RECEIVED

By Alameda County Environmental Health at 10:27 am, Jan 22, 2013

January 15, 2013

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject:

Perjury Statement and Correspondence Transmittal

1600 – 1630 Park Street Alameda, California 94501 AEI Project No. 298931 ACEH RO#0000008

Dear Ms. Detterman:

I declare under penalty of perjury, that the information and/or recommendations contained in the attached correspondence for the above-referenced site are true and correct to the best of my knowledge.

If you have any questions or need additional information, please do not hesitate to call me or AEI Consultants, Mr. Robert Robitaille at (925) 746-6000.

Sincerely

John Buestad President

JB/rpr

Attachment: Correspondence regarding Proposed Parcel Split, January 15, 2013.

ce: Mr. Robert Robitaille, AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

January 15, 2013

Alameda County Environmental Health Department Attn: Ms. Karel Detterman 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Proposed Parcel Split

1600-1640 Park Street Alameda, California AEI Project No. 298931

ACEHD Fuel Leak Case No. RO0000008

Dear Ms. Detterman:

At the request of Foley Street Investments, LLC, (FSI), AEI Consultants (AEI) has prepared this description of the proposed parcel split at the property located at 1600 to 1640 Park Street, Alameda, California. The property currently consists of four (4) parcels which will be reconfigured into two (2) parcels to accommodate the proposed development of the site. A map showing the existing and proposed parcels and a description of the revised property lines is included in Attachment A.

Problem Statement

The portion of the property located at 1630 Park Street is currently undergoing environmental investigation and remediation as the result of releases of primarily gasoline with some hydraulic oil which had occurred at the site prior to 1987. The area affected by the release has been well documented and is contained entirely within proposed Parcel B. Figure 1 shows the area under investigation. The property owner would like to obtain assurance from the Alameda County Environmental Health Department (ACEH) that the environmental impacts at Parcel B will not adversely affect development of Parcel A.

Proposed Solution

The following information demonstrates that the impacts are confined to Parcel B.

Desired Outcome

FSI requests that a 'comfort letter' be issued by ACEH which states that the agency agrees with AEI's conclusion that Parcel A is unaffected by the environmental issues present at Parcel B.

Current Understanding of the Extent of Environmental Impacts

An updated Conceptual Site Model (CSM) was submitted on December 7, 2012, which describes the known extent of impacts, all remaining data gaps and proposed measures to eliminate the data gaps. A copy of the report is included as Attachment B. Figures 2 and 3 show the approximate extent of impacts in groundwater and soil relative to the proposed Parcels A and B.

The lateral and vertical extent of gasoline impacted soil is well defined. As described in the CSM, prior to interim remedial efforts, gasoline impacted soil was centered on the former UST and extended laterally in each direction, primarily to the north-northwest toward Park Street. The zone of impact was thickest at the UST pit and thinned with distance from the pit. Evidence includes observations and analytical data collected from soil borings installed during 2010 and 2011: DPE-1 located adjacent to and down gradient of the pit with approximately 5 feet of impact; AEI-28 located 45 feet west and down/cross gradient of the pit with approximately 2.5 feet of impact; and AEI-24 located 45 south up-cross gradient of the pit with no impacts. To the east, south, and west, impacted soil appears to extend approximately 20 to 50 feet from the former UST hold and approximately 100 feet to the north. It appears that the gasoline constituents travelled vertically from its source (the UST) then spread laterally along the groundwater surface. Based on observations and excavation confirmation samples collected during October 2012 excavation of the former UST-hold and the hydraulic lifts, it appears that the bulk of gasoline impacts to soil have been removed in the core of the plume near the former UST.

The lateral and vertical extent of oil impacted soil is well defined. Oil impacted soil was identified adjacent to several former lifts in the northeastern corner of the existing building. While the lateral extent of oil impacted soil has not been fully defined it is expected to be limited based on the typically low volumes released from such lifts. The vertical extent of oil impacted soil has also been well defined by past investigations. Vertically, the top of the impacted zone begins at approximately 7 to 8 feet bgs and ends between approximately 12 to 14 feet bgs. Figures 3 and 4 of the November 2012 CSM show the approximate extent of vertical impacts. The zone of impact is limited to approximately 4 to 8 feet in thickness, which corresponds to just above the water table (capillary fringe) to several feet below the average water table. Based on observations and excavation confirmation samples collected during October 2012 excavation of the former UST-hold and the hydraulic lifts, it appears that the bulk of oil impacts to soil have been removed in the vicinity of the northeast corner of the former building. Soil impacted with a mixture of oil and gasoline remains in the vicinity of the former lift near DPE-5.

The extent of impacted groundwater is also well understood. The dissolved hydrocarbon plume is centered on the former UST hold and spreads generally toward the northwest in the direction of groundwater flow. The extent of the impacts in groundwater have been well defined to the south and southeast, as demonstrated by grab groundwater samples collected in January 2012, from borings AEI-24, AEI-25 and AEI-26 and to the east of the former tank pit as demonstrated by grab groundwater samples collected from borings GP3 (April 2008) and AEI-27 in (January 2012) (CSM Tables 6 to 8). Groundwater impacts are also well defined to the northwest as demonstrated by analysis of groundwater samples collected from monitoring wells MW-4 and MW-5 (CSM Table 9). No separate phase hydrocarbons are present at the site.

Remedial Strategy

Remediation of the impacts at 1630 Park is ongoing and is expected to be complete within 2 years. Remedial actions performed to date have included high vacuum dual phase extraction (HVDPE) and focused hot-spot excavation of impacted soil. All of the efforts to date have occurred within the boundaries of Parcel B. Future remediation, if needed, will likely consist of additional HVDPE from existing wells, and/or by in-situ chemical oxidation. Future remedial actions, if any, will focus on the remaining impacts within the boundaries of Parcel B and are not expected to affect Parcel A.

Request for Concurrence

Based on the above information, AEI considers the extent of impacts related to the releases at 1630 Park Street to be confined to the Proposed Parcel B. Further, AEI does not expect that any remedial activities related to Parcel B will adversely affect Parcel A.

In summary:

- No soil impacts from Parcel B impact Parcel A.
- No groundwater impacts from Parcel B impact Parcel A.
- If future active remediation is needed on Parcel B, it will not impact Parcel A.

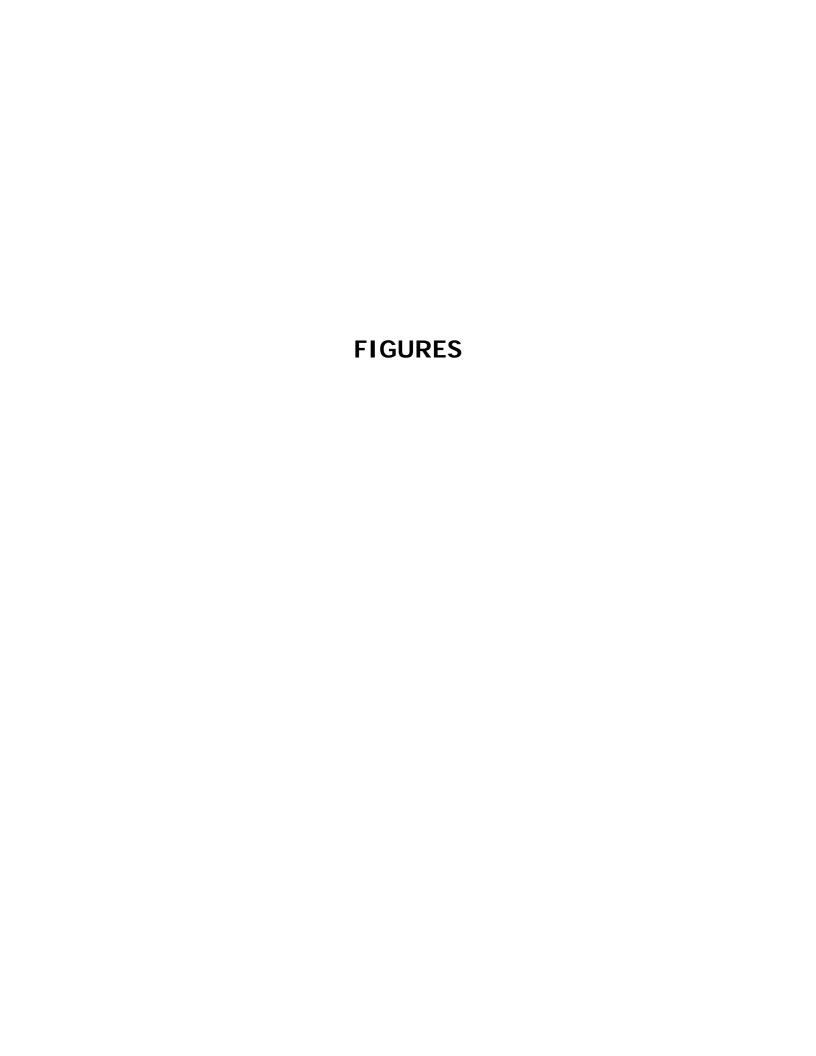
Therefore, on behalf of FSI, AEI respectfully requests your written concurrence.

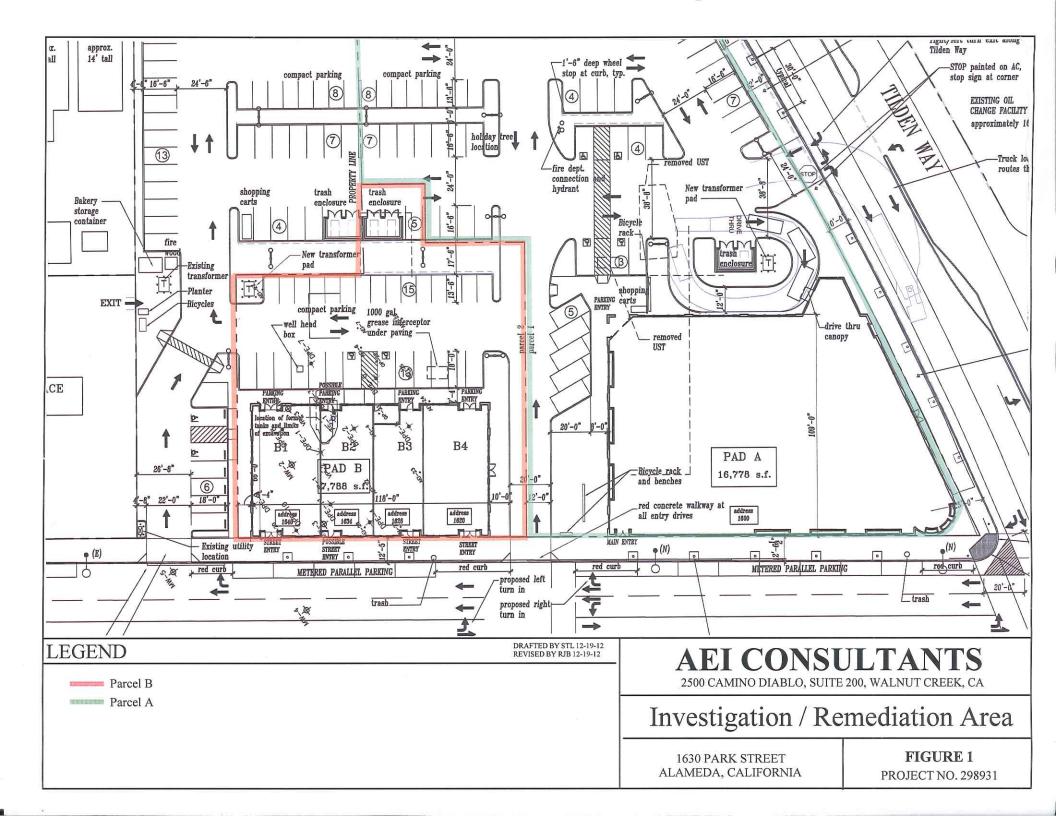
Report Limitations

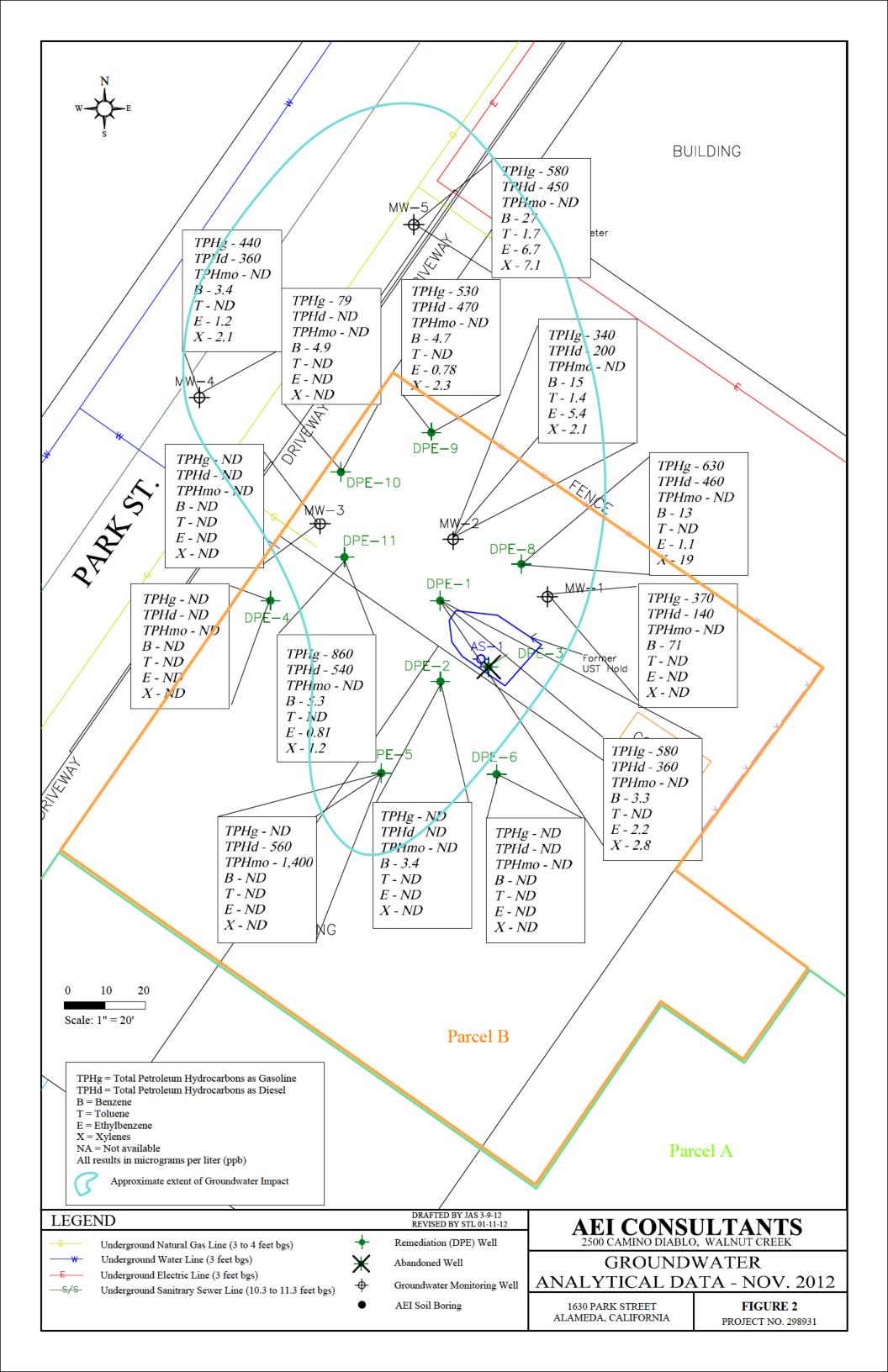
This report has been prepared by AEI Consultants relating to the property located at 1630 Park Street, in the City of Alameda, Alameda County, California. This report includes a summary of site conditions and relies heavily on information obtained from public records and other resources; AEI makes no warrantee that the information summarized in this report includes consideration of all possible resources or information available for the site, whether referenced on not. Material samples have been collected and analyzed, and where appropriate conclusions drawn and recommendations made based on these analyses and other observations. This report may not reflect subsurface variations that may exist between sampling points. These variations cannot be fully anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This document should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site will be identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s) and petroleum products, the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. This document contains estimates of costs for various activities that could be implemented at the site. These estimates are based on reasonably expected costs for similar activities; however, AEI provides no guarantee implicit or explicit that costs will not be significantly higher or lower than those estimated. All specified work has been performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology and performed under the direction of appropriate California registered professionals.

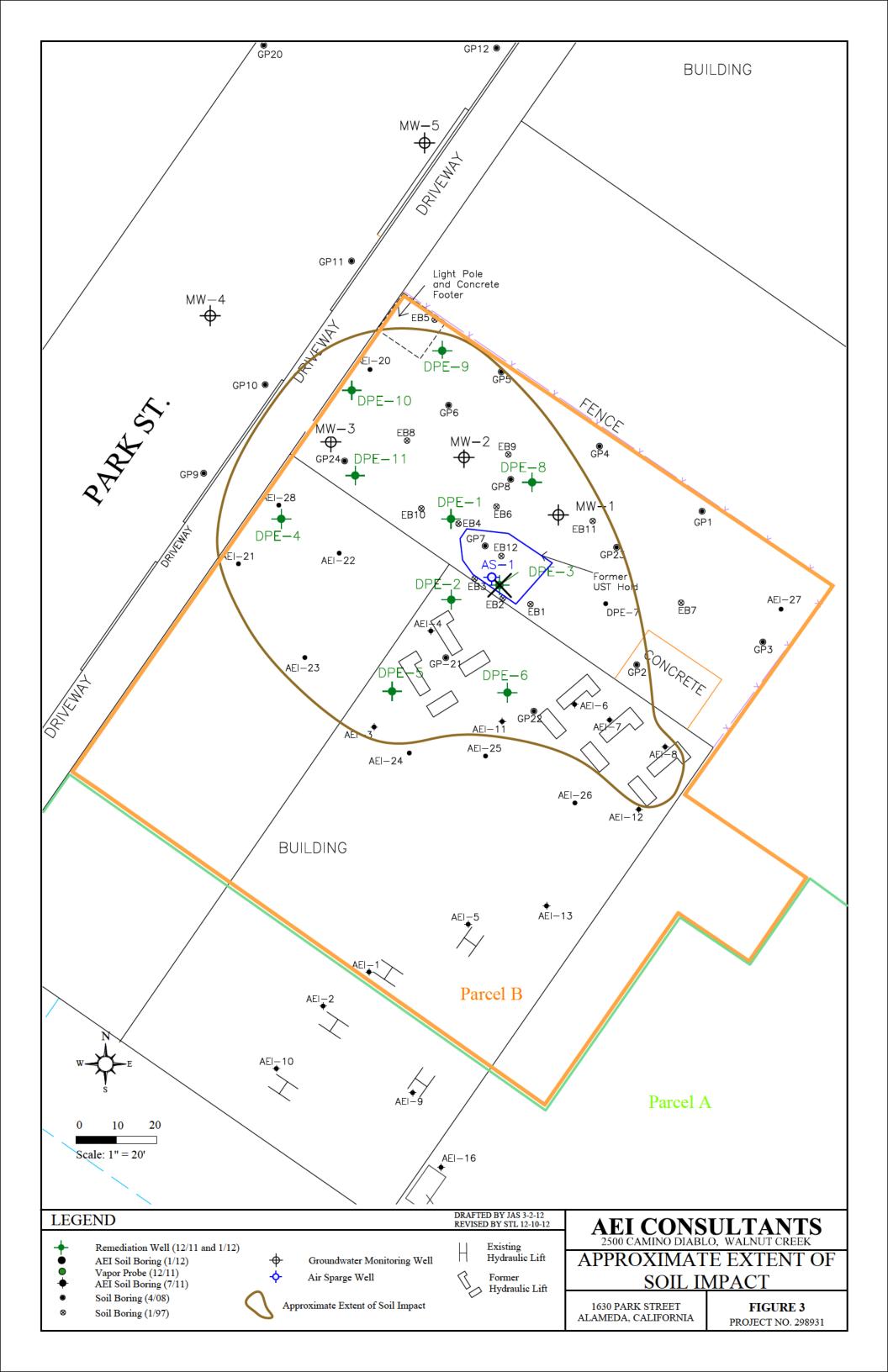
AEI Project No. 298931 January 15, 2013 Page 4 of 4

We welcome comments and questions from ACEH staff. Please contact us (925) 746-6000.


Sincerely,


AEI Consultants


Robert Robitaille Sr. Project Manager Peter J. McIntyre, PG Sr. Vice President, Geologist PAN No 1702


Distribution:

John Buestad, Foley Street Investments Karel Detterman, Alameda County Environmental Health Department (FTP Upload)

ATTACHMENT A

PROPOSED PLAT MAP AND DESCRIPTION

PARCEL A

The land referred to is situated in the City of Alameda, County of Alameda, State of California, and is described as follows:

Portion of the lands described to Foley Street Investments LLC in the deeds recorded September 22, 2011, as Document No. 2011269364, 2011269366 and 2011269367; and May 13, 2011, as Document 2011144640, Official Records of Alameda County, more particularly described as follows:

Beginning at a point on the southeasterly line of Park Street (80 feet wide) distant thereon North 32°32′54″ East, 9.84 feet from its intersection with the northerly line of Tilden Way (70 feet wide) as said streets are shown on the map entitled Alameda Station Homestead Tract, filed March 14, 1868 Map Book 17, Page 60, Alameda County Records, thence continuing along said southeasterly line of Park Street North 32°32′54″ East, 221.00 feet; thence leaving last line South 57°40′08″ East, 145.11 feet; thence North 32°19′52″ East, 50.25 feet; thence South 57°40′08″ East, 28.89 feet; thence North 32°19′52″ East, 30.16 feet; to a point on the northeasterly exterior of said Foley Street Investment LLC; thence along last line South 58°58′39″ East, 140.03 feet to a point on the northwesterly line of Foley Street (40 feet wide), as said street is shown on the aforementioned map of Alameda Station Homestead Tract; thence along last line South 32°11′00″ West, 164.36 feet to a point distant thereon North 32°11′00″ East, 10.66 feet from the intersection of of the southeasterly line of Park Street with the northerly line of Tilden Way; thence from said point running a distance of 305.26 feet along an arc of a circle having a radius of 1876.00 feet drawn 9.08 feet northerly of and parallel to the northern right-of way line of Tilden Way to the point of beginning:

Containing 51,512 square feet more or less.

Portion of APN: 070-0191-032, 033, 034 and 035-01.

PARCEL B

The land referred to is situated in the City of Alameda, County of Alameda, State of California, and is described as follows:

Portion of the lands described to Foley Street Investments LLC in the deeds recorded September 22, 2011, as Document No. 2011269364, and 2011269367; and May 13, 2011, as Document 2011144640, Official Records of Alameda County, more particularly described as follows:

Beginning at a point on the southeasterly line of Park Street (80 feet wide) distant thereon North 32°32′54″ East, 230.84 feet from its intersection with the northerly line of Tilden Way (70 feet wide) as said streets are shown on the map entitled Alameda Station Homestead Tract, filed March 14, 1868 Map Book 17, Page 60, Alameda County Records, thence continuing along said southeasterly line of Park Street North 32°32′54″ East, 142.22 feet to the most northerly corner of said Foley Street Investment LLC parcel; thence along its exterior boundary lines South 57°45′00″ East, 129.32 feet; thence South 32°11′00″ West, 63.00 feet; thence South 58°58′39″ East, 44.00 feet; thence leaving said exterior boundary lines South 32°19′52″ West, 30.16 feet; thence North 57°40′08″ West, 28.89 feet; thence South 32°19′52″ West, 50.25 feet; thence North 57°40′08″ West, 145.11 feet to the point of beginning.

Containing 20,523 square feet more or less.

Portion of APN: 070-0191-032, 033 and 035-01.

Public Street Dedication

The land referred to is situated in the City of Alameda, County of Alameda, State of California, and is described as follows:

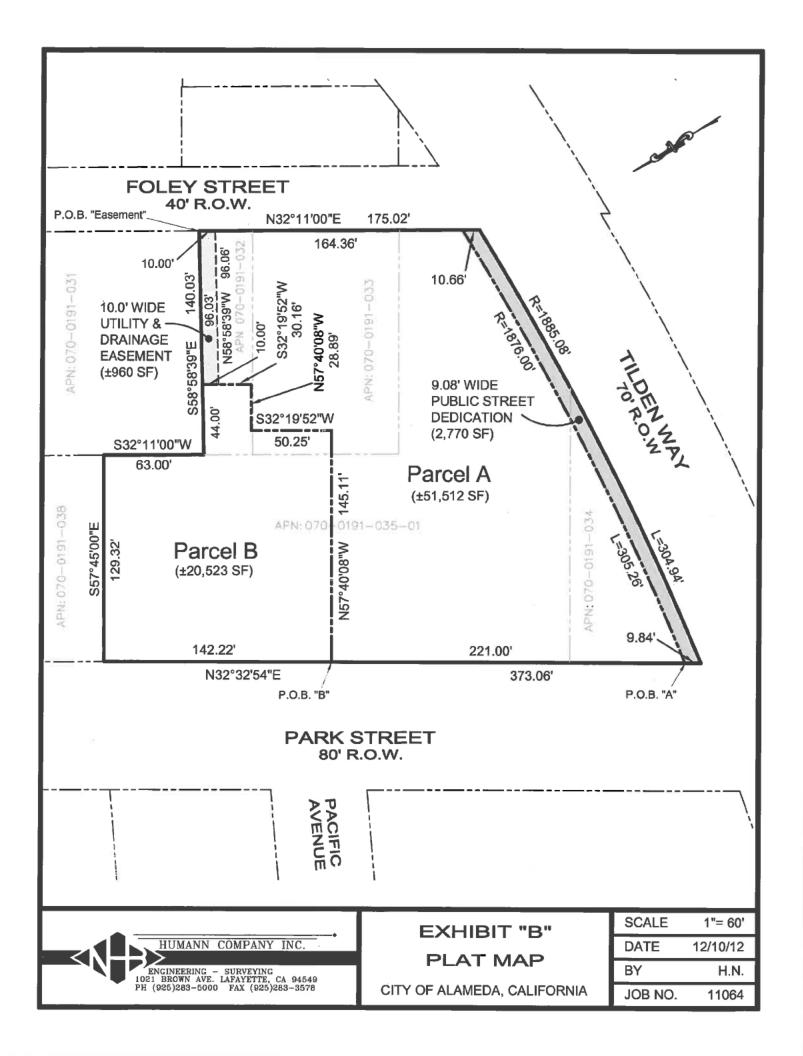
Portion of the lands described to Foley Street Investments LLC in the deeds recorded September 22, 2011, as Document No. 2011269366 and 2011269367, Official Records of Alameda County, more particularly described as follows:

A strip of land 9.08 feet wide lying north of, parallel of and contagious to the northerly right-of-way line of Tilden Way (70 feet wide) as said street is shown on the map entitled Alameda Station Homestead Tract, filed March 14, 1868 Map Book 17, Page 60, Alameda County Records. The northern side line of said strip shall be lengthened or shortened easterly to terminate at the northwesterly line of Foley Street (40 feet wide), and westerly to terminate at the southeasterly of Park Street (80 feet wide) as said streets are shown on the map of Alameda Station Homestead Tract.

Containing 2,770 square feet more or less.

Portion of APN: 070-0191-034 and 035-01.

Utility & Drainage Easement


The land referred to is situated in the City of Alameda, County of Alameda, State of California, and is described as follows:

Portion of the parcel of land described to Foley Street Investments LLC in the deeds recorded September 22, 2011, as Document No. 2011269364, Official Records of Alameda County, being a strip of land 10.00 feet wide more particularly described as follows:

Beginning at the northeasterly corner of the aforementioned Foley parcel, said point also being on the northwesterly right-of-way line of Foley Street (40 feet wide) as said street is shown on the map entitled Alameda Station Homestead Tract, filed March 14, 1868 Map Book 17, Page 60, Alameda County Records; thence along last line South 32°11′00″ West, 10.00 feet; thence leaving last line North 58°58′39″ West, 96.06 feet; thence North 32°19′52″ East, 10.00 feet to a point on the northeasterly line of Foley Parcel; thence along last line South 58°58′39″ East, 96.03 feet to the point of beginning.

Containing 960 square feet more or less.

Portion of APN: 070-0191-032.

ATTACHMENT B

CONCEPTUAL SITE MODEL UPDATE NOVEMBER 2012

December 7, 2012

Conceptual Site Model Update November 2012

Property Identification:

1630 Park Street Alameda, California

AEI Project No. 298931 ACEH Fuel Leak Case No. RO0000008

Prepared for:

Foley Street Investments Attn: Mr. John Buestad 2533 Clement Avenue Alameda, CA 94501

Prepared by:

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-6000 San Francisco HQ

Atlanta

Chicago

Costa Mesa

Dallas

Denver

Los Angeles

Miami

New York

Phoenix

Portland

San Jose

National Presence

Regional Focus

Local Solutions

Attachment:

Updated Conceptual Model – November 2012

FIGURES

FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5	SITE LOCATION MAP SITE PLAN A – A' FENCE DIAGRAM B – B' FENCE DIAGRAM GROUNDWATER ANALYTICAL DATA, JULY 2012
TABLES	
TABLE 1	Well Construction details
TABLE 2	GROUNDWATER ELEVATION DATA
TABLE 3	SOIL SAMPLE ANALYTICAL DATA — TPH, MBTEX AND POG
TABLE 4	SOIL SAMPLE ANALYTICAL DATA - VOCS, FUEL OXYGENATES AND PCB'S
TABLE 5	SOIL SAMPLE ANALYTICAL DATA — METALS
TABLE 6	GROUNDWATER ANALYTICAL DATA — GRAB SAMPLES - TPH, MBTEX AND TRPH
TABLE 7	GROUNDWATER ANALYTICAL DATA - GRAB SAMPLES - VOCS, OXYGENATES, SVOCS & PCB'S
TABLE 8	GROUNDWATER ANALYTICAL DATA - METALS
TABLE 9	GROUNDWATER ANALYTICAL DATA - MONITORING WELLS

APPENDICIES

APPENDIX A SOIL BORING LOGS

TABLE 10 SOIL VAPOR MONITORING ANALYTICAL DATA

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

December 7, 2012

Alameda County Environmental Health Department Attn: Ms. Karel Detterman 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Conceptual Site Model Update

November 2012 1630 Park Street Alameda, California AEI Project No. 298931

ACEH Fuel Leak Case No. RO0000008

Dear Ms. Detterman:

AEI has updated the initial Conceptual Site Model on behalf of Foley Street Investments (FSI) as part of the on-going remediation at 1630 Park Street in Alameda, California (ACEH Fuel Leak Case # RO 0000008) [Figure 1].

Technical comment 1 of the October 5, 2012, directive letter requested an updated Conceptual Site Model (CSM). The results of the recent excavations and confirmation soil sampling have been incorporated into CSM which is attached. The new information has resulted in resolution of one of the data gaps: the Release Occurrence / Waste-Oil UST is no longer a data gap. Confirmation soil samples collected from the former UST-hold (excavation E1) showed no motor-oil range hydrocarbons exist in the bottom sample or sidewall samples. Additional evidence is provided by the lack of motor-oil range hydrocarbons in the majority of confirmation samples collected in excavation E2. It appears the source of the remaining oil-range hydrocarbons was the hydraulic lifts.

Additional insights gained from observations and confirmation soil sample analyses include:

- HVDPE was effective in removing hydrocarbons in the vicinity of the former UST-hold.
- Based on observations of soil staining and PID readings in excavations E1, E2 and E3, the shape of the hydrocarbon plume in soil appears to be consistent with the initial model. It appears to have been thickest at the source (UST's and lifts) thinning quickly with distance from the source. In addition, the impacts do not extend beyond the depth of the former excavation bottom (14.5 feet bgs) in the vicinity of the former UST-hold or beyond a depth of approximately 12 feet bgs in the vicinity of the hydraulic lifts.
- Waste-Oil does not appear to have been present in significant quantities in the vicinity of the former UST-hold.

Hydraulic oil mixed with gasoline remains in the vicinity of DPE-5.

Remaining data-gaps include:

- Nature and Extent of Impacts / Impacts to Groundwater: The current well array leaves gaps in coverage to the west, northwest and northeast. The gaps will be addressed by installing four (4) additional groundwater monitoring wells and by converting well DPE-6 to a groundwater monitoring well.
- Nature and Extent of Impacts / Impacts in Vapor Phase: Vapor sample data thus far indicates minimal potential for vapor intrusion. ACEH has requested further monitoring of soil vapor in the vicinity of the hydrocarbon plume. Four (4) additional vapor monitoring points (VP-4, -5, -6, and -7) will be installed around the perimeter of the planned building. The three (3) existing vapor monitoring points (VP-1, -2 and -3) will be abandoned prior to construction of the proposed building as they will become inaccessible once construction begins. Preemptive vapor intrusion mitigation has been incorporated into the building design.
- Potential Receptors and Risks / On-site: Risk to on-site receptors has not been formally
 evaluated in a risk assessment. Human health risks will be evaluated upon further
 groundwater and soil vapor monitoring, and completion of the data gaps investigation.
 Mitigation measures will be recommended, as needed, during construction though a Site
 Management Plan.
- Potential Receptors and Risks / Off-site: Risk to off-site receptors has not been formally
 evaluated in a risk assessment. Offsite human health risks are expected to be minimal
 based on existing data.

Report Limitations

This report has been prepared by AEI Consultants relating to the property located at 1630 Park Street, in the City of Alameda, Alameda County, California. This report includes a summary of site conditions and relies heavily on information obtained from public records and other resources; AEI makes no warrantee that the information summarized in this report includes consideration of all possible resources or information available for the site, whether referenced on not. Material samples have been collected and analyzed, and where appropriate conclusions drawn and recommendations made based on these analyses and other observations. report may not reflect subsurface variations that may exist between sampling points. These variations cannot be fully anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. This document should not be regarded as a guarantee that no further contamination, beyond that which could have been detected within the scope of past investigations is present beneath the property or that all contamination present at the site will be identified, treated, or removed. Undocumented, unauthorized releases of hazardous material(s) and petroleum products, the remains of which are not readily identifiable by visual inspection and/or are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation and may or may not become apparent at a later time. This document contains estimates of costs for various activities that could be implemented at the site. These estimates are based on reasonably expected costs for similar activities; however, AEI provides no quarantee implicit or explicit that costs will not be AEI Project No. 298931 December 7, 2012 Page 3 of 3

significantly higher or lower than those estimated. All specified work has been performed in accordance with generally accepted practices in environmental engineering, geology, and hydrogeology and performed under the direction of appropriate California registered professionals.

We welcome comments and questions from ACEH staff. Please contact us (925) 746-6000.

ERED GEO

PETER J. MCINTYRE Exp. 5/31/14

Sincerely,

AEI Consultants

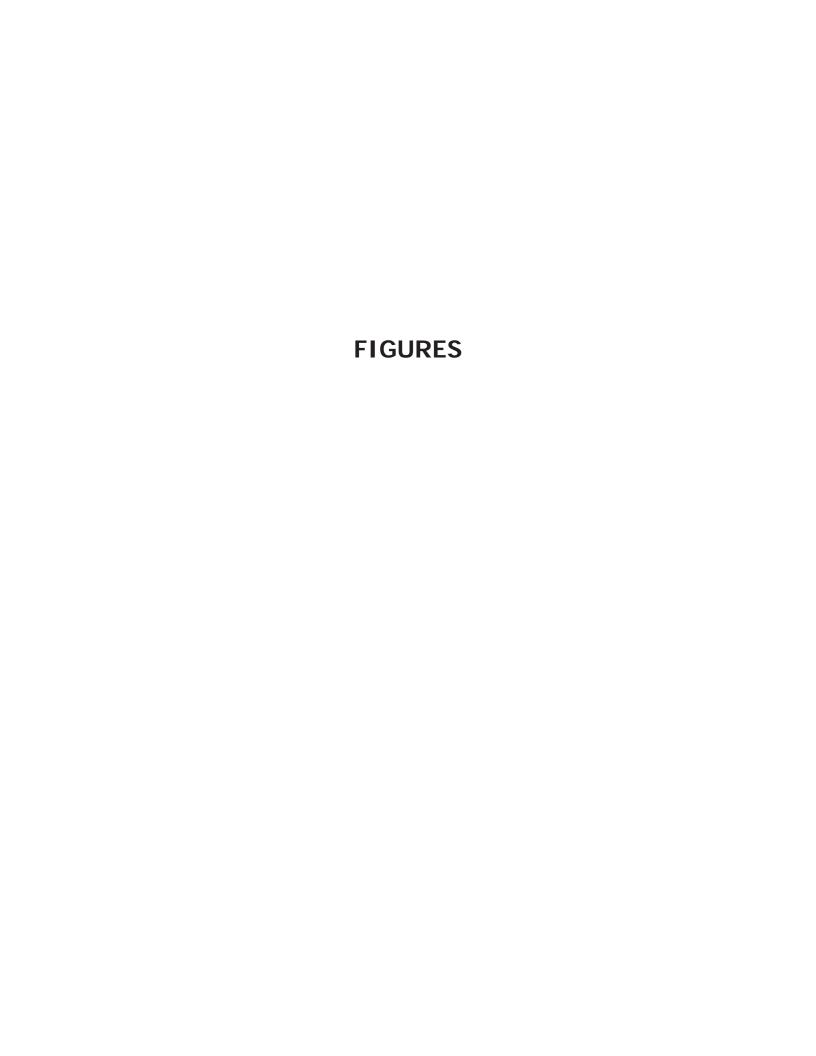
Robert Robitaille Sr. Project Manager Peter J. McIntyre, PG

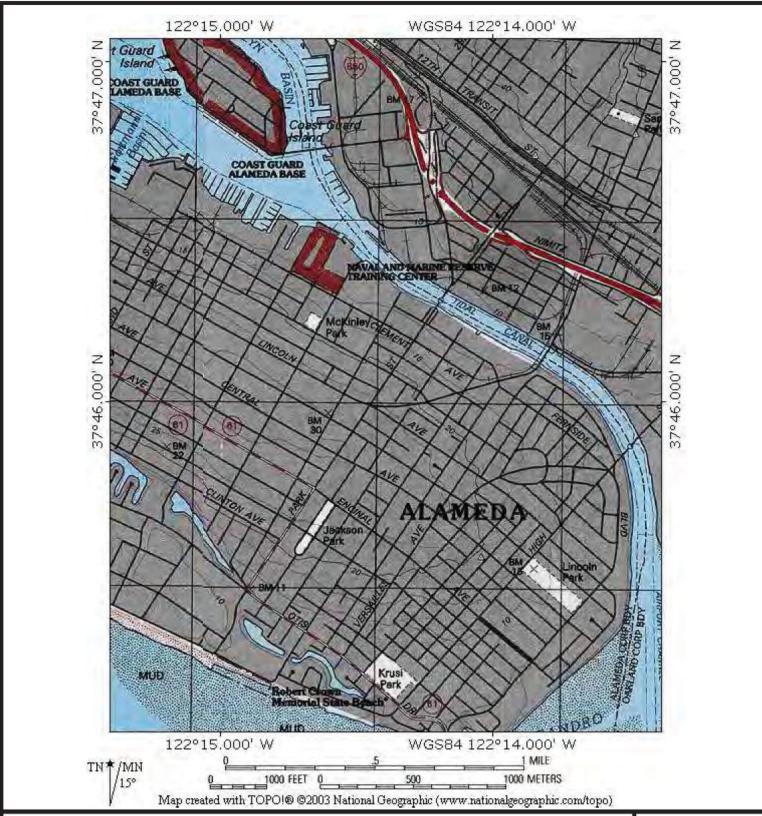
Sr. Vice President, Geologist

SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Geology & Hydrogeology	Regional	The site is located on Alameda Island. The near surface sediments of the area are mapped as Holocene and Pleistocene Merritt Sands (Qms) deposits (Helley, et al). Depth to bedrock is estimated at 300 to 800 feet below land surface (Norfleet Consultants, 1998). According to information obtained from the U.S Geological Survey (USGS), the site is located at between 20 and 25 feet above mean sea level (amsl) with the local topography sloping gently to the northeast.	n/a	None	n/a
	Site	Geology: Based on the logs of soil borings drilled at the site by AEI, sediments across the site are fairly consistent; consisting primarily of poorly graded fine to medium sand with varying clay and silt content to a depth of at least 25 feet bgs, the maximum depth explored. Logs of borings for remediation wells installed in November 2011, and observations during the October 2012 excavation of the former UST-hold and hydraulic lifts were consistent with these prior observations. Hydrology: During the drilling conducted by AEI in 2011-12, groundwater was first observed in the temporary direct push borings at depths of approximately 9 to 11 feet bgs and stabilized at between approximately 7.5 to 8.5 feet bgs. The depth to water in the groundwater monitoring wells has generally ranged from approximately 7.5 to 9.5 feet bgs since the wells were installed. Based on the groundwater monitoring conducted at the site, groundwater flows fairly consistently in a northwesterly direction at an approximate hydraulic gradient of 1x10 ⁻² to 2x10 ⁻² ft/ft. and exists as an unconfined aquifer. Based upon observations made during excavations at the former UST-hold and hydraulic lifts, transmisivity (T) and hydraulic conductivity (K) appear to be low. Excavations up to 15 feet bgs which were left open for several hours did not produce appreciable volumes water. Additional evidence for low T and K values is the small size of the hydrocarbon plume which has reached an apparent length of approximately 160 feet from the source since the conservative release date of 1986 (26 years).	Figures 3, 4 and 5; Tables 1 and 2; Boring Logs.	None	n/a
Surface Water Bodies		The nearest surface water body is the tidal canal located approximately 1500 to 2000 feet to the northeast.	Figure 1	None	n/a
Nearby Wells		In January 2012, a 2,000-foot radius well search was requested and received from the Alameda County Department of Public Works (ACDPW). The results of the well search were reviewed and wells which appeared to be associated with monitoring or remediation at other sites or soil borings were excluded from the review. According to the results of the well search, ten (10) wells are located within 2,000 feet of the site. Based on the 2008 groundwater sampling from the soil borings and cumulative groundwater monitoring data, it appears that the length of the plume at the site is no more than approximately 200 feet in length. None of the wells noted in this well search are located within the expected plume length for this site. As such, none of the listed wells are expected to be impacted by the hydrocarbons at the site.	March 30, 2012 Subsurface Investigation and Well Installation Report: Section 9.0.	None	n/a

Updated: December 7, 2012 Page 1 of 4

SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
Potential Source(s)	On Site	Former USTs: One 300-gallon waste-oil underground storage tank (UST) and one 500-gallon gasoline UST were removed from adjacent to the northern side of the building in 1986 at which time a release of petroleum hydrocarbons, primarily gasoline, was discovered. Hydraulic Lifts & Repair Area: A total of 10 current and former underground hydraulic lifts were identified within the building. Investigation of these lift locations and associated drain features in July 2011 identified releases of hydraulic oil range hydrocarbons near five (5) of the lifts in the northeastern end of the building. No significant impact was identified in the other lift areas or near the drain features investigated. Former Paint Booth: A paint booth was identified in a 1950 Sanborn map. Soil boring AEI-27 was drilled in this location in Jan. 2012; no significant release was identified. Former USTs (South end of site): One 10,000-gallon gasoline UST, one 4,000-gallon gasoline UST, and one 550-gallon waste oil UST at the southern portion of the site were removed in November 2011. Based on soil and groundwater analytical data from samples collected in and near the UST at the time of removal, no significant release was identified and these former USTs are not a source of impact to the subject property.	See Previous Reports	None	n/a
Potential Source(s)	Off Site	1650 Park St: According to records on file with the ACEH, one 100-gallon waste oil UST and one 550-gallon gasoline UST were removed from the property in 1995 and 233 tons of soil were excavated and disposed at BFI Landfill in Livermore, California. Following soil removal and groundwater sampling, ACEH granted case closure in 2001. Based on onsite groundwater flow direction and case closure status of 1650 Park St, this site is not a source of impact to the subject site. Other nearby LUST Cases: Several nearby LUST cases are identified on GeoTracker, including 1541 Park St, 1700 Park St, and 1701 Park St. Based on documented groundwater flow direction at the site, regulatory status of these cases, and/or the configuration of their plumes, these sites do not appear to be source of impact to the subject site.	GeoTracker ACEH website	None	n/a
Release Occurrence	Gasoline UST	The release of TPH-g, BTEX, and other gasoline constituents originated from the former 500 gallon gasoline UST system removed in 1986 from near the northern side of the existing building. The exact cause of the release is not known, though typically such releases occur from failures of the UST itself or the associated piping and pump system. The timing, duration and volume of the oil release are unknown.	See Previous Reports	None	n/a
	Waste-Oil UST	According to a report prepared by Groundwater Technology in April 1987, the 300-gallon waste oil tank was removed in 1986 and a soil sample collected from the waste oil UST tank pit at a depth 8 feet bgs contained 57 ppm TPH-mo. No further sampling for TPH-mo was performed during the investigation that followed in 1987 nor does it appear that ACEH requested further investigation of the waste oil UST at that time. TPH-mo, which was added to the analytical suite in the May 2012 groundwater monitoring, was not detected in any of the wells (refer to the June 11, 2012 Groundwater Monitoring Report). This information indicates that a release from that waste oil UST was not significant. Confirmation soil samples collected during excavation of the former UST-hold in October 2012, showed non-detectable concentrations of TPH-mo in the sidewalls and bottom samples. This information indicates that a release from that waste oil UST was not significant.	Groundwater Technology, Inc., April 1987; AEI, June 11, 2012 Groundwater Monitoring Report.		n/a


Updated: December 7, 2012 Page 2 of 4


SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
	Hydraulic Lifts	The source of the heavier range hydrocarbons detected in samples collected within the former building appear to be from several of the five former hydraulic lifts at the northern end of the building. Again, the timing, duration and volume of the oil release are unknown. Based on confirmation sampling at the former UST-hold, it does not appear that the former waste-oil UST contributed to the heavier range petroleum detected within the former building.	See Previous Reports	None	n/a
Constituents of Concern		The primary contaminants of concern are gasoline and gasoline constituents [TPH-g, benzene, toluene, ethylbenzene, and xylenes (BTEX)] from the gasoline UST release. MTBE has not been detected during recent sample analyses nor have significant concentrations of fuel oxygenates been detected. Heavier hydrocarbons (reported as TPH-d and TPH-mo) have been detected in the area of the hydraulic lifts. No PCBs were detected in samples from near the lifts and no VOCs were detected in samples near the paint booth or drain features within the repair shop. Lead has been detected in soil around the former USTs and may be a constituent of concern in the soil.	Tables 3, 4, 5 (soil); Tables 6, 7, 8, 9 (water).	None	n/a (see above for discussion of waste-oil UST constituents)
Nature and Extent of Impacts	Impacts in Soil	Prior to interim remedial efforts, gasoline impacted soil was centered on the former UST and extended laterally in each direction, primarily to the north-northwest toward Park Street. The zone of impact was thickest at the UST pit and thins with distance from the pit. Examples include: DPE-1 located adjacent to and down gradient of the pit with approximately 5 feet of impact; AEI-28 located 45 feet west and down/cross gradient of the pit with approximately 2.5 feet of impact; and AEI-24 located 45 south up-cross gradient of the pit with no impacts. To the east, south, and west, impacted soil appears to extend approximately 20 to 50 feet from the former UST hold and approximately 100 feet to the north. It appears that the gasoline constituents travelled vertically from its source (the UST) then spread laterally along the groundwater surface. The lateral extent of gasoline impacted soil is reasonably well defined in each direction. Based on observations and excavation confirmation samples collected during October 2012 excavation of the former UST-hold and the hydraulic lifts, it appears that the bulk of gasoline impacts to soil have been removed in the core of the plume near the former UST. Oil impacted soil was identified adjacent to several former lifts in the northeastern corner of the existing building. While the lateral extent of oil impacted soil has not been fully defined it is expected to be limited based on the typically low volumes released from such lifts. The vertical extent of impacted soil has been well defined by past investigations. Vertically, the top of the impacted zone begins at approximately 7 to 8 feet bgs and ends between approximately 12 to 14 feet bgs. Figures 3 and 4 show the approximate extent of vertical impacts. The zone of impact is limited to approximately 4 to 8 feet in thickness, which corresponds to just above the water table (capillary fringe) to several feet below the average water table. Based on observations and excavation confirmation samples collected during October 2012 e	Figures 3, 4 and 6 Tables 3, 4 and 5 Boring Logs	None	n/a

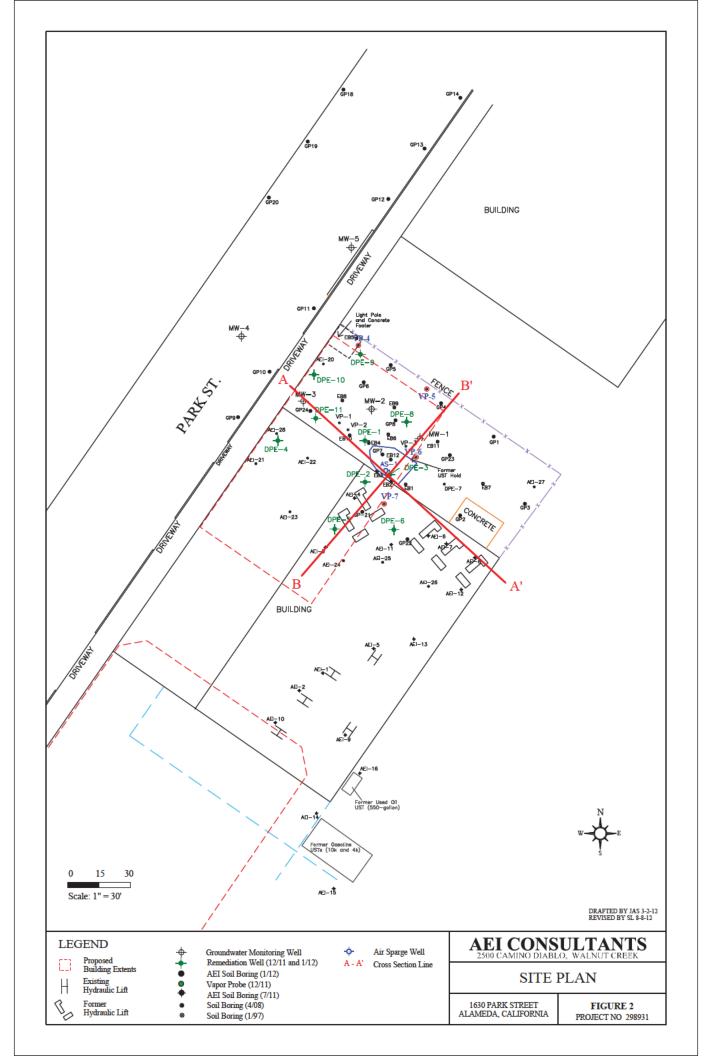
Updated: December 7, 2012 Page 3 of 4

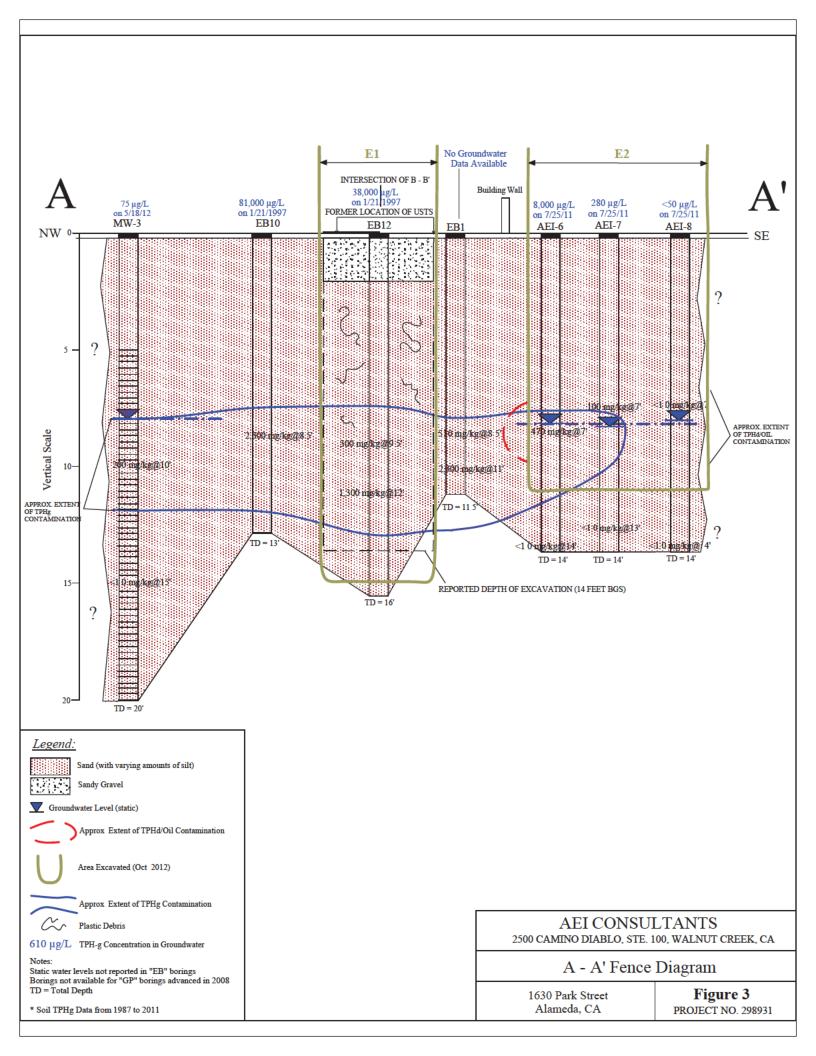
SCM Element	SCM Sub-Element	Description	Figures & Tables Reference	Data Gap	How to Address Data Gap
	Impacts in Groundwater	The dissolved phase plume is also centered on the former UST hold and spreads generally in a northwesterly direction. The extent of the impacts in groundwater have been defined to the south and southeast, as demonstrated by grab groundwater samples collected in January 2012, from borings AEI-24, AEI-25 and AEI-26 and to the east of the former tank pit as demonstrated by grab groundwater samples collected from borings GP3 (April 2008) and AEI-27 in (January 2012) (Tables 6 to 8). Groundwater impacts are also well defined to the northwest as demonstrated by analysis of groundwater samples collected from monitoring wells MW-4 and MW-5 (Table 9). No separate phase hydrcarobons are present at the site.	Figure 5; Tables 6, 7, 8, 9.	Grab groundwater samples collected from temporary borings AEI-21, AEI-22 and AEI-23 in January 2012, suggest that the extent of impacts are not completely defined west and southwest of the former UST locations. Additionally, although recent data from monitoring well MW-1 show lower concentrations of gasoline range hydrocarbons (Table 9), historic grab groundwater samples collected in April 2008, from GP-1, GP-4, GP-5 and from EB-5 in October 1993, suggest that significant hydrocarbons in groundwater may exist to the north and northeast of the former UST tank pit.	Install four (4) additional groundwater monitoring wells and use existing well DPE 6 for groundwater monitoring. Well locations will be chosen to provide lateral definition of the dissolved hydrocarbon plume and will include at least one well to monitor groundwater conditions in the plume core.
	Impacts in Vapor Phase	Soil vapor sample analysis from three soil gas probes (VP-1 to VP-3) located immediately adjacent to the release area did not detect volatile gasoline constituents (TPH-g, MTBE, BTEX) in May or July 2012. This suggests that the potential for vapor intrusion into future commercial structures is minimal.	Table 10	Further monitoring is required by ACEH to assess vapor phase volatile constituents.	Additional soil gas monitoring and analyses for volatile constituents and atmospheric gases to assess extent and attenuation of vapor phase constituents in the shallow vadose zone.
Migration Pathways	Preferential Pathways / Conduits	A conduit study was conducted for the major underground utilities near the site (See Subsurface Investigation and Well Installation Report, 3/30/12) and a previous but incomplete study was provided in a correspondence dated June 6, 2008 from Blymar Engineers, Inc. Information regarding the utilities was obtained from multiple sources. With the exception of the sanitary sewer in the center of Park St, all other underground utilities did not intersect the water table and are not preferential conduits to dissolved phase plume migration. All existing onsite utilities have been recently removed or will be removed prior to development. Information about the sanitary sewer lines was provided by the APWD. The maps provided by the APWD indicate that a 10-inch sanitary sewer line runs along the middle of Park Street and that the line is between 10.3 and 11.3 feet deep. The depth to water in the groundwater monitoring wells has generally ranged from approximately 7.5 to 9.5 feet bgs. As such, it appears that only the 10-inch sanitary sewer line which runs along the middle of Park Street may intersect groundwater at the site. Wells MW-4 and MW-5 are located between the site release area and the sanitary sewer line. During the most recent groundwater monitoring in May 2012, all constituents (TPH-g, TPH-d, TPH-mo, MTBE and BTEX) were all reported as non-detect with the exception of 120 µg/L of TPH-g in MW-5. This suggests that significant petroleum mass (i.e. free phase product) has not intersected the sewer line. Although low dissolved phase concentrations may have intersected the sewer line in the past, with minor plume deflection resulting, the low concentrations detected in MW-4 and MW-5 suggests that any such deflection would not be materially significant. Therefore the sewer line is not considered a preferential pathway of concern.	March 30, 2012 Subsurface Investigation and Well Installation Report: Section 8.0, Figure 8	None	n/a
Potential Receptors & Risks	On Site	Potable water is and will be provided by municipal sources for the foreseeable future, therefore direct contact with groundwater is not considered. Potential receptors at the site could include: -future commercial use occupants via vapor intrusion -future construction workers via direct contact with soil, groundwater, or vapors -future maintenance / construction workers via direct contact with soil or vapors	n/a	Risk to onsite receptors is not known.	Human health risks will be evaluated based upon further groundwater and soil gas monitoring. Mitigation measures will be recommended, as needed, during construction.
	Off Site	Potential offsite receptors could include nearby water producing wells, if present (none identified)	n/a	Likelihood of threat to offsite receptors is minimal.	Human health risks will be evaluated based upon further groundwater and soil gas monitoring.

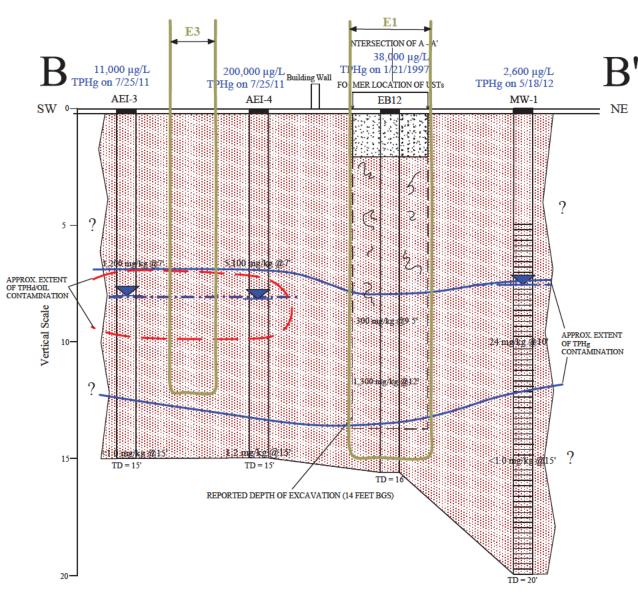
Updated: December 7, 2012 Page 4 of 4

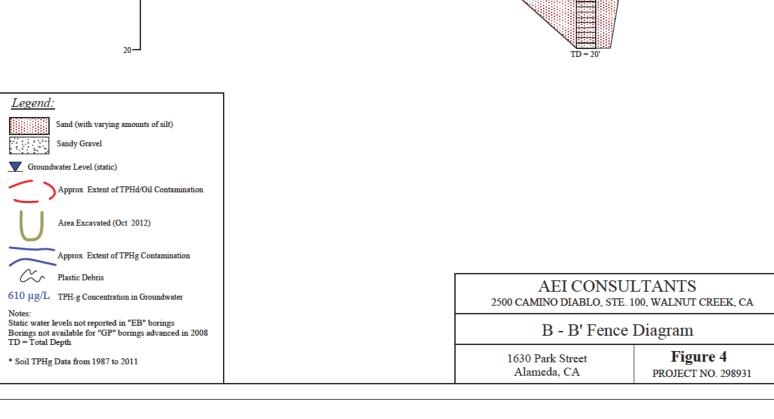
SITE LOCATION MAP

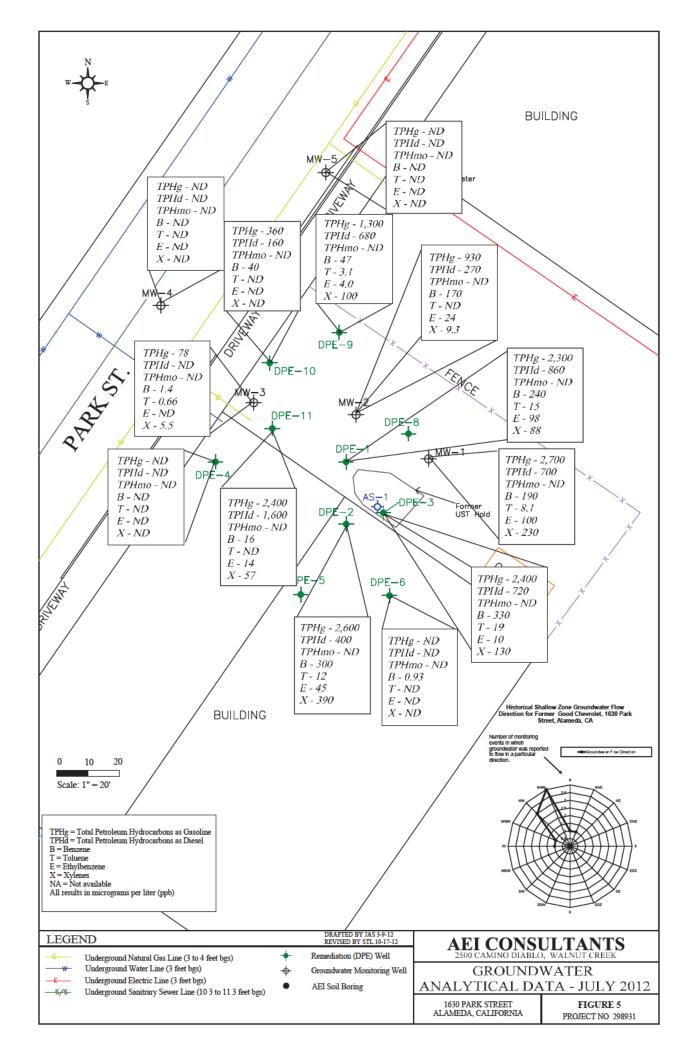
1600-1650 Park Street, 1600-1606 Foley Street, 2329 Pacific Avenue, Alameda, California 94501


Source: USGS




FIGURE 1


Project Number: 298931



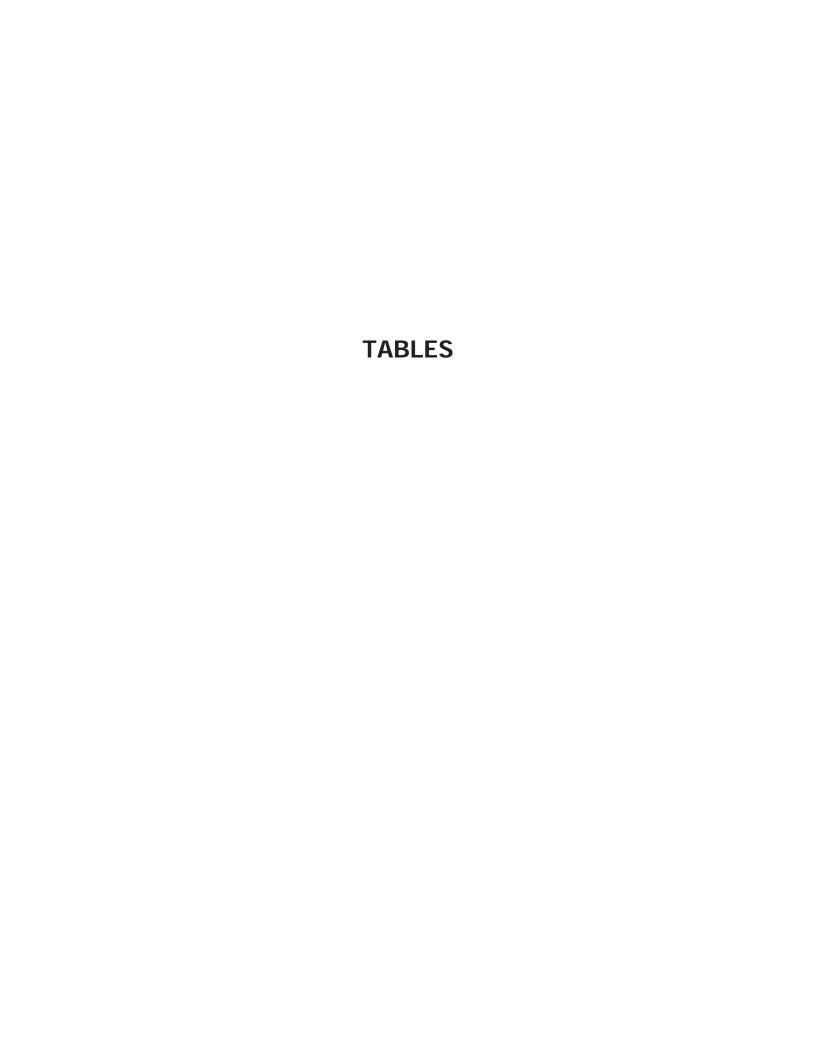


Table 1 **Well Construction Details** AEI Project No. 298931, 1630 Park Street, Alameda, California

Well ID	Well Installation	Elevation TOC	Casing Material	Total Depth	Well Depth	Borehole Diameter	Casing Diameter	Screened Interval	Slot Size	Filter Pack Interval	Filter Pack
Number	Date	(feet)		(feet)	(feet)	(inches)	(inches)	(feet)	(inches)	(feet)	Material
AS-1	11/14/2011	-	PVC	25	25	8	2	20 - 25	0.02	20 - 25	#3 Sand
DPE-1	11/15/2011	25.88	PVC	16	15	10	4	7 - 15	0.01	6.5 - 16	#2/12 Sand
DPE-2	11/15/2011	26.22	PVC	16	15	10	4	7 - 15	0.01	6.5 - 16	#2/12 Sand
DPE-3	11/14/2011	25.27	PVC	16	14	10	4	7 - 14	0.01	6.5 - 16	#2/12 Sand
DPE-4	1/19/2012	26.06	PVC	17	17	10	4	8 - 17	0.01	7.5 - 17	#2/12 Sand
DPE-5	1/20/2012	26.25	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-6	1/20/2012	26.13	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-8	1/20/2012	25.36	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-9	1/20/2012	25.09	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
DPE-10	1/20/2012	25.14	PVC	17	17	10	4	8 - 17	0.01	7.5 - 17	#2/12 Sand
DPE-11	1/20/2012	25.57	PVC	18	18	10	4	8 - 18	0.01	7.5 - 18	#2/12 Sand
MW-1	1/15/1987	25.37	PVC	-	20	8	2	5 - 20	-	-	-
MW-2	1/15/1987	25.48	PVC	-	20	8	2	5 - 20	-	-	-
MW-3	1/15/1987	25.13	PVC	-	20	8	2	5 - 20	-	-	-
MW-4	4/20/1994	25.58	PVC	-	23	8	2	8 - 23	-	-	-
MW-5	4/20/1994	24.31	PVC	-	22	8	2	7 - 22	-	-	-
VP-1	12/6/2011	-	Poly/SS	6	6	1.25	1/4	5.1 - 5.6	Mesh	4.7 - 6	#30 Mesh Sand
VP-2	12/6/2011	-	Poly/SS	5.9	5.9	1.25	1/4	5.1-5.6	Mesh	4.7-5.9	#30 Mesh Sand
VP-3	12/6/2011	-	Poly/SS	5.75	5.75	1.25	1/4	5.1-5.6	Mesh	4.7-5.75	#30 Mesh Sand

PVC = polyvinyl chloride
Poly/SS = Polyethelene tubing with stainless-steel tip
TOC = top of casing
"-" = not available

Table 2 Groundwater Elevation Data AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
		(ft amsl*)	(ft)	(ft amsl*)
MW-1	Jul-89	104.76	8.93	95.83
(5 - 20 feet bgs)	Apr-91		7.59	97.17
	Jul-92		8.72	96.04
	Aug-92		9.09	95.67
	Sep-92		9.25	95.51
	Oct-92		9.34	95.42
	Nov-92		9.21 9.26	95.55
	Dec-92 Jan-93		7.81	95.50 96.95
	Feb-93		7.32	90.95 97.44
	Mar-93		7.20	97.56
	Apr-93		7.20	97.45
	May-93		8.29	96.47
	Jul-93		8.30	96.46
	Oct-93		9.38	95.38
	Jan-94		8.80	95.96
	Apr-94		8.15	96.61
	Jul-94		8.70	96.06
	Oct-94		9.37	95.39
	Jan-94		7.18	97.58
	Apr-95		6.76	98.00
	Jan-97		7.03	97.73
	Nov-98		8.10	96.66
	Jan-01		7.70	97.06
	Jun-02		7.30	97.46
	Nov-02		8.14	96.62
	Feb-03		6.87	97.89
	Jun-03		7.05	97.71
	Apr-08	25.42	7.13	18.29
	Jun-11	25.42	7.54	17.88
	Dec-11	25.37	8.02	17.35
	Jan-12	25.37	8.08	17.29
	May-12	25.37	6.87	18.50
	Jul-12	25.37	7.34	18.03
MW-2	Jul-89	104.86	9.24	95.62
(5 - 20 feet bgs)	Apr-91	101.00	8.01	96.85
(5 20 1001 bg3)	Jul-92		9.03	95.83
	Aug-92		9.34	95.52
	Sep-92		9.46	95.40
	Oct-92		9.52	95.34
	Nov-92		9.42	95.44
	Dec-92		9.47	95.39
	Jan-93		8.25	96.61
	Feb-93		7.85	97.01
	Mar-93		7.77	97.09
	Apr-93		7.86	97.00
	May-93		8.20	96.66
	Jul-93		8.72	96.14
	Oct-93		9.64	95.22
	Jan-94		9.12	95.74
	Apr-94		8.56	96.30
	Jul-94		9.02	95.84
	Oct-94		9.59	95.27
	Jan-94		7.71	97.15
	Apr-95		7.40	97.46
	Jan-97		7.55	97.31
	Nov-98		8.49	96.37 06.79
	Jan-01		8.08	96.78
	Jun-02		7.77 8 En	97.09 06.36
	Nov-02 Feb-03		8.50 7.38	96.36 97.48
	Jun-03		7.38 7.57	97.48 97.29
	Jui1-05		7.57	37.29

Table 2
Groundwater Elevation Data
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
		(ft amsl*)	(ft)	(ft amsl*)
MW-2 (continued)	Apr-08	25.52	7.67	17.85
	Jun-11	25.52	7.35	18.17
	Dec-11	25.48	8.41	17.07
	Jan-12	25.48	8.43	17.05
	May-12	25.48	7.41	18.07
	Jul-12	25.48	7.83	17.65
MW-3	Jul-89	104.52	9.00	95.52
(5 - 20 feet bgs)	Apr-91		8.06	96.46
	Jul-92		8.82	95.70
	Aug-92		9.05	95.47
	Sep-92		9.09	95.43
	Oct-92		9.15	95.37
	Nov-92		9.05	95.47
	Dec-92		9.12	95.40
	Jan-93 Feb-93		8.18 7.98	96.34
	Mar-93		7.96 7.94	96.54 96.58
	Apr-93		8.02	96.50
	May-93		7.69	96.83
	Jul-93		8.65	95.87
	Oct-93		9.32	NC
	Jan-94		8.93	NC
	Apr-94		8.52	96.00
	Jul-94		8.86	95.66
	Oct-94		9.25	95.27
	Jan-94		7.85	96.67
	Apr-95		7.64	96.88
	Jan-97		7.75	96.77
	Nov-98		8.38	96.14
	Jan-01		8.00	96.52 96.71
	Jun-02 Nov-02		7.81 8.37	96.15
	Feb-03		7.48	97.04
	Jun-03		7.67	96.85
	Apr-08	25.17	7.74	17.43
	Jun-11	25.17	7.50	17.67
	Dec-11	25.13	8.25	16.88
	Jan-12	25.13	8.25	16.88
	May-12	25.13	7.64	17.49
	Jul-12	25.13	7.97	17.16
MW-4	Apr-94	104.86	9.29	95.57
(8 - 23 feet bgs)	Jul-94	10 1.00	9.55	95.31
(6 25 .66(556)	Oct-94		9.83	95.03
	Jan-94		8.88	95.98
	Apr-95		8.80	96.06
	Jan-97		-	-
	Nov-98		-	-
	Jan-01		-	-
	Jun-02		-	-
	Nov-02		-	-
	Feb-03 Jun-03		-	-
	Apr-08	25.53	8.73	16.80
	Jun-11	25.53	8.52	17.01
	Dec-11	25.58	-	-
	Jan-12	25.58	-	-
	May-12	25.58	8.96	16.62
	Jul-12	25.58	9.26	16.32
MM E	Anr 04	102.62	0 27	0E 2F
MW-5 (7 - 22 feet bgs)	Apr-94 Jul-94	103.62	8.27 8.50	95.35 95.12
(7 22 rect bys)	Oct-94		8.92	94.70
	Jan-94		7.61	96.01
	Apr-95		8.48	95.14
=				

Table 2 **Groundwater Elevation Data** AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
		(ft amsl*)	(ft)	(ft amsl*)
MW-5 (continued)	Jan-97		6.79	96.83
	Nov-98		8.12	95.50
	Jan-01		7.67	95.95
	Jun-02		7.61	96.01
	Nov-02		8.01	95.61
	Feb-03		7.22	96.40
	Jun-03	24.24	7.43	96.19
	Apr-08	24.31	7.36	16.95
	Jun-11 Dec-11	24.31 24.32	7.43 -	16.88
	Jan-12	24.32	-	-
	May-12	24.32	7.46	16.86
	Jul-12	24.32	7.76	16.56
	Jul 12	21.52	7.70	10.50
DPE-1	Dec-11	25.88	8.81	17.07
(7 - 15 feet bgs)	Jan-12	25.88	8.78	17.10
	May-12	25.88	7.72	18.16
	Jul-12	25.88	8.13	17.75
DPE-2	Dec-11	26.22	9.29	16.93
(7 - 15 feet bgs)	Jan-12	26.22	7.97	18.25
	May-12	26.22	7.89	18.33
	Jul-12	26.22	8.26	17.96
DDE 3	D 11	25.27	7.02	17.25
DPE-3 (7 - 15 feet bgs)	Dec-11	25.27	7.92	17.35
(7 - 15 leet bgs)	Jan-12 May-12	25.27 25.27	8.98 6.75	16.29 18.52
	Jul-12	25.27 25.27	7.20	18.07
	Jui-12	23.27	7.20	10.07
DPE-4	Jan-12	26.06	9.11	16.95
(8-17 feet bgs)	May-12	26.06	8.59	17.47
	Jul-12	26.06	8.84	17.22
DPE-5	Jan-12	26.25	-	-
(8-18 feet bgs)				
555.6		26.42	0.50	47.55
DPE-6	Jan-12	26.13	8.58	17.55
(8-18 feet bgs)	May-12	26.13	7.43	18.70
	Jul-12	26.13	7.83	18.30
DPE-8	Jan-12	25.36	_	_
(8-18 feet bgs)	Juil 12	25.50		
(0 20 .000 090)				
DPE-9	Jan-12	25.09	8.12	16.97
(8-18 feet bgs)	Jul-12	25.09	7.81	17.28
]				
DPE-10	Jan-12	25.14	-	-
(8-17 feet bgs)	May-12	25.14	7.73	17.41
	Jul-12	25.14	8.09	17.05
DPE-11	Jan-12	25.57		_
(8-18 feet bgs)	May-12	25.57 25.57	7.90	- 17.67
(o to reet bys)	Jul-12	25.57	7.90	-
	Jui-12	25.57	=	-
Average	Dec-11		8.45	
depth to water	Jan-12		8.48	
	May-12		7.70	
	Jul-12		8.03	

ft amsl *= feet above mean sea level. Note: Data before 2008 are based on a fictitous 100 ft datum.

All water level depths are measured from the top of casing "-" = not measured

bgs = below ground surface

Table 3

Soil Sample Analytical Data

TPH, MBTEX and POG

AEI Project No. 298931, 1630 Park Street, Alameda, California

	1										
Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	POG
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method SV	(mg/kg) /8021B/8015B/m	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method SM5520E/F
MW 1 10	1/15/1007	10	24			_	2.0	2.6	_	1.0	
MW-1-10 MW-1-15	1/15/1987 1/15/1987	10 15	24 <1.0	-	-	-	2.9 <0.1	3.6 <0.1	-	1.8 <0.1	-
MW-2-5	1/15/1987	5	<1.0	-	-	-	< 0.1	< 0.1	-	<0.1	-
MW-2-10	1/15/1987	10	350	-	-	-	14	22	-	23	-
MW-3-10	1/15/1987	10	200	-	-	-	9.8	16	-	16	-
MW-3-15	1/15/1987	15	<1.0	-	-	-	<0.1	<0.1	-	<0.1	-
SB-5-10	1/15/1987	10	6.5	-	-	-	<0.1	0.22	-	<0.1	=
ED4 C2	10/15/1002	0.5	F10				0.00	10	F.0	44	
EB1-S2 EB1-S3	10/15/1993 10/15/1993	8.5 11	510 2,300	-	-	-	0.89 22	10 190	5.8 57	41 280	-
LD1 33	10/13/1333	11	2,300				22	130	3,	200	
EB2-2S	10/15/1993	10	15,000	-	-	-	84	710	260	1,400	-
EB2-S3	10/15/1993	11.5	200	-	-	-	4.3	15	3.9	20	-
EB3-S2	10/15/1993	10	2,200	-	-	-	9.4	71	42	200	-
EB3-S3	10/15/1993	12.5	610	-	-	-	1.2	3.2	4.5	2.9	-
EB4-S2	10/15/1993	8	4,900	_	_	_	32	230	84	440	_
EB4-S3	10/15/1993	10.5	7,600	-	-	-	60	390	130	630	-
EB5-S2	10/15/1993	9	1,800			_	<2.5	22	27	140	
EB5-S3	10/15/1993	11.5	1,800	-	-	-	0.021	1.5	0.49	2.5	-
EB6-S2	10/15/1993	8.5	6,800	-	-	-	20	230	100	590	-
EB7-S2	10/15/1993	6.5	<50	-	-	-	<0.5	< 0.5	<0.5	<0.5	-
EB7-S3	10/15/1993	8.5	1,000	-	-	-	3.8	45	21	110	-
MW4-S1	4/20/1994	4.5	<50	_	_	_	<0.5	<0.5	<0.5	0.013	_
MW4-S2	4/20/1994	9	9.7	-	-	-	1.1	0.82	0.42	1.3	-
MW4-S3	4/20/1994	14	<50	-	-	-	<0.5	0.008	<0.5	0.022	-
MW5-S1	4/20/1994	4.5	<50	_	_	_	<0.5	<0.5	<0.5	<0.5	-
MW5-S2	4/20/1994	9	1,100	_	_	_	12	43	20	93	=
MW5-S3	4/20/1994	14	1.1	-	-	-	0.033	0.17	0.044	0.22	-
EB8-S2	1/21/1997	9.5	2,000	_	_	<4	8.4	83	44	210	_
EB8-S3	1/21/1997	13.5	18	-	-	0.10	3.2	1.2	0.47	1.7	-
						_					
EB9-S1 EB9-S2	1/21/1997 1/21/1997	6.5 9.5	1.8 1,300	-	-	<5 <4	0.071 7.1	0.052 54	0.026 29	0.074 130	-
ED9-32	1/21/199/	9.5	1,500	-	-	\ 4	7.1	34	29	130	-
EB10-S1	1/21/1997	8.5	2,300	-	-	9.3	9.1	100	50	190	-
EB11-S1	1/21/1997	9.5	3,800	_	_	<9	8.8	190	97	510	_
EB11-S2	1/21/1997	12	13	-	_	<0.1	1.1	1.6	0.47	1.4	-
LD11 02	-,,,		10						····		

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample	Date	Approx. Depth	TPH-g	TPH-d*	TPH-mo*	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	POG
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method SW8	(mg/kg) 8021B/8015B/m	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method SM5520E/F
EB12-S1	1/21/1997	9.5	300	-	-	<0.6	0.95	0.59	3.5	18	-
EB12-S2	1/21/1997	12	1,300	-	-	6.2	9.4	23	35	130	-
GP1-11.5	4/29/2008	11.5	130	-	-	< 0.005	< 0.10	0.29	< 0.10	0.42	-
GP1-15	4/29/2008	15	<1.0	-	-	<0.005	<0.005	0.0081	0.0065	0.028	-
GP2-11	4/29/2008	11	120	-	-	< 0.010	< 0.050	0.87	0.43	1.2	-
GP2-13.5	4/29/2008	13.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	-
GP3-6.75	4/29/2008	6.75	<1.0	_	_	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP3-11.5	4/29/2008	11.5	<1.0	-	-	<0.005	<0.005	< 0.005	<0.005	<0.005	-
GP4-11.5	4/29/2008	11.5	2.7	-	-	< 0.005	0.14	0.052	0.072	0.17	-
GP4-14.5	4/29/2008	14.5	99	-	-	<0.020	0.48	1.4	1.0	4.5	-
GP5-11.5	4/29/2008	11.5	4.6	_	_	< 0.005	0.12	0.078	0.14	0.48	-
GP5-19	4/29/2008	19	1.5	-	-	<0.005	<0.005	0.022	0.0069	0.032	-
GP6-11	4/29/2008	11	130	-	-	<0.10	0.11	1.0	1.1	5.4	-
GP7-8	4/30/2008	8	390	_	_	< 0.050	0.84	2.2	4.3	18	_
GP7-19.5	4/30/2008	19.5	<1.0	-	-	<0.005	<0.005	< 0.005	<0.005	<0.005	-
GP8-8.5	5/1/2008	8.5	1,100	-	_	< 0.050	< 0.10	3.2	7.3	45	-
GP8-19.5	5/1/2008	19.5	5.8	-	-	< 0.005	0.0091	0.067	0.048	0.21	-
GP9-7.5	5/1/2008	7.5	<1.0	-	-	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP9-11.25	5/1/2008	11.25	<1.0	-	-	<0.005	<0.005	< 0.005	<0.005	<0.005	-
GP10-7.5	4/30/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP10-19.5	4/30/2008	19.5	<1.0	-	-	<0.005	<0.005	< 0.005	<0.005	<0.005	-
GP11-6	4/30/2008	6	<1.0	-	-	< 0.005	< 0.005	0.011	0.0053	0.026	-
GP11-15.5	4/30/2008	15.5	2,100	-	-	< 0.10	5.7	71	38	180	-
GP11-18	4/30/2008	18	87	-	-	<0.020	0.059	0.93	0.67	4.2	-
GP12-7.5	4/30/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP12-11	4/30/2008	11	4.7	-	-	< 0.005	0.015	0.21	0.067	0.32	-
GP12-15.5	4/30/2008	15.5	<1.0	-	-	<0.005	<0.005	0.0071	0.0051	0.025	-
GP13-7.25	4/30/2008	7.25	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP13-11	4/30/2008	11	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP13-14	4/30/2008	14	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	-
GP14-7.5	4/30/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP14-11	4/30/2008	11	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	-
GP15-7.5	4/30/2008	7.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	-
GP16-7.5	5/1/2008	7.5	<1.0	-	-	<0.005	<0.005	< 0.005	< 0.005	< 0.005	-
GP16-10.5	5/1/2008	10.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	TPH-g (mg/kg)	TPH-d* (mg/kg)	TPH-mo* (mg/kg)	MTBE (mg/kg) EPA Method SW	Benzene (mg/kg) 8021B/8015B/m	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	POG (mg/kg) EPA Method SM5520E/F
							,,				2.711100100 01100202,1
GP17-7.5	5/1/2008	7.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	-
GP17-11.5	5/1/2008	11.5	<1.0	-	-	<0.005	<0.005	<0.005	< 0.005	<0.005	-
GP18-7.5	5/1/2008	7.5	<1.0	_	_	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_
GP18-10	5/1/2008	10	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
GP19-7	5/1/2008	7	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	-
GP20-8	5/1/2008	8	<1.0		-	<0.005	<0.005	<0.005	< 0.005	<0.005	
GF 20-0	3/1/2000	0	<1.0	-	-	<0.003	<0.005	<0.005	<0.005	<0.005	-
GP21-7.5	5/2/2008	7.5	2.1	-	-	< 0.005	0.006	0.028	0.012	0.065	-
GP21-15.5	5/2/2008	15.5	<1.0	-	-	< 0.005	0.0064	0.022	0.0057	0.027	-
GP21-19.5	5/2/2008	19.5	<1.0	-	-	< 0.005	< 0.005	0.0092	< 0.005	0.023	-
0000 40 5	= 10 10000						0.67	40			
GP22-10.5	5/2/2008	10.5	1,100	-	-	<0.20	0.67	13	15	70	-
GP22-15.5	5/2/2008	15.5	<1.0	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	-
GP23-7.5	5/2/2008	7.5	53	_	_	< 0.005	< 0.050	0.13	< 0.050	0.37	_
GP23-11.5	5/2/2008	11.5	1.9	_	_	<0.005	0.062	0.041	0.043	0.18	_
GP23-16	5/2/2008	16	2	_	_	< 0.005	< 0.005	0.027	0.018	0.099	_
0. 20 10	5, 2, 2000		-			10.005	10.000	0.027	0.010	0.033	
GP24-8.5	5/2/2008	8.5	3,600	-	-	<1.0	1.2	32	62	410	-
GP24-19.5	5/2/2008	19.5	<1.0	-	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-3-7'	7/25/2011	7	1,200	1,700	4,000	<10	2.6	25	10	48	-
AEI-3-15'	7/25/2011	15	<1.0	1.6	<5.0	<10	<0.005	<0.005	<0.005	<0.005	-
AEI-4-7'	7/25/2011	7	5,100	2,100	710	<50	6.2	83.0	54.0	280.0	_
AEI-4-15'	7/25/2011	15	1.2	1.3	<5.0	< 0.05	0.029	0.071	0.031	0.17	-
	.,,										
AEI-6-7'	7/25/2011	7	470	10,000	24,000	<5.0	< 0.50	< 0.50	< 0.50	< 0.50	-
AEI-6-14'	7/25/2011	14	<1.0	1.4	<5.0	<5.0	< 0.50	< 0.50	< 0.50	< 0.50	-
		_									
AEI-7-7'	7/25/2011	7	100	6,300	14,000	-	-	-	-	-	-
AEI-7-13'	7/25/2011	13	<1.0	3.7	7.4	<5.0	<0.50	<0.50	<0.50	<0.50	-
AEI-8-7'	7/25/2011	7	<1.0	720	2,900	_	_	_	_	_	_
AEI-8-14'	7/25/2011	14	<1.0	<1.0	<5.0	<5.0	< 0.50	< 0.50	< 0.50	< 0.50	-
	.,,										
AEI-10-8'	7/26/2011	8	<1.0	1.2	<5.0	<5.0	< 0.50	< 0.50	< 0.50	< 0.50	-
AEI-11-3'	7/26/2011	3	<1.0	2.2	8.5	-	-	-	-	-	-
AEI-12-3'	7/26/2011	3	~1 N	2.6	~E O						
ML1-1Z-3	7/26/2011	3	<1.0	2.6	<5.0	-	-	-	-	-	-
AEI-13-3'	7/26/2011	3	<1.0	4.2	<5.0	_	_	-	-	_	-
20 0	.,,	5	2.0		-5.0						
AEI-14-7'	7/26/2011	7	<1.0	-	-	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-15-7'	7/26/2011	7	<1.0	-	-	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-

Page 3 of 5

AEI Project No. 298931, 1630 F	Park Street, Alameda, California
--------------------------------	----------------------------------

Sample ID	Date Collected	Approx. Depth (feet)	TPH-g (mg/kg)	TPH-d* (mg/kg)	TPH-mo* (mg/kg)	MTBE (mg/kg) EPA Method SW	Benzene (mg/kg) /8021B/8015B/m	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	POG (mg/kg) EPA Method SM5520E/F
			<u> </u>				222,00200,111				
AEI-16-7'	7/26/2011	7	<1.0	1.4	<5.0	-				-	<50
AEI-17-8'	7/26/2011	8	<1.0	1.1	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-18-8'	7/26/2011	8	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-19-8'	7/26/2011	8	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-20-7.5'	1/17/2012	7.5	8.4	-	-	< 0.05	0.0071	0.084	0.069	0.38	-
AEI-20-11'	1/17/2012	11	600	-	-	< 0.50	0.89	2.9	10	39	-
AEI-20-15'	1/17/2012	15	3.3	-	-	< 0.05	< 0.005	0.028	<0.005	0.017	-
AEI-21-7'	1/17/2012	7	<1.0	-	_	< 0.05	< 0.005	<0.005	<0.005	< 0.005	-
AEI-21-11'	1/17/2012	11	46	_	_	< 0.05	0.020	0.42	0.27	0.60	-
AEI-21-14'	1/17/2012	14	<1.0	-	-	< 0.05	< 0.005	< 0.005	< 0.005	<0.005	-
AEI-22-9'	1/17/2012	9	3,100	_	_	<0.05	3.2	46	62	400	-
AEI-22-11'	1/17/2012	11	8.6	_	_	<0.10	0.71	0.77	0.31	1.3	_
AEI-22-14'	1/17/2012	14	3,300	-	-	<0.05	8.3	84	61	370	-
AEI-23-6'	1/17/2012	6	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	_
AEI-23-9.5'	1/17/2012	9.5	7.5	100	180	<0.05	<0.005	0.027	< 0.005	0.0055	_
AEI-23-12.5'	1/17/2012	12.5	460	360	270	<5.0	<0.50	1.4	< 0.50	0.80	-
AEI-24-7'	1/17/2012	7	.4.0	.4.0	·F 0	.0.05	.0.005	.0.005	-0.005	<0.005	
AEI-24-7 AEI-24-10.5'	1/17/2012 1/17/2012	10.5	<1.0 <1.0	<1.0 <1.0	<5.0 <5.0	<0.05 <0.05	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005	-
AEI-24-10.5 AEI-24-13'	1/17/2012	13	<1.0	<1.0	<5.0 <5.0	<0.05 <0.05	< 0.005	< 0.005	< 0.005	<0.005	- -
AEI-25-7.5'	1/17/2012	7.5	<1.0	<1.0	<5.0	< 0.05	<0.005	< 0.005	< 0.005	< 0.005	-
AEI-25-10'	1/17/2012	10	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-25-14'	1/17/2012	14	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-26-7.5'	1/17/2012	7.5	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-26-10.5'	1/17/2012	10.5	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	-
AEI-26-14'	1/17/2012	14	<1.0	<1.0	<5.0	<0.05	<0.005	<0.005	<0.005	<0.005	-
AEI-27-3'	1/17/2012	3	<1.0	3.2	7.9	<0.05	<0.005	<0.005	<0.005	0.013	-
AEI-28-7'	1/17/2012	7	<1.0	<1.0	<5.0	< 0.05	< 0.005	<0.005	<0.005	< 0.005	-
AEI-28-11'	1/17/2012	11	12,000	2,100	44	<10	21	210	210	1,000	-
AEI-28-13'	1/17/2012	13	7.8	2.0	<5.0	< 0.05	0.050	0.29	0.31	1.4	-
DPE-1, 7-7.5'	11/15/2011	7	1,800	330	46	<50	9.7	64	29	150	-
DPE-2, 8-8.5'	11/15/2011	8	2,200	280	140	<15	7.6	57	34	170	-
DPE-3, 8-8.5'	11/14/2011	8	2,000	1,000	58	<50	6.7	48	47	240	-
DPE-5, 11' DPE-5, 14'	1/20/2012 1/20/2012	11 14	2,300 1.1	-	-	<10 <0.05	15 <0.005	99 0.17	33 <0.005	140 0.016	-

Page 4 of 5

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	TPH-g (mg/kg)	TPH-d* (mg/kg)	TPH-mo* (mg/kg)	MTBE (mg/kg) EPA Method SW	Benzene (mg/kg) /8021B/8015B/m	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	POG (mg/kg) EPA Method SM5520E/F
DPE-6, 10' DPE-6, 14'	1/20/2012 1/20/2012	10 14	510 <1.0	-	-	<1.0 <0.05	<0.10 <0.005	0.14 <0.005	0.47 <0.005	0.96 <0.005	- -
DPE-7, 10' DPE-7, 14.5'	1/19/2012 1/19/2012	10 14.5	2,200 610	- -	-	<5.0 <5.0	<5.0 <5.0	16 3.9	47 9.5	240 55	- -
EB1-15' SW1-10' WW1-11' EW1-11.5' NW1-12'	10/22/2012 10/22/2012 10/22/2012 10/22/2012 10/22/2012	15 10 11 11.5 12	<1.0 110 7.1 4.0 8.6	- - - -	<5.0 15 <5.0 <5.0 <5.0	<0.05 <1.0 <0.05 <0.05 <0.05	<0.005 <0.10 0.0084 0.16 0.18	<0.005 <0.10 <0.005 0.22 0.40	<0.005 <0.10 0.013 0.21 0.35	<0.005 4.1 0.17 0.71 1.5	
SEW2-9' EB2-11.5' EW2-9.5' NEW2-9.5' CB2-11.5' CSW2-9.5' WB2-11.5' SWW2-9.5' WW2-9.5' WW2-9.5' NWW2-9.5' CNW2-9.5'	10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012	9' 11.5' 9.5' 9.5' 11.5' 9.5' 11.5' 9.5' 9.5' 9.5' 9.5' 9.5'	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	- - - - - - - - - -	<5.0 <5.0 23 <5.0 <5.0 <5.0 <5.0 <5.0 3,400 <5.0 <5.0 <5.0	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <5.0 <0.05 <0.05	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.50 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 180 <0.005 <0.005 <0.005	
CB3-12.5' SEW-10' NWW-10' NEW-10.5' SWW-10'	10/29/2012 10/29/2012 10/29/2012 10/29/2012 10/29/2012	12.5' 10' 10' 10.5' 10'	<1.0 4,500 7,600 2,800 2,000	- - - -	<5.0 8,100 3,500 3,800 14,000	<0.05 <25 <50 <5.0 <5.0	<0.005 31 54 28 20	<0.005 270 410 180 110	<0.005 100 150 65 33	<0.005 460 680 290 100	

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit POG = petroleum oil and grease TPH = total petroleum hydrocarbons MTBE = methyl butyl tertiary ethyl

TPH-g = TPH as gasoline

"<" = less than
"*" = with silica gel cleanup TPH-d = TPH as diesel

"-" = not available TPH-mo = TPH as motor oil

Table 4

Soil Sample Analytical Data VOCs, Fuel Oxygenates, SVOCs, and PCBs AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample	Date	Approx. Depth	1,4-Dioxane	All target VOCs	Fuel Oxygenates^	All target SVOCs	All other target PCBs
ID	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) EPA Method 8270	(mg/kg)
			EPA Method SW8260	EPA Method SW8260	EPA Method SW8260B	EPA Method 8270	EPA Method SW8082
GP1-11.5	4/29/2008	11.5	_	-	<mdl< td=""><td>_</td><td>-</td></mdl<>	_	-
GP1-15	4/29/2008	15	_	_	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
	,, ==, ====						
GP2-11	4/29/2008	11	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP2-13.5	4/29/2008	13.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP3-6.75	4/29/2008	6.75			<mdl< td=""><td></td><td></td></mdl<>		
GP3-11.5	4/29/2008	11.5			<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
015 11.5	1/25/2000	11.5			NIDE.		
GP4-11.5	4/29/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP4-14.5	4/29/2008	14.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
005.44.5	4/20/2000	44.5					
GP5-11.5 GP5-19	4/29/2008	11.5 19	-	-	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
GP5-19	4/29/2008	19	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP6-11	4/29/2008	11	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
	, -,						
GP7-8	4/30/2008	8	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP7-19.5	4/30/2008	19.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP8-8.5	5/1/2008	8.5			<mdl< td=""><td></td><td></td></mdl<>		
GP8-8.5 GP8-19.5	5/1/2008	19.5			<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
010 15.5	3/1/2000	15.5			NI DE		
GP9-7.5	5/1/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP9-11.25	5/1/2008	11.25	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
0010.7.5	4/20/2000	7.5			1451		
GP10-7.5 GP10-19 5	4/30/2008 4/30/2008	7.5 19.5	-	-	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
GF 10-19 J	7/30/2000	19.5	-	-	< MDL	-	-
GP11-6	4/30/2008	6	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP11-15 5	4/30/2008	15.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP11-18	4/30/2008	18	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
CD12.7.E	4/20/2000	7.5			***		
GP12-7.5 GP12-11	4/30/2008 4/30/2008	7.5 11	-	-	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
GP12-11 5	4/30/2008	15.5	-	-	<mdl< td=""><td>-</td><td>_</td></mdl<>	-	_
12 10 0	., = 5, 2000	_5.5			IDE		
GP13-7.25	4/30/2008	7.25	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP13-11	4/30/2008	11	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP13-14	4/30/2008	14	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP14-7.5	4/30/2008	7.5			<mdl< td=""><td></td><td>_</td></mdl<>		_
GP14-7.5 GP14-11	4/30/2008	7.5 11	-	-	<mdl< td=""><td>-</td><td>- -</td></mdl<>	-	- -
0.1.11	.,55,2550						
GP15-7.5	4/30/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
004677	F/4/2005	7.5			1451		
GP16-7.5	5/1/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP16-10 5	5/1/2008	10.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP17-7.5	5/1/2008	7.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP17-11 5	5/1/2008	11.5	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-

Table 4

Soil Sample Analytical Data VOCs, Fuel Oxygenates, SVOCs, and PCBs

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	1,4-Dioxane (mg/kg) EPA Method SW8260	All target VOCs (mg/kg) EPA Method SW8260	Fuel Oxygenates^ (mg/kg) EPA Method SW8260B	All target SVOCs (mg/kg) EPA Method 8270	All other target PCBs (mg/kg) EPA Method SW8082
GP18-7.5 GP18-10	5/1/2008 5/1/2008	7.5 10	-	-	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
GP19-7	5/1/2008	7	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP20-8	5/1/2008	8	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
GP21-7.5 GP21-15 5 GP21-19 5	5/2/2008 5/2/2008 5/2/2008	7.5 15.5 19.5	- - -	- - -	<mdl <mdl <mdl< td=""><td>- - -</td><td>- - -</td></mdl<></mdl </mdl 	- - -	- - -
GP22-10 5 GP22-15 5	5/2/2008 5/2/2008	10.5 15.5	-	-	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
GP23-7.5 GP23-11 5 GP23-16	5/2/2008 5/2/2008 5/2/2008	7.5 11.5 16	- - -	- - -	<mdl <mdl <mdl< td=""><td>- - -</td><td>- - -</td></mdl<></mdl </mdl 	- - -	- - -
GP24-8.5 GP24-19 5	5/2/2008 5/2/2008	8.5 19.5	- -	- -	<mdl <mdl< td=""><td>-</td><td>-</td></mdl<></mdl 	-	-
AEI-3-10'	7/25/2011	10	-	-	-	-	<1.0
AEI-4-10'	7/25/2011	10	-	-	-	-	<0.25
AEI-6-10'	7/25/2011	10	-	-	-	-	<0.05
AEI-7-11'	7/25/2011	11	-	-	-	-	<0.50
AEI-8-11'	7/25/2011	11	-	-	-	-	<0.05
AEI-11-3'	7/26/2011	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-12-3'	7/26/2011	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-13-3'	7/26/2011	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-14-7'	7/26/2011	7	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
AEI-15-7'	7/26/2011	7	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-
AEI-16-7'	7/26/2011	7	<0.02	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><0.05</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><0.05</td></mdl<></td></mdl<>	<mdl< td=""><td><0.05</td></mdl<>	<0.05
AEI-27-3'	1/17/2012	3	-	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-

 $mg/kg = milligrams \ per \ kilogram \ (equivalent \ to \ parts \ per \ million)$ $MDL = method \ detection \ limit$

VOCs = volatile organic compounds

SVOCs = semi-volatile organic compounds

PCBs = polychlorinated biphenyls
"<" = less than

[&]quot;-" = not available

[&]quot;^" = fuel available
"^" = fuel oxygenates tert-amyl methyl ether (TAME), t-butyl alcohol (TBA),
1,2-dibromomethane (EDB), 1,2-dichloroethane (1,2-DCA), diisopropyl ether (DIPE), methanol,
ethanol, ethyl tert-butyl ether (ETBE), methyl tert-butyl ether (MTBE), and 1,2-Dichloroethane (EDC)

Table 5
Soil Sample Analytical Data
Metals

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Approx. Depth (feet)	Cd mg/kg	Cr (total)* mg/kg EPA	Pb mg/kg Method SW6010B	Ni mg/kg 3	Zn mg/kg
AEI-11-3'	7/26/2011	3	<1.5	60	<5.0	24	16
AEI-12-3'	7/26/2011	3	<1.5	31	<5.0	15	10
AEI-13-3'	7/26/2011	3	<1.5	29	<5.0	14	9.7
AEI-14-7'	7/26/2011	7	-	-	<5.0	-	-
AEI-15-7'	7/26/2011	7	-	-	<5.0	-	-
AEI-16-7'	7/26/2011	7	<1.5	54	<5.0	48	27
AEI-17-8'	7/26/2011	8	-	-	<5.0	-	-
AEI-18-8'	7/26/2011	8	-	-	<5.0	-	-
AEI-19-8'	7/26/2011	8	-	-	<5.0	-	-
*AEI-27-3'	1/17/2012	3	<0.25	38	140	17	140

Notes:

mg/kg = milligrams per kilogram

"-" = not available

Cd = Cadmium

Cr = Chromium

Pb = Lead

Ni = Nickel

Zn = Zinc

*AEI-27-3' = Antimony - 1.2 mg/kg, Arsenic - 4.0 mg/kg, Barium - 130 mg/kg, Cobalt - 3.7 mg/kg, Copper - 18 mg/kg, Mercury - 0.32 mg/kg and Vanadium - 28 mg/kg by CAM 17 EPA Method SW3050B.

Table 6

Groundwater Analytical Data - Grab Samples
TPH, MBTEX and TRPH

AFI Project No. 298931, 1630 Park Street, Alameda, California

AEI Project No.	298931, 163	su Park Street,	Alameda,	California

Sample ID	Date Collected	TPH-g (µg/L)	TPH-d* (µg/L)	TPH-mo* (µg/L)	MTBE (μg/L) EPA Method SW8	Benzene (µg/L) 021B/8015Bm	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TRPH (µg/L) EPA Method E418.1
HP-1	4/23/1993	<50	-	-	-	<0.5	<0.5	<0.5	<0.5	-
HP-2	4/23/1993	<50	-	-	-	<0.5	<0.5	<0.5	<0.5	-
EB3-WSIA	10/15/1993	120,000	-	-	-	9,600	20,000	3,400	14,000	-
EB5-WSIA	10/15/1993	83,000	-	-	-	3,900	15,000	3,100	13,000	-
EB8-WS1	1/21/1997	25,000	-	-	<80	2,600	3,200	780	3,600	-
EB10-WS1	1/21/1997	81,000	-	-	<370	13,000	12,000	3,300	8,000	-
EB11-WS1	1/21/1997	49,000	-	-	<180	6,900	6,000	2,100	4,600	-
EB12-WS1	1/21/1997	38,000	-	-	110	1,400	1,400	1,800	7,400	-
P1-WS1	1/21/1997	74,000	-	-	<78	1,100	5,800	3,800	18,000	-
P2-WS1	1/21/1997	6,800	-	-	<10	2,200	290	310	560	-
P3-WS1	1/21/1997	220	-	-	<5.0	1.9	17	10	49	-
GP1W	4/29/2008	70,000	-	-	<500	6,800	6,600	2,300	12,000	-
GP2W	4/29/2008	910	-	-	<5.0	0.69	2.9	30	64	-
GP3W	4/29/2008	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
GP4W	4/29/2008	46,000	-	-	<500	570	3,200	1,500	7,500	-
GP5W	4/29/2008	12,000	-	-	<60	140	480	270	1,100	-
GP6W	4/29/2008	22,000	-	-	<170	920	1,600	900	3,500	-
GP7W	4/30/2008	22,000	-	-	<180	2,600	320	810	2,600	-
GP8W	5/1/2008	140,000	-	-	<650	9,000	20,000	4,300	21,000	-
GP9W	5/1/2008	550	-	-	<5.0	53	0.52	2.1	25	-
GP10W	4/30/2008	11,000	-	-	<100	1,900	490	480	770	-

Table 6

Groundwater Analytical Data - Grab Samples
TPH, MBTEX and TRPH

AEI Project No. 29	98931, 1630 Par	k Street, Alar	neda, California
--------------------	-----------------	----------------	------------------

Sample ID	Date Collected	TPH-g (µg/L)	TPH-d* (μg/L)	TPH-mo* (µg/L)	MTBE (µg/L) EPA Method SW	Benzene (µg/L) /8021B/8015Bm	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	TRPH (µg/L) EPA Method E418.1
GP11W	4/30/2008	42,000	-	-	<452	1,900	4,200	1,700	7,600	-
GP12W	4/30/2008	61,000	-	-	<500	4,500	11,000	1,700	7,700	-
GP13W	4/30/2008	6,200	-	-	<10	220	53	150	440	-
GP14W	4/30/2008	300	-	-	<5.0	46	1.9	19	11	-
GP15W	4/30/2008	<50	-	-	<5.0	<0.5	0.69	<0.5	1.1	-
GP16W	5/1/2008	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
GP17W	5/1/2008	<50	-	-	<5.0	<0.5	1.7	<0.5	2	-
GP18W	5/1/2008	<50	-	-	<5.0	<0.5	2.1	0.79	4	-
GP19W	5/1/2008	85	-	-	<5.0	<0.5	0.80	<0.5	<0.5	-
GP20W	5/1/2008	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
GP21W	5/2/2008	9,400	-	-	<50	560	1,400	260	1,300	-
GP22W	5/2/2008	3,900	-	-	<25	36	160	120	610	-
GP23W	5/2/2008	16,000	-	-	<90	830	1,900	540	2,600	-
GP24W	5/2/2008	110,000	-	-	<450	6,500	4,200	3,100	13,000	-
AEI-1-W	7/25/2011	<50	<50	<250	-				-	-
AEI-2-W	7/25/2011	<50	<50	<250	-				-	-
AEI-3-W	7/25/2011	11,000	12,000	29,000	<50	1,100	1,900	210	860	-
AEI-4-W	7/25/2011	200,000	25,000	19,000	<500	21,000	30,000	3,600	16,000	-
AEI-5-W	7/25/2011	<50	<50	<250	-	-	-	-	-	-
AEI-6-W	7/25/2011	18,000	120,000	300,000	<50	<5.0	7.7	<5.0	28	-
AEI-7-W	7/25/2011	280	11,000	28,000	-	-	-	-	-	-

Table 6

Groundwater Analytical Data - Grab Samples
TPH, MBTEX and TRPH

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	TPH-g (µg/L)	TPH-d* (µg/L)	TPH-mo* (µg/L)	MTBE (μg/L) EPA Method SW8	Benzene (µg/L) 8021B/8015Bm	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	TRPH (µg/L) EPA Method E418.1
AEI-8-W	7/25/2011	<50	1,600	3,800	-	-	-	-	-	-
AEI-9-W	7/25/2011	<50	<50	<250	-	-	-	-	-	-
AEI-10-W	7/26/2011	<50	<50	400	-	-	-	-	-	-
AEI-14-W	7/26/2011	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
AEI-15-W	7/26/2011	<50	-	-	<5.0	<0.5	<0.5	<0.5	<0.5	-
AEI-16-W	7/26/2011	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0
AEI-17-W	7/26/2011	<50	89	590	<5.0	<0.5	<0.5	<0.5	<0.5	-
AEI-18-W	7/26/2011	<50	<100	<500	<5.0	<0.5	<0.5	<0.5	<0.5	-
AEI-19-W	7/26/2011	<50	<100	<500	<5.0	<0.5	<0.5	<0.5	<0.5	-
AEI-20	1/17/2012	130,000	-	-	<500	1,200	2,200	4,400	20,000	
AEI-21	1/17/2012	110,000	-	-	<500	160	520	1,200	3,300	
AEI-22	1/17/2012	61,000	-	-	<500	790	4,400	1,500	7,200	
AEI-23	1/17/2012	9,000	8,400	1,500	<50	<5.0	16	12	<5.0	
AEI-24	1/17/2012	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<0.5	
AEI-25	1/17/2012	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<0.5	
AEI-26	1/17/2012	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<0.5	
AEI-27	1/17/2012	<50	<100	<500	<5.0	<0.5	<0.5	<0.5	<0.5	
AEI-28	1/17/2012	16,000	4,500	<250	<100	160	690	540	2,500	

 μ g/L = micrograms per liter

TPH = total petroleum hydrocarbons

TPH-g = TPH as gasoline

TPH-d = TPH as diesel

"<" = less than

MDL = method detection limit

TRPH = total recoverable petroleum hydrocarbons

MTBE and BTEX analysis for AEI-16-W performed by EPA Method SW8260B

Table 6

Groundwater Analytical Data - Grab Samples TPH, MBTEX and TRPH

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	TPH-g (µg/L)	TPH-d* (µg/L)	TPH-mo* (μg/L)	MTBE (μg/L) EPA Method SV	Benzene (μg/L) N8021B/8015Bm	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	TRPH (μg/L) EPA Method E418.1	
--------------	-------------------	-----------------	------------------	-------------------	---------------------------------	------------------------------------	-------------------	------------------------	-------------------	-------------------------------------	--

TPH-mo = TPH as motor oil MTBE = methyl tertiary butyl ether

"*" = with silica gel cleanup
"-" = not available

Table 7 **Groundwater Analytical Data - Grab Samples** VOCs, Fuel Oxygenates, SVOCs, and PCBs AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	1,4-Dioxane (μg/L)	TBA (µg/L)	EDB (µg/L)	EDC (µg/L) EPA Method S	MTBE (µg/L) W8260B	Fuel Oxygenates^ (μg/L)	All Target VOCs (µg/L)	All Target SVOCs (μg/L) EPA Method 8270	All Target PCBs (μg/L) EPA Method SW8082
GP1W	4/29/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP2W	4/29/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP3W	4/29/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP4W	4/29/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP5W	4/29/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP6W	4/29/2008	-	24	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP7W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP8W	5/1/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP9W	5/1/2008	-	7.7	<0.5	1.1	1.2	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP10W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP11W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP12W	4/30/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP13W	4/30/2008	-	8.9	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP14W	4/30/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP15W	4/30/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP16W	5/1/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP17W	5/1/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP18W	5/1/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP19W	5/1/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP20W	5/1/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-

Table 7

Groundwater Analytical Data - Grab Samples
VOCs, Fuel Oxygenates, SVOCs, and PCBs

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	1,4-Dioxane (μg/L)	TBA (μg/L)	EDB (µg/L)	EDC (µg/L) EPA Method S	MTBE (μg/L) W8260B	Fuel Oxygenates^ (μg/L)	All Target VOCs (μg/L)	All Target SVOCs (μg/L) EPA Method 8270	All Target PCBs (µg/L) EPA Method SW8082
GP21W	5/2/2008	-	<2.0	0.65	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP22W	5/2/2008	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP23W	5/2/2008	-	<20	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
GP24W	5/2/2008	-	75	<5.0	<5.0	<5.0	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-14-W	7/26/2011	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-15-W	7/26/2011	-	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-
AEI-16-W	7/26/2011	<2.0	<2.0	<0.5	<0.5	<0.5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><0.5</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><0.5</td></mdl<></td></mdl<>	<mdl< td=""><td><0.5</td></mdl<>	<0.5
AEI-27	1/17/2012	-	-	-	-	-	-	<mdl< td=""><td>-</td><td>-</td></mdl<>	-	-

mg/kg = milligrams per kilogram (equivalent to parts per million)

MDL = method detection limit

VOCs = volatile organic compounds

SVOCs = semi-volatile organic compounds

PCBs = polychlorinated biphenyls

TBA = t-butyl alcohol

EDB = 1,2-dibromomethane

EDC = 1,2-dichloroethane

MTBE = methyl tert-butyl ether

"-" = not available

1,2-dichloroethane (1,2-DCA), diisopropyl ether (DIPE), methanol, ethanol, and ethyl tert-butyl ether (ETBE)

[&]quot;<" = less than

[&]quot;^" = fuel oxygenates tert-amyl methyl ether (TAME),

Table 8
Grab Groundwater Sample Analytical Data
Metals

AEI Project No. 298931, 1630 Park Street, Alameda, California

Sample ID	Date Collected	Cd µg/L	Cr (total) µg/L EF	Pb µg/L PA Method E200.8	Ni µg/L	Zn µg/L
AEI-14-W*	7/26/2011	-	-	21	-	-
AEI-15-W*	7/26/2011	-	-	66	-	-
AEI-16-W**	7/26/2011	<0.25	<0.5	<0.5	8.7	<5.0

Notes:

 μ g/L = micrograms per liter

"*" = total

"**" = dissolved

Cd = Cadmium

Cr = Chromium

Pb = Lead

Ni = Nickel

Zn = Zinc

Table 9 Groundwater Analytical Data- Monitoring Wells AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g EPA Metho	Benzene ds 8020, 8021	Toluene 3, or 8260B	Ethylbenzene	Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA EPA Meth	DIPE od 8260B	Ethanol	ETBE	Methanol	Lead
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	, (μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
IW-1	1/21/1987		-	-	21,020	1,148	8,627	1,792	6,012	-	-	-	-	-	-	-	-	-	-	-
	1/11/1989		-	-	1,400	74	10	13	5.0	-	-	-	-	-	-	-	-	-	-	-
	7/12/1989		-	-	1,200	470	49	45	33	-	-	-	-	-	-	-	-	-	-	-
	4/9/1991		-	-	850	260	10	15	12	-	-	-	-	-	-	-	-	-	-	-
	7/14/1992		-	-	13,000	2,300 1,600	1,200 80	1,200 120	1,200 120	-	-	-	-	-	-	-	-	-	-	-
	10/7/1992 1/11/1993		-	-	3,600 1,200	410	16	23	120	-	_	-	-	-	-	-	-	-	-	
	4/23/1993	а	_	_	2,200	720	180	82	150	_	_	_	_	_	_	_	_	_	-	_
	7/8/1993	a	_	_	3,200	1,200	110	97	100	-	-	_	_	_	_	_	-	-	-	_
	10/15/1993	a	-	-	3,700	1,400	43	94	36	-	-	-	-	-	-	-	-	-	-	-
	1/25/1994	a	-	-	1,600	680	16	41	35	-	-	-	-	-	-	-	-	-	-	-
	4/28/1994	a	-	-	6,100	1,900	380	250	340	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	a	-	-	6,000	1,800	510	220	450	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	a	-	-	3,000	1,100	79	82	87	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995	a	-	-	1,600	660	100	82	87	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	a	-	-	3,800	1,200	270	120	260	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995	a	-	-	5,200	1,500	450	190	400	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995	a	-	-	5,900	1,800	450	210	400	- 7.7	-	-	-	-	-	-	-	-	-	-
	1/21/1997 11/12/1998	a a	-	-	3,100 1,000	1,100 280	87 3	160 3.3	180 7.9	<7.3 <30	-	-	-	-	-	-	-	-	-	-
	1/16/2001	a a	-	-	4,700	1,20	3 18	3.3 150	7.9 49	<30	- <5	<5.0	- <25	<5.0	<5.0	<5.0	-	<5.0	-	_
	6/27/2002	a	-	-	5,900	230	7.7	<5	1,500		<5	<5.0 <5.0	<50	<5.0	<5.0 <5.0	<5.0 <5.0	-	<5.0 <5.0	-	-
	11/18/2002	a	_	_	3,100	890	12	310	28	_	<2.5	-	-	<2.5	<2.5	-	_	-	_	_
	2/20/2003	d	_	_	260	100	0.72	<0.5	< 0.5	_	<0.5	-	_	<0.5	<0.5	_	-	-	-	_
	6/11/2003	a	-	-	3,100	480	6.7	220	420	-	<2.5	-	-	<2.5	<2.5	-	-	-	-	-
	4/3/2008	a	-	-	2,700	280	21	130	230	<25	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<100	<1.0	<1,000	< 0.5
	6/23/2011	a	-	-	610	100	6.2	46	77	-	<2.5	<2.5	<10	-	-	<2.5	-	<2.5	-	-
	12/6/2011	a	-	-	900	160	<5.0	68	76	-	<5.0	<5.0	<20	-	-	<5.0	-	<5.0	-	-
	1/24/2012	a	-	-	190	25	<1.0	1.4	4.6	<1.0	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	210	<250	2,600	200	51	93	610	<5.0	-	-	-	-	-	-	-	-	-	-
	7/11/2012	a	700	<250	2,700	190	8.1	100	230	<5.0	-	-	-	-	-	-	-	-	-	-
W-2	1/21/1987 1/11/1989		-	-	5,018 10,000	386 3,000	1,981 410	285 240	1,432 190	-	-	-	-	-	-	-	-	-	-	-
	7/12/1989			-	7,600	2,700	540	250	320	-		-							-	-
	4/9/1991		_	_	4,900	910	210	130	200	_	_	_	_	_	_	_	_	_	_	_
	7/14/1992		_	_	13,000	4,400	1,500	610	1,100	_	-	_	_	_	-	_	-	-	-	-
	10/7/1992		-	-	11,000	5,200	1,500	500	1,200	-	-	-	-	-	-	-	-	-	-	-
	1/11/1993		-	-	17,000	940	1,100	480	930	-	-	-	-	-	-	-	-	-	-	-
	4/23/1993	a	-	-	52,000	13,000	8,400	1,700	5,300	-	-	-	-	-	-	-	-	-	-	-
	7/8/1993	a	-	-	6,400	2,500	470	280	530	-	-	-	-	-	-	-	-	-	-	-
	10/15/1993	a	-	-	17,000	3,900	870	500	940	-	-	-	-	-	-	-	-	-	-	-
	1/25/1994	a	-	-	16,000	5,400	1,140	640	1,500	-	-	-	-	-	-	-	-	-	-	-
	4/28/1994	a	-	-	15,000	4,00	910	480	1,200	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	a	-	-	18,000	6,000	760	630	1,600	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	a	-	-	9,500	2,700	230	320	640	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995	a	-	-	5,900	1,900	290	230	500	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	a a	-	-	10,000	3,300	620	360	930 830	-	-	-	_	-	-	-	_	-	-	-
	7/21/1995 10/25/1995	a a			9,900 13,000	3,300 4,900	320 400	390 580	990			-			-	-	-	-	-	-
	10/23/1232	a a	-	-	7,600	2,600	310	330	660	<20	_	-	-	-	-	-	-	-	-	-
	1/21/1997	u u	_	_	31,000	11,000	750	1,500	2,300	<900	_	_	_	_	-	_	_	_	-	_
	1/21/1997 11/12/1998	а			23,000	8,200	260	1,000	820	<30	-	<30	<150	<30	<30	<30	-	<30	-	-
	11/12/1998	a a	-	-				690	4,000	-	<5	<5.0	<5.0	<5.0	6.1	<5.0	-	<5.0	-	-
	11/12/1998 1/16/2001	-	-	-		7,000	1,000						-	<12						
	11/12/1998	a	- - -	-	39,000 15,000	7,000 5,700	1,800 76	1,000	150	-	<12	-	-	<1Z	<12	-	-	-	-	-
	11/12/1998 1/16/2001 6/27/2002	a a	- - -	- - -	39,000				150 1,900	-	<12 <5.0	-	-	<5.0	<5.0	-	-	-	-	-
	11/12/1998 1/16/2001 6/27/2002 11/18/2002	a a a	- - - -	-	39,000 15,000	5,700	76	1,000									-		-	-
	11/12/1998 1/16/2001 6/27/2002 11/18/2002 2/20/2003	a a a a	- - - -	-	39,000 15,000 26,000	5,700 6,300	76 1,100	1,000 1,300	1,900	-	<5.0	-	-	<5.0	<5.0	-			- - - <2,500	- - - <0.5
	11/12/1998 1/16/2001 6/27/2002 11/18/2002 2/20/2003 6/11/2003 4/3/2008 6/23/2011	a a a a a a	- - - - -	-	39,000 15,000 26,000 37,000 4,100 6,500	5,700 6,300 7,100 760 2,100	76 1,100 2,300 96 210.0	1,000 1,300 2,000 250 560	1,900 3,600 130 310	-	<5.0 <25 <2.5 <50	- - <2.5 <50	- <10 <200	<5.0 <25	<5.0 <25	- - <2.5 <50	-	- - <2.5 <50	-	-
	11/12/1998 1/16/2001 6/27/2002 11/18/2002 2/20/2003 6/11/2003 4/3/2008	a a a a a	- - - - - -	-	39,000 15,000 26,000 37,000 4,100	5,700 6,300 7,100 760	76 1,100 2,300 96	1,000 1,300 2,000 250	1,900 3,600 130	- - <50	<5.0 <25 <2.5	- - <2.5	- - <10	<5.0 <25 <2.5	<5.0 <25	- - <2.5	- <250	- - <2.5	- <2,500	-

Table 9 Groundwater Analytical Data- Monitoring Wells AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g FPA Method	Benzene ds 8020, 8021B	Toluene or 8260B	Ethylbenzene	Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA EPA Metho	DIPE od 8260B	Ethanol	ETBE	Methanol	Lead
10			(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (cont)	5/18/2012	f	68	<250	140	14	2.8	2.9	12	<0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	a	270	<250	930	170	<5.0	24	9 3	<5.0	-	-	-	-	-	-	-	-	-	-
MW-3	1/21/1987		-	-	10,287	1,428	3,281	610	2,761	-	-	-	-	-	-	-	-	-	-	-
	1/11/1989 7/12/1989		-	-	5,300 7,800	1,800 3,100	340 900	150 300	160 480	-	-	-	-	-	-	-	-	-	-	-
	4/9/1991		-	-	9,400	1,400	730	200	510	-	-	-	-	-	-	-	-	-	-	-
	7/14/1992		-	-	17,000	3,500	390	390	260	-	-	-	-	-	-	-	-	-	-	-
	10/7/1992		-	-	9,200	4,300	470	390	610	-	-	-	-	-	-	-	-	-	-	-
	1/11/1993 4/23/1993	а	-	-	2,000 6,500	740 2,600	29 280	58 260	28 190	-	-	-	-	-	-	-	-	-	-	-
	7/8/1993	a	-	-	5,200	2,100	260	250	180	-	-	-	-	-	-	-	-	-	-	-
	10/15/1993	a	-	-	11,000	3,500	580	430	370	-	-	-	-	-	-	-	-	-	-	-
	1/25/1994	a	-	-	6,200	2,500	270	160	28	-	-	-	-	-	-	-	-	-	-	-
	4/28/1994 7/27/1994	a a	-	-	5,300 5,900	1,700 2,000	190 360	210 260	180 330	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	a	-	-	8,000	2,200	580	260	170	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995	a	-	-	3,700	1,200	150	150	190	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	a	-	-	4,000	1,400	200	180	210	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995 10/25/1995	a a	-	-	5,700 11,000	2,000 3,500	280 1,100	270 460	280 680	-	_	-	-	-	-	-	-	-	-	-
	1/21/1997	a	-	-	2,200	860	63	71	80	<5	-	-	-	-	-	-	-	-	-	-
	11/12/1998	d	-	-	180	44	0.51	<0.5	0.92	<20	-	-	-	-	-	-	-	-	-	-
1	1/16/2001	a	-	-	64 <50	11 <0.5	0.77 <0.5	<0.5 <0.5	<0.5 <0.5	-	<5 <0.5	<1.0	<5.0 <5.0	<1.0 <0.5	1.4 <0.5	<1.0 <0.5	-	<1.0	-	-
	6/27/2002 11/18/2002	a	-	-	110	<0.5 21	<0.5 1	<0.5	<0.5	-	<0.5 <0.5	<0.5 -	< 5.0	< 0.5	<0.5	<0.5	-	<0.5	-	-
	2/20/2003	-	-	-	<50	2 5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	<0.5	-	-	-	-	-
	6/11/2003		-	-	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	< 0.5	<0.5	-	-	-	-	-
	4/3/2008 6/23/2011	a a	-	-	7,600 1,300	2,400 560	58 21	250 86	170 150	<100	<5.0 <12	<5.0 <12	<20 <50	<5.0	<5.0	<5.0 <12	<500	<5.0 <12	<5,000	< 0.5
	12/6/2011	a	-	-	1,800	620	28	22	46	-	<17	<17	<67	-	-	<17	-	<17	-	-
	1/24/2012	a	-	-	3,700	1,200	68	34	130	<25	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	<50	<250	75	5 3	<0.5	<0.5	1.6	<0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	a	<50	<250	78	1.4	0.66	<0.5	5 5	<0.5	-	-	-	-	-	-	-	-	-	-
MW-4	4/28/1994	b,c	-	-	190	3 8	2.9	2.1	3.1	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994 10/27/1994	a a	-	-	180 130	15 8.6	9.2 6.6	7.6 4.5	28 17	-	-	-		-	-	-	-	-		-
	1/26/1995	u	-	-	110	6.5	1.2	1.8	11	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995		-	-	82	3.9	<0.5	<0.5	2 5	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995		-	-	130	8 8	1.3	4.5	7.6	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995 4/3/2008		-	-	95 130	6.6 1.6	1.7 <0.5	4.3 0 89	7 0.85	<5.0	- <0.5	<0.5	<2.0	<0.5	- <0.5	<0.5	- <50	<0.5	<500	<0 5
	6/23/2011	a	-	-	53	2.7	<0.5	1.0	1.7	-	<0.5	<0.5	<2.0	-	-	<0.5	-	<0.5	-	-
	5/23/2012	f	<50	<250	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	g	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
MW-5	4/28/1994	a	-	-	30,000	4,000	3,000	810	3,500	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	a	-	-	9,300	2,000	800	290	940	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994 1/26/1995	a a	-	-	15,000 7,900	2,700 2,100	1,300 680	420 240	1,100 860	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	a	-	-	7,900	2,400	580	340	630	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995	a	-	-	11,000	3,400	760	610	1,200	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995	a	-	-	13,000	2,900	830	570	1,100	-	-	-	-	-	-	-	-	-	-	-
	1/21/1997 11/12/1998	a	-	-	2,600 <50	750 <0.5	65 <0.5	1,860 <0.5	280 <0.5	<5 <5	-	-	-	-	-	-	-	-	-	-
	1/16/2001		-	-	<50 <50	11	<0.5	<0.5	0.82	-	- <5	<1.0	<5.0	<1.0	<1.0	<1.0	-	<1.0	-	-
				_	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<5.0	<0.5	<0.5	<0.5	-	<0.5	-	-
	6/27/2002		-	_	< 30		10.5													
	6/27/2002 11/18/2002	a	-	-	130	17	3.8	2.1	16	-	<0.5	-	-	<0.5	<0.5	-	-	-	-	-
	6/27/2002	a	-	-					16 0.68 1.4	-	<0.5 <0.5 <0.5	-	-	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	-	-	-	-	-

Table 9 **Groundwater Analytical Data- Monitoring Wells** AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g EPA Metho	Benzene ds 8020, 8021	Toluene B, or 8260B	Ethylbenzene	Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA EPA Meth	DIPE od 8260B	Ethanol	ETBE	Methanol	Lead
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-5 (cont)	6/23/2011	a	-	-	82	5.1	<0.5	12.0	8.4	-	<0.5	<0.5	<2.0	-	-	<0.5	-	<0.5	-	-
	5/18/2012 7/11/2012	f g	<50 <50	<250 <250	120 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	-	-	-	-
DPE-1	12/6/2011	a	-	-	9,200	1,800	570	460	1,100	-	<50	<50	<200	-	-	<50	-	<50	-	-
	1/24/2012	a		-	3,200	170	58	<5.0	620	<5.0	-	-	-	-	-	-	-	-	-	-
	5/18/2012 7/11/2012	f a	280 860	<250 <250	540 2,300	49 240	<1.0 15	<1.0 98	17 88	<1.0 <5.0	-	-	-	-	-	-	-	-	-	-
DPE-2	12/6/2011	a	-	-	22,000	2,100	3,300	650	3,300	-	<100	<100	<400	-	-	<100	-	<100	-	-
	1/24/2012	a	-	-	1,100	44	26	11	150	<2.5	-	-	-	-	-	-	-	-	-	-
	5/18/2012 7/11/2012	f a	<50 400	<250 <250	220 2,600	33 300	3.2 12	<0.5 45	30 390	<0.5 <10	-	-	-	-	-	-	-	-	-	-
DPE-3	12/6/2011	a	-	-	6,400	550	560	180	1,000	-	<17	<17	<67	-	-	<17	-	<17	-	-
	1/24/2012	a	-	-	5,500	290	240	44	1,000	<5.0	-	-	-	-	-	-	-	-	-	-
	5/18/2012 7/11/2012	f a	260 720	<250 <250	1,100 2,400	78 330	37 19	11 10	89 130	<1.7 <10	-	-	-	-	-	-	-	-	-	-
DPE-4	1/24/2012	a	-	-	730	66	6.0	7.1	83	2.5	-	-	-	-	-	-	-	-	-	-
	5/18/2012 7/11/2012	f	<50 <50	<250 <250	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	- -	-	-	-	-	-	-	-	-	-
DPE-6	1/24/2012	a	-	-	64*	<0.5	<0.5	<0.5	3 2	<0.5	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	g	<50	<250	<50	0.93	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
DPE-9	1/24/2012 7/11/2012	a a	<50 680	<250 <250	4,400 1,300	160 47	390 3.1	93 4.0	1,100 100	<5.0 <1.7	-	-	-	-	-	-	-	-	-	-
DPE-10	5/18/2012	f	420	<250	1,700	150	<5.0	<5.0	<5.0	160	-	-	-	-	-	-	-	-	-	-
	7/11/2012	a	160	<250	360	40	<1.0	<1.0	<1.0	<1.0	-	-	-	-	-	-	-	-	-	-
DPE-11	5/18/2012 7/11/2012	f a	260 1,600	<250 <250	930 2,400	6.4 16	4.6 <1.0	4.6 14	160 57	<1.2 <1.0	- -	-	-	-	-	-	-	-	-	-
ESL			100	100	100	1.0	40	30	20	5.0	5.0	NA	12	0.05	0 5	NA	NA	NA	NA	2.5

TPH-g= total petroleum hydrocarbons as gasoline

TPH-d= total petroleum hydrocarbons as diesel

TPH-mo= total petroleum hydrocarbons as motor oil

MTBE = Methyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

DIPE = Diisopropyl ether

ETBE = Ethyl tertiary butyl ether

 μ g/L = micrograms per liter (ppb)

"-" = Not analyzed or data not available

ESL = Environmental Screening Levels, Table F-1a, Gorunwater, Potential Drinking Water, San Francisco Regional Water Quality Control Board, Revised May 2008

NA = Not applicable

- a = Laboratory note indicates the unmodified or weakly modified gasoline is significant.
- b = Laboratory note indicates heavier gasoline range compounds are significant (aged gas?).
- c = Laboratory note indicates gasoline range compounds are significant with no recognizable pattern.
- d = Laboratory note indicates that lighter gasoline range coounds (the most mobile fraction) are significant.
- e = Laboratory note indicates that one to a few isloated non-targed peaks are present.
- f = Laboratory note indicates that low surrogate due to matrix interference.
- g = Surrogate recovery exceeds the control limits due to dilution / matrix interference / coelution / presence of surrogate compound in the sample
- * Total petroleum hydrocarbons as diesel = <50; Total petroleum hydrocarbons as motor oil = <250

Table 10

Soil Vapor Monitoring Analytical Data
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

						Contami	nants of Concerr	1					
Sample ID	Sample Date	TPH-g (C-C12)	TVH (C5-C11)	Benzene	Toluene	Ethyl- benzene	Xylenes	Oxygenates (TAME, DIPE, ETBE, MTBE)	Oxygenates (TBA)	Isopropyl Alcohol	CH4	02	CO2
		(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	%	%	%
VP-1 *	5/17/2012 5/30/2012	<1,800	NA 0	<6.5	<7.7	<8.8	<27	NA	NA	<50	0	17.7	0.5
	7/12/2012	<1,800	<1,800	<6.5	<7.7	<8.8	<27	ND	<62	<50	ND	27.0	1.7
VP-2 *	5/17/2012 5/30/2012	<1,800	NA 0	<6.5	<7.7	<8.8	<27	NA	NA	<50	0	18.4	0.4
	7/12/2012	<1,800	<1,800	<6.5	<7.7	<8.8	<27	ND	230	<50	ND	28.0	1.3
VP-3 *	5/17/2012 5/30/2012	<1,800	NA 0	<6.5	<7.7	<8.8	<27	NA	NA	<50	0	18.2	0.9
	7/12/2012	<1,800	<1,800	<6.5	<7.7	<8.8	<27	ND	<62	290	0.00011	28.0	2.4
ESL		10,000	NA	84	63,000	980	21,000	NA	NA	NA			

Notes:

TPH-g= total petroleum hydrocarbons as gasoline μ g/m3 = micrograms per cubic meter (ppbv)

NA = Not applicable

ESL = Environmental Screening Levels, Table E-2, San Francisco Regional Water Quality Control Board (Shallow Soil Gas- Lowest Residential), Revised May 2008

Field monitoring performed using an Eagle photo-ionization detector/multi-gas meter

APPENDIX A Soil Boring Logs

OIC AECOVERY	STSTEMS	Monitoring Well Drilling	L
Project Good Chevro	let	Owner Good Chevrolet , Sketch Map	• • • • • • • • • • • • • • • • • • • •
Location 1630 Park S	t. Alam	negla 20-8208	
		n of Hole 20 ft. Diameter 7.5 inches	
Surface Elevation	. Water Leve	el Initial 14 ft, 24-hrs	
		5 feet Slot Size .020	
Casing: Dia. 2 inch	Length	5 feet Type PVC	
Orilling Company Kvilha	ug	Orilling Method Hollowstem Auger Notes	
Oriller <u>C. Pruner</u>		Log by N. Farrar	
G G		8	
Depth (Feet) Well Construction Notes	Sample	Description/Soil Classification	
Depth (Feet) Well Construction	Sa	Description/Soil Classification	
101		3 inches Asphalt 8 inches base course	
2 -		Black silty sand (loose, dry, no product	-
	\parallel	(grades light brown, medium dense)	
	A 5H		
	12		
		SM	
		(strong product odor)	
	Вюн		
	19 30		
-1 2-			
-1 4-			
	C 10	Encountered water 1/15/87	
-1 6-	14	(grades no product odor)	
-1 8-			
-20			j
		Drilled to 20 feet, installed well	
-2 2-			
_2 4			
44 41 11	: 11.	{	- 1

Project Good Chevrolet Owner Good Chevrolet Sketch Map

Location 1630 Park St. Alameda Number 20-8208

Date Orilled 1/15/87 Total Depth of Hole 20 ft. Diameter 7.5 inches

Surface Elevation Water Level, Initial 14 ft. 24-hrs.

Screen: Dia 020 Length 15 feet Slot Size 020

Casing: Dia 2 inch Length 5 feet Type PVC

Drilling Company Kvilhaug Drilling Method Hollowstem Auger

Notes

Driller	C. Pr	uner	· · · · · · · · ·	Log by	N. Farrar
Depth (Feet)	Well	Notes	Sample Number	Graphic Log	Description/Soil Classification
- 1 0 - 1 2 - 1 6 - 1 8 - 1 - 2 0 - 1 8 - 1 - 2 2 - 1 2 - 1 2 - 1 2 - 1 8 - 1 2 - 1 8 - 1 2 2 - 1 2 2 - 1 2 4 - 1 8 - 1 2 2 - 1 2 2 - 1 2 4 - 1 8 - 1	- 111111111111111111111111111111111111		A 6 6 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 inches Asphalt 8 inches base course Brown silty sand (medium dense, dry, no no product odor) (grades tan) (grades slight product odor) (grades dense) (strong product odor) (very slight product odor) ——Encountered water 1/15/87 (grades no product odor) Drilled to 20 feet, installed well

Monitoring Well 3

Project Good Chevrolet Owner Good Chevrolet

Location 1630 Park St. Alamedaec: Number 20-8208

Date Drilled 1/15/87 Total Depth of Hole 20 ft. Diameter 7.5 inches

Surface Elevation Water Level, Initial 14 ft. 24-hrs.

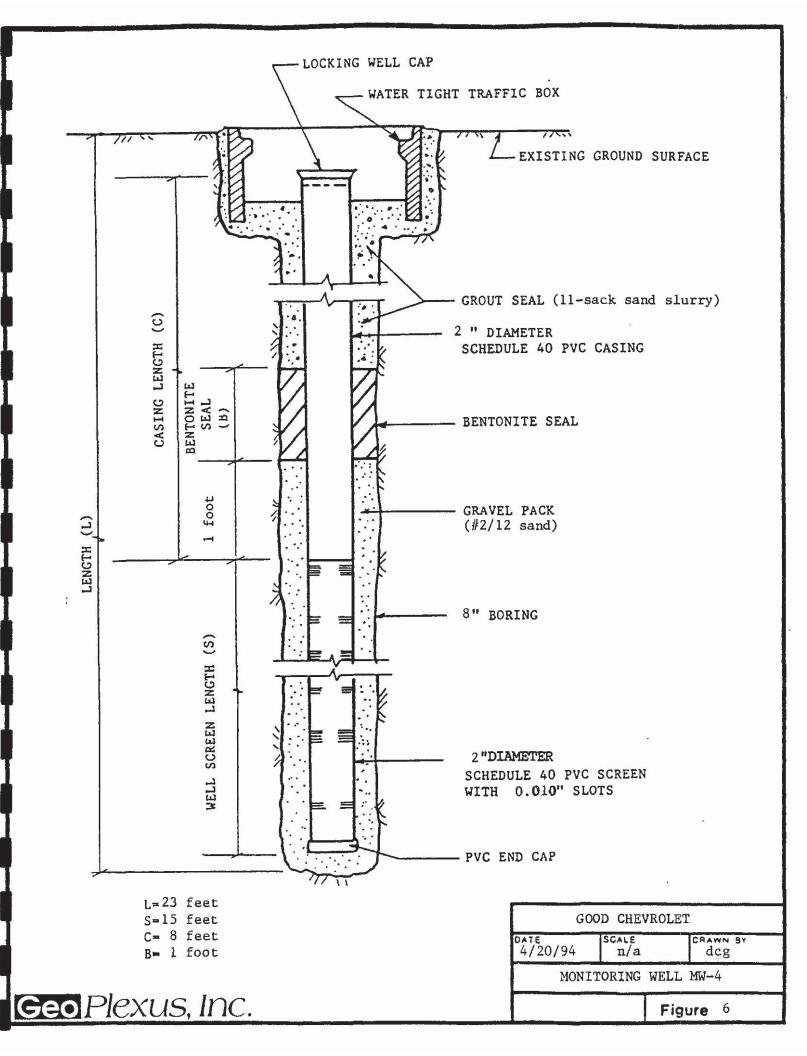
Screen: Dia 020 Length 15 feet Slot Size 020

Casing: Dia 2 inch Length 5 feet Type PVC

Drilling Company Kyilhaug Drilling Method Hollowstem Auger

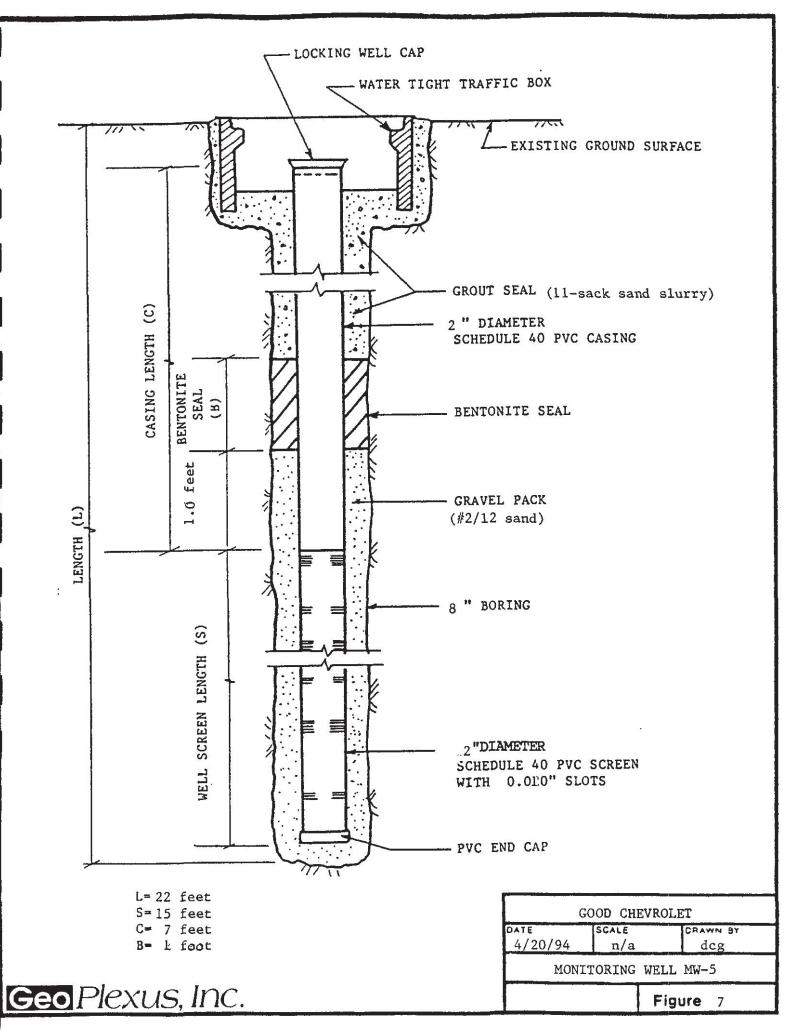
Notes

Driller . C. Pruner Log by N. Farrar Well Construction Graphic Log Sample Number Notes Description/Soil Classification 3 inches Asphalt 8 inches base course Tan silty sand (loose, dry, no product odor) (grades medium dense) Tan clayey sand (medium dense, dry, no product odor) (grades less clay, strong product B 10 10 15 24 Tan silty sand (dense, dry, slight product odor) -1 2-14 Encountered water 1/15/87 C 20 E 16 (grades no product odor) -1 8--2 0-Drilled to 20 feet, installed well -2 2


02100144

24

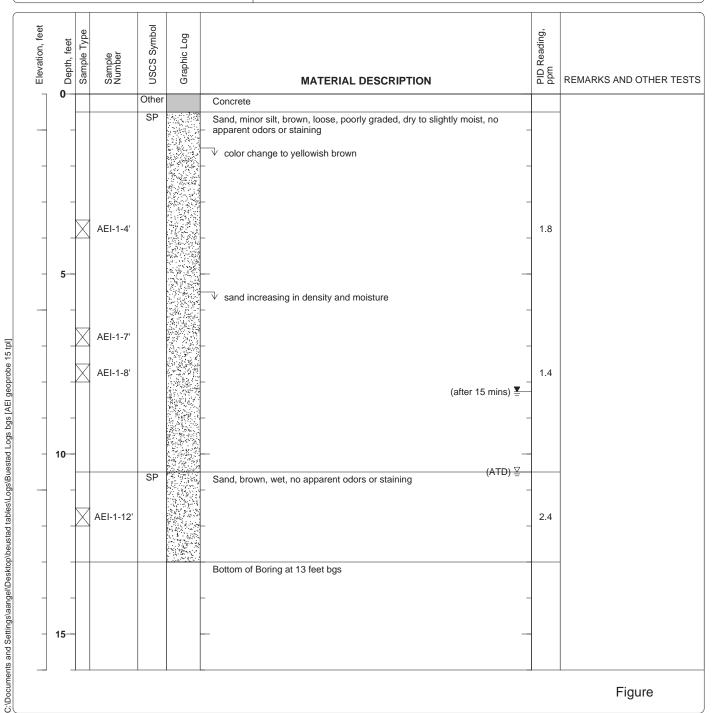
Page 1 of 1


SUBSURFACE DATA LOG

			,					, ,
1000	MOST () WOLL () WOLL ()	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	301 5 MO. 11.0 P. 11.0	Mide (udd)	SAMPLE TYPE	TLas	9/	LOG No. MW-4 DATE: 4/20/94 LOCATION: Good Chevrolet - Park Street EQUIPMENT: Exploration Geoservices PROJECT No
								A/C Pavement and Aggregate Base
		9	0.5	S1	5 —		SM	SAND, fine to medium grained with some gravel, gray, moist, medium dense
					_			
		37	3.8	S2	10 —		SM	SAND, fine to medium grained, gray, dense, wet
							SM	SAND, fine to medium grained, red, wet, dense
		39	0.8	s3	15 -			
					20 -			
					25 —			Boring terminated at 23.0 feet. Monitoring well constructed (2-inch). Ground water encountered at 11 feet.
					_			

SUBSURFACE DATA LOG

	.		
ORY OENSITY MOISTURE Non Sque 100 MS LUE	ONY (MENDING	SAMPLE TYPE OED TH (17)	LOG No. MW-5 DATE: 4/20/94 LOCATION: Good Chevrolet - Park Street EQUIPMENT: Exploration Geoservices PROJECT No.
			A/C Pavement and Aggregate Base
		SM	SILTY SAND, redish-brown, moist, medium dense
12	0.8 S1	5 —	
			- grey staining of sand noted
29	25.8 \$2	10 -	
		_	- redish-brown
39	15.5 \$3	15	
		20 —	
		-	Boring terminated at 22 feet
		25	Monitoring well constructed (2-inch). Ground water encountered at 12 feet
		25 —	

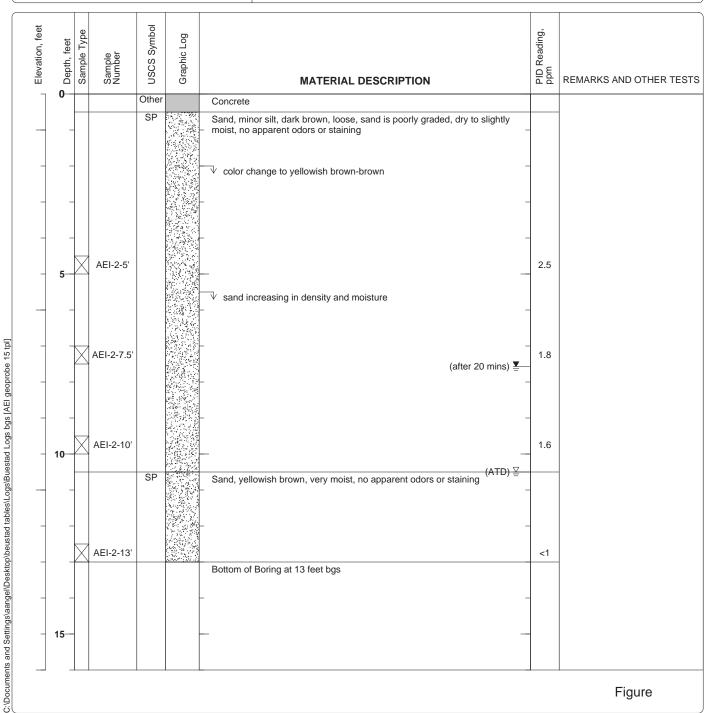


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-1

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
	Drill Bit Size/Type 3 inch	Total Depth of Borehole 13 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured after 15 mins 10.5 feet ATD, 8.27 feet after 15 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Hydraulic Lift	

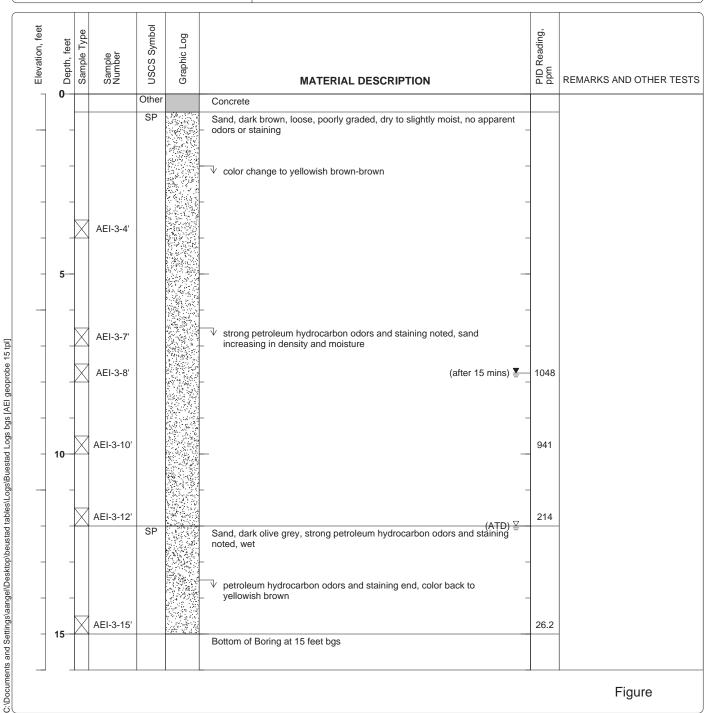


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-2

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
	Drill Bit Size/Type 3 inch	Total Depth of Borehole 13 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 10.5 feet ATD, 7.57 feet and Date Measured after 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Hydraulic Lift	

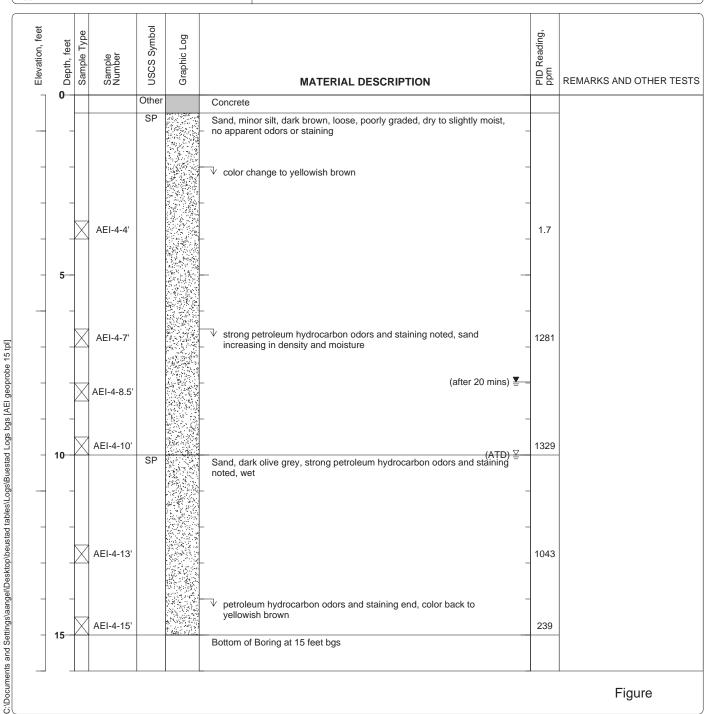


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-3

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 12 feet ATD, 7.75 feet after and Date Measured 15 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

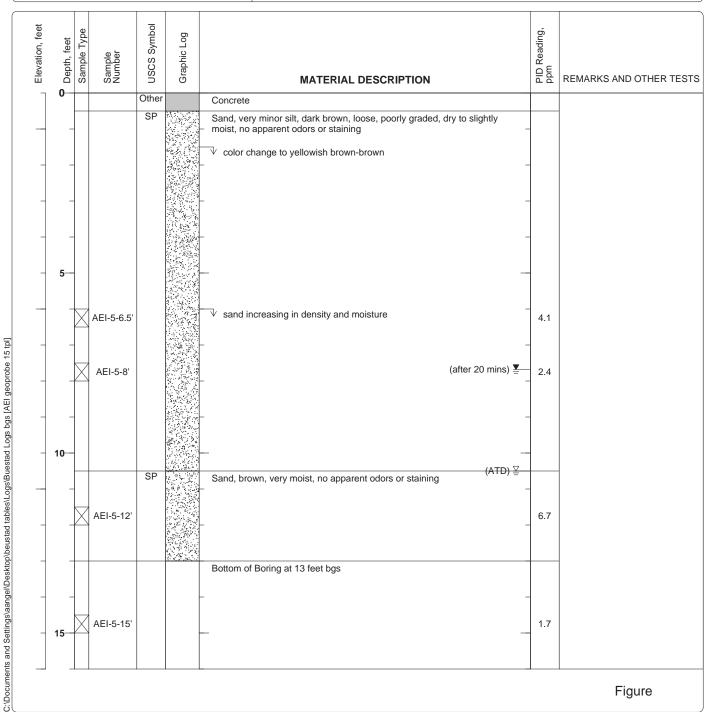


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-4

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 10 feet ATD, 7.97 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

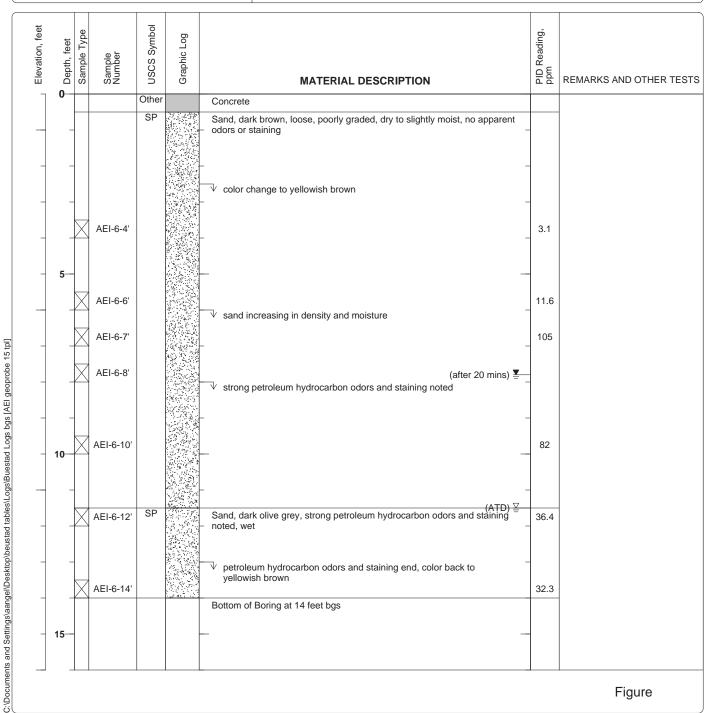


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-5

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 13 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 10.5 feet ATD, 7.68 feet and Date Measured after 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Hydraulic Lift	

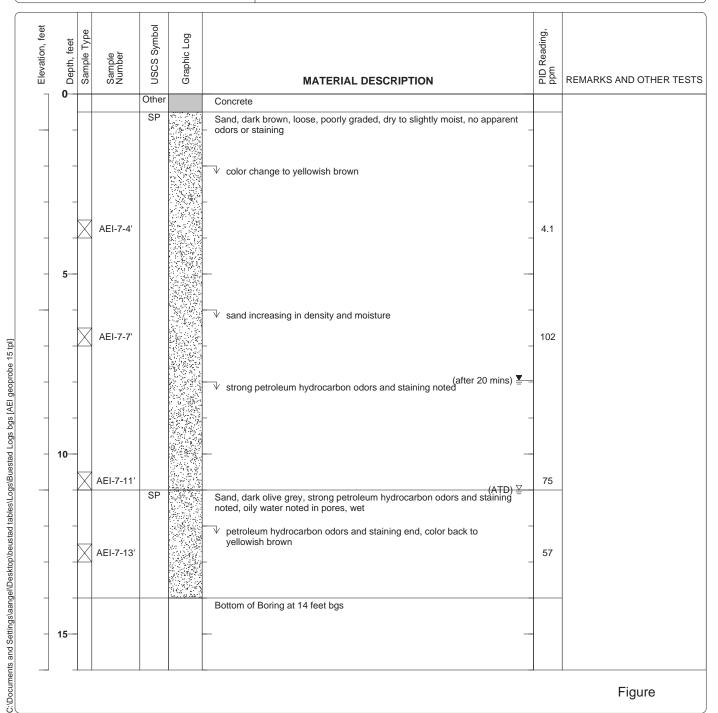


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-6

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 11.5 feet ATD, 7.8 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

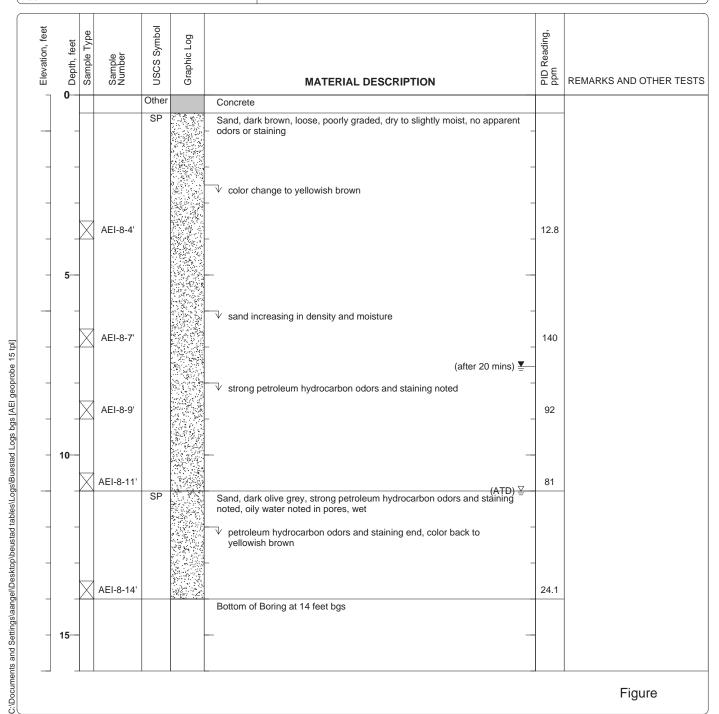


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-7

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 11 feet ATD, 7.95 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

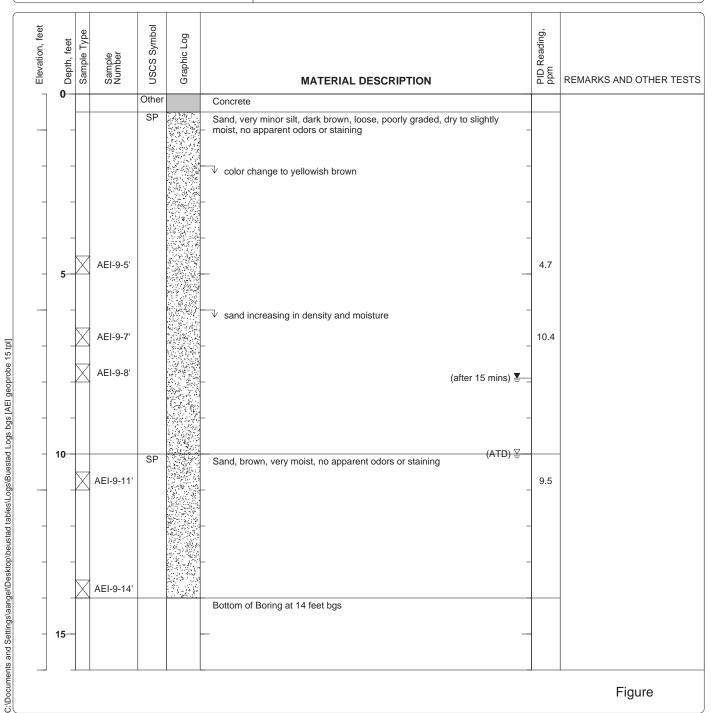


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-8

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 11 feet ATD, 7.54 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Hydraulic Lift	

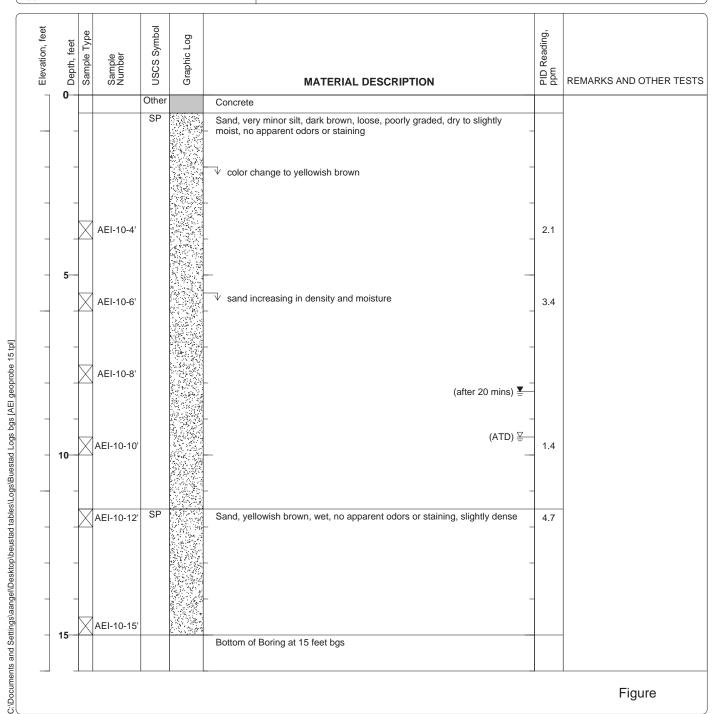


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-9

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 10 feet ATD, 7.89 feet after and Date Measured 15 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Hydraulic Lift	

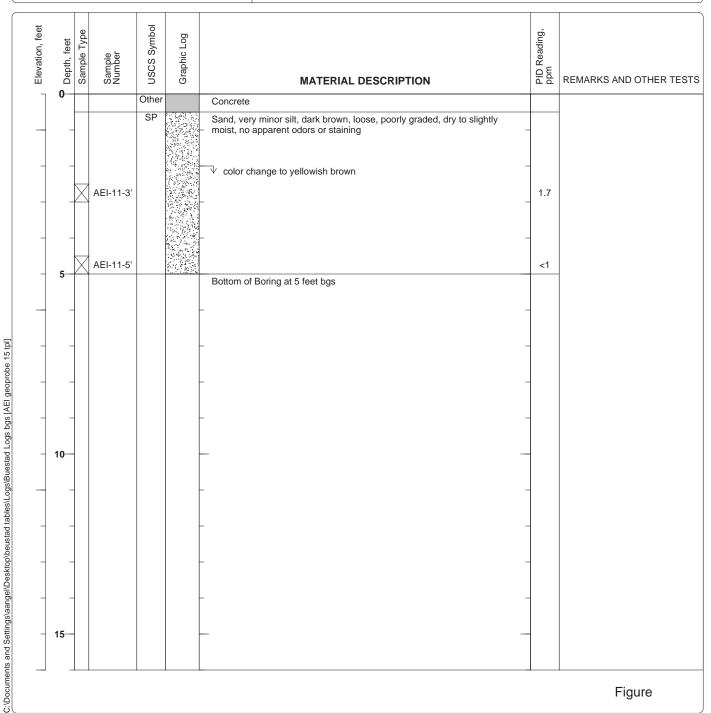


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-10

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 9.5 feet ATD, 8.24 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Hydraulic Lift	

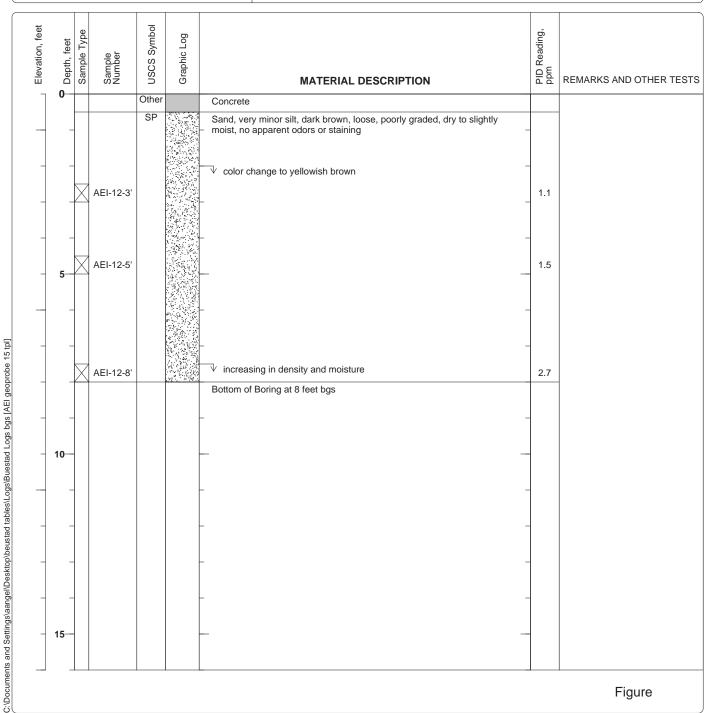


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-11

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 5 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Drain	

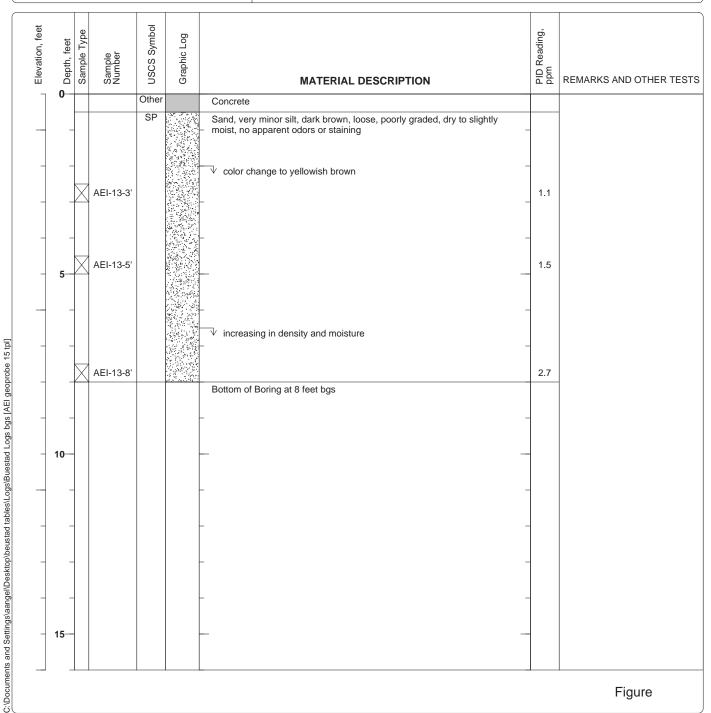


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-12

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 8 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Drain	

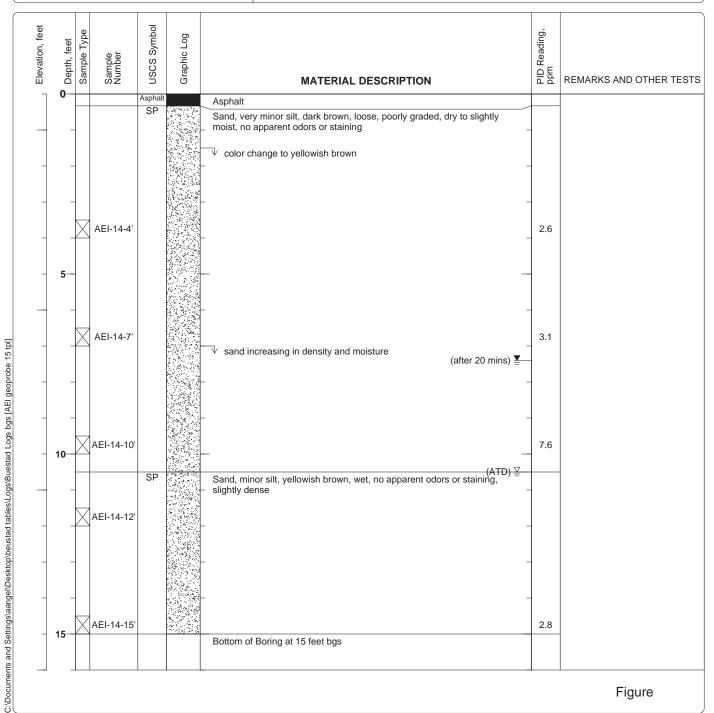


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-13

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 8 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Drain	

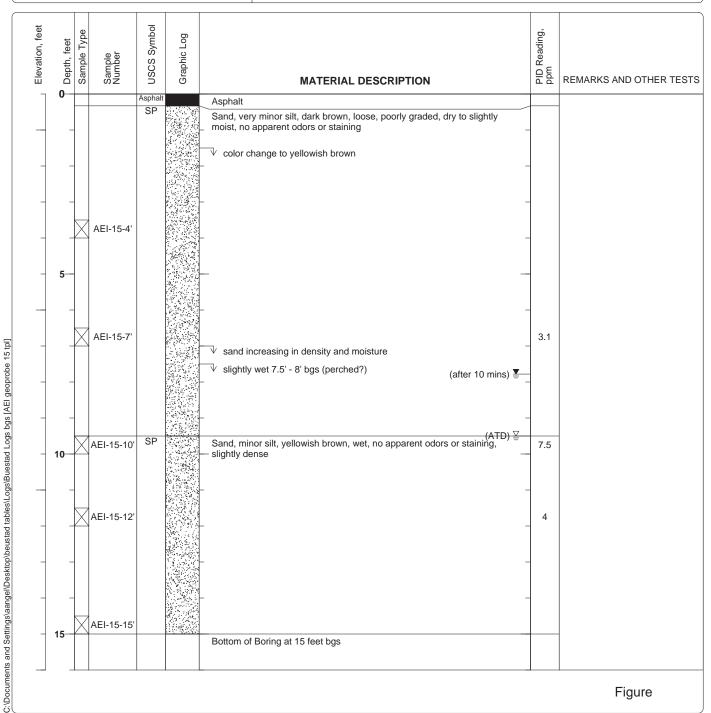


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-14

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 10.5 feet ATD, 7.4 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Gas UST	

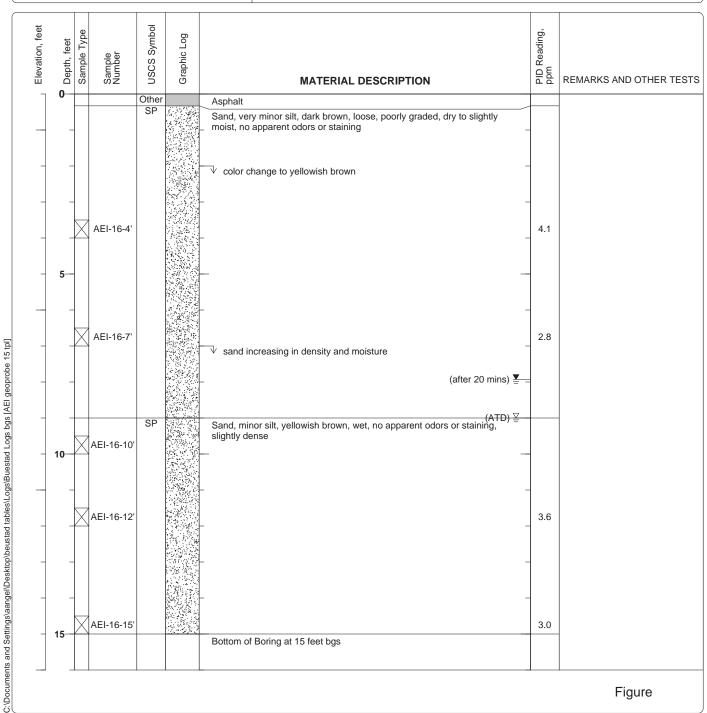


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-15

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 9.5 feet ATD, 7.78 feet after and Date Measured 10 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Gas UST	

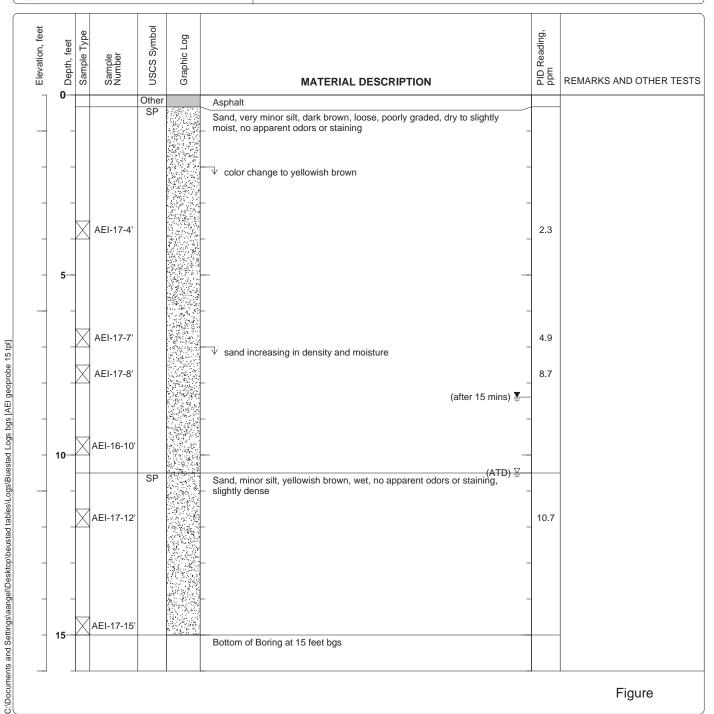


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-16

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 9 feet ATD, 7.93 feet after and Date Measured 20 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Existing Waste Oil UST	

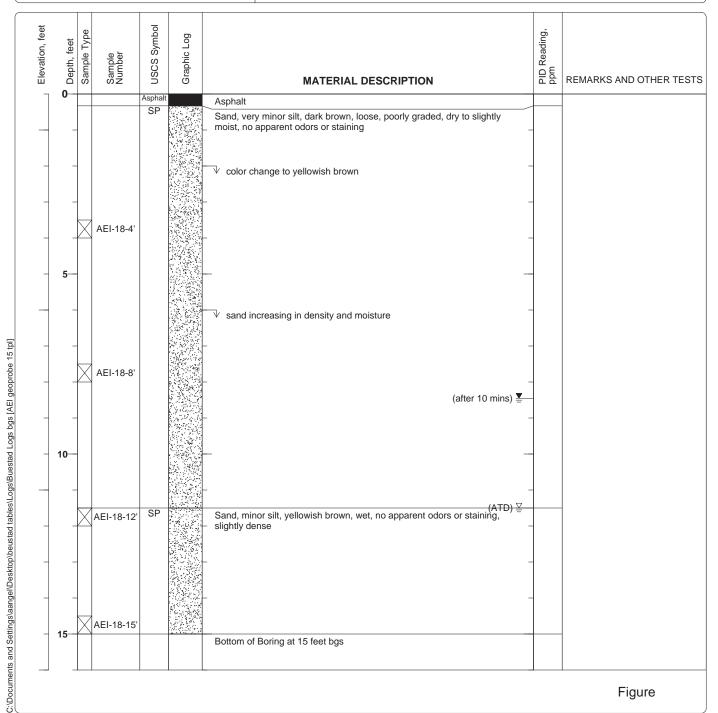


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-17

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level and Date Measured after 15 mins 10.5 feet ATD, 8.39 feet after 15 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Oil and Gas Area - Southwestern Corner	

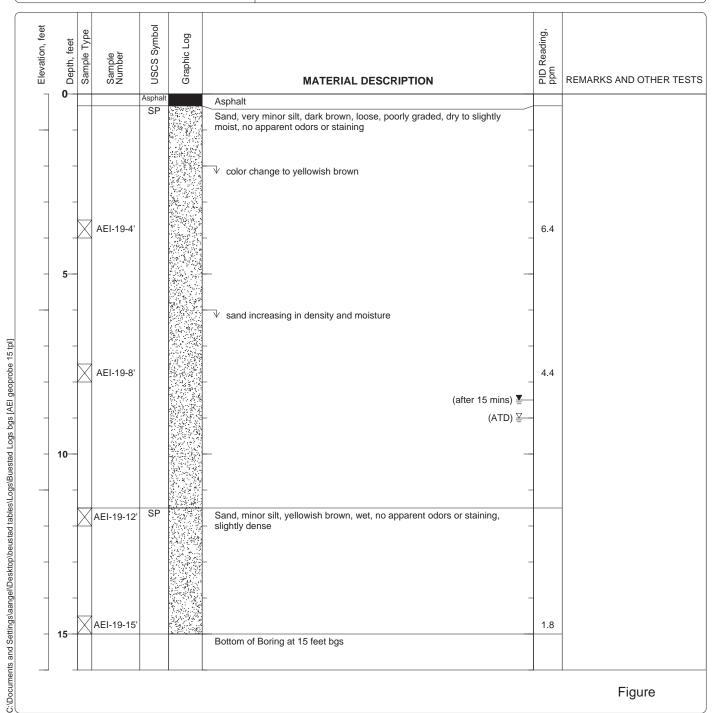


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-18

Date(s) Drilled July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 11.5 feet ATD, 8.45 feet and Date Measured after 10 mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Oil and Gas Area - Southwestern Corner	

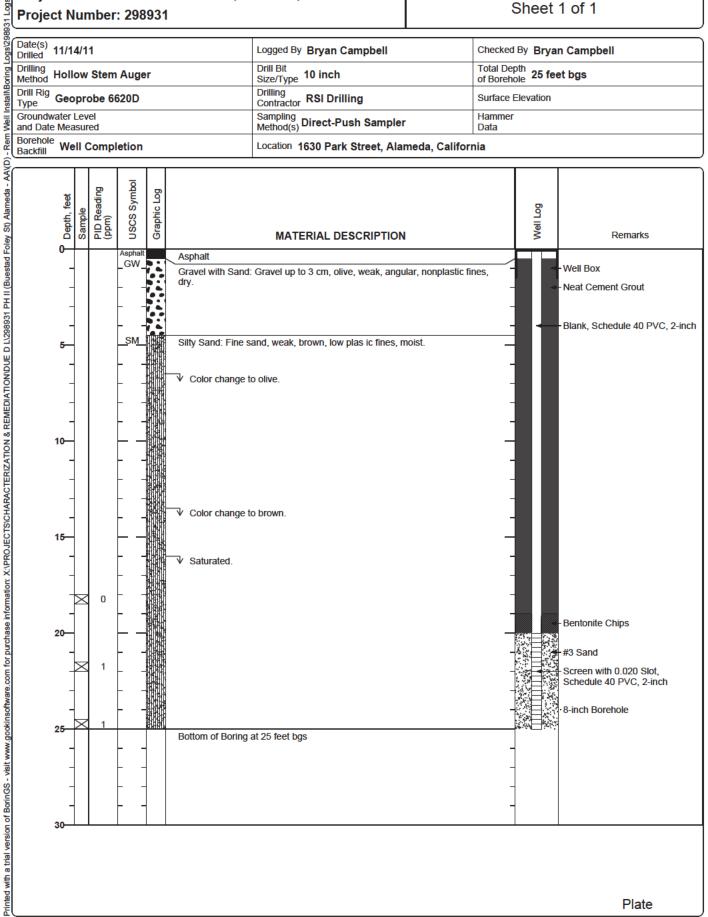


Project Location: 1600 - 1630 Park Street, Alameda, CA

Project Number: 298931

Log of Boring AEI-19

Date(s) July 25, 2011	Logged By Adrian Angel	Checked By Peter McIntyre
Drilling Method Direct Push - Geoprobe	Drill Bit Size/Type 3 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Truck-mounted Geoprobe 5410	Drilling Environmental Control Contractor Associates	Approximate Surface Elevation
Groundwater Level 9 feet ATD, 8.5 feet after 15 and Date Measured mins	Sampling Method(s) Tube	Well Permit.
Borehole Backfill Neat grout cement	Location Former Oil and Gas Area - Southwestern Corner	

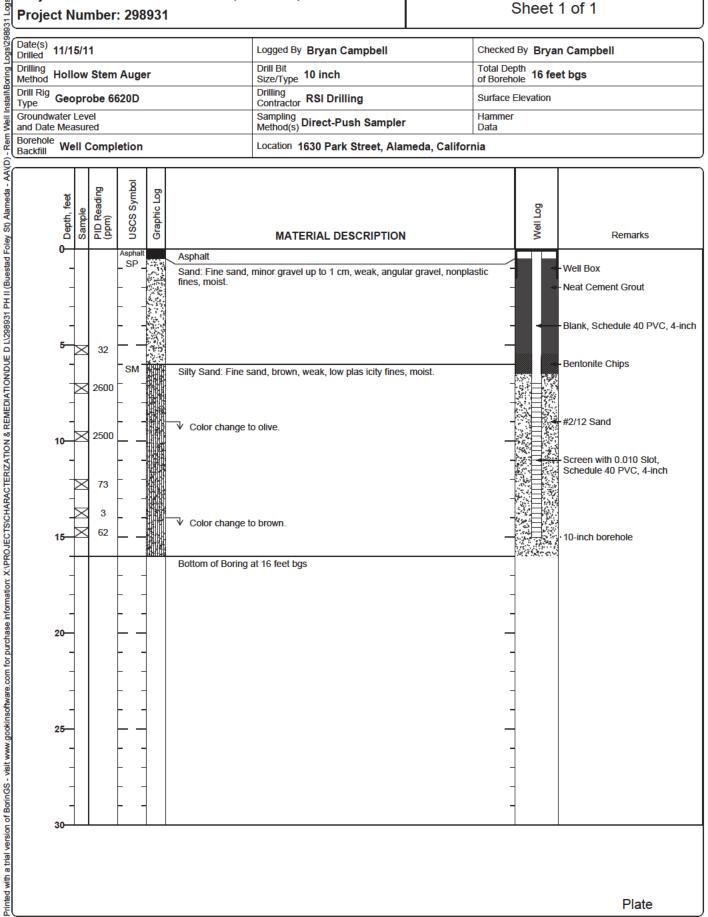


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AS-1

Date(s) 11/14/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 25 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

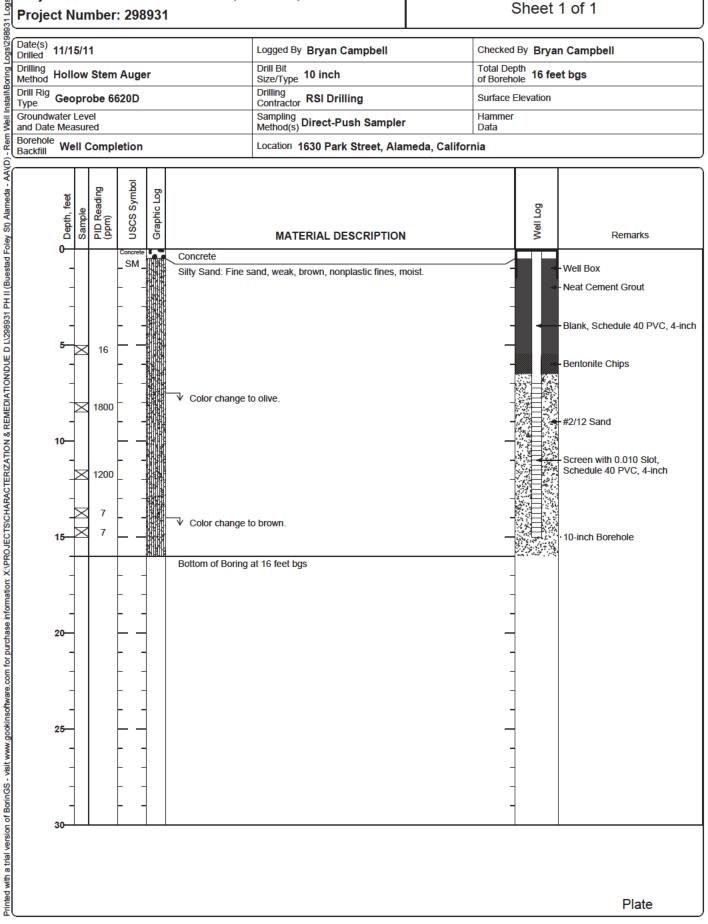


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-1

Date(s) 11/15/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

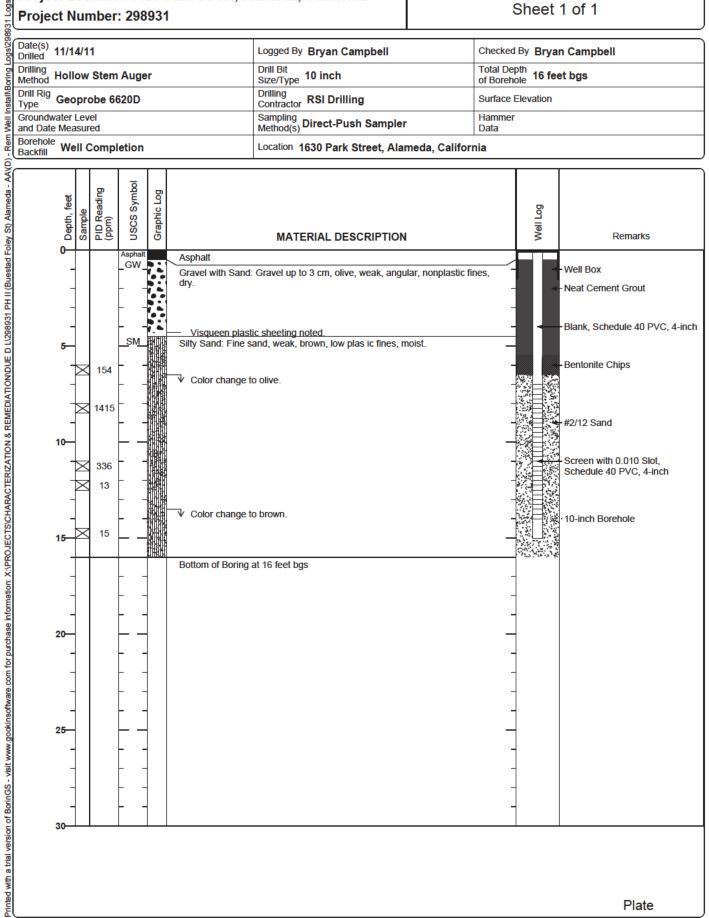


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-2

Date(s) 11/15/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell	
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs	
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation	
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler Hammer Data		
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California		



Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-3

Date(s) Drilled 11/14/11	Logged By Bryan Campbell	Checked By Bryan Campbell	
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs	
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation	
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler Hammer Data		
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California		

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-20

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 11.3 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

Depth, feet Sample Type Sample Number	USCS Symbol Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
0	Asphalt	Conrete and Fill		
-	SM	Silty sand, mottled reddish brown, coarse grained, brittle.		
AEI-20-3 5	SP	Poorly graded, fine grained sand, light brown, moderately loose.	<1	
5	SW	Medium to coarse grained sand, yellowish red, moderately loose.		
AEI-20-7 5	SM	Silty sand, (20% silt), mottled greenish grey and light grey, moderately soft and loose, hydrocarbon odors.	78.1	
AEI-20-11		(ATD) <u>\</u>	104.3	
AEI-20-15	SP	Fine grained sand, yellowish brown, moist to wet, compact.	26.7	
15		Bottom of Boring at 15 feet bgs. Groundwater sample collected.		

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-21

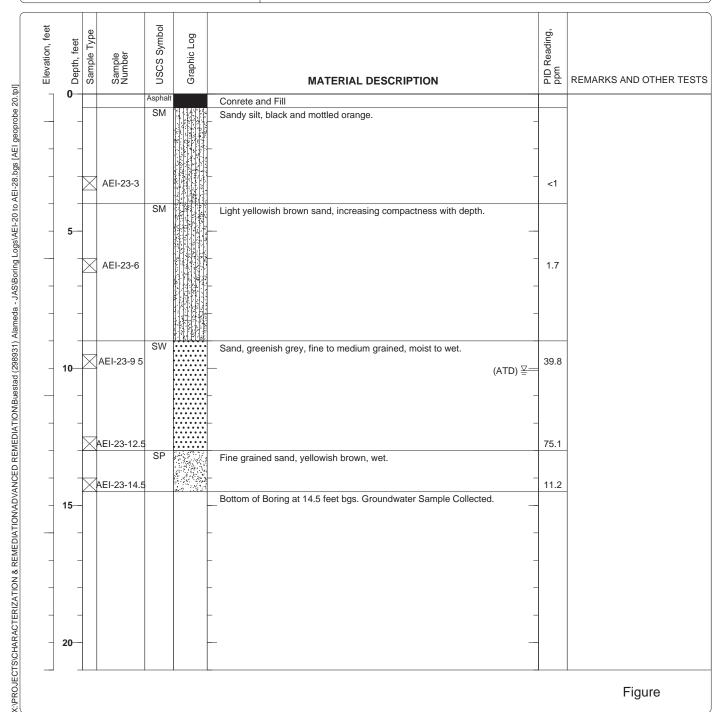
Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation
Groundwater Level and Date Measured 10.7 feet ATD	Sampling Method(s) Direct-Push Sampler Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, California	

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-22

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 10.9 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

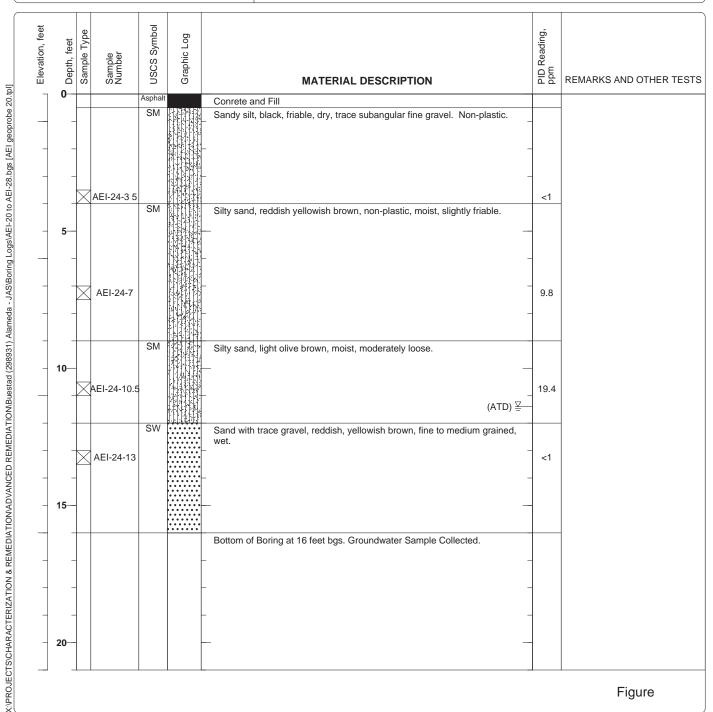

Correte and Fill SM Silty sand, dark brown and mottled reddish brown, hard, slightly friable. SM Silty sand, dark yellowish brown, fine to medium grained, moist, loose, friable. AEI-22-4 AEI-22-7 SM Silty sand, yellowish red, fine grained sand, moderately loose. AEI-22-9 SM Silty sand (20% silt), greenish grey, fine grained sand, non-plastic, wet. 9.4 AEI-22-11 SIM Silty sand, light yellowish brown, non-plastic. AEI-22-14 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
SM Silty sand, dark yellowish brown, fine to medium grained, moist, loose, friable. AEI-22-4 SM Silty sand, yellowish red, fine grained sand, moderately loose. SIM Silty sand (20% silt), greenish grey, fine grained sand, non-plastic, wet. AEI-22-11 AEI-22-11 SM Silty sand (20% silt), greenish grey, fine grained sand, non-plastic, wet. 9.4 AEI-22-11 SM Silty sand, light yellowish brown, non-plastic. 5.4 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	0-			Asphalt		Conrete and Fill		
AEI-22-7 AEI-22-7 SM Silty sand, yellowish red, fine grained sand, moderately loose. AEI-22-9 AEI-22-11 AEI-22-11 SM Silty sand (20% silt), greenish grey, fine grained sand, non-plastic, wet. 9.4 AEI-22-11 SM SM Silty sand, light yellowish brown, non-plastic. 5.4 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	-	-		SM				
SM Silty sand, yellowish red, fine grained sand, moderately loose. AEI-22-9 AEI-22-11 Silty sand (20% silt), greenish grey, fine grained sand, non-plastic, wet. 9.4 AEI-22-11 Silty sand, light yellowish brown, non-plastic. AEI-22-14 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	5	×	AEI-22-4	SM			<1	
AEI-22-9 AEI-22-11 SIlty sand (20% silt), greenish grey, fine grained sand, non-plastic, wet. 9.4 AEI-22-11 SIlty sand, light yellowish brown, non-plastic. AEI-22-14 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	-		AEI-22-7	SM		Silty sand, yellowish red, fine grained sand, moderately loose.	<1	
AEI-22-11 AEI-22-11 SM Silty sand, light yellowish brown, non-plastic. AEI-22-14 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	_	Ш		SM		-		
AEI-22-11 SM Silty sand, light yellowish brown, non-plastic. AEI-22-14 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	0-	X	AEI-22-9	Sivi			-	
AEI-22-14 Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	_	X	AEI-22-11			- (ATD) \	13.8	
Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	-	X	AEI-22-14	SM		Silty sand, light yellowish brown, non-plastic.	5.4	
20—	-				-	Bottom of Boring at 15 feet bgs. Groundwater Sample Collected.	-	
20—	-	-			-	-	-	
	20-							

Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-23

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14.5 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 10.09 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda,	Location 1630 Park Street, Alameda, California	

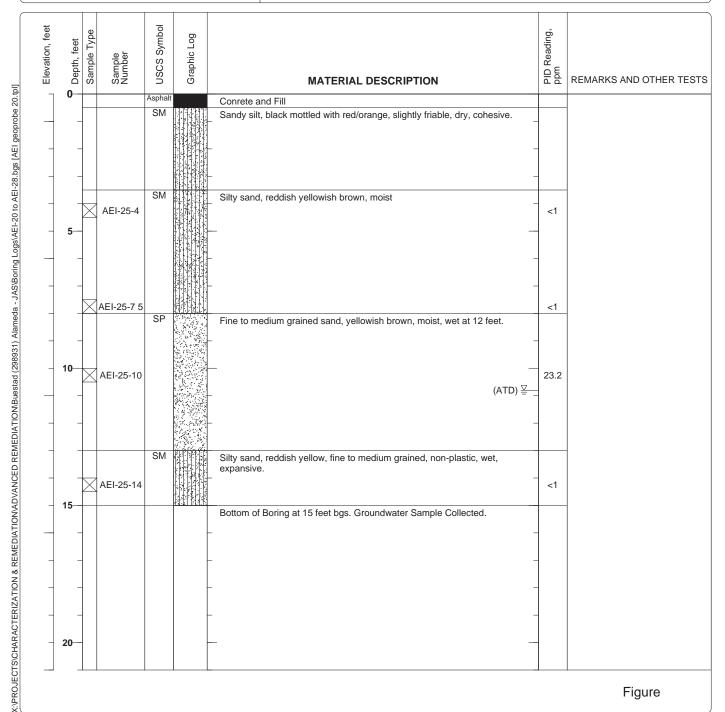


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-24

Date(s) Dateled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation
Groundwater Level and Date Measured 11.4 feet ATD	Sampling Method(s) Direct-Push Sampler Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, California	

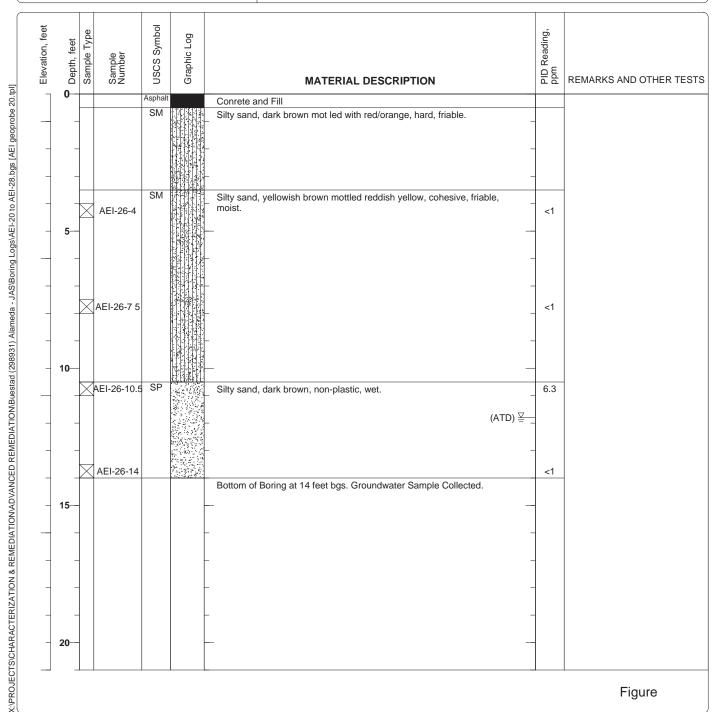


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-25

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 10.8 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

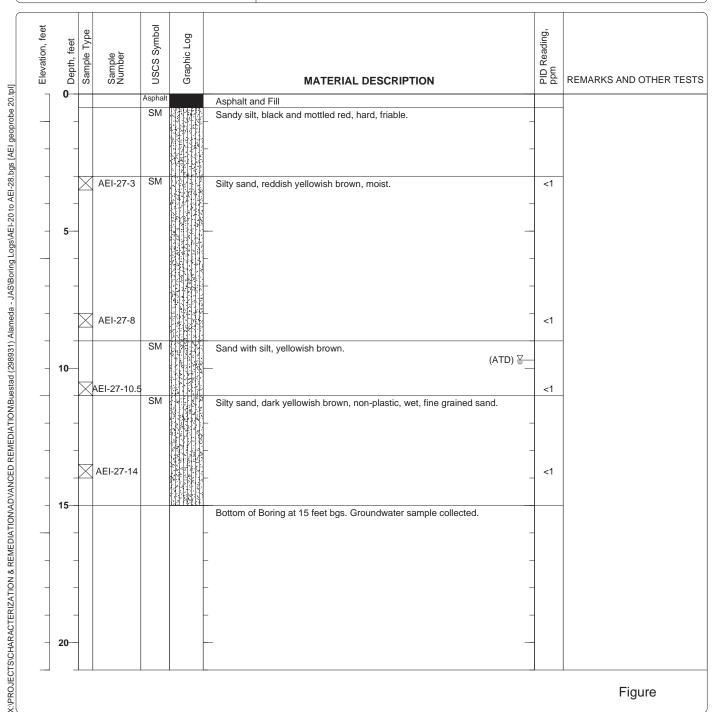


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-26

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation
Groundwater Level and Date Measured 11.8 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, California	

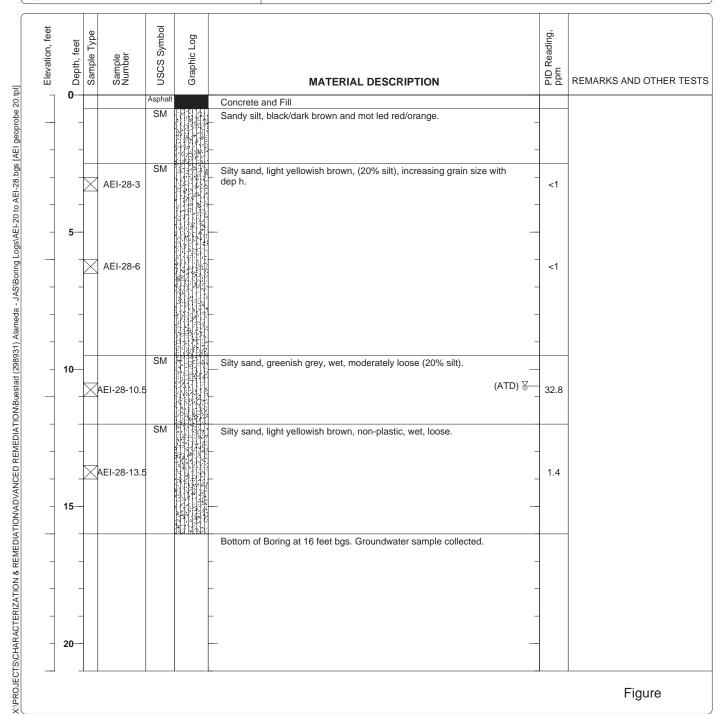


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-27

Date(s) Drilled January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 9.7 feet ATD	Sampling Method(s) Direct-Push Sampler	mpling thod(s) Direct-Push Sampler Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

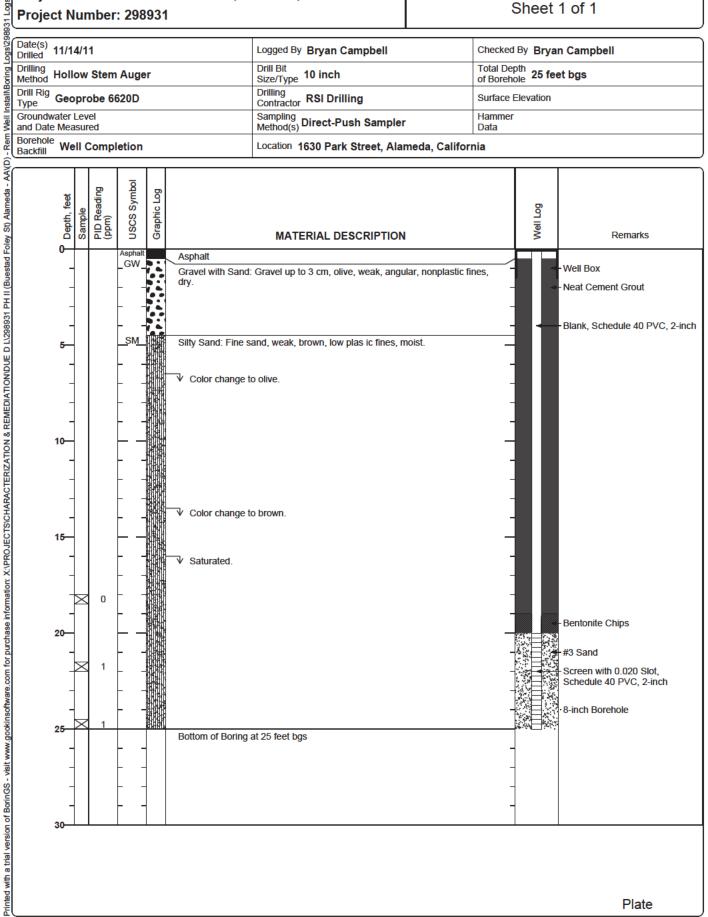


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AEI-28

Date(s) January 17, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs	
Drill Rig Type Limited Access	Drilling Contractor ECA	Approximate Surface Elevation	
Groundwater Level and Date Measured 10.61 feet ATD	Sampling Method(s) Direct-Push Sampler	Well Permit. W2012-0024	
Borehole Backfill Neat Cement	Location 1630 Park Street, Alameda, 0	Location 1630 Park Street, Alameda, California	

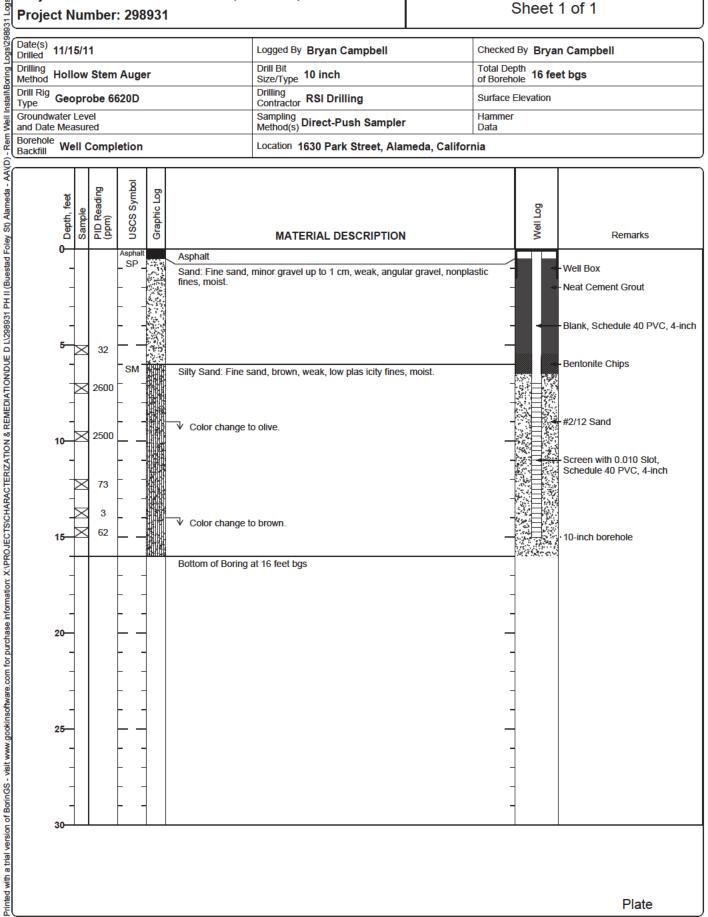


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring AS-1

Date(s) 11/14/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 25 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

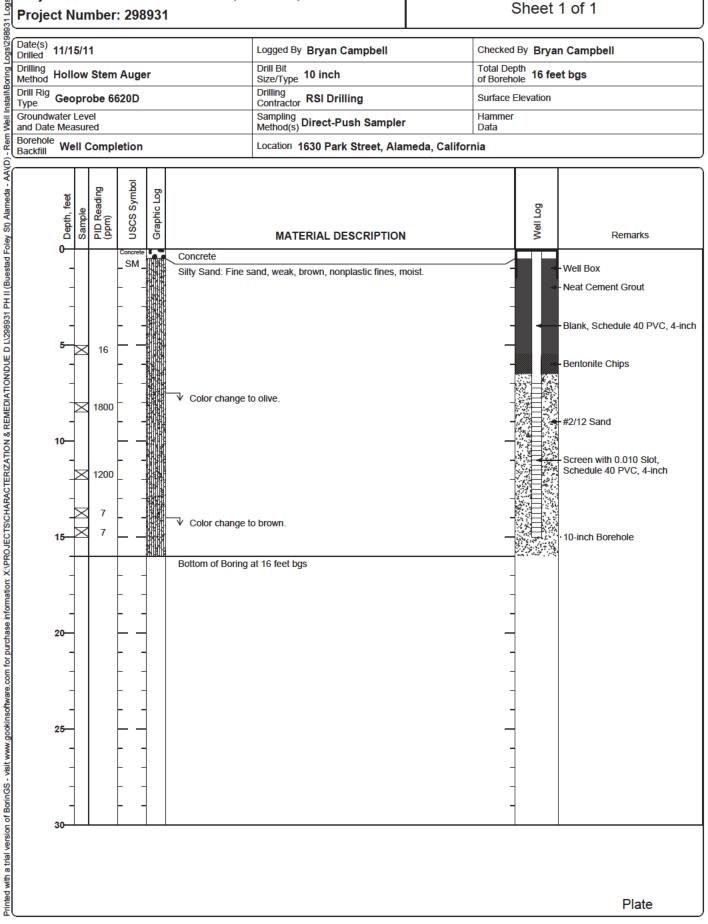


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-1

Date(s) 11/15/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

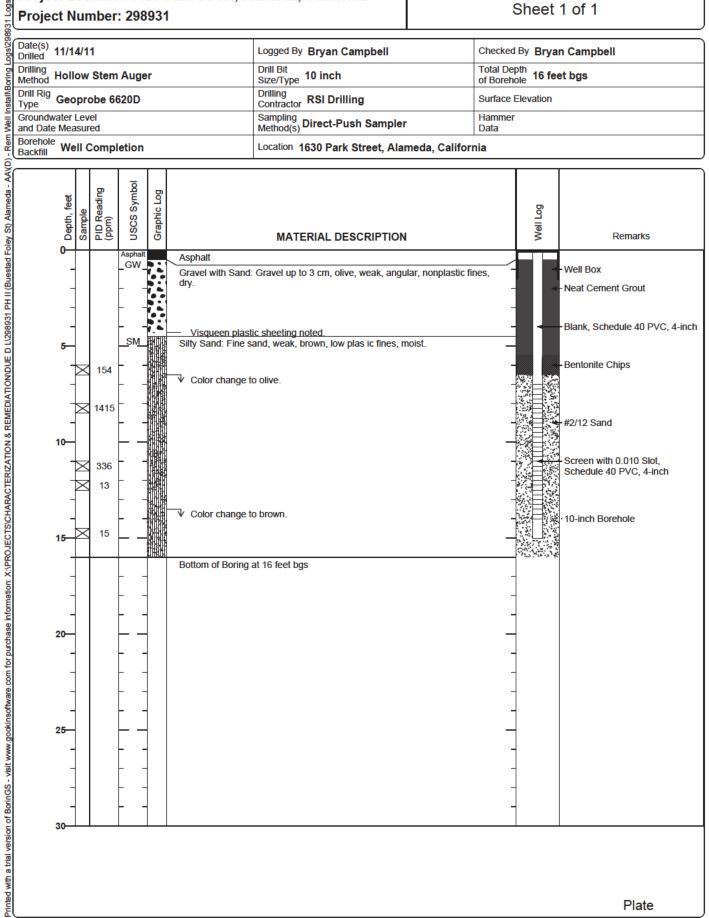


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-2

Date(s) 11/15/11 Drilled	Logged By Bryan Campbell	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

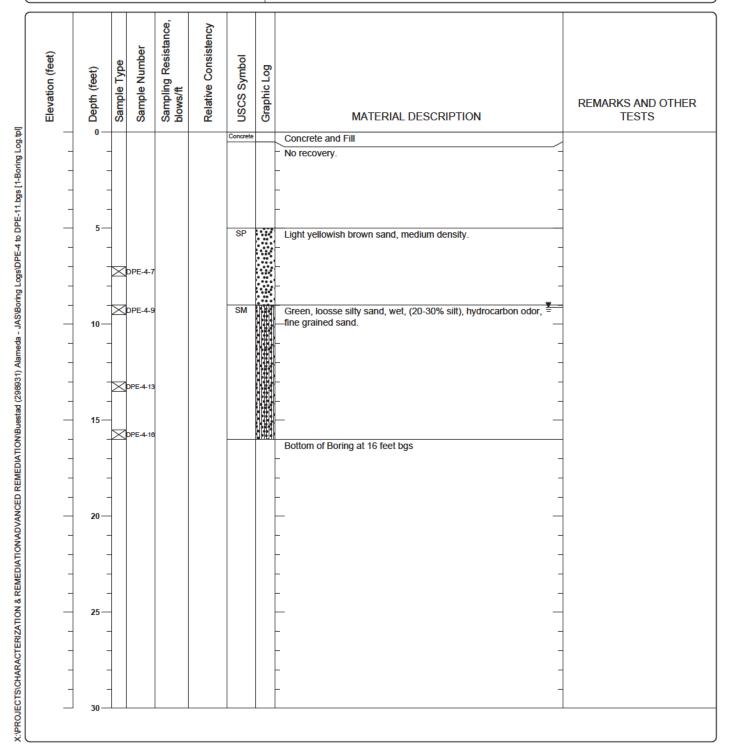


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-3

Date(s) Drilled 11/14/11	Logged By Bryan Campbell	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 6620D	Drilling Contractor RSI Drilling	Surface Elevation
Groundwater Level and Date Measured	Sampling Method(s) Direct-Push Sampler	Hammer Data
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

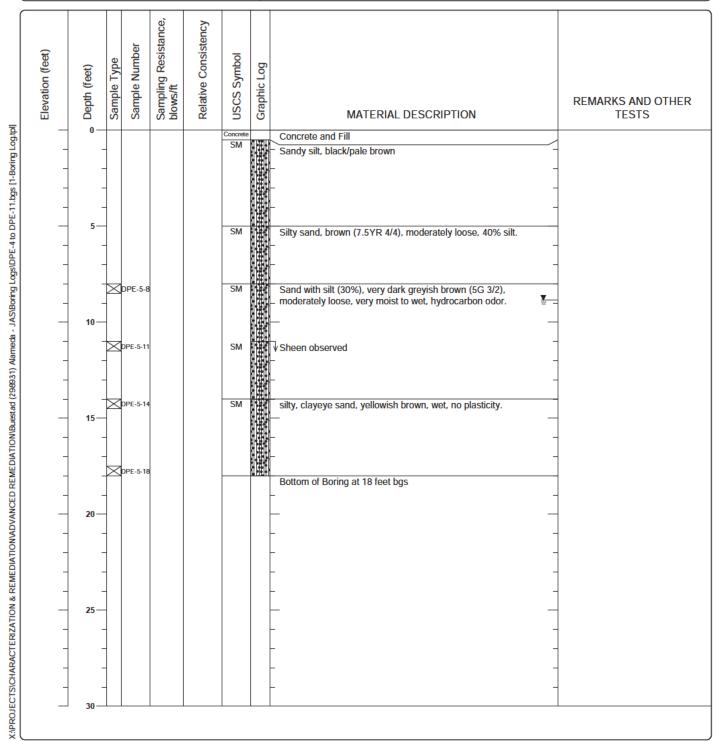


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-4

Date(s) Drilled January 19, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 17 feet bgs
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 9.12 feet measured on 1/23/12	Sampling Method(s) Direct-Push Sampler	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

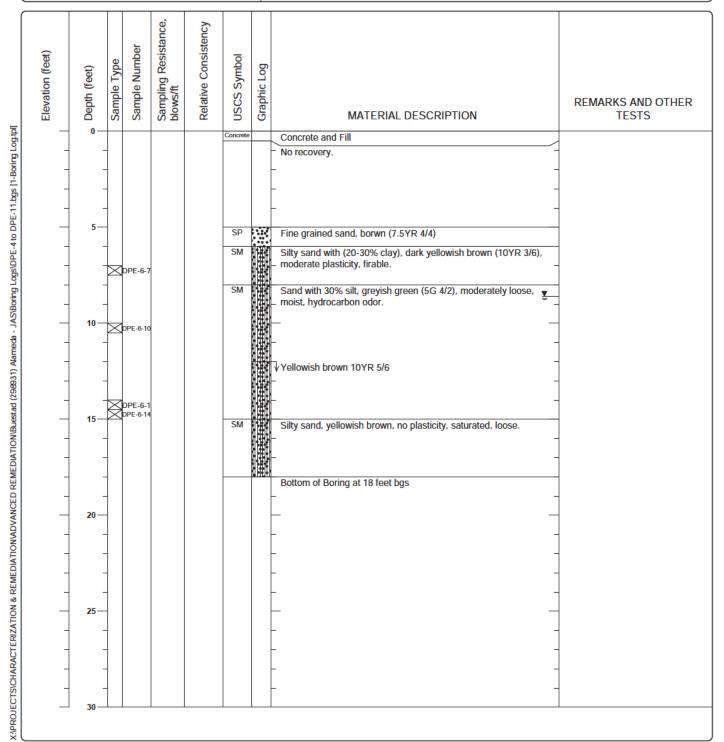


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-5

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.85 feet measured on 1/23/12	Sampling Method(s) Direct-Push Sampler	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

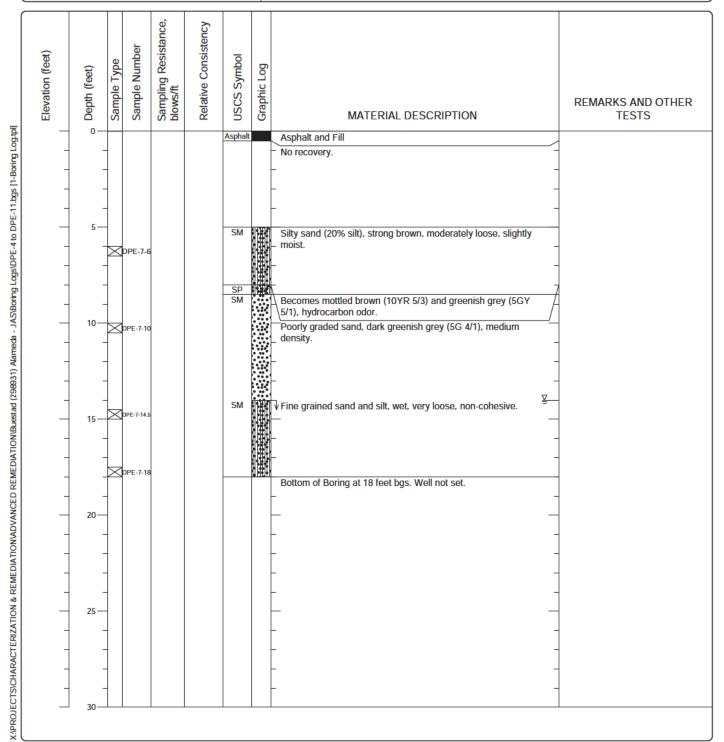


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-6

Date(s) Drilled January 19, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.59 feet measured on 1/23/12	Sampling Method(s) Direct-Push Sampler	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

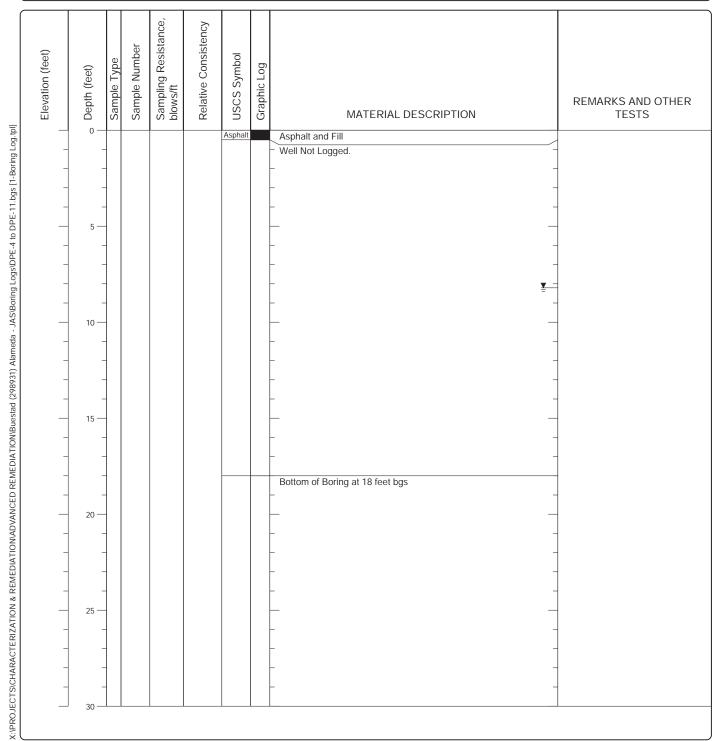


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-7

Date(s) Drilled January 19, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 5T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 14 feet ATD	Sampling Method(s) Direct-Push Sampler	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

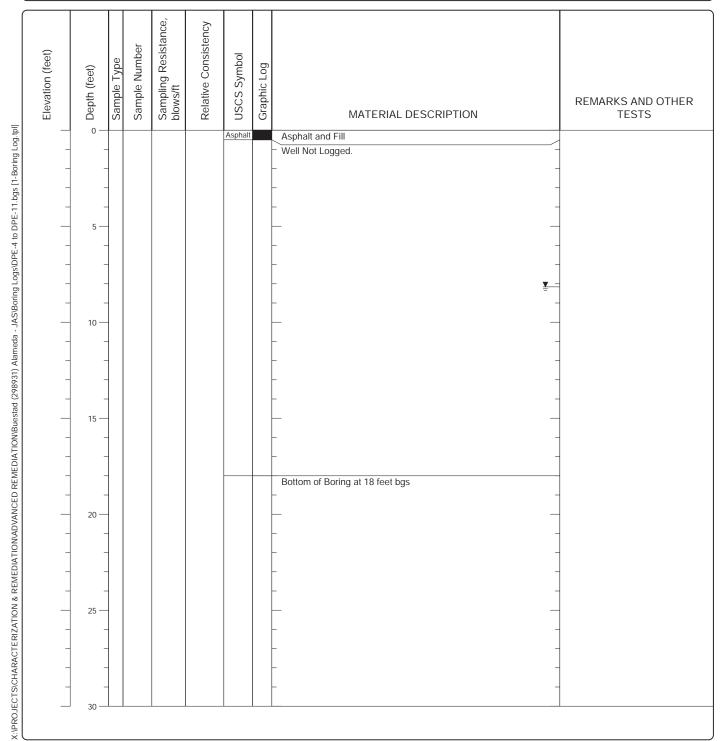


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-8

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.21 feet measured on 1/23/12	Sampling Method(s)	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

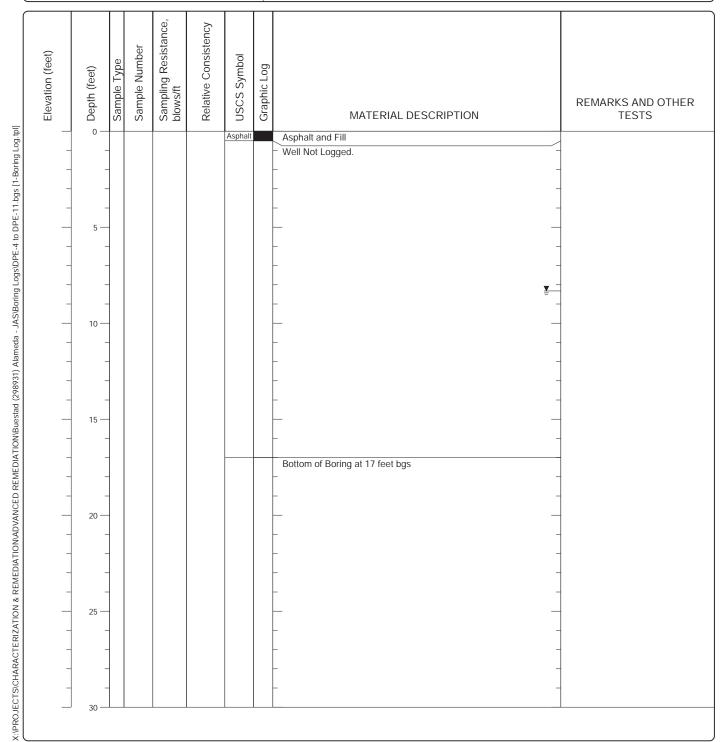


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-9

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.16 feet measured on 1/23/12	Sampling Method(s)	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

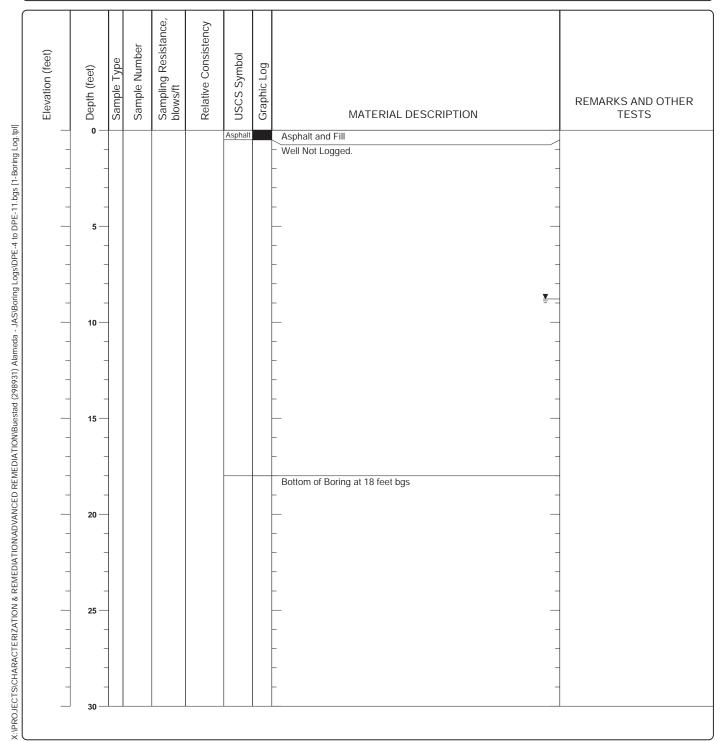


Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-10

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 17 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.32 feet measured on 1/23/12	Sampling Method(s)	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	



Project Location: 1630 Park Street, Alameda, California

Project Number: 298931

Log of Boring DPE-11

Date(s) Drilled January 20, 2012	Logged By Harmony Tomsun	Checked By Bryan Campbell
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 10 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type MARL 10T	Drilling Contractor Gregg Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 8.79 feet measured on 1/23/12	Sampling Method(s)	Hammer Data W2012-0055
Borehole Backfill Well Completion	Location 1630 Park Street, Alameda, California	

