921771-7 77111:28

BP Oil Company Aetna Bldg., Suite 360 2868 Prospect Park Drive Rancho Cordova, California 95670-6020 (916) 631-0733

April 29, 1992

Mr. Rafat Shahid Alameda County Department of Environmental Health Services 80 Swan Way Oakland, California 94621

RE: BP FACILITY #11132 3201 35th AVENUE OAKLAND, CALIFORNIA

Dear Mr. Shahid,
Enclosed please find the results of the Quarterly Monitoring
Report for the above referenced facility.

Please call me at (916) 631-6919 with any questions regarding this submission.

Respectfully,

Peter J. DeSantis gml

Environmental Resources Management

PJD/sml

Attachment

cc: Fred Moss, HETI

Tom Callaghan, RWQCB San Francisco Bay Region

David Baker, Mobil Oil Co.

Site file

April 24, 1992 9-037

Mr. Peter DeSantis
Environmental Resource Management
BP Oil Company
2868 Prospect Park Drive, Suite 360
Rancho Cordova, CA 95670

Re: BP Oil Facility No. 11132, 3201 35th Avenue, Oakland, California

Dear Mr. DeSantis:

The purpose of this letter is to present the results of Hydro-Environmental Technologies, Inc.'s (HETI's) quarterly water sampling at the above-referenced site. Sampling was performed on April 1, 1992.

Work performed at the site by HETI included (1) well purging, (2) collection of ground water samples from each of the wells, and (3) analysis of water samples for total low to medium boiling point petroleum hydrocarbons (TPHg), and benzene, toluene, ethylbenzene, and xylenes (BTEX), using EPA method 8015/8020 (DHS modified). All documentation related to the field work is appended to this report.

Background

The site is located at 3201 35th Avenue, in Oakland, California (Figure 1). As presented in previously submitted reports, an environmental investigation has been in process at this site since hydrocarbons were first detected in the subsurface after three underground storage tanks were removed in June 1987. A preliminary investigation was completed by an environmental consultant hired by Mobil Corporation in May, 1988. Alton Geoscience Inc. was retained when BP Oil Company took ownership of the site in 1989. Subsequent investigative tasks are being carried out by Hydro-Environmental Technologies, Inc (HETI). Tasks completed by HETI to date have included the installation of a floating hydrocarbon skimmer in the recovery well (RW-1) and quarterly well sampling performed April 1, 1992, during which wells MW-3 through MW-10 were sampled.

Field Activities

HETI collected water samples from all wells on April 1, 1992 which did not contain separate phase petroleum. Prior to sampling, the depth to water in the wells was gauged to the nearest hundredth of a foot with an interface probe. A layer of separate-phase petroleum, 0.11 foot thick, was detected in recovery well RW-1. Additionally, a layer of seperate phase petroleum 0.15 foot thick was detected in monitoring well MW-1, and .10 foot was detected in monitoring well MW-2.

The wells were also checked for integrity and condition of the casing and wellhead. All wells appeared to be in satisfactory condition. Prior to sampling, the monitoring wells were purged of a minimum of three well volumes or until each well had stabilized for temperature, conductivity, and pH. Purging data is attached in Appendix A.

Following recovery of the wells to at least 70 percent of their static water level, samples were collected with dedicated bailers. Each sample was transferred to 40 ml VOA glass vials and sealed with a teflon septum cap. Sample vials were documented, labeled and placed in an insulated, chilled cooler. A chain of custody was prepared and accompanied the samples to the laboratory, and a copy is included in Appendix B. Water sample analysis was performed by PACE Laboratories, a DHS certified laboratory, located in Novato, California.

Ground Water Data

Depth to ground water in each of the wells ranged from approximately 11.7 to 17.4 feet below grade, according to the well gauging conducted for this investigation. Gauging data is attached as Appendix A. The depth to water data was combined with wellhead elevation data previously collected by Alton Geoscience to calculate water surface elevations. These elevations were used to produce the ground water contour map shown in Figure 3. The map shows ground water flow direction beneath the site to be generally south easterly which is inconsistent with the results obtained by Alton Geoscience, Inc. during previous quarterly sampling events. However, in Alton Geoscience Quarterly Report dated August 21, 1991, ground water depths measured on April 5, 1991 indicated a ground water flow direction similar to this quarter.

Laboratory Analytical Results

All wells sampled were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and volatile aromatics as benzene, toluene, ethylbenzene and xylene (BTEX) by Pace Laboratories. Analytical results of samples collected indicate that only MW-5, MW-8 and MW-9 had detectable amounts of the chemicals analyzed for. Results ranged from 800 ppb (TPHg) in the sample from MW-5 to 15,000 ppb (TPHg) in the sample from MW-8.

Benzene results from water samples ranged from 250 ppb in the sample from MW-5 to 3,600 ppb in the sample from MW-8. TPHg and Benzene concentrations are graphically displayed on Figure 4 and Figure 5, the TPHg and Benzene Isoconconcentration maps. TPHg and BTEX were found in maximum concentrations in wells MW-8 and MW-9. These wells are located directly downgradient of RW-1, MW-1 and MW-2 which were found to have varying amounts of floating product.

Status of Investigative Activities

A plan for interim remedial action was submitted to the Alameda County Department of Environmental Health (ACDEH) on March 20, 1992. A response from (ACDEH) is currently pending. HETI will also maintain the passive skimmer installed in RW-1.

HETI is pleased to be of continued service to BP. If you have any questions or comments concerning this report, please do not hesitate to call.

Sincerely, HYDRO-ENVIRONMENTAL TECHNOLOGIES, INC.

Frederick G. Moss, P.E., No. 35162

Senior Engineer

No. 35162

No. 35162

CIVIL

OF CALIFORNIA

CONTROL OF CALIFORNIA

REPROPESSIONAL

REPROPESSIO

Craig Hartman
Project Manager

4

TABLES

Table 1 WATER SAMPLES SUMMARY OF ANALYTICAL RESULTS BP Oil Facility Nº 11132 Oakland, California

Sampling Date: April 1, 1992

MW No.	TPHg	В	T	E	X	
RW-1 (1)	NT	NT	NT	NT	NT	
MW-1 (1)	NT	NT	NT	NT	NT A	
MW-2 (1)	NT	NT	NT	NT	NT	
MW-3 fab	regent -D_NB-450	NDH	ND//	ND-2	ND 43	,
MW-4	ND	ND	ND	ND	ND :	
MW-5	800	250	54	11	60	
MW-6	ND	ND	ND	ND	ND	
MW-7	ND	ND	ND	ND	ND	
MW-8	15,000	3,600	2,600	410	1,900	
MW-9	12,000	2,000	2,600	360	1,600	
MW-10	ND	ND	ND	ND	ND	

All hydrocarbon concentrations in µg/l (ppb)

TPHg = Total petroleum hydrocarbons as gasoline by EPA method 5030/8015 (DHS modified)

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total Xylenes

BTEX analysis by EPA method 8020

ND = Not detected above the laboratory method detection limit

NT = Not tested

(1) Note A sample was not collected from RW-1, MW-1 and MW-2 due to the separate phase petroleum (SPP) present in the well.

Janyling ques not grown

Table 2 (Page 1 of 2) WATER SAMPLES CUMULATIVE ANALYTICAL RESULTS BP Oil Facility No. 11132 Oakland, California

MW No.	Date	SPP (ft)	TPHg	В	T	E	X
RW-1	7/9/90	1.21	NT	NT	NT	NT	NT
	12/21/90	.01	NT	NT	NT	NT	'NT
	3/7/91	NM	NT	NT	NT	NT	NT
	6/27/91	.04	NT	NT	NT	NT	!NT
	9/27/91	.02	NT	NT	NT	NT	NT
	12/18/91	.02	NT	NT	NT	NT	NT
	4/1/92	.11	NT	NT	NT	NT	NT
MW-1	7/9/90_	.22	NT	NT	NT	NT	NT
	(12/21/90)	.58	NT	NT	NT	NT	NT
	3/7/91	NM	NT	NT	NT	NT	NT
	6/27/91	.18	NT	NΓ	NT	NT	NT
	9/27/91	<i>.</i> 27	NT	NT	NT	NT	NT
	12/18/91	.28	NT	NT	NT	NT	NT
	4/1/92	.15	NT	NT	NT	NT	NT
MW-2	7/9/90	.10	NT	NT	NT	NT	:NT
	12/21/90	.48	NT	NT	NT	NT	NT
	3/7/91	NM	NT	NT	NT	NT	NT
	6/27/91	.19	NT ·	NT	NT	NT	NT
	9/27/91	.15	NT	NT	NT	NT	NT
	12/18/91	.36	NT	NT	NT	NT	NT
	4/1/92	.10	NT	NT	NT	NT	NT
MW-3	7/9/90	0.0	140	5.3	4.6	2.0	3.8
	12/21/90	0.0	0.19	100	6.0	0.9	27
	3/7/91	0.0	0.4 (400)	69	22	6.1	i 57
	6/27/91	0.0	380	28	26	13	46
	9/27/91	0.0	.07(70)	7.9	ND	0.4	1.1
	12/18/91	0.0	26 (260)	34	24	0.8	28
	4/1/92	0.0	ND	ND	ND	ND	ND
MW-4	7/9/90	0.0	ND	ND	ND	ND	ND
	12/21/90	0.0	ND	ND	ND	ND	0.8
	3/7/91	0.0	ND	2.2	3.8	1.5	2.8
	6/27/91	0.0	ND	6.3	1.8	0.4	1.0
	9/27/91	0.0	ND	ND	ND	ND	ND
	12/18/91	0.0	ND	ND	ND	ND	ND
	4/1/92	0.0	ND	ND	ND	ND	ND
MW-5	7/9/90	0.0	280	200	210	46	290
	12/21/90	0.0	(.69)	300	34	8.4	39
	3/7/91	0.0	ND '	17	0.9	0.7	1.6
	6/27/91	0.0	330 /	120	10	12	8
	9/27/91	0.0	.73 (.730)	230	16	20	1 22
	12/18/91	0.0	.73 (730) ND	ND	ND	ND	ND
	4/1/92	0.0	800	250	54	11	60

Table 2 (Page 2 of 2) WATER SAMPLES CUMULATIVE ANALYTICAL RESULTS BP Oil Facility No. 11132 Oakland, California

MW No.	Date	SPP (ft)	TPHg	В	T	E	x
MW-6	7/9/90	0.0	ND	ND	ND	ND	ND
	12/21/90	0.0	.17	2.6	7.0	4.9	26
	3/7/91 (1)	0.0	NT	NT	NT	NT	NT
	6/27/91 (1)	0.0	NT	NT	NT	NT	NT
	9/27/91 (1)	0.0	NT	NT	NT	NT	NT
	12/18/91	0.0	ND	1.3	22	ND	2.7
	4/1/92	0.0	ND	ND	ND	ND	ND
MW-7	7/9/90	0.0	ND	ND	ND	ND	ND
	12/21/90	0.0	ND	ND	ND	ND	ND
	3/7/91	0.0	ND /	ND	0.4	0.3	2.4
	6/27/91	0.0	70 🗸	17	4	0.8	2.2
	9/27/91	0.0	ND	0.4	ND	ND	0.4
	12/18/91	0.0	ND	0.7	2.9	8.0	3.3
	4/1/92	0.0	ND	ND	ND	ND	ND
MW-8	3/7/91	0.0	2.7 (270	v) 780	450	64	310
	6/27/91	0.0	12,000	3,400	1,100	240	750
	9/27/91	0.0	41 (4/0		5,200	1,100	4,300
	12/18/91	0.0	3.2 <i>(3.</i> 4	๗) 990	150	120	250
	4/1/92	0.0	15,000 🗸	3,600	2,600	410	1,900
MW-9	3/7/91	0.0	7.1 (7/8	ro) 220	4	2.4	2,400
	6/27/91	0.0	3,600	520	400	85	310
	9/27/91	0.0	3.2 (3.2		150	50	180
	12/18/91	0.0	ND	2.5	1.1	0.3	5.8
	4/1/92	0.0	12,000 🗸	2,000	2,600	360	1,600
MW-10	3/7/91	0.0	1.6 (160	,	190	32	230
	6/27/91	0.0	12,000	7,300	500	150	300
	9/27/91	0.0	57 <i>(51</i>	12,000	7,200	1,400	4,600
	12/18/91	0.0	5.3 (53	, ,	120	36	79
	4/1/92	0.0	ND 9	ND	ND	ND	ND

All hydrocarbon concentrations in µg/l (ppb)

TPHg = Total petroleum hydrocarbons as gasoline by EPA method 5030/8015 (DHS modified)

Note: All samples taken by Alton Geoscience, except 4/1/92 data taken by HETI.

(1) = Unknown obstruction in well at ~ 15 ft. Used smaller hose on other dates to obtain samples.

SPP = Separate Phase Petroleum

ND = Not detected above the laboratory method detection limit.

NT = Not tested.

NM = Not measured

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

FIGURES

APPENDIX A

HYDRO-ENVIRONMENTAL TECHNOLOGIES, INC.

WATER TABLE ELEVATION DATA

Location: 3201 35th Avenue, Oakland, California

BP Oil Company Client: **Job No.** 9-037 Date Elev. Measured Remarks/Observations Elev. T.C.* DTW Well No. Water 6-inch Recovery Well N/A 0.11 ft free product RW-1 14.40 4/1/92 168.01 2-inch Monitoring Well N/A 0.15 ft. free product 4/1/92 MW-1 169.75 16.51 2-inch Monitoring Well N/A 4/1/92 15.21 0.10 ft. free product MW-2 168.14 2-inch Monitoring Well 13.69 4/1/92 153.48 MW-3 167.17 MW-4 170.36 17.49 4/1/92 152.87 2-inch Monitoring Well MW-5 165.14 11.99 4/1/92 153.15 2-inch Monitoring Well MW-6 165.40 11.79 4/1/92 153.61 2-inch Monitoring Well 4/1/92 152.43 2-inch Monitoring Well MW-7 167.61 15.18 4/1/92 2-inch Monitoring Well 8-WM 165.74 12.54 153.20 2-inch Monitoring Well 153.31 MW-9 166.20 12.89 4/1/92 2-inch Monitoring Well 4/1/92 MW-10 167.01 13.92 153.11 Benchmark = MW-2 T. C. = 168.14Carried from previous surveys by Alton Geoscience, Inc. July 5, 1990.

T. C.* = Top of PVC Casing - North Edge -- All measurements in feet & hundredths

• '							
PURGED/S	AMPLED BY:	HHAT	R	DATE:	1-1-92	-	
Depth to wa	ATA: 100 11 38 - 41 fe 14 - 40 fe 24 - 01 fe	diam. 2 ir. 4 ir. 6 ir.	× 0.16	Well casing volume to purg Total volume to purg unless chemical para	= x 3 vo	gallons	
Purge method: PVC bailer/ Submersible pump/ Suction lift pump/							
	Time	Volume (gallons)	Temp.	Conductivity (mS/cm)	pН		
	·					;	
					·		
Sample at							
sampling	lor:		Turbidity:			<u>, '</u>	
	charge:		•	bon odor:		ft.	
Sample for: (circle) SAMPLING DATA: TREE SAMP Sampling method: Dedicated bailer /							
	RONMEN NOGII	1 1		ig well purge/saz well# <u>Rw~l</u> 354u Ave, E		10в NO. 9-037	

PURGE D/S	AMPLED BY:	· 	7 R	DATE:	4-1-97			
-	ATA: http://44.68ft. http://6.51ft. 27.57ft.	diam. 2 in. 4 in. 6 in.	gals/ft. × 0.16> × 0.65 × 1.44	# volumes to po	plume $\frac{4}{4}$ $\frac{4}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ purge = $\frac{13}{3}$ $\frac{3}{5}$ parameters stabilize of	jis. gallons		
PURGING DATA: Did not purge due to presence of SPP Purge method: PVC bailer) Submersible pump/ Suction lift pump/ (see below) (circle one)								
	Time	Volume (gallons)	Temp.	Conductivity (mS/cm)	pH			
					·	:		
Sample at After sampling								
Co Re	lor: dack No	Petr		bon odor: 4+ ro	ng or SPP 0	i		
SAMPLIN Sampling	SAMPLING DATA: Oily consistency and sample for: (circle) SAMPLING DATA: Oily consistency and series too and Sampling method. Dedicated bailer / test bailer Test bailer coasted with SPP and see Norman 1860 ETG							
HYD ENVI		TAL	MONITORIN	OBELET PURGES WELL # MW- BSTN AVE		JOB NO.		

•				بشناه فوالشار والكوي تماني والمناف		_			
PURGED/S	AMPLED BY:	HH/	TR	DATE:	-1-92				
GAUGING DA	ATA:	Con	version			1			
Depth to bo	ttom: <u>34.31</u> ft.	diam.	· · · · ·	Well casing volu					
Depth to wa	iter: 15.05 ft.	2 in. 4 in.	× 0.16 × 0.65	# volumes to purg	re xvo	ls.			
Saturated Thickness:	19.26	6 in.	× 1.44	*Total volume to p		1 🕶			
PURGING I	PURGING DATA:								
	odi PV& bailer	Submersible pu	mp/ Suction lif	t pump/					
	Time	Volume (gallons)	Temp.	Conductivity (mS/cm)	pН				
						<u>.</u> .			
					·				
				1					
			· ·						
					,				
Sample at						ĺ			
After									
sampling				<u> </u>		<u>.</u>			
	ion: <u>dark</u>	,	Turbidity: _	•	<u> </u>	11"			
Red	charge: 🖊 / A	Petro	leum hydrocarl	oon odor: Strov	or SPP	124			
	5.	trong g	asoline	odor.	Sample for: (circ	ile)			
SAMPLIN	G DATA: -} (ni ndarks Pl	y layer	TP STE	MEINTS LOC SOL				
Sampling r	nethod: Oedica	ed bails / 5	is posable	TPH4	Total Pt EDS 824	T I			
	YOUR		bailer	6GI.	602 Norma 826				
				Other:		:			
HYD	R▲		MONITORIN	G WELL PURGE/SAN	APLE SHEET	JOB NO.			
1 (RONMEN	$_{TAT}$ $ $	•	WELL # MW-2		ANY 7			
B 1	NOLOGIE	1 8	LOCATION 4	103,35th Ave	Datland	1-077			
	こうきょうしんけい	\sim ,							

•

٠,

	_					! 			
PURGED/S	AMPLED BY:	44/1	-R	DATE:	-1-9	2			
	ter: 13,69ft.	Conv diam. 2 in. 4 in. 6 in.	gals/ft. x 0.160 x 0.65 x 1.44	Well casing volunt # volumes to purge *Total volume to purge * unless chemical para	x × 3 vo	gailons			
	PURGING DATA: Purge method (PVC bailer) Submersible pump/ Suction lift pump/								
	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pН				
	115	0	707	m 07	Call	•			
		2	70.3 70.1	0.97	8.04 7.90				
		6	70.5	1.01	7.73				
	120	8	70.3 69.9	1,02	7.88				
	170	10			7. \ /				
Sample at After					one of the same				
sampling Co	lor. brow	7		moderate		.			
Re	charge: 900	Petroi	eum hydrocarb	on odo n MODE	Albr SPP S	ft.			
SAMPLIN	IG DATA:			TENS/STEX	Sample for: (cire				
Sampling method: Dedicated bailed / IFH on Tool 25 EDS 8240									
				601 Other:	SIL Nitrates El	50 \$270			
HYD	Ť			g well purge/san weil#MW-3	CPLE SHEET	JOB NO.			
	RONMEN NOGIE		LOCATION _	35th Ave, (Dakland	9-037			
				-					

PURGED/S	AMPLED BY: _	HH/T	-R	DATE:	-1-92	
Depth to wa	ATA: thorn: 38.74ft. ther: 17.49 ft. 21.25ft.	Conv diam. 2 in. 4 in. 6 in.	gals/ft. x 0.16 x 0.65 x 1.44	# volumes to purg	me 3.40 gailons vols urge = 10.2 gailons	
Purge metha (circle one)		Submersible pur	, <u>, , , , , , , , , , , , , , , , , , </u>		ameters stabilize earlier	
•	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	рH	
	11:50	0	-H.S->			
	11:53	2	69.8	0.74 0.72	7.44	
	11:56	6	69,5	0.72	7.11	
	12103	8	67.1	0,71	7.00	
	12:07	10.5	68.8	0.71	6.97	
Sample at						
sampling	lor:Tan_		Turbidity: <u>/</u>	roclerate to s	strong	
	charge: good	Petrol	-	on odor: <u>Nov</u>	Λ.	
Sample for: (circle) Sample for: (circle) Fig. 5123 for: 800 Fig. 623 for: 800 Sampling method: Dedicated bailed / Tribe Tool 25 EDS 8200 Fig. 621 Nicolar 2250 5270						
	R RONMEN NOGIE		Y	WELL PURGE/SAI VELL # MW-L	f 10 277	

	AMPLED BY:	HH/	TR.	DATE:	-1-9	2		
_	NTA: tom: 30.86t ter: 11.99 ft 14.89ft	diam. 2 in. 4 in. 6 in.	gals/ft. × 0.160 × 0.65 × 1.44	Well casing volume # volumes to purg *Total volume to p * unless chemical para	e x w	gallons		
PURGING DATA: Purge method (PVC bailer) Submersible pump/ Suction lift pump/								
	Time	Volume (gallons)	Temp.	Conductivity (mS/cm)	pН			
	150	0 2 4 6 9.1	72.1 70.8 70.9 70.6	1.13	8.26 8.00 7.82 7.77			
Sample at								
	lor: 101 -0	live d_ Petro	Turbidity: oleum hydrocarb	moderate/	Clight tor spp	ft.		
SAMPLIN Sampling	G DATA:	ted baile /			Sample for: (cir) METALS TOC 80 O-25 TEL 80 Tocal 25 EDS 81 612 Nicross 81			
18 C	RANMEN	1 6	T	GWELL PURGE/SAM WEIL # MW-S 15th Ave. (job no. 9-037		

	ter: 11,79ft.	diam. 2 in. 4 in. 6 in.	gals/ft. × 0.160 × 0.65 × 1.44	Well casing volumes to purg *Total volume to purg *unless chemical para	e x vo	is. galions
PURGING I Purge metho (circle one)	OATA:	Submersible pur	mp/ Suction lift	pump/		
	Time	Volume (gallons)	Temp.	Conductivity (mS/cm)	pН	
	11:03	D 211	72.2	XXXX 0.66	7.81	:
	11:13	4 8	72.8	0.72	7.89	
-	11:17	6	69.7 68,5	0.62	7.57	! !
	11:27	12	68.0	6,60	7.51	
		Texess	ed orde		·	
Sample at						
After sampling Coi	or: tan		/ Turbidity: _	Slight		!
Red	tharge: <u>Greaf</u>	Petrol	leum hydrocarb	on odor: <u>Nove</u>	or SPP p)f
SAMPLIN Sampling r	G DATA:	ted bailed /		TPHg/8TEX TPHG TPHG GGT GGT	Sample for: (circle) METALS TON SING C-PS TEL SIX TONIPS EDS SIX	

·		.						
PURGED/S.	AMPLED BY: _	44/1	-R	DATE:	-1-9	2		
GAUGINGDA	ATA:	Conv	esion					
	34.49ft.		• ,,	Well casing volum	ne 3.09.	llons		
		diam.	gals/ft. x 0.16	-				
Depth to wa	mer: 15.18 ft.	4 in.	× 0.65	# volumes to purg	_	•		
Saturated Thickness:	19.31 ft	_ 6 in.	×1.44	*Total volume to pr * unless chemical para				
PURGING D	PURGING DATA:							
Purge metho (circle one)	od PVC bailer	Submersible pun	np/ Suction lift	pump/		· •		
	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	рĦ			
	1250	0				-		
	1254	2	69.1	1.09	TAB			
	1256	4	68.6	11,3	7.94			
	1258	Q	68.2	1.14	7.48			
	100	d	68.3	1.11	7.47			
		0.7		1,11				
	105	9.3	68.2		7,36			
Sample at								
After sampling						 		
	ion brown		Turbidity:	moderat	e	- ! !		
	charge:		•	on odor: <u>NO NE</u>		25_ft.		
	C D 1 77 1			•	Sample for: (circ	ile)		
SAMPLIN	G DATA:			E#4/812	METALS TOO 80	_		
Sampling r	method: Dedica	ted bailed /		Tensa Tensa	C-P3 TEL 80 Tomins EDS 80			
				ear	602 Nitration 82			
			المراجع والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والم	Others				
HYD	R▲		MONITORING	WELL PURGE/SAN	APLE SHEET	JOB NO.		
B 1	RONMEN	TAT.	7	vell # MW- 7		9-037		
TITAL	NOLOGIE	SINC	LOCATION	35th Ave.	Oakland	1-0)/		
IECH	NOLUGIE	, J. Y.C.		,				

4 ,

PURGED/S.	AMPLED BY: _	44/1	-R	DATE:	-1-93	2	
Depth to wa	ATA: tom: 38,72ft ter: 12,54 ft 26,18ft	diam. 2 in. 4 in. 6 in.	gals/ft. x 0.160 x 0.65 x 1.44	Well casing volume # volumes to purge *Total volume to purge * unless chemical para	e x 3 vo	is. : gailons	
PURGING DATA: Purge method (PVC bailer) Submersible pump/ Suction lift pump/							
	Time	Volume (gallons)	Temp.	Conductivity (mS/cm)	рH		
	225	0	711	7 00	<i>C</i> 2.7		
	(4	71.6	1.93	7.67		
		6	70.9	1.81	罗.57		
		4	70.6	1.79	7.44		
	250	12.6	69.9	1,63	7.30		
						· ·	
Sample at							
After sampling	lor: & ligh	italive tist	Turkidiba	none			
3				on odor. Stron	g or SPP	T_ft.	
SAMPLIN	IG DATA:				Sample for: (circ	1	
Sampling method: Dedicated bailed / Texts Toc. and							
501 602 Nome \$250 2							
HYD	~	TAT		gwell purge/san well#MW-G	aple Sheet	JOB NO.	
	R∲NMEN N∲LOGIE		LOCATION _	35th Ave.	Dakland	71-057	

						<u> </u>		
PURGED/SAMPLED BY: HH/TR DATE: 4-1-					-1-93	2		
GAUGING DATA: Depth to bottom: 29.49ft. Depth to water: 12.89ft. Saturated Thickness: 16.6 ft.		Conversion diam. gals/ft. 2 in. x 0.16 4 in. x 0.65 6 in. x 1.44		Well casing volume 2.66 gallons # volumes to purge x				
PURGING DATA: Purge method PVC bailer Submersible pump / Suction lift pump /								
	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pH			
	200	0 2	712	1.21	7 09			
		4	70.3	1,87	7.34			
	1	6	70.5	1,96	7,19			
	215	V	70,)	1,42	7,22			
Sample at			200					
After sampling	h con	<i>(</i>)	Testidis	· soderate				
Color: 6041 Turbidity: woderate Recharge: 900 Petroleum hydrocarbon odor: 51009 or SPP ft.								
Sample for: (circle) Sampling DATA: Sample for: (circle) Dedicated bailed / THE TOTAL STORE STORE SOIL NITHERS STORE COLUMN COLUMN SAMPLING DATA: Dedicated bailed / THE STORE STORE COLUMN COLUMN SAMPLING DATA: DEDICATE STORE SAMPLING DATA:								
HYDRO MONITORING WELL PURGE/SAMPLE SHEET JOB NO. WELL # MW-9 LOCATION 35+4 Av. Oakland 9-037								

د را								
PURGED/SAMPLED BY: HH/TR DATE: 4-1-92								
GAUGING DATA: Depth to bottom: 34,00 ft. Depth to water: 13,92 ft. Saturated Thickness: 20.04 ft.		Conversion diam. gals/ft 2 in. x 0.16 4 in. x 0.65 6 in. x 1.44		Weil casing volume $\frac{7.2}{9}$ gailons # volumes to purge \times vols. *Total volume to purge = $\frac{9.7}{9}$ gailons *unless chemical parameters stabilize earlier				
PURGING DATA: Purge method (PVC bailer) Submersible pump/ Suction lift pump/								
	Time	Volume (gallons)	Temp.	Conductivity (mS/cm)	pH			
	3:08	0		0.00	e 115			
	3115	2	71.8	0.92	8.45			
	3:18	·b	74.7	0.90	8,03			
	3:22	.8	70.5	0.92	7.71			
-	3:25	10	70.0	0.94	1 - 1			
					·	9		
Sample at Af ter								
sampling Co	lor olive-ta	N	Turbidity: _			1		
Recharge: Petroleum hydrocarbon odor: or SPPft.								
Sample for: (circle) Sampling method: Dedicated bailed / Tris Teal? EDS ELG Sampling method: Dedicated bailed / Coher								
HYDRO MONITORING WELL PURGESAMPLE SHEET JOB NO. WELL # MW-10 TECHNOLOGIES, INC. MONITORING WELL PURGESAMPLE SHEET JOB NO. WELL # MW-10 LOCATION 35+4 Ave. Oakland 10037								

APPENDIX B

Hydro-Environmental Tech., Inc.

Client Project ID:

9-037

Date

April 2, 1992

2343 Mariner Square Dr., Ste. 243

Matrix Description:

Water

Received:

Alameda, CA 94501

Analysis Method:

Mod EPA 8015/8020

Date Reported:

April 10, 1992

Attention: Mr. Markus Niebanck

PACE Project #:

420402.500

TOTAL PETROLEUM FUEL HYDROCARBONS-GASOLINE/BTEX

Sample Number	Sample Description	Purgeable Hydrocarbons μg/L (ppb)	Benzene µg/L (ppb)	Toluene μg/L (ppb)	Ethy! Benzene µg/L (ppb)	Xylenes µg/L (ppb)	Date Sampled	Date Analyzed
700053749	MW-3	480	54	11	28	43	4/01/92	4/06/92
700053854	MW-4	ND	ND	ND	ND	ND	4/01/92	4/06/92
700055580	MW-6	ND	ND	ND	ND	ND	4/01/92	4/06/92
700058392	MW-7	ND	ND	ND	ND	ND	4/01/92	4/06/92
700065623	MW-10	סא	ND	ND	ND	ND	4/01/92	4/08/92
Detection Limit	s:	50	0.5	0.5	0.5	0.5		
700053862	MW-5	800	250	54	11	60	4/01/92	4/07/92
Detection Limits	N;	120	1.2	1.2	1.2	1.2		
70060303	MW-8	15000	3600	2600	410	1900	4/01/92	4/08/92
70065470	MW-9	12000	2000	2600	360	1600	4/01/92	4/09/92
Detection Limits		2500	25	25	25	25		

These data have been reviewed and are approved for release.

well. Wen for Mark A. Valentini, Ph.D.

Regional Director