ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEALIS, Agency Director

October 27, 1997

Mr. Phil Briggs Chevron U.S.A. Products Company P.O. Box 6004 San Ramon, CA 94583-0904 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

RE: Chevron, 609 Oak Street, Oakland, CA 94607

Dear Mr. Briggs:

This office has reviewed your Risk Assessment & Threshold Limits. On-site monitoring wells, C-1, C-2, and CR-1 and off-site well C-5 must be monitored on a semi-annual basis. After two years, if the groundwater from the on-site wells contains less than 720 ppb of benzene, and the groundwater from the off-site well has less than 100 ppb of benzene, this site can be re-evaluated for closure.

If you have any questions, please contact me at (510) 567-6774.

Sincerely,

Lárry Seto

cc:

Madhulla Logan, Environmental Health

Comments on Risk Assessment submitted for 609 Oak Street, Oakland August 28, 1997

Jennifer.

I have reviewed the updates for the risk assessment for 609 Oak street, Oakland. As you may be aware in the beginning, the risk assessment failed due to the high concentrations found in the composite sample 87087T3#283 (in Table 1), i.e about 150 ppm of benzene. So TerraVac resampled the area again near the composite sample location and this time probably due to biodegradation, they did not get significant concentrations. Terravac plugged in the new results instead of previous 150 ppm result, and averaged the soil concentrations. Only those concentrations above 8 feet were taken into consideration, since below 8 feet, it is close to groundwater. They got 3.6 ppm as the average concentrations in the soil. Hence both the average soil and groundwater concentration appear to be less than the SSTL's derived for a 10-5 risk. So, I guess the site passes the risk assessment.

And also, they have a management threshold concentration of 720 ppb for groundwater for on site wells (C-1, C-2, C-5 and CR-1) which means they are going to continue monitoring for a while and check to see if these concentrations of 720 ppb exceed on site. If it does exceed, then the site needs to be re-evaluated.

Madhulla

1651 Alvarado Street, San Leandro, CA 94577-2636 Tel (510) 351-8900 □ Fax (510) 351-0221

August 11, 1997

Ms. Madhulla Logan Alameda County Health Care Services Department of Environmental Health 1131 Harbor Way Parkway, Suite 250 Alameda, CA 94502-6577 Updoki

Subject:

Risk Assessment & Threshold Limits Former Chevron Service Station #9-4587

609 Oak Street Oakland, CA

Dear Ms. Logan:

As per your request, and to clarify the information regarding the hand augered soil samples and resultant risk model, I am forwarding the following:

- 1) A revised soil sample table, with the addition of the results of the hand augered samples;
- 2) GSI-RBCA printouts for inhalation risk from benzene residual in subsurface soil, using the sample results included. The 1987 composite sample has been excluded and the four hand augered samples have been used with the three other vadose zone samples. The GSI software gives the option of utilizing the maximum concentration, the mean or the upper confidence limit mean of the sample set, but does not calculate the actual average. The representative concentration in the soil, shown as 0.27 mg/kg benzene, differs significantly from the average of 3.6 mg/kg. Both values, though, are below the 3.9 mg/kg SSTL derived to keep from exceeding a 10⁻⁵ risk.

3) The GSI printout for site-specific parameters utilized for SSTL derivation. Modifications include the porosity value of 0.31 (as determined by PTS Laboratories on a sample from five feet below grade at DVE-3), a building air exchange rate of two exchanges per hour (as per the Uniform Building Code), a reduction of the crack fraction to 0.005, and use of the Most Likely Exposure duration of 4 years for commercial.

5

loff Why Rivery

TERRA VAC

Utilizing this site specific data, the management plan threshold limits can be revised upward. Even with the more conservative risk basis of 10^{-6} for groundwater, an average of 1800 ppb benzene (the SSTL calculated with the GSI software) in groundwater samples from the listed onsite wells of C-1, C-2 and CR-1 would require notification to Alameda County, resampling and, if initial results are confirmed, a reevaluation of site conditions and further activities.

If you have any questions or comments, please call me at (510) 351-8900.

Sincerely, Terra Vac Corporation

Robert A. Dahl Project Manager

cc: Phil Briggs, Chevron 30-0219.10

Table 2
Management PlanThreshold Limits
Former Chevron Station 9-4587
609 Oak Street
Oakland, CA

Wei i			Elentriene Contentración.
4			
C-1	11,000	< 0.5	*1800
C-2	8,200	< 0.5	*1800
C-5	330	4.2	100
CR-1	9400	0.9	*1800
, with 1			*as average for onsite

Average =

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name, Chevron 9-4587 Site Location: Oak Street, Oakland

Job Identification: 30-0219 Date Completed: 8/2/97 Completed By R.A. Dahl

Software: GSI RBCA Spreadsheet Version: v10

. benitebrui bres selsti block ni nwoke ere seu devi duoten i realit morti sette deidu.

			`	Antipicaes by			NOTE: values	s which differ from Tier 1 default values are shown it	n bold italics and u	maeringa.	
	DEFA	AULT PARAMETERS Residential Commercial/Industri			10 1 -12-4	Surface			Commercial/Industrial		
xposure	_		Residential			Constrato	Parameters	Definition (Units)	Residential	Chronic	Construction
arameter	Definition (Units)	Adult	(1-6yrs)	(1-76 yrs)	Chronic	CONSCRI	†	Exposure duration (yr)	30	4	1
Te .	Averaging time for carcinogens (yr)	70	_	40	25	1	À	Contaminated soil area (cm*2)	<u>1,9E+06</u>		1.0E+06
Γn	Averaging time for non-caronogens (yr)	30	6	16	25	'	ŵ	Length of affected so I parallel to wind (cm)	1.2E+03		1.0E+03
N	Body Weight (kg)	70	15	35	70			Length of affected soil parallel to groundwater (c	1.4E+03		
D	Exposure Duration (yr)	30	6	16	↓ . 250	1	Wgw	Ambieni air velocity in mixing zone (cm/s)	2.3E+02		
Ę	Exposure Frequency (days/yr)	350				180	Uair		2.0E+02		
F Derm	Exposure Frequency for Cormal exposure	350			250		delta	Air mixing zone height (cm)	9.1E+01		
gw Spw	incestion Rate of Water (Voay)	2			1		Lss	Definition of surficial soils (cm)	2.2E-10		
	Ingestion Rate of Soil (mg/day)	100	200		50	100	Pe	Particulate areal emission rate (g/cm^2/s)	Z.ZL-10		
Rs.	Adjusted soil ing. rate (ing-yr/kg-d)	1 1E+02			7 9E+01				Value		
Sadi	Inhalation rate indoor (m^3/day)	15			20		Groundwate	r Definition (Units)	2.0E+02		
रे≳का		20			20	10	delta.gw	Groundwater moting zone depth (cm)			
Ra out	Inhalation rate outdoor (m^3/day)	5.8E+03		2.0€+03	5.8E+03	5 8E+03	l l	Groundwater infiltration rate (cm/yt)	3.0E+01		
SA.	Skin surface area (dermal) (cm^2)	2.1E+03		2.00	-6.9E+01		Ugw	Groundwater Darcy velocity (cm/yr)	<u>1.9E+02</u>		
:Aadj	Adjusted dermal area (cm^2-yr/kg)						tigw.tr	Groundwater Transport velocity (cm/yr)	5.0E+02		
А	Soil to Skin adherence factor	1			FALSE		Ks	Saturated Hydraulic Conductivity(cm/s)			
AFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater Gradient (cm/cm)			
VAFd	Age adjustment on skin surface area	FALSE			PALOE		Sw	Width of groundwater source zone (cm)	1.8E+03		
DX.	Use EPA tox data for air (or PEL based)	TRUE					Sá	Depth of groundwater source zone (cm)	3.0E+02		
wMCL?	Use MCL as exposure limit in groundwater?	TRUE					BC	Biodegradation Capacity (mg/L)			
							BIO?	Is Bicattenuation Considered	TRUE		
								Effective Porosity in Water-Bearing Unit	3.8E-01		
							phi.eff	Fraction organic carbon in water-bearing unit	1.0E-03		
							foc.sat	Fraction organic calbott in water-bearing of its	7.02 02		
latrix of Exp	osed Persons to	Residential			Chronic	ial/Industrial Construin	Soil	Definition (Units)	Value		
Complete Exp	posure Pathways				Chrotile ,	Constone	he	Capillary zone thickness (cm)	3.0E+00		
Groundwater	Pathways:	_			FALSE		hv	Vadose zone thickness (cm)	2.6E+02		
GW.i	Groundwater ingestion	TRUE			TRUE		rhe	Soil density (g/cm^3)	<u>7.8</u>		
GW.v	Voiatilization to Outdoor Air	FALSE					foc	Fraction of organic carbon in vadose zone	0.02		
GW b	Vaper Intrusion to Buildings	FALSE			TRUE		phi 100	Spil porosily in vadose zone	0.31		
Soil Pathway	· ·						•	Depth to groundwater (cm)	2.6E+02		
Sv	Vojatiles from Subsurface Soils	FALSE			TRUE		Lgw	Depth to top of affected soll (cm)	7.6E+01		
SSv	Volatiles and Particulete Inhalation	FALSE			TRUE	FALSE	Ls	Thickness of affected subsurface soils (cm)	1.8E+02		
SS d	Direct Ingestion and Dermal Contact	FALSE			TRUE	TRUE	Lsubs		6.5		
5.I	Leaching to Groundwater from all Soils	FALSE			FALSE		ρH	Sail/groundwater pH	capillary	vadose	foundation
5.b	Intrusion to Buildings - Subsurface Soils	FALSE			TRUE			and the second second	0.29	0.11	0.11
5. p	Hill Ballat to Ballangs - bassertoo sens	.,					phuw	Volumetric water content	0.02	0.2	0.2
							phua	Volumetric air content	<u>0.02</u>	<u> </u>	
							Building	Definition (Units)	Residential	Commercial	<u>. </u>
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
					C	alai Baratan Maria	ĒR	Building air exchange rate (s^-1)	1.4E-04	5.8E-04	
Matrix of Receptor Distance		e Residential		Commercial/Industrial		Lerk	Foundation crack thickness (cm)	1.5E+01			
and Lecation	n on- or off-site	Distance	On-Site		Distance_	On-Site	eta	Foundation crack fraction	0.005		
			E4: 05		3 0E+04	FALSE	646	7			
GW	Groundwater receptor (cm)	3 QE+ 0 4	FALSE		3 0⊏+04	TRUE					
s	Inhalation receptor (cm)		FALSE			HOL	Dienarkiya	Transport			
							Dispersion	s Definition (Units)	Residential	Commercia	<u>L</u>
Matrix of				_			Groundwal				
Target Risks		Individual	Cumulative	_				Longitudinal dispersion coefficient (cm)	3.0E+03		
- wilder Lingson			· <u>-</u>				ax		1.0E+03		
TRab	Target Risk (class A&B carcinogens)	1.0E-05					ay	Transverse dispersion coefficient (cm)	1.5E+02		
1 LIAN	Target Risk (class C carcinogens)	1.0E-05					az	Vertical dispersion coefficient (cm)	1.04.32		
TDA							Vapor				
TRC		1 DE+00									
TRC THQ Opt	Target Hazard Quotient Calculation Option (1, 2, or 3)	1.0E+00 2					dcy	Transverse dispersion coefficient (cm) Vertical dispersion coefficient (cm)			

٥ /
MAX
OTC
JCC
1220
_

		TENT.						7	ier 2 Worksha	et 9.2	
										_	
	Completed By	R.A. Dahl									1 OF 1
Site Name: Chevron 9-4587 Site Location: Oak Street, Oakland											
	Target Ris	k (Class A & B)	1 0E-5	MCL expo	sure limit?			Calcu	lation Uption:	. 2	
SUBSURFACE SOIL SSTL VALUES				☐ PEL expo	sure limit?						
	Target H	lazard Quotient	1.0E+0				4-1				
		SSTL	. Results For Comp	lete Exposure P	athways ("x" if C	-ompu	ete)				
Representative Concentration			Carratostas			X			Applicable SSTL	SSTL Exceeded ?	Required CRF
(Residential:	Commercial:	Regulatory(MCL):	Residential:	Commercial:		sidential:	Commercial: (on-site)	(mg/kg)	"■" If yes	Only if "yes" left
(mg/kg) 2.7E-1	NA NA	NA NA	NA	NA	3.9E+0		NA	1.3E+2	3.9E+0		<1
	Representative Concentration	Completed By Date Completed By Date Complete Start Regression Representative Concentration (mg/kg) Completed By Date Completed By	Target Risk (Class C) Target Hazard Quotient SSTI Representative Concentration Soil Leaching to Residential: Commercial: (on-site) (on-site)	Completed By: R.A. Dahl Date Completed: 8/2/1997 Target Risk (Class A & 8) 1 0E-5 Target Risk (Class C) 1.0E-5 Target Hazard Quotient 1.0E+0 SSTL Results For Comp Representative Concentration Soil Leaching to Groundwater Residential: Commercial: Regulatory(MCL): (on-site)	Completed By: R.A. Dahl Date Completed: 8/2/1997 Target Risk (Class A & 8) 1 0E-5 Target Risk (Class C) 1.0E-5 Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure F Representative Concentration Soil Leaching to Groundwater (mg/kg) (ms/ke) (on-site) (on-site) Residential: (on-site) (on-site)	Completed By: R.A. Dahl Date Completed: 8/2/1997 Target Risk (Class A & B) 1 0E-5 Target Risk (Class C) 1.0E-5 Target Risk (Class C) 1.0E-5 Target Hazerd Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Concentration Soil Leaching to Groundwater Kepresentative Concentration Soil Leaching to Groundwater (mg/kg) Residential: Commercial: Regulatory(MCL): Residential: Commercial: (on-site) (on-site) Consite)	Completed By: R.A. Dahl Date Completed: 8/2/1997 Target Risk (Class A & B) 1 0E-5 MCL exposure limit? Target Risk (Class C) 1.0E-5 PEL exposure limit? Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Complete Concentration Soil Leaching to Groundwater X Indoor Air X [mg/kg] Residential: Commercial: Regulatory(MCL): Residential: Regu	Completed By: R.A. Dahl Date Completed: 8/2/1997 Target Risk (Class A & B) 1 0E-5 MCL exposure limit? Target Risk (Class C) 1.0E-5 PEL exposure limit? Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Complete) Representative Concentration Soil Leaching to Groundwater X Indoor Air X Ou Residential: Commercial: Regulatory(MCL): Residential: Commercial: (on-site) (on-site) (mg/kg) (on-site) (on-site) (on-site) (on-site)	RECA SITE ASSESSMENT Completed: 8/2/1997 Target Risk (Class A & 8) 1 0E-5 MCL exposure limit? Calculated Target Risk (Class C) 1.0E-5 PEL exposure limit? Target Risk (Class C) 1.0E-5 PEL exposure limit? Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Complete) Representative Concentration Soil Leaching to Groundwater X Soit Volatilization to Quidoor Air Quidoor Air (on-site) (on-site) (on-site) (on-site) (on-site) (on-site) (on-site)	RBCA SITE ASSESSMENT Completed: 8/2/1997 Target Risk (Class A & 8) 1 0E-5 MCL exposure limit? Calculation Option: Target Risk (Class C) 1.0E-5 PEL exposure limit? Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Complete) Representative Concentration Soil Leaching to Groundwater X Indoor Air X Outdoor Air SSTL Residential: Commercial: Residential: Commercial: Residential: Commercial: (on-site)	Completed By: R.A. Dahl Date Completed: 8/2/1997 Target Risk (Class A & B) 1 0E-5 Target Risk (Class C) 1.0E-5 Target Risk (Class C) 1.0E-5 Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Complete) Representative Concentration Soil Leaching to Groundwater (mg/kg) Residential: Commercial: Regulatory(MCL): Residential: Commercial: Residential: Commercial: (on-site) (on-sit

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: v 1.0

Senai: G-337-YAX-542

. OGEL TEMME TOO IT

UCL Percentile (must be 0.9 or 0.95) Analytical Data (Up to 50 Data Points) 7 8 9 5 6 2 3 1 (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Sample Name Date Sampled

		RBCA	SITE ASS	ESSMENT								Tier 2 Wor	ksheet 9.3	
Site Name: Ch Site Location:	nevron 9-4587 Oak Street, Oakland		Completed By Date Completed	y: R.A. Dahl										1 OF 1
		Target Risk (Class A & B) 1.0E-5			■ MCL exposure limit?					Calculation Option: 2				
GROUNDWATER SSTL VALUES			Target Risk (Class C) 1.0E-5			☐ PEL exposure limit?								
			Target H	lazard Quotient						443				
				SST	1. Results For Com	plete	Exposure	Pathways ["x" if t	om	prete)			SSTL	
Representative Concentration			X Groundwater Ingestion			Groundwater Volatilization X to Indoor Air			n Groundwater Volatilization X to Outdoor Air			Applicable SSTL	Exceeded	Required CRF
	NTS OF CONCERN	(mg/L)	Residential: 1000 feet		Regulatory(MCL): 1000 feet		sidential on-site)	Commercial: (on-site)		Residential (on-site)	Commercial: (on-site)	(mg/L	"#" if yes	Only if "yes" left
	Name Benzene	3.5E-3	>Sol	NA	>Sol		NA	1.8E+1		NA	7.1E+2	1.8E+1		<1

@ Groundwater Services, Inc. (GSI), 1995 All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: v 1.0

Choose UCL Percentile (must be 0.9 or 0.95) Analytical Data (Up to 50 Data Points) 7 5 1 2 3 6 (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) **Well Name Date Sampled**