

Solving environment-related business problems worldwide www.deltaenv.com

www.deltaenv.com 3164 Gold Camp Drive • Suite 200

916.638.2085 800.477.7411 Fax 916.638.8385

August 25, 2003

Mr. Barney Chan Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-9335

Rancho Cordova, California 95679 USA

Subject: Response to Email Regarding Closure Questions,

Dated June 30, 2003

Former Chevron Service Station No. 9-4587 609 Oak Street, Oakland, California 94607

Delta Project No.DG94-587

Dear Mr. Chan:

Delta Environmental Consultants, Inc. (Delta) has been authorized by Chevron Products Company (Chevron) to prepare a response to your questions expressed in your June 30, 2003, e-mail, included in Enclosure A. We have addressed each of your two questions below.

- Utilities along 6th Street and Oak Street. As we discussed over the telephone on July 2, 2003, it is Delta's professional opinion that water quality data are sufficient to demonstrate that migration of petroleum hydrocarbons along utility corridors has not been an issue. The results of long-term, off-site groundwater monitoring and sampling show it is unlikely that offsite migration of liquid-phase petroleum hydrocarbons have occurred. Furthermore, these results show that offsite migration of dissolved-phase petroleum hydrocarbons have not been significant. Three off-site groundwater monitoring wells (C4 C6) were installed in 1989 and one (C7) was installed in 1991. All are located down-gradient of the site: Two placed strategically in the right-of-way for Oak Street and two in the right-of-way for 6th Street. Any migration of LPH in conduits would have been toward one or both of these streets. Furthermore, such migration would likely have been a source for dissolved-phase impacts approaching concentrations similar to the onsite wells. No such impacts occurred in the strategically configured off-site groundwater monitoring well network.
- 2) <u>Risk Assessment for Residential Land Use</u>. According to your June 30, 2003, e-mail, in order for the subject property to obtain "unrestricted land use" closure from Alameda County Public Health, the site risk assessment needed to be revised to consider benzene volatilization in soil to indoor air for a

Mr. Barney Chan Alameda County Health Care Services August 25, 2003 Page 2 of 2

residential land use target risk (10-6) as opposed to commercial land use target risk (10-5), which had previously been reported by Terra Vac (Risk Assessment and Threshold Limits, August 20, 1997).

Revisions to the risk assessment were prepared by Delta and are presented here. The revised risk assessment utilizes current site soil conditions. Only soil samples at locations still known to exist (not remediated by soil vapor extraction or overexcavation) were utilized to calculate a representative benzene concentration in subsurface soil (<10 feet). Table 1 summarizes the soil sample laboratory chemical analyses results for benzene, toluene, ethylbenzene, and total xylenes. Figure 1 presents the sample locations.

The representative benzene concentration in soil was calculated using the Groundwater Services, Inc. RBCA Tool Kit for Chemical Releases, Version 1.3a Guidance Manual software. The soil samples utilized to calculate the representative benzene concentration in soil are summarized in Enclosure B. The 95 percent Upper Confidence Limit of the arithmetic mean concentration was selected as the representative concentration. The representative benzene concentration in subsurface soil remaining at the site is 0.1 milligrams per kilogram (mg/kg). Using the San Francisco Bay Regional Water Quality Control Board's Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, Interim Final, dated December 2001, for benzene in subsurface soil where groundwater is not a current or potential source of drinking water, the allowable risk based screening level (RBSL) for residential land use is 0.18 mg/kg. A copy of Table D from the SFBRWOCB RBCA document is included in Enclosure C.

Based on current known site conditions, these findings indicate that the site poses a minimal risk to human health and the environment if it is developed for residential or commercial land use in the future. It is Delta's professional opinion that no further action is warranted and Delta's recommendation that the site be granted closure for unrestricted land use.

The interpretations contained in this document represent our professional opinions, and are based in part, on information supplied by the client. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeology and engineering practices at this time and location. Other than this, no warranty is implied or intended.

If you have any questions concerning this project, please contact me at (916) 638-2765.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC

James R. Brownell, R.G.

Project Manager

California Registered Geologist No. 5078

JRB (LRP005.9-4587 June 30 Closure Questions) Enclosures

Cc: Ms. Karen Streich - Chevron Products Company

Mr. Andrew T. Mortl - Glynn & Finley

Mr. Chuck Headlee - San Francisco Bay Regional Water Quality Control Board

Mr. A. Guidotti, #1 Bates Boulevard, Orinda, CA 94563

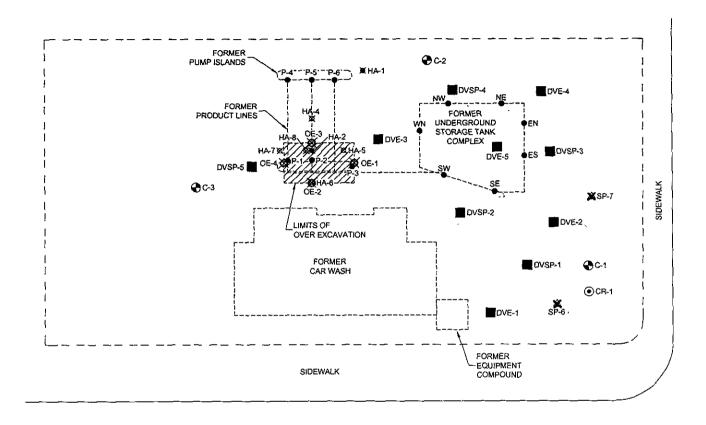

?

TABLE 1 SOIL SAMPLE LABORATORY ANALYTICAL RESULTS REVISED RISK ASSESSMENT AUGUST 25, 2003

Former Chevron Service Station No. 9-4587 609 Oak Street, Oakland, CA

		Depth			Ethyl-	Total
Sample	Date	Collected	Benzene	Toluene	benzene	Xylenes
Location	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CR-1	09/19/90	5.0	0.025	0.025	0.025	0.025
P-4	10/17/94	2.5	0.36	4.4	< 0.005	0.043
P-5	10/17/94	2.5	< 0.005	< 0.005	< 0.005	< 0.005
P-6	10/17/94	3.0	0.021	0.042	0.091	0.16
DVSP-4	07/10/95	5.5	< 0.005	< 0.005	< 0.005	< 0.005
SP7	12/20/95	4.7	< 0.005	< 0.005	< 0.005	< 0.005
HA-1	06/12/97	5.0	< 0.005	< 0.005	< 0.005	< 0.005
HA-1	06/12/97	7.0	< 0.005	< 0.005	< 0.005	< 0.005
HA-2	06/12/97	7.0	2.1	2.1	2.1	7.5
HA-4	09/13/02	2.5	< 0.005	< 0.005	< 0.005	0.056
HA-4	09/13/02	5.0	2.1	92	50	310
HA-4	09/13/02	7.5	1.9	100	76	550
OE-1	01/29/03	8.5	0.025	0.025	0.025	0.025
OE-2	01/29/03	8.5	0.025	0.025	0.025	0.025
OE-3	01/29/03	8.5	0.31	0.025	0.29	1.4
OE-4	01/29/03	8.5	0.025	0.025	0.025	0.025

mg/kg = Milligrams per kilogram.

6th STREET

LEGEND.

C-1 MONITORING WELL LOCATION

DVE-1 ABANDONED VAPOR EXTRACTION WELL LOCATION

SP-7 ABANDONED AIR SPARGE WELL LOCATION

DVSP-1 DUAL COMPLETION WELL LOCATION

● P-1 SOIL SAMPLE LOCATION

★ HA-1 HAND AUGER SOIL BORING LOCATION

▼ HA-4 HAND AUGER SOIL BORING LOCATION (9/13/02)

OVER EXCAVATION SOIL SAMPLE COLLECTED

Ø OE-1 AT 8.5' BELOW SURFACE GRADE BY DELTA

ENVIRONMENTAL ON 1/29/03

FIGURE 1

OAK STREET

POST-OVER-EXCAVATION SOIL SAMPLE LOCATION MAP

FORMER CHEVRON STATION NO. 9-4587 609 OAK STREET OAKLAND, CA.

PROJECT NO. DG94-587	DRAWN BY M L 2/11/03
FILE NO.	PREPARED BY
DG94587B	MAB
REVISION NO	REVIEWED BY
1 ^	

ENCLOSURE A

Copy of June 30, 2003 E-mail from Alameda County Environmental Health

Jim Brownell

From: Chan, Barney, Env. Health

Sent: Monday, June 30, 2003 4:43 PM

To: 'Jim Brownell' (E-mail)

Subject: 609 Oak St., Oakland 94607 Closure Request

Jim: I took a look at your June 4, 2003 response letter. Could you clarify the following:

- What utilities exist along 6th St and Oak St and what is the depth of their invert? Could dissolved TPH have migrated preferentially in the conduits?
 How does the depth of water compare with the depth of the utility inverts? The lack of impact in on and offsite wells doesn't eliminate the possibility of preferential pathway migration.
- The SSTL presented in the TerraVac report (1997) present the SSTL for benzene as 4.1 ppm for subsurface soil (>3') and for a target risk of 10-5 and soil volatilization to indoor air for a commercial exposure pathway. The question we have is that in order to close the site for unrestricted land use, you need to determine the RBSL or SSTL for residential exposure (even though surface soil concentrations may be low). Note, the Water Board considers surface soils as those <10'bgs.

Call me if you have any questions.

Barney M. Chan Hazardous Materials Specialist Alameda County Environmental Health 510-567-6765

ENCLOSURE B

RBCA Site Assessment Former Chevron No. 9-4587 609 Oak Street, Oakland, CA

										Phys	ical Property Data
						RBCA SITE A	SSESSME	NT			
_	Site Name: Fo	ormer Chevro	n 9-4587			Completed By: M. Ber	rington			-	
	Site Location;	609 oak St., (Oakland,	CA		Date Completed: 30-J	ul-03 log (Koc) or			Vapor	1 of
			Mo <u>'ecula</u>	t		Coefficients	log(Kd)		Law Constant		ublity
Γ			Weight		in air	in water T	1647 250 L	CONCE	RATION DATA	SUMMARY @2	0 - 25 C)
luent		CAS Number type		ref	(cm2/s Dair	ref Dwat ref	log(L/kg) partition ref	(attrict) mol	(uniffess) ref	ref	sef pKa
ж,	71-43-2 Å 78.1 PS		8.80E-02	^P Analytical Method			Dete	cted Concentra	tions		
1	CONSTITUE	NTS DETECT	ED			Typical Detection	No. of	No. of	Maximum	Mean	UCL on Mean
- [CAS No.	Name				Limit (mg/kg)	Samples	Detects	Conc. (mg/kg)	Conc. (mg/kg)	Conc. (mg/kg)
- [[71-43-2	Benzene*				5.0E-03	16	10	2.1E+00	3.3E-02	1.0E-01
	108-88-3	Toluene*				5.0E-03	16	10	1.0E+02	6.4E-02	3.5E-01
	100-41-4	Ethylbenzen	ie"			5,0E-03	16	10	7.6E+01	6.7E-02	3,3E-01
	1330-20-7	Xylene (mixe	od icomor	e)*		5.0E-03	16	10	5,5E+02	1.3E-01	9.4E-01

^{* =} Chemical with user-specified data

RBCA Tool Kit for Chemical Releases, Version 1.3a

Return	Print Sheet		Help	31		ak St., Oaklar Perrington	id, CA	Date:	30 -J ul-0
Soil So	urce Zone	ı C	once				tor		UCL Percentil
		Roji ji Lavoot Lavoot	Paste Defaults			Estimated		Mean Option	95%
Con	Stituent	i, i. Bern	Detection Limit			Distribution	Max. Conc.	Mean Conc.	UCL o
Benzene*			(mg/kg) 5.0E-3	16 16	工。 10	Lognormal	2.1E+0	(mg/kg) 3.3E-2	(mg/kg) 1.0E-1
Toluene		1 to	5.0E-3	16	10	Lognormal	1.0E+2	6.4E-2	3.5E-1
Ethylbenzene Xylene (mixed i	isomers)	H (/ E 27)	5.0E-3 5.0E-3	16 16	10 10	Lognormal Lognormal	7.6E+1 5.5E+2	6.7E-2 1.3E-1	3.3E-1 9.4E-1
* ≓ Chemica	with user-spec	ifie	d data		ATTEN Marada				

RBCA Tool Kit for Chemical Releases, Version 1.3a

	I Source 2	cal Data fr one					erior						
		a Points)									A	nalytical Da	ıtá
# -		2	3		5	6	7	148	: B	10	11:	12	<u>. 13 </u>
'nD	HA-4-S-2.5	HA-4-S-5.0	HA-4-S-7.5	OE-1-8.5	OE-2-8.5	OE-3-2.5	OE-4-8.5	CR-1-5	P-4-2.5	P-5-2.5	P-6-2.5	DVSP4-5.5	SP7-4.7
ale	13-Sep-02	13-Sep-02	29-Jan-03	29-Jan-03	29-Jan-03	29-Jan-03	29-Jan-03	19-Sep-90	; 17-Oct-94	17-Oct-94	17-Oct-94	10-Jul-95	. 20-Dec-9
	r ^{er} i ert van Frankreif 18		S. A. PTYP. II. at Bund	ik i (Alembrik) Luksi istoria		e in Pagasan	ilmy val Sklaina		(n. 15a e i 17a e i Majorita e e e	e de la companya de l	ere in sala emi		
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
	nd	2.10E+0	1.90E+0	2.50E-2	2.50E-2	3.10E-1	2.50E-2	2.50E-2	3.60E-1	nd	2.10E-2	nd	nd
	nd	9.20E+1	1.00E+2	2.50E-2	2.50E-2	2.50E-2	2.50E-2	2.50E-2	4.40E+0	nd	4.20E-2	nd	nd
	nd	5.00E+1	7.60E+1	2.50E-2	2.50E-2	2.90E-1	2.50E-2	2,50E-2	2.30E+0	nd	9.10E-2	nd	nd
	nd	3.10E+2	5.50E+2	2.50E-2	2.50E-2	1.40E+0	2.50E-2	2.50E-2	3.30E+1	nd	1.60E-1	nd	nd
		FM in		d istalia	Mudahata	li lataritari i		. Cildian de la composición dela composición de la composición dela composición dela composición dela composición de la composición dela composición de la composición de la composición dela composición d					

RBCA Tool Kit for Chemical Releases, Version 1.3a

を作品 無 186 を作品 無 186 といる () () () () () () () () () (ente la lagrada Ente la lateria			707	tomboursal passing kalon passing kalon passing kalon							
			HMC								nalytical D	ala
HA1-5	15.	16	17	18	1919	20	21	22	23	24	25	26
Pr	HA1-7	HA3-7	·	: ^		·	ļ	· ·			i :	1
12-Jun-97	12-Jun-97			<u> </u>		1		<u> </u>		<u>1</u>	<u> </u>	<u>i</u>
(mg/kg)	illa india. 1	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	- (mg/kg)	(mg/kg)	(mg/kg)
nd		2.10E+0										T
nd	nd	2.10E+1					i					
nd	nd /	7.50E+0	7				i	 	†~ -	 	ļ	
nď	nd (5.20E+1						•				
· · · · · · · · · · · · · · · · · · ·			Chillian S						and of the constant			ara rusa i di. Agiragan ar

ENCLOSURE C

San Francisco Regional Water Quality Control Board Table D of RBCA Document RBSL for Benzene in Subsurface Soil

TABLE D. SUBSURFACE SOIL (> 3m bgs) AND GROUNDWATER RISK-BASED SCREENING LEVELS (RBSLs) (Groundwater IS NOT a Current or Potential Source of Drinking Water)

CHEMICAL PARAMETER ACENAPHTHENE ACETONE ACETONE	Residential Land Use Permitted (mg/kg) 16 120 0.51 0.95 2.9 210	Commercial/ Industrial Land Use Only (mg/kg) 16 120 0.51 0.95	Drinking Water Resource NOT Threatened (ug/L) 23 280	Elevated Threat To Surface Water (ug/L)
CENAPHTHYLENE CETONE ALDRIN	120 0.51 0.95 2.9	120 0.51	280	
CENAPHTHYLENE CETONE ALDRIN	0.51 0.95 2.9	0.51		
ACETONE ALDRIN	0.95 2.9		1500	•
ALDRIN	2.9	0.95	1900	
<u></u>		4.00	Ø.13 ·	0.00014
ANTHRACENE	310	2.9	0.73	
ANTIMONY	210	210	30	· _
ARSENIC	13	13	36	
BARIUM	2400	2400	3.9	-
BENZENE	0.18	0.39	46	
BENZO(a)ANTHRACENE	12	12	0.027	0.049
BENZO(B)FLUORANTHENE	12	12	7.0	0.049
BENZO(K)FLUORANTHENE	12	12	0,40	0.049
BENZO(g,h,i)PERYLENE	5.3	5.3	0.02	
	1,2	1,2	0.014	-
BENZO(a)PYRENE	95	95	5.1	
BERYLLIUM	6.5	6.5	5,0	
BIPHENYL, 1,1-	0.015 (1.6)	0.061 (1.6)	122	1.4
BIS(2-CHLOROETHYL)ETHER	1.3	1.3	122	
BIS(2-CHLOROISOPROPYL)ETHER	530	530	32	5,9
BIS(2-ETHYLHEXYL)PHTHALATE	23000	23000	1.6	
BORON		0.098 (4.0)	420 (6400)	
BROMODICHLOROMETHANE	0.025 (0.95)	110	5100	360
BROMOFORM	110		320	
BROMOMETHANE	13	1.1 (3.0) 33	1.1	 -
CADMIUM	33		9.8	4.4
CARBON TETRACHLORIDE	0.021 (0.059)	0.074 (0.25)	0.004	0.00059
CHLORDANE	15	0.11	10	- 0.00005
CHLOROANILINE, p-	0.11		50	ļ — — <u> </u>
CHLOROBENZENE	3.0	3.0	12	
CHLOROETHANE	0.85	0.85	28	470
CHLOROFORM	0.17 (0.88)	0.58 (0.88)	5.6 (130)	470
CHLOROMETHANE	0.49	0.87 (1.7)		100
CHLOROPHENOL, 2-	0.12	0.12	1.8	400
CHROMIUM (Total - assumes 1/6 ratio Cr6/Cr3)	13	13	180	
CHROMIUM III	2500	5000	180	
CHROMIUM VI	18	1.8	11	
CHRYSENE	4.7	4.7	0.07	0.049
COBALT	2500	5000	3.0	
COPPER	2500	5000	3.1	
CYANIDE (Free)	500	1000	1.0	
DIBENZO(a,h)ANTHTRACENE	3.5	3.5	0.25	0.049
DIBROMOCHLOROMETHANE	79	79	6400	
1,2-DIBROMO-3-CHLOROPROPANE	0.001	0.001	0.20	
DIBROMOETHANE, 1,2-	0.014 (0.56)	0,052 (0.56)	84 (280)	
DICHLOROBENZENE, 1,2- DICHLOROBENZENE, 1,3-	1.0 5.3	5.3	14 71	