AL/MCLs.

The concentrations of benzene in well MW-3 and 10 slightly exceed the groundwater quality goal/MCL of 1 microgram per liter (µg/L).

MTBE was not detected in any of the wells associated with the site.

Please see the Conclusions section for a discussion of the groundwater analytical results.

The current groundwater sample analytical results are summarized in Table 1. PHC concentrations detected in groundwater during the current monitoring event are shown on Figure 3. The extent of dissolved PHCs greater than 1,000 ppb TPH-g and 1 ppb benzene in groundwater are shown on Figure 4.

The Certified Analytical Report for the groundwater samples is presented as Appendix C. All laboratory quality control and quality assurance data were within acceptable limits. A table and figures summarizing previous groundwater analytical results is presented as Appendix D.

Dissolved Oxygen Measurements

Dissolved oxygen field measurements were collected to monitor bioremediation of PHCs in groundwater. Measurements indicate lower levels of dissolved oxygen in PHC impacted wells compared to levels in non-impacted, upgradient wells. We believe this indicates that natural attenuation of PHCs via bioremediation is occurring in groundwater, with microbes using dissolved PHCs as a food source during aerobic respiration (see Bushek and O'Reilly, 1995, Table 1 and Figure 3).

SUMMARY

- Free product was not observed in any of the monitoring wells at the site.
- The groundwater flow direction on January 12, 2001 was to the southwest at a gradient of approximately 0.002 feet per foot. This direction is in general agreement with previous data collected by others at the site.
- MTBE was not detected in any of the groundwater samples collected this quarter.
 MTBE results were confirmed by Gas Chromatography / Mass Spectrometry method 8260.
- TPH-g, benzene, ethylbenzene, and xylenes were detected above their respective ALS/MCLs in on-site well MW-9, which is located downgradient of the removed USTs.
- TPH-g and benzene were detected above their respective ALs in on-site wells MW-5, 6, and 7.
- Benzene was detected at a concentration slightly above the MCL in wells MW-3 and 10.
- Measurements of dissolved oxygen indicated aerobic bioremediation is occurring in the PHC-impacted wells. We believe that this is a significant mechanism for the reduction of dissolved PHC concentrations at this site.

CONCLUSIONS AND RECOMMENDATIONS

Based on a review of the current and previous groundwater monitoring data, we conclude:

- MTBE is not present in groundwater at the site.
- A review and comparison of previous groundwater analytical data with the current data suggests there has been a reduction in PHC concentrations at the site of at least an order of magnitude since September 1996 (see Table 1, Figures 3 and 4, and Appendix D).
- PHCs are present in several on-site wells downgradient of the removed USTs at concentrations above groundwater quality goals.
- The highest concentrations of PHCs measured this quarter are in well MW-9, which is located downgradient of removed USTs. We note that concentrations of PHCs are higher in well MW-9 than in well MW-5 this quarter. This is in contrast to last quarter (see Table 2) and all previous analyses (see Appendix D). This data apparently indicates that PHCs are moving downgradient. We recommend that groundwater sample analytical results from future monitoring events be evaluated to determine if this is indeed the case.
- We believe that natural attenuation/bioremediation will continue to remove PHCs from groundwater at the site.

We recommend:

- Continuing quarterly groundwater monitoring of dissolved PHC concentrations at the site.
- Collecting soil samples from the site to determine the extent of PHCs remaining in the unsaturated zone. We submitted a Work Plan for soil sampling dated September 7, 2000. The Work Plan was approved by Environmental Health in letters dated November 1, 2000 and December 4, 2000.
- Evaluating soil and groundwater sample analytical data to determine if active cleanup of PHCs in either soil or groundwater at the site is necessary. This should include developing site-specific cleanup goals for the PHCs detected in soil and groundwater at the site. Cleanup goals for some PHCs detected at the site have already been developed and approved by Environmental Health and the Regional Water Quality Control Board.

SCHEDULE OF ACTIVITIES FOR THE FOLLOWING QUARTER

The following activities are scheduled for the next quarter:

- Quarterly groundwater monitoring of all monitoring wells as directed by Environmental Health, including measuring the depth-to-groundwater, dissolved oxygen concentration, and physical parameters, and collecting samples from all wells and analyzing them for TPH-g, BTEX and MTBE by EPA Methods 8015M and 8020. All detections of MTBE will be confirmed by EPA Method 8260.
- Soil sampling in the unsaturated zone with analysis and reporting per our September 7, 2000 Work Plan, which was approved by Environmental Health in letters dated November 1, 2000 and December 4, 2000. The cost for this work was pre-approved by the Underground Storage Tank Cleanup Fund on December 27, 2000.

LIMITATIONS

Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic and engineering principles and practices. This warranty is in lieu of all others, either expressed or implied. The analysis and proposals in this report are based on sampling and testing which are necessarily limited. Additional data from future work may lead to modification of the opinions expressed herein.

Thank you for the opportunity to aid in the assessment and cleanup of this site. If you have any questions or comments regarding this project please call us at (831) 722 - 3580.

No. C VShore

7

Sincerely yours,

By: Sais Craig Drizin, P.E.

Senior Engineer

And:_

Joseph Hayes (/ Certified Hydrogeologist #373

Weber, Hayes And Associates

Weber, Hayes and Associates

Attachments:

Table 1: Summary of Groundwater Elevation and PHC Analytical Results

Figure 1: Location Map

Figure 2: Site Plan with Groundwater Elevations

Figure 3: Site Plan with PHC Concentrations in Groundwater

Figure 4: Site Plan with Extent of TPH-g and Benzene in Groundwater

Appendix A: Field Methodology for Groundwater Monitoring and Field Data Forms

Appendix B: Summary of Historical Depth to Groundwater Measurements, Groundwater

Elevations, and Groundwater Flow Direction - AGI Technologies, Inc.

Appendix C: Certified Analytical Report - Groundwater Samples

Appendix D: Summary of Historical Groundwater Analytical Results - AGI Technologies, Inc.

c: Mr. Amir Gholami, Alameda County Environmental Health

Mr. Jeff Lawson

Ms. Laurie Berger

Mr. Gregg Petersen, Durham Transportation

Mr. Chuck Headlee, San Francisco Bay Regional Water Quality Control Board

REFERENCES

AGI Technologies, August 29, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, September 19, 1994. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 1, 1995. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, August 16, 1995. Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 9, 1995. Work Plan Off-Site Contamination Assessment Harbert Transportation Inc. 19984 Meekland Avenue, Hayward, California

AGI Technologies, November 29, 1995. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, April 30, 1996. Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

REFERENCES (continued)

AGI Technologies, January 6, 1997. September 1996 Quarterly Groundwater Monitoring 19984 Meekland Avenue, Hayward, California

AGI Technologies, February 4, 1998. Final Report Development of Risk-Based Cleanup Standards Harbert Transportation Site 19984 Meekland Avenue, Hayward, California

Alameda County Health Care Services Agency, Environmental Health Services, June 17, 1999. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Requests for Additions/Modifications to the Risk Assessment

Alameda County Health Care Services Agency, Environmental Health Services, July 11, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request

Alameda County Health Care Services Agency, Environmental Health Services, August 8, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Groundwater Monitoring and Work Plan Request - Clarification

Alameda County Health Care Services Agency, Environmental Health Services, November 1, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

Alameda County Health Care Services Agency, Environmental Health Services, November 15, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Review of Third Quarter 2000 Groundwater Monitoring Report

Alameda County Health Care Services Agency, Environmental Health Services, December 4, 2000. Property at 19984 Meekland Avenue, Hayward, Ca 94541 - Approval of Work Plan for Soil and Groundwater Sampling

Applied Geosystems, July 20, 1986. Subsurface Environmental Investigation, Two Soil Borings, and Monitoring Well Installation

Bushek, Tim, and Kirk O'Reilly, March 1995; Protocol for Monitoring Intrinsic Bioremediation in Groundwater, Chevron Research and Development Company, Health, Environment, and Safety Group

CTTS, Inc., Toxic Technology Services, September 13, 1989. Report on Underground Tank Removal at 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 27, 1990. Phase II Report for Durham Transportation, 19984 Meekland Road, Hayward, California

REFERENCES (continued)

CTTS, Inc., Toxic Technology Services. Amendment #1, Proposed Remediation for on Site Soil Contamination

CTTS, Inc., Toxic Technology Services, January 31, 1990. Report on Well Abandonment and Groundwater Monitoring Well Installations, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, July 2, 1990. Progress Report #1, Period Covering 3/23/90-6/30/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, August 2, 1990 Progress Report #2, Period Covering 7/l/90-7/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, September 21, 1990. Progress Report #3, Period Covering 8/1/90-8/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 12, 1990. Progress Report #4, Period Covering 9/l/90-10/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, December 28, 1990. Progress Report #5, Period Covering 11/l/90-11/30/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, January 25, 1991. Progress Report #7, Period Covering 1/l/91-1/31/91. 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, February 11, 1991. Progress Report #6, Period Covering 12/l/90-12/31/90, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, February 19, 1991. Cost analysis, Remediation Alternatives 19984 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, April 4, 1991. Progress Report #8, Period Covering 2/l/91-3/31/91, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, June 30, 1991. Progress Report #11, Period Covering 6/l/91-6/30/9, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, September 30, 1991. Progress Report #12, Period Covering 7/l/91-9/30/91, Durham Transportation 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, April 2, 1991. Report of Additional Well Installlations 1998 4 Meekland Road, Hayward, California

REFERENCES (continued)

CTTS, Inc., Toxic Technology Services, November 1, 1992. Health and Safety Plan to Accompany Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, November 1, 1992. Workplan for the Delineation, Containment and Remediation of Soil and Groundwater Contamination, 19984 Meekland Road, Hayward, California

CTTS, Inc., Toxic Technology Services, January 21, 1993. Progress Report #17, Period Covering 10/l/92-12/31/92, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 10, 1993. Progress Report #18, Period Covering 12/l/92-1/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, March 29, 1993. Progress Report #19, Period Covering 2/l/93-2/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, April 1, 1993. Progress Report #20, Period Covering 3/l/93-3/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. March 10, 1993. Remediation Progress Report 1, Period Covering 12/l/92-1/31/93, 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. July 16, 1993. Progress Report #21, Period Covering 4/l/93-6/30/93 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services. October 11, 1993. Progress Report #22, Period Covering 6/l/93-9/30/93, 19984 Meekland Avenue, Hayward, California

CTTS, Inc., Toxic Technology Services, February 24, 1993. Progress Report #23, Period Covering 10/l/93-12/31/93, Durham Transportation 19984 Meekland Avenue, Hayward, California

Howard, Philip, H. 1990. Handbook of Fate and Exposure Data for Organic Chemicals, Lewis Publishers. Inc., Chelsea, Michigan

Weber, Hayes and Associates, October 29, 1999. Clarification of Development of Risk Based Cleanup Standards - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

Weber, Hayes and Associates, September 7, 2000. Work Plan for Soil and Groundwater Sampling - Harbert Transportation Site, 19984 Meekland Avenue, Hayward, CA

REFERENCES (continued)

Weber, Hayes and Associates, November 9, 2000. Groundwater Monitoring Report - Third Quarter 2000, 19984 Meekland Avenue, Hayward, CA

Table 1: Summary of Groundwater Elevation and PHC Analytical Data Former Harbert Transportation Facility, 19984 Meekland Avenue, Hayward, Ca. Weber, Hayes and Associates Project H9042

Well	Date	Screened Interval	Surveyed T.O.C.	Depth to Groundwater	Calculated Groundwater	Laboratory Analytical Results							
I.D.		(feet below ground surface)	Elevation (feet)	(feet below ground surface)	Elevation (feet)	TPH-g (ug/L)	Benzene (ug/L)	Toluene (vg/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	MTBE (ug/L)	F.O.'s (ug/L)	D.O. (mg/L)
MW-3		20 - 40?	55 44										
1	12-Jan-2001			23.41	32 03	310	24	2.2	4.4	10	ND		0.7
	27-Sep-2000			23.09	32.35	430	ND	ND	44	ND	ND	מא	1.0
MW-4		20 - 40?	55.71	W-								ļ	
į.	12-Jan-2001			23.60	32.11	ND	ND	ND	ND	ND	ND		0.7
	27-Sep-2000			23.25	32.46	ND	ND	ИD	ND	ND	ND	ΝD	2.5
MW-5		25 - 45	56.03							,	,		,
Ļ	12-Jan-2001			23.97	32.06	1,100	62	40	150	290	ND*		0.3
	27-Sep-2000			23.69	32.34	18,000	840	2.9	1,200	3,500	< 30	ND	0.4
MW-6		25 - 45	56.01	· · · · · · · · · · · · · · · · · · ·							<u> </u>		
į	12-Jan-2001	·	İ	23.97	32.04	2,300	16	3.5	290	83	ND*		0.5
	27-Sep-2000			23.56	32.45	1,300	ND	4.3	200	17	ND	ND	0.5
MW-7		25 - 45	56.66										
1	12-Jan-2001			24.49	32.17	1,600	13	0.86	150	35	ND*	_	0.5
	27-Sep-2000			24.18	32.48	270	13	66	11	ND	ND	ND	0.5
MW-8		20 - 40	56.16										
	12-Jan-2001			23.93	32.23	ND	ND	ND	ND	ND	ND	_	2.1
	27-Sep-2000			23.59	32.57	ND	ND	ND	ND	ND	ND	ND	1.9
MW-9		20 - 40	55.21							à		•	
1	12-Jan-2001			23.17	32.04	10,000	550	110.0	1,200	2,200	ND*	-	0.5
	27-Sep-2000			22.90	32.31	1,000	40	6.7	110	55	ND	ND	0.5
MW-10		25 - 40	54.74										
	12-Jan-2001]	ł	22 99	31 75	530	3.7	1.9	2.1	4.5	ND		0.6
	27-Sep-2000			22.72	32 02	880	ND	ND	ND	ND	ND	ND	0.4
MW-11		25 - 40	55.20										
	12-Jan-2001]	1	23.21	31.53	ND	ND	2.1	ND	ND	ND		0.6
	27-Sep-2000	<u> </u>	<u>l</u>	22.43	32.31	63	NĐ	ND	ND	ND	ND	ND	0.6
MW-12		25 - 40	56 49										
	12-Jan-2001		1	24.28	32.21	ND	ND	1.1	ND	ND	ND		1.0
	27-Sep-2000	<u> </u>		23.98	32.51	ND	ND	ND	ND	ND	ND	ND	1.2
	Laborato	ry's Practical	Quantitatio	n Limit (PQL):		50	0,5	0,5	0.5	0.5	5	5	Field
	State I	Aaximum Coi	otaminant L	evel (MCL):		1,000**	1	150	700	1,750	5***	0.5	Instrument

Notes

TOC = Top of Casing Elevation Calculated groundwater elevation = TOC - Depth to Groundwater. Referenced to NGVD

TPH-g = Total Petroleum Hydrocarbons as gasoline. MTBE = Methy - text - Butyl Ether

FO.'s = Fuel Oxygenates = Di-isopropyl ether (DIPE), tertiary Butyl Alcohol (TBA), Ethyl tertiary Butyl Ether (ETBE), tertiary amyl Methyl Ether (TAME)

VOC's = Volatile Organic Compounds D.O. = Dissolved Oxygen

ug/L = micrograms per liter, parts per bilhon, mg/L = milligrams per liter, parts per million

ND = Not Detected at the Practical Quantitation Limit (PQL), < x = Not Detected at the elevated PQL, x PQL elevated because of sample dilution.

^{- &}quot;Data not collected or measured, or analysis not conducted

MCL = Maximum Contaminant Level for drinking water in California (Department of Health Services)

^{*} Confirmed by GC/MS method 8260

^{** =} Action Level

^{*** =} RWQCB water quality goal

craig\\c:\ajob\h9042\figures\F1-loc cnv

Weber, Hayes & Associates
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, Ca. 95076
(831) 722 - 3580 (831) 662 - 3100

LOCATION MAP

Former Harbert Transportation Facility 19984 Meekland Avenue Hayward, California

Figure Project H9042.Q

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

Site Plan with Groundwater Elevations

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California

Figure 2 Project H9042

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

Site Plan with PHC Concentrations in Groundwater

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California **Project** H9042

Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 662 - 3100

in Groundwater

Former Harbert Transportation Facility 19984 Meekland Avenue, Hayward, California **Project** H9042

Appendix A

Field Methodologies for Groundwater Monitoring and Field Data Forms

Appendix A

Field Methodologies for Groundwater Monitoring

Weber, Hayes and Associates' groundwater monitoring field methodology is based on procedures specified in the LUFT Field Manual. The first step in groundwater well sampling is for Weber, Hayes and Associates field personnel to measure the depth-to-groundwater to the nearest hundredth (0.01) of a foot with an electric sounder. If the well appears to be pressurized, or the groundwater level is fluctuating, measurements are made until the groundwater levels stabilizes, and a final depth-to groundwater measurement is taken and recorded. After the depth-to-groundwater is measured, the well is then checked for the presence of free product with a clear, disposable polyethylene bailer. If free product is present, the thickness of the layer is recorded, and the product is bailed to a sheen. All field data (depth-to-groundwater, well purge volume, physical parameters, and sampling method) is recorded on field data sheets (see attached). Because removing free product may skew the data, wells that contain free product are not used in groundwater elevation and gradient calculations.

After measuring the depth-to-groundwater, each well, starting with the cleanest well (based on analytical results from the last sampling event), is purged of approximately three to five well volumes of water. Purging is accomplished either by hand bailing or with a low flow submersible electric pump. During purging the physical parameters of temperature, conductivity, pH, and Oxidation-Reduction Potential (ORP) of the purge water are monitored with field instruments to insure that these parameters have stabilized (are within 15 percent of the previous measurement). The dissolved oxygen content of the groundwater from each well is measured with a YSI Model 57 field meter (equipped with a membrane covered Clark-type polarographic sensor probe, with built-in thermistors for temperature compensation). Dissolved oxygen and ORP measurements are used as an indicator of intrinsic bioremediation within the contaminant plume. All field instruments are calibrated before use.

All purge water is stored on site in DOT-approved, 55-gallon drums for disposal by a state-licensed contractor pending laboratory analysis for fuel hydrocarbons.

After purging, the water level in the well is allowed to recover to 80 percent of its original depth before a sample is collected. After water level recovery, a groundwater sample is collected from each well with a new, disposable bailer, and decanted into the appropriate laboratory-supplied sample container(s). The sample containers at this site were 40-ml. vials. Each vial was filled until a convex meniscus formed above the vial rim, then sealed with a Teflon®-septum cap, and inverted to insure that there were no air bubbles or head space in the vial. All samples are labeled in the field and transported in insulated containers cooled with blue ice to state-certified laboratories under proper chain of custody procedures.

All field and sampling equipment is decontaminated before, between, and after measurements or sampling by washing in an Liqui-Nox and tap water solution, rinsing with tap water, and rinsing with distilled water.

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering

120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

INDICATE ATTAC	HMENTS THAT APPLY
INDICATE ATTAC	Data Sheets
	COC's
	Site Map
	Photo Sheet

Chargeable Materials

Job Name: Harbert Transportation	Date: 1/10/01 (E) (Tille)	1201
Field Location: 19984 Meekland Avenue, Hayward	Study #: H9042.Q	<u>. </u>
Field Tasks: Drilling Y Sampling Y Other 4th Quarter 2000 Well Sampling	Weather Conditions:	
Personnel/Company onsite: (Weber, Hayes and Associates)	Chad Taylor	
Meet with project manager: X yes, or no. Number of wells to be sampled: Ten Wells, with D.O in all we Sample wells: MW-3, 4, 5, 6, 7, 8, 9, 10, 11, 12 for TPH-g, 10, 10, 11, 12 for TPH-g, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		
NITIALS: -All sampling is conducted according to Standard Operating Program - Water Quality Sampling Information for each well sampled is resulting - Upon sampling, all samples are placed immediately in coolers of - After sampling each well all equipment is decontaminated according - All purge water is properly disposed in 55-gallon drums to be possible - All samples are recorded on field Chain-of-Custody Sheets for the samples are recorded on field Chain-of-Custody Sheets.	ecorded on following pages. containing blue ice. rding to SOP 10B/. burged at a later date.	
EGIN CALIBRATION:		
pH, EC, Temp Meter # 1: Temp = 51.47, pH = 750 & 10.40, 10	92	
EGIN SAMPLING ALL WELLS: MANY MAIL MAIN MAID MAY MAY MAY -See information below for general monitoring well information	L Aw. 4 Mu. 5 this sampling round.	-
COMMENTS: If well will be purged of four casing volumes in the column requiring sampling (see Wate		

| Signature of Field Personnel & Date

P:\AJOB\H9042.hbt\QM\QM00\4QFL.wpd

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax: (831) 722-1159

Location	GW Depth (TOC)	Total Depth of Well	D.O. (mg/L)	Floating Product (comments).
MW · 3	23.41	<u> 40'</u>	0.7	No FP, Slight Odor
MW. 4	23.60	40	0.7	No FR, No Oder
MU 5	23.17'	46'	0.3	No FR, Strong Odor
Au. 6	2 3. 97'	45'	0.5	NOFR Moderate Odor
Mu7	24.49'	40'	0.5	Noft, NoOdor
	23,13·	40'	2.	No FP, No Oder
P-644	23.17	40'	0.5	NoFP, Moderate Oder
Mry-10	22. 11'	40,	0.6	NoFP, VerySlyLt Oder
M-11	73.21	40.	0.6	NOFP, No Odor
MW- 12.	24.28	40	1.0	NoFR No Odas
CALL BA	NY PURGE DRU YSIDE OIL ON	TO HAVE	NSITE <u>§</u> . DRUMS PUR	APPROXIMATE GAL. 360. GED.
COMMEN				

Signature of Field Personnel & Date

Project N	ame/No.: \	Anbert Thing	patitin !	49042.Q	Date:	12/01		•
	10: MW				-	cation: Musica	<u> </u>	
Samplers	Name: C	hattyte			Recorded	by: Ca		
Purge Eq	•	итр	ylic		Sample Eq	uipment: Disposable Whaler# Bladder Pur Submersible	np	
(PH-gas, &T	_	d (cricle all that 2-DCA, EDB, 8260 LSolvent		98-		id Types of Bo 5 ¼40 ⊷Lv o Å's	ttle Used:	
Intrinsic B	o Paramet	ers_						
Well Num Depth to V Well Dept Height W- Volume ir Gallons to	Water: h: Column: Well: o purge:	Mw·3 23.41' 40' 16.51' 2.6544 10.62	TOC BGS or TOC feet (well de gallons (casi gallons (volu	pth - depth ti ing volume >	o water)	eter: <u>2."</u>	$2^{11} = (0)$ $4'' = (0)$ $5'' = (1)$ $6'' = (1)$	y Volume of: 0.16 Gallon/Feet) 0.65 Gallon/Feet) 0.02 Gallon/Feet) 0.47 Gallon/Feet) 0.61 Gallon/Feet)
Lab: E.	.tech				Transporta	ition: C.	e, ar	
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	pΗ		Turbidity: Color, Fir	nes	D.O (ppm)
11 58	O	671	51.7	6-44	Modent	re. Gry. Brusn	Modfinis	1.9
1200	2	691	61.9	7.08	1	, <u>\</u>	V	1.0
1201	4	728	63.2	7.03	Low: C	lear-Brown, M	linorfing	0.8
1203	4	744	63.6	7.04	Loui C	lear I	nee From	D. 7
1203	8	750	63. S	7.02_		1		0.7
1201	10	744	63.4	7.02				0.7
1208	12	741	63.4	B. 94	<u> </u>	$\underline{\hspace{0.1cm}}$	V	0.7
570] \a)- Pm	1				Recovery or to sampli		
	_		pth to water well volume = <u>2</u>	(from TOC),	for 80% wel	l volume recove	ery:	water _ 2<i>1.</i> 73 ′
Time: 1210 Time: 157	1st measure	ed depth to water, _ ad depth to water, _ d depth to water, _	feet	t below TOC. t below TOC. t below TOC.	Is well with Is well with Is well with	in 80% of original w in 80% of original w in 80% of original w	rell casing volun rell casing volun rell casing volun	ne: Yes No
				Sample \	Vell	·		
Time:			Sample ID:			Dep	th: 23.44'	feet below TOC
Comments	: NOF	iloty Produ	t. Noc	stra c	and E	slight Od.		

Project N	ame/No.:	Hurbert Trans	portation		Date: 1/12/01	
Sample N	10.: MW.4				Sample Location: MwႷ	
Samplers	Name: C	that y's			Recorded by: G	
Purge Eq		1			Sample Equipment:	
	Bailer: Di	sposable or Acr	ylic		χ Disposable Baller	
χ	_Whaler#_	1			Whaler #	
	Bladder P	ump			Bladder Pump	
	Submersit	ole Pump			Submersible Pump	
Analyses	Requested	d (cricle all tha	t apply):		Number and Types of Bottle Used:	
(PH-gas BT	EX MTBE 4,	-2-DCA, EDB, 8260	Fuel Oxygenate	es	5x40-LUOA's	
TPH-diese	l , Stoddard	-Selvent-				
Intrinsic B	e. Para met	ers				
Well Num		WM-4W	_		Well Diameter: with Casing \	/olume of:
Depth to		23.60'	TOC			6 Gallon/Feet)
Well Dept Height W.		16.40	BGS or TOC feet (well de		•	55 Gallon/Feet) 2 Gallon/Feet)
Volume ir		2.624	gallons (cas		•	7 Gallon/Feet)
Gallons to	purge:	10.50	gallons (volu		- ,	1 Gallon/Feet)
Lab:	Enteda			_	Transportation: Courses	
	Volume	I	1	·		
Time (24 hr.)	Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	рH	Turbidity: Color, Fines	D.O. (ppm)
1827	0	481	52.2	6.97	High: Light Brown Many Finis	4.4
0828	2	713	51.3	6.87	Hah: Light Brown, Many Finis Hah: Light Brown, Moderte Fores	\.4
08 30	ч	799	60.1	6.81	Modente: Light Bown, Minorfins	1.0
0832	Ь	797	61.2	6.80	Low Clear Brang True Frans	0.7
1080	8	187	8118	18.8	Low: Clear The Fine	0.7
0835	10	४०५	62.0	6.78	,	0.7
0837	n	804	61.9	6.77	V V	0.7
STOP.	Punge	Complete.	Wat For	80% W	ell Recomy, See Below to Who	Recony
	Del	مزاء			•	' '
	 -	Wait for 8	0% well v	olume rec	overy prior to sampling.	<u> </u>
		Calculate de	pth to water	(from TOC),	for 80% well volume recovery:	
Calculate 80%	% of orginal we	ell volume: Original	well volume = _	2.624 x 0.8	3 = 2.0992	
30% of origin	al well volume	<u> 2.ბ191</u> / (Casing V	olume <u>) </u>	(Height of water	er column) 13.11 - (Well Depth) 40' = Depth to wa	iter <u>26.88°</u>
Time: <u>0839</u>		ed depth to water, _			Is well within 80% of original well casing volume:	
Time:		ed depth to water, _ ad depth to water, _	,	t below TOC. t below TOC.	Is well within 80% of original well casing volume:	_
Time:	· istinieasure	ou depuir to water, _	Tee	L Delow TOC,	ls well within 80% of orlginal well casing volume	YesNe
				Sample \	Well	
Time:	ለ \$59		Sample ID:	Mw	Depth: <u>23.71</u> fe	et below TOC
	<u> </u>					
Comments	: 127-11-	TOS MON	a (uncol	1) 40.	n Army Vaultled was inglace	
	Ala Flank	DIL	No Oder		7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	·
TIEFILDI O	CILIO OCUM	od Pages	IVA UDIN			14014

(Gallons) (Harcin) (1)	n/Feet) n/Feet)
Purge Equipment: Bailer: Disposable or Acrylic X Disposable Bailer X Whaler # 2 + 1 Bladder Pump Bladder Pump Bladder Pump Submersible Pump Sub	n/Feet) n/Feet)
Bailer: Disposable or Acrylic X Disposable Bailer X Whaler # 2+1 Whaler # Bladder Pump Bladder Pump Submersible Pump Submersib	n/Feet) n/Feet)
Whaler # 2+1 Bladder Pump Bladder Pump Submersible Pump Subm	n/Feet) n/Feet)
Bladder Pump Submersible Pum	n/Feet) n/Feet)
Submersible Pump Submersible Pump	n/Feet) n/Feet)
Analyses Requested (cricle all that apply): Number and Types of Bottle Used:	n/Feet) n/Feet)
TPH-gas BTEX MTBZ 1,2 DGA, EDB, \$260 Fuel Oxygenates Sx40~L V M's TPH-diesel, Stoddard Solvent- Intrinsie Bio. Perameters	n/Feet) n/Feet)
Intrinsic Bic. Parameters	n/Feet) n/Feet)
Well Number: Mws.5 Well Diameter: 4" with Casing Volume of Earlier of	n/Feet) n/Feet)
Depth to Water: Well Depth: Height W-Column: Volume in Well: Gallons to purge: Lab: Time (24 hr) Purged (Gallons) Volume (24 hr) Volume (25 757) Volume (24 hr) Volume (25 757) Volume (26 or) Volume (27 or) Volume (28 or) Volume (29 or) Volume (29 or) Volume (20 or) Volume (21 or) Volume (22 or) Volume (23 or) Volume (24 or) Volume (25 or) Volume (26 or) Volume (27 or) Volume (27 or) Volume (28 or) Volume (29 or) Volume (20 or) Vo	n/Feet) n/Feet)
Well Depth: \$0. BGS or TOC 4T = (0.65 Gallor Flux) Height W-Column: Volume in Well: Height W-Column: Feet (well depth - depth to water) 5T = (1.02 Gallor Flux) 5T = (1.02 Gallor Flux) Guillor Gallor Sulph 6T = (1.47 Gallor Gallor Flux) 6T = (1.47 Gallor Gallor Flux) 6T = (1.47 Gallor Gallor Flux) 6T = (2.61 Gallor Flux)<	/Feet)
Height W-Column: 16.03 feet (well depth - depth to water) 5" = (1.02 Gallor Volume in Well: 10.413 gallons (casing volume X height) 6" = (1.47 Gallor Gallors to purge: 41.68 gallons (volume X 4) 8" = (2.61 Gallor Transportation:	
Gallons to purge: 41.68 gallons (volume X 4) Lab: Transportation: Converger Time (24 hr) Volume Purged (Gallons) 1550 1551 10 757 61.8 6.19 Moderate Gry, Moderate Fins 1605 20 741 12.1 7.07 Louis Clear-Gry, Money Fines 1609 30 739 62.5 7.00 0.1	
Time (24 hr) Volume (25 754)	
Time (24 hr) Volume Purged (Gallons) Conductivity (µs/cm) (°F) pH Turbidity: Color, Fines D.O. 1550 5 693 727 57.10 Viry H. M. G.M., Viry Mary 1556 10 757 61.8 6.19 Moderate Gray Moderate Fines O.1 1600 15 759 62.4 7.01 Viry H. M. G.M., Moderate Fines O.1 1601 20 741 12.1 7.02 Low: Clear-Gry, Ministeries O.6 1609 30 739 62.5 7.00 0.9	m-eet)
Turbidity: Color, Fines D.O.	
1556 10 757 61.8 6.19 Moderate Gry, Moderate Fins 0.1 1600 15 759 62.4 7.04 V V 0.6 1605 20 741 12.1 7.02 Lowi Clear-Gry, Monie Fines 0.6 1106 25 754 62.1 6.97 0.9 1609 30 739 62.5 7.00 0.9	(ppm)
1556 10 757 61.8 6.19 Moderate Gry Moderate Fins 0.1 1600 15 759 62.4 7.04 V V 0.0 1603 20 791 12.1 7.02 Low Clear Gry Ministrus 0.6 1106 25 754 62.1 6.97 0.9 1609 30 739 62.5 7.00 0.9	0.2
1600 15 759 62.4 7.04 V V 0.0 1605 20 741 12.1 7.02 Lowi Clear-Gry, Monte Fines 0.6 1106 25 759 62.1 6.97 D.5 1609 30 739 62.5 7.00 0.9	
1106 25 754 62.1 6.47 6.5 1609 30 739 62.5 7.00 0.9	
1106 25 754 62.1 6.47 6.5 1609 30 739 62.5 7.00 0.9	6
	5
1612 35 737 61.9 7.60	4
	5
1617 40 715 66.5 7.03	1
1121 45 725 61.7 7.05 V V 0.3	,
Wait for 80% well volume recovery prior to sampling.	
Calculate depth to water (from TOC), for 80% well volume recovery:	
Calculate 80% of orginal well volume: Original well volume = 10.4145 x 0.8 = 8.3356 80% of original well volume & 356 (Casing Volume) (5.65 = (Height of water column) (2.64) - (Well Depth) 40 = Depth to water 27.	16'
60% of onginal well volume 4.369 (Casing volume) (5.63 = (Height of water column)(2.361 - (Well Depth) 40 = Depth to water 4.75)	Ke. J
Time: 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes	
Time:1st measured depth to water,feet below TOC. Is well within 80% of original well casing volume: Yes Time:1st measured depth to water,feet below TOC. Is well within 80% of original well casing volume: Yes	_No
Times Tourneasured deput to water, reet below 100. Is well within 00% of original well dashing volume. Tes	_No
Sample Well	_No
Time: 1624 Sample ID: MW5 Depth: 2401 feet below	_No
Comments: No Floating Product. Strong Odor.	No

Project Na	ame/No.: ∫	tarbert Transf	postation (H)	10 42. Q	Date: \	12 01			•
Sample N	o.: Mw.	6			Sample	Locati	on: Mw	l	
Samplers	Name: ご	hadt-yl.			Record	ed by:	CT		
Purge Equ	aipment:	/			Sample	Equip	ment:		
	Bailer: Dis	sposable or Acr	ylic			<u> </u>	Disposable	Bailer	
Х	Whaler#1	2+2_					Whaler#_		
	Bladder Pt	ump				<u> </u>	Bladder Pu	mp	
 	Submersib	ole Pump					Submersib	le Pump	
Analyses	Requested	l (cricle all that	apply):		Number	and T	ypes of Bo	ttle Used:	
		2-DGA, EDB, 8260	Fuel Oxygenate	is .	5	K40mL	UOAS		
TPH-diese	·· · · · · · · · · · · · · · · · · · ·								
Intrinsie Bi	o. Paramet	ers				·			
Well Num		MU·	_		Well Dia	meter	<u> </u>	_ with Casing \	
Depth to V		23,17	TOC						16 Gallon/Feet)
Well Depti		45. ZI-03'	BGS or TOC		o water)				35 Gallon/Feet) 02 Gallon/Feet)
Height W-Column:Z1-03.*feet (well depth - depth to water)5" = (1.02 Gallon/FeeVolume in Well:13.6(15)gallons (casing volume X height)6" = (1.47 Gallon/Fee									
Gallons to	purge:	54.68	gallons (volu		,				31 Gallon/Feet)
Lab:	Enterla	•			Transpo	rtation	ı: <i>C</i> ,	uner	
	77,1377,								
Time (24 hr.) Volume Purged (Gallons) Conductivity (μs/cm) (°F) PH Turbidity: Color, Fines D.O. (1							D.O. (ppm)		
1348 1350 5 5 157 347 56.7 7.01 7.01 Verythy hi Con/ 1 Vi y Mint. Cony, Mod. 0.1 0.3									
1357355	10 15	725 723	62.0	7.187.24	Lowe	<u> </u>	Gry, Miny	u:Clear, Trace	10.9
1358	20 25	1752 746	62.3	7.17 7.08		leris	5266	Lear Tree	0.90.6
1403	30	757	62.4	706	١٥٥	:01	ear, Th	ceFins	0.6
1405	35	753	62.0	7.07		1	, ,	<u> </u>	0.5
१५०६	५०	750	62.1	7.07					0.5
1410	45	754	62.1	7.03					0.5
1413	50€	757	62.2	7.0_5		,			0.5
1415	\$5	770	62.0	7.85	V	١	/		0.5
			0% well v				-	_	
			oth to water	•			ume recov	ery:	· · · · · · · · · · · · · · · · · · ·
	_	ell volume: Original							m a 1.81
80% of origina	al well volume	\4.1556 / (Casing V	olume)	(Height of water	er column) <u>(</u>	6. 424 (V	Vell Depth)	<u>{ 5°</u> = Depth to wa	ater <u>29, 11</u>
Time: 1420	4-4	ed depth to water, _	nellek' for	t below TOC.	111		0/ == == ==	well casing volume	
Time:	1st measure	ed depth to water, _ ad depth to water.	fee	t below TOC.	is well	within 80	% of original s	vell casing volume vell casing volume	: Yes No No
Time: CT	1st measure	ed depth to water, _ ed depth to water, _ ed depth to water, _	cor fee	t below TOC.	ls well	within 80	% of original v	vell casing volume	: Yes No
		, , , , , , , , , , , , , , , , , , , ,	, 21 \$,,.	* 1					
				Sample \	Vell				
Time:	1420		Sample ID:	Mw·l	s		Dep	oth: <u>24.68'</u> fe	eet below TOC
•		1	1	, ,				•	C
Comments	· N.Fl	sating Povdu	ct. Me	dente Od	υ√.		<u></u>		

Project Na	ıme/No.: ∖	Arbert Tm.	stratetur He	१०५७. ०	Date:	1 30 01			•
	0.: MU.	· 1			Sample	Locatio	1: Mu	<u>・・・</u>	
Samplers	Name: C	had Tryl.			Recorde	d by:	ct		
Purge Equ	•	/ sposable or Acr	ylic		Sample X		e nt: sposable	Bailer	
χ	Whaler#	2+3				W	haler#_		
	Bladder Pu	•					adder Pu	•	
. ,	Submersib	ole Pump				S	ıbmersib	e Pump	
	_	l (cricle all that	· · · · · · · · · · · · · · · · · · ·					ttle Used:	
		2-DCA, EDB, 0260	Fuel Oxygenate	S	5	xyout	ODA?		· · · · · · · · · · · · · · · · · · ·
	I, Stoddard						···		
	o Paramet		"			· · · · · · · · · · · · · · · · · · ·	LLS	<u>. </u>	
Vell Numi Depth to V		Mw.7	тос		Well Dia	meter: _	<u>¥</u>	_ with Casing \ 2" = (0.1	/olume of: 6 Gallon/Feet)
Vell Depti		29.49' 45'	BGS or TOC	;					5 Gallon/Feet)
leight Ŵ-	Column:	20-51'	feet (well de					5" = (1.0	2 Gallon/Feet)
olume in		13. <u>3315</u> 53 .34	gallons (casi gallons (volu		(height)				7 Gallon/Feet) 1 Gallon/Feet)
allons to	Ί.	33.37	gallons (voic	IIII (A 4)	_		_	•	ri Galloti/Feet)
ab: 🗐	whech				Transpo	rtation:	Caus	<u> </u>	
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	рН		Turbidi	y: Color, Fi	nes	D.O. (ppm)
1255 0 5 600 701 60.4 62.8 6.93 7.03 Hyh: L. Hall Brown Minut 0.7 1.0									
1251 1501 10 15 115 (87 63.5 7.03 Moderte Light Brun Min G.) 0.7 1304 20 687 63.5 7.03 Moderte Light Brun Min G.7 0.7									
304 BO6	20/25	640	(3.2	7.03	, Louisch	ic Bure. N	L 14	owy Minorthny	0.7
1309	30	684	63.0	1.96	Law: C	lear Br	W Nor	morfines	0.6
1311	35	645	62.8	6.95	· ·			$\sqrt{}$	0.5
1314	40	750	62.7	6.95	Low	Clea	r. Tr	cefines	0.5
1311	45	685	12.5	6.97	1				0.5
1511	50	P88	62.5	6.94		1			0.5
1311	55	68.5	12.3	6.94	V	1	,		0.5
1		Wait for 8	30% well v		overy p	rior to	sampli	ng.	
		Calculate de	pth to water	(from TOC),	for 80% v	vell volui	ne recov	ery:	
		all volume: Origina							
0% of origina	al well volume	(<u>0.6654</u> (Casing √	'olume <u>) </u>	(Height of wate	er column)1 <u>6</u>	. Ч о <u>к</u> (We	l Depth)_ ¹	5 = Depth to wa	ter 2 8.59 ·
			d Eus' .		4		-£:-tt		, ,
ime: ויאנו ime: ריאנו		ed depth to water, _ ed depth to water.		t below TOC. t below TOC.	Is well \	vithin 80% vithin 80%	of original	vell casing volume: vell casing volume:	Yes No
ime: \sqrt{c1}	1st measure	ed depth to water, _ ed depth to water, _	e Tee	t below TOC.	Is well v	vithin 80%	of original	vell casing volume vell casing volume vell casing volume:	YesNo
							•	-	
			 	Sample \	Vell				
Time:	1324		Sample ID:	Mw.	<u>}</u>	····	Dep	oth:	et below TOC
		Vo Floating							
omments		1 01 1 -	اند لمار	1 ~~					

10 640 54. 3 6.44 6.45 6	Project Na	ame/No.:	Harbert Tmm	sportation/	H9042.Q	Dat	e: 1/12/0	١		
Recorded by: C7 Purge Equipment: Baller: Disposable or Acrylic X Whaler #	Sample N	0.: MW	. 8			San	npie Locati	on: Mა · ˈS	۲ <u></u>	
Purge Equipment: Bailer: Disposable or Acrylic X Whater #	Samplers	Name: (ChedTayla							
Whaler #			l			San	nple Equipr	nent:		
Bladder Pump Submersible Pum		Bailer: Di	sposable or Acr	ylic					iler	
Submersible Pump	χ	_Whaler#_					\	Whaler#		
Analyses Requested (cricle all that apply): Number and Types of Bottle Used: \$1,46 - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-	•					•		
TPH diseal; Stoddard Solvent Sy46_LUDN's		Submersik	ole Pump					Submersible P	ump	
Well Diameter: With Casing Volume of: Depth to Water: Section Sect			•	·		Nur	-	-	Used:	
Mell Number: Mail Number: Mail Number: Mail Number: Mell Number: Mail				Fuel-Oxygenate	·8•		5x40-L	VON'S		
Well Number: Moder Modern				·				, , , , , , , , , , , , , , , , , , , 		
Popt to Water: Well Depth: Ho Well: Ho Popth:				·				.1		
Nell Depth: 10 BGS or TOC 1 10 10 10 10 10 10 10				тос		wei	i Diameter:	w		
Volume in Well: 1.47 gallons (casing volume × height) 6" = (1.47 Gallon/Feet)	•			-	;					
Sallons to purge: 41, 24 gallons (volume X 4) 8" = (2.61 Gallon/Feet)	_				•		,		5" = (1.0	2 Gallon/Feet)
Time Purged (Gallons) (Lyc/m) Temperature ("F) pH Turbidity: Color, Fines D.O. (ppm) (24 hr.) (12 hr.) (12 hr.) (13 hr.) (13 hr.) (14 hr.) (15 hr.) (14 hr.) (15 hr.)						(nei	gnt)			
Time (24 hr.) Volume Purged (Gallons) Conductivity (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				ganono (voic	1110 X +1)	T				T Gallolin Get)
Purged (Gallons) Purged (Gallons) PH Turbidity: Color, Fines D.O. (ppm)	Lab:	EXTEN	M			ıraı	sportation	: <u>(</u>)	4 r12 L	
10 643 54. 3 6.94 6.95 1.5 1	(24 hr.) Purged (Gallons) (µs/cm) (°F) pH Turbidity: Color, Fines D.O. (ppm)								D.O. (ppm)	
10	0732 0 5 556 30 52.38.1 7.209 H. 16: Brown, Mary First									
0745 20 637 54.2 6.46 1.9 2.0 0749 25 641 58.8 6.93 2.0 07452 30 640 59.6 6.95 2.0 0755 35 642 60.0 6.94 2.1 0759 40 640 59.7 6.96 6.96 0.96										
0749 25 641 58.8 6.93 2.0 0752 30 640 59.6 6.95 2.0 0755 35 642 60.0 6.94 2.1 0759 40 640 59.7 6.96 2.1 Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery: Calculate 80% of original well volume: Original well volume = [0.4455] x 0.8 = \$1.3564 0% of original well volume \$1.3564 (Casing Volume) 0.65 = (Height of water column) 12.86. (Well Depth) 40 = Depth to water 27.14 Time: 0701 1st measured depth to water, 1st measured depth to water	0742	15	642	58.9	6.95					1.8
State Stat	0745	20	632	54.2	6.96					1.9
C755 35 642 60.0 6.94 2.1 2.	0749	25	641	58.8	6.93			· · · · · · · · · · · · · · · · · · ·		2.0
Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery: Calculate 80% of original well volume: Original well volume = 10.4455 x 0.8 = 1.3564 O'N of original well volume 9.3564 (Casing Volume) 0.65 = (Height of water column) 12.856. (Well Depth) 40 = Depth to water 27.14 Time: 1st measured depth to water, 11.34 feet below TOC. Is well within 80% of original well casing volume: Yes No feet below TOC. Is well within 80% of original well casing volume: Yes No feet below TOC. Is well within 80% of original well casing volume: Yes No Sample Well Sample Well	0752	30	640	59.6	6.95					2.0
Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery: Calculate 80% of orginal well volume: Original well volume = 10.4455 x 0.8 = 2.3564 10% of original well volume 8.3564 (Casing Volume) 0.65 = (Height of water column) 12.856 (Well Depth) 40 = Depth to water 27.14 (Well Depth) 40 = Depth 40 = Depth to water 27.14 (Well Depth) 40 = Depth 40 = De	0755	35	642	60.0	6.94					2.\
Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery: Calculate 80% of original well volume: Original well volume = 10.4455 x 0.8 = 1.3564 10% of original well volume 1.5544 (Casing Volume) 0.65 = (Height of water column) 12.954 (Well Depth) 40 = Depth to water 27.14 is well within 80% of original well casing volume: Yes No is well within 80% of origi	0759	40	640	59.7	6.96					2.1
Wait for 80% well volume recovery prior to sampling. Calculate depth to water (from TOC), for 80% well volume recovery: Calculate 80% of original well volume: Original well volume = 10.4455 x 0.8 = 1.3564 10% of original well volume 1.5544 (Casing Volume) 0.65 = (Height of water column) 12.954 (Well Depth) 40 = Depth to water 27.14 is well within 80% of original well casing volume: Yes No is well within 80% of origi	0802	45	132	51.4	6.96	V	/ V	١	/	2.1
Calculate depth to water (from TOC), for 80% well volume recovery: Calculate 80% of orginal well volume: Original well volume = 10.4455 x 0.8 = \$.3564 Calculate 80% of original well volume: Original well volume = 10.4455 x 0.8 = \$.3564 Calculate 80% of original well volume: Original well volume = 10.4455 x 0.8 = \$.3564 Calculate depth to water Original well volume recovery: Calculate 40% of original well casing volume: Yes Original well casing vol		·i				ove	ry prior to	sampling.	·	·
1 st measured depth to water, 1:34 feet below TOC. Is well within 80% of original well casing volume: Yes No ime: 1 st measured depth to water, 1 feet below TOC. Is well within 80% of original well casing volume: Yes No ime: 1 st measured depth to water, 1 feet below TOC. Is well within 80% of original well casing volume: Yes No ime: 1 st measured depth to water, 1 feet below TOC. Is well within 80% of original well casing volume: Yes No ime: Sample Well										
Time: OFO! 1st measured depth to water, 21:34 feet below TOC. Is well within 80% of original well casing volume: Yes No										
ime: 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes No	80% of origina	al well volume	%.356∜ (Casing V	olume <u>) <i>0.</i>65</u> =	(Height of water	er colu	mn) <u>12.8%</u> - (W	ell Depth) <u>40</u>	= Depth to wa	ter <u>27.14</u>
ime: 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes No	Time: 0701	i 1et meseure	d denth to weter	2134 feet	helow TOC	le	well within 80°	4 of original well (neina voluma:	Van Na
Sample Well	Time:	1st measure	ed depth to water, _	fee	t below TOC.				_	
	Time:	1st measure	ed depth to water,	fee	t below TOC.				_	
Time: 0 104 Sample ID: My.8 Depth: 26.34 feet below TOC		·····			Sample \	<u>/Vell</u>				
Comments: No Flasting Product, No Oda	Time:	0 104		Sample ID:	Mu.	8		Depth:	26.34 fe	et below TOC
	Comments	: N _o	Floating Product	. No odu	·		· · · · · · · · · · · · · · · · · · ·			

Project N	ame/No.:	Habert Twa	sportion	H1192.4	Date:	12/01	· · · · · · · · · · · · · · · · · · ·		
Sample No.: MU-9				Sample Location: Mట 1					
Samplers Name: CLITY.					Recorded by:				
Purge Equipment:					Sample	Equipment:			
	Bailer: Dis	sposable or Acr	ylic		X	Dispo	sable Bailer		
Υ	Whaler#_						er #		
	Bladder Pt	•			Bladder Pump				
	Submersib	le Pump		Submersible Pump					
	Analyses Requested (cricle all that apply):						of Bottle Used:		
		2 DCA, EDB, 8260	Fuel Oxygenate	s		5x40ml U	<u>'νη',</u>	· · · · · · · · · · · · · · · · · · ·	
	I , Stoddard								
Intrinsic B	o. Paramet	ers	.	· · · · · · · · · · · · · · · · · · ·					
Well Num		Aw.1	TOO		Well Dia	meter:	<u>ម</u> ៉ា with Casing \		
Depth to \ Well Dept		2517'	TOC BGS or TOC	<u>`</u>				6 Gallon/Feet) 5 Gallon/Feet)	
Height W		11'87. 	feet (well de		o water)			2 Gallon/Feet)	
Volume in		10.9395	gallons (casi				6" = (1.4	l7 Gallon/Feet)	
Gallons to		43.76	gallons (volu	ıme X 4)			8" = (2.6	31 Gallon/Feet)	
لم: Lab: ک	CECT I	No Entech			Transpo	rtation: C	over the last of t		
	Volume				1				
Time (24 hr.)	Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	pН		Turbidity: C		D.O. (ppm)	
1498	0 5	732	54.5	6.19	H-Jr. C	Way High	Gny, Many Fines	6.1 6.4	
14 54	10	729	63.2	7.08	Μ.λ	. * ' ' ' '	Moderate Fines	0.9	
1456	ıs	755	63.0	7.06	Lowi	Cterriba	y Minor Fins	0.7	
1459	20	नेर६	62.4	7.01	7	<u> </u>	<u> </u>	0.6	
1501	25	731	63.0	7.00	Low:	Clear	TimecFines	0.5	
1505	30	726	62.8	7.02	1			0,5	
1508	35	711	62.8	6.98				0.5	
1510	40	718	62.9	7.00				0.5	
1513	45	730	62.9	6.48	V	V	V	0-5	
		Wait for 8	30% well v	olume rec	overy p	rior to sa	mpling.	*** · · · · · · · · · · · · · · · · · ·	
Calculate depth to water (from TOC), for 80% well volume recovery:									
	_	all volume: Original					. 1	 .	
80% of original well volume 8.1516/ (Casing Volume) 0.65 = (Height of water column) \(\frac{13464}{2464}\) (Well Depth) \(\frac{46^4}{26}\) = Depth to water \(\frac{26.536}{26.536}\)									
Time: 1516 1st measured depth to water, 23.33 feet below TOC. Is well within 80% of original well casing volume. Yes No.									
Time: 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes No.									
Time:									
Sample Well									
Time: 1511 Sample ID: MW-1 Depth: 73.33' feet below TOC									
Comments: No Floating Product. Standard Oden									

Project Name/No.: Harbert Trasporth /19042.0 Da						Date: \(\(\v2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
Sample No.: MW-10					Sample Location: Mustb				
Samplers Name: Chad Tayl-					Recorded by:				
Purge Equipment:						Sample Equipment:			
	-	sposable or Acr	ylic		X	Dispo	sable Baile	r	
XWhaler #							er #		
Bladder Pump						Bladder Pump			
Submersible Pump						Submersible Pump			
	Analyses Requested (cricle all that apply): (TPH-gag BTEX/MTBB, 4, 2-DCA, EDB, 8260 Fuel Oxygenates						of Bottle U	sed:	
	Ехимтвы, 4, I, Stoddard		-Fuel Oxygenate)•		5,40~	L-UO/4;		
	o. Paramet	· · · · · · · · · · · · · · · · · · ·	<u></u>						/
Well Num		MW-10			Well Dian	neter:	4 [~] _ with	Casing \	/olumo of:
Depth to \		22.99'	тос		Well Dial				6 Gallon/Feet)
Well Dept		40'	BGS or TOC					4" = (0.6	55 Gallon/Feet)
Height W- Volume in		17-01'	feet (well de gallons (cas)2 Gallon/Feet) I7 Gallon/Feet)
Gallons to		44.226	gallons (volu		(neight)				31 Gallon/Feet)
Lab:	Entuh		•	·	Transpor	tation:	Commer	•	,
				·					
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	pН		Turbidity: C	olor, Fines		D.O. (ppm)
1051	0/5	1972 1055	61.3	6.92	Verthyl	1 Brown	oth Brown	Modern	0.1 0.6
1058	(0	1022	67.2	692	1 . "		mun, Mini		0.6
1102	15	1022	67.7	6.45	1				٥.٤
11.05	20	reo 5	67.1	6-96					0.5
1109	25	917	67.2	6-24	\bigvee	V			0.7
1112	80	1005	67.1	493	Loui	Clear	1 Truce	Fins	0.6
11/6	>5	1025	67.3	6.24	1				0.1
1119	40	1018	67.2	6.84					0.6
1123	45	1016	67.2	6.81	V	V			0.6
L			30% well v	olume rec	overy pr	ior to sa	mpling.		<u> </u>
			pth to water						
		ell volume: Original					•		
80% of original well volume (SM51/ (Casing Volume)).65 = (Height of water column) (13108) (Well Depth) 40° = Depth to water 26.31°									
71.00									
Time: 125 1st measured depth to water, 23.67 feet below TOC. Is well within 80% of original well casing volume: Yes No Is well withi									
Time: 1st measured depth to water, feet below TOC. Is well within 80% of original well casing volume: Yes No									
Sample Well									
Time:	Time: 1/25 Sample ID: Mar-10 Depth: 25.07 feet below TOC								
Time: 1/25 Sample ID: Mar-10 Depth: 25.07 feet below TOC Comments: N. Floating Product. Very Slight Odor.									
		O		, ,					

Project N	ame/No.:	Hubert Trans	201/19 detrois	D-2-4	Date: \ 12 01	•		
Sample No.: MW·II				Sample Location: Mພ-II				
Samplers Name: () set Tayl.				Recorded by: CT				
Purge Eq	uipment:	1			Sample Equipment:			
	•	sposable or Acr	ylic		Disposable Bailer			
X	_ _Whaler#	1			X Whaler #			
	Bladder P	ump			Bladder Pump			
	Submersit	ole Pump		Submersible Pump				
Analyses	Requested	l (cricle all that	apply):		Number and Types of Bottle Used:			
TPH-gas B	EXMTBR, 1,	2 DCA, EDB, 8260	Fuel Oxygenate	s	5 ruent volts			
JPH-diese	el, Stoddard	Solvent-						
Intrincio-B	io. Paramet	ers.						
Well Num		MW11 8321	Ťoc		Well Diameter: 2" with Casing V			
Depth to Well Dept		40.	BGS or TOC	;		6 Gallon/Feet) Gallon/Feet)		
Height W	-Column:	16.71	feet (well de	pth - depth t	o water) 5" = (1.0	2 Gallon/Feet)		
Volume in Gallons to		2.6864	gallons (casi gallons (volu			17 Gallon/Feet) 31 Gallon/Feet)		
		10.74	gallons (voic	#116 / 4))	or Gallon/Feet)		
Lab:	Entish	· · · · · · · · · · · · · · · · · · ·	-	,	Transportation: (3,00144			
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	рН	Turbidity: Color, Fines	D.O. (ppm)		
0958	0	597	53.8	6.93	High: Light Brun Mary Fines	3. 9		
10.00	2.	416	57.3	6.85	High: Light Brung May France	1.1		
1002	4	1020	61.5	6.82	Maderate: Light. Boun, Missetus	0.8		
1005	6	1046	60.3	6.82	Low: Clear-Bring Tracking	0.5		
1 00 8	8	1027	60.6	6.82	Low Clear, Treefing	0.5		
1010	10	1030	60.9	6.84	1	0.6		
1012	12	1026	61.5	1.85		0.6		
STOP	Dunge	Complete.	W + &	r 80%	Dell Recomy. See below to	1.16		
	7.		als.		1	<u> </u>		
<u> </u>	<u> </u>			olume rec	overy prior to sampling.	<u> </u>		
					for 80% well volume recovery:			
Calculate 80% of orginal well volume: Original well volume = 2.1864 x 0.8 = 2.1412								
80% of original well volume 41112 / (Casing Volume) 0.11 = (Height of water column) 13.432 (Well Depth) 40° = Depth to water 26.57								
Time: 1st measured depth to water, 23.24 feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC. Time: 1st measured depth to water, feet below TOC.								
Sample Well								
Time: ۱۵۱۷ Sample ID: MOI) Depth: 23.29' feet below TOC								
Comments: No Floating Product. No Odor.								
30.71110176		10 a 1 mg T 70 c	· 1\/ (2 (1411)				

Project N	ame/No.:	Harbert Tun	sportilo-	140042.0	Date: 1/12/01			
Sample No.: MW-12					Sample Location: MU-12			
Samplers Name: ChadTyl-					Recorded by:			
1					Sample Equipment: Disposable Bailer Whaler # Bladder Pump Submersible Pump			
TPH-gas BT	EX, QTBE, 4, I, Stoddard	 		98	Number and Types of Bottle Used Sx40mLUUA*>	:		
	o. Paramet	, , , , , , , , , , , , , , , , , , , ,						
Well Number:MWILWell Diameter:2with Casing Volume of:Depth to Water: $2^{11} = (0.16 \text{ Gallon/Fee})$ Well Depth: 40° BGS or TOC 4° = $(0.65 \text{ Gallon/Fee})$ Height W-Column: 15.72° feet (well depth - depth to water) 5° = $(1.02 \text{ Gallon/Fee})$ Volume in Well: 2.5152° gallons (casing volume X height) 6° = $(1.47 \text{ Gallon/Fee})$ Gallons to purge: 10.06° gallons (volume X 4) 8° = $(2.61 \text{ Gallon/Fee})$								
Lab:	Enterh			_	Transportation: Creation			
Time (24 hr.)	Volume Purged (Gallons)	Conductivity (µs/cm)	Temperature (°F)	рН	Turbidity: Color, Fines	D.O. (ppm)		
0914	0	511	53.9	6.71	Low Clear-Brown Minor Fr	ince 1.3		
0415	2	672	\$7.6	6.73	Low: Clear, Time Finis	0.8		
0917	ч	687	54.3	6.73		0.6		
0919	6	672	51.7	6.73		0.9		
0921	8	686	64.2	1.73		1.0		
092 3	lo	676	60.2	6.76		1.0		
0426	12	667	60.3	6.74	V V	1.0		
- 4012	Prye Hali	Complet	د . المنا	For 80%	Well Reconny			
-/*			pth to water	(from TOC),	for 80% well volume recovery:			
					or column) 12.576 (Well Depth) 40° = Depth	n to water <u>27.42</u> '		
Time: 0\2 \(\) Time:	1st measure	ed depth to water, _ ed depth to water, _ ed depth to water, _	fee	t below TOC. t below TOC. t below TOC.	Is well within 80% of original well casing volume is well within 80% of original well casing volume is well within 80% of original well casing volume.	olume: Yes No		
				Sample \	Vell			
Time: 012 Sample ID: NW·V2 Depth: 2442 feet below TOC								
Comments	: Na	Floating -	Product.	No Oden				

Appendix B

Summary of Historical Depth to Groundwater Measurements, Groundwater Elevations, and Groundwater Flow Direction - AGI Technologies, Inc.

Table 1 Groundwater Elevation DataHarbert Transportation/Meekland Avenue
Hayward, California

		Top of Casing	Depth to	Groundwater
Well	Date	Elevation	Groundwater	Elevation
Number	Sampled	(feet)	(ft bgs)	(feet)
MW3	10/20/94	100.00	27.12	72.88
	09/15/95	, , , , , , , , , , , , , , , , , , , ,	24.22	75.78
	03/14/96		19.02	80.98
	09/26/96		23.61	76.39
MW4	10/20/94	100.27	27.32	72.95
	09/15/95		24.42	75.85
	03/14/96		19.23	81.04
	09/26/96		23.85	76.42
MW5	10/20/94	100.59	27.71	72.88
1	09/15/95		24.87	75.72
	03/14/96		19.95	80.64
	09/26/96		24.38	76.21
MW6	10/20/94	100,57	27.68	72.89
	09/15/95		24.79	75.78
	03/14/96	1	19.54	81.03
1	09/26/96		24.20	76.37
MW7	10/20/94	101.22	28.25	72.97
	09/15/95	:	25.35	75.87
	03/14/96		20.06	81.16
	09/26/96		24.75	76.47
MW8	10/20/94	100.72	27.73	72.99
	09/15/95		24.81	75.91
İ	03/14/96		19.52	81.20
	09/26/96		24.13	76.59
MW9	10/20/94	99.77	26.90	72.87
	09/15/95		24.01	75.76
	03/14/96		18.80	80.97
	09/26/96		23,50	76.27
MW10	10/20/94	99.29	26.46	72.83
	09/15/95	-	23.79	75.50
	03/14/96		18.62	80.67
	09/26/96		23.30	75.99
MW11	10/20/94	99.75	26.89	72.86
	09/15/95		24.05	75.70
	03/15/96		18.79	80.96
	09/26/96	404.00	23.53	76.22
MW12	10/20/94	101.03	28.11	72.92
	09/15/95		25.19	75.84
Ì	03/14/96		19.84 24.57	81.19 76.46
<u> </u>	09/26/96	<u> </u>	24.57	70.40

Note:

ft bgs - Feet below ground surface.

Groundwater Monitoring Report - Fourth Quarter 2000 19984 Meekland Avenue, Hayward, California January 30, 2001

Appendix C

Certified Analytical Report - Groundwater Samples

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 1/26/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sam	ple ID:	23984-0	03	Clie	nt Sample ID:	MW-5	
Sample Time:		Sampl	e Date:	1/12/01	*		Matrix:	Liquid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	1/18/01	WMS2010117	EPA 8260B
	Surrogate	9		Surroga	te Recover	y	Control Limits	(%)	
	4-Bromof	uorobenzen	e		106		65 - 135		
	Dibromof	luoromethan	e	,	107		65 - 135		
	Toluene-d	8			100		65 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director Environmental Analysis Since 1983

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes & Associates

Date Collected: 1/12/01

Date Received: 1/15/01

January 26, 2001

Chad Taylor

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Order: 23984

Project Name: Harbert Transportation

Project Number: H9042.Q

Project Notes:

analyses are attached:

On January 15, 2001, samples were received under documentented chain of custody. Results for the following

<u>Matrix</u> Liquid <u>Test</u>

MTBE by EPA 8260B

Method

EPA 8260B

P.O. Number:

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Michelle L. Anderson

Lab Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 1/26/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sam	ple ID:	23984-0	04	Clie	nt Sample ID:	MW-6	
Sample Time:		Sample Date: 1/12/01 Matrix: Liquid							
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	1/22/01	WMS2010119	EPA 8260B
	Surrogate	e		Surroga	te Recover	y	Control Limits	(%)	
	4-Bromof	luorobenzen	е		103		65 - 135		
	Dibromof	luoromethan	е	,	104		65 - 135		
	Toluene-d	i8			99		65 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076 Attn: Chad Taylor

Date: 1/26/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sam	ple ID:	23984-0	05	Clie	nt Sample ID:	MW-7	
Sample Time:		Sampl	e Date:	1/12/01	•		Matrix:	Liquid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μ g /L	1/18/01	WMS2010117	EPA 8260B
	Surrogat	е		Surroga	te Recover	y	Control Limits	(%)	
	4-Bromof	luorobenzen	e		101		65 - 135		
	Dibromof	luoromethan	e		106		65 - 135		
	Toluene-d	18			101		65 - 135		

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director Environmental Analysis Since 1983

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 1/26/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sam	ple ID:	23984-0	07	Clie	nt Sample ID:	MW-9				
Sample Time:		Sampl	e Date:	1/12/01	•		Matrix:	Matrix: Liquid				
Parameter Methyl-t-butyl Ether	Result ND	Flag	DF 1	PQL 5	DLR 5	Units µg/L	Analysis Date 1/18/01	QC Batch ID WMS2010117	Method EPA 8260B			
Money Conty Date	Surrogat	e	•	Surrogat	te Recover		Control Limits	(%)				
	4-Bromof	luorobenzen	е		105		65 - 135					
	Dibromof	luoromethan	e		102		65 - 135					
	Toluene-d	8			100		65 - 135					

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WMS2010117

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

1/17/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: EPA	8260B					•				•	
1,1-Dichloroethene	EPA 8260B	ND		40		34.9	LCS	87.3			65.0 - 135.0
Benzene	EPA 8260B	ND		40		40.7	LCS	101.8			65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		40		37.5	LCS	93.8			65.0 - 135.0
Methyl-t-butyl Eth	er EPA 8260B	ND		40		41.6	LCS	104.0			65.0 - 135.0
Toluene	EPA 8260B	ND		40		36.9	LCS	92.3			65.0 - 135.0
Trichloroethene	EPA 8260B	ND		40		36.4	LCS	91.0			65.0 - 135.0
	Surrogate		Surrog	ate Recove	ry	Control I	imits (%)	•		•	
	4-Bromofluorob	enzene		106		65 -	135				
	Dibromofluoror	nethane		103		57 -	139				
	Toluene-d8			98		65 -	135				
Test: EPA	8260B							· · · ·			
1,1-Dichloroethene	EPA 8260B	ND		40		34.8	LCSD	87.0	0.29	25.00	65.0 - 135.0
Benzene	EPA 8260B	ND		40		40.2	LCSD	100.5	1.24	25.00	65.0 - 135.0
Chlorobenzene	EPA 8260B	ND		40		37.4	LCSD	93.5	0.27	25.00	65.0 - 135.0
Methyl-t-butyl Eth	er EPA 8260B	ND		40		39.4	LCSD	98.5	5.43	25.00	65.0 - 135.0
Toluene	EPA 8260B	ND		40		37.0	LCSD	92.5	0.27	25.00	65.0 - 135.0
Trichloroethene	EPA 8260B	ND		40		36.5	LCSD	91.3	0.27	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recove	ry	Control I	lmits (%)				
	4-Bromofluorob	enzene		103		65 -	135				
	Dibromofluoror	nethane		101		57 -	139				
1	Toluene-d8			99		65 -	135				1

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WMS2010119

Units:

μg/L 1/19/01

Matrix:

Liquid

Date Analyzed:

Benzene EPA 8260B ND 40 44.7 LCS 111.8 65.0 - Chlorobenzene EPA 8260B ND 40 39.3 LCS 98.3 65.0 - Chlorobenzene EPA 8260B ND 40 39.3 LCS 98.3 65.0 - Chlorobenzene EPA 8260B ND 40 39.3 LCS 98.3 65.0 - Chlorobenzene EPA 8260B ND 40 39.3 LCS 98.3 65.0 - Chlorobenzene EPA 8260B ND 40 39.3 LCS 98.3 65.0 - Chlorobenzene EPA 8260B ND 40 39.3 LCS 98.3 65.0 - Chlorobenzene EPA 8260B ND 40 40.4 39.9 LCS 98.3 65.0 - Chlorobenzene EPA 8260B ND 40 40.4 57 139 139	Paramete	61.	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Benizene	Test:	EPA 82	260B										
Chlorobenzene		oroethene	EPA 8260B	ND		40		40.9	LCS	102.3			65.0 - 135.0
Methyl-t-buryl Ether EPA 8260B ND	Benzene		EPA 8260B	ND		40		44.7	LCS	111.8			65.0 - 135.0
Toluene	Chlorobei	nzene	EPA 8260B	ND		40		39.3	LCS	98.3			65.0 - 135.0
Trichloroethene	Methyl-t-	butyl Ether	EPA 8260B	ND		40		44.8	LCS	112.0			65.0 - 135.0
Surrogate	Toluene		EPA 8260B	ND		40		39.3	LCS	98.3			65.0 - 135.0
A-Bromofluorobenzene 104	Trichloro	ethene	EPA 8260B	ND		40		39.9	LCS	99.8			65.0 - 135.0
Dibromofluoromethane 104 57 139 135	ſ	5	Surrogate		Surrog	ate Recover	y	Control 1	Limits (%)				
Toluene-d8		4	4-Bromofluorob	enzene		104		65 -	135				
Test: EPA 8260B	İ	I	Dibromofluoror	nethane		104		57 -	139				
1,1-Dichloroethene		-	Foluene-d8			98		65 -	135				
1,1-Dichloroethene	Test:	EPA 82	260B										
Benzene				ND		40		40.4	LCSD	101.0	1.23	25.00	65.0 - 135.0
Chlorobenzene	•			ND		40		43.5	LCSD	108.7	2.72	25.00	65.0 - 135.0
Methyl-t-butyl Ether EPA 8260B ND 40 42.5 LCSD 106.3 5.27 25.00 65.0 - 65.0 - 65.0 - 65.0 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -		nzené		ND		40		39.0	LCSD	97.5	0.77	25.00	65.0 - 135.0
Toluene						40		42.5	LCSD	106.3	5.27	25.00	65.0 - 135 0
Trichloroethene	•	outji zuio				40			LCSD	97.8	0.51	25.00	65.0 - 135.0
Surrogate Surrogate Recovery Control Limits (%)		ethene				40		39.3	LCSD	98.3		25.00	65.0 - 135.0
A-Bromofluoromethane	ſ				Surrog	ate Recovery	y	Control	Limits (%)				
Toluene-d8				enzene				65 -	135				
Test: EPA 8260B		ĺ	Dibromofluoror	nethane		102		57 -	139				
1,1-Dichloroethene		•	Foluene-d8			98		65 -	135				
1,1-Dichloroethene	Test	EPA 82	260B										
Benzene				ND	24029-004	25	ND	24.9	MS	99.6			65.0 - 135.0
Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 27.3 MS 109.2 65.0 - Toluene EPA 8260B ND 24029-004 25 ND 23.0 MS 92.0 65.0 - Trichloroethene EPA 8260B ND 24029-004 25 ND 24.5 MS 98.0 65.0 - Surrogate Surrogate Recovery Control Limits (%) 4-Bromofluorobenzene 104 65 - 135 Dibromofluoromethane 106 57 - 139 Toluene-d8 98 65 - 135 Test: EPA 8260B ND 24029-004 25 ND 25.5 MSD 102.0 2.38 65.0 - Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 114.4 4.65 65.	,		EPA 8260B	ND	24029-004	25	ND	25.9	MS	103 6			65.0 - 135.0
Toluene EPA 8260B ND 24029-004 25 ND 23.0 MS 92.0 65.0 - Trichloroethene EPA 8260B ND 24029-004 25 ND 24.5 MS 98.0 65.0 - Surrogate Surrogate Recovery Control Limits (%) 4-Bromofluoromethane 106 57 - 139 Toluene-d8 98 65 - 135 Test: EPA 8260B 1,1-Dichloroethene EPA 8260B ND 24029-004 25 ND 25.5 MSD 102.0 2.38 65.0 - Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -	Chlorober	nzene	EPA 8260B	ND	24029-004	25	ND	23.3	MS	93.2			65.0 - 135.0
Toluene EPA 8260B ND 24029-004 25 ND 23.0 MS 92.0 65.0 - Trichloroethene EPA 8260B ND 24029-004 25 ND 24.5 MS 98.0 65.0 - Surrogate Surrogate Recovery Control Limits (%) 4-Bromofluoromethane 106 57 - 135 Dibromofluoromethane 106 57 - 139 Toluene-d8 98 65 - 135 Test: EPA 8260B 1,1-Dichloroethene EPA 8260B ND 24029-004 25 ND 25.5 MSD 102.0 2.38 65.0 - Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -			EPA 8260B	ND	24029-004	25	ND	27.3	MS	109.2			65.0 - 135.0
Trichloroethene				ND	24029-004	25	ND	23.0	MS	92.0			65.0 - 135.0
Surrogate Surrogate Recovery Control Limits (%)		ethene	EPA 8260B	ND	24029-004	25	ND	24.5	MS	98.0			65.0 - 135.0
4-Bromofluorobenzene	ſ		Surrogate		Surrog	ate Recovery	y	Control 1	Limits (%)				
Toluene-d8 98 65 - 135 Test: EPA 8260B ND 24029-004 25 ND 25.5 MSD 102.0 2.38 65.0 - Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 - MSD 114.4 4.65 65.0 - MSD 114.4 4.65 65.0 - MSD 114.4 4.65				enzene	~			65 -	135				
Test: EPA 8260B 1,1-Dichloroethene EPA 8260B ND 24029-004 25 ND 25.5 MSD 102.0 2.38 65.0 - Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -]	Dibromofluoror	nethane		106		57 -	139				
1,1-Dichloroethene EPA 8260B ND 24029-004 25 ND 25.5 MSD 102.0 2.38 65.0 - Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -		•	Foluene-d8			98		65 -	135				
1,1-Dichloroethene EPA 8260B ND 24029-004 25 ND 25.5 MSD 102.0 2.38 65.0 - Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -	Test	EPA 81	260B										
Benzene EPA 8260B ND 24029-004 25 ND 26.4 MSD 105.6 1.91 65.0 - Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -				ND	24029-004	25	ND	25.5	MSD	102.0	2.38		65.0 - 135.0
Chlorobenzene EPA 8260B ND 24029-004 25 ND 23.8 MSD 95.2 2.12 65.0 - Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -													65.0 - 135.0
Methyl-t-butyl Ether EPA 8260B ND 24029-004 25 ND 28.6 MSD 114.4 4.65 65.0 -		nzene								95.2			65.0 - 135.0
													65.0 - 135.0
		- 21,7. 2001											65.0 - 135.0
		ethene											65.0 - 135.0

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WMS2010119

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

1/19/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Туре	% Recovery	RPD	RPD Limits	Recovery Limits
	Surrogate		Surrog	ate Recove	ry	Control	Limits (%)				
1	4-Bromofluoro	benzene		104		65	- 135				
	Dibromofluoro	methane		106		57	- 139				
l	Toluene-d8			98		65	- 135				

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

January 22, 2001

Chad Taylor Weber, Hayes and Associates 120 Westgate Drive Watsonville, CA 95076

Order: 23984

Date Collected: 1/12/01

Project Name: Harbert Transportation

Date Received: 1/15/01

Project Number: H9042.Q

P.O. Number:

Project Notes:

On January 15, 2001, samples were received under documentented chain of custody. Results for the following analyses are attached:

Matrix

Test

Method

Liquid

Gas/BTEX/MTBE

EPA 8015 MOD. (Purgeable)

EPA 8020

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Michelle L. Anderson

Lab Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple II): 2398	4-001		Client Sam	ple ID: MV	V-3	
Sample Time:		Sam	ple Dat	e: 1/12/	′01 ·		1	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	2.4		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	2.2		1	0.5	0.5	μ g/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	44		1	0.5	0.5	$\mu \mathbf{g}/\mathbf{L}$	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	10		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
				,	Surroga	ıte	Surr	ogate Recovery	7 Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		72	6	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μ g /L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga	ite	Surr	ogate Recovery	Conti	ol Limits (%)
				aaa	a-Trifluoro	toluene		72	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	310		1	50	50	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD. (Purgeable)
					Surroga	ite	Surre	ogate Recovery	Conti	ol Limits (%)
				aaa	a-Trifluoro	toluene		76	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple ID	: 2398	4-002		Client Sam	ple ID: MV	V-4	
Sample Time:		Sam	ple Date	: 1/12/	'01 ·			Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
•					Surroga	ate	Surr	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluo10	toluene		82	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		i	5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga	ate	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		82	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD. (Purgeable)
					Surroga	ıte	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		107	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076 Attn: Chad Taylor Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple II): 2398	4-003		Client Sam	ple ID: MV	V-5	
Sample Time:		Sam	ple Dat	e: 1/12/	′01 ·		1	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	62		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	40		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	150		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	290		1	9.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
•					Surrogs	ite	Surre	ogate Recovery	y Conti	ol Limits (%)
				aa	a-Trifluoro			80	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	7.7		1	5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga		Surr	ogate Recovery	7 Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		80	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	1100		1	50	50	μ g /L	N/A	1/16/01	WGC2010115	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surr	ogate Recovery	, Conti	ol Limits (%)
				aa	a-Trifluoro			79	6:	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple ID	2398	4-004		Client Sam	ple ID: MV	V-6	
Sample Time:		Sam	ple Date	1/12/	01 ·		1	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	16		5	0.5	2.5	μg/L	N/A	1/17/01	WGC2010115	EPA 8020
Toluene	3.5		5	0.5	2.5	μg/L	N/A	1/17/01	WGC2010115	EPA 8020
Ethyl Benzene	290		5	0.5	2.5	μg/L	N/A	1/17/01	WGC2010115	EPA 8020
Xylenes, Total	83		5	0.5	2.5	μg/L	N/A	1/17/01	WGC2010115	EPA 8020
•				·	Surroga	te	Surr	ogate Recovery	Contr	ol Limits (%)
				aaı	a-Trifluoro	toluene		65	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		5	5	25	μg/L	N/A	1/17/01	WGC2010115	EPA 8020
,,					Surroga		Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		65	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	2300		5	50	250	μg/L	N/A	1/17/01	WGC2010115	EPA 8015 MOD. (Purgeable)
					Surroga	te	Surre	ogate Recovery	Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		70	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple ID	2398	4-005		Client Sam	ple ID: MV	V-7	
Sample Time:		Sam	ple Date	: 1/12/	′01 ·		I	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	13		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	0.86		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	150		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	35		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga	ite	Surre	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		79	6:	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	11		1	5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
•					Surroga		Surre	ogate Recovery	Conti	ol Limits (%)
				aa	a-Trifluoro	toluene		79	6:	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	1600		1	50	50	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD. (Purgeable)
					Surrogs	ıte	Surre	gate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		82	63	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple II): 2398	4-006		Client Sam	ple ID: M	W-8	
Sample Time:		Sam	ple Dat	e: 1/12/	01		1	Matrix: Lie	quid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	ND		1	0.5	0.5	μ g /L	N/A	1/16/01	WGC2010115	EPA 8020
•				,	Surroga	ite	Surr	ogate Recover	y Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		85	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga	ite	Surre	ogate Recover	y Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		85	65	3 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD. (Purgeable)
					Surroga	ite	Surre	ogate Recover	y Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		112	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple II): 2398	4-007		Client Sam	ple ID: MV	V-9	
Sample Time:		Sam	ple Dat	e: 1/12/	′01 ·		.]	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	550		10	0.5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	110		10	0.5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	1200		10	0.5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	2200		10	0.5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
•				ŕ	Surroga	ite	Surr	ogate Recovery	Contr	ol Limits (%)
				aas	a-Trifluoro	toluene		65	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	91		10	5	50	μ g /L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga	ite	Surr	ogate Recovery	Conti	ol Limits (%)
				aaı	a-Trifluoro	toluene		65	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	10000		10	50	500	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surr	ogate Recovery	Contr	ol Limits (%)
				aaa	a-Trifluoro	toluene		70	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple ID	2398	4-008		Client Sam	ple ID : M	W-10	
Sample Time:		Sam	ple Date	: 1/12/	′01 ·			Matrix: Lic	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	3.7		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	1.9		1	0.5	0.5	μ g /L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	2.1		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	4.5		1	9.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
•					Surroga	ite	Surre	ogate Recover	y Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		76	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga	ite	Surre	ogate Recover	y Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		76	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	530		1	50	50	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD. (Purgeable)
					Surroga	ite	Surr	ogate Recover	y Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		66	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle-L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple II): 2398	4-009		Client Sam	ple ID: MV	V-11	
Sample Time:		Sam	ple Dat	e: 1/12/	01		1	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	2.1		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	ND		1	0.5	0.5	μ g /L	N/A	1/16/01	WGC2010115	EPA 8020
				•	Surroga	ite	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		92	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		1	5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
•					Surroga		Surre	ogate Recovery	Contr	ol Limits (%)
				aas	a-Trifluoro	toluene		92	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD. (Purgeable)
					Surroga	ıte	Surre	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		109	65	5 - 135

DF = Dilution Factor ND =

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Weber, Hayes and Associates

120 Westgate Drive

Watsonville, CA 95076

Attn: Chad Taylor

Date: 01/22/01 Date Received: 1/15/01

Project Name: Harbert Transportation

Project Number: H9042.Q

P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 23984		Lab Sa	mple ID:	2398	4-010		Client Sam	ple ID: MV	V-12	
Sample Time:		Sam	ple Date:	1/12/	01 ·		I	Matrix: Liq	uid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Toluene	1.1		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Ethyl Benzene	ND		ì	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
Xylenes, Total	ND		1	0.5	0.5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
					Surroga	ite	Surre	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		88	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Methyl-t-butyl Ether	ND		ì	5	5	μg/L	N/A	1/16/01	WGC2010115	EPA 8020
• •					Surroga	ite	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		88	65	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	ND		1	50	50	μg/L	N/A	1/16/01	WGC2010115	EPA 8015 MOD (Purgeable)
					Surroga	ite	Surr	ogate Recovery	Contr	ol Limits (%)
				aa	a-Trifluoro	toluene		112	65	5 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control Results Summary

QC Batch #:

WGC2010115

Matrix:

Liquid

Units:

μg/L

Date Analyzed:

1/15/01

Parameter	Method	Blank Result	Spike Sample ID	Spike Amount	Sample Result	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
Test: TPH	l as Gasoline					,					
TPH as Gasoline	EPA 8015 M	ND		561		570.5	LCS	101.7			65.0 - 135.0
	Surrogate		Surrog	ate Recover	ry	Control 1	Limits (%)				
	aaa-Trifluorotoh	iene		107		65 -	135				
Test: BTE	X										
Benzene	EPA 8020	ND		62		6.2	LCS	100.0			75.0 - 125.0
Ethyl Benzene	EPA 8020	ND		78		7.7	LCS	98.7			75.0 - 125.0
Toluene	EPA 8020	ND		35.8		36.3	LCS	101.4			75.0 - 125.0
Xylenes, total	EPA 8020	ND		43		43.8	LCS	101.9			75.0 - 125.0
	Surrogate		Surrog	ate Recover	r y	Control l	Limits (%)	***************************************			
;	aaa-Trifluorotolu	iene		78		65 -	135				
Test: MTi Methyl-t-butyl Et	BE by EPA 802	0 ND		52.8		50.2	LCS	95.1			75.0 - 125.0
, L.	Surrogate		Surrog	ate Recover	r y	Control l	Limits (%)			•	
	aaa-Trifluorotolu	iene		78		65 -	135				
Test: TPH	as Gasoline				· · ·			***			
TPH as Gasoline	EPA 8015 M	ND		561		551.1	LCSD	98.2	3.46	25.00	75.0 - 125.0
	Surrogate		Surrog	ate Recover	ry	Control I	Limits (%)	,			
	aaa-Trifluorotolı	iene		105		65 -	135				
Test: BTE	X	·									
Benzene	EPA 8020	ND		62		6.6	LCSD	106.5	6.25	25.00	75.0 - 125.0
Ethyl Benzene	EPA 8020	ND		7.8		7.5	LCSD	96.2	2.63	25.00	75.0 - 125.0
Toluene	EPA 8020	ND		35.8		35.6	LCSD	99.4	1.95	25.00	75.0 - 125.0
Xylenes, total	EPA 8020	ND		43		42.8	LCSD	99.5	2.31	25.00	75.0 - 125.0
	Surrogate		Surrog	ate Recover	r y	Control l	Limits (%)				
	aaa-Trifluorotole	iene		82		65 ~	135				
Test: MTI	BE by EPA 802	0									
Methyl-t-butyl Et		ND		52.8		49.5	LCSD	93.8	1.40	25.00	65.0 - 135.0
	Surrogate		Surrog	ate Recover	ry	Control I	Limits (%)		•		
1	aaa-Trifluorotolt	ene	_	82		65 -	135				

Weber, Hayes & Associates

CHAIN -OF-CUSTODY RECORD

Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 (831) 722-3580 (831) 662-3100 Fax. (831) 722-1159

PAGE OF

PROJEC	T NAME AND JOB #:	Harbert Trai	nsportation /	H9042.Q						LAE	ORATORY:	Entech A	nalytica	<u>.</u>		
SEND CERT	IFIED RESULTS TO:	Chad Taylor								TURNARO	OUND TIME:	Normal	24hr Rush	48hr Rush	72hr Rush	
			SAN	IPLE CO	NTAINE	RS				REQU	ESTED AN	IALYSIS				
Sample I	D# & Depth						Tol	tal Petr	oleum Hydroc	arbons	Volatile	Organics	Add	litional Analy	/sis	
(sampler:	<u> </u>	Date	40 mL VOAs (preserved)	1 Liter Amber Jars	Poly Bottle	Liner Acetate or Brass	Extracta Fuel-So (wetand Silica Gal-Clean	an 🐔	Purgeable Fuel-Scan (w/MTBE-BTEX	Gasoline & BTEX-MTBE by EPA Method# 8015M & 8020	MTBE by EPA Method# 8260	SOLVENTS by EPA Method# 8010	Fuel Oxygenates by EPA Method 8260	Title 22: General, Physical and Inorganic Minerals		
MU-3	2 5. 44	1/12/01	S				23984	601	COST CONTRACTOR	X	\$605, E	**************************************	X 4 //4 1 3 :	14. N. S. S. S. S. S. S. S. S. S. S. S. S. S.	ชิโ มัคท	5 13:19
MW.4	23.71		S					002		χ						
MU·S	24.06		s				1	AU3		X						
MU.P	23.68		5				C	104		, X						
MW-7	25.49		5				0	05		χ						
Wr7.8	26.34		5				100	06		χ						
MU9	23.33		5				AL	17		χ			•			
WO19	25.07		5				0	08		γ						
MW-II	23.29		É				Vio	09	-	χ						
W17-15	24 32	<u> </u>	5				0	10		χ						
	2-fix-20-															
RECE	VED BY:	Date &	<u> Time</u>			<u>RE</u>	LEASED	BY:		Date &	Time	SAM	IPLE CONDITION	ON:		
Sampier: L.	47	- 112 - 1	1700 -		ا.ما،	المسلم	4			- 1/15/c	0/ _16°00	Ambient (Refrigerated	> Frozen		
イめり、	IN在>	<u> </u>	<u>/oi icaam.</u>		Jan.	LIPKES				-1/15/0	11:50 p	1 Ambient C	Refingerated	Frozen		
Layer	Singh		<u>07 12:∞</u>		La	jeit	ر ہک	yL,		-1/15	<u>61 13:20</u>	O Ambient	Refngerated	Frozen		
Ma	a Gus	lis 145	011319				<u></u> _				-	Ambient	Refngerated	Frozen		
		<u>-</u>									-	Ambient	Refrigerated	Frozen		
NOTES - Lab	to complete the i	following if	box is che	cked:				ADDITIO	NAL COMME	NTS						

confirm by EPA Method #8260

Please use MDL (Minimum Detection Limit) for any diluted samples

Please report only confirmed MTBE detections by EPA Method 8260 with a mimimum detection limit of 5 ug/L.

I por MTBE-analyzed samples with non-detectable results (ND) but having elevated detection limits, please

1.)
 2.)

5.)

Groundwater Monitoring Report - Fourth Quarter 2000 19984 Meekland Avenue, Hayward, California January 30, 2001

Appendix D

Summary of Historical Groundwater Analytical Results - AGI Technologies, Inc.

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

		377				EPA Test Meth	ods					
			8015 Modified	1		8020				8010		
	2							Total				
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		אמור			μ g/L				µg/L		ր ց /Ը
MW1	07/86	42,000	NA	NA	5,500	NA	4,900	6,100	NA	NA	NA	
	03/90	27,000	NA	NA	2,700	491	840	800	ND	ND	ND	
	07/90	27,000	11,000	ND	4,000	ND	1,500	4,400	ND	ND	62	
	10/90	43,000	8,500	. ND	3,400	1,200	2,700	5,300	0.4	ND	26	!
	01/91	22,000	2,700	ND	3,000	990	1,800	2,800	ND	ND	27	
	04/91	42,000	3,100	NA	5,100	1,200	3,700	3,200	ND	ND	120	
	07/91	46,000	4,300	NA	6,500	830	2,900	3,700	ND	ND	64	
	10/91	27,000	4,300 *	NA	4,400	1,100	1,400	3,200	ND	, ND	25	
	01/92	27,000	14,000	NA	3,300	1,200	1,600	3,800	ND	ND	24	
	04/92	33,000	11,000	NA	8,900	1,200	3,500	3,700	ND	ND	120	
	07/92	41,000	19,000	NA	5,600	1,300	2,600	4,000	ND	ND	49	
	10/92	33,000	3,500 *	NA	4,400	1,200	2,100	4,000	ND	, ND	61	
MW3	11/89	29,000	NA	NA	4,600	680	1,100	1,100	ND	ND	36	Lead 40
	11/89	NA.	NA	NA	NA	NA	NA	NA	ND	ИD	36	Lead 40
	03/90	12,000	NA	NA	2,300	59	300	490	ND	ND	ND	
	07/90	7,300	990	ND	5,200	ND	440	480	ND	ИD	67	
	10/90	6,200	970	ND	75	7.5	150	250	ND	ИD	48	
	10/90	NA.	NA	NA	NA	NA	NA	NA	ND	ИD	22	Lead 3
	01/91	4,600	680	ND	2,200	220	110	89	ND	ИD	40	ŕ
Ī	04/91	8,300	640 *	NA	2,800	370	490	760	ND	ИD	43	
	07/91	6,600	890 #	NA	2,000	250	230	380	ND	ND	29	
	10/91	6,300	1,700 *	NA	2,000	410	330	550	ND	ND	27	
-	01/92	4,000	790 ª	NA	1,200	250	60	200	ND	ИD	22	
	04/92	7,400	1,800 *	NA	730	370	180	640	ND	ND	19	
	07/92	3,000	2,400	NA	190	ND	2:8	410	NĐ	NÐ	30	f
	10/92	5,000	970 ^a	NA	1,300	320	-45	340	ND	ND	26	
	01/93	2,300	680 *	NA (2)	630	180	31	330	ND	ND	13	
L	06/93	5,000	1,100 *	ND	730	240	43	380	ND	ИD	13	;

						EPA Test Meth	ods					
			8015 Modifie	d		8020				8010		
								Total				
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		hair			µg/L				μg/L		μ g/L
MW4	11/89	ND	NA	NA	33	1.3	1	5.2	NA	NA	NA	Lead 12
	03/90	ND	NA	NA	7.4	2	2	1.1	ND	ND	ND	LOEU 12
	07/90	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9	
	10/90	ND	ND	ND	ND	ND	ND	, ND	0.7	ND	0.5	
	01/91	80	ND	ND	9.2	2.4	1.7	0.7	ND	ND	ND	
	04/91	1,400	130 *	NA	2,200	72	ND	17	ND	ND	ND	
	07/91	130	ND	NA	14	3.3	9.7	ND	ND	ND	0.81	
	10/91	ND	ND	NA	5.3	1	ND	0.8	ND	. ND	ND ND	
	01/92	ND	ND	NA	6.8	1.3	ND	ND	ND	ND	ND	
1	04/92	780	130 [#]	NA	МĐ	51	ND	4.8	ND	ND	1.6	
	07/92	ND	ND	NA	ND	ND	ND	ND	ND	ND	1.3	
	10/92	100	ND	NA	9.5	ND	ND	2.6	ND	, ND	ND	
	01/93	960	240 *	NA	200	41	4.6	9.4	ND	ND	1	
	06/93	650	140	ND	150	21	ND	ND	ND	ND	3.7	
MW5	10/90	9,600	1,900	ND	1,200	70	160	520	ND	ND	22	Lead 3
}	01/91	10,000	1,200	ND	1,600	720	200	510	ND	ND	33	
	04/91	18,000	860	NA	2,500	550	580	500	ND	ND	61	
	07/91	15,000	2,200	NA	4,800	610	1,100	760	ND	ND	62	
	10/91	14,000	3,300	NA	5,000	530	820	800	ND	ND	49	
	01/92	12,000	1,900	NA	4,300	390	380	590	ND	ND	56	
	04/92	23,000	6,400	NA	8,600	ND	2,600	1,900	ND	ND	125	
	07/92	27,000	5,900	NA	6,000	ND	1,500	1,600	ND	ND	93	
	10/92	13,000	2,100 ª	NA	4,600	140	470	550	ND	ND	59	
	01/93	18,000	1,900	NA	5,800	560	1,900	1,600	ND	ND	110	
	01/93	19,000	2,100	NA	4,600	370	1,600	1,400	ND	ND	120	
	06/93	22,000	2,900	ND	8,300	740	2,500	1,900	ND	ND	110	
L	06/93	23,000	2,300	ND	9,600	730	3,000	1,900	ND	ND	110	

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

						EPA Test Meth	ods					
			eniboM at08	d		8020				8010		
	Date	TPH-G	TPH-D	TPH-MO	Barizene	Ethylbenzene	Toluene	Total Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		halr			rg/L	1. 14 m. C.	4000000		hair		Hall
MW6	10/90	27,000	4,700	ND	2,700	450	2,900	3,300	ND	ND	40	Lead 9
	01/91	7,200	1,600	ND	1,400	ND	200	830	ND	ND	23	
	04/91	17,000	800 🖁	NA	2,800	610	1,200	1,800	NĐ	ND	53	
	07/91	11,000	1,400 *	NA	1,200	ND	380	750	ND	ND	29	
	10/91	4,800	1,600 *	NA	380	69	340	730	ND	ND	22	
	01/92	6,100	1,200	NA	460	180	200	590	ND	ND	26	
	04/92	7,200	1,800 *	NA	340	350	460	920	ND	ND	30	
	07/92	8,600	1,700 🖺	NA	1,300	380	280	1,100	ND .	ND	35	
1	10/92	1,600	110 ª	NA	230	70	20	88	ND	ND	24	
	01/93	13,000	2,100	NA	2,500	370	540	2,400	ND	ND	36	
	06/93	7,400	1,900 -	ND	1,500	480	120	1,400	ND	ND	29	
MW7	10/90	14,000	2,700	ND	390	ND	18	1,200	ND	, 1.3	14	Lead 11
	01/91	4,500	1,400	ND	320	42	48	350	ND	ND	10	
1	04/91	2,400	NA "	NA	320	77	62	130	ND	0.6	11	
	07/91	2,000	910 *	NA	470	ND	24	88	ND	ND	9.7	
	10/91	ND	370	NA	ND	ND	ND	ND	ND	0.68	4.5	
}	01/92	1,100	290	NA	230	45	7	88	ND	3.5	6.4	
	04/92	1,700	520	NA	310	78	28	170	ND	0.5	3.2	
	07/92	1,900	590 ੈ	NA	410	78	21,	170	ND	2.1	8.7	
	07/92 (dup)	1,200	700	NA	21	1	2.6	90	ND	2	8.2	
	10/92	1,800	320 *	NA	410	31	11	75	ND	1	7.4	
	01/93	2,100	660	NA	390	100	21	270	ND	0.6	3.7	
	06/93	4,400	1,100	ND	830	330	49	620	ND	ND	8.6	

Table 2
Summary of Historical Groundwater Analytical Data
Harbert Transportation/Meekland Avenue
Hayward, California

						EPA Test Meth	ods					
		8	1015 Modifie	rd		8020				8010		
								Total				
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		HO/L			بالوبر				µg/L		μg/L
MW8	02/91	, ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	
	04/91	ND	ND	NA	ND	ND	ND	ND	ND	0.5	ND	
	07/91	ND	ND	NA	ND	ND	2	ND	ND	1.2	ND	
	10/91	ND	ND	NA	ND	ND	0.6	. ND	ND	0.4	ND	
	01/92	ND	ND	NA	ND	ND	ND	ND	ND	0.68	ND	
	04/92	ND	ND	NA	ДИ	ND	ND	ND	ND	0.8	ND	[
	07/92	ND	ND	NA	ФИ	ND	3.3	ND	ND	1.6	ND	
	10/92	ND	ND	NA	ND	ND	ND	ИD	ND	1.4	, ND	
	01/93	ND	ND	NA	ND	ND	ND	ND	ND	0.8	ND	
	06/93	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	
MW9	02/91	6,000	1,600	NA	180	19	170	200	ND	ND	13	
	04/91	4,200	410 *	NA .	520	130	410	580	ND	, ND	26	
	07/91	1,900	180	NA	190	12	52	77	ND	6.5	12	
	10/91	880	300 *	NA	160	31	44	83	ND	ND	10	į
	01/92	380	120	NA	14	7.6	2.2	14	ND	ND	9.6	
	04/92	2,900	700	NA	· 510	80	260	260	ND	ND	11	
	07/92	4,400	1,300 *	NA	860	210	340	640	ND	ND	22	
	10/92	200	290	NA	6.8	1.4	2.1	7.8	ND	ND	12	
	01/93	8,500	740	NA	2,400	390	620	1,500	ND	ND	29	
	06/93	8,200	1,300	ND	2,400	360	480	1,500	ND	ND	29	
MW10	01/92	13,000	3,700	NA	130	580	110	3,000	ND	ND	33	
	05/92	15,000	5,000	NA	180	ND	18	2,700	ND	ND	20	
	05/92 (dup)	13,000	7,500	NA	240	490	65	2,500	ND	ND	22	
	07/92	8,100	4,400 ª	NA	74	360	ND	1,100	ND	ND	29	
	10/92	3,200	1,500	NA	ND	NĎ	ND	320	ND	ND	25	
	01/93	7,500	2,200	NA	130	170	-20	710	ND	ND	18	
	06/93	8,000	2,100	ND	69	7.9	ND	490	ND	ND	16	

		8.00 A.00 A.00 A.00 A.00 A.00 A.00 A.00		# 2.3 (A)	403030X	EPA Test Meti	igd s					
			8015 Modified	•		8020				8010		
	Date	TPH-G	TPH-D	TPH-MO	Benzene	Ethylbenzene	Toluene	Total Xylenes	TCE	PCE	1,2-DCA	Other
Well	Sampled		μg/L							μg/L	,,,,,,,,,	μg/L
MW11	01/92	8,200	3,200	NA	23	250	ND	1,100	ND	ND	ND	
	04/92	160	1,200 *	NA	ND	ND	NĐ	ND	ND	ND	ND	
	07/92	2,100	710 *	NA	39	100	2.3	53	ND	ND	ND	
	10/92	660	220 ª	NA .	2.9	19	ND	3.8	ND	ND	ND	
	10/92	770	230 ื	NA]	3.2	26	ND	5.7	ND	ND	ND	
	01/93	780	370	NA	10	2.1	ND	39	ND	ND	ND	
	06/93	2,500	160	ND	27	99	ND	34	ND	ND	ND	
MW12	12/92	2,800	1,700	NA	14	ND	ND	ND	ND	ND	. ND	
	06/93	1,100	750 *	ND	19	21	ND	57	ND	ND	ND	
B1	01/93	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	,-,-,,,
	06/93	ND.	ND	ND	ND	ND	, ND	ND	ND	ND	ND	
F3	02/93	NA	NA	NA	NA	NA NA	NA	NA	NA	, NA	NA	
Well	12/89	1,800	NA	NA	200	24	18	34	ND	ND	0.15	Lead 2,100
Abandoned	l											
Average ^b		8,865	1,883	250	1,562	235	517	871	0.21	0.41	24.8	
Laboratory Limit	Detection	50	50	500	0.5	0.5	0.5	0.5	0.4	0.4	0.4	· · · · · · · · · · · · · · · · · · ·

Notes:

- a) The detection for petroleum hydrocarbons as diesel appears to be due to the presence of lighter hydrocarbons rather than diesel.
- b) Average of sampled data, ND equals 1/2 detection limit.

μg/L - Micrograms per liter is approximately equivalent to parts per billion, depending on density of water.

NA - Not analyzed.

ND - Not detected.

TPH-G - Total petroleum hydrocarbons quantified as gasoline.

TPH-D - Total petroleum hydrocarbons quantified as diesel.

TPH-MO - Total petroleum hydrocarbons quantified as motor oil.

TCE - Trichloroethylene.

PCE - Tetrachioroethylene.

1,2-DCA - 1,2-Dichloroethane.

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

	Date	EPA Tast Methods									
		8015 M		BETX 5030/8020				8018			
		TPH Gasoline	TPH Diesel	Benzene	Ethylbenzene .	Toluene	Xylenes	1,2-DCA	PCE	TCE	
Well	Sampled	ha\r_	µg/L		pg/L			hâlr	pg/L	µg/L	
MW3	07/28/94	7,700	970	1,800	810	ND	600	22	ND	ND	
	10/21/94	7,400	810	1,900	900	37	78Ò	25	ND	ND	
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW4	07/28/94	120	ND	7.9	0.7	1.1	ND	ND	ND	· ND	
	10/21/94	69	ND	3.4	ND	ND	ND	ND	ND	ND	
	09/15/95	110	ND	2.5	ND	0.85	ND	2.3	ND	ND	
	03/14/96	300	69 b	3.3	0.74	ND	ND	1.6	ND	ND	
	09/26/96	ND	ND	ND	ND	ND	ND	1.2	'ND	ND	
MW5	07/29/94	30,000	2,200	9,300	1,100	1,800	2,300	110	ND	ND	
	10/21/94	23,000	1,500	7,900	780	1,500	2,900	85	ND	ND	
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW6	07/29/94	15,000	2,100 b	3,100	1,100	71	2,000	37	ND	ND	
	10/21/94	18,000	1,500	3,900	1,200	170	3,200	35	ND	ND	
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW7	07/29/94	2,600	530 °	470	220	ND	310	2.7	6	ND	
	10/21/94	1,700	280	290	140	4.5	240	1.8	0.74	ND	
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	03/14/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	09/26/96	NS	NS	NS	NS	NS	NS	NS	NS	NS	

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

	Date	EPA Test Methods								
		8015 M		BETX 5030/8020				8010		
		TPH ate Gasoline	TPH Diesel	Benzene E	thylbenzene	Toluene	1;2-DGA	PCE	TCE	
Well	Sampled	pg/L	µg/L		pg/L			µg/L	µg/L	µg/L
MW8	07/28/94	ND	78 ^a	ND	ND	ND	ND	ND	ND	ND
	10/21/94	ND ·	ND	ND	ND	ND	ND	ND	0.72	ND
	09/15/95	ND	ND	ND	ND	ND	ND	ND	0.74	ND
	03/14/96	ND	ND	ND	ND	ND	ND	ND.	0.63	ND
	09/26/96	ND	ND	ND	ND	ND	ND	ND	NĐ	_ ND
MW9	07/28/94	6,000	1,300 6	90	170	27	370	26	· ND	ND
1	10/21/94	6,900	600	1,800	280	220	1,500	31	ND	ND
	09/15/95	NS	NS	NS	NS	NS	NS	NS	NS	NS
	03/14/96	NŞ	NS	NS ·	NS	NS	NS	NS	NS.	NS
	09/26/96	NS	NS	NS	NS	NS	NS	NS	·NS	NS
MW10	07/28/94	6,700	2,000 °	99	180	57	430	13	ND	ND
	10/21/94	8,600	2,000	93	200	ND	680	12	ND	ND
	09/15/95	2,100	1,900	9.9	49	ND	4.9	ND	ND	ND
	03/14/96	6,800	2,000 b	64	98	ND	33	6.5	ND	ND .
	09/26/96	7,100	420	140	210	ND '	32	9.1	ND	5.9
MW11	07/28/94	450	150 ^a	6.2	20	1.1	6.6	ND	ND	ND
	10/21/94	460	190	4.9	14	ND	12	ND	ND	ND
	09/15/95	9,600	550	130	180	ND	130	8.8	ND	5.6
	03/15/96	780	310 ^b	0.74	25	ND	1.8	ND	ND	ND
	09/26/96	480	710	ND	50	ND	ND	ND	ND	ND

Table 2
Summary of Groundwater Chemical Analyses
Harbert Transportation/Meekland Avenue
Hayward, California

		EPA Test Methods 8015 M BETX 5030/8020 8010								
Well	Date Sampled	TPH Gaspline µg/L	TPH Diesel µg/L	Benzene	Ethylbenzene µg/L	Toluene	Xylenes	1,2-DGA µg/L	PCE Ug/L	TCE ug/L
M W12	07/28/94 10/21/94 09/15/95 03/14/96 09/26/96	240 260 NS NS NS	160 190 NS NS NS	1.9 1.9 NS NS NS	12 4.5 NS NS NS	ND ND NS NS NS	5.8 6.8 NS NS NS	ND ND NS NS	ND ND NS NS	ND ND NS NS NS
Method De	tection Limit	50	50	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Notes:

- a) Hydrocarbons quantified as diesel are primarily due to discrete peaks not indicative of diesel fuel.
- b) Hydrocarbons quantified as diesel are primarily due to the presence of a lighter petroleum product (C₈-C₁₂), possibly gasoline.
- c) Hydrocarbons quantified as diesel are due to the presence of a lighter petroleum product (C_6 - C_{12}) and discrete peaks not indicative of diesel fuel. 1,2-DCE 1,2-dichloroethane.

PCE - Tetrachloroethene.

TCE - Trichloroethene.

ND - Not detected at or above method detection limit.

NS - Not sampled.

TPH-Gasoline - Total petroleum hydrocarbons quantified as gasoline.

TPH-Diesel - Total petroleum hydrocarbons quantified as diesel.

µg/L - Micrograms per liter, equivalent to parts per billion.

Page 3 of 3

