

GOOD CHEVROLET

1630 Park Street • Phone 510/522-9221 ALAMEDA, CA 94501

January 4, 2006 🗸

ENVIRONMENTAL HEALTH SERVICES

Amir K. Gholami, RESHS Hazardous Material Specialist Alameda County Health Care Services Agency **Environmental Protection** 1131 Harbor Bay Parkway Alameda, CA 94502-6577

Re: RO0000008 Good Chevrolet - 1630 Park St., Alameda

Dear Mr. Gholami:

Enclosed is a copy of our most recent ground monitoring report, which was prepared by Geo Plexus, Inc. Geo Plexus has provided service for our site since 1994. However, after receiving your inquiry, I tried to contact them by telephone and fax, and found their numbers were no longer in service.

all, in my last conversation with Cathrene Glick, I asked her to proceed with obtaining a closure of the site with a deed restriction. I am sending a copy of this letter and your inquiry to Geo Plexus, in the hope that it will be forwarded, and that they will complete the information requested by you.

We would like to close this site with a deed restriction. If you do not hear from Geo Plexus, please advise me on how we should proceed with the closure of our site.

Thank you for your assistance in this matter.

Sincerely yours,

GOOD CHEVROLET 6 Chm Stuart

Jo Ann Stewart Secretary

JKS:is Enclosure

Cc: Geo Plexus

Geo Plexus, Inc.

Health & Safety Training • Geo/Environmental Personnel • Engineering Geology Consultants • Environmental Management Consultants June~27,~2003

Ms. Jo Ann Stewart General Manager Good Chevrolet 1630 Park Street Alameda, California 94501

Subject: June, 2003 Ground Water Monitoring Report for

Good Chevrolet, 1630 Park Street, Alameda, CA

Dear Ms. Stewart:

Geo Plexus, Incorporated is pleased to present this June, 2003 Ground Water Monitoring Report to further support site closure.

The monitoring wells continue to exhibit low to moderate concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (Benzene, Toluene, Ethyl Benzene, and Xylene) suggesting that the source of these compounds is the former underground storage tanks. However, the concentrations reduce significantly with distance from the source area and there is no detectable presence of MTBE in the ground water.

One copy of this Report should be forwarded to:

Mes Eva Chu A Leda County Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

It has been a pleasure to be of service to you on this project. Questions or comments regarding the attached Report should be addressed to the undersigned.

Respectfully submitted,

Geo Plexis, Incorporated

Cathrene Diane Glick, CEG 1338, HG 32

Director, Geologic and Environmental Services

REGEIVED

٨

JAN 6 2006

ENVIRONMENTAL HEALTH SERVICES

Health & Safety Training • Geo/Environmental Personnel • Engineering Geology Consultants • Environmental Management Consultants

JUNE, 2003 GROUND WATER MONITORING REPORT

FOR

GOOD CHEVROLET

1630 PARK STREET, ALAMEDA, CA

Prepared for:

Good Chevrolet 1630 Park Street Alameda, California 94501

June 27, 2003

JUNE, 2003 GROUND WATER MONITORING REPORT FOR GOOD CHEVROLET 1630 PARK STREET, ALAMEDA, CA

1.0 SITE DATA REVIEW

The project site is an automobile dealership and service center located at 1630 Park Street in the City of Alameda, in Alameda County, California as indicated on Figure 1.

A 300 gallon waste oil storage tank and a 500 gallon underground gasoline storage tank were reportedly removed from the property by Petroleum Engineering, Inc. in October, 1986. A subsurface investigation including installation of three ground water monitoring wells (see Figure 2) was performed by Groundwater Technology, Inc. in January, 1987 (Groundwater Technology, Inc. Report Dated April 29, 1987). The three monitoring wells were monitored to evaluate the ground water conditions and to establish the direction(s) of ground water flow at the project site. The monitoring determined that the direction of flow beneath the site varies from a northwesterly direction to a northeasterly direction throughout the year. The quarterly sampling has also detected Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds at various concentrations throughout the year.

A supplemental investigation was performed by Geo Plexus which included advancing 7 soil borings across the parking area of the property (see Figure 2). This investigation identified high concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (Benzene, Tolue, Ethyl Benzene, and Xylene) in the immediate vicinity of the former underground storage tanks at depths of 5-12 feet below the ground surface. The borings identified concentrations of Total Petroleum Hydrocarbons as gasoline as high as 15,000 parts per million (ppm) decreasing to 1,000 ppm within 30-feet from the former tanks (lateral direction) and decreasing to 1,800 ppm at the down-gradient property boundary.

Two additional ground water monitoring wells were installed by Geo Plexus in April, 1994 to further characterize the down-gradient water conditions. The findings of the initial ground water samples indicated a significant increase in concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds down-gradient of the property. The ground water levels recorded to date reflect fluctuations ranging from 3 to 13 feet below the ground surface and indicate that ground water generally flows in a northwest direction.

A Remedial Investigation was performed by Geo Plexus in April, 1997 which included advancing eight (8) subsurface exploratory geo-probes at locations which were immediately "up-", "down", and "cross-gradient" from the former underground storage tanks (see Figure 3). Grab ground water samples were also obtained from the probes for analytical testing.

The findings of the investigation indicated that gasoline contaminated soil remain in-place at the project site and is confined to depths ranging from 7- to 11-feet below the ground surface and is of limited extent.

The concentrations of Benzene in the soil exceed the ASTM RBCA Tier-1 RBSL's for contaminant leaching to ground water and gas migration to indoor air. Similarly, the concentrations of Benzene in the ground water exceed the Tier-1 RBSL's for ground water ingestion and gas migration to indoor air; however, the concentrations are below the Tier-1 RBSL's for gas migration to outdoor air. It was concluded that the site conditions did not warrant active ground water remediation.

2.0 RISK ASSESSMENT INVESTIGATION

A Risk Assessment Investigation was performed in November, 1998 which included: advancing three (3) gas collection probes at the site to obtain soil gas measurements within and exterior to the existing building; collection of summa canister gas samples from each probe from depths of 3-feet; performing analytical testing of the air bag samples for gasoline, volatile aromatic, and volatile organic compounds; collection of ground water samples from the existing monitoring wells for analytical testing; performing analytical testing of the ground water samples for gasoline, volatile aromatic, and volatile organic compounds; and performing a Tier-II ASTM Risk-Based Corrective Action (RBCA) assessment for the project site.

Three (3) gas collection probes were advanced at the locations indicated on Figure 4 by Precision Sampling, a licensed C-57 drilling contractor. The probes were advanced using a portable pneumatic driven embly. Drilling and sampling equipment used for advancing the exploratory probes was thoroughly steam cleaned before and between each boring to prevent the introduction of off-site contamination and cross contamination between borings. Soil gas samples were obtained at depths of 3-feet below the ground surface through the use of summa canisters.

Analytical testing of the soil gas probe samples did not indicate the presence of significant volatile organic vapors within the upper 3-feet of soil at the "source area". This confirmed that, although some soil and ground water contaminants remains, the extent of off-gassing through the upper soils is very low and does not represent a significant health risk.

3.0 CURRENT GROUND WATER MONITORING

3.1 GRADIENT SURVEY

The elevation of the top of the casing of the monitoring wells at the site were established during previous investigations with reported vertical control of 0.01 foot. Ground water elevations were measured in each well to the nearest 0.01 foot with an electronic water level meter (prior to purging) to monitor the variations in the direction and gradient of ground water flow beneath the site.

Ground water elevations recorded (see Table 1) suggest that the ground water flow is to the northwest as indicated on Figure 5. The ground water gradient was determined to be 0.015 ft/ft (see Figure 5). The direction of ground water is consistent with previously observed flow directions.

3.2 MONITORING WELL SAMPLING

Free product measurements were obtained for each monitoring well at the time of sample acquisition utilizing a teflon bailer lowered into the well to obtain a water sample. The traffic/well box for MW-4 has been depressed into the pavement of Park Street and could not be accessed without jeopardizing the existing integrity of the well box. As such, the monitoring well was not sampled during this event. The bailer was used to collect a water sample to observe the presence of hydrocarbon odors, visible sheen, or free product. Free product or visible sheens were not observed in the water samples.

To evaluate the stabilized ground water conditions across the property established by the vapor extraction system, it was determined to comply with recent Regional Water Quality Control Board "No-Purge" guidelines, the wells were not purged and the ground water grab samples were collected from each well through the use of a dedicated teflon bailer. Water samples for analytical testing were obtained through the use of dedicated teflon bailers and were collected in sterilized glass vials with the con lined screw caps. The samples were immediately sealed in the vials and properly labeled including: the date, time, sample location, project number, and indication of any preservatives (HCl) added to the sample. The samples were placed on ice immediately for transport to the laboratory under chain-of-custody documentation.

3.3 GROUND WATER ANALYTICAL TESTING

The ground water samples were submitted to and tested by McCampbell Analytical, a State of California, Department of Health Services certified testing laboratory. Analytical testing was scheduled and performed in accordance with the State of California, Regional Water Quality Control Board, and Alameda County Department of Environmental Health guidelines. The samples were tested for the following:

- Total Petroleum Hydrocarbons as gasoline by RWQCB Method GCFID 5030/8015;
- Volatile Aromatics (BTEX) by EPA Method 8020/602;
- Fuel Oxygenates by EPA Method 8260; and
- EDB and EDC by EPA Method 8260.

The Chain-of-Custody Form and analytical test data are attached in Appendix A. Table 2 summarizes the current analytical test results for the monitoring well samples, along with the results of the previous analytical testing.

TABLE 1
SUMMARY OF DEPTH TO GROUND WATER DATA

	Jul- 89	Арг- 91	Jul- 92	Aug-	Sep-	Oct- 92	Nov- 92	Dec- 92	Jan- 93	Feb-	Mar- 93	Apr-	May-	Jul- 93
<u>DEPTH</u>										_				
MW-I	-8.93	-7.59	-8.72	-9.09	-9.25	-9.34	-9.21	-9.26	-7.81	-7.32	-7.20	-7.31	-8 29	-8 30
MW-2	-9.24	-8.01	-9.03	-9.34	-9.46	-9.52	-9.42	-9.47	-8.25	-7.85	-7.77	-7.86	-8 20	-8 72
MW-3												-8.02		
MW-4												0.02	7.05	0.00
MW-5														
ELEVATION														
MW-i	95.83	97.17	96.04	95.67	95.51	95.42	95.55	95.50	96.95	97.44	97.56	97.45	97.07	96.46
MW-2												97.00		
MW-3												96.50		
MW-4											, 0	, 0.00	× 0.23	J.J.07
MW-5														
	Oct- 93	Jan- 94	Apr- 94	Jul- 94	Oct- 94	Jan- 95	Apr- 95	Jan- 97	Nov- 98	Jan- 01	Jun- 02	Nov-		Jun- 03
DEPTH								,	,,,	VI	02	02	03	U.S
MW-I	-9.38	-8.80	-8.15	-8.70	-9.37	-7.18	-6.76	-7.03	-8.10	-7 70	-7 30	-8.14	-6.87	_7.05
MW-2												-8.50		
MW-3												-8.37		
MW-4						-8.88				0.00	-7.01	-0.57	-7.40	-7.07
MW-5									-8.12	-7.67	-7.61	-8.01	-7.22	-7.43
ELEVATION														
MW-1	95.22	95.74	96.61	96.06	95.39	97.58	98.00	97.73	96.66	97.06	97 46	96 62	97 89 (97 71
MW-2	95.20													
MW-3												96.15		
MW-4						95.98					, V., (I	, v. 1. J		70.03
MW-5			95.35											

TABLE 2 SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date <u>Sample</u>	Total Petroleum Hydrocarbons	Benzene	<u>Toluene</u>	Ethyl- <u>Benzene</u>	Total <u>Xylenes</u>	MTBE
Monitoring W	ell MW-1					
1-21-87 (1)	21,020	1,148	8,627	1,792	6,012	
1-11-89 ⁽¹⁾	1,400	74	10	13	5	
7-12-89 ⁽¹⁾	1,200	470	49	45	33	
4-09-91 ⁽²⁾	850	260	10	15	12	
7-14-92 ⁽³⁾	13,000	2,300	1,200	1,200	1,200	
10-7-92 ⁽³⁾	3,600	1,600	80	120	120	
1-11-93 (3)	1,200	410	16	23	19	
4-23-93 ⁽³⁾	2,200	720	180	82	150	
7-08-93 ⁽³⁾	3,200	1,200	110	97	100	
10-15-93 ⁽³⁾	3,700	1,400	43	94	36	
1-25-94 (3)	1,600	680	16	41	35	
4-28-94 ⁽³⁾	6,100	1,900	380	250	340	
7-27-94 ⁽³⁾	6,000	1,800	510	220	450	
10-27-94 ⁽³⁾	3,000	1,100	79	82	87	
1-26-95 (3)	1,600	660	100	82	87	
4-13-95 ⁽³⁾	3,800	1,200	270	120	260	
7-21-95 ⁽³⁾	5,200	1,500	450	190	400	
10-25-95 ⁽³⁾	5,900	1,800	450	210	400	
1-21-97 ⁽³⁾	3,100	1,100	87	160	180	ND<7.3
11-12-98 ⁽³⁾	1,000	280	3.0	3.3	7.9	ND<30
1-16-01 (3)	4,700	1,200	18	150	49	ND<5
$6-27-02^{(3)}$	5,900	230	7.7	ND<5	1,500	ND<5
11-18-02 (3)	3,100	890	12	310	28	ND<2.5
2-20-03 (3)	260	100	0.72	ND<5	ND<5	ND<2.5
6-11-03 ⁽³⁾	3,100	480	6.7	220	420	ND<2.5
Monitoring W	ell MW-2					
1-21-87 (1)	5,018	386	1,981	285	1,432	
1-11-89 ⁽¹⁾	10,000	3,000	410	240	190	
7-12-89 ⁽¹⁾	7,600	2,700	540	250	320	
4-09-91 ⁽²⁾	4,900	910	210	130	200	
7-14-92 ⁽³⁾	13,000	4,400	1,500	610	1,100	
10-7-92 ⁽³⁾	11,000	5,200	1,500	500	1,200	
1-11-93 ⁽³⁾	17,000	940	1,100	480	930	
4-23-93 ⁽³⁾	52,000	13,000	8,400	1,700	5,300	

TABLE 2 (cont'd) SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

						71111
Date	Total Petroleum			Ethyl-	Total	
Sample	Hydrocarbons	Benzene	<u>Toluene</u>	Benzene	Xylenes	MTBE
						
	ell MW-2 (cont'd)					
7-08-93 ⁽³⁾	6,400	2,500	470	280	530	
10-15-93 ⁽³⁾	17,000	3,900	870	500	940	
1-25-94 (3)	16,000	5,400	1,140	640	1,500	
4-28-94 ⁽³⁾	15,000	4,000	910	480	1,200	
7-27-94 ⁽³⁾	18,000	6,000	760	630	1,600	
10-27-94 ⁽³⁾	9,500	2,700	230	320	640	
1-26-95 ⁽³⁾	5,900	1,900	290	230	500	
4-13-95 ⁽³⁾	10,000	3,300	620	360	930	
7-21-95 ⁽³⁾	9,900	3,300	320	390	830	
10-25-95 ⁽³⁾	13,000	4,900	400	580	990	
1-21-97 (3)	7,600	2,600	310	330	660	ND<20
11-12-98 ⁽³⁾	31,000	11,000	750	1,500	2,300	ND<900
1-16-01 (3)	23,000	8,200	260	1,000	820	ND<30
6-27-02 (3)	39,000	7,000	1,800	690	4,000	ND<5
11-18-02 ⁽³⁾	15,000	5,700	76	1,000	150	ND<12
2-20-03 ⁽³⁾	26,000	6,300	1,100	1,300	1,900	ND<12
6-11-03 ⁽³⁾	37,000	7,100	2,300	2,000	3,600	ND<25
			•	•	,,,,,,	
Monitorium XX	. II NA NY 2					
Monitoring We		1.400	2.201			
1-21-87 ⁽¹⁾	10,287	1,428	3,281	610	2,761	
1-11-89 ⁽¹⁾	5,300	1,800	340	150	160	
7-12-89 ⁽¹⁾	7,800	3,100	900	300	480	
4-09-91 ⁽²⁾	9,400	1,400	730	200	510	
7-14-92 ⁽³⁾	17,000	3,500	390	390	260	
10-7-92 ⁽³⁾	9,200	4,300	470	390	610	
1-11-93 (3)	2,000	740	29	58	28	
4-23-93 ⁽³⁾	6,500	2,600	280	260	190	
7-08-93 (3)	5,200	2,100	260	250	180	
10-15-93 (3)	11,000	3,500	580	430	370	
1-25-94 (3)	6,200	2,500	270	160	28	
4-28-94 ⁽³⁾	5,300	1,700	190	210	180	
7-27-94 ⁽³⁾	5,900	2,000	360	260	330	
10-27-94 (3)	8,000	2,200	580	260	470	
1-26-95 (3)	3,700	1,200	150	150	190	
4-13-95 ⁽³⁾	4,000	1,400	200	180	210	

TABLE 2 (cont'd)
SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date <u>Sample</u>	Total Petroleum <u>Hydrocarbons</u>	<u>Benzene</u>	Toluene	Ethyl- Benzene	Total <u>Xylenes</u>	MTBE
Monitoring W	ell MW-3(cont'd)					
7-21-95 ⁽³⁾	5,700	2,000	280	270	280	
10-25-95 ⁽³⁾	11,000	3,500	1,100	460	680	
1-21-97 ⁽³⁾	2,200	860	63	71	80	ND
11-12-98 ⁽³⁾	180	44	0.51	ND	0.92	ND<20
1-16-01 (3)	64	11	0.77	ND	ND	ND<5
6-27-02 (3)	ND	ND	ND	ND	ND	ND<1
11-18-02 ⁽³⁾	110	21	1.0	ND	ND	ND<1
2-20-03 ⁽³⁾	ND	2.5	ND	ND	ND	ND<1
6-11-03 (3)	ND	ND	ND	ND	ND	ND<1
Monitoring W	all MW-A					
4-28-94 ⁽³⁾	190	3.8	2.9	2.1	3.1	
7-27-94 ⁽³⁾	180	15	9.2	7.6	28	
10-27-94 ⁽³⁾	130	8.6	6.6	4.5	17	
1-26-95 (3)	110	6.5	1.2	1.8	11	
4-13-95 ⁽³⁾	82	3.9	N.D.	N.D.	2.5	
7-21-95 ⁽³⁾	130	8.8	1.3	4.5	7.6	
10-25-95 ⁽³⁾	95	6.6	1.7	4.3	7.0	
1-21-97 (3)	not sampled	0.0	1		7.0	
11-12-98 (3)	not sampled					
1-16-01 (3)	not accessible	•				
6-27-02 (3)	not accessible					
11-18-02 (3)	not accessible					
2-20-03 (3))	not accessible					
6-11-03 (3)	not sampled					
Monitoring Wo						
4-28-94 ⁽³⁾	30,000	4,000	3,000	810	3,500	
7-27-94 ⁽³⁾	9,300	2,000	800	290	940	
10-27-94 (3)	15,000	2,700	1,300	420	1,100	
1-26-95 (3)	7,900	2,100	680	240	860	
4-13-95 ⁽³⁾	7,900	2,400	580	340	630	
7-21-95 ⁽³⁾	11,000	3,400	760	610	1,200	
10-25-95 ⁽³⁾	13,000	2,900	830	570	1,100	

TABLE 2 (cont'd)
SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date <u>Sample</u>	Total Petroleum <u>Hydrocarbons</u>	Benzene	enzene Toluene		Total <u>Xylenes</u>	MTBE
Monitoring W	ell MW-5(cont'd)					
1-21-97 (3)	2,600	750	65	1860	280	ND
11-12-98 ⁽³⁾	ND	2.2	ND	ND	ND	ND
1-16-01 ⁽³⁾	ND	11	ND	ND	0.82	ND<5
$6-27-02^{(3)}$	ND	ND	ND	ND	ND	ND<1
11-18-02 ⁽³⁾	130	17	3.8	2.1	16	ND<1
2-20-03 ⁽³⁾	ND	5.6	0.51	ND	0.68	ND<1
6-11-03 ⁽³⁾	170	48	ND	ND	1.40	ND<1

Note: (1) Concentrations reported by Groundwater Technology, Inc.

(2) Concentrations reported by Environmental Science & Engineering, Inc.

(3) Samples obtained and reported by Geo Plexus, Inc.

Figures 6 and 7 percentation distribution maps for Total Petroleum Hydrocarbons as gasoline and Benzene, respectively.

7.0 SUMMARY OF FINDINGS

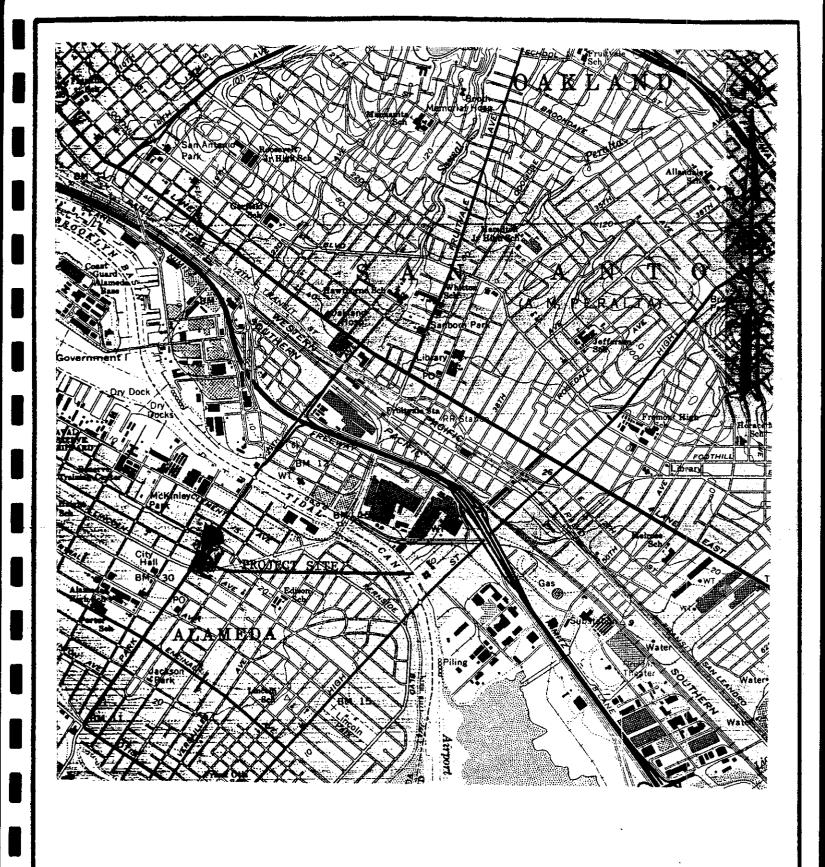
The analytical test data from the previous investigation activities indicate that low to moderate concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (BTEX) remain in the soil in the immediate vicinity of the former tanks; however, the extent of soil contamination is limited. There is no significant presence of MTBE in the soil. The highest concentrations of gasoline were detected in Borings EB-9, 10, and 11 which are located downgradient of the former tanks and dispenser pump. The remaining samples indicate that the soil contamination extends in a radial pattern (cross- and down-gradient) from the former tank area.

The monitoring wells continue to exhibit low to moderate concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (Benzene, Toluene, Ethyl Benzene, and Xylene) suggesting that the source of these compounds is the former underground storage tanks. However, the concentrations reduce significantly with distance from the source area and there is no detectable presence of MTBE in the ground water.

LIMITATIONS

This report has been prepared for the exclusive use of Good Chevrolet and their authorized representatives. No reliance on this report shall be made by anyone other than the client for whom it was prepared.

We have only observed a small portion of the pertinent subsurface and ground water conditions present at the site. The conclusions and recommendations made herein are based on the assumption that subsurface and ground water conditions do not deviate appreciably from those described in the reports and observed during the field investigation.

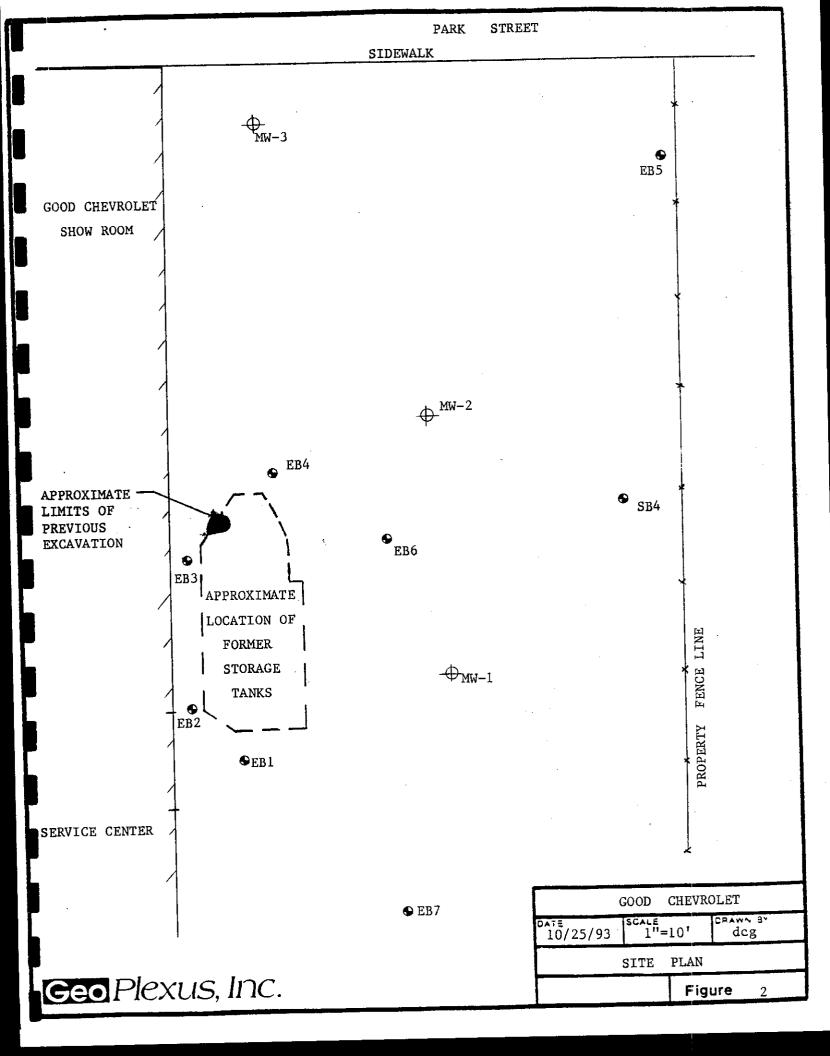

This report provides neither certification nor guarantee that the property is free of hazardous substance contamination.

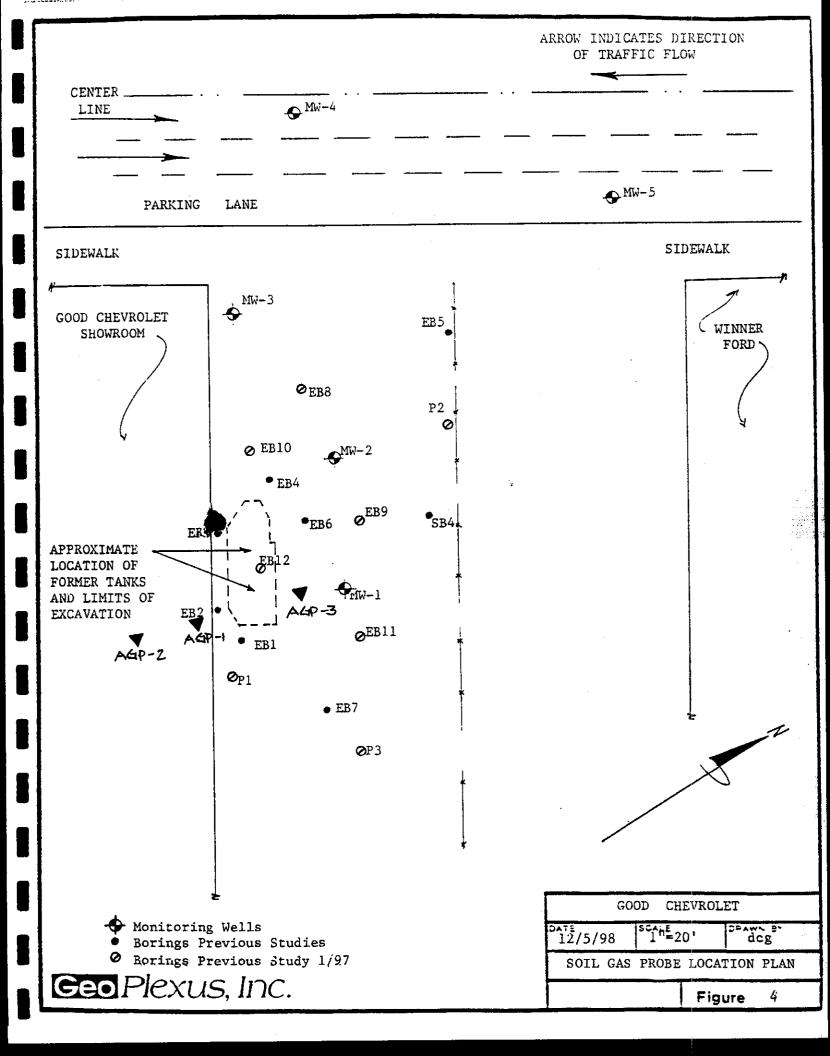
Geo Plexus, Incorporated provides consulting services in the fields of Geology and Engineering Geology performed in accordance with presently accepted professional practices. Professional judgments presented herein are based partly on information obtained from review of published documents, partly on evaluations of the technical information gathered, and partly on general experience in the fields of geology and engineering geology.

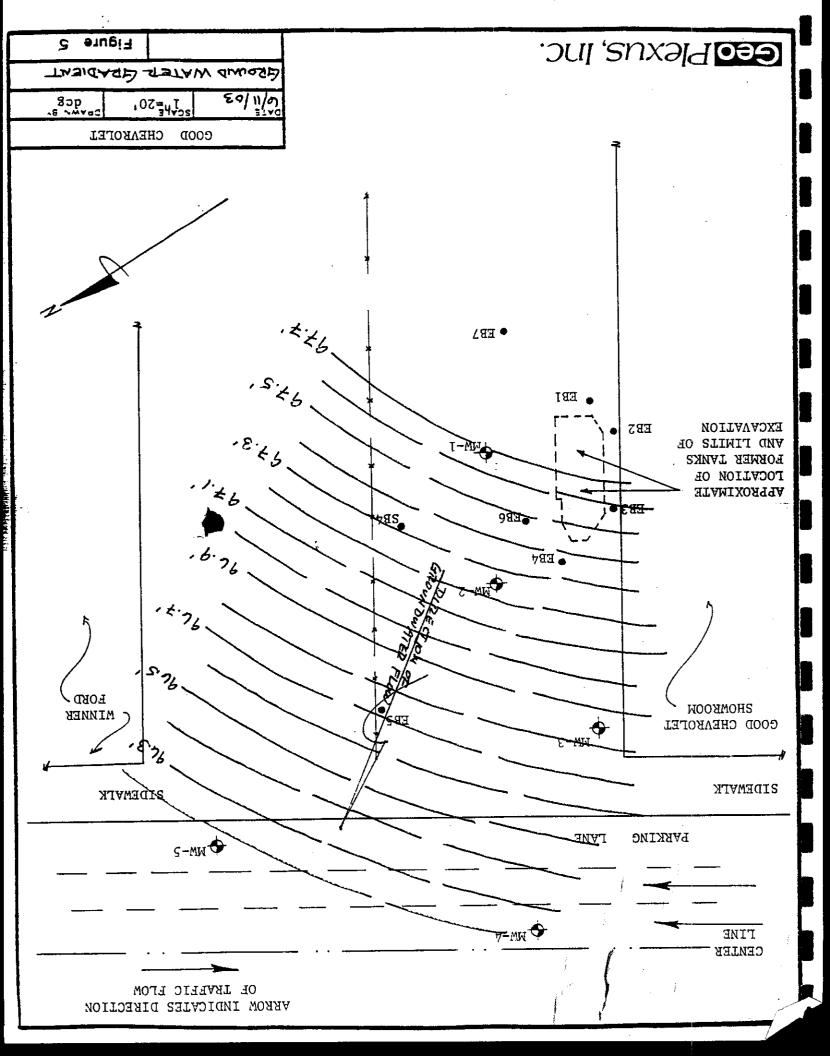
No attempt was made to verify the accuracy of the published information prepared by others used in preparation or this assessment report.

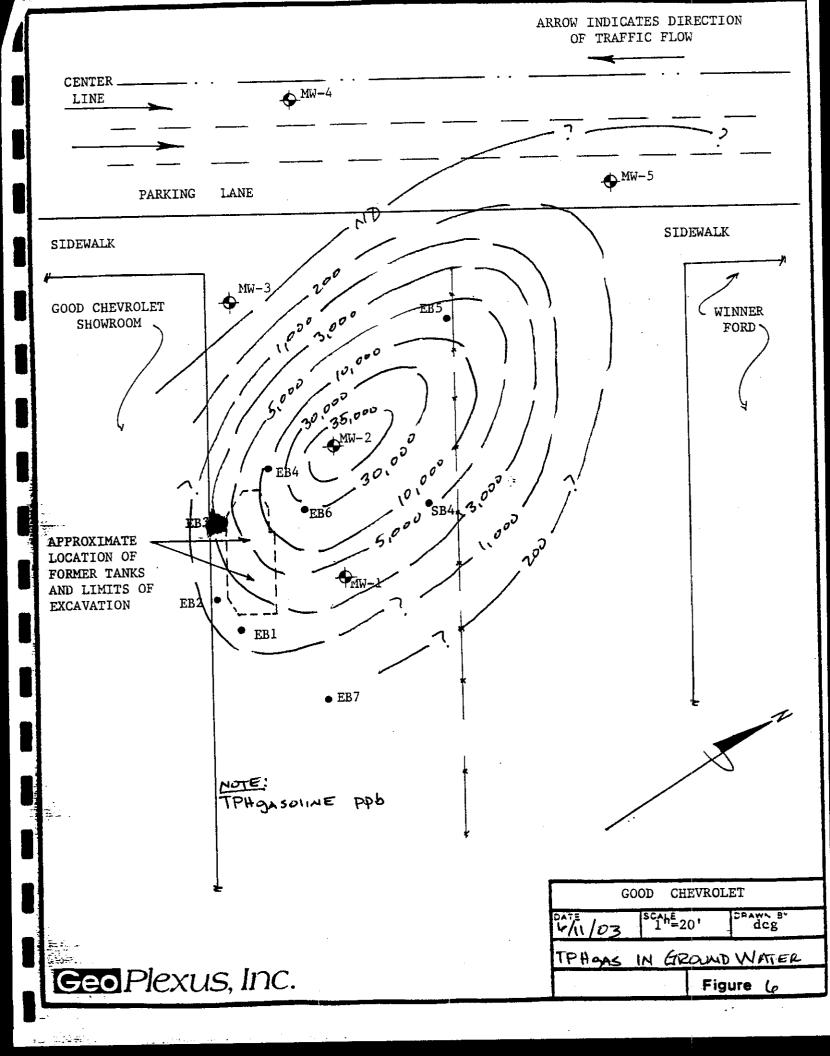
If you have questions regarding the findings, conclusions, or recommendations contained in this report, please contact us. We appreciate the opportunity to serve you.

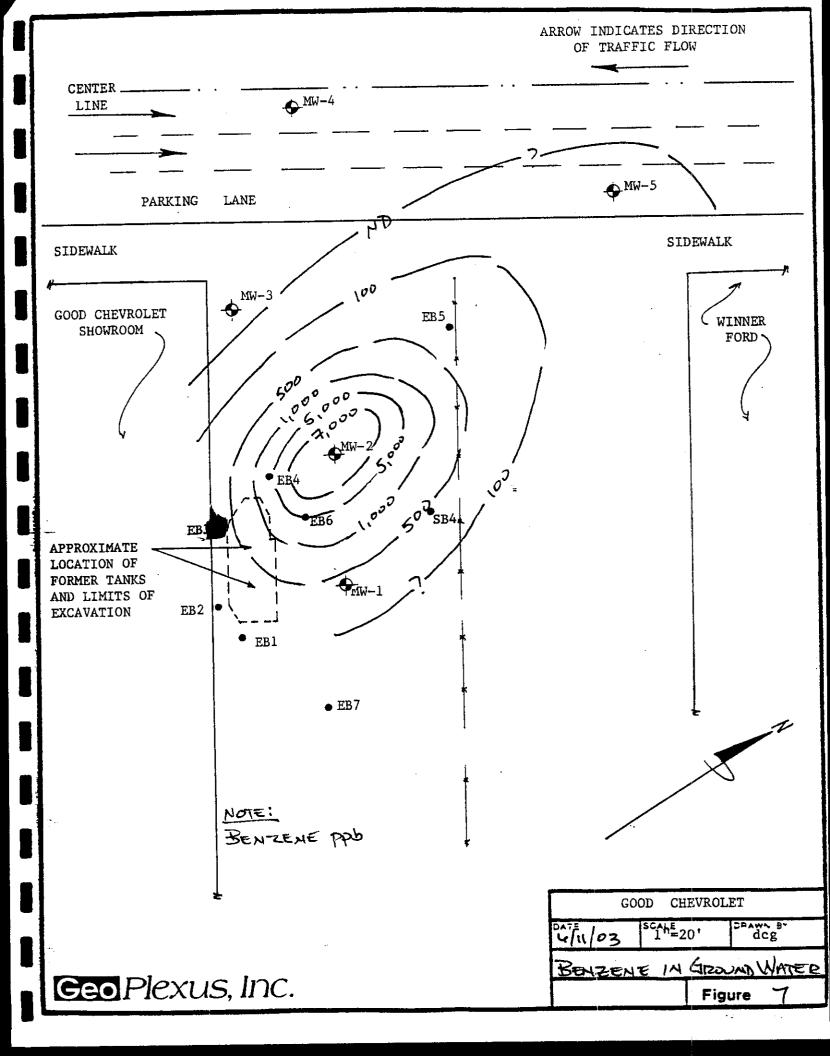
Geo Plexus, Incorporated


GOOD CHEVROLET


DATE SCALE DRAWN BY 10-9-92 1"=2000' dog


LOCATION MAP


Figure 1


Geo Plexus, Inc.

APPENDIX A

CHAIN-OF-CUSTODY FORM AND ANALYTICAL TEST DATA

*Geo Plexus, Inc.

CHAIN-OF-CUSTODY

1908 Wyste Drive, Spise 1, Senta Clara, California 95054

Phone 408/987-0710 Feet 408/988-0815

PROJECT NUMBER		PROJECT NA		ural.	T, Alaundo	=0		Type o	f Analysis	\		
Send Report Att		ick	1	port Du	1 1	of	Type	5 BZ	120ch		Eondition of	Initial
Sample Number	Date	Time	Comp	Greb	Section Locati	cntnrs en	Containers	104	3 6 2 7	87	Samples	
Mw-1	41/03	1040			weter	3	VOA			}		
2		1110										<u> </u>
3		1125		ļ 								
5	V	1055			V	V	V	\geq			/	
							*					
					[]	277.14						
					1040 Nexor	metale (otega	1					
	OD CONT.	S T	1 # 27°	IAIN.								
			111	_								
Relinquished by	(Signature)	Date/Time	Rece	ved by	Sulph	Date/Time	Remarks:	pl3	preserval	infield -		
Rel jagui shed by	(Signature)	Onte/Time	Ť	ived by	(Signeture)	Date/Time		·	·		ARE	
Relinquished by	:(Signature)	Date/Time	Rece	ived by	(Signature)	Date/Time	N	brust	TAT		540.00 D	

McCampbell Analytical Inc.

110 2nd Avenus South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

GEO Plexus, Inc.	Client Project ID: Good Chevrolet,	Date Sampled: 06/11/03		
683 McCarty Avenue	Alameda CA	Date Received: 06/16/03		
74 C4 04041	Client Contact: Cathrene Glick	Date Extracted: 06/18/03-06/23/03		
Mountain View, CA 94041	Client P.O.:	Date Analyzed: 06/18/03-06/23/03		

Extraction :	Gaso method: SW50301				nethods: SW80211	3/8015Cm		Work	order: 03	06331
Lah ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	w	3100,a	ND<50	480	6.7	220	420	10	95.2
002A	MW-2	W	37,000,a	ND<500	7100	2300	2000	3600	100	90.0
003A	MW-3	w	ND	ND	ND	ND	ND	ND	1	99.4
004A	MW-5	W	170,a	ND<10	48	ND	ND	1.4	1	108
				1					<u> </u>	;
- T									<u> </u>	!
į		į			1	! !				1
:										
						,				
										
	· · · · · · · · · · · · · · · · · · ·		- <u> </u>							
				1		!				
1										
				:						
								<u></u>		
Penorin	Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/I

water and vapor samples are reported in µg/L, soil and sludge samples in mg/kg, wipe samples in µg/wipe, and TCLP extracts in µg/L.

NΑ

cluttered chromatogram; sample peak coelutes with surrogate peak.

NA

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical:s not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

NA

NA

NA

DHS Certification No. 1644

ND means not detected at or

above the reporting limit

Angela Rydelius, Lab Manager

NA

ì

mg/Kg

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: mam@mccampbell.com

GEO Plexus, Inc.	Client Project ID: Good Chevrolet,	Date Sampled: 06/11/03					
683 McCarty Avenue	Alameda CA	Date Received: 06/16/03					
003 NICCARY AVERAGE	Client Contact: Cathrene Glick	Date Extracted: 06/16/03					
Mountain View, CA 94041	Client P.O.:	Date Analyzed: 06/20/03					
	5 C. Land Martin Edition 1.2 Dilbummarkhane 1.2	Dichloroothane *					

Methyl tert-Butyl Ether, 1,2-D	oromoethane, 1,2-Dichloroethane	ŵ
--------------------------------	---------------------------------	---

erraetion mati	bod: SW5030H		Analytic	cal methods: SW8260B	W.	ork Order.	0306331
Lab ID	Client ID	Matrix	1,2-Dibromoethane (EDB)	1,2-Dichloroethane (1,2-DCA)	Methyl-t-butyl ether (MTBE)	DF	% SS
001B	MW-I	W	ND<2.5,j	ND<2.5	ND<2.5	5	105
002B	MW-2	w	ND<25,j	ND<25	ND<25	50	103
003B	MW-3	w	ND	ND	ND	1	103
004B	MW-5	W	ND	ND	ND	1	110
		· ·					
		-	:				-
	<u> </u>	_					
		<u>.</u>					
					A.		
			-				
			!			-	-
		-				-	-
		-	i				
Reporting	Limit for DF =1;	w	0.5	0.5	0.5	1	ıg/L
ND means	not detected at or reporting limit		NA	NA	NA	n	g/Kg

Reporting Limit for DF =1;	W	0.5	0.5	0.5	hB/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	mg/Kg
above and appearing tallet			in the second design of the second	e in unite wine samples in un	ovine

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid camples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheet/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.