

June 30, 2008

Mr. Paresh Khatri, Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 **RECEIVED**

2:14 pm, Jul 02, 2008

Alameda County
Environmental Health

RE: Request for a Soil and Water Investigation Work Plan for Fuel Leak Case No. RO0000030, EBMUD, 1200 21st Street, Oakland, CA 94607

Dear Mr. Khatri:

The East Bay Municipal Utility District (EBMUD) is in receipt of your May 29, 2008 letter, addressed to Eileen Fanelli who was formerly on my staff, requesting the preparation and submittal of a Soil and Water Investigation Work Plan for the subject site. As explained below, we believe the said work plan is not necessary because the Alameda County Environmental Health Services (ACEHS) has not taken into consideration additional subsurface remediation of the fuel leak that was completed in 1997. We are, instead, submitting a copy of the report that describes the remedial activities that took place to address the subsurface contamination.

Six underground storage tanks (USTs) were removed from the subject site in November 1994. The two largest tanks removed (4,000 and 6,000 gallons) had been used to store gasoline, while the rest either contained some oily fluid or what seemed to be water. Over-excavation was completed at the time of tank removal to a depth of 13' to 16' below ground surface (bgs). Sampling indicated that the highest concentrations of petroleum compounds (TPHgasoline ranging from 1,400 to 2,800 mg/kg) remaining in the perimeter walls of the excavation were located along West Grand Avenue at depths of 4' to 8' bgs and in front of the former service bay portion of the adjacent structure.

As noted in your letter, two subsequent subsurface investigations were conducted. 18 soil borings were completed in January 1995 on and around the property of concern. Then, in October 1996, EBMUD's contractor, Geo Plexus, advanced 15 additional soil borings across the Phase II and Phase III construction areas of the overall Adeline Maintenance Center (AMC) project, including the area of interest. The results, as presented in a January 22, 1997 report titled, "Subsurface Investigation Report and Response to Agency Comments on Addendum No. 2 to Materials Management Plan", indicated that surface soils in the areas of the former USTs and beneath the former auto shop needed to be excavated and removed from the site to mitigate the risk associated with the petroleum compounds. You are concurring with the scope of work proposed in the January 22, 1997 report. However, you are requesting the preparation of a work plan by EBMUD to further characterize the site prior to implementing the proposed remedial alternative which has, in fact, already been implemented.

I understand that Derek Lee of my staff had determined during a recent phone conversation with you that the January 22, 1997 report represents the last correspondence that ACEHS had

375 ELEVENTH STREET • OAKLAND • CA 94607-4240 • TOLL FREE 1-866-40 -EBMUD

Mr. Paresh Khatri June 30, 2008 Page 2

received from EBMUD regarding this fuel leak case. For reasons unknown, a final report summarizing the final remediation of this site was never submitted to ACEHS even though it had been prepared. The missing "Final Report, AMC Phase II Construction Materials Management Report", dated June 30, 1998, indicates that additional sampling was conducted in five test pits advanced within the area of concern in May 1997 prior to the June 1997 final remedial excavations. Remedial excavation of the former gasoline station area, adjacent to the locations of the six USTs, proceeded down to 8' to 9' bgs. Approximately 1,300 cubic yards were removed, with confirmation sampling showing compliance with the pre-agreed-upon cleanup levels between ACEHS and EBMUD. Remedial excavation of the former auto shop area was also completed at the same time. It removed around 200 cubic yards of soil, with confirmation sampling again showing compliance with the cleanup levels.

We are submitting this Final Report to complete the file that you have on this site. We believe this report obviates the need to prepare a work plan as requested. It is our opinion that this site no longer presents an environmental or human health risk as the known sources of contamination were removed long ago and over-excavations performed. It should be noted that the remaining petroleum compounds along West Grand Avenue in the perimeter walls of the original 1994 excavation were determined, with concurrence from ACEHS, to have originated from an offsite source across the road. In any event, excavation was extended almost to the point of undermining the road. Additional excavation was determined to be infeasible.

CERTIFICATION

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Should you have any questions, please contact Derek Lee, Senior Environmental Health and Safety Specialist, at (510) 287-1086. Eileen Fanelli has left EBMUD.

Sincerely,

John H. Schroeter, P.E.

Manager of Environmental Compliance

Attachment

¹ EBMUD and ACEHS had agreed that soil within the then proposed footprints of the planned structures would be excavated to concentrations below the 1990 *Tri-Regional Board Staff Recommendations for Preliminary Investigation and Evaluation of Underground Tank Sites* and soil outside the proposed footprints would be excavated to concentrations below the predetermined ASTM-RBCA Tier-1 Risk-Based Screening Levels. These cleanup levels are presented in Table 1 of the attached report.

Health & Safety Training • Geo/Environmental Personnel • Engineering Geology Consultants • Environmental Management Consultants

June 30, 1998

Walsh Pacific Construction EBMUD Adeline Maintenance Facility 2130-A Adeline Street Oakland, CA 94607 Attn.: Mr. Eugene Hays

> Subject: Transmittal of AMC Phase II Construction Materials Management Final Report for EBMUD Adeline Maintenance Center, Oakland, CA

Dear Mr. Hays:

Geo Plexus, Incorporated is pleased to provide the attached AMC Phase II Construction Materials Management Final Report for the East Bay Municipal Utility District Adeline Maintenance Center, located in Oakland, California.

The attached report summarizes the remedial excavation objectives and threshold criteria and provides documentation (sampling data and analytical test data) for the Phase II construction soil excavation and construction dewatering activities and documents the transportation and off-site disposal of the contaminated soil.

The field observations and analytical test data support our conclusion that the remedial objectives as set forth in the Materials Management Plan (MMP) and in Addendum No. 2 to the MMP were accomplished. Additional investigation or remedial action is not warranted.

It has been a pleasure to be of service to you on this project. Questions or comments regarding the attached report should be addressed to our office.

Respectfully submitted,

Geo Plexus, Incorporated

Kimberly F. Leeds.

President

cc: C95041

Cathrene Diane Glick, CEQ 1338,

Director, Geologic and Environmental Services

Health & Safety Training • Geo/Environmental Personnel • Engineering Geology Consultants • Environmental Management Consultants

FINAL REPORT AMC PHASE II CONSTRUCTION MATERIALS MANAGEMENT REPORT EAST BAY MUNICIPAL UTILITY DISTRICT ADELINE MAINTENANCE CENTER 1200 21st STREET OAKLAND, CALIFORNIA

prepared for:

Walsh Pacific Construction
EBMUD Adeline Maintenance Facility
2130-A Adeline Street
Oakland, California

and

Special Projects Division
Engineering Department
East Bay Municipal Utility District
375 Eleventh Street
Oakland, California

June 30, 1998

FINAL REPORT AMC PHASE II CONSTRUCTION MATERIALS MANAGEMENT REPORT EAST BAY MUNICIPAL UTILITY DISTRICT ADELINE MAINTENANCE CENTER 1200 21st STREET OAKLAND, CALIFORNIA

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	1
1.1 Background	1
1.2 Previous Investigative Action	
1.3 Supplemental Investigations	
2.0 THRESHOLD CRITERIA	4
3.0 REMEDIAL ACTION METHODOLOGIES	6
3.1 Excavation Protocols	7
3.2 Excavation Soil Characterization	7
3.3.1 Former Gasoline Station Excavation	7
3.3.2 Former Auto Shop Excavation	8
3.3 Excavation Water Disposal	11
4.0 EXCAVATED SOIL TRANSPORT AND DISPOSAL	11
5.0 CONCLUSIONS	11
6.0 LIMITATIONS	12
7.0 REFERENCES	13
APPENDIX A - Analytical Testing Laboratory Certification APPENDIX B - Phase II Test Pit Analytical Test Data	

FINAL REPORT AMC PHASE II CONSTRUCTION MATERIALS MANAGEMENT REPORT EAST BAY MUNICIPAL UTILITY DISTRICT ADELINE MAINTENANCE CENTER **1200 21st STREET** OAKLAND, CALIFORNIA

FIGURES

Figure 1	AMC Location and Phasing Plan
Figure 2	Phase II Site Plan
Figure 3	Gasoline Station Tank and Excavation Plan
Figure 4	Preliminary Site Assessment Boring Plan
Figure 5	Phase II Supplemental Investigation Boring Plan
Figure 6	Phase II Test Pit Plan
Figure 7	Phase II Excavation Plan
Figure 8	Phase II Gasoline Station Area Soil Sample Plan
Figure 9	Phase II Automotive Shop Area Soil Sample Plan

ACRONYMS

AMC Adeline Maintenance Center **ASTM** American Society for Testing and Materials BTEX Volatile Aromatic Compounds (Benzene, Toluene, Ethyl benzene and Xylene) DHS State of California Department of Health Services **DTSC** State of California Department of Toxic Substance Control **EBMUD** East Bay Municipal Utility District **EPA** U.S. Environmental Protection Agency FID Flame Ionizing Detector Halogenated Volatile Organic Compounds HVOC Leaking Underground Storage Tank LUST MMP Materials Management Plan OVA Organic Vapor Analyzer OVM Organic Vapor Meter PID Photoionization Detector **RBCA** Risk-Based Corrective Action RBSL Risk-Based Screening Levels **RCRA** Resource Conservation and Reclamation Act **RWQCB** State of California Regional Water Quality Control Board **STLC** Soluble Threshold Limit Concentration Total Petroleum Hydrocarbons as gasoline TPH gas TPH diesel Total Petroleum Hydrocarbons as diesel Total Threshold Limit Concentrations TTLC Underground Storage Tank UST WPC Walsh Pacific Construction VOA Volatile Organic Analysis VOC Volatile Organic Compounds

FINAL REPORT AMC PHASE II CONSTRUCTION MATERIALS MANAGEMENT REPORT EAST BAY MUNICIPAL UTILITY DISTRICT ADELINE MAINTENANCE CENTER 1200 21st STREET OAKLAND, CALIFORNIA

1.0 INTRODUCTION

East Bay Municipal Utility District (EBMUD) is constructing a new Adeline Maintenance Center (AMC) at the site of the existing AMC. The AMC site comprises four city blocks, as shown in Figure 1. Walsh Pacific Construction (WPC) has been retained by EBMUD as the design/build contractor for the AMC project which includes demolition of several existing structures, the construction of 5 new buildings, and remodeling of 2 buildings. The construction project is being completed in 3-phases as indicated on Figure 2.

This report addresses the remedial soil excavation activities associated with Phase II of the construction sequence for the planned Shops Building (see Figure 2). Alameda County Health Department is the lead regulatory agency providing oversight of environmental investigations and remedial activities conducted at the site.

1.1 BACKGROUND

Previous environmental investigations of the AMC site have identified localized areas of soil contamination, primarily from the past operation of underground storage tanks. The following reports have been issued to Alameda County Department of Environmental Health to date:

Geo Plexus, Inc., 1995, "Preliminary Site Assessment Report for Adeline Maintenance Facility", prepared for East Bay Municipal Utility District.

Geo Plexus, Inc., January 18, 1996, "Materials Management Plan for Adeline Maintenance Facility", prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

Geo Plexus, Inc., January 22, 1996, "Addendum No. 1 Material Management Plan for Adeline Maintenance Facility", prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

Geo Plexus, Inc., February 2, 1996, "Response to Alameda County Review Comments on the Material Management Plan for Adeline Maintenance Facility", prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

Geo Plexus, Inc., February 2, 1996, "Submittal of Analytical Test Data from Phase 1 Additional Test Pits, EBMUD Adeline Maintenance Center", prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

Geo Plexus, Inc., May 29, 1996, "AMC Phase 1- Construction Materials Management Final Report for East Bay Municipal Utility District Adeline Maintenance Center, Oakland, CA" prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

Geo Plexus, Inc., September 12, 1996, "Addendum No. 2 Material Management Plan for EBMUD Adeline Maintenance Facility", prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

Geo Plexus, Inc., January 22, 1997, "Subsurface Investigation Report and Response to Alameda County Review Comments on Addendum No. 2 to the Material Management Plan for EBMUD Adeline Maintenance Facility", prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

The Materials Management Plan (MMP) for the EBMUD AMC, reference (12), was prepared by Geo Plexus, Inc. to present the general history of the project site, present an evaluation of human and environmental risks associated with the known soil contaminates, present threshold criteria for the soil and ground water, and present phase-specific guidelines for remediation of soil and ground water containing contaminants above the threshold criteria to be implemented during completion of the earthwork associated with the AMC construction.

Addendum No. 1 to the Materials Management Plan, reference (13), was issued to address Alameda County comments on the MMP and to address the planned additional test pit investigation for the Phase 1 construction site and to address the remedial excavation activities for the AMC Phase 1 site. The Phase 1 Construction Materials Management Final Report, reference (17), documented the remedial excavation activities and soil disposal for Phase 1 construction.

Addendum No. 2 to the Materials Management Plan, reference (18), was issued to address the planned additional investigation for the Phase II construction site and to address the remedial excavation activities for the AMC Phase II site.

1.2 PREVIOUS INVESTIGATIVE ACTION

Six underground storage tanks (see Figure 3) were excavated and removed from the property in November, 1994. The native soil material exposed in the sidewalls of the excavation exhibited strong petroleum odors, soil discoloration/staining (gray-green color) and free-product was observed to be leaching from these soils. The excavation for the 4,000 gallon and adjacent concrete encased tanks was extended laterally to the north, east and south to abate the impacted soil (see Figure 3).

The excavation was extended vertically to a depth of 13- to 16-feet below ground surface. Perched water was observed seeping from various locations along the side walls of the excavation and along the sand bedding for the various utility lines (storm sewer, sanitary sewer, water, phone lines, etc.) encountered within the limits of the excavation. Residual, near surface soil contamination remains in-place around the perimeter of the excavation, particularly beneath West Grand Avenue and beneath the former service station building

Subsequent to the tank removal and soil excavation activities, a limited preliminary site assessment was performed, reference (11), which included advancing eighteen exploration borings across the property at the locations indicated on Figure 4. The borings were located to investigate potential areas of subsurface contamination from EBMUD facilities and operations, as well as from previous site uses (as documented by aerial photographs and site records) which included residential housing and commercial office/warehouse structures.

In addition to the former underground storage tanks, Oil and Grease Compounds were detected at concentrations of 13,000-18,000 ppm and TPH diesel was detected at concentrations of 2,200 ppm in the soil samples obtained adjacent to a hydraulic lift inside the Automotive Service Building. Low concentrations of TPH gas and Volatile Organic Compounds were also detected.

Specifics of these investigation activities were presented in the MMP and Addendums No. 1 and No. 2.

1.3 SUPPLEMENTAL INVESTIGATIONS

In October, 1996, Geo Plexus, Inc personnel observed the advancement of 15 additional soil borings across the Phase II and Phase III construction areas to obtain soil samples to further evaluate the petroleum impacted soils and to obtain soil samples for pre-characterization for disposal of the excavated soil. Figure 5 indicates the locations of the additional borings (identified as WB-1 through WB-15). The investigation report, reference (19), also provided responses to Agency comments on Addendum No. 2 to the MMP.

At the request of Walsh Pacific Construction, five (5) additional test pits were advanced within the Phase II construction area on May 6, 1997 to pre-characterize these soils for off-site disposal. The test pits were advanced at locations of planned construction related excavations (i.e, elevator pit, dip tank, etc.) and at locations of previously identified areas of remedial excavation (i.e., gasoline station, auto shop, etc.). Figure 6 indicates the locations of these test pits.

Soil samples from the test pits were obtained utilizing a backhoe and were collected by advancing a pre-cleaned 2 inch I.D. stainless steel liner into the undisturbed soil contained in the backhoe bucket. The soil samples were immediately sealed in the liners using teflon tape and plastic caps and properly labeled including: the date, time, sample location, and project number. The samples were immediately placed in a cooler maintained at 3-5°C for transport to the laboratory under chain-of-custody documentation. These soil samples were submitted to and tested by McCampbell Analytical, a State of California, Department of Health Services certified testing laboratory.

The State certification documents for McCampbell Analytical are included in Appendix A. Analytical testing was scheduled and performed in accordance with the State of California, Regional Water Quality Control Board Recommendations for Initial Evaluation and Investigation of Underground Tanks and Alameda County Department of Environmental Health guidelines.

Since the objectives of these test pits were for disposal characterization, the soil samples were composited by the laboratory and tested for:

Total Petroleum Hydrocarbons as gasoline by Method GCFID 5030/8015
Total Petroleum Hydrocarbons as diesel by Method GCFID 3550/8015
Volatile Aromatics (BTEX and MTBE) by EPA Method 8020
Oil & Grease by EPA Method 5520
Volatile Halocarbons by EPA Method 8010
TCLP Benzene by Method GCFID 5030/8015
CAM 5 Metals by EPA Methods 6000/7000 Series
STLC for Lead and Zinc by EPA Methods 6000/7000 Series

The results of these limited sampling activities were presented in two Geo Plexus Letter Reports dated May 22, 1997, references (21) and (22). The chain-of-custody forms and analytical test data are included in Appendix B.

The composite test sample obtained from the Dip Tank Test Pit, the Auto Shop Test Pit, and Test Pit-2 samples (see Appendix B) contained concentrations of lead at 9.5 ppm. The composite test sample obtained from the Gas Station Test Pit and Test Pit-1 samples contained concentrations of lead at 170 ppm. Based on the analytical testing of the soil samples from the area, the data suggests that the observed high concentration of lead from the gasoline station area was an isolated occurrence and not representative of the area.

2.0 EXCAVATION THRESHOLD CRITERIA

Table 1 presents the updated threshold criteria for soil at the AMC for petroleum hydrocarbon contaminants, VOC's, and PNA's based on the protection of ground water resources from compounds leaching from the soil as established in Addendum No. 2 to the MMP.

TABLE 1

PETROLEUM AND VOC THRESHOLD VALUES FOR SOIL

Constituent	Threshold Values for Within Building Footprint	RBSL Threshold Values for Outside Building Footprint		
TPH gas	100 ppm	unlimited		
TPH diesel	1,000 ppm	unlimited		
Oil & Grease	1,000 ppm	unlimited		
Benzene	0.3 ppm	1.67 ppm*		
Toluene	0.3 ppm	360 ppm		
Ethylbenzene	l ppm	130 ppm		
Xylenes	l ppm	Res		
Napthalene	l ppm	64 ppm		
Benzo(a)pyrene 1 ppm		Res		
1,4 Dichlorobenzene 310 ppm		310 ppm		
1,1 Dichloroethane	92 ppm	92 ppm		
1,2 Dichloroethane	2.5 pm	2.5 pm		
Fluoranthene	Res	Res		
Phenanthrene	Res	Res		
Pyrene	Res	Res		
Tetrachloroethane 8,800 ppm		8,800 ppm		
1,1,1-Trichloroethane	330 ppm	330 ppm		
1,1,2-Trichloroethane	0.42 ppm	0.42 ppm		
Trichloroethene	2.4 ppm	2.4 ppm		

RBSL - Risk Based Screening Level from RBCA Tier 1 Evaluation.

Res - selected risk level is not exceeded for pure compound present at any concentration.

^{*} Value of 5.82 ppm reduced by 29 percent in accordance with RWQCB guidelines.

Based on the established threshold criteria, EBMUD and Alameda County agreed that soil within the proposed footprints of the planned structures would be excavated to concentrations below the Tri-Regional Guidelines and soil outside the proposed footprints of the planned structures would be excavated to concentrations below the ASTM-RBCA Tier-1 RBSL's. As there are no Tri-Regional Guidelines for VOC's and PNA's, and the calculated RBSL's for soil leaching to ground water are more conservative than calculated RBSL's for soil volatilization indoors, the RBSL's for soil leaching to ground water for these compounds were applied to all areas of the AMC Phase-2 and Phase-3 construction sites.

Threshold Criteria for heavy metal compounds were as stipulated in the California Code of Regulations Title 22 as Total Threshold Limit Concentrations (TTLC) as described in the MMP. TTLC values for the LUFT-5 Metals (for waste oil evaluation) are presented in Table 2.

TABLE 2
HEAVY METAL THRESHOLD VALUES FOR SOIL

Metals of Concern	Threshold Values TTLC
Cadmium	100 ppm
Chromium	2,500 ppm
Lead	1,000 ppm
Nickel	2,000 ppm
Zinc	5,000 ppm

3.0 REMEDIAL ACTION METHODOLOGIES

Based on the established threshold values, the petroleum contaminated soils at the Phase II site requiring removal included the former gasoline service station area and the former automotive service building (see Figure 7). The excavation activities were accomplished by Bay Cities Paving and Grading under contract with WPC under direct oversight by Geo Plexus, Incorporated personnel.

3.1 EXCAVATION PROTOCOLS

The soil removal was accomplished with an excavator and were observed and logged under the direct oversight of a Certified Engineering Geologist from Geo Plexus. The work was scheduled and coordinated with, and observed by, Ms. Julliet Shin with Alameda County Department of Environmental Health.

The soils exposed in the sidewalls and base of the excavations were screened in the field through the use of an Photovac 200 Organic Vapor Meter (OVM) as the excavation proceeded.

3.2 EXCAVATION SOIL CHARACTERIZATION

Soil samples were obtained from the sidewalls and from the base of the excavations as the excavations proceeded to determine the limits of the excavations based on the established threshold criteria and to document and classify the soil materials.

Soil samples were collected from the sidewalls and base of the excavation for analytical testing. The soil samples were obtained by advancing a pre-cleaned 2 inch I.D. brass liner into the undisturbed soil. The soil samples were immediately sealed in the liners using aluminum foil or teflon tape and plastic caps and properly labeled including: the date, time, sample location, and project number. The samples were then placed in a cooler maintained at 3-5°C for transport to the laboratory under chain-of-custody documentation.

The soil samples were submitted to and tested by McCampbell Analytical. Analytical testing was scheduled and performed in accordance with the State of California, Regional Water Quality Control Board Recommendations for Initial Evaluation and Investigation of Underground Tanks and Alameda County Department of Environmental Health guidelines. The testing included:

Total Petroleum Hydrocarbons as gasoline by Method GCFID 5030/8015; Total Petroleum Hydrocarbons as diesel by Method GCFID 3550/8015; Oil & Grease by EPA Method 5520 Volatile Aromatics (BTEX) by EPA Method 8020; Volatile Halocarbons by EPA Method 8010; PNA's by EPA Method 8270; and LUFT 5 Metals by EPA 6000/7000 Series.

3.2.1 Former Gasoline Station Excavation

The excavation for the former gasoline station site was initiated immediately north of the previously excavated area and adjacent to West Grand Avenue. The excavation proceeded to the north and west based on field indicators and analytical test data to abate any impacted soil which was exceeded the threshold limits. The excavation extended to the south to encounter the former gravel backfill and ranged from approximately 8- to 9-feet deep.

Figure 8 illustrates the locations of the soil samples obtained throughout the excavation process Approximately 1,300 yards of soil were removed and stockpiled on-site for additional characterization for off-site disposal (discussed in Section 4.0). No additional tanks or sumps were encountered during this activity. The chain-of-custody forms and analytical testing data are included in Appendix C.

Table 3 summarizes the concentrations of TPH gas, TPH diesel, and Benzene detected in the soil samples with reference to the applicable threshold criteria. Where the concentrations of these compounds exceeded the threshold criteria, additional soil was excavated and the area resampled.

3.2.2 Former Auto Shop Excavation

The locations of three (3) former hydraulic lifts were excavated to remove the lift cylinders and to obtain verification soil samples. Two of the lifts were contained within concrete encasements while the third consisted of a direct buried ram cylinder and reservoir tank. Approximately 200 yards of soil were removed and stockpiled on-site for additional characterization for off-site disposal (discussed in Section 4.0). Figure 9 illustrates the locations of the soil samples obtained throughout the excavation process. The chain-of-custody forms and analytical testing data are included in Appendix C.

Table 4 summarizes the concentrations of TPH gas, TPH diesel, Oil & Grease, and Benzene detected in the soil samples with reference to the applicable threshold criteria. Where the concentrations of these compounds exceeded the threshold criteria, additional soil was excavated and the area re-sampled.

SUMMARY OF GASOLINE STATION ANALYTICAL TEST DATA

CONFIRMATION SOIL SAMPLES
GASOLINE, DIESEL AND BENZENE

Sample	TPH gas	TPH diesel	Benzene	Result/ Action
20X1-S1	N.D.	1.8	N.D.	Below Ext. Bldg. Threshold
20X1-S2	N.D.	N.D.	N.D.	Below Ext. Bldg. Threshold
20X1-S3	1.1	N.D.	N.D.	Below Ext. Bldg. Threshold
20X1-S4	2.0	3.2	N.D.	Below Ext. Bldg. Threshold
2OX1-S5	3.0	3.0	N.D.	Below Ext. Bldg. Threshold
20X1-S6	N.D.	1.4	N.D.	Below Ext. Bldg. Threshold
20X1-S7	N.D.	2.6	N.D.	Below Ext. Bldg. Threshold
2OX1-S8	2.7	3.8	0.40	Below Ext. Bldg. Threshold
20X1-S9	3.1	N.D.	1.1	Below Ext. Bldg. Threshold
2OX1-S10	N.D.	4.0	N.D.	Below Ext. Bldg. Threshold
20X1-S11	11	7.9	0.055	Below Int. Bldg. Threshold
20X1-S12	67	27	4.1	Exceeded Int. Bldg. Threshold Area Excavated and Retested
20X1-S12A	73	44	4.6	Exceeded Int. Bldg. Threshold Area Excavated and Retested
20X1-S12B	27		0.13	Below Int. Bldg. Threshold
2OX1-S13	4.2	9.7	0.010	Below Ext. Bldg. Threshold
2OX1-S14	N.D.	N.D.	N.D.	Below Ext. Bldg. Threshold
2OX1-S15	4.5	3.8	0.069	Below Ext. Bldg. Threshold
20X1-S16	6.5	N.D.	0.26	Below Ext. Bldg. Threshold
2OX1-S17	12	5.3	0.29	Below Ext. Bldg. Threshold
2OX1-S18	N.D.	1.2	N.D.	Below Ext. Bldg. Threshold
2OX1-S19	1.2	1.5	0.006	Below Ext. Bldg. Threshold
20X1-S20	2.6	1,500	N.D.	Exceeded Ext. Bldg. Threshold Area Excavated and Retested
20X1-S20A	27	42	N.D.	Below Ext. Bldg. Threshold

Notes: Concentrations reported as Parts Per Million (mg/kg).

N.D. indicates that concentrations below detection limit.

TABLE 4 SUMMARY OF AUTO SHOP ANALYTICAL TEST DATA CONFIRMATION SOIL SAMPLES GASOLINE, DIESEL, OIL & GREASE AND BENZENE

Sample	TPH gas	TPH diesel	Oil & Grease	Benzene	Result/ Action
HOX1-S1					Area Excavated and Retested
HOX1-S2	N.D.	3.3	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S3	N.D.	1.8	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S4	N.D.	3.7	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S5	N.D.	4.7	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S6	N.D.	1.8	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S7	N.D.	3.5	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S8	N.D.	5.6	N.D.	0.040	Below Ext. Bldg. Threshold
HOX1-S9	N.D.	N.D.	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S10	N.D.	N.D.	N.D.	N.D.	Below Ext. Bldg. Threshold
HOX1-S11	N.D.	N.D.	N.D.	N.D.	Below Ext. Bldg. Threshold
2HOX1-S1	67	N.D.	N.D.	4.1	Below Ext. Bldg. Threshold
2HOX1-S2	27	N.D.	N.D.	0.13	Below Ext. Bldg. Threshold
2HOX1-S3	4.2	N.D.	N.D.	0.010	Below Ext. Bldg. Threshold
2HOX1-S4	N.D.	N.D.	N.D.	N.D.	Below Ext. Bldg. Threshold

Notes: Sample 2HOX-S1 not analyzed due to obvious presence of petroleum compounds Concentrations reported as Parts Per Million (mg/kg).

N.D. indicates that concentrations below detection limit.

In addition, the samples from the hydraulic lift excavations did not contain detectable concentrations of Volatile Halocarbon Compounds or PNA's. The concentrations of Heavy Metals in these samples did not exceed general background concentrations and do not represent an environmental health risk.

The excavation activities were terminated upon reaching the objective threshold criteria as verified by analytical testing of the soil samples.

Additional soil screening was reportedly performed by WPC personnel for the remainder of the construction related excavation activities for the Shops Building (i.e., pile caps, footings, etc.). Based on their reported observations, additional soil contamination above the threshold criteria was not encountered.

3.3 EXCAVATION WATER DISPOSAL

Water seepage (perched water) was observed from various locations along the side walls of the excavations and along the sand bedding for the various utility lines (storm sewer, sanitary sewer, water, electric lines, etc.) encountered within the excavations. The water observed in these shallow areas was not classified as ground water for characterization purposes.

Water seeping into the excavation was pumped from the excavation to a 20,000 gallon Baker tank and was treated by an activated carbon filter system (consisting of two Cameron-Yakima WSU-55 canisters) prior to discharged to the sanitary sewer under permit conditions from East Bay Municipal Utility District.

4.0 EXCAVATED SOIL TRANSPORT AND DISPOSAL

The soil material generated during the excavation activities was stockpiled on-site and characterized for disposal.

Approximately 2,500 tons of soil were transported as non-hazardous waste and disposed of at BFI Vasco Road Landfill in Livermore, California.

In addition, approximately 900 tons of soil containing elevated levels of Lead (above STLC) were manifested and transported as hazardous waste by ECDC and disposed of at ECDC Environmental Landfill in East Carbon, Utah.

5.0 CONCLUSIONS

Based on Geo Plexus personnel observations, the results of the analytical testing, and the reported WPC observations, the objectives of the soil removal from within the footprint and outside of the footprint of the Stores Building were accomplished to concentrations below the threshold limit criteria.

It is our opinion that the project site does not represent an environmental risk to the local or regional ground water conditions and that additional investigation, analysis, or remediation is not warranted. It is recommended that this section of the AMC site be considered for closure without further action.

6.0 LIMITATIONS

We have only observed a small portion of the pertinent soil conditions present at the site. Subsurface conditions across the site have been extrapolated from information obtained from review of existing documents, field investigations, excavation observations, and analytical test data. The conclusions made herein are based on the assumption that soil conditions do not deviate appreciably from those described in the reports and observed in the field.

Geo Plexus, Incorporated provides consulting services in the fields of Geology and Engineering Geology performed in accordance with presently accepted professional practices. Professional judgments presented herein are based partly on information obtained from review of published documents, partly on evaluations of the technical information gathered, and partly on general experience in the fields of geology and engineering geology.

No attempt was made to verify the accuracy of the information prepared/provided by others used in preparation of this assessment report.

If you have questions regarding the findings, conclusions, or recommendations contained in this report, please contact us. We appreciate the opportunity to serve you.

Geo Plexus, Incorporated

REFERENCES

(1) American Society for Testing and Materials (ASTM), 1994, "Emergency Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites", ES 38-94, July, 1994.
(2), 1995, "Risk-Based Corrective Action Applied at Petroleum Release Sites", E 1739-95, November, 1995.
(3) California Code of Regulations, Title 22, Social Security, Division 4, Environmental Health (current version).
(4) California Regional Water Quality Control Board, San Francisco Bay Region, 1990, "Tri-Regional Board Staff Regulations for Preliminary Evaluation and Investigation of Underground Tank Sites", August 10, 1990.
(5), 1990, Guidance Document for the Development of Health-Based Remedial Clean-Up Levels for the South Bay Multi-Site Cooperative Superfund Program, prepared by Clement Associates Inc.
(6) California Water Resource Control Board, Leaking Underground Fuel Tank Task Force, 1989, "Leaking Underground Fuel Tank Manual: Guidance for Site Assessment, Cleanup, and Underground Storage Tank Closure", revised October, 1989.
(7) General Environmental Management Services (GEMS), 1994, "Interim Remedial Action Summary Report for EBMUD Facility located at 1200 21st Street, Oakland, CA".
(8) United States Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health (NIOSH), 1990, "NIOSH Pocket Guide to Chemical Hazards".
(9) United States, Environmental Protection Agency, 1982, "Test Methods for Evaluating Solid Waste, SW-846, Second Edition", 1982.
(10) United States, Resource Conservation and Recovery Act (RCRA), Pub. L. No. 94-580, 90 Stat. 2795 (1976), codified as 42 U.S.C. 6901 <i>et seq.</i> ; as amended.
(11) Geo Plexus, Inc., 1995, "Preliminary Site Assessment Report for Adeline Maintenance Facility", prepared for East Bay Municipal Utility District.
(12), January 18, 1996, "Materials Management Plan for Adeline Maintenance Facility", prepared for Walsh Pacific Construction and East Bay Municipal Utility District.

AMC Phase II - Construction Material	s Manage	ment Fina	Report
EBMUD Adeline Maintenance Center.	Oakland,	CA	

June 30, 1998 Page 15

(24)	, June 26, 1	1997, "Summary	Letter for Soil	Excavation and	d Disposal a	at EBMUD
Adeline Mai	intenance Cen	nter", prepared fo	or Walsh Pacifi	c Construction	and East B	ay Municipal
Utility Distri	ict.					

Source: Thomas Brothers Maps

Bolar-er

Geo Plexus, Inc.

BORING LOCATION PLAN

Figure H

Geo Plexus, Inc.

EBMUD SITE

Figure 5

WEST GRAND AVENUE ELECTRICAL SWITCHGEAR GASOLINE STATION TEST PIT TEST PIT NO. 1 STORES BUILDING DIP TANK TEST PI UNION STREET D. 12.27 E ELEVATOR PIT TEST PIT **AUTO SHOP TEST PIT** MICROWAVE TOWER PROPERTY CORNE N 463,554.23 E 1,484,652.40 21 ST STREET 8 72^ 63' 06.73 W PROPERTY CORNE N 483,600.11 STREET FLEET MAINTENANCE BUILDING 0851 TEST PIT LOCATION PLAN CRAWN BY 2/16/98 cdg EBMUD ADELINE CENTER Geo Plexus, Inc. **Figure**

WEST GRAND AVENUE

PHASE II EXCAVATION PLAN FIGURE 7

WEST GRAND AVENUE WEST GRAND AVENUE

FORMER GASOLINE STATION SAMPLE LOCATION PLAN FIGURE 8

NOTE: SAMPLES IDENTIFIED AS 20X1-S1, S2, etc.

FIGURE 9

APPENDIX A

McCAMPBELL ANALYTICAL DHS CERTIFICATION DOCUMENTS

Certificate No.: 1644

DEPARTMENT OF HEALTH SERVICES

2151 BERKELEY WAY BERKELEY, CA 94704-1011 (510)540-2800

April 29, 1996

Edward Hamilton McCampbell Analytical, Inc. 110 2nd. Avenue, South, #D7 Pacheco, CA 94533

Dear Mr. Hamilton:

This is to advise you that the laboratory named above has been certified as an environmental testing laboratory pursuant to the provisions of the California Environmental Laboratory Improvement Act of 1988 (Health and Safety Code, Division 1, Part 2, Chapter 7.5, commencing with Section 1010).

The fields of testing for which this laboratory has been certified under this Act are indicated in the enclosed "List of Approved Fields of Testing and Analytes." Certification shall remain in effect until October 31, 1997 unless revoked. This certificate is subject to an annual fee as prescribed by Section 1017(a), Health and Safety Code, on the anniversary date of the certificate.

Please note that your laboratory is required to notify the Environmental Laboratory Accreditation Program of any major changes in the laboratory such as the transfer of ownership, change of laboratory director, change in location, or structural alterations which may affect adversely the quality of analyses (Section 1014(b), California Health & Safety Code).

Please note that the new regulations pertaining to environmental laboratories were adopted on December 5, 1994 and may be found in the California Code of Regulations, Title 22, Division 4, Chapter 19, Sections 64801 through 64827.

Your continued cooperation is essential in order to establish a reputation for the high quality of the data produced by environmental laboratories certified by the State of California.

If you have additional questions, please contact Nelson Lan at (510) 540-2800.

Sincerely,

George C. Kulasingam, Ph.D., Manager

George C. Kuleyn

Environmental Laboratory Accreditation Program

ENVIRONMENTAL LABORATORY ACCREDITATION/REGISTRATION List of Approved Fields of Testing and Analytes

McCampbell Analytical, Inc. 110 2nd Avenue South, #D7 Pacheco, CA

TELEPHONE No: (510) 798-1620 CALIFORNIA COUNTY: Contra Costa CERTIFICATE NUMBER: 1644 EXPIRATION DATE: 10/31/97

Microbiology of Drinking Water and Wastewater (-----) Total Coliforms in Drinking Water by Multiple Tube Fermentation ------ N Fecal Coliforms/E. Coli in Drinking Water by MTF 1.2 Total Coliforms in Drinking Water by Membrane Filter Technics 1.3 1.4 Fecal Coliforms/E. Coli in Drinking Water by Membrane Filter Technics 1.5 1.6 1.7 Fecal Coliforms/E. Coli in Drinking Water by Clark's Presence/Absence Heterotrophic Plate Count 1.8 1.9 Total Coliforms in Wastewater by Multiple Tube Fermentation ----- N Fecal Coliforms in Wastewater by MTF -----1.10 Total Coliforms in Wastewater by Membrane Filter Technics 1.11 1.12 Fecal Coliforms in Wastewater by Membrane Filter Technics Fecal Streptococci or Enterococci by Multiple Tube Technics 1.13 1.14 Fecal Streptococci or Enterococci by Membrane Filter Technics -----Inorganic Chemistry and Physical Properties of Drinking Water excluding Toxic Chemical Elements 2 (-----) Alkalinity ----- N 2.1 Sulfate ----- N Calcium ----- N 2.2 2.13 Total Filterable Residue 2.3 and Conductivity ----- y Corrosivity ----- N 2.4 2.14 Iron (Colorimetric Methods Only) ----- N 2.5 Manganese (Colorimetric Methods Only) - N 2.15 Hardness ----- N 2.6 2.16 Phosphate, ortho ----- N 2.7 2.17 Silica (Colorimetric Methods Only) ---- N MBAS ----- N 2.8 2.18 Cyanide ----- N Nitrate ----- N 2.9 Nitrite ----- N 2.10 2.11 3 Analysis of Toxic Chemical Elements in Drinking Water (-----) Arsenic ----- W 3.1 Barium ----- N 3.2 Zinc ------3.12 Cadmium ----- N Aluminum ----- N 3.3 3.13 Chromium, total ----- N
Copper ---- N
Iron ---- N 3.4 Asbestos ------3.14 3.5 3.15 EPA Method 200.7 ----- N 3.6 3.16 EPA Method 200.8 (Unregulated Elements Lead ----- N 3.7 and Lead Only) ----- N
Antimony ----- N
Beryllium ---- N Manganese ----- N 3.8 3.17 Mercury ----- N 3.9 3.18 Selenium ----- N Nickel ----- N 3.10 3.19 Thallium -----3.20 4 Organic Chemistry of Drinking Water (measurement by GC/MS combination) (-----) 4.1 4.2 4.3 4.4 5 Organic Chemistry of Drinking Water (excluding measurements by GC/MS combination) (-----) EPA Method 501.1 ----- N 5.1 5.16 5.17 EPA Method 548 ----- N EPA Method 501.2 ----- N 5.2 EPA Method 549 ----- N EPA Method 502.1 ----- N EPA Method 502.2 ----- N 5.3 5.18 EPA Method 550 ----- N 5.4 EPA Method 550.1 ----- N 5.19 5.5 EPA Method 503.1 ----- N 5.20 EPA Method 551 ----- N EPA Method 504 ----- N 5.6 EPA Method 552 ----- N 5.21 EPA Method 505 ----- N 5.7 EPA Method 506 ----- N 5.8 EPA Method 507 ----- N 5.9 EPA Method 508 ----- N 5.10 EPA Method 508A ----- N 5.11 EPA Method 510.1 5.12 EPA Method 515.1 ----- N 5.13 EPA Method 531.1 ----- N 5.14 5.15 EPA Method 547 ----- N

Radiochemistry (-----) 6.1 Gross Alpha and Beta Radiation ---- N Gross Alpha by Co-precipitation ----- N 6.11 Total Radium ----- N 6.2 Radium 228 ----- N 6.12 Radium 226 ----- N Radioactive lodine ----- N 6.3 6.13 Uranium ------ N 6.4 Gross Alpha & Beta in Hazardous Wastes -- N 6.14 Radon 222 ----- N 6.5 6.15 Alpha Emitting Radium Isotopes 6.5 Radioactive Cesium ----- N in Haz. Wastes ----- N Iodine 131 ----- N Radium 228 in Hazardous Wastes ----- N 6.7 Radioactive Strontium ----- N 6.8 Tritium ----- N 6.9 Gamma and Photon Emitters ----- N 6.10 Shellfish Sanitation (-----) Shellfish meat Microbiology ------ N 7.1 Paralytic Shellfish Poison ------ N 7.2 Domoic Acid ------7.3 Aquatic Toxicity Bioassays (-----) 8.1 Hazardous Waste Aquatic Toxicity Bioassay (Title 22, CCR, 66261.24(a)(6)) ------ N 8.2 Wastewater Testing According to Kopperdahl (1976) using Freshwater Fish. Wastewater Testing According to EPA/600/4-85/013 using Freshwater and/or Marine Organisms ------ N 8.3 8.4 8.5 8.6 Wastewater Testing by EPA Method 1006 ------8.7 Wastewater Testing by EPA Method 1007 ------8.8 Wastewater Testing by EPA Method 1009 8.9 8.10 Wastewater Testing According to Anderson, et. al. (1990) using Giant Kelp (Macrocystis pyrifera) -- N Wastewater Testing According to Anderson, et. al. (1990) using Red Abalone (Haliotus rufescens) --- N 8.11 Wastewater Testing According to Dinnel and Stober (1987) using Purple Sea Urchin 8.12 (Strongylocentrotus purpuratus) -----Wastewater Testing According to Dinnel and Stober (1987) using Red Sea Urchin 8.13 (Strongylocentrotus franciscanus) Wastewater Testing According to Dinnel and Stober (1987) using Sand Dollar 8.14 Wastewater Testing According to procedure E 724-89 (ASTM, 1989) using Pacific Dyster 8.15 (Crassostrea gigas) -----Wastewater Testing According to procedure E 724-89 (ASTM, 1989) using California Bay Mussel 8.16 (Mytilus edulis) -------8.17 Wastewater Testing According to Standard Methods (APHA, 1989) using an alga (Skeletonema costatum) ------ u Wastewater Testing According to EPA/600/4-90/027 using Freshwater and/or Marine Organisms ------ N 8.18 9 Physical Properties Testing of Hazardous Waste (06-24-92) 9.1 9.2 Corrosivity - pH determination (Title 22, CCR, 66261.22) -----y 9.3 9.4 10 Inorganic Chemistry and Toxic Chemical Elements of Hazardous Waste Antimony Cobalt 7040(-----) ----- N 7200(05-21-93) ----- Y 7041(----- N 7201(-----) ------ N 10.8 Copper 7060(05-21-93) ----- Y 7210(05-21-93) ----- y 7061(07-26-94) ----- Y 7211(-----) ------ N 10.3 10.9 7080(----- N 7420(05-21-93) ----- y 7081(-----) ------ N 7421(05-21-93) ------ Y Beryllium 10.10 Mercury 7090(05-21-93) ----- Y 7470(07-26-94) ----- Y 7091(05-21-93) ----- Y 7471(07-26-94) ----- Y 10.5 Cadmium Molybdenum 7130(05-21-93) ----- Y 7480(-----) ----- N 7131(----- N 7481(-----) ----- N Chromium, total 10.12 Nickel 7190(----- N 7520(05-21-93) ----- Y 7191(----- N

CERTIFICATE NUMBER: 1644 EXPIRATION DATE: 10/31/97 10.13 Selenium 7740(05-21-93) ----- Y 10.19 Cyanide 7741(07-26-94) ----- Y 9010(06-24-92) ----- Y 10.14 Silver 300-0(-----) ----- N 7760(05-21-93) ----- Y 7761(05-21-93) ----- Y 340.1(----- N 340.2(-----) 10.15 Thallium 340.3(------) 7840(05-21-93) ----- Y 7841(05-21-93) ----- y 10.21 Sulfide 10.16 Vanadium 9030(----- N 7910(----- N 10.22 Total Organic Lead 7911(----- N (05-21-93) ------ Y 10.17 Zinc 10.23 EPA Method 6010(07-26-94) ----- Y 7950(05-21-93) ----- Y 10.24 EPA Method 6020(----- N 7951(----- N 10.18 Chromium (VI) 7195(----- N 7196(06-24-92) ----- Y 7197(----- N 7198(----- N Extraction Tests of Hazardous Waste (06-24-92) 11.1 - California Waste Extraction Test (WET) (Title 22, CCR, 66261.100, Appendix II) ------ Y Extraction Procedure Toxicity ------11.2 11.3 Toxicity Characteristic Leaching Procedure (TCLP) Inorganics Only ------ N 11.4 Toxicity Characteristic Leaching Procedure (TCLP) Extractables Only ------ N 11.5 Toxicity Characteristic Leaching Procedure (TCLP) Volatiles Only 11.6 12 Organic Chemistry of Hazardous Waste (measurement by GC/MS combination) EPA Method 8240(08-04-95) ------- y 12.1 EPA Method 8250(-----) ------12.2 12.3 12.4 12.5 12.6 13 Organic Chemistry of Hazardous Waste (excluding measurements by GC/MS combination) 13.13 EPA Method 8310(------) ------ N 13.14 EPA Method 632 (----- N EPA Method 8010(02-10-93) ----- Y 13.1 EPA Method 8015(08-04-95) ----- Y 13.2 EPA Method 8020(10-07-91) ----- Y 13.15 Total Petroleum Hydrocarbons 13.3 EPA Method 8030(----- N 13.4 (LUFT Manual) (10-07-91)----- Y 13.16 EPA Method 8011(------) ------ N 13.17 EPA Method 8021(------ N 13.18 EPA Method 8070(----- N EPA Method 8040(----- N 13.5 EPA Method 8060(----- N 13.6 EPA Method 8080(08-04-95) ----- Y 13.7 EPA Method 8090(----- N 13.19 EPA Method 8110(----- N 13.8 EPA Method 8100(----- N 13.20 EPA Method 8141(----- N 13.21 EPA Method 8330(---- N 13.9 13.10 EPA Method 8120(----- N EPA Method 8140(----- N 13.11 13.12 EPA Method 8150(-----) ------ N 14 Bulk Asbestos Analysis (-----) 14.1 1% or Greater Asbestos Concentrations (Title 22, CCR, 66261.24(a)(2)(A)) ------N 15 Substances Regulated Under the California Safe Drinking Water and Toxic Enforcement Act (Proposition 65) and Not Included in Other listed Groups. 16 Wastewater Inorganic Chemistry, Nutrients and Demand (10-07-91) Acidity ----- N 16.13 Cyanide amenable to Chlorination ----- N Alkalinity ----- N 16.14 Fluoride ----- N 16.15 Hardness ----- N 16.2 Ammonia ----- N 16.3 Biochemical Oxygen Demand ----- N 16.16 Kjeldahl Nitrogen ----- N 16.4 Boron ----- Y
Bromide ----- N 16.17 Magnesium ······ Y 16.5 16.18 Nitrate ----- N 16.6 Calcium ----- Y 16.19 Nitrite ----- N 16.7

16.20 Oil and Grease ----- Y

16.21 Organic Carbon ----- N

16.22 Oxygen, Dissolved ----- N

cBOD

Chemical Oxygen Demand ----- N

16.10 Chloride ----- N

16.11 Chlorine Residual, total ----- N 16.12 Cyanide ----- N

16.8

	ATION DATE: 10/31/97			
16.23	рН ү	16.39	Surfactants (MBAS)	
16.24	Phenols N	16.40		
16.25	Phosphate, ortho N		Tannin and Lignin	
16.26	Phosphorus, total	16.41	Turbidity	
16.27		16.42	Iron (Colorimetric Only)	
	Potassium Y	16.43	Manganese (Colorimetric Only)	N
16.28	Residue, Total Y	16.44	Total Recoverable	
16.29	Residue, Filterable (TDS) Y		Petroleum Hydrocarbons	٧
16.30	Residue, Nonfilterable (TSS) Y	16.45	Total Organic Halides	
16.31	Residue, Settleable (SS) N		, otal of Sallie Hat Idea	м
16.32	Residue, Volatile N			
16.33	Silica Y			
16.34	Sodium Y			
16.35	Specific Conductance Y			
16.36	Sulfate N			
16.37	Sulfide (includes total & soluble) - N			
16.38	Sulfite N			
17	Toxic Chemical Elements in Wastewater (05-21-	-93)		
17.1	Aluminum N	17.18	Nickel	
17.2	Antimony N	17.19	Osmium	
17.3	Arsenic Y	17.20	Palladium	
17.4	Barium N			
		17.21	Platinum	
17.5	Beryllium Y	17.22	Rhodium	
17.6	Cadmium Y	17.23	Ruthenium	N
17.7	Chromium (VI) Y	17.24	Selenium	Y
17.8	Chromium, total Y	17.25	Silver	Ÿ
17.9	Cobalt Y	17.26	Strontium	
17.10	Copper Y	17.27	Thallium	
17.11	Gold N	17.28	Tin ******	
17.12	Iridium N		Titanium	
17.13	Iron N	17.29		
	•	17.30	Vanadium	
17.14	Lead Y	17.31	Zinc	
17.15	Manganese N	17.32	EPA Method 200.7	
17.16	Mercury Y	17.33	EPA Method 200.8	
17.17	Molybdenum N	17.34	DCP	N
	•	17.35	Asbestos	ų.
	·	17.35	Asbestos	N
18	·	17.35	Asbestos	N
18	Organic Chemistry of Wastewater (measurements	17.35 by GC/MS c	Asbestos)	•
18 18.1	Organic Chemistry of Wastewater (measurements	17.35 by GC/MS c	Asbestos)	•
	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625	17.35	Asbestos	Y
18.1 18.2	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625	17.35	Asbestos	Y
18.1 18.2 18.3	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613	17.35 s by GC/MS c	Asbestos	YN
18.1 18.2 18.3 18.4	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625	17.35	Asbestos	YNN
18.1 18.2 18.3	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613	17.35	Asbestos	YNN
18.1 18.2 18.3 18.4 18.5	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613	17.35	Asbestos	YNN
18.1 18.2 18.3 18.4	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625	17.35	Asbestos	YNN
18.1 18.2 18.3 18.4 18.5	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements)	17.35 by GC/MS c	Asbestos	Y N N N
18.1 18.2 18.3 18.4 18.5	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 by GC/MS c	Asbestos	Y N N N N
18.1 18.2 18.3 18.4 18.5 19	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 Y EPA Method 602	17.35 by GC/MS c	by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 609	Y N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 603	17.35 by GC/MS c	by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 609 EPA Method 610	Y N N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 by GC/MS construction of the seasurements 19.8 19.9	by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 609	Y N N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c s by GC/MS c easurements 19.8 19.9 19.10	by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 611	Y N N N Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 Y EPA Method 602 Y EPA Method 603 N EPA Method 604 N EPA Method 605 N EPA Method 606 N	17.35 s by GC/MS c s by GC/MS c s by GC/MS c s by GC/MS c s by GC/MS c 19.8 19.9 19.10 19.11 19.12	by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632	. Y N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 Y EPA Method 602 Y EPA Method 603 N EPA Method 604 N EPA Method 605 N EPA Method 606 N	17.35 s by GC/MS c s by GC/MS c s by GC/MS c s by GC/MS c s by GC/MS c 19.8 19.9 19.10 19.11	by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 611	. Y N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c s by GC/MS c s by GC/MS c s by GC/MS c s by GC/MS c 19.8 19.9 19.10 19.11 19.12	by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632	. Y N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 Y EPA Method 602 Y EPA Method 603 N EPA Method 604 N EPA Method 605 N EPA Method 606 N EPA Method 607 N	17.35 s by GC/MS c easurements 19.8 19.9 19.11 19.12 19.13	by GC/MS combination) (06-24-92) EPA Method 608	. Y N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 Y EPA Method 602 Y EPA Method 603 N EPA Method 604 N EPA Method 605 N EPA Method 606 N	17.35 s by GC/MS c easurements 19.8 19.9 19.11 19.12 19.13	by GC/MS combination) (06-24-92) EPA Method 608	. Y N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 Y EPA Method 602 Y EPA Method 603 N EPA Method 604 N EPA Method 605 N EPA Method 606 N EPA Method 607 N Inorganic Chemistry and Toxic Chemical Elements	17.35 s by GC/MS c easurements 19.8 19.9 19.11 19.12 19.13 hts of Pesti	by GC/MS combination) (06-24-92) EPA Method 608	. Y N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding ms EPA Method 601 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 604 EPA Method 605 EPA Method 605 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Element	17.35 s by GC/MS c s by GC/MS c easurements 19.8 19.9 19.10 19.11 19.12 19.13 hts of Pesti	by GC/MS combination) (06-24-92) EPA Method 608	. YNNN Y YNN YNN YN Y
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c s by GC/MS c easurements 19.8 19.9 19.10 19.11 19.12 19.13 hts of Pesti	by GC/MS combination) (06-24-92) EPA Method 608	
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 604 EPA Method 605 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Elements Processed Foods by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission	17.35 by GC/MS c easurements 19.8 19.9 19.10 19.11 19.12 19.13 hts of Pesti	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food ()	H H H H H H H H H H H H H H H H H H H
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 609 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food ()	THEFFE HANNEY TO THE STATE OF T
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 604 EPA Method 605 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Elements Processed Foods by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 609 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food ()	THEFFE NUMBER OF THEFFE STREET
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 632 EPA Method 619 cide Residues in Food ()	י יייי אואארי אואארי אואארי
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 632 EPA Method 619 cide Residues in Food ()	י יייי אואארי אואארי אואארי
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 632 EPA Method 619 cide Residues in Food ()	STATE
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 632 EPA Method 619 cide Residues in Food ()	YNNN YNIGHT
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 603 EPA Method 605 EPA Method 605 EPA Method 605 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Elements Processed Foods by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetry Raw Commodities by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Inductively Co	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608	Y N N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20 20.1	Organic Chemistry of Wastewater (measurements EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 605 EPA Method 605 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Elements Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma Atomic Emission Atomic Absorption Spectrophotometry Raw Commodities by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma Atomic Emison I	17.35 s by GC/MS c s by GC/MS c seasurements 19.8 19.9 19.11 19.12 19.13 nts of Pesti	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608	Y N N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20	Organic Chemistry of Wastewater (measurements EPA Method 624 EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 605 EPA Method 606 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Elements Processed Foods by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetric Dairy Products by One of the Following Methods	17.35 s by GC/MS c s by GC/MS c seasurements 19.8 19.9 19.10 19.11 19.12 19.13 hts of Pesti	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food ()	Y N N N N N N N N N N N N N N N N N N N
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20 20.1	Organic Chemistry of Wastewater (measurements EPA Method 625 EPA Method 1613 EPA Method 1625 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 605 EPA Method 606 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Elements Processed Foods by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetric Dairy Products by One of the Following Methods Atomic Absorption Spectrophotometry Dairy Products by One of the Following Methods Atomic Absorption Spectrophotometry	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food ()	
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20 20.1	Organic Chemistry of Wastewater (measurements EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 605 EPA Method 605 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Element Processed Foods by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetric Dairy Products by One of the Following Methods Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission In	17.35 s by GC/MS c s s by GC/MS c s s by GC/MS c s s s s s s s s s s s s s s s s s s s	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food () notometry Notometry	
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20 20.1	Organic Chemistry of Wastewater (measurements EPA Method 624	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food () notometry Notometry	
18.1 18.2 18.3 18.4 18.5 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 20 20.1	Organic Chemistry of Wastewater (measurements EPA Method 625 EPA Method 1613 EPA Method 613 Organic Chemistry of Wastewater (excluding measurements) EPA Method 601 EPA Method 602 EPA Method 602 EPA Method 603 EPA Method 604 EPA Method 605 EPA Method 605 EPA Method 606 EPA Method 607 Inorganic Chemistry and Toxic Chemical Element Processed Foods by One of the Following Method Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetry Inductively Coupled Plasma Atomic Emission Inductively Coupled Plasma/Mass Spectrome Colorimetric Dairy Products by One of the Following Methods Atomic Absorption Spectrophotometry Inductively Coupled Plasma Atomic Emission In	17.35 s by GC/MS c	Asbestos combination (08-04-95) by GC/MS combination) (06-24-92) EPA Method 608 EPA Method 610 EPA Method 611 EPA Method 632 EPA Method 619 cide Residues in Food () notometry Notometry	YNNN YNIGHT THE THE THE THE THE THE THE THE THE T

20.4	Feed Products by One of the Following Methods Atomic Absorption Spectrophotometry	N
21	Organic Chemistry of Pesticide Residues in Food (measurements by GC/MS) ()	
21.1	Gas Chromatographic/Mass Spectrometric Methods in Processed Foods	
21.2	Gas Chromatographic/Mass Spectrometric Methods in Raw Commodities	NI.
21.3	Gas Chromatographic/Mass Spectrometric Methods in Dairy Products	
21.4	Gas Chromatographic/Mass Spectrometric Methods in Feed Products	N
22	Organic Chemistry of Pesticide Residues in Food (Excluding Measurement by GC/MS Combination)	
22.1	Halogenated Compounds in Processed Foods by One of the Following Methods Gas Chromatography	N
	Liquid Chromatography/Mass Spectrometry	N
22.2	Organophosphorous Compounds in Processed Foods by One of the Following Methods Gas Chromatography	••
	High Pressure Liquid Chromatography	N
	Liquid Chromatography/Mass Spectrometry	N
22.3	Carbamates in Processed Foods by One of the Following Methods	••
	Gas Chromatography	N
	Liquid Chromatography/Mass Spectrometry	N N
22.4	Halogenated Compounds in Raw Commodities by One of the Following Methods Gas Chromatography	••
	High Pressure Liquid Chromatography	
22 -	Liquid Chromatography/Mass Spectrometry	N
22.5	Organophosphorous Compounds in Raw Commodities by One of the Following Methods	
	Gas Chromatography	N
	Liquid Chromatography/Mass Spectrometry	N
22.6	Carbamates in Raw Commodities by One of the Following Methods	
	Gas Chromatography	N
	High Pressure Liquid Chromatography	
22.7	Liquid Chromatography/Mass Spectrometry	N
22.1	Halogenated Compounds in Dairy Products by One of the Following Methods Gas Chromatography	N
	High Pressure Liquid Chromatography	Ň
22.8	Liquid Chromatography/Mass Spectrometry	N
22.0	Organophosphorous Compounds in Dairy Products by One of the Following Methods Gas Chromatography	LI .
	High Pressure Liquid Chromatography	
22.0	Liquid Chromatography/Mass Spectrometry	N
22.9	Carbamates in Dairy Products by One of the Following Methods Gas Chromatography	
	Gas Chromatography	N
	Liquid Chromatography/Mass Spectrometry	A
22.10	Halogenated Compounds in Feed Products by One of the Following Methods	N
	Gas Chromatography	A.F
	High Pressure Liquid Chromatography	
	Liquid Chromatography/Mass Spectrometry	N.
22.11	Organophosphorous Compounds in Feed Products by One of the Following Methods	
	Gas Chromatography	N
	Liquid Chromatography/Mass Spectrometry	N
22.12	Carbamates in Feed Products by One of the Following Methods	•
	Gas Chromatography	u
	High Pressure Liquid Chromatography	N.
	Liquid Chromatography/Mass Spectrometry	N

APPENDIX B

PHASE II TEST PIT ANALYTICAL TEST DATA

1900 Wyatt Drive, Suite 1, Santa Clara, California 95054

CONTAINERS

CHAIN-OF-CUSTODY Phone 408/987-0210 Fax 408/988-0815 PROJECT NAME GBINUD/ CUPILSH Type of Analysis PROJECT NUMBER ADICINE MAINT. CENTER.
| Report Due | Verbal Due 095041 Send Report Attention of: Condition JAVID GLICK 1 / / Initial / / Samples Containers Cntnrs Station Location Grab Sample Number Date Time 6" BINAS SEVETOR PIT 76133 100 816 SP-51 NACS SIEVATUR PIT 76134 EP-52 800 SW COPNER 7 9ABSIA - 31 76135 83**8** P171-51 7613R SW CORNER OF 83B PIT1 52 9/3 STA - 71 3E COMMENT 76137 ARSSTAZ -BHZ 9/13 5779 - 31 DID TANK DIPTAK 76138 858 DIP TANK DIPTHK 52 76139 904 PITTSUL 76140 PITZ-51 915 PIT - SVC 76141 918 PITZ-52 -71 AVTUSHIP NE COMMER OF 76142 925 AUTOSHOP -31 NE CONNER 7 76143 AVTO SHP 930 AND SHUP -7 52 Religionished by: (Signature) Detailine | Received by: (Signature) Date/Time 5-6-97 14 HOUZ DUSI Remarks: 11:41 Relinquished (by: (Signature) | Date/Time Date/Time VOAS TOZG MENASIGNEDA PRESERVATIVE (elinquished by:(Signature) Date/Time Date/Time Received by: (Signature) APPROPRIATE COOD CONDITION_

Geo Plexus, Inc.	Client Project ID:# C95041; EBMUD/Walsh	Date Sampled: 05/06/97
1900 Wyatt Drive, Suite 1		Date Received: 05/06/97
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 05/06/97
	Client P.O:	Date Analyzed: 05/06/97

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030) Ethylben-% Rec. Matrix TPH(g) **Xylenes** Client ID **MTBE** Benzene Toluene Lab ID zene Surrogate 0.025 76133 EP-S1 ND 0.016 0.016 0.010 102 S 3.9,i0.010 0.045 0.061 0.10 96 76134 EP-S2 S ND 21,b,j S ND 0.026 ND 0.25 1.3 105 76135 Pit 1-S1 47,b,j 76136 Pit 1-S2 S 14,b,j ND 0.030 0.007 0.017 0.054 101 S 2900,j 6.2 16 8.5 7.5 13 101 76137 Gas Sta1-S1 76138 **DIPTNK-S1** S ND ND ND ND ND ND 101 S ND ND 100 76139 **DIPTNK-S2** ND ND ND ND 76140 Pit 2-S1 S ND ND ND ND ND ND 101 S ND ND ND ND 0.007 104 76141 Pit 2-S2 2.1,iND ND ND ND 100 76142 S ND ND Auto Shp-S1 76143 Auto Shp-S2 S ND ND ND ND ND ND 101 0.5 0.5 0.5 0.5 Reporting Limit unless W 50 ug/L 5.0 otherwise stated; ND means not detected S 0.05 0.005 0.005 0.005 0.005 $1.0 \, \text{mg/kg}$ above the reporting limit

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP extracts in mg/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) stronglyaged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

Geo Plexus, Inc.	Client Project ID:# C95041; EBMUD/Walsh	Date Sampled: 05/06/97
1900 Wyatt Drive, Suite 1		Date Received: 05/06/97
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 05/06/97
	Client P.O:	Date Analyzed: 05/06/97

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel *

EPA methods modified 8015, and 3550 or 3510; California RWQCB (SF Bay Region) method GCFID(3550) or GCFID(3510) % Recovery $TPH(d)^{+}$ Lab ID Client ID Matrix Surrogate S 76133 EP-S1 ND 95 S 76134 EP-S2 103 31,g 76135 Pit 1-S1 S 3.3,d 95 76136 Pit 1-S2 S 6.1,d 100 76137 Gas Sta1-S1 S 7000,d 102 96 76138 **DIPTNK-S1** S ND 76139 **DIPTNK-S2** S 2.4,b102 S 76140 Pit 2-S1 9.1,g102 Pit 2-S2 S 76141 1.3,b103 76142 Auto Shp-S1 S ND 103 76143 S ND Auto Shp-S2 103

-	
	* writer complete and conserved in well and shades completely made all TCI D and CTI C and all TCI D
	* water samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP and STLC extracts in mg/L

50 ug/L

1.0 mg/kg

W

S

Reporting Limit unless other-

wise stated; ND means not detected above the reporting limit

[&]quot; cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

Geo Plexus, Inc. Cli 1900 Wyatt Drive, Suite 1		Client Proje	ct ID:# C95041; EBMUD/Walsh	Date Sampled: 05/06/97 Date Received: 05/06/97		
Santa Clara,	Santa Clara, CA 95054		act: David Glick	Date Extracted: 05/06/97		
		Client P.O:		Date Analyzed: 05/06/97		
EPA methods 4			& Grease (with Silica Gel Clean- 5520 D/E&F or 503 D&E for solids and 5.			
Lab ID	Client ID	Matrix	Oil & Grease*			
76133	EP-S1	S	ND			
76134	EP-S2	S	160			
76135	Pit 1-S1	S	ND			
76136	Pit 1-S2	S	ND			
76137	Gas Sta1-S1	S	2500			
76138	DIPTNK-S1	S	ND	,		
76139	DIPTNK-S2	S	ND			
76140	Pit 2-S1	S	380			
76141	Pit 2-S2	S	ND			
76142	Auto Shp-S1	S	ND			
76143	Auto Shp-S2	S	ND			
Reporting Limit unless other-		W	5 mg/L			
	wise stated; ND means not detected above the reporting limit		50 mg/kg			

^{*} water samples are reported in mg/L and soil and sludge samples in mg/kg

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5vol. % sediment.

Geo Plexus, Inc.	Client Project ID:#	C95041; EBMUD/Walsh	Date Sampled: 05/06/97		
1900 Wyatt Drive, Suite 1			Date Received: 05/06/97		
Santa Clara, CA 95054	Client Contact: Day	rid Glick	Date Extracted: 05/06/97		
	Client P.O:		Date Analyzed: 05/06/97		
	Volati	le Halocarbons	<u>, , , , , , , , , , , , , , , , , , , </u>		
EPA method 601 or 8010					
Lab ID	76137	76143			
Client ID	Gas Sta1-S1	Auto Shp-S2			
<u>Matrix</u>	S	S			
Compound		Concentratio	n		
Bromodichloromethane	ND< 30	ND			
Bromoform ^(b)	ND< 30	ND			
Bromomethane	ND< 30	ND			
Carbon Tetrachloride ^(c)	ND< 30	ND			
Chlorobenzene	ND< 30	ND			
Chloroethane	ND< 30	ND			
2-Chloroethyl Viny l Ether ^(d)	ND< 30	ND			
Chloroform (e)	ND< 30	ND	·		
Chloromethane	ND< 30	ND			
Dibromochloromethane	ND< 30	ND			
1,2-Dichlorobenzene	ND< 30	ND			
1,3-Dichlorobenzene	ND< 30	ND			
1,4-Dichlorobenzene	ND< 30	ND			
Dichlorodifluoromethane	ND< 30	ND			
1,1-Dichloroethane	ND< 30	ND			
1,2-Dichloroethane	ND< 30	ND			
1.1-Dichloroethene	ND< 30	ND			
cis 1,2-Dichloroethene	ND< 30	ND			
trans 1,2-Dichloroethene	ND< 30	ND			
1,2-Dichloropropane	ND< 30	ND			
cis 1,3-Dichloropropene	ND< 30	ND			
trans 1,3-Dichloropropene	ND< 30	ND			
Methylene Chloride ^(f)	ND < 30	ND			
1,1,2,2-Tetrachloroethane	ND< 30	ND			
Tetrachloroethene	ND < 30	ND			
1,1,1-Trichloroethane	ND< 30	ND			
1,1,2-Trichloroethane	ND< 30	ND ND			
Trichloroethene	ND< 30	ND ND			
Trichlorofluoromethane	ND< 30	ND ND			
Vinyl Chloride ^(g)	ND< 30	ND			
% Recovery Surrogate	108	103			
	100	103			
* unter and unnor samples are repor	1	I I I TOLE			

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L.

 $Reporting\ limit\ unless\ otherwise\ stated:\ water/TCLP\ extracts,\ ND<\ 0.5ug/L;\ soil\ \ and\ sludge,\ ND<\ 5ug/kg$

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (i) liquid sample that contains greater than ~ 5 vol. % sediment; (j) sample diluted due to high organic content.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 05/05/97-05/06/97 Matrix: Soil

	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample			Amount			RPD
	(#74888)	MS	MSD	Spiked	MS	MSD	
 TPH (gas)	0.000	2.180	2.233	2.03	107	110	2.4
Benzene	0.000	0.218	0.212	0.2	109	106	2.8
Toluene	0.000	0.224	0.216	0.2	112	108	3.6
Ethylbenzene	0.000	0.212	0.212	0.2	106	106	0.0
Xylenes	0.000	0.628	0.624	0.6	105	104	0.6
TPH (diesel)	0	305	308	300	102	103	0.7
TRPH (oil and grease)	0.0	25.9	26.8	26	100	103	3.4

[%] Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

QC REPORT FOR EPA 8010/8020/EDB

Date: 05/06/97

Matrix:

Soil

	Conce	entrati	on (ug/k	3)	% Reco	very	
Analyte	Sample			Amount			RPD
	(#74888)	MS	MSD	Spiked	MS	MSD	
	l		<u> </u>	1			
 1,1-DCE	0	94	98	100	94	98	4.2
Trichloroethene	0	81	86	100	81	86	6.0
EDB	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobenzene	0	84	86	100	84	86	2.4
 Benzene	N/A	N/A	N/A	N/A	 N/A	N/A	N/A
Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobz (PID)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	l			1	1		

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

[%] Rec. = (MS - Sample) / amount spiked x 100

Geo Plexus, Inc. CHAIN-OF-CUSTODY 8594AGP317 Phone 408/987-0210 Fax 408/988 Type of Analysis PROJECT HAME (BI)1VD/ CLASH ADYLINE MAINT CENTER 095041 Condition Type Verbal Due Send Report Attention of: Initial of DAVID GLICK Samples Containers Cntnrs Station Location Grab Comp Time Sample Number 76133 6" BINA23 SEVATOR PIT ICA 3/4/97 TURES BIL 5P-51 76134 GIEVATION PIT Bio EP-52 76135 3W CORNER 7 913517 - 31 03**8** PIT1-51 76136 SWCORNAR OZ. 83B 9A3 STA -71 PIT1 52 76137 SE COMMENT GRS5TR1 -BHZ 913 5171 - 31 76138 DID THUK DIPTAK 858 76139 DIP TANK DIPTHK 52 904 76140 PITZ-51 915 76141 PIT - SVC 918 PITZ-32 -71 76142 NECOMOR 9 AVTUSHP 925 ANTUSTED -31 76143 NE CORNER 7 AVIU SHP 930 AUDI STED -7 HOUZ DUSH Deta Time | Received by: (Signature) Date/Time 5-6-97 Remarks: 11:41 VOIS DOOR MENUS ORIENT Received by: (Signature) Date/Time PRESERVATIVE APPROPRIATE Relinquished by:(Signature) Date/Time Received by: (Signature) Date/Time CONTAINERS

CHAIN-OF-CUSTODY 8594AGP317 PROJECT HAME (BITUD)/ WALSH Type of Analysis PROJECT NUMBER C95041 ADILINE MAILT CENTER Condition Type Send Report Attention of: Initial of DAVID GLICK Samples Containers Cntnrs Station Location Grab Time Comp Date Sample Number 76133 6" BIMPS SEVATOR PIT 13/4/97 BIL TURES 5P-51 76134 GIEVATION PIT 810 EP-52 76135 3W COPNER 7 913517 -31 83**8** PIT1-51 76136 SWCORNER OZ-838 9/3 STA -71 PIT1 52 76137 SE COMMENT CIASSTAL -BHZ 9/13 5171 - 31 76138 DID THOUK DIPTAK 858 76139 DIP TANK DIPTAK 52 904 76140 915 PIT2-51 76141 918 PITZ-32 76142 NE Comer 9 AVTUSTIP 925 AUTOSHUP -31 76143 NE COUNTER & AVIU SHP 930 AURI SHUP -7 14 HOUZ DUSH Date/Time 5-6-97 Detertine | Received by: (Signature) Remarks: 11:41 MIS DES MEUSINE Received by: (Signature) Date/Time Relinquished by: (Signature) Date/Time PRESERVATIVE Received by: (Signature) Date/Time **APPROPRIATE** Relinquished by:(Signature) | Date/Time COOD CONDITION_ I THE COAPE ARCENT

Geo Plexus, Inc. 1900 Wyatt Drive, Suite 1		Client Project	: ID:# C95041; EBMUD/Walsh	Date Sampled: 05/06/97		
				Date Received: 05/06/97		
Santa Clar	Santa Clara, CA 95054		t: David Glick	Date Extracted	: 05/13-05/14/97	
7				Date Analyzed	: 05/14/97	
EPA method	ls 5030, modified 8015, an	id 8020 or 602; Ca	Benzene lifornia RWQCB (SF Bay Region) meth	od GCFID(5030)		
Lab ID	Client ID	Matrix	Benzene		% Rec. Surrogate	
76135	Pit 1-S1	ZHETCLP	ND		115#	
76136	Pit 1-S2	ZHETCLP	ND		103	
76137	Gas Sta1-S1	ZHETCLP	0.15		99	
Reportin	g Limit unless oth-	ZHETCLP	0.0005			
erwise stated; ND means not detected above the reporting limit		S	0.005			

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP extracts in mg/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

Tele: 510-798-1620 Fax: 510-798-1622

Geo Plexus, Inc. 1900 Wyatt Drive, Suite 1		Clier	Client Project ID:# C95041; EBMUD/Walsh Date Sampled: 05/06/97				97			
							Dat	e Receive	d: 05/06	/97
Santa Clara, CA	A 95054	Clier	nt Contact: D	avid Glick			Dat	e Extracto	ed: 05/19)/97
		Clier	nt P.O:				Dat	e Analyze	d: 05/20	/97
EPA analytical met	hods 6010/200.7	, 239.2 ⁺]	LUFT Meta	als [*]					
Lab ID	Client ID	Matrix	Extraction	Cadmium	Chromium	Lea	d	Nickel	Zinc	% Rec. Surrogate
76135,36,37	Comp.# 1	S	TTLC	ND	33	170	0	74	400	102
76133,38,40,42	Comp.# 2	S	TTLC	ND	52	9.5	5 40	40 44	44	104
										·
						,				
										
Reporting Limit u		S	TTLC	0.5 mg/kg	0.5	3.0)	2.0	1.0	
	stated; ND means not detected above the reporting limit		TTLC	0.005 mg/L	0.005	0.00)5	0.05	0.05	
			STLC,TCLP	0.01 mg/L	0.05	0.2	2	0.05	0.05	

^{*} soil samples and sludge are reported in mg/kg, and water samples and all STLC & TCLP extracts in mg/L

Lead is analysed using EPA method 6010 (ICP) for soils, STLC & TCLP extracts and method 239.2 (AA Furnace) for water samples

^o EPA extraction methods 1311(TCLP), 3010/3020(water, TTLC), 3040(organic matrices, TTLC). 3050(solids, TTLC); STLC from CA Title

[#] surrogate diluted out of range; N/A means surrogate not applicable to this analysis

[&]amp; reporting limit raised due matrix interference

i) liquid sample that contains greater than ~ 2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

1900 Wyatt Drive, Suite 1		Client Pro	ject ID:# C95	041; EBMUD/Walsh	Date Sampled: 05/06/97 Date Received: 05/06/97		
		Client Co	ntact: David G	lick	Date Extracted:	05/20-05/22/97	
		Client P.C):		Date Analyzed:	05/22/97	
EPA analytical m	nethods 6010/200.7, 23	19.2+	Lead &	& Zinc [*]			
Lab ID	Client ID	Matrix	Extraction ^o	Lead*	Zinc*	% Recovery Surrogate	
76135,36,37	Comp # 1	S	STLC	8.6	14	NA	
					* *************************************		
Reporting Limit unless otherwise stated; ND means not detected above		S	TTLC	3.0 mg/kg	1.0 mg/kg		
	porting limit	W	TTLC	0.005 mg/L	0.05 mg/L		
			STLC,TCLP	0.2 mg/L	0.05 mg/L		

^{*} soil and sludge samples are reported in mg/kg, and water samples and all STLC & TCLP extracts in mg/L

⁺ Lead is analysed using EPA method 6010 (ICP) for soils, sludges, STLC & TCLP extracts and method 239.2 (AA Furnace) for water samples

^o EPA extraction methods 1311(TCLP), 3010/3020(water,TTLC), 3040(organic matrices,TTLC), 3050(solids,TTLC); STLC from CA Title 22

[#] surrogate diluted out of range; N/A means surrogate not applicable to this analysis

[&]amp; reporting limit raised due matrix interference

i) liquid sample that contains greater than ~ 2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 05/14/97

Matrix: ZHETCLP

	Concent	ration	(mg/L)		% Reco	very	
Analyte				Amount			RPD
	Sample	MS	MSD	Spiked	MS	MSD	ļ
							
 TPH (gas)	0.0	96.2	96.3	 100.0	96.2	96.3	0.1
Benzene	0.0	8.4	8.5	10.0	84.0	85.0	1.2
Toluene	0.0	8.4	8.6	10.0	84.0	86.0	2.4
Ethyl Benzene	0.0	8.5	8.5	10.0	85.0	85.0	0.0
Xylenes	0.0	25.6	25.4	30.0	85.3	84.7	0.8
 TPH (diesel)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TRPH (oil & grease)	 N/A 	N/A	N/A	 N/A 	N/A	N/A	N/A

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

[%] Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR METALS

Date: 05/20/97

Matrix: Soil

Extraction:TTLC

	Concentr	ation			% Reco	very	
Analyte	(mg	/kg,mg/I	(۲)	Amount	-		RPD
-	Sample	MS	MSD	Spiked	MS	MSD	
Arsenic	0.0	4.7	4.9	5.0	95	99	4.2
Selenium	0.0	4.2	4.1	5.0	85	83	2.2
Molybdenum	0.0	4.9	5.1	5.0	98	101	3.0
Silver	0.0	0.5	0.5	0.5	99	97	1.5
Thallium	0.0	4.7	4.7	5.0	94	93	0.3
Barium	0.0	4.2	4.1	5.0	84	82	2.4
Nickel	0.0	4.9	5.0	5.0	97	99	2.0
Chromium	0.0	5.1	5.2	5.0	101	104	2.6
Vanadium	j 0.0	4.6	4.7	5.0	92	94	2.1
Beryllium	0.0	5.1	5.1	5.0	102	102	0.0
Zinc	0.0	5.1	5.2	5.0	102	104	1.7
Copper	0.0	4.3	4.3	5.0	87	85	1.8
Antimony	0.0	4.6	4.7	5.0	91	93	2.2
Lead	0.0	4.8	5.1	5.0	97	101	4.2
Cadmium	0.0	4.9	4.9	5.0	98	99	0.6
Cobalt	0.0	4.7	4.8	5.0	95	96	1.1
Mercury	0.000	0.260	0.260	0.25	104	104	0.0
	.1			l			

[%] Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

APPENDIX C

PHASE II EXCAVATION ANALYTICAL TEST DATA

1900 Wyatt Drive, Suite 1, Santa Clara, California 95054
Phone 408/987-0210 Fax 408/988-0815

PROJECT NUMBER	11		ME WALS	# PHOIT	sc					Ty	pe o	f Ana	lysi	S	(j.,				疆			
Send Report Atte	ention of:		Report		erbal Due	Numb		Tyj o	pe f	1372×/MI		1902.45E								77749 77749	97.6	itial
Sample Number	Date	Time	Comp Gra	b Station	1 Location	Cntr	nrs	Conta	iners	16HdI	TPHO	55,0						To the second		11/1/1		
20×1-51	411/47	930	/	_	idetuall L'	10	A .	6'80 T	Mis Be	1	/						¥01. 107.2 10.12		には			
20×1-52		930	/	-	B1					V	/				(3.5%) - 1					4,49		
2041-53		940	1	_	Dew All	: : : : : : : : : : : : : : : : : : :				V	/	'				7.57				7//		
ZOX1 -34		945	/		~ SiDsWA"I L'		W			V	/	1						20 3.7		#//		
ZUXI -55		952	/		in sample			新 (20) 生 (20) 20)		V	/			Ž.					野	M		
Z0x1-54		1000	/	-	9 0000M					V	V	<i>*</i>						V.				
20×1 -57		1050			7/ 7/				& 9.1	V	1										1830	
2021-58		1050	/	_	91	1790s 1851 18	14 113			V	V		***	, ,,	Maria Maria	1)*:		test P				
20×1 -59		1053		· -	81					1	1						819 1 7 1 10 10	a): (1): (4): (4			and the	
ZUX1 -5 TU		1125	/	_	gottom al					V	~					_		Act is	147. 147. 14.			
ZUX1-511		1130	/	8 W	7.5'					V	-											
20×1-512	<i>o.a</i>	1138	1	5 W	5'		1			V							1	.: , :		·		·
perfinancished by	MM	/3/3	ant?	by: (signar		61 69 3 69		Rema	rks: Z	41	100	<u> </u>	<u>-: L</u> 	W.	<u>5H</u>							
Relinquished by:		Date/Lime //20 Date/Time	10unny	by: (Signat MULMC by: (Signat	6/11	e/Time 22 e/Time	Брт					6	<u> </u>									

0007XGP321 CHAIN-OF-CUSTODY

1900 Wyatt Drive, Suite 1, Santa Clara; California 95054 .
Phone 408/987-0210 Fax 408/988-0815

PROJECT NUMBER	/	PROJECT NA	ME W	ALSH AMC	Pacitie .				26	pe o	f And	ilysi	\$ (%)			**************************************	71. V		779	
Send Report Att	flick		Re	port Du	Verbal Due	•	Number of	Type of	losex In	PHOL	South	はないので						· · · · · · · · · · · · · · · · · · ·		Initial
Sample Humber	Date	Time	Comp	Grab	Station Location		Cntnrs	Containers	TOHA	Ţ	0112								Samples	
20×1-513	4/1/47	1147		1	35 510EWA -81	U	1cm	L"BMB TUBE	V	1					i ai ii ii			響	等 基本的 2000年	
~					4					1 2					13. 13.			N		
														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			瓣			
										/. ()		1970 1870		A PARTY						idaa ka Kaasaa Markaa
				!	- 15 to 15 t		10 15/2 to			100					74 (1) (1) (1) (1)			A. A		
										/% p-1		W. Mar 2000 1000 1000 1000 1000 1000 1000 100		7. 7.				1016	LOSO SULTUCIONES	
						.*	A STATE	10	EU.	CON	DITIC	3.00 N	3	Ž.	RES	TV	TIVE		OAO MEMES OTHER	
									AD S	PAC	E AB	SEN	V	. (ONT	AINE	S.			
		 			1	1	11.1									1		\$7.5 2		
	-				 	- /								7. s.u. 7. s.u.		11.		1, 1		
							\											1		
Relinquished by	4/M	130	1	-P	(Signature)		Time / G7	Remarks:	74	11/20	72	n		w	31				:	
Relinquished by:	16 <u> </u>	1416	<u>Oer</u>	inu m	C: (Signature) WUNIC C: (Signature)	6/11	/Time 2∂5pm /Time								2 - 25					1

Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/11/97
1900 Wyatt Drive, Suite 1	Pacific EBMUD AMC	Date Received: 06/11/97
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/11/97
	Client P.O:	Date Analyzed: 06/11-06/12/97

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX* EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
77406	20X1-S1	S	ND	ND	. ND	ND	ND	ND	99
77407	20X1-S2	S	ND	ND	ND	ND	ND	ND	95
77408	20X1-S3	S	1.1,j	ND	ND	ND	ND	0.012	96
77409	20X1-S4	S	2.0,j	ND	ND	ND	ND	0.017	96
77410	20X1-S5	S	3.0,j	ND	NĎ	0.006	ND	0.008	100
77411	20X1-S6	S	ND	ND	ND	0.006	ND	0.011	96
77412	20X1-S7	S	ND	ND	ND	ND	ND	ND	95
77413	20X1-S8	S	2.7,c,a	ND	0.040	0.018	0.013	0.084	103
77414	20X1-S9	S	3.1,c,a	ND	1.1	0.14	0.031	0.081	100
77415	20X1-S10	S	ND	ND	ND	ND	ND	ND	98
77416	20X1-S11	S	11,c,a	ND<0.2	0.055	0.033	0.019	0.12	111#
77417	20X1-S12	S	67,j	ND<0.7	4.1	0.21	0.33	0.44	108#
77418	20X1-S13	S	4.2,j	ND	0.010	0.009	ND	0.033	105
	ng Limit unless ise stated; ND	w	50 ug/L	5.0	0.5	0.5	0.5	0.5	
	t detected above porting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

^{*} cluttered chromatogram; sample peak coelutes with surrogate peak

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/11/97
1900 Wyatt Drive, Suite 1	Pacific EBMUD AMC	Date Received: 06/11/97
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/11/97
	Client P.O:	Date Analyzed: 06/11-06/12/97

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel *

EPA methods modified 8015, and 3550 or 3510; California RWQCB (SF Bay Region) method GCFID(3550) or GCFID(3510)

Lab ID	Client ID	Matrix	TPH(d) ⁺	% Recovery Surrogate
77406	20X1-S1	S	1.8,g	98
77407	20X1-S2	S	ND	102
77408	20X1-S3	S	ND	105
77409	20X1-S4	S	3.2,b/g	106
77410	20X1-S5	S	3.0,b/g	103
77411	20X1-S6	S	1.4,g	100
77412	20X1-S7	S	2.6,g	100
77413	20X1-S8	S	3.8,b/g	109
77414	20X1-S9	S	ND	102
77415	20X1-S10	S	4.0,g	103
77416	20X1-S11	S	7.9,d,g	102
77417	20X1-S12	S	27,d	105
77418	20X1-S13	S	9.7,d,g	106
Reporting L	Reporting Limit unless otherwise stated; ND means not detected above		50 ug/L	
	eporting limit	S	1.0 mg/kg	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

Geo Plexus, I	Inc	<u>~</u> .	(Decision ID #000041 W 11	Date Sampled: 06/11/97					
	Drive, Suite 1		t Project ID: #C95041; Walsh ic EBMUD AMC	Date Received: 06/11/97					
•		Clien	t Contact: David Glick	Date Extracted: 06/11/97					
Santa Clara,	CA 95054								
		Clien	t P.O:	Date Analyzed: 06/11/97					
EPA methods 41	· ·		Dil & Grease (with Silica Gel Cleads 5520 D/E&F or 503 D&E for solids and	= -					
Lab ID	Client ID	Matrix		Grease*					
77408	20X1-S3	S		ND					
77409	20X1-S4	S		ND					
	·								
	nit unless otherwise	W	5	mg/L					
	ns not detected above porting limit	S	50	mg/kg					
* water samples	s are reported in mg/L,	wipe sample	s in mg/wipe, soil and sludge samples in mg	/kg, and all TCLP / STLC / SPLP extracts in					

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5vol. % sediment.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/10/97-06/11/97 Matrix: Soil

	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample (#74306) MS 		MSD	Amount Spiked	MS	MSD	RPD
	! <u></u>			: 			-
TPH (gas)	0.000	2.046	2.058	2.03	101	101	0.6
Benzene	0.000	0.164	0.170	0.2	82	85	3.6
Toluene	0.000	0.186	0.192	0.2	93	96	3.2
Ethylbenzene	0.000	0.190	0.194	0.2	95	97	2.1
Xylenes	0.000	0.566	0.580	0.6	94	97	2.4
TPH (diesel)	0	350	342	300	117	114	2.3
TRPH (oil and grease)	0.0	30.2	32.8	30	101	109	8.3

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

						,	·						<u>Ă</u>			I was	DESCRIPTION OF		00 (A)(A)(A)
PROJECT NUMBER		PROJECT NA	ME WA	LH F	PARIFIC			19.	ype o	of An	alysi	is	Ł					19/1///	
095041		i	BMU	•	AMC			1/4		.	, ,		<u> </u>						
Send Report Att	,	, ,	Re	port Du	e Verbal Due	Number	Туре	EX		£36						Co		11/4/51	
DAVID GE	.icik / 12 k	H CAMAC	rtu.	/ /	, ,	of	of	-c/orex	5	300	Q	1.5	V					////	
Sample Number	Date	Time	Comp	Grab	Station Location	Cntnrs	Containers	-H77	1/0-	01. 4 Chemst	Ŕ	1/0/	11			A		111/45	" /
20X1-514	414/97	0830		j	B. B. T. M.	Ker	C"BRASS TUBE	レ	V							41		Thirds,	
20×1-515	1/11/97	0840		1	NORTH SIDE WALL			V	V							0	2	1/2/1/15	7.
2001-516	4-1	0850		1	BUTTOMY BUTTOMY E85			V	1/							ภ		11/4	
20/4-517	61.	0960		1	EAPT SIDE WALL			V	~						_	5		Jan.;	100 m
2011-518		0915		ſ	EXCAUNTUN BUTTEM			V	1						<u> </u>	57		1/1/2/15	***
20×1-519	1/1/87	0970		1	ERSTSIREWALL E7			V	1							71			/// ta:
40×1-51		1000		1	SOUTH SOPE WALL,			1	1/1/	l	1	V	<i>i</i>			\$/10			
HOX1-52		1025		(EXCAPATION BETTOM C 8			V	1/		1					Ç.	7/1/	(iii)	
HOX1-53		1030		1	BUTTEM BUTTEM ES			V	V	1	V	<i>i</i> /	-			57	Research of the	37 1000 ST 1000 ST	Period
H6X1-54		1033		1	EXCAPATION BOTTOM			V	V	1	1	レ	レ	_		æ			
		1215		1	WESTSIDE WALL		, E.	V	 	1			,			57			
HOX1-55	i '//	1243	!		WEST WALL			V	!	!	V	!				•			
Relinquished by:	6	1633		mul	unic MAI 6/1	e/Time 2 4:15	Remarks:	24	1.fe	scL	, Ki	154	ŗ						
Relinquished by:	(6ignature)	Date/Time	Rede	ived by	: (Signature) Date	e/Time							#15. Y	15			• • • •		
Relinquished by:	(Signature)	Date/Time	Rece	ived by	: (Signature) Date	e/Time	FAX CL	יאר.	1	Di o 5	16 CT	43	158	121011 3 54	C. 444	フレしグで	η·τ.;		

Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/12/97
1900 Wyatt Drive, Suite 1	Pacific EBMUD AMC	Date Received: 06/12/97
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/12/97
	Client P.O:	Date Analyzed: 06/12-06/13/97

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX* EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
77449	20X1-S14	S	ND	ND	ND	0.006	ND	ND	99
77450	2OX1-S15	S	4.5,c,a	ND	0.069	0.021	0.010	0.025	107
77451	2OX1-S16	S	6.5,j	ND	0.26	0.032	0.012	0.047	97
77452	2OX1-S17	S	12,c,b	ND	0.29	0.041	0.023	0.15	101
77453	2OX1-S18	S	ND	ND	ND	ND	ND	ND	98
77454	2OX1-S19	S	1.2,j	ND	0.006	0.007	ND	0.021	101
77456	HOX1-S2	S	ND	ND	ND	ND	ND	ND	99
77457	HOX1-S3	S	ND	ND	ND	ND	ND	ND	104
77458	HOX1-S4	S	ND	ND	ND	ND	ND	ND	95
77459	2OX1-20	S	2.6,g	ND	ND	ND	ND	0.014	104
77460	HOX1-S5	S	ND	0.61	ND	ND	ND	0.019	102
77461	HOX1-S6	S	ND	ND	ND	ND	ND	ND	105
77462	HOX1-S7	S	ND	ND	ND	ND	ND	ND	102
77463	HOX1-S8	S	ND	1.2	0.040	0.084	ND	0.017	103
	g Limit unless se stated; ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	
	t detected above porting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

[&]quot; cluttered chromatogram; sample peak coelutes with surrogate peak

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

CHAIN-OF-CUSTODY

Phone 408/987-0210 Fax 408/988-0815

· · · · · · · · · · · · · · · · · · ·	COMV		r Knecelo				τy	pe o	f An	alvs	is	7			1			- to the tax	
		D						•		,-	. •	~				7.46	12.77	4	335M
Send Report Attention of:		~ 11	MC				, j		552		· · · · · ·	<u>``</u>		, -		14. (1.) X 5. (1.)	7/1/4		
		Report Du	e Verbal Du	ie Nur	ber	Туре	In		#			5					1111	5/2	
DAVID GLICK/PICH Com	Wetto	/ /	, ,		of	of	KITZ,	اعرا	gre	Ç	Ñ	12					7/1/4	- E.	
Sample Number Date Ti	me Com	Grab	Station Locati		:nrs	Containers	1716/	TOHA	2700	30	PNAIS	1.4				V. 19	119/14	**************************************	
HX1-56 92/97 12	50	1	BUTTOM NUKTHUNESTG	910 le	A	U'BMBB TUBE	<i>V</i>	/	V	V	V				L)		Tipen:		
HOXI-57 1/2/97 130	13		0 8'	raci			V	V	//	\	/				5		777/4	6	
HOX1-58 11197 131	0		N. SIDE WI	»ic			レ	V	V	V	/				53		11018	V/	
40x1-59 1/497 131	17	/	ROTTOM NORTHEASTE				1	V	1	L	/_	1			DA.	Sec. 17 50 1	777/4	, T.	
40×1-310 1/2/97 13	2,3		BETTOME				L	//	/ /	/_		//			5		/////.(:		
40x1-511 118/87 134	15	/	BOSTOMEI	11			_										11161	(1)	
HOXI-51 1497 141	10	/	Nouth @ 11,	<i>'</i>			V	V	\ .\	<u> </u>	~	/			เา				
HOX1-52 4/2/97 14	20		BUTTON CI	<i>וו</i> י			ν	V	V	レ	i	4							
21101-53 4/1247 14	25	/	BOTTON SOUTH O	"	:		V	Ų	U	\ \	V	1			S				
20×1-54 4/2/14	31	1	N. SDE CI	0.5		1	V	V	1	J	V	1			70				
		 - -		' `			л°_						SETVA	TVE_	S 0&G	META	SOUTH		
						HE	OD C AD S					APP CON	ROPRI/	S S					
elinquished by: (Signature) Date	3 9	Mile		Date/Tim 6/12 4		Remarks:	24	1/6	SUL	e	Ros	54							
elinquished by:(Signature) Date	/Time Rec	eived by:	(Signature)	Date/Time	e										, , ,	7			
elinquished by:(Signature) Date,	/Time Rec	eived by:	(Signature)	Date/Time	e	FARC	op y	ブ	120	zCT	7.	シ	Z1c	it Ci	MA	せなひ	510 4	1395	5 O

Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/12/97		
1900 Wyatt Drive, Suite 1	Pacific EBMUD AMC	Date Received: 06/12/97		
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/12/97		
	Client P.O:	Date Analyzed: 06/12-06/13/97		

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
77464	HOX1-S9	S	ND	ND	ND	ND	ND	ND	99
77465	HOX1-S10	S	ND	ND	ND	ND	ND	ND	100
77466	HOX1-S11	S	ND	ND	ND	ND	ND	ND	100
77467	2HOX1-S1	S	ND	ND	ND	ND	ND	ND	99
77468	2HOX1-S2	S	ND	ND	ND	ND	ND	ND	100
77469	2HOX1-S3	S	ND	ND	ND	ND	ND	ND	100
77470	2HOX1-S4	S	ND	ND	ND	ND	ND	ND	99
			·						
	ng Limit unless ise stated; ND	w	50 ug/L	5.0	0.5	0.5	0.5	0.5	
	t detected above porting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

[&]quot; cluttered chromatogram; sample peak coelutes with surrogate peak

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/12/97		
1900 Wyatt Drive, Suite 1	Pacific EBMUD AMC	Date Received: 06/12/97		
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/12/97		
	Client P.O:	Date Analyzed: 06/12-06/13/97		

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel *

EPA methods modified 8015, and 3550 or 3510; California RWQCB (SF Bay Region) method GCFID(3550) or GCFID(3510)

Lab ID	Client ID	Matrix	$TPH(d)^{\scriptscriptstyle{+}}$	% Recovery Surrogate
77449	20X1-S14	S	ND	103
77450	20X1-S15	S	3.8,g	103
77451	20X1-S16	S	ND	104
77452	20X1-S17	S	5.3,d,g	106
77453	20X1-S18	S	1.2,g	108
77454	20X1-S19	S	1.5,g	104
77456	HOX1-S2	S	3.3,g	103
77457	HOX1-S3	S	1.8,g	100
77458	HOX1-S4	S	3.7,g	101
77459	2OX1-20	S	11,g,b	104
77460	HOX1-S5	S	4.7,g	102
77461	HOX1-S6	S	1.8,g	102
77462	HOX1-S7	S	3.5,g	103
77463	HOX1-S8	S	5.6,g	107
Reporting L	Reporting Limit unless otherwise		50 ug/L	
	eans not detected above reporting limit	S	1.0 mg/kg	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[&]quot;cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/12/97		
1900 Wyatt Drive, Suite 1	Pacific EBMUD AMC	Date Received: 06/12/97		
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/12/97		
	Client P.O:	Date Analyzed: 06/12-06/13/97		

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel *

EPA methods modified 8015, and 3550 or 3510; California RWQCB (SF Bay Region) method GCFID(3550) or GCFID(3510)

Lab ID	Client ID	Matrix	TPH(d) ⁺	% Recovery Surrogate
77464	HOX1-S9	S	ND	101
77465	HOX1-S10	S	ND	103
77466	HOX1-S11	S	1.8,g	105
77467	2HOX1-S1	S	ND	103
77468	2HOX1-S2	S	ND	103
77469	2HOX1-S3	S	ND	105
77470	2HOX1-S4	S	ND	105
-				
····				
Reporting Li	imit unless otherwise ans not detected above	W	50 ug/L	
the re	eporting limit	s	1.0 mg/kg	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

[&]quot;The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

Geo Plexus,	Inc	C1:	Dunit of ID: #C05041, Wolch	Date Sampled: 06/12/97		
,	Drive, Suite 1		Project ID: #C95041; Walsh c EBMUD AMC	Date Received: 06/12/97		
Santa Clara,	•	Client	Contact: David Glick	- -		
ŕ		Client	P.O:			
EPA methods 4			il & Grease (with Silica Gel Cl is 5520 D/E&F or 503 D&E for solids at			
Lab ID	Client ID	Matrix	Oil	& Grease*		
77456	HOX1-S2	s	ND			
77457	HOX1-S3	s	ND			

77456	HOX1-S2	S	ND
77457	HOX1-S3	S	ND
77458	HOX1-S4	S	ND
77459	2OX1-20	S	1500
77460	HOX1-S5	S	ND
77461	HOX1-S6	S	ND
77462	HOX1-S7	S	ND
77463	HOX1-S8	S	ND
77464	HOX1-S9	S	ND
77465	HOX1-S10	S	ND
77466	HOX1-S11	S	ND
77467	2HOX1-S1	S	ND
77468	2HOX1-S2	S	ND
77469	2HOX1-S3	S	ND
	mit unless otherwise	W	5 mg/L
	porting limit	S	50 mg/kg

^{*} water samples are reported in mg/L, wipe samples in mg/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in mg/L

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5vol. % sediment.

Geo Plexus, l	Inc.	Clica	+ Project ID: #C05041. Walsh	Date Sampled: 06/12/97			
1900 Wyatt I			t Project ID: #C95041; Walsh ic EBMUD AMC	Date Received: 06/12/97			
Santa Clara,		Clien	t Contact: David Glick	Date Extracted: 06/12/97			
		Clien	t P.O:	Date Analyzed: 06/12/97			
EPA methods 41			Oil & Grease (with Silica Gel Clean ods 5520 D/E&F or 503 D&E for solids and 5				
Lab ID	Client ID	Matrix		Grease*			
77470	2HOX1-S4	S	Ν	ID			
				`			
	nit unless otherwise ns not detected above	W	5 r	ng/L			
the reporting limit			50 r	ng/kg			
mg/L	water samples are reported in mg/L, wipe samples in mg/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in mg/L n) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5vol. % sediment.						

Geo Plexus, Inc.	Clima Durina ID #COCOA1 W/ 11	Date Sampled: 06/12/97				
1900 Wyatt Drive, Suite 1 Santa Clara, CA 95054	Client Project ID: #C95041; Walsh Pacific EBMUD AMC	Date Received: 06/12/97				
	Client Contact: David Glick	Date Extracted: 06/12/97				
	Client P.O:	Date Analyzed: 06/12/97				
Volatile Halocarbons						

EPA method 601 or 8010 Lab ID 77456 77457 77458 77460 HOX1-S2 HOX1-S3 HOX1-S4 HOX1-S5 Client ID Matrix S S S S Compound Concentration ND ND Bromodichloromethane ND ND ND ND Bromoform(b) ND ND Bromomethane ND ND ND ND Carbon Tetrachloride(c) ND ND ND ND ND ND Chlorobenzene ND ND ND ND Chloroethane ND ND 2-Chloroethyl Vinyl Ether(d) ND ND ND ND ND Chloroform (e) ND ND ND Chloromethane ND ND ND ND ND ND ND ND Dibromochloromethane ND ND ND ND 1,2-Dichlorobenzene ND ND ND ND 1,3-Dichlorobenzene ND ND ND ND 1,4-Dichlorobenzene ND ND Dichlorodifluoromethane ND ND ND ND ND ND 1.1-Dichloroethane 1,2-Dichloroethane ND ND ND ND 1,1-Dichloroethene ND ND ND ND ND ND ND cis 1,2-Dichloroethene ND ND ND ND ND trans 1,2-Dichloroethene ND ND 1,2-Dichloropropane ND ND cis 1,3-Dichloropropene ND ND ND ND ND ND ND ND trans 1,3-Dichloropropene ND Methylene Chloride(f) ND ND ND ND ND ND ND 1,1,2,2-Tetrachloroethane ND ND ND ND Tetrachloroethene 1,1,1-Trichloroethane ND ND ND ND ND ND ND ND 1.1.2-Trichloroethane

ND

ND

ND

100

.ND

ND

ND

97

ND

ND

ND

98

ND

ND

ND

98

Trichloroethene
Trichlorofluoromethane

Vinyl Chloride(g)

Comments

ì

% Recovery Surrogate

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content.

Valettle Tralegoryhore					
	Client P.O:	Date Analyzed: 06/12/97			
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/12/97			
1900 Wyatt Drive, Suite 1	Client Project ID: #C95041; Walsh Pacific EBMUD AMC	Date Received: 06/12/97			
Geo Plexus, Inc.	Client Desired ID: #C05041 IV 11	Date Sampled: 06/12/97			

Volatile Halocarbons

EDA	mathod	601	ΔŦ	2010	

Lab ID	77461	77462	77463	77464
Client ID	HOX1-S6	HOX1-S7	HOX1-S8	HOX1-S9
Matrix	S	S	S	S
Compound	Concentration			
Bromodichloromethane	ND	ND	ND	ND
Bromoform ^(b)	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Carbon Tetrachloride ^(c)	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
2-Chloroethyl Vinyl Ether(d)	ND	ND	ND	ND
Chloroform (e)	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
cis 1,2-Dichloroethene	ND	ND	ND	ND
trans 1,2-Dichloroethene	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
cis 1,3-Dichloropropene	ND	ND	ND	ND
trans 1,3-Dichloropropene	ND	ND	ND	ND
Methylene Chloride ^(f)	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
Vinyl Chloride ^(g)	ND	ND	ND	ND
% Recovery Surrogate	98	100	100	96
Comments				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

Ŋ,

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content.

Valettle Helenak					
	Client P.O:	Date Analyzed: 06/12/97			
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/12/97			
1900 Wyatt Drive, Suite 1	Pacific EBMUD AMC	Date Received: 06/12/97			
Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/12/97			

Volatile Halocarbons

Lab ID	77465	77466	77467	77468
Client ID	HOX1-S10	HOX1-S11	2HOX1-S1	2HOX1-S2
Matrix	S	S	S	S
Compound	Concentration			
Bromodichloromethane	ND	ND	ND	ND
Bromoform ^(b)	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Carbon Tetrachloride ^(c)	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
2-Chloroethyl Vinyl Ether(d)	ND	ND	ND	ND
Chloroform (e)	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
cis 1,2-Dichloroethene	ND	ND	ND	ND
trans 1,2-Dichloroethene	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
cis 1,3-Dichloropropene	ND	ND	ND	ND
trans 1,3-Dichloropropene	ND	ND	ND	ND
Methylene Chloride ^(f)	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
Vinyl Chloride ^(g)	ND	ND	ND	ND
% Recovery Surrogate	97	97	97	96
Comments				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content.

Cae Planue Inc	Client Project ID: #C95041; Walsh Pacific EBMUD AMC		Date Sample	Date Sampled: 06/12/97	
Geo Plexus, Inc.			Date Received: 06/12/97		
1900 Wyatt Drive, Suite 1					
Santa Clara, CA 95054	Client Contact: David Glick		Date Extract	Date Extracted: 06/12/97	
	Client P.O:		Date Analyzed: 06/12/97		
EPA method 601 or 8010	Volati	le Halocarbons	\		
Lab ID	77469	77470			
Client ID	2HOX1-S3	S2OX1-S4			
Matrix	S	S S			
Compound		Concent	ration		
Bromodichloromethane	ND	ND	ration .		
Bromoform ^(b)	ND ND	ND ND			
Bromomethane	ND ND	ND ND			
Carbon Tetrachloride ^(c)	ND ND	ND ND			
Chlorobenzene	ND ND	ND ND			
Chloroethane	ND ND	ND			
2-Chloroethyl Vinyl Ether ^(d)	ND ND	ND ND			
Chloroform (c)	ND	ND ND			
Chloromethane	ND ND	ND			
Dibromochloromethane	ND ND	ND			
1,2-Dichlorobenzene	ND	ND	·		
1,3-Dichlorobenzene	ND	ND			
1,4-Dichlorobenzene	ND	ND			
Dichlorodifluoromethane	ND	ND			
1,1-Dichloroethane	ND	ND			
1,2-Dichloroethane	ND	ND	- 		
1,1-Dichloroethene	ND	ND			
cis 1,2-Dichloroethene	ND	ND			
trans 1,2-Dichloroethene	ND	ND			
1,2-Dichloropropane	ND	ND			
cis 1,3-Dichloropropene	ND	ND			
trans 1,3-Dichloropropene	ND	ND			
Methylene Chloride ⁽¹⁾	ND	ND			
1,1,2,2-Tetrachloroethane	ND	ND			
Tetrachloroethene	ND	ND			
1,1,1-Trichloroethane	ND	ND			
1,1,2-Trichloroethane	ND	ND			
Trichloroethene	ND	ND			
Trichlorofluoromethane	ND	ND			
Vinyl Chloride ^(g)	ND	ND			
% Recovery Surrogate	97	98			
Comments					

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content.

110 Second Avenue South, #D7, Pacheco, CA 94553
Telephone: 510-798-1620 Fax: 510-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Geo Plexus, Inc.			Client Project ID: #C95041; Walsh			Date Sampled: 06/12/97			
1900 W	yatt Drive, Suit	Pacific EB	Pacific EBMUD AMC				Date Received: 06/12/97		
Santa Clara, CA 95054 Client Contact: David Glick					Date Extrac	ted: 06/1	2/97		
	Client P.O:					Date Analy	Date Analyzed: 06/13/97		
LUFT Metals* EPA analytical methods 6010/200.7, 239.2*									
Lab ID	Client ID	Matrix	Extraction°	Cadmium	Chromium	Lead	Nickel	Zinc	% Recovery Surrogate
77456	HOX1-S2	S	TTLC	ND	42	11	22	40	102
77457	HOX1-S3	S	TTLC	ND	28	6.6	28	25	102
77458	HOX1-S4	S	TTLC	ND	40	6.3	36	44	101
77460	HOX1-S5	S	TTLC	ND	33	5.4	18	25	97
77461	HOX1-S6	S	TTLC	ND	34	6.6	74	45	100
77464	HOX1-S9	S	TTLC	ND	24	4.1	28	24	103
77465	HOX1-S10	S	TTLC	ND	25	4.8	26	26	101
77466	HOX1-S11	S	TTLC	ND	30	5.9	42	45	98
77467	2HOX1-S1	S	TTLC	ND	32	4.8	40	31	93
77468	2HOX1-S2	S	TTLC	ND	35	6.6	43	33	100
77469	2HOX1-S3	S	TTLC	ND	33	9.0	66	33	100
77470	2HOX1-S4	S	TTLC	ND	35	4.3	30	22	102
Reporti	ng Limit unless	S	TTLC	0.5 mg/kg	0.5	3.0	2.0	1.0	
otherwise stated; ND means not detected above		TTLC	0.005 mg/L	0.005	0.005	0.05	0.05		

^{*} water samples are reported in mg/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in mg/L

0.05

0.2

0.01 mg/L

STLC,

TCLP

0.05

0.05

the reporting limit

[&]quot;Lead is analysed using EPA method 6010 (ICP) for soils, STLC & TCLP extracts and method 239.2 (AA Furnace) for water samples

^o EPA extraction methods 1311(TCLP), 3010/3020(water,TTLC), 3040(organic matrices,TTLC), 3050(solids,TTLC); STLC - CA Title 22

[#] surrogate diluted out of range; N/A means surrogate not applicable to this analysis

[&]amp; reporting limit raised due to matrix interference

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/12/97

Matrix: Soil

	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample			Amount			RPD
<u> </u>	(#75863) 	MS	MSD	Spiked 	MS	MSD	
TPH (gas)	0.000	1.974	2.045	2.03	97	101	3.5
<u>-</u>	!			:			
Benzene	0.000	0.162	0.174	0.2	81	87	7.1
Toluene	0.000	0.184	0.180	0.2	92	90	2.2
Ethylbenzene	0.000	0.192	0.182	0.2	96	91	5.3
Xylenes	0.000 	0.632	0.536	0.6	105	89	16.4
TPH (diesel)	0	319	316	300	106	105	0.8
TRPH	0.0	22.4	22.3	20.8	108	107	0.4

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/13/97

Matrix: Soil

	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample			Amount			RPD
-	(#75863)	MS	MSD	Spiked	MS	MSD	
							
TPH (gas)	0.000	1.846	2.150	2.03	91	106	15.2
Benzene	0.000	0.174	0.184	0.2	87	92	5.6
Toluene	0.000	0.180	0.192	0.2	90	96	6.5
Ethylbenzene	0.000	0.182	0.194	0.2	91	97	6.4
Xylenes	0.000	0.538	0.572	0.6	90	95	6.1
TPH (diesel)	0	320	320	300	107	107	0.0
TRPH (oil and grease)	0.0	22.0	21.3	20.8	106	102	3.2

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR EPA 8010/8020/EDB

Date: 06/12/97

Matrix:

Soil

Sample					very	
	Sample		Amount			RPD
#75863)	MS	MSD	Spiked	MS	MSD	
						
0	89	89	100	89	89	0.0
0	82	82	100	82	82.	0.0
N/A	N/A	N/A	N/A	N/A	N/A	N/A
0	85	85	100	85	85	0.0
N/A	N/A	N/A		N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	A\N	N/A	N/A	N/A	N/A
	0 0 N/A 0 N/A N/A	0 89 0 82 N/A N/A 0 85 N/A N/A	0 89 89 0 82 82 N/A N/A N/A 0 85 85 N/A N/A N/A N/A N/A	0 89 89 100 0 82 82 100 N/A N/A N/A N/A 0 85 85 100 N/A N/A N/A N/A N/A N/A N/A	0 89 89 100 89 0 82 82 100 82 N/A N/A N/A N/A N/A N/A 0 85 85 100 85 N/A	0 89 89 100 89 89 0 82 82 100 82 82 N/A N/A N/A N/A N/A N/A N/A 0 85 85 100 85 85 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR ICP and/or AA METALS

Date: 06/13/97

Matrix: Soil

Extraction: TTLC

	Concent	ration			% Reco	very	
Analyte	(mg	g/kg,mg/	L)	Amount			RPD
	Sample	MS	MSD	Spiked	MS	MSD	
Total Lead	0.0	4.76	4.79	5.0	95	96	0.6
Total Cadmium	0.0	5.30	5.24	5.0	106	105	1.1
Total Chromium	0.0	5.29	5.23	5.0	106	105	1.0
Total Nickel	0.0	4.91	4.97	5.0	.98	99	1.4
Total Zinc	0.0	5.46	5.39	5.0	109	108	1.3
 Total Copper	0.00	4.78	4.74	5.0	96	95	0.8
 STLC Lead 	N/A	N/A	N/A	N/A 	N/A	N/A	N/A

[%] Rec. = (MS - Sample) / amount spiked x 100

7706/7/ CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL M TURN AROUND TIME: 110 2nd AVENUE, # D7 RUSH 24 HOUR 48 HOUR 5 DAY ROUTINE PACHECO, CA 94553 ANALYSIS REQUEST OTHER (510) 798-1620FAX (510) 798-1622 REPORT TO: BILL 10: ED HAMILION MAL PROJECT NUMBER: PROJECT NAME: 8814 GP-C 95041 LEAD (7240/7421/239.2/6010)
ORGANIC LEAD
RC! PROJECT LOCATION: COMMENTS EPA 602/8020 EPA 808/8080 EPA 508/8080 - PCS EPA 524/8240/8250 METHOD SAMPLING CONTAINERS MATRIX I - 17 Metais - Priority Poll PRESERVED SAMPLE EPA 625/8270 LOCATION PAHS DATE WATER SOIL AIR SLUDGE TIME OTHER OTHER HNO3 Ye. CAM -EPA -HOX1-52 6/12 1025 OIA VOQ 77456 HOX1-53 OZA 1030 77457 HOXI-S4 034 1038 77458 HOXI-S5 04A 1243 77460 HOXI-S6 05A 1250 77461 HOXI-S9 06A 1317 77464 HOXI-SIO 1323 07A 77465 HOXI-SII 08A 1345 77466 09A 2HOXI-SI 1410 77467 2HOXI-S2 10A 1420 77468 2HOXI-S3 11A 1425 77469 2H0X1-54 12A 1431 77470 RELINQUISHED BY: b/12 RECEIVED BY: TIME REMARKS: 5:20 Fax A.S.A.P. RECEIVED BY: DATE TIME 5-12-97 18:00 RELINQUISHED BY: DATE RECEIVED BY LABORATORY:

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

McCAMPBELL ANALYTICAL 110 2ND AVE. SOUTH, #D7 PACHECO. CA 94553

ATTN: EDWARD HAMILTON CLIENT PROJ. ID: 8814

CLIENT PROJ. NAME: GP-C95041

REPORT DATE: 06/18/97

DATE(S) SAMPLED: 06/12/97

DATE RECEIVED: 06/12/97

AEN WORK ORDER: 9706171

PROJECT SUMMARY:

On June 12, 1997, this laboratory received 12 soil sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larty Klein

Laboratory Director

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S2 AEN LAB NO: 9706171-01 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

DATE SAMPLED: 06/12/97 DATE RECEIVED: 06/12/97 **REPORT DATE:** 06/18/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND	400 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

Less than normal amount of sample available for analysis; reporting limits elevated accordingly.

ND = Not detected at or above the reporting limit \star = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S3 AEN LAB NO: 9706171-02 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND	330 ug/kg 330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S4 **AEN LAB NO:** 9706171-03 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

DATE SAMPLED: 06/12/97 DATE RECEIVED: 06/12/97 REPORT DATE: 06/18/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Dat	ce 06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	500 ug/kg 500 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

Less than normal amount of sample available for analysis; reporting limits elevated accordingly.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S5 AEN LAB NO: 9706171-04 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S6 **AEN LAB NO: 9706171-05** AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

DATE SAMPLED: 06/12/97 DATE RECEIVED: 06/12/97 **REPORT DATE:** 06/18/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8	ND ND ND ND ND ND ND	500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97
Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND	500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg 500 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

Less than normal amount of sample available for analysis; reporting limits elevated accordingly.

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S9
AEN LAB NO: 9706171-06
AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	e 06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	330 ug/kg 330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit * = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S10 **AEN LAB NO:** 9706171-07 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	<u>-</u>	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND	330 ug/kg 330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: HOX1-S11 AEN LAB NO: 9706171-08 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

DATE SAMPLED: 06/12/97 DATE RECEIVED: 06/12/97 REPORT DATE: 06/18/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	e 06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	500 ug/kg 500 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

Less than normal amount of sample available for analysis; reporting limits elevated accordingly.

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: 2H0X1-S1 **AEN LAB NO:** 9706171-09 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND	330 ug/kg 330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: 2HOX1-S2 AEN LAB NO: 9706171-10 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: 2HOX1-S3
AEN LAB NO: 9706171-11
AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

McCAMPBELL ANALYTICAL

SAMPLE ID: 2H0X1-S4 **AEN LAB NO:** 9706171-12 AEN WORK ORDER: 9706171 CLIENT PROJ. ID: 8814

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for PNAs	EPA 3550	-	Extrn Date	06/12/97
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	330 ug/kg	06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97 06/13/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9706171 CLIENT PROJECT ID: 8814

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spikes(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analyses.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behaviour, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrument performance.

- D: Surrogates diluted out.
- I: Interference.
- !: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL REPORT

PAGE QR-2

ANALYSIS: Semi-Volatile Organics

MATRIX: Soil/Bulk

METHOD BLANK SAMPLES

### REPORTING SPIKE RECOVERY RECLINTS (X) REPORT RESULT 107 66.1 41 110 66.1 41 41 61 61 61 61 61 6	SAMPLE TYPE: Blank-Method/Media blank INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:	• • • • • • • • • • • • • • • • • • • •	LAB ID: PREPARED ANALYZED	BLNK 0612 : 06/12/97 : 06/12/97		INSTR RUN: GCMS10\970612000000/6/ BATCH ID: BNAS060997 DILUTION: 1.00	•••
N-Nitrosodimethylamine ND 330 N-Nitrosodiphenylamine ND 330 Phenanthrene ND 330	ANALYTE RESULT 2-Fluorophenol (surr) 70.7 Phenol-d5 (surr) 68.8 Nitrobenzene-d5 (surr) 70.5 2-Fluorobiphenyl (surr) 71.6 2.4.6-Tribromophenol(surr) 66.0 Terphenyl-d14 (surr) 96.3 Phenol ND 2-Chlorophenol ND 1.4-Dichlorobenzene ND N-Nitrosodi-n-propylamine ND 1.2.4-Trichlorobenzene ND A-Chloro-3-methylphenol ND 2-4-Dinitrotoluene ND Pentachlorophenol ND 2.4-Dinitrotoluene ND Pentachlorophenol ND Acenaphthene ND Acenaphthylene ND Acenaphthylene ND Acenaphthylene ND Acenaphthylene ND Acenaphthylene ND Benzoic Acid ND Benzoic Acid ND Benzoic Acid ND Benzoic Acid ND Benzo(a) anthracene ND Benzo(b) fluoranthene ND Benzo(a), hiperylene ND Benzo(a), hiperylene ND Benzo(a), hiperylene ND Benzo(a) ND Benzo(b) ND Benzo(a) ND Benzo(a) ND Benzo(a) ND Benzo(a) ND Benzo(b) ND Benzo(a) ND Benzo(b) ND Benzo(b) ND Benzo(b) ND Benzo(c) ND Be	REFRESULT	ANALYZED REPORTING LIMIT 330 330 330 330 330 330 330 1600 330 330 330 330 330 330 330 330 330	SPIKE VALUE 107 101 110 101 101 103	(%) 66.1 68.1 64.1 70.9 64.1	DILUTION: 1.00 REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 41 110 50 127 43 100 49 126 55 125	

QUALITY CONTROL REPORT

PAGE QR-3

ANALYSIS: Semi-Volatile Organics

MATRIX: Soil/Bulk

METHOD BLANK SAMPLES

SAMPLE TYPE: Blank-Method/MeINSTRUMENT: HP-5890 for SemUNITS: ug/kg METHOD:			LAB ID: PREPARED: ANALYZED:			INSTR RUN: GCI BATCH ID: BN DILUTION: 1.	AS060997	2000000/6/	
ANALYTE 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	RESULT ND ND ND ND ND ND ND ND ND	REF RESULT	REPORTING LIMIT 330 1600 1600 330 330 330 330 330	SPIKE VALUE	RECOVERY (%)	REC LIMITS (%) LOW HIGH	RPD (%)	RPD LIMIT (%)	

METHOD SPIKE SAMPLES

SAMPLE TYPE: Laboratory Contr INSTRUMENT: HP-5890 for Semi UNITS: ug/kg METHOD:			LCD 0612 D: 06/I2/97 D: 06/I2/97		INSTR R BATCH I DILUTIO	D: BN	AS060997	2000000/8/6
ANALYTE 2-Fluorophenol (surr) Phenol-d5 (surr) Nitrobenzene-d5 (surr) 2-Fluorobiphenyl (surr) 2,4,6-Tribromophenol(surr) Terphenyl-d14 (surr) Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	RESULT RESULT 66.0 70.1 64.9 68.4 65.7 70.5 68.3 71.6 65.1 66.1 88.1 96.1 1610 NI 1880 NI 1860 NI 2050 NI 2010 NI 1860 NI 1860 NI 1900 NI 1560 NI 1560 NI 1560 NI	T LIMIT 3 330 330 330 330 330 330 330 330 330	SPIKE VALUE 107 101 110 101 103 101 2940 2980 2970 2750 3290 2960 2790 2960 3810 2770 3580	RECOVERY (%) 61.7 64.3 59.7 67.6 63.2 87.2 54.76 63.09 62.63 74.55 61.09 62.84 68.10 52.70 71.39 48.74 87.15	REC LIMI LOW 41 50 43 49 55 61 41 45 24 60 38 49 50 29 53 13 40	TS (%) HIGH 110 127 100 126 125 125 125 126 129 129 129 127 171 130	RPD (%)	RPD LIMIT (%)

SAMPLE TYPE: Laboratory Contr INSTRUMENT: HP-5890 for Semi UNITS: ug/kg METHOD:	ol Spike -volatiles			LCS 0612 06/I2/97 06/12/97		INSTR BATCH DILUTI	ID: BNA	AS060997	2000000/7/6	•
ANALYTE 2-Fluorophenol (surr) Phenol-d5 (surr) Nitrobenzene-d5 (surr) 2-Fluorobiphenyl (surr) 2-4,6-Tribromophenol(surr) Terphenyl-d14 (surr) Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol	RESULT 66.3 64.4 65.8 66.8 68.2 86.9 1660 1910 1930 2080 2040 1920 1970 1500 2710 1240	REF RESULT 70.7 68.8 70.5 71.6 66.0 96.3 ND ND ND ND ND ND	330 330 330 330 330 330 330 330 330 330	SPIKE VALUE 107 101 110 101 103 101 2940 2980 2970 2750 3290 2960 2790 2960 3810 2770	RECOVERY (%) 62.0 63.8 59.8 66.1 66.2 86.0 56.46 64.09 64.98 75.64 62.01 64.86 70.61 50.68 71.13 44.77	REC LIM LOW 41 50 43 49 55 61 41 45 24 60 38 49 50 29 53	ITS (%) HIGH 110 127 100 126 125 125 125 126 129 123 145 129 127 171	RPD (%)	RPD LIMIT (%)	

QUALITY CONTROL REPORT

PAGE QR-4

ANALYSIS: Semi-Volatile Organics

MATRIX: Soil/Bulk

METHOD SPIKE DUPLICATES

SAMPLE TYPE: Laboratory Contr INSTRUMENT: HP-5890 for Semi UNITS: ug/kg METHOD:		LAB ID: PREPARED: ANALYZED:		INSTR RUN: GCMS10\970 BATCH ID: BNAS060997 DILUTION: 1.00	612000000/9/7
ANALYTE 2-Fluorophenol (surr) Phenol-d5 (surr) Nitrobenzene-d5 (surr) 2-Fluorobiphenyl (surr) 2,4,6-Tribromophenol(surr) Terphenyl-d14 (surr)	RESULT RESULT 66.0 66.3 64.9 64.4 65.7 65.8 68.3 66.8 65.1 68.2 88.1 86.9	REPORTING LIMIT	SPIKE RECOVER VALUE (%) 107 61.7 101 64.3 110 59.7 101 67.6 103 63.2 101 87.2	Y REC LIMITS (%) LOW HIGH RPD (% 41 110 50 127 43 100 49 126 55 125 61 125	RPD) LIMIT (%)
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	1610 1660 1880 1910 1860 1930 2050 2080 2010 2040 1860 1920 1900 1970 1560 1500 2720 2710 1350 1240 3120 3130	330 330 330 330 330 330 330 1600 330 1600 330	2940 2980 2970 2750 3290 2960 2790 2960 3810 2770 3580	3.058 1.583 3.694 1.453 1.481 3.175 3.618 3.922 0.3683 8.494 0.3200	30 30 30 30 30 30 30 30 30 30 30

2-Fluorobiphenyl (surr) 2,4,6-Tribromophenol(surr) Terphenyl-dl4 (surr)

(surr)

SAMPLE SURROGATES							
SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:	••••••	LAB ID: PREPARED: ANALYZED:	06/12/97	4	INSTR RUN: BATCH ID: DILUTION:	: GCMS10\97061 BNAS060997 1.00	2000000/10/
ANALYTE RESULT 2-Fluorophenol (surr) 72.0 Phenol-d5 (surr) 70.4 Nitrobenzene-d5 (surr) 68.3 2-Fluorobiphenyl (surr) 72.3 2.4,6-Tribromophenol(surr) 70.7 Terphenyl-d14 (surr) 85.9	REF RESULT	REPORTING LIMIT	SPIKE VALUE 107 101 110 101 103 101	71.6	41 13 50 12	IGH RPD (%) 10 27 00 26 25	RPD LIMIT (%)
SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:		LAB ID: PREPARED: ANALYZED:	9706171-02/ 06/12/97			: GCMS10\97061 BNAS060997 1.00	2000000/11/
ANALYTE RESULT 2-Fluorophenol (surr) 69.0 Phenol-d5 (surr) 69.0 Nitrobenzene-d5 (surr) 66.8 2-Fluorobiphenyl (surr) 68.9 2-4-6-Tribromophenol(surr) 72.8	REF RESULT	REPORTING LIMIT	SPIKE VALUE 107 101 110 101 103 101	RECOVERY (%) 64.5 68.3 60.7 68.2 70.7 84.7	<i>/</i> 11 11	IĞH RPD (%) 10 27 00 26 25	RPD LIMIT (%)
SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:			9706171-03/ 06/12/97	A	INSTR RUN BATCH ID: DILUTION:	: GCMS10\97061 BNAS060997 1.00	2000000/12/
ANALYTE RESULT 2-Fluorophenol (surr) 62.8 Phenol-d5 (surr) 62.3 Nitrobenzene-d5 (surr) 61.3	REF RESULT	REPORTING LIMIT	SPIKE VALUE 107 101 110	RECOVERY (%) 58.7 61.7 55.7	41 13 50 12	IGH RPD (%) 10	RPD LIMIT (%)

QUALITY CONTROL REPORT

PAGE QR-5

ANALYSIS: Semi-Volatile Organics

MATRIX: Soil/Bulk

SAMPLE SURROGATES

SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:		LAB ID: PREPARED: ANALYZED:	9706171-04 06/12/97		INSTR RUN: GCMS10\970612000000/13/ BATCH ID: BNAS060997 DILUTION: 1.00
ANALYTE RESULT 2-Fluorophenol (surr) 63.7 Phenol-d5 (surr) 62.7 Nitrobenzene-d5 (surr) 61.0 2-Fluorobiphenyl (surr) 63.4 2,4,6-Tribromophenol(surr) 72.9 Terphenyl-d14 (surr) 85.3	REF RESULT	REPORTING LIMIT	SPIKE VALUE 107 101 110 101 103 101	RECOVERY (%) 59.5 62.1 55.5 62.8 70.8 84.5	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 41 110 50 127 43 100 49 126 55 125 61 125
SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:			9706171-05 06/12/97		INSTR RUN: GCMS10\970612000000/14/ BATCH ID: BNAS060997 DILUTION: 1.00
ANALYTE RESULT	REF RESULT	REPORTING LIMIT	SPIKE VALUE 107 101 110 101 103 101	RECOVERY (%) 69.6 74.2 66.9 73.5 68.1 87.4	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 41 110 50 127 43 100 49 126 55 125 61 125
SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:		<i></i> .	9706171-06 06/12/97		INSTR RUN: GCMS10\970612000000/15/ BATCH ID: BNAS060997 DILUTION: 1.00
ANALYTE RESULT 2-Fluorophenol (surr) 61.8 Phenol-d5 (surr) 61.6 Nitrobenzene-d5 (surr) 60.2 2-Fluorobiphenyl (surr) 61.7 2,4,6-Tribromophenol(surr) 58.0 Terphenyl-d14 (surr) 80.3		LIMIT			REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 41 110 50 127 43 100 49 126 55 125 61 125
SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:		I AR TD:	9706171-07 06/12/97		INSTR RUN: GCMS10\970612000000/16/ BATCH ID: BNAS060997 DILUTION: 1.00
ANALYTE RESULT 2-Fluorophenol (surr) 65.4 Phenol-d5 (surr) 64.3 Nitrobenzene-d5 (surr) 63.2 2-Fluorobiphenyl (surr) 66.3 2,4.6-Tribromophenol(surr) 58.1 Terphenyl-d14 (surr) 79.2	REF RESULT	REPORTING LIMIT	SPIKE VALUE 107 101 110 101 103 101	RECOVERY (%) 61.1 63.7 57.5 65.6 56.4 78.4	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 41 110 50 127 43 100 49 126 55 125 61 125
SAMPLE TYPE: Sample-Client INSTRUMENT: HP-5890 for Semi-volatiles UNITS: ug/kg METHOD:	•••••	LAB ID: PREPARED: ANALYZED:	9706171-08 06/12/97 06/13/97	Α	INSTR RUN: GCMS10\970612000000/17/ BATCH ID: BNAS061297 DILUTION: 1.00
ANALYTE RESULT 2-Fluorophenol (surr) 70.7 Phenol-d5 (surr) 70.9 Nitrobenzene-d5 (surr) 69.2 2-Fluorobiphenyl (surr) 71.6 2,4,6-Tribromophenol(surr) 67.5 Terphenyl-d14 (surr) 88.0	REF RESULT	REPORTING LIMIT	SPIKE VALUE 107 101 110 101 103 101	RECOVERY (%) 66.1 70.2 62.9 70.9 65.5 87.1	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 41 110 50 127 43 100 49 126 55 125 61 125

QUALITY CONTROL REPORT

PAGE QR-6

ANALYSIS: Semi-Volatile Organics

MATRIX: Soil/Bulk

SAMPLE SURROGATES

000/18/
RPD IT (%)
000/19/
RPD IT (%)
000/1/
RPD IT (%)
000/2/
RPD IT (%)
: t

----- End of Quality Control Report -----

1900 Wyatt Drive, Suite 1, Santa Clara, California 95054

CHAIN-OF-CUSTODY 8846×68324 Phone 408/987-0210 Fax 408/988-0815 Type of Analysis PROJECT NUMBER Condition Report Due 🔐 🔣 Verbal Due Number Type . Initial of of: Containers Cntnrs Grab Station Location Date 1 Time Sample Number STREET ZOXI-512B 6/18/97 1214 WAS INSCIPLINATED FOR Remarks: 24 Han Rush Date/Time 6-18-97 Date/Time Received by: (Signature) Date/Time Relinquished by: (Signature) | Date/Time

110 Second Avenue South, #D7, Pacheco, CA 94553 Telephone: 510-798-1620 Fax: 510-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

Geo Plexus, Inc.	Client Project ID: #C95041; Walsh	Date Sampled: 06/18/97	
1900 Wyatt Drive, Suite 1	Pacific	Date Received: 06/18/97	
Santa Clara, CA 95054	Client Contact: David Glick	Date Extracted: 06/18/97	
	Client P.O:	Date Analyzed: 06/18/97	

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWOCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
77688	20X1-S12B	S	27 , j	ND<0.09	0.13	0.034	0.051	0.17	117#
				:					
									······································
							, , , ,		
									-
									
	-								
									· · -
otherwi	g Limit unless se stated; ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	
means not detected above the reporting limit		S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

[&]quot;The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/18/97-06/19/97 Matrix: Soil

	Concent	ration	(mg/kg)	% Recovery			
Analyte	Sample (#75871)	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas) Benzene Toluene Ethylbenzene	0.000	2.128 0.186 0.192 0.192	2.183 0.196 0.202 0.202	2.03 0.2 0.2 0.2	105 93 96 96	108 98 101 101	2.6 5.2 5.1 5.1
<pre>Xylenes TPH (diesel)</pre>	0.000	348	0.586	300	93	98	0.3
TRPH (oil and grease)	0.0	28.0	27.3	27.3	103	100	2.5

% Rec. = (MS - Sample) / amount spiked x 100