RECEIVED

By dehloptoxic at 1:33 pm, Sep 11, 2006

Aqua Science Engineers, Inc. 208 West El Pintado, Suite C, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

September 8, 2006

QUARTERLY GROUNDWATER MONITORING REPORT AUGUST 2006 GROUNDWATER SAMPLING ASE JOB NO. 3648

at 1310 Central Avenue Alameda, California

Prepared for: Mr. Nissan Saidian 5733 Medallion Court Castro Valley, CA 94522

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1 1310 Central Avenue Alameda, CA

Responsible Party

Mr. Nissan Saidian 5733 Medallion Court Castro Valley, CA 94522

Environmental Consulting Firm

Aqua Science Engineers, Inc. (ASE) 208 West El Pintado, Suite C Danville, CA 94526 Contact: Robert Kitay, Senior Geologist (925) 820-9391

Agency Review

Mr. Barney Chan Alameda County Health Care Services Agency (ACHCSA) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Mr. Chuck Headlee California Regional Water Quality Control Board (RWQCB) San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, CA 94612

The following is a report detailing the methods and findings of the August 2006 quarterly groundwater sampling at the above-referenced site (*Figure 1*). This sampling was conducted as required by the ACHCSA and RWQCB. ASE has prepared this report on behalf of Mr. Nissan Saidian, owner of the property.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On August 10, 2006, ASE measured the depth to water in each site groundwater monitoring well using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. No free-floating hydrocarbons were observed in any of the monitoring wells this quarter. However, the water sampled from MW-3 did have a slight sheen on the water surface. Groundwater elevation data is presented as *Table One*.

A groundwater potentiometric surface map is presented as *Figure 2*. Groundwater beneath the site was calculated as flowing to the northwest with a gradient of approximately 0.014 feet/foot. Groundwater flow direction beneath the site has varied from quarter to quarter. Additionally, monitoring wells, MW-1 and MW-3 in particular, have consistently been noted to be under pressure.

3.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Prior to sampling, all five monitoring wells were purged of three well casing volumes of groundwater using disposable polyethylene bailers. The parameters pH, temperature, and conductivity were monitored during the well purging, and samples were not collected until the parameters stabilized. Petroleum hydrocarbon odors were present during the purging and sampling of monitoring wells MW-1 and MW-3. Groundwater samples were collected from each well using disposable polyethylene bailers.

The samples were decanted from the bottom of the bailers using low flow emptying devices into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid, and sealed without headspace. The samples were then labeled and placed in a cooler with wet ice for transport to Kiff Analytical, LLC (ELAP #2236) of Davis, California under appropriate chain-of-custody documentation. Well sampling field logs are presented in *Appendix A*.

The well purge water was placed in a 55-gallon steel drum and labeled for temporary storage.

The groundwater samples collected from all five site monitoring wells were analyzed for total petroleum hydrocarbons as diesel (TPH-D) by modified EPA method 8015, and total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethyl benzene, and total xylenes (collectively known as BTEX), and including fuel oxygenates as methyl tertiary-butyl ether (MTBE) by EPA Method 8260B. The analytical results are presented in *Table Two*, and the certified analytical report and chain-of-custody documentation are included as *Appendix B*.

-2-

4.0 CONCLUSIONS

Concentrations for all analyzed compounds in water samples collected from monitoring wells MW-2 and MW-4 remained very similar to previous results. Groundwater samples collected from monitoring wells MW-1 and MW-5 had a slight decrease in concentrations from the previous quarter. Groundwater samples from monitoring well MW-3 had a slight increase in concentrations. Benzene and MTBE contour maps are presented as *Figure 3* and *Figure 4*.

Concentrations Exceeding Environmental Screening Levels (ESLs)¹

- In MW-1, concentrations of TPH-G, benzene, ethyl benzene and total xylenes exceeded the FSLs
- In MW-2, concentrations of TPH-D exceeded the ESLs.
- In MW-3, concentrations of TPH-G, BTEX, MTBE and TBA exceeded the ESLs.
- In MW-5, concentrations of MTBE exceeded the ESLs.

5.0 RECOMMENDATIONS

ASE recommends that this site remain on a quarterly sampling schedule. The next sampling is scheduled for November 2006. In addition, ASE recommends that a corrective action plan be prepared for the site as recommended in ASE's report dated July 24, 2006.

6.0 REPORT LIMITATIONS

The results presented in this report represent the conditions at the time of the groundwater sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of independent CAL-DHS certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

1310 Central Avenue - Quarterly Monitoring Report – August 2006 Sampling Event

-3-

¹ As presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region dated February 2005.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services for this project, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Michael Rus

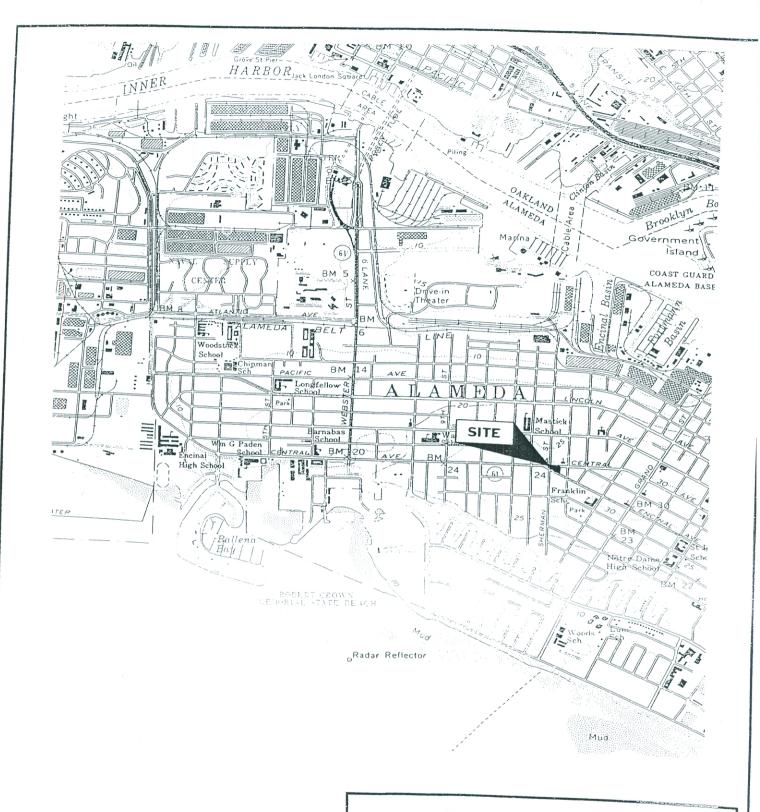
Michael Rauser Staff Geologist

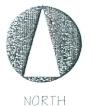
Robert E. Kitay, P.G., R.E.A. Senior Geologist

Attachments: Table One and Two

Figures 1 and 2

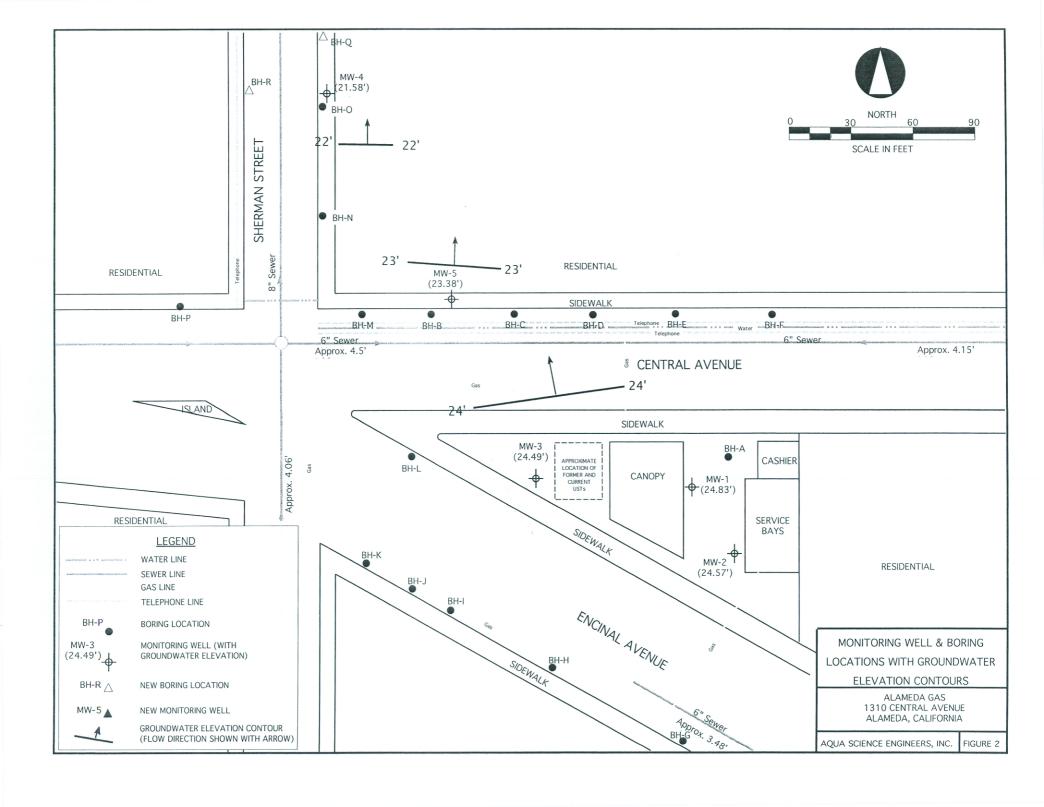
Appendices A and B

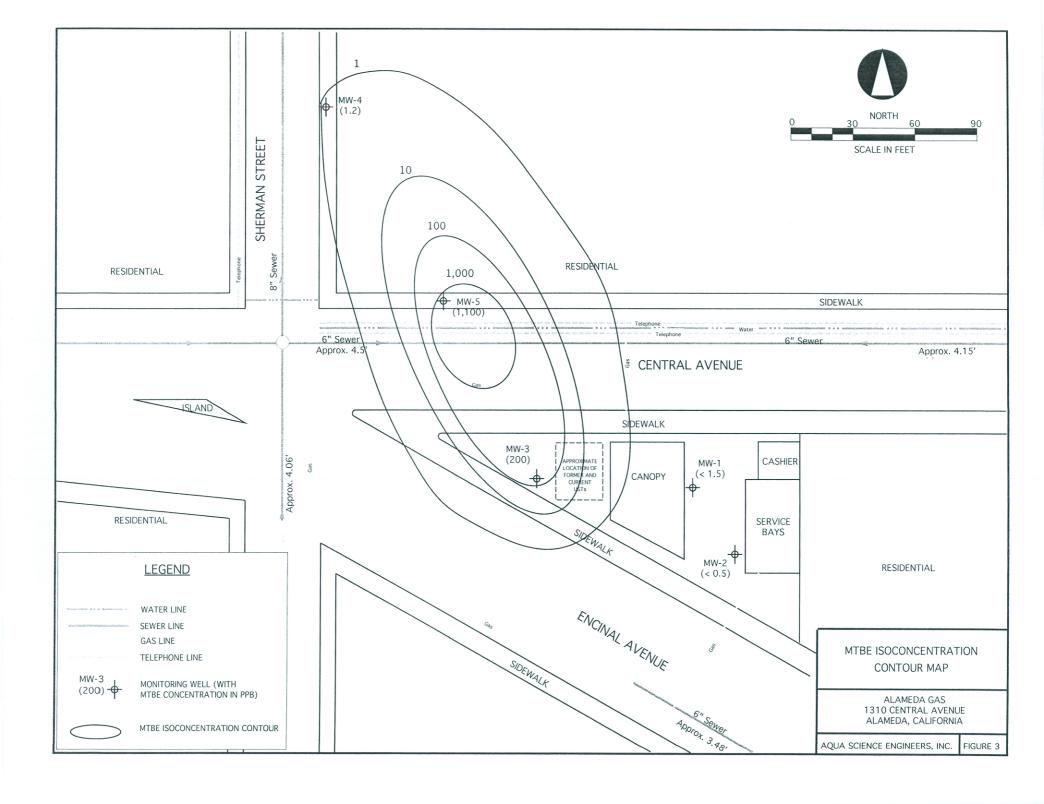

cc: Mr. Nissan Saidian

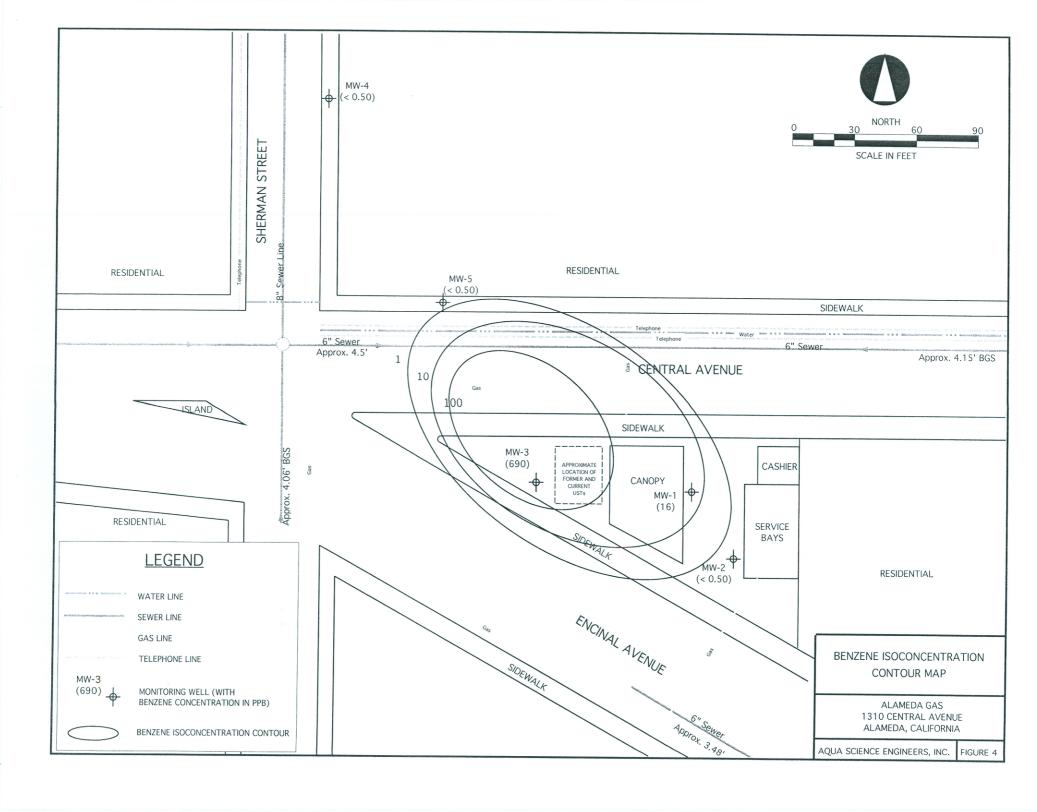

Mr. Barney Chan, ACHCSA

Mr. Chuck Headlee, RWQCB, San Francisco Bay Region

FIGURES




LOCATION MAP


SAIDIAN PROPERTY 1310 CENTRAL AVENUE ALAMEDA, CALIFORNIA

AQUA SCIENCE ENGINEERS, INC.

Figure 1

TABLES

TABLE ONE Groundwater Elevation Data Saidian Property-Alameda 1310 Central Avenue, Alameda, CA

Well	Date of	Top of Casing	Depth to Water	Groundwater
	Measurement	Elevation (msl)	(feet)	Elevation (msl)
1011	0.40.400			
MW-1	9/6/99	26.85	5.16	21.69
	5/16/00		3.24	23.61
	8/3/00		4.15	22.70
	12/5/00		4.90	21.95
	3/5/01		3.04	23.81
	6/4/01		4.01	22.84
	6/5/02		3.73	23.12
	9/9/02		5.06	21.79
	12/19/02		4.09	22.76
	3/10/03		3.50	23.35
	6/3/03		3.66	23.19
	9/18/03		4.91	21.94
	12/22/03		4.30	22.55
	3/12/04		2.93	23.92
	6/11/04		4.23	22.62
	9/13/04		5.02	21.83
	12/16/04		3.76	23.09
	3/21/05		2.81	24.04
	6/23/05		3.66	23.19
	9/30/05		4.55	22.30
	12/8/05		4.21	22.64
	3/1/06		2.90	23.95
	5/25/06	29.18	2.84	26.34
	8/10/06		4.35	24.83

TABLE ONE **Groundwater Elevation Data** Saidian Property-Alameda 1310 Central Avenue, Alameda, CA

Well	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation (msl)
NAVA / 2	0.46.400	27.10	F FC	21.62
MW-2	9/6/99	27.18	5.56	21.62
	5/16/00		3.52	23.66
	8/3/00		4.44	22.74
	12/5/00		5.24	21.94
	3/5/01		3.28	23.90
	6/4/01		4.33	22.85
	6/5/02		3.98	23.20
	9/9/02		5.34	21.84
	12/19/02		4.33	22.85
	3/10/03		3.58	23.60
	6/3/03		3.87	23.31
	9/18/03		5.24	21.94
	12/22/03		4.47	22.71
	3/12/04		3.10	24.08
	6/11/04		4.51	22.67
	9/13/04		5.35	21.83
	12/16/04		4.09	23.09
	3/21/05		3.01	24.17
	6/23/05		3.91	23.27
	9/30/05		4.86	22.32
	12/8/05		4.49	22.69
	3/1/06		3.09	24.09
	5/25/06	29.55	3.16	26.39
	8/10/06		4.98	24.57

TABLE ONE Groundwater Elevation Data Saidian Property-Alameda

1310 Central Avenue, Alameda, CA

Well	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation (msl)
MW-3	9/6/00 5/16/00 8/3/00 12/5/00 3/5/01 6/4/01 6/5/02 9/9/02 12/19/02 3/10/03 6/3/03 9/19/03 12/22/03 3/12/04 6/11/04 9/13/04 12/16/04 3/21/05 6/23/05 9/30/05 12/8/05 3/1/06 5/25/06 8/10/06	25.30	4.02 2.06 3.20 3.71 1.90 2.72 2.75 3.88 2.79 2.36 2.65 3.15 2.83 2.00 3.11 3.90 2.89 1.93 2.69 4.54 3.05 1.95 2.11 3.25	21.28 23.24 22.10 21.59 23.40 22.58 22.55 21.42 22.51 22.94 22.65 22.15 22.47 23.30 22.19 21.40 22.41 23.37 22.61 20.76 22.25 23.35 24.49
MW-4	5/25/06 8/10/06	26.23	2.54 4.65	23.69 21.58
MW-5	5/25/06 8/10/06	26.78	2.60 3.40	24.18 23.38

Notes:

Wells were resurveyed on April 27, 2006

TABLE TWO
Summary of Chemical Analysis of GROUNDWATER Samples
Alameda Gas, 1310 Central Avenue, Alameda, California
All results are in parts per billion (ppb)

Well/	TPH	TPH			Ethyl	Total				Other
Date Sampled	Gasoline	Diesel	Benzene	Toluene	Benzene	Xylenes	MTBE	TAME	TBA	Oxygenates
MW-1										
9/6/99	5,700	8,700	170	59	22	85	20,000	NA	NA	NA
5/16/00	20,000	< 7,500	38	6.3	740	1,600	< 5.0	< 5.0	< 50	< 5.0
8/3/00	20,000	< 6,000	56	9.7	920	1,600	< 0.5	< 0.5	< 50	< 0.5
12/5/00	31,000	< 4,000	64	27	820	2,200	< 10	< 5.0	< 50	< 5.0
3/5/01	20,000	<4,000	19	<5.0	480	870	<5.0	<5.0	<50	<5.0
6/4/01	23,000	<7,000	58	50	710	2,100	5.1	<5.0	<50	<5.0
6/5/02	7,400	<1,500	9.3	6.7	180	230	<1.0	<1.0	<10	<1.0
9/9/02	8,300	< 3,500	32	20	390	670	< 2.0	< 2.0	< 20	< 2.0
12/19/02	5,100		7.9	2.5	56	93	< 1.0	< 1.0	< 10	< 1.0
3/10/03	2,000	< 2,000	3.4	2.9	80	98	< 0.5	< 0.5	< 5.0	< 0.5
6/3/03	7,300	< 4,000	6.8	9.9	300	1,000	2.3	< 0.5	< 5.0	< 0.5
9/18/03	9,000	< 3,000	26	22	420	1,200	4.5	< 1.5	< 20	< 1.5
12/22/03	4,300	< 2,000	12	6.7	200	290	9.1	< 1.0	< 10	< 1.0
3/12/04	7,000	< 3,000	8.3	8.2	250	760	3.9	< 2.0	< 20	< 2.0
6/11/04	13,000	< 4,000	26	27	530	1,700	< 2.5	< 2.5	< 15	< 2.5
9/13/04	17,000	< 4,000	37	42	840	2,000	< 5.0	< 5.0	< 50	< 5.0
12/16/04	1,800	< 1,000	5.9	1.9	100	35	16	< 0.5	< 5.0	< 0.5
3/21/05	7,500	< 3,000	3.4	4.2	290	760	< 1.5	< 1.5	< 20	< 1.5
6/23/05	11,000	< 8,000	15	11	370	910	2.4	< 1.5	< 7	< 1.5
9/30/05	9,800	< 4000	32	25	540	680	1.6	< 1.5	< 7.0	< 1.5
12/8/05	9,200	< 4,000	27	21	500	490	2.2	< 1.5	< 7.0	< 1.5
3/1/06	6,500	< 4,000	8.1	9.4	370	660	1.8	< 1.5	< 6.0	< 1.5
5/25/06	10,000	< 3,000	19	14	900	620	< 1.5	< 1.5	< 7.0	< 1.5
8/10/06	9,800	< 1,500	16	8.1	640	180	< 1.5	< 1.5	< 7.0	< 1.5

TABLE TWO
Summary of Chemical Analysis of GROUNDWATER Samples
Alameda Gas, 1310 Central Avenue, Alameda, California
All results are in parts per billion (ppb)

Well/	TPH	TPH			Ethyl	Total				Other
Date Sampled	Gasoline	Diesel	Benzene	Toluene	Benzene	Xylenes	MTBE	TAME	TBA	Oxygenates
<u>MW-2</u>										
9/6/99	6,000	70	1,300	92	50	400	6,800	NA	NA	NA
5/16/00	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 50	< 5.0
8/3/00	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
12/5/00	< 50	1,400	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
3/5/01	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
6/4/01	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
6/5/02	< 50	2,300	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
9/9/02	< 50	1,300	< 0.5	< 0.5	< 0.5	< 0.5	1.4	< 0.5	< 5.0	< 0.5
12/19/02	< 50		< 0.5	< 0.5	< 0.5	< 0.5	16	< 0.5	< 5.0	< 0.5
3/10/03	< 50	3,000	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	< 5.0	< 0.5
6/3/03	< 50	700	< 0.5	< 0.5	< 0.5	< 0.5	2.0	< 0.5	< 5.0	< 0.5
9/18/03	< 50	1,400	< 0.5	< 0.5	< 0.5	< 0.5	4.7	< 0.5	< 5.0	< 0.5
12/22/03	< 50	1,000	< 0.5	< 0.5	< 0.5	< 0.5	39	< 0.5	< 5.0	< 0.5
3/12/04	< 50	250	< 0.5	< 0.5	< 0.5	< 0.5	2.1	< 0.5	< 5.0	< 0.5
6/11/04	< 50	920	< 0.5	< 0.5	< 0.5	< 0.5	0.75	< 0.5	< 5.0	< 0.5
9/13/04	< 50	140	< 0.5	< 0.5	< 0.5	< 0.5	1.5	< 0.5	< 5.0	< 0.5
12/16/04	< 50	150	< 0.5	< 0.5	< 0.5	< 0.5	12	< 0.5	< 5.0	< 0.5
3/21/05	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
6/23/05	< 50	1,100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
9/30/05	< 50	300	< 0.5	< 0.5	< 0.5	< 0.5	1.6	< 0.5	< 5.0	< 0.5
12/8/05	< 50	600	< 0.5	< 0.5	< 0.5	< 0.5	1.9	< 0.5	< 5.0	< 0.5
3/1/06	< 50	920	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
5/25/06	< 50	160	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
8/10/06	< 50	870	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50

TABLE TWO

Summary of Chemical Analysis of GROUNDWATER Samples Alameda Gas, 1310 Central Avenue, Alameda, California All results are in parts per billion (ppb)

Well/	TPH	TPH			Ethyl	Total				Other
Date Sampled	Gasoline	Diesel	Benzene	Toluene	Benzene	Xylenes	MTBE	TAME	TBA	Oxygenates
MW-3										
9/6/99	43,000	870	860	70	< 0.5	65	120,000	NA	NA	NA
5/16/00	17,000	< 5,000	2,800	60	380	190	990	9.1	350	< 5.0
8/3/00	16,000	< 2,000	1,600	29	210	53	1,200	21	260	< 2.0
12/5/00	17,000	5,800	1,700	45	460	240	1,100	21	230	< 5.0
3/5/01	29,000	<1300	2,100	68	280	100	180	<8.0	<80	<8.0
6/4/01	17,000	<6,000	2,000	56	340	230	300	<10	130	<10
6/5/02	11,000	<2,000	1,600	46	210	47	790	<10	220	<10
9/9/02	12,000	< 800	1,400	44	130	27	760	< 10	160	< 10
12/19/02	10,000		740	32	180	38	86	< 5.0	< 50	< 5.0
3/10/03	13,000	< 6,000	1,200	42	240	35	470	5.3	140	< 5.0
6/3/03	6,500	< 3,000	750	21	46	15	1,300	< 50	280	< 2.5
9/18/03	9,800	< 3,000	1,500	38	170	32	420	< 10	150	< 10
12/22/03	8,800	< 2,000	1,100	32	82	20	330	5.8	52	< 5.0
3/12/04	7,600	< 3,000	590	23	69	17	470	9.2	63	< 2.5
6/11/04	7,800	< 2,000	840	19	58	15	710	12	140	< 1.5
9/13/04	7,500	< 1,500	840	17	23	7.8	730	15	93	< 2.5
12/16/04	9,300	< 2,000	1,100	26	76	13	600	12	130	< 2.5
3/21/05	11,000	< 3,000	1,200	37	190	24	460	9.3	100	< 2.5
6/23/05	9,600	< 4,000	1,100	28	93	23	370	8.2	67	< 2.5
9/30/05	9,000	< 3,000	690	18	32	14	380	8.4	72	< 1.5
12/8/05	8,700	< 3,000	560	23	38	12	350	6.9	82	< 1.5
3/1/06	8,400	< 2,000	410	24	42	13	360	8.0	58	< 1.5
5/25/06	9,900	< 2,000	630	25	13	13	190	5.3	59	< 1.5
8/10/06	14,000	< 3,000	690	43	130	26	200	5.4	70	< 1.5
MW-4										
5/25/06	< 50	86	< 0.5	< 0.5	< 0.5	< 0.5	1.2	< 0.5	< 5.0	< 0.5
8/10/06	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	< 0.50	< 5.0	< 0.50
0/10/00	< 30	< 30	₹ 0.50	< 0.50	V 0.50	(0.50		V 0.50	\ 3.0	< 0.50
MW-5										
5/25/06	410	< 80	< 2.5	< 2.5	< 2.5	< 2.5	1,800	28	44	< 2.5
8/10/06	55	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1,100	19	9.1	< 0.50
ESL	100	100	1	40	30	20	5	NE	12	VARIES

Notes:

MTBE = Methyl-t-butyl ether

TAME = Tert-amyl methyl ether

TBA = Tert-Butanol

ESL = Environmental screening levels presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (February 2005)" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region.

NA = Samples Not Analyzed for this compound.

NE = ESLs are not established.

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit.

Most recent data in bold.

APPENDIX A

Well Sampling Field Logs

WELL SAMPLING FIELD LOG

PROJECTNAME Alameda	
JOB NUMBER 3648	DATE OF SAMPLING 8-10-06
WELL ID. MW-	SAMPLER MLR
TOTAL DEPTH OF WELL 11. 03	WELL DIAMETER 3
DEPTH TO WATER PRIOR TO PURGING 435	
PRODUCT THICKNESS O	
DEPTH OF WELL CASING IN WATER 6.68	
NUMBER OF GALLONS PER WELL CASING VOLUME 1.2	ų ·
NUMBER OF WELL CASING VOLUMES TO BE REMOVED 3	
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR TO S	AMPLING 3.34
EQUIPMENT USED TO PURGE WELL Bailer	
TIME EVACUATION STARTED 1225	TIME EVACUATION COMPLETED 1240
TIME SAMPLES WERE COLLECTED 1245	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED 4.0	
SAMPLING DEVICE Bailer	
SAMPLE COLOR Clear	ODOR/SEDIMENT Slight 0/ns S
CHEMICAL DATA	

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	72.9	6.30	450
2	69.9	(0.457	456
3	70, 7	6.66	459

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVE
MW-1	3	VUA	8260B	140
				09
	× 29			-

WELL SAMPLING FIELD LOG

PROJECT NAME Alameda	
JOB NUMBER 3648	DATE OF SAMPLING 8-11-116
WELL ID. MW-2	SAMPLER MIR
TOTAL DEPTH OF WELL 1220	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 4.98	
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER 7. 22	
NUMBER OF GALLONS PER WELL CASING VOLUME 1.	2
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRICE	DR TO SAMPLING 3. C
EQUIPMENT USED TO PURGE WELL Bai	lev
TIME EVACUATION STARTED (50)	TIME EVACUATION COMPLETED 1715
TIME SAMPLES WERE COLLECTED 1220	4, 18
DID WELL GO DRY VO	AFTER HOW MANY GALLONS —
VOLUME OF GROUNDWATER PURGED 4.0	
SAMPLING DEVICE Bailer	•
SAMPLE COLOR Clear	ODOR/SEDIMENT NO / Little Mry Selt
CUELHOAL DATA	
CHEMICAL DATA	
VOLUME PURGED TEMPERATURE	PH CONDUCTIVITY
73.0	6.80 182
2 21.	6, 60 175
) (1.0	6.80 172
SAMPLES COLLECTED	
DINIVII LED COLLECTED	
SAMPLE # OF CONTAINERS	SIZE AND TYPE OF CONTAINER ANALYSIS PRESERVED

82608

WELL SAMPLING FIELD LOG

PROJECT NAME Alameda	
JOB NUMBER 3848	DATE OF SAMPLING 8-10-06
WELL ID. MW-3	SAMPLER MLR
TOTAL DEPTH OF WELL 6.03	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 3, 25	
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER 12.78	
NUMBER OF GALLONS PER WELL CASING VOLUME 2.	
NUMBER OF WELL CASING VOLUMES TO BE REMOVED 3	
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR TO	SAMPLING 6,4
EQUIPMENT USED TO PURGE WELL	•
TIME EVACUATION STARTED 125	TIME EVACUATION COMPLETED 1 4()
TIME SAMPLES WERE COLLECTED 145	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED ()	
SAMPLING DEVICE Bailer	
SAMPLE COLOR Clear	ODOR/SEDIMENT Slight O/life Silt
	He sheen do to
CHEMICAL DATA	110 14284 04 100
VOLUME PURGED TEMPERATURE	PH CONDUCTIVITY
72,1	6.69 489
6 73.4	6.4/ 566
6 7 7 7	6.40 593
	We will be a second of the sec

SAMPLES COLLECTED

SAMPLE MW-3	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS 8260B	PRESERVED

WELL SAMPLING FIELD LOG

PROJECT NAME A	ameda		
JOB NUMBER	3648	DATE OF SAMPLING	3-10-06
WELL ID.	MW-4	SAMPLER /	MIR
TOTAL DEPTH OF WELL	142	WELL DIAMETER	2
DEPTH TO WATER PRIOR T	OPURGING 465		
PRODUCT THICKNESS	0		
DEPTH OF WELL CASING IN	WATER 9.55		
NUMBER OF GALLONS PER		9	
NUMBER OF WELL CASING	VOLUMES TO BE REMOVED 3		
REQUIRED VOLUME OF GRO	OUNDWATER TO BE PURGED PRIOR TO	SAMPLING 4.78	
EQUIPMENT USED TO PURC	BEWELL Pump / Baile	· · · · · · · · · · · · · · · · · · ·	
TIME EVACUATION STARTE	130	TIME EVACUATION COMPLETE	ED 020
TIME SAMPLES WERE COLL	ECTED (025		
DID WELL GO DRY	\z\square \(\tau \)	AFTER HOW MANY GALLONS	7
VOLUME OF GROUNDWATER	RPURGED 25.0		Capita
SAMPLING DEVICE	Bailer		
SAMPLE COLOR	clear gray	ODOR/SEDIMENT No	0/No S
			<u> </u>
CHEMICAL DATA			
VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	69.5	8.24	557
2	69.0	7.11	489
3	67.8	7.06	484
and the second			
SAMPLES COLLECT	<u>ED</u>		
SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINE	R ANALYSIS PRESERVED

ANALYSIS

WELL SAMPLING FIELD LOG

PROJECT NAME A	ameda			
JOB NUMBER	3648	DATE OF SAMPLING	-10-06	,
WELLID. M	v-S	SAMPLER M	LR	
TOTAL DEPTH OF WELL	14.8	WELL DIAMETER	2	
DEPTH TO WATER PRIOR TO	PURGING 3.40		*	
PRODUCT THICKNESS	0			
DEPTH OF WELL CASING IN V	NATER 11.40			
NUMBER OF GALLONS PER I	WELL CASING VOLUME			
NUMBER OF WELL CASING V	OLUMES TO BE REMOVED			
REQUIRED VOLUME OF GROI	UNDWATER TO BE PURGED PRIOR TO S	SAMPLING 5. 7		
EQUIPMENT USED TO PURGE	EWELL 2-Stage Pump	/ Bailer		
TIME EVACUATION STARTED		TIME EVACUATION COMPLETED	1115	
TIME SAMPLES WERE COLLE	ECTED 120			
DID WELL GO DRY	to les	AFTER HOW MANY GALLONS	6	1
VOLUME OF GROUNDWATER	purged 12			
SAMPLING DEVICE	Bailer			# 199
SAMPLE COLOR	Clear gray	ODOR/SEDIMENT ho	O / some	fine silt
CHEMICAL DATA				
VOLUME PURGED	TEMPERATURE	PH	CONDUC	CTIVITY
2	67.3	7.03	519	
4	67.5	6.88	509	
6	68.2	6.92	42	7
SAMPLES COLLECTE	D			
K. San				
SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-5	3	VOA	8260 B	HI

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

Report Number: 51621

Date: 8/23/2006

Mike Rauser Aqua Science Engineers, Inc. 208 West El Pintado Rd. Danville, CA 94526

Subject: 5 Water Samples

Project Name: Alameda-Saidian

Project Number: 3648

Dear Mr. Rauser,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Report Number: 51621

Date: 8/23/2006

Subject:

5 Water Samples Alameda-Saidian

Project Name : Project Number :

3648

Case Narrative

Tert-Butanol results for sample MW-5 may be biased slightly high and are flagged with a 'J'. A fraction of MtBE (typically less than 1%) converts to Tert-Butanol during the analysis of water samples. We consider this conversion effect to be mathematically significant in samples that contain MtBE/Tert-Butanol in ratios of over 20:1.

Matrix Spike/Matrix Spike Duplicate Results associated with samples MW-1 and MW-3 for the analyte Methyl-t-butyl ether were affected by the analyte concentrations already present in the un-spiked sample.

The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1 and MW-3.

Hydrocarbons reported as TPH as Diesel do not exhibit a typical Diesel chromatographic pattern for sample MW-2. These hydrocarbons are higher boiling than typical diesel fuel.

Approved By:

Jde Kiff

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Project Number: 3648

Sample: MW-1

Matrix: Water

Lab Number: 51621-01

Report Number: 51621

Date: 8/23/2006

Sample	Date	:8/10/2006
--------	------	------------

Sample Date :8/10/2006		Method			Date Analyzed	
Parameter	Measured Value	Reporting Limit	Units	Analysis Method		
Benzene	16	1.5	ug/L	EPA 8260B	8/16/2006	
Toluene	8.1	1.5	ug/L	EPA 8260B	8/16/2006	
Ethylbenzene	640	1.5	ug/L	EPA 8260B	8/16/2006	
Total Xylenes	180	1.5	ug/L	EPA 8260B	8/16/2006	
Methyl-t-butyl ether (MTBE)	< 1.5	1.5	ug/L	EPA 8260B	8/16/2006	
Diisopropyl ether (DIPE)	< 1.5	1.5	ug/L	EPA 8260B	8/16/2006	
Ethyl-t-butyl ether (ETBE)	< 1.5	1.5	ug/L	EPA 8260B	8/16/2006	
Tert-amyl methyl ether (TAME)	< 1.5	1.5	ug/L	EPA 8260B	8/16/2006	
Tert-Butanol	< 7.0	7.0	ug/L	EPA 8260B	8/16/2006	
TPH as Gasoline	9800	150	ug/L	EPA 8260B	8/16/2006	
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	8/16/2006	
4-Bromofluorobenzene (Surr)	96.3		% Recovery	EPA 8260B	8/16/2006	
TPH as Diesel (Silica Gel)	< 1500	1500	ug/L	M EPA 8015	8/16/2006	
Octacosane (Diesel Surrogate)	90.0		% Recovery	M EPA 8015	8/16/2006	

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: 3648

Sample: MW-2

Matrix: Water

Lab Number: 51621-02

Report Number: 51621

Date: 8/23/2006

Sample Date :8/10/2006

Sample Date :0/10/2000	Measured	Method		Analysis	Data	
Parameter	Value	Reporting Limit	Units	Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/15/2006	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/15/2006	
Toluene - d8 (Surr)	98.9		% Recovery	EPA 8260B	8/15/2006	
4-Bromofluorobenzene (Surr)	98.7		% Recovery	EPA 8260B	8/15/2006	
TPH as Diesel (Silica Gel)	870	50	ug/L	M EPA 8015	8/22/2006	
Octacosane (Diesel Surrogate)	113		% Recovery	M EPA 8015	8/22/2006	

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: 3648

Sample: MW-3

Matrix: Water

Lab Number: 51621-03

Report Number: 51621

Date: 8/23/2006

Sample Date :8/10/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	690	1.5	ug/L	EPA 8260B	8/16/2006	
Toluene	43	1.5	ug/L	EPA 8260B	8/16/2006	
Ethylbenzene	130	1.5	ug/L	EPA 8260B	8/16/2006	
Total Xylenes	26	1.5	ug/L	EPA 8260B	8/16/2006	
Methyl-t-butyl ether (MTBE)	200	1.5	ug/L	EPA 8260B	8/16/2006	
Diisopropyl ether (DIPE)	< 1.5	1.5	ug/L	EPA 8260B	8/16/2006	
Ethyl-t-butyl ether (ETBE)	< 1.5	1.5	ug/L	EPA 8260B	8/16/2006	
Tert-amyl methyl ether (TAME)	5.4	1.5	ug/L	EPA 8260B	8/16/2006	
Tert-Butanol	70	7.0	ug/L	EPA 8260B	8/16/2006	
TPH as Gasoline	14000	250	ug/L	EPA 8260B	8/17/2006	
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	8/16/2006	
4-Bromofluorobenzene (Surr)	98.3		% Recovery	EPA 8260B	8/16/2006	
TPH as Diesel (Silica Gel)	< 3000	3000	ug/L	M EPA 8015	8/17/2006	
Octacosane (Diesel Surrogate)	90.2		% Recovery	M EPA 8015	8/17/2006	

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800 \

Project Number: 3648

Sample: MW-4

Matrix: Water

Lab Number: 51621-04

Report Number: 51621

Date: 8/23/2006

Sample Date :8/10/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Methyl-t-butyl ether (MTBE)	1.2	0.50	ug/L	EPA 8260B	8/17/2006
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/17/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/17/2006
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	8/17/2006
4-Bromofluorobenzene (Surr)	98.3		% Recovery	EPA 8260B	8/17/2006
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	8/22/2006
Octacosane (Diesel Surrogate)	91.4		% Recovery	M EPA 8015	8/22/2006

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: 3648

Sample: MW-5

Matrix: Water

Lab Number: 51621-05

Report Number: 51621

Date: 8/23/2006

Sample Date :8/10/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Methyl-t-butyl ether (MTBE)	1100	2.5	ug/L	EPA 8260B	8/16/2006	
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006	
Tert-amyl methyl ether (TAME)	19	0.50	ug/L	EPA 8260B	8/15/2006	
Tert-Butanol	9.1 J	5.0	ug/L	EPA 8260B	8/15/2006	
TPH as Gasoline	55	50	ug/L	EPA 8260B	8/15/2006	
Toluene - d8 (Surr)	99.6		% Recovery	EPA 8260B	8/15/2006	
4-Bromofluorobenzene (Surr)	98.0		% Recovery	EPA 8260B	8/15/2006	
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	8/17/2006	
Octacosane (Diesel Surrogate)	90.2		% Recovery	M EPA 8015	8/17/2006	

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800 \

QC Report : Method Blank Data

Project Name: Alameda-Saidian

Project Number: 3648

<u>Parameter</u>	Measured Value	Method Report Limit	-	Analysis Method	Date Analyzed
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	8/16/2006
Octacosane (Diesel Surrogate)	103		%	M EPA 8015	8/16/2006
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	8/22/2006
Octacosane (Diesel Surrogate)	110		%	M EPA 8015	8/22/2006
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/16/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/16/2006
Toluene - d8 (Surr)	97.8		%	EPA 8260B	8/16/2006
4-Bromofluorobenzene (Surr)	103		%	EPA 8260B	8/16/2006
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/17/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/17/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/17/2006
Toluene - d8 (Surr)	99.6		%	EPA 8260B	8/17/2006
4-Bromofluorobenzene (Surr)	99.4		%	EPA 8260B	8/17/2006

Report Number: 51621

Date: 8/23/2006

Parameter	Measured Value	Method Reportin Limit	ng Units	Analysis Method	Date Analyzed
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/16/2006
Benzene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	8/15/2006
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	8/15/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	8/15/2006
Toluene - d8 (Surr)	101		%	EPA 8260B	8/15/2006
4-Bromofluorobenzene (Surr)	98.1		%	EPA 8260B	8/15/2006

Approved By:

Joel Kiff

QC Report : Matrix Spike/ Matrix Spike Duplicate

Report Number: 51621

Date: 8/23/2006

Project Name: Alameda-Saidian

Project Number: 3648

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicat Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.		Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene	51642-01	< 0.50	39.7	39.9	42.8	42.3	ug/L	EPA 8260B	8/16/06	108	106	1.73	70-130	25
Toluene	51642-01	< 0.50	39.7	39.9	41.5	40.8	ug/L	EPA 8260B	8/16/06	105	102	2.40	70-130	25
Tert-Butanol	51642-01	<5.0	198	200	207	201	ug/L	EPA 8260B	8/16/06	104	100	3.83	70-130	25
Methyl-t-Butyl Eth	er 51642-01	140	39.7	39.9	172	171	ug/L	EPA 8260B	8/16/06	68.8	65.6	4.79	70-130	25
Benzene	51612-07	<0.50	39.9	39.8	43.6	43.2	ua/l	EPA 8260B	8/17/06	100	400	0.007	70.400	
Toluene	51612-07	< 0.50	39.9	39.8	42.7	42.3	ug/L			109	108	0.637	70-130	25
Tert-Butanol	51612-07	5.6	200	199	220	225	ug/L	EPA 8260B	8/17/06	107	106	0.871	70-130	25
Methyl-t-Butyl Ethe		< 0.50	39.9	39.8	38.3		ug/L	EPA 8260B	8/17/06	108	110	2.47	70-130	25
Wethyl-t-Butyl Ethe	51 3 10 12-07	\0.50	39.9	39.0	30.3	38.6	ug/L	EPA 8260B	8/17/06	96.0	96.8	0.812	70-130	25
Benzene	51114-12	<0.50	40.0	40.0	43.1	43.2	ug/L	EPA 8260B	8/16/06	108	108	0.351	70-130	25
Toluene	51114-12	< 0.50	40.0	40.0	43.0	43.0	ug/L	EPA 8260B	8/16/06	108	107	0.153	70-130	25
Tert-Butanol	51114-12	< 5.0	200	200	206	204	ug/L	EPA 8260B	8/16/06	103	102	1.44	70-130	25
Methyl-t-Butyl Ethe	er 51114-12	<0.50	40.0	40.0	41.5	42.0	ug/L	EPA 8260B	8/16/06	104	105	1.05	70-130	25
Benzene	51618-06	1.4	40.0	40.0	47.6	46.4	ug/L	EPA 8260B	8/15/06	115	112	2.51	70 120	25
Toluene	51618-06	< 0.50	40.0	40.0	45.3	44.1	ug/L	EPA 8260B	8/15/06	113			70-130	25
Tert-Butanol	51618-06	< 5.0	200	200	210	207	_	EPA 8260B	8/15/06		110	2.69	70-130	25
Methyl-t-Butyl Ethe		92	40.0	40.0	133		ug/L			105	104	1.14	70-130	25
Wedtyr-t-Butyr Ethe	51 5 10 10-00	32	40.0	40.0	133	132	ug/L	EPA 8260B	8/15/06	101	98.7	2.45	70-130	25
TPH as Diesel	Blank	<50	1000	1000	929	896	ug/L	M EPA 8015	8/16/06	92.9	89.6	3.63	70-130	25

Report Number: 51621

Date: 8/23/2006

Project Name: Alameda-Saidian

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 3648

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	Units	Analysis Method	Date Analyzed	Percent	Percent	Relative		Percent
TPH as Diesel	Blank	<50	1000	1000	1010	1020	ug/L	M EPA 8015	8/22/06	101	102	0.462	70-130	25

QC Report : Laboratory Control Sample (LCS)

Report Number: 51621

Date: 8/23/2006

Project Name: Alameda-Saidian

Project Number: 3648

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.0	ug/L	EPA 8260B	8/16/06	109	70-130
Toluene	40.0	ug/L	EPA 8260B	8/16/06	107	70-130
Tert-Butanol	200	ug/L	EPA 8260B	8/16/06	101	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	8/16/06	96.3	70-130
Benzene	40.0	ug/L	EPA 8260B	8/17/06	101	70-130
Toluene	40.0	ug/L	EPA 8260B	8/17/06	97.7	70-130
Tert-Butanol	200	ug/L	EPA 8260B	8/17/06	98.8	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	8/17/06	95.8	70-130
,		3			00.0	70 100
Benzene	40.0	ug/L	EPA 8260B	8/16/06	101	70-130
Toluene	40.0	ug/L	EPA 8260B	8/16/06	104	
Tert-Butanol	200	ug/L	EPA 8260B	8/16/06		70-130
Methyl-t-Butyl Ether	40.0	_			107	70-130
Wethyl-t-Dutyl Linel	40.0	ug/L	EPA 8260B	8/16/06	99.0	70-130
Benzene	40.0	ug/L	EPA 8260B	8/15/06	108	70-130
Toluene	40.0	ug/L	EPA 8260B	8/15/06	109	70-130
Tert-Butanol	200	ug/L	EPA 8260B	8/15/06	103	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	8/15/06	105	70-130

Approved By:

Joe Kiff

Aqua Science Engineers, Inc. 208 W. El Pintado Road 5/62 Danville, CA 94526 Chain of Custody (925) 820-9391 FAX (925) 837-4853 SAMPLER (SIGNATURE) PAGE PROJECT NAME JOB NO. 36L 13/0 ADDRESS entra ANALYSIS REQUEST TPH-6/8TEX/OXYS/TPH-D SPECIAL INSTRUCTIONS: PURGEABLE HALOCARBONS (EPA 601/8010) Pb (TOTAL or DISSOLVED) (EPA 6010) SEMI-VOLATILE GRGANICS (EPA 625/8270) STEX 0 FUEL OXYGENATES (EPA 8260) SAMPLE ID. 1245 1220 4 RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: COMMENTS: RECEIVED BY LABORATORY: (signature) (signature) (time) signature) (time) Mike Kayser (printed name) TURN AROUND TIME (printed pame) (date) (date) (printed na (date) STANDARD) 24Hr 48Hr 72Hr Company-ASE, INC. Company-OTHER: pany-