

Reed lolivlos

27/1 (2022)

October 2, 2002

QUARTERLY GROUNDWATER MONITORING REPORT SEPTEMBER 2002 GROUNDWATER SAMPLING ASE JOB NO. 3648

a t 1310 Central Avenue Alameda, California

Prepared for: Mr. Nissan Saidian 5733 Medallion Court Castro Valley, CA 94522

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1 1310 Central Avenue Alameda, CA

Responsible Party
Mr. Nissan Saidian
5733 Medallion Court
Castro Valley, CA 94522

Environmental Consulting Firm Aqua Science Engineers, Inc. (ASE) 208 West El Pintado Danville, CA 94526 Contact: Robert Kitay, Senior Geologist (925) 820-9391

Agency Review
Mr. Barney Chan
Alameda County Health Care Services Agency (ACHCSA)
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502

Mr. Chuck Headlee California Regional Water Quality Control Board (RWQCB) San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, CA 94612

The following is a report detailing the methods and findings of the September 9, 2002 quarterly groundwater sampling at the above-referenced site (Figure 1). This sampling was conducted as required by the ACHCSA and RWQCB. ASE has prepared this report on behalf of Mr. Nissan Saidian, owner of the property.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On September 9, 2002, ASE measured the depth to water in each site groundwater monitoring well using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. No free-floating hydrocarbons or sheen were observed in any site monitoring well. Groundwater elevation data is presented as *Table One*.

A groundwater potentiometric surface map is presented as Figure~2. Groundwater beneath the site flows to the southwest with a gradient of approximately 0.0051-feet/foot, which is relatively consistent with previous findings.

3.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Prior to sampling, all monitoring wells were purged of three well casing volumes of groundwater using dedicated polyethylene bailers. Petroleum hydrocarbon odors were present during the purging and sampling of monitoring wells MW-1 and MW-3. The parameters pH, temperature, and conductivity were monitored during the well purging, and samples were not collected until the parameters stabilized. Groundwater samples were collected from each well using dedicated polyethylene bailers.

All samples were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid, and sealed without headspace. The samples were then labeled and placed in a cooler with wet ice for transport to Kiff Analytical, LLC of Davis, California under appropriate chain-of-custody documentation. Well sampling field logs are presented in *Appendix A*.

The well purge water was placed in 55-gallon steel drums and labeled for temporary storage.

The groundwater samples collected from all three site monitoring wells were analyzed for total petroleum hydrocarbons as diesel (TPH-D) by EPA Method 3550/8015M, total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethyl benzene, and total xylenes (collectively known as BTEX) and fuel oxygenates by EPA Method 8260. The analytical results are presented in *Table Two*, and the certified analytical report and chain-of-custody documentation are included as *Appendix B*.

4.0 CONCLUSIONS

The groundwater flow was to the southwest at a gradient of 0.0051 feet/foot, which is relatively consistent with previous findings.

Groundwater samples collected from monitoring well MW-1 contained 8,300 parts per billion (ppb) TPH-G, 32 ppb benzene, 20 ppb toluene, 390 ppb ethyl benzene, and 670 ppb total xylenes. No oxygenates were detected in groundwater samples collected from monitoring well MW-1. The groundwater samples collected from monitoring well MW-2 contained 1,300 ppb TPH-D and 1.4 ppb methyl-tertiary-butyl ether (MTBE). No other hydrocarbons or oxygenates were detected in the groundwater sample collected from monitoring well MW-2. The groundwater samples collected from monitoring well MW-3 contained 12,000 ppb TPH-G, 1,400 ppb benzene, 44 ppb toluene, 130 ppb ethyl benzene, 27 ppb total xylenes, 760 ppb MTBE, and 160 ppb tert-butanol (TBA). No other oxygenates were detected in monitoring well MW-3.

The benzene concentration detected in groundwater samples collected from monitoring well MW-3 exceeded the Risk-Based Screening Level (RBSL) for groundwater that is not a current or potential source of drinking water as presented in the "Application of Risk-Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region dated December 2001. The TPH-G and total xylene concentrations in the water samples collected from monitoring wells MW-1 and MW-3 also exceeded the RBSLs. The TPH-D concentration in water samples collected from monitoring well MW-2 also exceeded the RBSL for that compound.

Hydrocarbon concentrations in groundwater samples collected monitoring well MW-1 have increased since the last sampling period, but remain lower than the concentrations one year ago. MTBE was detected in the water sample collected from MW-2 for the first time since May 2000. Hydrocarbon concentrations in the water samples collected from monitoring well MW-3 appear to show a long term decreasing trend for the majority of the hydrocarbons analyzed.

5.0 RECOMMENDATIONS

ASE recommends that this site be sampled on a quarterly sampling schedule. The next sampling is scheduled for December 2002. In addition,

a workplan to conduct additional environmental assessment activities at the site will be prepared during the next quarter.

6.0 REPORT LIMITATIONS

The results presented in this report represent the conditions at the time of the groundwater sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services for this project, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

No. 6586

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Erik H. Paddleford Associate Geologist

full & the

Ed Il from

Robert E. Kitáy, R.G., R.E.A.

Senior Geologist

Attachments: Table One and Two

Figures 1 and 2

Appendices A and B

cc: Mr. Nissan Saidian

Mr. Barney Chan, ACHCSA

Mr. Chuck Headlee, RWQCB, San Francisco Bay Region

TABLES

TABLE ONE Groundwater Elevation Data Saidian Property-Alameda Alameda, CA

Well	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation (m91)
MW-1	9/6/99 5/16/00 8/3/00 12/5/00 3/5/01 6/4/01 6/5/02 9/9/02	26.85	5.16 3.24 4.15 4.90 3.04 4.01 3.73 5.06	21.69 23.61 22.70 21.95 23.81 22.84 23.12 21.79
MW-2	9/6/99 5/16/00 8/3/00 12/5/00 3/5/01 6/4/01 6/5/02 9/9/02	27.18	5.56 3.52 4.44 5.24 3.28 4.33 3.98 5.34	21.62 23.66 22.74 21.94 23.90 22.85 23.20 21.84
MW 3	9/6/00 5/16/00 8/3/00 12/5/00 3/5/01 6/4/01 6/5/02 9/9/02	25.3 <i>0</i>	4.02 2.06 3.20 3.71 1.90 2.72 2.75 3.88	21.28 23.24 22.10 21.59 23.40 22.58 22.55 21.42

TABLE TWO

Summary of Chemical Analysis of GROUNDWATER Samples

Saidian Property-Alameda

Petroleum hydrocarbons

A results are in parts per billion (ppb)

We"/	TPH	TPH			Ethyl	ota.				Otrer
Date Samplea	Gasoine	D.ese.	Benzere	Toluene	Benzere	Xylenes	MTBE	TAME	~3A	Cxygenates
M27-1										
9/6/1999	5,700	8.700	170	59	22	85	20.000	NA	NA	NA
5/16/2000	20.000	< 7.500	38	63	740	1,600	< 5.0	<50	< 50	< 5.0
8/3/2000	20,000	< 6,000	56	97	920	1.600	< 0.5	< 0.5	< 50	< 0.5
12/5/2000	31,000	< 4,000	64	27	820	2,200	< 10	<50	< 50	< 5.0
3/5/2001	20,000	<4,000	19	<50	480	870	<5.0	<5.0	<50	<5.0
6/4/2001	23,000	<7,000	58	5 <i>0</i>	710	2,100	5.1	<5.0	<50	<5.0
6/5/2002	7,400	<1,500	93	6.7	1 <i>80</i>	230	<10	<1.0	<10	<10
9/9/2002	8,300	< 3,500	32	20	<i>390</i>	670	< 2.0	< 2.0	< 20	< 2.0
MW-2										
<u>9/6/1</u> 999	6.000	70	1.300	92	50	400	6.800	NA	NA	NA
5/16/2000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 50	< 5.0
8/3/2000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<50	< 0.5
12/5/2000	< 50	1,400	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
3/5/2001	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<50	< 0.5
6/4/2001	<50	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
6/5/2002	< 50	2.300	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5
9/9/2002	< 50	1,300	< 0.5	< 0.5	< 0.5	< 0.5	1.4	< 0.5	< 5.0	< 0.5
MW-3										
9/6/1999	43.000	870	860	70	< 0.5	65	120.000	NA	NA	NA
5/16/2000	17,000	< 5.000	2.800	60	380	190	990	9.1	350	< 5.0
8/3/2000	16,000	< 2.000	1,600	29	210	53	1.200	21	260	< 2.0
12/5/2000	17.000	5.800	1,700	45	460	240	1,100	21	230	< 5.0
3/5/2001	29,000	<1300	2,100	40 68	280	100	180	<8.0	<80	< 5.0 < 8.0
6/4/2001	17.000	<6.000	2,100	56	340	230	300	<0.0	130	<8.0 <10
6/5/2002	11,000	<2.000	1,600	46	210	47	790	<10	220	<10
9/9/2002	12,000	< 800	1,400	44	130	27	760	< 10	160	<10
0,0,200E	12,000	1000	1,700	77	100	21	,00	10	100	\ IO

Notes

MTBE = Methyl-t-butyl ether

TAME = Tert-amyl methyl ether

TBA = Tert-Butanol

RBSL = Risk Based Screening Levels presented in the "Application of Risk-Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region, dated December 2001.

R65U 500 640 46 130 290 13 1500 NE NE NE NE

NA = Samples Not Analyzed for this compound

NE = DHS MCLs are not established

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit

Most recent data in bold

NORTH

LOCATION MAP

SAIDIAN PROPERTY 1310 CENTRAL AVENUE ALAMEDA, CALIFORNIA

AQUA SCIENCE ENGINEERS, INC.

Figure 1

APPENDIX A

Well Sampling Field Logs

WELL SAMPLING FIELD LOG

Project Name and Address: >aidian - Alaneda
Job #: _ 3648 Date of sampling: _ 9/9/02
Well Name: MW1 Sampled by: EP
Total depth of well (feet): 18-0 Well diameter (inches): 2
Depth to water before sampling (feet): 5.04
Thickness of floating product if any:
Depth of well easing in water (feet): 12 94
Number of gallons per well casing volume (gallons): 2
Number of well casing volumes to be removed: 3
Req'd volume of groundwater to be purged before sampling (gallons):
Equipment used to purge the well: bailer
Time Evacuation Began: 1425 Time Evacuation Finished: 1445
Approximate volume of groundwater purged: 6
Did the well go dry?: vo After how many gallons -
Time samples were collected: 1450
Depth to water at time of sampling:
Percent recovery at time of sampling:
Samples collected with; bailer
Sample color: Clear brown gray Qdor: Stat
Description of sediment in sample: 51/
CHEMICAL DATA
Volume Purged Temp pH Conductivity
Volume Purged Temp pH Conductivity 77.5 5.46 5/7
2 76.2 5.52 518
<u> </u>
SAMPLES COLLECTED
Sample # of containers Volume & type container Pres Iced? Analysis
MW-) 5 40 ml VO4 x x

WELL SAMPLING FIELD LOG

Project Name and Ad	dress: <u>Se</u>	idian -	Alamod	i	
Job #: 3648		Date of	sampling:	9/9/02	
Well Name: MW-Z		Sampled	by: _ <i>E</i>	p'	
Total depth of well (fe	et): <u>/7.80</u>		Well dia	ameter (inches):	Z
Depth to water before	sampling (feet): <u>5.</u>	34		
Thickness of floating	product if a	ny:	•	_	
Depth of well casing i	in water (fee	et): /2.4	16		
Number of gallons per	r well casing	g volume	(gallons):	2	
Number of well casing	g volumes t	o be remo	ved:	3	,
Req'd volume of ground	idwater to b	e purged	before sai	mpling (gallons):	-6
Equipment used to pu	rge the wel	1: bailer		Sales (Sales).	
Time Evacuation Bega	n: /350	Tir	ne Evacua	ation Finished: //	110
Approximate volume	of groundwa	iter purge	d: 4		:
Did the well go dry?:_				nany gallons:	
Time samples were co			THE STATE OF		,
Depth to water at time				Take the state of	
Percent recovery at time	me of samp	ling:	,	- 1 / 1 / 1	
Samples collected with	1: 69, kg				
Sample color:			or: nove		~ ~~
Description of sedimer			517+	2	
•	•	-			·
CHEMICAL DATA					
					1
Volume Purged	Temp	<u>pH</u>	Conduct	<u>ivity</u>	
<u> </u>	79.3	<u> 5.35</u>	389		
<u>Z</u>	75.9	5.24	389	· · · · · · · · · · · · · · · · · · ·	,
3	75. 7	5.19	391		
			<u></u>		اد
					
SAMPLES COLLECTE	D			•	
Sample # of containers	Volume & type	container P	res Iced?	Analysis	
M4-2 5	40 ml Vo	- A	<u>х</u> х		
					—————

WELL SAMPLING FIELD LOG

Project Name and Add	Iress: <u>Saidian-Algreda</u>	
Job #: <u>364</u> F	Date of sampling: $\frac{7}{9}$	
Well Name: MW-3	Sampled by: EP	
Total depth of well (fee	et): 18.0 Well diameter (inches): 2	-
Depth to water before	sampling (feet): 3.88	
Thickness of floating p	product if any:	
Depth of well casing in		_
Number of gallons per	well casing volume (gallons): 2.2	
Number of well casing	y volumes to be removed: 3	
Req'd volume of groun	ndwater to be purged before sampling (gallons): 6-6	
Equipment used to pur	rge the well: beiler	
Time Evacuation Began	n: /500 Time Evacuation Finished: 1520	
Approximate volume o	of groundwater purged: 6.5	
Did the well go dry?:	After how many gallons:	
Time samples were co	ollected: 7536	
Depth to water at time	e of sampling:	
Percent recovery at tin	ne of sampling:	
Samples collected with	1: bailer	
Sample color: _ 9/ay	· Odor: moderate	
Description of sedimen		
•		
CHEMICAL DATA		
Volume Purged	Town nH Conductivity	
/	Temp pH Conductivity 78.5 5.9/ 632	
<u> </u>	78.5 5.91 632 77.2 5.96 638	
3	76.8 5.98 640	
	0.00	,
SAMPLES COLLECTE	D	
Sample # of containers V	Volume & type container Pres Iced? Analysis	
NW-3 5	1.2.4 3 A	
	40 m1 V04 _ X X	_
		-
		-

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

Date: 10/1/02

Eric Paddleford Aqua Science Engineers, Inc. 208 West El Pintado Rd. Danville, CA 94526

Subject: 3 Water Samples

Project Name: Saidian - Alameda

Project Number: 3648

Dear Mr. Paddleford,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 10/1/02

Subject: Project Name: 3 Water Samples Saidian - Alameda

Project Number :

3648

Case Narrative

The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1 and MW-3. Hydrocarbons reported as TPH as Diesel do not exhibit a typical Diesel chromatographic pattern for sample MW-2. Matrix Spike/Matrix Spike Duplicate Results associated with samples MW-1, MW-3 for the analyte Methyl-t-butyl ether were affected by the analyte concentrations already present in the un-spiked sample.

Approved By: Joel Kiff 720 Olive Drive, Suite D Davis, CA 95616 916-297-4800

Date: 10/1/02

Project Name: Saidian - Alameda

Project Number: 3648

Sample: MW-1

Matrix: Water

Lab Number: 28544-01

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	32	2.0	ug/L	EPA 8260B	9/21/02
Toluene	20	2.0	ug/L	EPA 8260B	9/21/02
Ethylbenzene	390	2.0	ug/L	EPA 8260B	9/21/02
Total Xylenes	670	2.0	ug/L	EPA 8260B	9/21/02
Methyl-t-butyl ether (MTBE)	< 2.0	2.0	ug/L	EPA 8260B	9/21/02
Diisopropyl ether (DIPE)	< 2.0	2.0	ug/L	EPA 8260B	9/21/02
Ethyl-t-butyl ether (ETBE)	< 2.0	2.0	ug/L	EPA 8260B	9/21/02
Tert-amyl methyl ether (TAME)	< 2.0	2.0	ug/L	EPA 8260B	9/21/02
Tert-Butanol	< 20	20	ug/L	EPA 8260B	9/21/02
TPH as Gasoline	8300	200	ug/L	EPA 8260B	9/21/02
Toluene - d8 (Surr)	99.0		% Recovery	EPA 8260B	9/21/02
4-Bromofluorobenzene (Surr)	98.6		% Recovery	EPA 8260B	9/21/02
TPH as Diesel	< 3500	3500	ug/L	M EPA 8015	9/22/02

Approved By: Joel Kiff

Date: 10/1/02

Project Name: Saidian - Alameda

Project Number: 3648

Sample: MW-2

Matrix: Water

Lab Number: 28544-02

Sample Date :9/9/02		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analy <u>z</u> ed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Toluene	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Methyl-t-butyl ether (MTBE)	1.4	0.50	ug/L	EPA 8260B	9/12/02
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	9/14/02
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	9/12/02
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	9/12/02
4-Bromofluorobenzene (Surr)	97.1		% Recovery	EPA 8260B	9/12/02
TPH as Diesel	1300	50	ug/L	M EPA 8015	9/22/02

Approved By: Joel Kiff

Date: 10/1/02

Project Name: Saidian - Alameda

Project Number: 3648

Sample: MW-3

Matrix: Water

Lab Number: 28544-03

Sample Date:9/9/02

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	1400	10	ug/L	EPA 8260B	9/21/02
Toluene	44	10	ug/L	EPA 8260B	9/21/02
Ethylbenzene	130	10	ug/L	EPA 8260B	9/21/02
Total Xylenes	27	10	ug/L	EPA 8260B	9/21/02
Methyl-t-butyl ether (MTBE)	760	10	ug/L	EPA 8260B	9/21/02
Diisopropyl ether (DIPE)	< 10	10	ug/L	EPA 8260B	9/21/02
Ethyl-t-butyl ether (ETBE)	< 10	10	ug/L	EPA 8260B	9/21/02
Tert-amyl methyl ether (TAME)	< 10	10	ug/L	EPA 8260B	9/21/02
Tert-Butanol	160	100	ug/L	EPA 8260B	9/21/02
TPH as Gasoline	12000	1000	ug/L	EPA 8260B	9/21/02
Toluene - d8 (Surr)	98.5		% Recovery	EPA 8260B	9/21/02
4-Bromofluorobenzene (Surr)	103		% Recovery	EPA 8260B	9/21/02
TPH as Diesel	< 800	800	ug/L	M EPA 8015	9/25/02

Approved By: Joel Kiff

Date 10/1/02

QC Report : Method Blank Data

Project Name: Saidian - Alameda

Project Number . 3648

		Method			
	Measured	Reporting	_	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
TPH as Diesel	< 50	50	ug/L	M EPA 8015	9/13/02
Benzene	< 0.50	0 50	ug/L	EPA 8260B	9/20/02
Toluene	< 0.50	0 50	ug/L	EPA 8260B	9/20/02
Ethylbenzene	< 0.50	0 50	ug/L	EPA 8260B	9/20/02
Total Xylenes	< 0 50	0.50	ug/L	EPA 8260B	9/20/02
Methyl-t-butyl ether (MTBE)	< 0 50	0.50	ug/L	EPA 8260B	9/20/02
Disopropyl ether (DIPE)	< 0 50	0.50	ug/L	EPA 82608	9/20/02
Ethyl-t-butyl ether (ETBE)	< 0.50	0 50	ug/L	EPA 8260B	9/20/02
Tert-amyl methyl ether (TAME)	< 0 50	0 50	ug/L	EPA 8260B	9/20/02
Tert-Butanol	< 5.0	50	ug/L	EPA 8260B	9/20/02
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	9/20/02
Toluene - d8 (Surr)	100		%	EPA 8260B	9/20/02
4-Bromofluorobenzene (Surr)	94 1		%	EPA 8260B	9/20/02
Benzene	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Toluene	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Total Xylenes	< 0 50	0.50	ug/L	EPA 8260B	9/12/02
Methyl-t-butyl ether (MTBE)	< 0.50	0 50	ug/L	EPA 8260B	9/12/02
Disopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Ethyl-t-butyl ether (ETBE)	< 0 50	0.50	ug/L	EPA 8260B	9/12/02
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	9/12/02
Tert-Butanol	< 5.0	50	ug/L	EPA 8260B	9/12/02
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	9/12/02
Toluene - d8 (Surr)	100		%	EPA 8260B	9/12/02
4-Bromofluorobenzene (Surr)	98.2		%	EPA 8260B	9/12/02

Parameter	Measured Value	Method Reporti Limit		Analysis Method	Date Analyzed
Benzene	< 0.50	0 50	ug/L	EPA 8260B	9/13/02
Toluene	< 0.50	0 50	ug/L	EPA 8260B	9/13/02
Ethylbenzene	< 0 50	0 50	ug/L	EPA 8260B	9/13/02
Total Xylenes	< 0.50	0 50	ug/L	EPA 8260B	9/13/02
Methyl-t-butyl ether (MTBE)	< 0.50	0 50	ug/L	EPA 8260B	9/13/02
Diisopropyl ether (DIPE)	< 0.50	0 50	ug/L	EPA 8260B	9/13/02
Ethyl-t-butyl ether (ETBE)	< 0.50	0 50	ug/L	EPA 8260B	9/13/02
Tert-amyl methyl ether (TAME)	< 0.50	0 50	ug/L	EPA 8260B	9/13/02
Tert-Butanol	< 5 0	50	ug/L	EPA 8260B	9/13/02
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	9/13/02
Toluene - d8 (Surr)	107		%	EPA 8260B	9/13/02
4-Bromofluorobenzene (Surr)	94 8		%	EPA 8260B	9/13/02

pproved By: Joel Ki

KIFF ANALYTICAL, LLC

Date: 10/1/02

Project Name: Saidian - Alameda

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 3648

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicat Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Dıff. Limit
TPH as Diesel	Blank	<50	1000	1000	1040	1130	ug/L	M EPA 8015	9/13/02	104	113	7.87	70-130	25
Benzene	28482-03	3.0	19.9	20.0	24.0	23.6	ug/L	EPA 8260B	9/20/02	105	103	2.26	70-130	25
Toluene Tert-Butanol	28482-03 28482-03	1.8 <5.0	19.9 99.7	20.0 99.8	22.1 122	21.7 105	ug/L ug/L	EPA 8260B EPA 8260B	9/20/02 9/20/02	102 123	99.8	2.02 15.5	70-130 70-130	25 25
Methyl-t-Butyl Ethe	er 28482-03	110	19.9	20.0	119	113	ug/L	EPA 8260B	9/20/02	43.7	12.7	110	70-130	25
Benzene Toluene	28527-01 28527-01	<0.50 <0.50	40.0 40.0	40.0 40.0	42.1 41.9	41.6 41.0	ug/L ug/L	EPA 8260B EPA 8260B	9/12/02 9/12/02	105 105	104 102	1.19 2.07	70-130 70-130	25 25
Tert-Butanol Methyl-t-Butyl Ethe	28527-01	<5.0 7.6	200 40.0	200 40.0	214 45.0	213 44.6	ug/L	EPA 8260B EPA 8260B	9/12/02 9/12/02	107 93.3	106 92.4	0.810 0.969	70-130 70-130	25 25
Methyl-t-Dutyl Ethe		•					ug/L							
Benzene Toluene Tert-Butanol	28532-02 28532-02 28532-02	<0.50 <0.50 <5.0	40.0 40.0 200	40.0 40.0 200	39.5 44.6 195	38.1 43.8 198	ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B	9/13/02 9/13/02 9/13/02	98.8 111 97.6	95.2 110 99.0	3.76 1.61 1.45	70-130 70-130 70-130	25 25 25
Methyl-t-Butyl Ethe		0.51	40.0	40.0	42.3	36.1	ug/L	EPA 8260B	9/13/02	104	89.1	16.0	70-130	25

KIFF ANALYTICAL, LLC

Date: 10/1/02

QC Report : Laboratory Control Sample (LCS)

Project Name: Saidian - Alameda

Project Number: 3648

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.0	ug/L	EPA 8260B	9/20/02	104	70-130
Toluene	40.0	ug/L	EPA 8260B	9/20/02	99.8	70-130
Tert-Butanol	200	ug/L	EPA 8260B	9/20/02	81.8	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	9/20/02	98.1	70-130
Benzene	40.0	ug/L	EPA 8260B	9/12/02	100	70-130
Toluene	40.0	ug/L	EPA 8260B	9/12/02	103	70-130
Tert-Butanol	200	ug/L	EPA 8260B	9/12/02	103	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	9/12/02	87.6	70-130
Benzene	40.0	ug/L	EPA 8260B	9/13/02	98.3	70-130
Toluene	40.0	ug/L	EPA 8260B	9/13/02	113	70-130
Tert-Butanol	200	ug/L	EPA 8260B	9/13/02	100	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	9/13/02	107	70-130

KIFF ANALYTICAL, LLC

Aqua Science Engineers, Inc. 208 W. El Pintado Road Danville, CA 94526

Chain of Custody 28544

(925) 820-9391 FAX (925) 837-4853				•		,,,,,	•	•	`		•			'	c		ان PA <i>G</i>) OF L	
SAMPLER (SIGNATURE) Fulleday		PROJECT NAME Saiding - Alameda JOBNO. 3648 ADDRESS 1310 Central Aug Alameda, CA																		
ANALYSIS R SPECIAL INSTRUCTIONS. SAMPLE ID.	PATE		MATRIX	NO. OF	TPH-DIESEL (EPA 3510/8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	PURGEABLE HALOCARBONS (EPA 601/8010)	VOLATILE ORGANICS (EPA 624/8240/8260)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	OIL & GREASE (EPA 5520)	LUFT METALS (5) (EPA 6010+7000)	CAM 17 METALS (EPA 6010+7000)	PCBs & PESTICIDES (EPA 608/8080)	ORGANOPHOSPHORUS PESTICIDES (EPA 8140 EPA 608/8080)	FUEL OXYGENATES (EPA 8260)	Pb (TOTAL or DISSOLVED) (EPA 6010)	1PH-G/BTEX/5 0XY'S (EPA 8260)	TPH-G/BTEX/ 7 0XY'S / LEAD SCAYANGERS/ 1,2-DCP (EPA 8260)		
MW-1 MW-2	1		Water		*	1P+ (EP	PUK (EP	YOI	(36)	OIL (EP	4H)	(EP	P.C.	유합교	FUE (EF	4 <u>4</u>	X X (EP	E H H H H H H H H H H H H H H H H H H H		-67 -67
MU-3	V	1530	1	V	7												X			_03
RELINQUISHED BY: E Budley (signature) (time)		RECEIVED			RELINQUISHED BY: (signature) (time)					REGE OF	VEQ 8	LABO	(time)	CON	COMMENTS:					
E Paddlefold printed name) (date) Company-	 (p	orinted na	·		(printed name) (date) Company-					TKC / 091102 (printed name) (date) Company- COMPANY-									72Hr –	
Aqua Science Engineers, Inc.										1	IFF	'- E	عصركار	-TT1	طالا	WITIER:				