

January 6, 2000

Mr. John A. Schovanec Bank of America, N.A. Environmental Services #305478 4000 MacArthur Boulevard, Suite 100 Newport Beach, California 92660

Reference: Groundwater Monitoring and Utility Survey Report

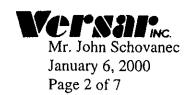
2585 Nicholson Street in San Leandro, California

ES# 305582

Versar Project No. 4422-002

Dear Mr. Schovanec:

Versar, Inc. (Versar) has prepared this groundwater monitoring report on behalf of Bank of America, N.A. (Bank of America) summarizing work performed at the property located at 2585 Nicholson Street in San Leandro, California (Site). Figures 1 and 2, Attachment I present the Site location and Site layout, respectively. The following sections describe the scope of work, Site location, and Site background.

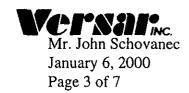

This letter report presents the results of the quarterly groundwater monitoring and sampling event conducted at the Site on October 28, 1999. The results of this monitoring event are presented graphically in Figures 3 and 4 in Attachment I, and are summarized in tables in Attachment II. This report has been prepared in response to the request by the Alameda County Health Care Services (ACHCS) letters dated July 14, 1999, and October 29, 1999, regarding groundwater monitoring at 2585 Nicholson Street, San Leandro, California.

The Site is located at 2585 Nicholson Street in San Leandro, California. The nearest cross street is Republic Avenue. The Site is currently occupied by Crane Works and consists of a single-story commercial office building at the north end of the property, and covered parking/work area over the western and southern edges of the property.

BACKGROUND

According to information presented in the McLaren/Hart soil and groundwater characterization report (McLaren/Hart, 1998), two underground storage tanks (USTs) were removed from the Site in 1991. Soil and groundwater samples collected during the UST removal activities identified total petroleum hydrocarbons (TPH) as diesel and gasoline in both media. Reportedly, overexcavation was performed during UST removal activities. In 1992, Hageman-

1983-00/4422 002


Aguiar (HA) performed an on Site soil and groundwater investigations, and installed one monitoring well (MW-1) on the central portion of the Site. Groundwater samples were collected by HA from MW-1 between 1992 and 1995. HA identified free-floating product in MW-1 during some of the sampling events, at a maximum thickness of 1.25 inches. In 1998, McLaren/Hart performed a limited investigation of soil and groundwater, both on and off-Site. McLaren/Hart concluded that adequate definition of petroleum hydrocarbons in soil and groundwater had been completed, and that the contaminant plume was relatively stable with minimal off-Site migration of petroleum hydrocarbons. McLaren/Hart recommended installation of additional monitoring wells to confirm the direction of groundwater flow beneath the Site.

In April 1999, Versar installed four additional monitoring wells, and sampled all the Site wells, as described in our *Monitoring Well Installation and Groundwater Monitoring Report*, dated June 30, 1999. The monitoring well locations are depicted in Figure 2, Site Plan. Versar detected petroleum hydrocarbons as gasoline in the southern half of the Site; benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in well MW-1 near the center of the Site. The groundwater gradient was calculated to be approximately 0.001 feet/foot and flowing in a southeasterly direction. Historical analytical results from Site monitoring wells are presented in Table 2 of Attachment II.

QUARTERLY GROUNDWATER MONITORING ACTIVITIES

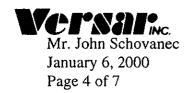
Versar performed groundwater monitoring of the Site on October 28, 1999, sampling the wells for TPH as gasoline (TPHg) and BTEX. Versar's quarterly groundwater monitoring program for the Site included the following tasks:

- Measure groundwater levels in monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5, and calculate the hydraulic gradient and flow direction.
- Purge and collect groundwater samples from the five monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5);
- Obtain measurements of groundwater temperature, electrical conductivity, pH, and dissolved oxygen in monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5.
- Submit the groundwater samples to a California-certified analytical laboratory for analysis of one or more of the following TPHg and BTEX.
- Prepare a letter report summarizing the results.

During the previous quarterly monitoring episode for the Site (July, 1999), Versar requested that TPH as diesel (TPHd) be removed from the analytical suite, since TPH chromatograms from the sampling event indicated the detected petroleum hydrocarbon at the Site is gasoline. Subsequent response from the ACHCS on October 29, 1999, requested TPHd analysis be continued at the Site. However, the October event was performed prior to receipt of this request, and consequently, TPHd analysis was not performed.

Groundwater Sampling Protocol

The methodology and protocol followed for the collection of groundwater samples during this groundwater sampling event are presented in Attachment III, Decontamination and Groundwater Monitoring Well Sampling Procedures.


Quarterly Groundwater Level Measurements

On October 28, 1999, the depth to groundwater in wells MW-1, MW-2, MW-3, MW-4 and MW-5 was measured to characterize groundwater flow direction and gradient. The depths to groundwater at each well, along with historical measurements, are presented in Table 1. Groundwater was measured to be flowing to the east-southeast, at a gradient of 0.002 feet per foot. Groundwater surface elevations are 0.13 to 0.58 foot higher than in July 1999. Figure 3 in Attachment I is a groundwater gradient map generated from the October 28, 1999 data.

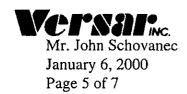
Groundwater Sampling Activities

On October 28, 1999, groundwater samples were collected from monitoring wells MW-1, MW-2, MW-3, MW-4 and MW-5. Prior to sampling, each well was purged of approximately three casing volumes of groundwater, and the water level allowed to recover to at least 80 percent of the pre-purge level. Measurements of temperature, pH, electrical conductivity, and dissolved oxygen were recorded a minimum of three times during each purged well volume. The groundwater monitoring well purge tables are presented in Attachment IV.

Groundwater samples collected from Site wells were analyzed for TPHg and BTEX by Kemron Environmental Services (Kemron), California State Laboratory Certification No. 2277. The samples were collected, placed in containers, preserved, transported, and analyzed within the time constraints consistent with applicable United States EPA, California EPA, and Regional Water Quality Control Board (RWQCB) procedures, and in conformance with Versar's Decontamination and Groundwater Monitoring Well Sampling Procedures, presented in Attachment III. Purge water from the October 28, 1999 sampling event was recycled off-site by Integrated Management Waste Stream Incorporated.

ANALYTICAL RESULTS

The analytical results of the TPHg and BTEX analyses are summarized in Table 2 in Attachment II. Figure 4 in Attachment I spatially depicts the analytical results for the October 1999 groundwater monitoring event. The laboratory analytical reports are included in Attachment V.

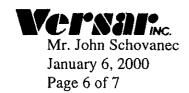

- TPHg was detected in wells MW-1, MW-3 and MW-5 at concentrations of 4,900 micrograms per liter (μ g/L), 230 μ g/L, and 540 μ g/L, respectively.
- Benzene was only detected in well MW-1 at a concentration of 270 μ g/L.
- Toluene was only detected in well MW-1 at a concentration of 34 μ g/L.
- Ethylbenzene was not detected in Site wells this quarter.
- Total xylene isomers was only detected in well MW-1 at a concentration of 370 μ g/L.

SUPPLEMENTAL UTILITIES INFORMATION

In their July 14, 1999 letter, ACHCS requested information regarding the depth of gas, electric, and storm drain trenches adjacent to the Site, as depicted in Figure 2 of Versar's, June 30, 1999, Monitoring Well Installation and Groundwater Sampling Report. Versar's attempt to obtain utility information was unsuccessful during the July, 1999 monitoring period. In their October 29, 1999 letter, ACHCS reiterated their request for information regarding the depths of the utilities. Utility information obtained during this monitoring period is described below.

During the October 1999 monitoring period, Versar did not receive responses from underground utility operators in the vicinity of the Site. To obtain the information requested by ACHCS, Versar measured to the depth to the bottom of the access point (valve box, drop inlet, or manhole) for each utility that could be accessed at and adjacent to the Site. The bottom of the access point is typically deeper than the pipeline or conduit. During the survey, Versar identified an additional utility (sanitary sewer) near the centerline of Nicholson Street, running parallel with the roadway. The greatest depth to the bottom of an access point was measured to be 5.5 feet bgs for this sanitary sewer line. The next deepest utility/conduit was measured to be 3.5 feet bgs.

Based on this information and highest depth to groundwater identified beneath the Site (>4 feet bgs), Versar believes that the only utility with the potential to influence groundwater migration



is the sanitary sewer in the center of Nicholson Street. The nearest monitoring well to the utility is MW-2, which is located on the southwest portion of the street. Since MW-2 is located between the Site source area and the underground sanitary sewer line, any potential influences on groundwater migration are not anticipated to meaningfully influence contaminant migration. Based on this information, there is no evidence that utilities are effecting plume migration at the Site and no further assessment is warranted. Should additional information be obtained from the utility providers, Versar will include the information in the subsequent quarterly monitoring report.

CONCLUSIONS

Based on the results of this most recent quarterly groundwater monitoring event Versar has made the following conclusions.

- During the October 1999 sampling event, the groundwater gradient was calculated to be 0.002 ft/ft flowing to the east-southeast. Groundwater surface elevations are approximately 0.13 to 0.58 foot higher than in July 1999.
- TPHg and BTX were detected at well MW-1, and were not detected in any of the other wells. This indicates that the area of residual contamination at the Site is located near the center of the property, in the vicinity of MW-1.
- Actionable concentrations of benzene were detected only at well MW-1. No other actionable concentrations of the constituents of concern were detected at the Site.
- Versar measured the depth of utilities adjacent to the Site, as requested by ACHCS. The deepest utility was found to be approximately 5.5 feet bgs, and is in relatively close proximity to MW-2. All other utilities were found to be above historic high groundwater levels. Since MW-2 is located between the Site source area and the underground sanitary sewer line, any potential influences on groundwater migration are not anticipated to meaningfully influence contaminant migration. Based on this information, there is no evidence that utilities are effecting plume migration at the Site and no further assessment is warranted. Should additional information be obtained from the utility providers, Versar will include the information in the subsequent quarterly monitoring report.
- As indicated previously, chromatograms from the July 1999 quarterly monitoring episode indicated the detected petroleum hydrocarbon at the Site is gasoline. Given this information, Versar requests TPHd be discontinued from the suite of groundwater analyses.

FUTURE ACTIVITIES

Quarterly groundwater monitoring will continue at the Site to characterize groundwater fluctuations, flow direction, and contaminant concentrations. Natural attenuation parameters will be collected during the next monitoring event. This information is required in considering closure for the Site by the ACHCS. The next quarterly monitoring event is scheduled for January 2000.

REFERENCES

Alameda County Health Care Services Agency. Letter to Mr. John Schovanec, Bank of America Environmental Services. Re: Groundwater monitoring at 2584 Nicholson Street, San Leandro, CA. Dated July 14, 1999.

United States Department of the Interior Geological Survey. Map. San Leandro Quadrangle, 7.5 Minute Series (Topographic). 1959, Photorevised 1980.

Versar, Inc.. Monitoring Well Installation and Groundwater Monitoring Report. Prepared for Bank of America, N.T. & S.A.. Project No. 4422-001. June 30, 1999.

STATEMENT OF LIMITATIONS

The conclusions presented above are based on the agreed-upon scope of work outlined in the beginning of this report. Versar makes no warranties or guarantees as to the accuracy or completeness of information provided or compiled by others and used by Versar. It is possible that information exists beyond the scope of this investigation. Also, changes in Site use may have occurred sometime in the past due to variations in rainfall, temperature, water usage, economic, agricultural, or other factors. Additional information that was not found or available to Versar at the time of the writing of this report may result in a modification of the conclusions presented. This report is not a legal opinion.

The services performed by Versar have been conducted in a manner consistent with the level of care ordinarily exercised by members of our profession currently practicing under similar conditions. No other warranty expressed or implied is made.

January 6, 2000
Page 7 of 7

This Quarterly Monitoring Report was prepared by Versar on behalf of Bank of America. Mr. Dale Anderson, Senior Environmental Technician, performed the groundwater sample collection. Mr. Tim Berger, Registered Geologist, prepared the report, and supervised the field activities. Mr. Scott Allin, Registered Environmental Assessor, reviewed the report.

Prepared by:

Tim Berger R.G. 5225 Supervising Geologist Versar - Pacific Region Reviewed by:

Scott Allin, R.E.A. 076223 Senior Program Manager Versar - Pacific Region

Attachment I - Figures
Attachment II - Tables

Attachment III - Decontamination and Groundwater Monitoring Well Sampling Procedures

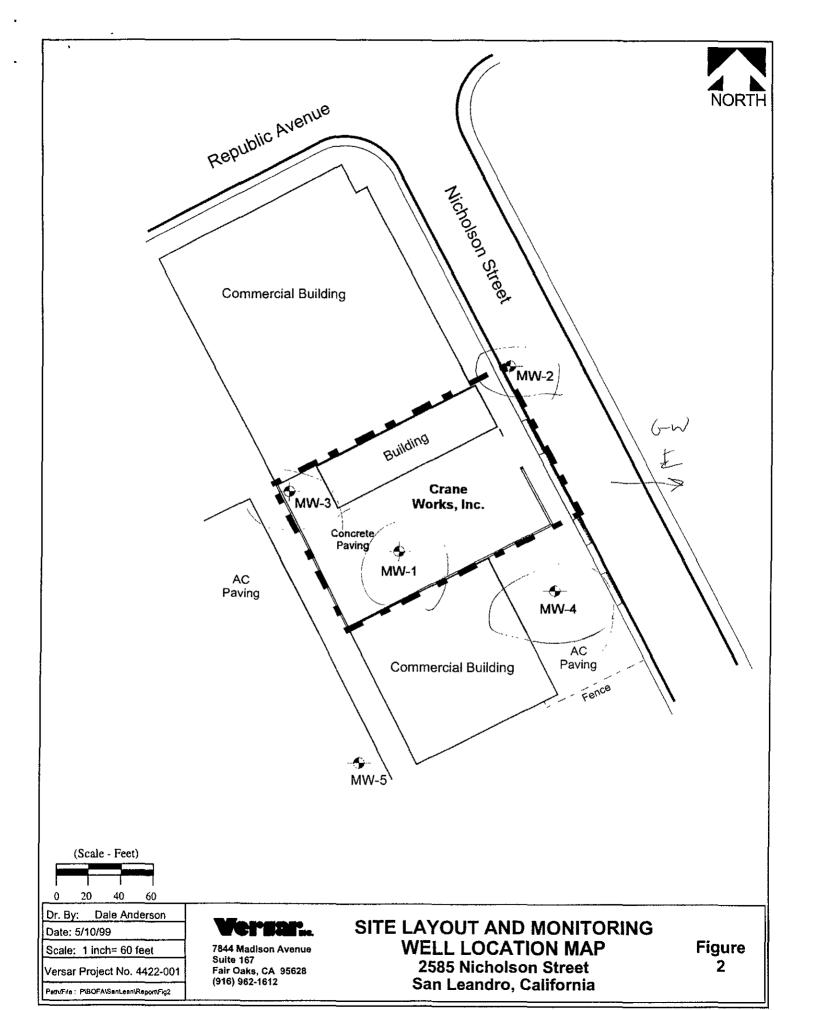
Attachment IV- Monitoring Well Purge Tables

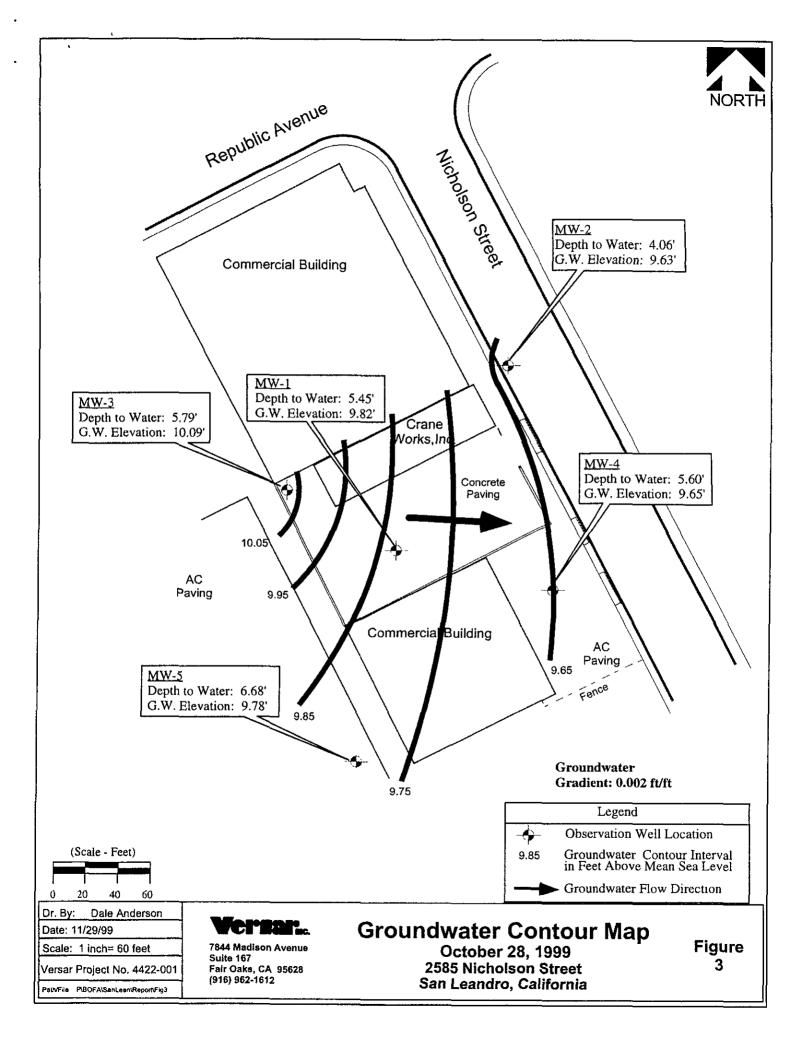
Attachment V - Laboratory Analytical Reports and Chain-of-Custody Documentation

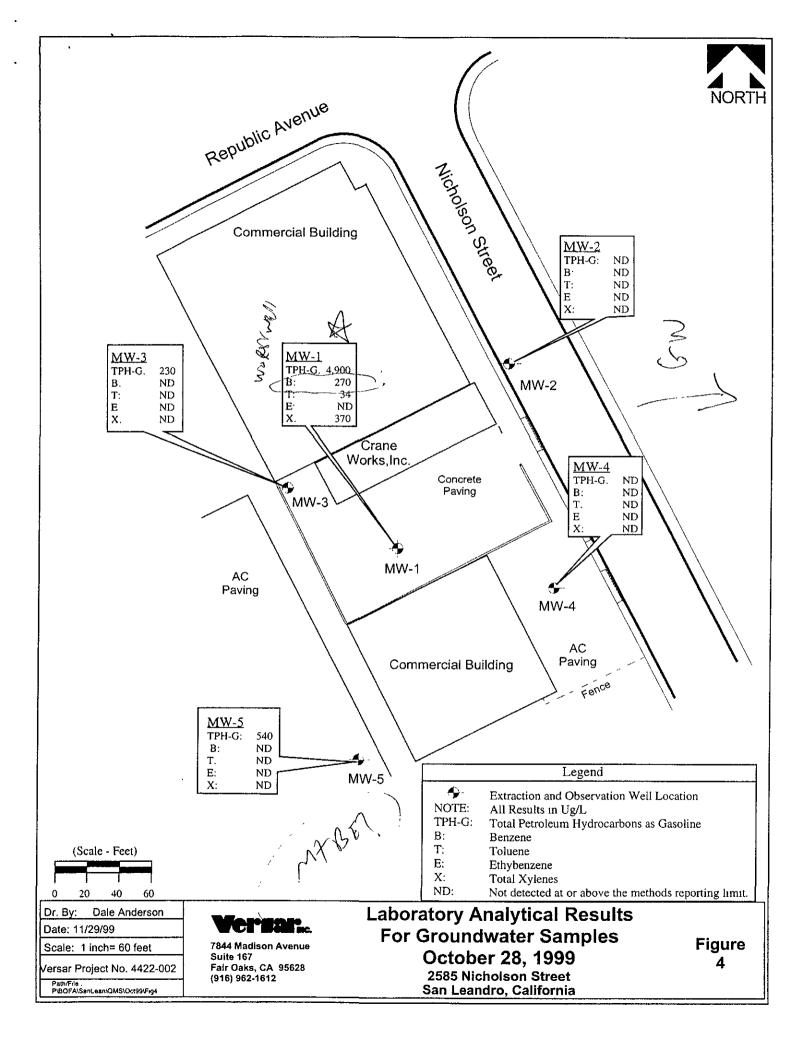
cc: Juliett Shin (Alameda County)

Mike Bakaldin (City of San Leandro)

ATTACHMENT I


Figures




Versar Project No. 4422-001 Path/File . P\BOFA\SANLEAN\REPORT\Fig1

Suite 167 Fair Oaks, CA 95628 (916) 962-1612

2585 Nicholson Street San Leandro, California

ATTACHMENT II

Tables

Table 1 Groundwater Elevation Data 2585 Nicholson Street San Leandro, California

			Groundwater Monitoring Well					General gradient
		MW-I	MW-2	MW-3	MW-4	MW-5	magnitude (ft/ft)	direction
Well casing elevation (feet amsl)		15.27	13.69	15.88	15.25	16.46		
April 29, 1999	Depth to groundwater (feet toc) Groundwater elevation (feet amsl)	5 33 9,94	3 76 9.93	5 88 10.00	5 40 9.85	6 64 9.82	0.001	Southeast
July 28,1999	Depth to groundwater (feet toc) Groundwater elevation (feet amsl) Change from previous elevation	5.85 9,42 -0.52	4.19 9.50 -0.43	6.37 9.51 -0.49	5.84 9.41 -0.44	7.11 9.35 -0.47	0.001	Southeast
October 28, 1999	Depth to groundwater (feet toc) Groundwater elevation (feet amsl) Change from previous elevation	5.45 9.82 0.40	4.06 9.63 0.13	5.79 10.09 0.58	5 60 9.65 0.24	6.68 9.78 0.43	0.002	Easterly

Notes and Abbreviations: ft/ft = feet per foot amsl = above mean sea level toc = top of casing

Table 2
Analytical Results for Groundwater Samples
2585 Nicholson Street
San Leandro, California

WINSMI STEPHED

1		i i					/ Ch	micals of Concer		W 2012 3 17 1	- 501 VI	1	
U"		;		<u> </u>	 	J		1	<u>n</u>	,		T	
	Monitoring		TPH-G	TPH-D	ТРН-МО	Benzene	Toluene	Ethylbenzene	Total Xylenes	1	TPH-SS		2-Methyl-
	Well No.	Date	(μg/L)	(μg/L)	(μg/L)	(μg/L)/	(μg/L)	(μg/L)	(µg/L)	TPH-K (mg/L)	(μg/L)	Naphthalene	naphthalene
	r .	Jun-92	10,000	ND	NA	140	81	62	280				••
	!	Nov-92	9,800	ND		23	14	22	96	!			
		Apr-93	18,000	560	ND	42	47	50	190	ND	370		
	-	Jul-93	27,000	ND	ND	40	45	63	190	ND	ND		
		Dec-93	7,800	3,800	ND	13	16	20	77	ND	ND		
		Mar-94	280,000	620	ND	970	880	620	1,700	ND	3,300		
		Jun-94	8,500	ND	ND	23	13	8.5	19	ND	ND		
		Sep-94	2,400	52	ND	5.3	2.6	2.5	6	ND	ND		
[Dec-94	4,800	1,300	ND	32	32	16	50	ND	1,000		
l		Apr-95	74,000	3,700	ND	320	350	350	940	ND	570		
ı		Sep-95	33,000	46,000	ND	140	270	260	1,100	ND	4,900		
		May-99	8,100	ND	ND	1,400	31	82	360				
		Jul-99	3,500	1,700		252	23	43	179			10	6.5
	' I	Oci-99	4,900			270	34	<5	370				
				ر الم در مرادهما	NNYSZ	MARIAN							
		Apr-99	ND	ND	ND	ND	ND	ND	ND				
	1	Jul-99	<100	<100		<1.0	<1.0	<1.0	<1.0				
		Oct-99	<100			<1.0	<1.0	<1.0	<1.0				
ĺ	MW-3	Арг-99	ND	540	ND	ND	ND	ND	ND			ND	ND
		Jul-99	300	<100		<10	<1.0	<1.0	<1.0			<5.0	<5.0
	1	Oct-99	230			<1.0	<1.0	<1.0	<1.0				
			***					-110					
l		Apr-99	110	ND	ND	ND	ND	ND	ND				
		Jul-99	120	<100		<1.0	<1.0	<1.0	<1.0				
		Oct-99	<100			<1.0	<10	<1.0	<1.0				
	MW-5	Apr-99	270	ND	ND	ND	ND	ND	ND				
		Jul-99	570	<100		<1.0	<1.0				,		
- (Oct-99	540			<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	(i i	
						``	\1.U	<1.0	<1.0				
L													

Notes and Abbreviations:

TPH-G = total petroleum hydrocarbons as gasoline...

TPH-K = total petroleum hydrocarbons as kerosene

TPH-SS = total petroleum hydrocarbons as stoddard solvent.

μg/L = micrograms per litter, equivalent to parts per billion (ppb).

mg/L = milligrams per litter, equivalent to parts per million (ppm)

ND = not detected at or above the methods reporting limit.

-- = not analysed

ATTACHMENT III
Decontamination and Groundwater Monitoring Well Sampling Procedures

•

1.0 DECONTAMINATION PROCEDURES

The decontamination procedures for non-dedicated field equipment and well development/purging equipment are given below. These procedures are followed during all field activities.

- 1. Non-dedicated well development, purging, and sampling equipment is carefully precleaned prior to each use, as follows:
 - a. Carefully brush off any loose foreign debris with a soft bristle brush.
 - b. Rinse the equipment thoroughly in clean water.
 - c. Wash the equipment in a non-phosphate detergent bath.
 - d. Rinse thoroughly in clean water.
 - e. Rinse thoroughly with deionized water.
 - f. Air dry in a dust-free environment.
 - g. Store in unused plastic bags or other suitable cover until use.
- 2. Clean disposable gloves are worn by all field personnel when handling decontaminated equipment.

2.0 COLLECTION OF SAMPLES

2.1 Groundwater Sampling

Groundwater samples are collected for laboratory analysis using the procedures given below.

- 1. Open the well and measure the organic vapor concentration with a flame-ionization detector (FID) or photoionization detector (PID).
- 2. Measure the water levels (if any) in the well using a decontaminated measuring device. All measurements must be made to the nearest 0.01 foot, and measured relative to the top of the casing. Record the depth of the water in the field notebook.

- 3. Inspect the disposable bailer to ensure that the bottom valve assembly is working correctly.
- 4. Begin purging the well by inserting a bailer into the PVC monitoring well casing and carefully lower it into the well. Take care to avoid agitating and aerating the fluid column in the well.
- 5. Slowly withdraw the bailer and transfer the water samples to a sampling containers.
- 6. Measure the temperature, pH, conductivity, and turbidity. Record these and all subsequent measurements in the field notebook.
- 7. Continue purging the well (a minimum of three well volumes) until the temperature, pH, conductivity, and turbidity have stabilized, or the well is dry.
- 8. When the water has recovered to 80 percent of the original level, carefully lower a new disposable bailer into the well and recover groundwater samples.
- 9. Fill the appropriate sample containers by releasing water from the bailer via the bottom emptying device with a minimum of agitation. The most volatile parameters are collected first, proceeding to the least volatile parameters.
- 10. Place the purge water in a DOT-approved 55-gallon drums.

3.0 ANALYSIS OF SAMPLES

Samples are submitted to a California state-certified laboratory for analysis.

4.0 SAMPLE HANDLING

4.1 Sample Containers, Preservation, and Holding Times

All samples are collected, placed in containers, preserved, and analyzed within the time constraints with applicable local, provincial, and federal procedures. All sample containers are precleaned in accordance with prescribed EPA methods. A custody seal is placed around all sample container lids to prevent leaks and unauthorized tampering with individual samples following collection and prior to the time of analysis.

4.2 Sample Tracking and Management

All samples are tracked using a standard chain-of-custody form. The chain of custody record includes the following information:

- 1. Sample number
- 2. Signature of collector
- 3. Date and time of collection
- 4. Sample collection location
- 5. Sample type
- 6. Signature of persons involved in the chain-of-possession
- 7. Inclusive dates of possession
- 8. Analytical parameters
- 9. Pertinent field observations

The custody record is completed using waterproof ink. Corrections are made by drawing a line through, initialing the error, and then entering the correct information.

Custody of the samples begins at the time of sample collection and are maintained by the sampling team supervisor until samples are relinquished for shipment to the laboratory, or until samples are hand-delivered to the designated laboratory sample custodian. Partial sample sets being accumulated for hand-delivery to the laboratory are stored in coolers with chain-of-custody records sealed in plastic bags and placed in the cooler with the sample sets.

ATTACHMENT IV

Monitoring Well Purge Tables

Project Number	: 4422-001		Site Name: Ba	nk of America- Sa	n Leandro					
Well Number: M	/W-1	,	Date(s) Purge	Date(s) Purged: 10-28-99						
OVA - Ambient	: LR	· · · · · · · · · · · · · · · · · · ·	Purge Method: Centrifugal Pump							
OVA - Vault:	NE		Purge Rate:							
OVA - Casing:	NR		Date & Time Sampled: 10-28-99 @ /5 /5							
Water Level - Ir	nitial: 5, 73 @ /	+1)	Purged & San	npled: Dale Ande	rson					
Water Level - Final: 5,85@ /5/0 Well Depth: 18.00 feet Well Diameter: 6 inch			Sampling Met	hod: Dedicated Di	sposable Bailer					
			Free Product:	0						
			Sheen: Mo	Sheen: MUDERATE						
Well Casing Vol	ume: /O		Odor: 5720	NG HYPAO	eARB					
Time	Purge Water Removed (gal)	Temperature (degrees Fahrenheit)	pН	Electrical Conductivity (umhos/cm)	Dissolved Oxygen (mg/l)	Turbidity				
1430	フ	68.2	7.05	977	6.76	Lon				
1433	14	64.2	7.02		7.23	11				
143\$	7	65.1	7.02	932	6,25	1/				
1437	25	67.0		958	7.84	11				
14412	35	66,4	7.03	940	7.55	4				
1447	42	66.8	6.98	944	6.24	1/				
1450	49	67.1	6.99	954	6-96	リ				
1458	56	66.6	6.97	933	6.56	1				
1505	5 %	65.0	6.90	925	2.56	***				
1515	Sarple					```				
Field Notes:	_									

Use or disclosure of this data is subject to the restrictions on the title page of this document

Project Number:	: 4422-001		Site Name: Bank of America- San Leandro					
Well Number: M	rw-2		Date(s) Purged: 10-28-99					
OVA - Ambient:	he		Purge Method: Dedicated Disposable Bailer					
OVA - Vault:	UR		Purge Rate:					
OVA - Casing:	Ne	Date & Time S	Sampled: 10-28-99	@ 1300)			
Water Level - In	itial: 4, 04 @/0	38	Purged & Sam	pled: Dale Ande	rson			
Water Level - Fi	nal: 4 / @ /2	Sampling Met	hod: Dedicated Dis	sposable Bailer				
Well Depth: 14		Free Product:	0					
Well Diameter: 2	2 inch	Sheen:	2					
Well Casing Volume: / · 7			Odor:	0				
Time	Purge Water Removed (gal)	Temperature (degrees Fahrenheit)	pН	Electrical Conductivity (umhos/cm)	Dissolved Oxygen (mg/l)	Turbidity		
1239	,25	67.3	2.15	1061	1.76	Clevr		
1.241	1.0	67-1	7.15	1041	1.01	Low		
1243	1.75	66.7	7.//	1038	1.02	1/		
1245	2,50	643	8.06	1024	1.03	MOD		
1248	3.25	65.6	8,11	1007	194	4		
1250	3.75	\$5.5	6.96	1031	.88	11		
1252	4.25	65.3	6.92	1023	.72	1/		
1/254	4.75	85-8	6.89	1030	1.06	1/		
1256	5.25	65.9	6-88	1033	- 77	"/		
1300	Sayser							
Field Notes:				<u> </u>		I		

Vernaine.

Project Number	: 4422-001		Site Name: Bank of America- San Leandro					
Well Number: M	rw-3		Date(s) Purged: 10-28-99					
OVA - Ambient:	NR		Purge Method: Dedicated Disposable Bailer					
OVA - Vault:	NR.		Purge Rate:			· · · · · · · · · · · · · · · · · · ·		
OVA - Casing:	NR	Date & Time S	ampled: 10-28-99	@ 14cc)			
	nitial: 5, 79@ 10	Purged & Sam	pled: Dale Ander	rson				
	nal: 5.90@ 13	Sampling Meth	nod: Dedicated Dis	sposable Bailer				
Well Depth: 14		Free Product:	<u> </u>					
Well Diameter:		Sheen:	0					
Well Casing Volume: /. 5			Odor: J	0		· · · · · · · · · · · · · · · · · · ·		
Time	Purge Water Removed (gal)	Temperature (degrees Fahrenheit)	pН	Electrical Conductivity (umhos/cm)	Dissolved Oxygen (mg/l)	Turbidity		
/323	.25	85,3	6,175	57	1.46	40W		
1324	1.0	65.6	6.80	503	1.40	4		
1328	1.5	65.5	6.81	504	.95	MOD		
1329	2.0	65.3	6.82	593	.89.	7/		
1331	2.5	65.1	6.83	593	194	l/		
1333	3.0	65.0	Anomoras	592	1.24	! {		
1335	3.5	65.1	6.80	577	2.11	٠ /		
1337	4.0	65.0	6.81	616	1.00	11		
1340	4.5	65.0	6.86	584	1./2	4		
1400	Saple							
Field Notes:								

Project Number	: 4422-001		Site Name: Bank of America- San Leandro					
Well Number: M	ſW-4		Date(s) Purged	l: 10-28-99				
OVA - Ambient:	: UR		Purge Method: Dedicated Disposable Bailer					
OVA - Vault:	NR		Purge Rate:					
OVA - Casing:	NR		Date & Time Sampled: 10-28-99 @ /23 O					
	nitial:5,60 @ 10,	3 ?	Purged & Sam	pled: Dale Ander	son			
	inal: 5,6 @ 12		Sampling Met	hod: Dedicated Dis	posable Bailer			
Well Depth: 14.20 feet			Free Product:	Ð				
Well Diameter: 2 inch			Sheen: •					
Well Casing Volume: / H			Odor:					
Time	Purge Water Removed (gal)	Temperature (degrees Fahrenheit)	pН	Electrical Conductivity (umhos/cm)	Dissolved Oxygen (mg/l)	Turbidity		
1155	125	77.9	74	1270	1.22	devi		
1157	, 50	75.4	フィ3フ	1242	.84	LOW		
1159	1.0	73.3	7.62	1215	,90	([
1201	1.75	72.8	7.87	1210	,95	MOD		
1203	2.5	72.1	7.74	1203	,90	11		
1207	3.0	>1.3	7.20	1178	.76	11		
1210	3.5	71.2	7.18	1190	.84	1/		
1213	4.0	21.7	7.21	1197		11		
1215	4.5	71.9	7.19	1205	1.05	1/		
			-					
1230	Surple							
Field Notes:								

Versaina

Project Number	: 4422-001		Site Name: Ba	ink of America- Sai	n Leandro				
Well Number: N	лW-5		Date(s) Purge	Date(s) Purged: 10-28-99					
OVA - Ambient	: NR		Purge Method: Dedicated Disposable Bailer						
OVA - Vault:	NR		Purge Rate:						
OVA - Casing:	k) fc		Date & Time Sampled: 10-28-99 @ // 3 ()						
Water Level - In	nitial:4,68@ 10	28	Purged & San	Purged & Sampled: Dale Anderson					
Water Level - Final: 4,75 @ 112 8			Sampling Met	Sampling Method: Dedicated Disposable Bailer					
Well Depth: 15.55 feet			Free Product:	0					
Well Diameter: 2 inch			Sheen: 🔑	<u>,</u>					
Well Casing Volume: /-5			Odor:						
Time	Purge Water Removed (gal)	Temperature (degrees Fahrenheit)	рН	Electrical Conductivity (umhos/cm)	Dissolved Oxygen (mg/l)	Turbidity			
1105	125	75	7.04	1355	1.01	ELEPP			
1112	1150	71.8	7,10	1295	.91	40W			
1114	1.0	71.4	7.13	1303	1.3/	Mon			
1115	201.75	71.2	7.30	1300	1.10	1/			
1117	2.5	70.8	7.10	1296	1.50	1/			
1119	3.0	70.1	698	1276	2.14	1/			
1/20	3-3	69.7	7-19	1261	1.10	11			
1/22	4.0	69.7	7.08	1260	6.19	1/			
1123	4.5	69.6	7,14	124,3	1.53	1/			
					H				
1130	Sarple				/				
Field Notes:									

ATTACHMENT V

Laboratory Analytical Reports and Chain-of-Custody Documentation

KEMRON Environmental Services 109 Starlite Park Marietta, Ohio 45750 Phone: (740) 373-4071

Versar, Inc. 7844 Madison Avenue

Suite 167 Fair Oaks, CA 95628

Attention: Dale Anderson

Login #: L9911017 Report Date: 11/09/99

Work ID: 4422-001/BANK OF AMERICA

Date Received: 10/29/99

PO Number:

Account Number: VERSAR-CA-503

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample	
Number	Description	Number	Description	
L9911017-01 L9911017-03 L9911017-05	MW5 MW2 MW1	L9911017-02 L9911017-04	MW4 MW3	_

CA DOHS ID NO. 2277

All results on solids/sludges are reported on a dry weight basis, where applicable, unless otherwise specified. This report shall not be reproduced, except in full, without the written approval of KEMRON.

NYSDOH ELAP ID: 10861

Dennis S. Tepe

Order #99-11-017 November 9, 1999 10:32

KEMRON ENVIRONMENTAL SERVICES REPORT NARRATIVE

GASOLINE RANGE ORGANICS - 8015:

The GRO result for sample L9911017-05 (MW1) was "J" flagged however, the result was within the instrument calibration range.

TCLP Extract Date: N/A

Extract Date: N/A

KEMRON ENVIRONMENTAL SERVICES

Product: 802-BETX1 - Volatile Organics (BETX)

Lab Sample ID: L9911017-01 Client Sample ID: MW5

Site/Work ID: 4422-001/BANK OF AMERICA

Analysis Date: 11/03/99 Time: 10:53

Matrix: Water

COC Info: N/A Date Collected: 10/28/99

Dil. Type: N/A

Sample Weight: N/A Extract Volume: N/A

% Solid: N/A

Instrument: HP3

Method: 8021B Run ID: R77385

Analyst: MFB Lab File ID: 3G00769

Batch: WG67706

CAS #	Compound	Units	Result Qualifiers	RL	Dilution
71-43-2	Benzene	ug/L	ND	1.0	1
100-41-4	Ethylbenzene	υσ/I	ND	1.0	ī
108-88-3	Toluene	ua/L	ND	1.0	ī
1330-20-7	Xylenes, Total	uā/L	ND	1 0	7

Product: GRO - Gasoline Range Organics

Lab Sample ID: L9911017-01

Client Sample ID: MW5

Extract Date: N/A

TCLP Extract Date: N/A

Site/Work ID: 4422-001/BANK OF AMERICA

Analysis Date: 11/02/99 Time: 14:21

Matrix: Water

Dil. Type: N/A COC Info: N/A

Sample Weight: N/A

Extract Volume: N/A

Date Collected: 10/28/99

% Solid: N/A

Instrument: HP11 Analyst: MFB

Method: 8015 Run ID: R77387

Lab File ID: 11G01831

Batch : WG67636

CAS #	Compound	Units	Result	Qualifiers	RL	Dilution
8006-61-9	Gasoline Range Organics	ug/L	540		100	1
SURR	OGATES- In Percent Recovery: Chlorobenzene	95.0	(64 - 148%)		

KEMRON ENVIRONMENTAL SERVICES

Product: 802-BETX1 - Volatile Organics (BETX)

Lab Sample ID: L9911017-02 Dil. Type: N/A Sample Weight: N/A Client Sample ID: MW4 COC Info: N/A Extract Volume: N/A

Site/Work ID: 4422-001/BANK OF AMERICA Matrix: Water

Date Collected: 10/28/99 % Solid: N/A

TCLP Extract Date: N/A Instrument: HP 3 Method: 8021B Extract Date: N/A Analyst: MFB Run ID: R77248

Analysis Date: 11/02/99 Time: 21:24 Lab File ID: 3G00761 Batch : WG67662

CAS #	Compound	Units	Result	Qualifiers	RL	Dilution	
100-41-4 108-88-3	Benzene. Ethylbenzene Toluene. Xylenes, Total	ug/L ug/L		ND ND ND ND	1.0 1.0 1.0	1. 1 1 1	
SURR	OGATES- In Percent Recovery: a,a,a-Trifluorotoluene	126	*, RE (82 - 123%)			

Product: GRO - Gasoline Range Organics

Lab Sample ID: L9911017-02 Dil. Type: N/A Sample Weight: N/A Client Sample ID: MW4 COC Info: N/A Extract Volume: N/A

Site/Work ID: 4422-001/BANK OF AMERICA Matrix: Water

Date Collected: 10/28/99 % Solid: N/A

TCLP Extract Date: N/A Instrument: HP11 Method: 8015 Extract Date: N/A Analyst: MFB Run ID: R77387

Analysis Date: 11/02/99 Time: 16:22 Lab File ID: 11G01834 Batch : WG67636

CAS #	Compound	Units	Result	Qualifiers	RL	Dilution	
8006-61-9	Gasoline Range Organics	ug/L		ND	100	1	
SURR	OGATES- In Percent Recovery: Chlorobenzene	90.3	(64 - 148%)			

KEMRON ENVIRONMENTAL SERVICES

Product: 802-BETX1 - Volatile Organics (BETX)

Lab Sample ID: L9911017-03 Dil. Type: N/A COC Info: N/A Sample Weight: N/A Client Sample ID: MW2 Site/Work ID: 4422-001/BANK OF AMERICA Extract Volume: N/A

Matrix: Water

Date Collected: 10/28/99 % Solid: N/A

TCLP Extract Date: N/A Instrument: HP 3 Method: 8021B Extract Date: N/A Analyst: MFB Run ID: R77248

Analysis Date: 11/02/99 Time: 22:02 Lab File ID: 3G00762 Batch : WG67662

CAS #	Compound	Units	Result Qualifiers	RL	Dilution	
100-41-4 108-88-3 1330-20-7	Benzene. Ethylbenzene. Toluene. Xylenes, Total.	ug/L ug/L	ND ND ND ND	1.0 1.0 1.0 1.0	1 1 1	

Product: GRO - Gasoline Range Organics

Lab Sample ID: L9911017-03 Dil. Type: N/A Sample Weight: N/A COC Info: N/A Extract Volume: N/A

Client Sample ID: MW2 Site/Work ID: 4422-001/BANK OF AMERICA

Matrix: Water Date Collected: 10/28/99 % Solid: N/A

TCLP Extract Date: N/A Instrument: HP11 Method: 8015 Extract Date: N/A Analyst: MFB Run ID: R77387

Analysis Date: 11/02/99 Time: 17:02 Lab File ID: 11G01835 Batch : WG67636

CAS #	Compound	Units	Result	Qualifiers	RL	Dilution	
8006-61-9	Gasoline Range Organics	ug/L		ND	100	1	
SURF	ROGATES- In Percent Recovery: Chlorobenzene	91.0	(64 - 148%)			

KEMRON ENVIRONMENTAL SERVICES

Product: 802-BETX1 - Volatile Organics (BETX)

Lab Sample ID: L9911017-04 Client Sample ID: MW3

Site/Work ID: 4422-001/BANK OF AMERICA

Matrix: Water

Date Collected: 10/28/99

Dil. Type: N/A COC Info: N/A

Sample Weight: N/A Extract Volume: N/A

% Solid: N/A

Instrument: HP 3 Analyst: MFB

Method: 8021B Run ID: R77248

Extract Date: N/A

TCLP Extract Date: N/A

Analysis Date: 11/02/99 Time: 22:41

Lab File ID: 3G00763

Batch: WG67662

CAS #	Compound	Units	Result Qualifiers	RL	Dilution
100-41-4 108-88-3	Benzene. Ethylbenzene. Toluene. Xylenes, Total	ug/L ug/L	ND ND ND ND	1.0 1.0 1.0	1 1 1 1
SURR	OGATES- In Percent Recovery: a,a,a-Trifluorotoluene	111	(82 - 123%)		

Product: GRO - Gasoline Range Organics

Lab Sample ID: L9911017-04

Client Sample ID: MW3 Site/Work ID: 4422-001/BANK OF AMERICA

Extract Date: N/A

TCLP Extract Date: N/A

Matrix: Water

Analysis Date: 11/02/99 Time: 17:41

Dil. Type: N/A COC Info: N/A

Date Collected: 10/28/99

Instrument: HP11 Analyst: MFB Lab File ID: 11G01836 Sample Weight: N/A Extract Volume: N/A

% Solid: N/A

Method: 8015 Run ID: R77387 Batch : WG67636

CAS #	Compound	Units	Result	Qualifiers	RL	Dilution
8006-61-9	Gasoline Range Organics	ug/L	230		100	1
SURR	COGATES- In Percent Recovery: Chlorobenzene	90.0	(64 - 148%)		

[«]L - Reporting Limit

TCLP Extract Date: N/A

Extract Date: N/A

KEMRON ENVIRONMENTAL SERVICES

Product: 802-BETX1 - Volatile Organics (BETX)

Lab Sample ID: L9911017-05

Client Sample ID: MW1 Site/Work ID: 4422-001/BANK OF AMERICA

Analysis Date: 11/03/99 Time: 11:32

Matrix: Water

COC Into: N/A Date Collected: 10/28/99

Sample Weight: N/A Extract Volume: N/A

Dil. Type: N/A

% Solid: N/A

Instrument: HP3

Method: 8021B Run ID: R77385

Analyst: MFB Lab File ID: 3G00770

Batch: WG67706

CAS #	Compound	Units	Result	Qualifiers	RL	Dilution	
100-41-4	Benzene. Ethylbenzene. Toluene Xylenes, Total	ug/L	270 34 370	ND	5.0 5.0 5.0 5.0	5 5 5 5	
SURR	OGATES- In Percent Recovery: a,a,a-Trifluorotoluene	165	*,RE (82 - 123%)			

Product: GRO - Gasoline Range Organics

Lab Sample ID: L9911017-05

Client Sample ID: MW1

Site/Work ID: 4422-001/BANK OF AMERICA

Matrix: Water

Dil. Type: N/A COC Info: N/A

Sample Weight: N/A Extract Volume: N/A

Date Collected: 10/28/99

% Solid: N/A

TCLP Extract Date: N/A Extract Date: N/A

Analysis Date: 11/02/99 Time: 18:21

Instrument: HP11 Analyst: MFB Lab File ID: 11G01837

Method: 8015 Run ID: R77387 Batch: WG67636

CAS #	Compound	Units	Result	Qualifiers	RL	Dilution	
8006-61-9	Gasoline Range Organics	ug/L	4900	J	5000	50	
SURR	OGATES- In Percent Recovery: Chlorobenzene	82.7	(64 - 148%)			

Order #: 99-11-017 November 9, 1999 02:21 pm

KEMRON ENVIRONMENTAL SERVICES WORK GROUPS

Work Group	Run ID	Sample	Dil Type Matrix	Product	Method	Date Collected	Department	
WG67636	R77387	L9911017 01	Water	Gasoline Range Organics	8015	28-OCT 1999	Volatile GC	
WG67636	R77387	L9911017-02	Water	Gasoline Range Organics	8015	28-OCT 1999	Volatile GC	
WG67636	R77387	L9911017-03	Water	Gasoline Range Organics	8015	28 OCT 1999	Volatile GC	
WG67636	R77387	L9911017 04	Water	Gasoline Range Organics	8015	28-0CT-1999	Volatile GC	
WG67616	R77387	L9911017 05	Water	Gasoline Range Organics	8015	28 OCT 1999	Volatile - GC	
WG67662	R77248	L9911017 02	Water	Volatile Organics (BETX)	80218	28 OCT 1999	Volatile GC	
WG67662	R77248	L9911017 03	Water	Volatile Organics (BETX)	8021B	28-OCT 1999	Volatile - GC	
WG67662	R77248	L9911017-04	Water	Volatile Organics (BETX)	80218	28-OCT-1999	Volatile - GC	
WG67706	R77385	L9911017 01	Water	Volatile Organics (BETX)	8021B	28 - OCT - 1999	Volatile GC	
WG67706	R77385	L9911017-05	Water	Volatile Organics (BETX)	8021B	28 OCT 1999	Volatile GC	

KEMRON ANALYST LIST

Ohio Valley Laboratory

10/22/99

ALT - - Ann L. Thayer CBN - - C. Brian Noll CEB - - Chad E. Barnes CG - Cheryl Graham CK -- Carl King CMS - - Crystal M. Stevens CRC - - Carla R Cochran DIH - - Deanna I. Hesson DLN - - Deanna L. Norton DLP - - Dorothy L. Payne DMD - - David M. Dye ECL - - Eric C. Lawson FEH - - Fay E. Harmon GWII - - George W. Hutchinson HV - - Hema Vilasagar JCR - - Jennifer C. Randall JDN - - Jamie D. Newell JG -- Jonathan Graziani JLH - - Janice L. Holland JWR - - John W. Richards JYH - - Jr Y. Hu KAS - - Kevin A Stutler

KHR - - Kim H. Rhodes LKM - - Laura K. Morris MDA - - Mike D. Albertson MDC - Michael D. Cochran MES - - Mary E. Schiling MLS - - Michael L Schimmel MMB - - Maren M. Beery RDC - - Rebecca D. Cutlip REF -- Ron E. Fertile REK - - Robert E. Kyer RSS - - Regina S. Simmons RWC - - Rodney W. Campbell SJK - - Sindy J. Kinney SJM - - Shawn J. Marshall SLP - - Sheri L. Pfalzgraf SMW - - Shauna M. Welch SPL - - Steve P. Learn SPS - - Steve P. Swatzel TMM - - Tammy M Morris TRS - - Todd R. Stack VC -- Vicki Collier

VMN - - Vincent M Nedell

KEMRON Environmental Services, Inc. LIST OF VALID QUALIFIERS (qual) December 10, 1998

Quali	ifier Description	Qualifier	Description
A NA + < B C * CG D	See the report narrative Not applicable Correlation coefficient for the MSA is less than 0.995 Less than Greater than Present in the method blank Confirmed by GC/MS Surrogate or spike compound out of range Confluent growth The analyte was quantified at a secondary dilution factor	N ND NF NFL NI NR NS P QNS R	Analyte exceeds regulatory limit
DL E	Surrogate or spike was diluted out Estimated concentration due to sample matrix interference	RA	Reanalysis confirms reported results RE Reanalysis confirms sample matrix interference
F FL I J L M	Present below nominal reporting limit (AFCEE only) Free liquid Semiquantitative result, out of instrument calibration range Present below nominal reporting limit Sample reporting limits elevated due to matrix interference Duplicate injection precision not met	S SMI SP TNTO U W Z	Analyzed by method of standard addition Sample matrix interference on surrogate Reported results are for spike compounds only Too numerous to count Analyzed for but not detected Post-digestion spike for furnace AA out of control limits Can not be resolved from isomer. See below.

Special Notes for Organic Analytes

- 1. Acrolein and acrylonitrile by method 624 are semiquantitative screens only.
- 2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- 3. N-nitrosodiphenylamine cannot be separated from diphenylamine.
- 4. 3-Methyphenol and 4-Methyphenol are unresolvable compounds.
- 5. m-Xylene and p-Xylene are unresolvable compounds.
- 6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound and are matrix dependent.

ORGANIC QA/QC

Kemron Environmental Services

Volatile Quality Control Summary

Method 8021B

Run Date:	2-Nov-99	Blk Flnm	3G00743
Instrument:	HP3	LCS Flnm	3G00745
Analyst:	MFB	Shift	AM
Work Group:	WG67662		
Matrix	Water	1	

Sample #	10-581-02
Flnm	3G00748
MS Flnm	3G00752
MSD Flnm	3G00753
DF	1

Daily QA	Method			LCS					MS	MSD					C	Outliers	
Information	Detection	Method	LCS	Percent	Control	Sample	MS	MSD	Percent	Percent	Advisory	Percent	Advisory	1 1		l [į
	Limit	Blank	20 ug/L	Recovery	Limits	Result	20 ug/L	20 ug/L	Recover	Recover	Limits	RPD	Limit	LCS	MS	MSD	%RPD
Analyte List	ug/L	ug/L	ug/L	% Rec	% Rec	ug/L	ug/L	ug/L	% Rec	% Rec	% Rec	% RPD	% RPD				
methyl-lert-butyl ether	0 541	NA	NA	NA	56 - 149	NA	NA	NA	NA	NA	56 - 149	NA	16				
benzene	0 154	ND	196	98 0	78 - 122	ND	19 7	20 2	98 6	101 1	78 - 122	25	15			ĺ	
toluene	0 159	ND	18 3	91 4	78 - 123	NĐ	182	186	910	93 1	78 - 123	22	15				
chlorobenzene	0 141	NA	NΑ	NA	70 - 128	NA	NA	NA	AN	NA	70 - 128	NA	24] [į į
ethylbenzene	0 155	ND	177	88 5	80 - 129	ND	183	18 7	91 7	93.5	80 - 129	20	16			ł	
m+p-xytene	0 414	ND	38 0	95 0	80 - 124	ND	39 2	39 9	979	998	80 - 124	19	16				
o-xylene	0 304	ND	20 6	103 1	80 - 124	NĐ	20 1	22 0	100 3	109 9	80 - 124	92	16				
xytene (total)	0 557	NĐ	58 6	97 7	80 - 124	ND	59 2	619	98 7	103 2	80 - 124	44	16				
1,3-dichlorobenzene	0 128	NA	NA	NA	81 - 110	NA	NA	NA	NA	NA	81 - 110	NA	15			İ	
1,4-dichlorobenzene	0 136	NA	NA	NA	78 - 107	NA	NA	NA	NA	NA .	78 - 107	NA	16		•]
1,2-dichlorobenzene	0 333	NA.	NA	NA	84 - 112	NA	NA	NA	NA	NA _	84 - 112	NA	15			1	

Surrogate Recovery	Blank	% Rec	LCS	% Rec	SMPL	% Rec	MS	% Rec	MSD	% Rec	Recovery Limits	BLK	LCS	SMPL	MS MSD
a,a,a-Trifluorotoluene	26.2	87 4	31 5	105 1	24 3	80 9	28 7	95 8	29.9	99 7	70 - 130				
p-Bromofluorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	70 - 130				

Notes and Definitions

MDL = Method Detection Limit

UPL = Upper Control Limit

DL = Difuted Out

BLK = Method Blank

RPD = Relative Percent Difference

SS = Surrogate Standard

LCS = Laboratory Control Sample SMPL = Sample Results ND = Not Detected NA = Not Applicable L = Low

SMEL - Sample Results

H = High

MS/MSD = Matrix Spike / Matrix Spike Duplicate

Kemron Environmental Services

Volatile Quality Control Summary

Melhod 8021B

Run Date:	3-Nov-99	Blk Finm	3G00767
Instrument:	HP3	LCS Flnm	3G00768
Analyst:	MFB	Shift	AM
Work Group:	WG67706		·!
Matrix	Water	أ!	

Sample #	11-017-03
Finm	3G00773
MS Flnm	3G00774
MSD Finm	3G00775
DF	1

Daily QA	Method			LCS					MS	MSD						Outliers	
Information	Detection	Method	LCS	Percent	Control	Sample	мѕ	MSD	Percent	Percent	Advisory	Percent	Advisory	ļ			
	Limit	Blank	20 ug/L	Recovery	Limits	Result	20 ug/L	20 ug/L	Recover	Recover	Limits	RPD	Lımit	LCS	MS	MSD	%RPD
Analyte List	ug/L	ug/L	ug/i.	% Rec	% Rec	ug/L	ug/L	ug/L	% Rec	% Rec	% Rec	% RPD	% RPD				
methyl-tert-butyl ether	0 541	NA	NA	NA	56 - 149	NA	NA	NA	NA	NA	56 - 149	NA	16				
benzene	0 154	ND	20 2	101 1	78 - 122	ND	210	214	105 0	1068	78 - 122	17	15]	
toluene	0 159	ND	19 2	960	78 - 123	ND	197	20 2	98 7	101 0	78 - 123	23	15				
chlorobenzene	0 141	NA	NA	NA	70 - 128	NA	NA	NA	NA -	NA.	70 - 128	NA	24				
ethylbenzene	0 155	ИD	187	93.5	80 - 129	ND	19 2	19.5	960	976	80 - 129	16	16	, l			ļ
m+p-xylene	0 414	ND	40 0	100 1	80 - 124	ND	40 4	410	101 0	102 5	80 - 124	15	16				
o-xylene	0 304	ND	21 9	109 6	80 - 124	ND	20 8	21 1	104 2	105 7	80 - 124	14	16			ļi	l l
xyleпe (total)	0 557	ND	620	103 3	80 - 124	ND	612	62 1	1021	103 6	80 - 124	15	16				
1,3-dichlorobenzene	0 128	NA	NA	NA	81 - 110	NA	NA	NA	NA	NA	81 - 110	NA	15			1	
1,4-dichlorobenzene	0 136	NA	NA	NΑ	78 - 107	NA	NA	NA	NA	NA	78 - 107	NA	16				ł
1,2-dichlorobenzene	0 333	NA	NA	NA NA	84 - 112	NA	NA	NA	NA	NA.	84 - 112	NA	15				

Surrogate Recovery	Blank	% Rec	LCS	% Rec	SMPL	% Rec	MS	% Rec	MSD	% Rec	Recovery Limits	BLK	LCS	SMPL	мs	MSD
a,a,a-Trifluorotoluene	26 0	86 7	30 8	102 7	47 0	156 7	46 4	154 6	46 0	153 3	70 - 130			Н	Н	Н
p-Bromofluorobenzene	NA	NA	NA	NA	NA NA	NA	NΑ	NA	NA	NA	70 - 130		!			

Notes and Definitions

MDL = Method Detection Limit

UPL = Upper Control Limit

DL = Diluted Out

BLK = Method Blank

RPD = Relative Percent Difference

SS = Surrogate Standard

LCS = Laboratory Control Sample

ND = Not Detected

L = Low

SMPL = Sample Results

NA = Not Applicable

H = High

MS/MSD = Matrix Spike / Matrix Spike Duplicate

Kemron Environmental Services

Volatile Quality Control Summary Method 8015B

	Workgroup	WG67636
Γ	RunDate	2-Nov-99
	Matrix.	WATER
	Instrument	HP11
	Analyst	MFB

BLK FLNM.	11G01829
LCS FLNM	11G01830
SMPL Num	11-017-01
SMPL FLNM:	11G01831
MS FLNM.	11G01832
MSD FLNM.	11G01833

LCS DF.	1
SMPL DF	1
MS DF	1
MSD DF:	1

Daily QA				Concer	tration,	PPB	-			Perc	ent Reco	very			% R	PD	<u> </u>	Out	liers		
Information				LCS Spike				MS Spike		LCS			М	ıs	мѕ	RPD					
	MDL	BLK	LCS	Level	SMPL	MS	MSD	Level	LCS	Limit	MS	MSD	Lir	nıt	RPD	UCL	LCS	MS	MSD	%F	RPD
Target Analytes	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	%	%	%	%	9	6	%	%					
GRO	13.35	ND	933 4	900 0	543 7	1409.9	1439.0	900 0	103 7	84 - 115	96 2	99.5	84 -	115	2.0	15 0					
								SS Spike	Γ			·— ·			Surro	gate					
		BLK	LCS		SMPL	MS	MSD	Level	BLK	LCS		SMPL	мѕ	MSD	Lin	nit	BLK	LCS	SMPL	MS	MSD
Surrogate Standard		ug/L	ug/L		ug/L	ug/L	ug/L	ug/L	%	%		%	%	%	%						
chlarobenzene		26.4	31.0		28.5	31 9	31 2	30 0	88 0	103 3		950	106 5	104.1	74 -	138					

Notes and Definitions

MDL = Method Detection Limit

BLK = Method Blank

NA = Not Applicable

LCS = Laboratory Control Sample

DF = Dilution Factor

SMPL = Sample Results

DL = Diluted Out

MS/MSD = Matrix Spike / Matrix Spike Duplicate SS = Surrogate Standard

UPL = Upper Control Limit L = LowRPD = Relative Percent Difference H = High

CHAIN OF CUSTODY RECORD

PROJECT NO.		CT NAM							\neg	7	· -		454					INDUS	TRIAL	Y
4422-001	BAN	K of	A	ML	RICA S	AN LETINORO			/5	$\angle y$, ,		ARAI	METE	RS				SAMPLE	6
SKIVIFLERS. ISIgnatu	re)		 		(Printed)			\neg		gv*/										
Dale On	Leso	r	, -		DALE	ANDERSON				1	///	/ ,	/ ,	Ι,	/ ,	/ /		REMA	\RKS	
FIELD Sample Number	DATE 1999		COMP.	GRAB	STA	TION LOCATION	/ §	1. 00 to 1.	S S S S S S S S S S S S S S S S S S S	(v/										
MWS	10/20	1/30		¥			3	X	L											
MW4		1230	1		·								_							
MWZ		1300											_				· ·			
MW3		1400																		
MWI	4	1575	<u> </u>	专	·		₹	₹	₹											
																				
																			,	
																		,, .		
			 														\bigcirc	ONC N	Olal	ed
							<u> </u>										Š		nta	<u> </u>
																	10(1)	Mus	Simp	3.0
Relinquished by: (Sign		19	, ,	/ Tim 1つc		1 by: (Signature)	Reli	nquis	hed by	t: (Sig	nature,	J		Date	e / T i	me		d by: (Sigi		59
(Printed)	<u> </u>	7	O F	EPD.	(Printed)		(Prir	ited)					-		l		(Printed)	 		
Dale On (Printed) DALE AN	PLRS	oN_	F	X																
Relinquished by: (Sign	nature)		Date	/ Tim	Received	for Laboratory by:	10/2	Date	/ Tim		Remar	ks S	77	-	779	7				-5
(Printed)				1	(Printed)	Oa Gugpry	1.10	799	100							67E	70M	ON	Lim	ロ
,					h	da Gregory					BTX BRO)					ĺ
<u></u>						<u> </u>	1			- 1 \	J ~O	_	<i>J</i>	•						1

KEMRON Internal Laboratory Chain of Custody

Work Or	rder: <u>(99</u>	11017	Client: Vec	- C.A	# of Samp	اes: غ	Due Da	ite://_/	5 Pag	ge:
Sample #	Analysis	Reason	Removed By ADT	Removed From	Moved To	Reliq.	Ret'd By ADT	Ret'd To	Rec'd By	Reason
1-12	GRO 2021	_AN.	By ADT mrsk ।।। हवित	J-1	VIA	Tb.	उठक गणवन 1421	ARCHIVE	BÓ	AKCHIVE
				- 						
						-				
				- -						
			-	-		_				

			-		<u> </u>					