

Health & Safety Training • Geo/Environmental Personnel • Engineering Geology Consultants • Environmental Management Consultants

PRELIMINARY REMEDIAL RISK ASSESSMENT FOR GOOD CHEVROLET 1630 PARK STREET, ALAMEDA, CA

Prepared for:

Good Chevrolet 1630 Park Street Alameda, California 94501

December 18, 1998

PRELIMINARY REMEDIAL RISK ASSESSMENT FOR GOOD CHEVROLET 1630 PARK STREET, ALAMEDA, CA

1.0 SITE DATA REVIEW

The project site is an automobile dealership and service center located at 1630 Park Street in the City of Alameda, in Alameda County, California as indicated on Figure 1.

A 300 gallon waste oil storage tank and a 500 gallon underground gasoline storage tank were reportedly removed from the property by Petroleum Engineering, Inc. in October, 1986. A subsurface investigation including installation of three ground water monitoring wells (see Figure 2) was performed by Groundwater Technology, Inc. in January, 1987 (Groundwater Technology, Inc. Report Dated April 29, 1987).

The three monitoring wells have been monitored to evaluate the ground water conditions and to establish the direction(s) of ground water flow at the project site. The monitoring determined that the direction of flow beneath the site varies from a northwesterly direction to a northeasterly direction throughout the year. The quarterly sampling has also detected Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds at various concentrations throughout the year.

A supplemental investigation was performed by Geo Plexus which included advancing 7 soil borings across the parking area of the property (see Figure 2). This investigation identified high concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (Benzene, Toluene, Ethyl Benzene, and Xylene) in the immediate vicinity of the former underground storage tanks at depths of 5-12 feet below the ground surface. The borings identified concentrations of Total Petroleum Hydrocarbons as gasoline as high as 15,000 parts per million (ppm) decreasing to 1,000 ppm within 30-feet from the former tanks (lateral direction) and decreasing to 1,800 ppm at the down-gradient property boundary.

Two additional ground water monitoring wells were installed by Geo Plexus in April, 1994 to further characterize the down-gradient water conditions. The findings of the initial ground water samples indicated a significant increase in concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds down-gradient of the property.

The ground water levels recorded to date reflect fluctuations ranging from 3 to 13 feet below the ground surface and indicate that ground water generally flows in a northwest direction.

A Remedial Investigation was performed by Geo Plexus in April, 1997 which included advancing eight (8) subsurface exploratory geo-probes at locations which were immediately "up-", "down", and "cross-gradient" from the former underground storage tanks (see Figure 3). Grab ground water samples were also obtained from the probes for analytical testing.

The findings of the investigation indicated that gasoline contaminated soil remain in-place at the project site and is confined to depths ranging from 7- to 11-feet below the ground surface and is of limited extent.

The concentrations of Benzene in the soil exceed the ASTM RBCA Tier-1 RBSL's for contaminant leaching to ground water and gas migration to indoor air. Similarly, the concentrations of Benzene in the ground water exceed the Tier-1 RBSL's for ground water ingestion and gas migration to indoor air; however, the concentrations are below the Tier-1 RBSL's for gas migration to outdoor air. It was concluded that the site conditions did not warrant active ground water remediation.

2.0 SCOPE OF RISK ASSESSMENT INVESTIGATION

The scope of work for the current investigation action included:

- (1) advancing three (3) gas collection probes at the site to obtain soil gas measurements within and exterior to the existing building;
- (2) collection of summa canister gas samples from each probe from depths of 3-feet;
- (3) performing analytical testing of the air bag samples for gasoline, volatile aromatic, and volatile organic compounds;
- (4) collection of ground water samples from the existing monitoring wells for analytical testing;
- (5) performing analytical testing of the ground water samples for gasoline, volatile aromatic, and volatile organic compounds; and
- (6) performing a Tier-II ASTM Risk-Based Corrective Action (RBCA) assessment for the project site.

3.0 FIELD INVESTIGATION ACTIVITIES

3.1 GAS COLLECTION PROBES

Three (3) gas collection probes were advanced at the locations indicated on Figure 4 by Precision Sampling, a licensed C-57 drilling contractor. The probes were advanced using a portable pneumatic drive assembly. Drilling and sampling equipment used for advancing the exploratory probes was thoroughly steam cleaned before and between each boring to prevent the introduction of off-site contamination and cross contamination between borings.

Soil gas samples were obtained at depths of 3-feet below the ground surface through the use of summa canisters. A teflon tube was affixed to the top of the gas probe and connected to a vacuum pump to purge the probe and tubing.

The summa canisters were verified for integrity prior to connection to the gas probe. After initial purging of the connecting tube, the valve on the summa canister was opened to allow the air sample to enter the canister. The valve was closed upon a reduction in canister vacuum to approximately 4-in. of Hg. and was then sealed. Each canister was properly labeled including: the date, time, sample location (boring number and depth interval), initial and final vacuum pressures, and project number. The samples were placed in a padded shipping container immediately for transport to the laboratory under chain-of-custody documentation.

The probes holes were grouted with a neat bentonite-cement slurry mixed at the project site.

3.2 SOIL GAS ANALYTICAL TESTING

The air samples were submitted to and tested by Air Toxics, Ltd., a State of California, Department of Health Services certified testing laboratory as directed by Alameda County personnel. Analytical testing was scheduled and performed in accordance with the State of California and Alameda County protocols. The samples were tested for:

- Total Petroleum Hydrocarbons as gasoline by EPA Method 10-3, and
- Volatile Aromatics (BTEX and MTBE) by EPA Method TO-31

The Chain-of-Custody Form and analytical test data are attached in Appendix A.

The analytical test data for the summa canister air samples are summarized on Table 1:

TABLE 1

GAS-PROBE AIR ANALYTICAL TEST DATA

	Total Petroleum			Ethyl-	Total	
<u>Sample</u>	Hydrocarbons	Benzene	<u>Toluene</u>	<u>Benzene</u>	Xylenes	MTBE
AGP-1	0.46*	0.012	0.030	0.0041	0.022	0.0058
AGP-2	0.73*	0.011	0.091	0.011	0.055	0.032
AGP-3	0.42*	ND	0.045	0.013	0.020	0.014

Notes: Concentrations reported as Parts Per Million (ppmv).

* Analytical Laboratory Blank Sample Contained Benzene at 0.017 ppmv ND indicates that concentrations below detection limit.

4.0 GROUND WATER MONITORING WELL SAMPLING

4.1 GRADIENT SURVEY

The elevation of the top of the casing of the monitoring wells at the site were established during previous investigations with reported vertical control of 0.01 foot. Ground water elevations were measured in each well to the nearest 0.01 foot with an electronic water level meter (prior to purging) to monitor the variations in the direction and gradient of ground water flow beneath the site.

Ground water elevations recorded suggest that the ground water flow is to the northwest as indicated on Figure 5. The ground water gradient was determined to be 0.013 ft/ft (see Figure 5). The direction of ground water is consistent with previously observed flow directions.

4.2 MONITORING WELL SAMPLING

Free product measurements were obtained for each monitoring well at the time of sample acquisition utilizing a teflon bailer lowered into the well to obtain a water sample. Due to very high traffic flow, Monitoring Well MW-4, located in the center of Park Street, was not sampled during this event. The bailer was used to collect a water sample to observe the presence of hydrocarbon odors, visible sheen, or free product. Free product or visible sheens were not observed in the water samples.

To evaluate the stabilized ground water conditions across the property established by the vapor extraction system, it was determined to comply with recent Regional Water Quality Control Board "No-Purge" guidelines, the wells were not purged and the ground water grab samples were collected from each well through the use of a dedicated teflon bailer.

Water samples for analytical testing were obtained through the use of dedicated teflon bailers and were collected in sterilized glass vials with Teflon lined screw caps. The samples were immediately sealed in the vials and properly labeled including: the date, time, sample location, project number, and indication of any preservatives (HCl) added to the sample. The samples were placed on ice immediately for transport to the laboratory under chain-of-custody documentation.

4.3 GROUND WATER ANALYTICAL TESTING

The ground water samples were submitted to and tested by McCampbell Analytical, a State of California, Department of Health Services certified testing laboratory. Analytical testing was scheduled and performed in accordance with the State of California, Regional Water Quality Control Board, and Alameda County Department of Environmental Health guidelines. The samples were tested for the following:

- Total Petroleum Hydrocarbons as gasoline by Method GCFID 5030/8015; and
- Volatile Aromatics (BTEX and MTBE) by EPA Method 8020.

The Chain-of-Custody Form and analytical test data are attached in Appendix B.

Table 2 summarizes the current analytical test results for the monitoring well samples, along with the results of the previous analytical testing.

TABLE 2
SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date Sample	Total Petroleum <u>Hydrocarbons</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>Benzene</u>	Total <u>Xylenes</u>	<u>MTBE</u>
Monitoring W 1-21-87 (1)	21,020	1,148	8,627	1,792	6,012	
		74	10	1,792	5	
1-11-89 ⁽¹⁾	1,400	74 470	49	45	33	
7-12-89 ⁽¹⁾ 4-09-91 ⁽²⁾	1,200 850	260	10	15	33 12	
				1,200	1,200	
7-14-92 ⁽³⁾	13,000	2,300	1,200	1,200	1,200	
10-7-92 (3)	3,600	1,600	80	23	120	
1-11-93 (3)	1,200	410	16	23 82	150	
4-23-93 ⁽³⁾	2,200	720	180	82 97	100	
7-08-93 ⁽³⁾	3,200	1,200	110			
10-15-93 ⁽³⁾	3,700	1,400	43	94	36	
1-25-94 (3)	1,600	680	16	41	35	
4-28-94 ⁽³⁾	6,100	1,900	380	250	340	
7-27-94 ⁽³⁾	6,000	1,800	510	220	450	
10-27-94 (3)	3,000	1,100	79	82	87	
1-26-95 (3)	1,600	660	100	82	87	
4-13-95 ⁽³⁾	3,800	1,200	270	120	260	
7-21-95 ⁽³⁾	5,200	1,500	450	190	400	
10-25-95 ⁽³⁾	5,900	1,800	450	210	400	
1-21-97 ⁽³⁾	3,100	1,100	87	160	180	ND<7.3
11-12-98 ⁽³⁾	1,000	280	3.0	3.3	7.9	ND<30
Monitoring W	Vell MW-2					
1-21-87 (1)	5,018	386	1,981	285	1,432	
1-11-89 ⁽¹⁾	10,000	3,000	410	240	190	
7-12-89 ⁽¹⁾	7,600	2,700	540	250	320	
4-09-91 ⁽²⁾	4,900	910	210	130	200	
7-14-92 ⁽³⁾	13,000	4,400	1,500	610	1,100	
10-7-92 ⁽³⁾	11,000	5,200	1,500	500	1,200	
1-11 - 93 ⁽³⁾	17,000	940	1,100	480	930	
4-23-93 ⁽³⁾	52,000	13,000	8,400	1,700	5,300	
7-08-93 ⁽³⁾	6,400	2,500	470	280	530	
10-15-93 ⁽³⁾	17,000	3,900	870	500	940	

TABLE 2 (cont'd)
SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date <u>Sample</u>	Total Petroleum Hydrocarbons	· Benzene	<u>Toluene</u>	Ethyl- Benzene	Total Xylenes	MTBE
	ell MW-2 (cont'd)					-,
1-25-94 (3)	16,000	5,400	1,140	640	1,500	
4-28-94 ⁽³⁾	15,000	4,000	, 910	480	1,200	
7 - 27-94 ⁽³⁾	18,000	6,000	760	630	1,600	at anima
10-27 - 94 ⁽³⁾	9,500	2,700	230	320	640	
1 - 26-95 ⁽³⁾	5,900	1,900	290	230	500	2 pm
4-13-95 ⁽³⁾	10,000	3,300	620	360	930	The same was a second
7-21-95 ⁽³⁾	9,900	3,300	320	390	830	A AWARDA C. TANK
10-25-95 ⁽³⁾	13,000	4,900	400	580	990	market and the second
1-21-97 ⁽³⁾	7,600	2,600	310	330	660	ND<20
11-12-98 ⁽³⁾	31,000	11,000	750	1,500	2,300	ND<900
Monitoring W	/ell MW-3					
1-21-87 (1)	10,287	1,428	3,281	610	2,761	
1-11-89 (1)	5,300	1,800	340	150	160	
7-12 - 89 ⁽¹⁾	7,800	3,100	900	300	480	
4-09-91 ⁽²⁾	9,400	1,400	730	200	510	
7-14-92 ⁽³⁾	17,000	3,500	390	390	260	
10-7-92 ⁽³⁾	9,200	4,300	470	390	610	
1-11-93 ⁽³⁾	2,000	740	29	58	28	
4-23-93 ⁽³⁾	6,500	2,600	280	260	190	
7-08-93 ⁽³⁾	5,200	2,100	260	250	180	1
10-15 - 93 ⁽³⁾	11,000	3,500	580	430	370	1
1-25-94 ⁽³⁾	6,200	2,500	270	160	28	
4-28-94 (3)	5,300	1,700	190	210	180	
7-27-94 ⁽³⁾	5,900	2,000	360	260	330	
10-27-94 ⁽³⁾	8,000	2,200	580	260	470	
1-26-95 ⁽³⁾	3,700	1,200	150	150	190	
4-13-95 ⁽³⁾	4,000	1,400	200	180	210	
7-21-95 ⁽³⁾	5,700	2,000	280	270	280	
10-25-95 ⁽³⁾	11,000	3,500	1,100	460	680	
1-21-97 (3)	2,200	860	63	71	80	ND
11-12-98 (3)	180	44	0.51	ND	0.92	ND<20

TABLE 3 (cont'd)
SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date <u>Sample</u> Monitoring W	Total Petroleum Hydrocarbons	Benzene	Toluene	Ethyl- Benzene	Total <u>Xylenes</u>	MTBE
4-28-94 (3)	190	3.8	2.9	2.1	3.1	
		15	9.2	7.6	28	
7-27-94 ⁽³⁾	180					
10-27-94 (3)	130	8.6	6.6	4.5	17	
1-26-95 ⁽³⁾	110	6.5	1.2	1.8	11	
4-13-95 ⁽³⁾	82	3.9	N.D.	N.D.	2.5	
7-21-95 ⁽³⁾	130	8.8	1.3	4.5	7.6	
10-25-95 ⁽³⁾	95	6.6	1.7	4.3	7.0	
1-21-97 ⁽³⁾	not sampled					
11-12-98 (3)	not sampled					
Monitoring W	ell MW-5					
4-28-94 ⁽³⁾	30,000	4,000	3,000	810	3,500	
7-27-94 ⁽³⁾	9,300	2,000	800	290	940	
10-27-94 ⁽³⁾	15,000	2,700	1,300	420	1,100	
1-26-95 ⁽³⁾	7,900	2,100	680	240	860	
4-13-95 ⁽³⁾	7,900	2,400	580	340	630	
7-21-95 ⁽³⁾	11,000	3,400	760	610	1,200	
10-25-95 ⁽³⁾	13,000	2,900	830	570	1,100	
1-21-97 ⁽³⁾	2,600	750	65	1860	280	ND
11-12-98 ⁽³⁾	ND	2.2	ND	ND	ND	ND

Note: (1) Concentrations reported by Groundwater Technology, Inc.

- (2) Concentrations reported by Environmental Science & Engineering, Inc.
- (3) Samples obtained and reported by Geo Plexus, Inc.

Figures 6 and 7 indicate the concentration distribution maps for Total Petroleum Hydrocarbons as gasoline and Benzene, respectively.

5.0 REMEDIAL ACTION THRESHOLD CRITERIA

Various agencies have published criteria and guidelines related to investigation and remediation of soil and ground water contaminated with petroleum compounds. This section addresses the documents and guidelines which were considered applicable to the project site and addresses the technical approach used to develop evaluation criteria for the project site.

The following standards and/or guidelines were used to evaluate the known site conditions and to assist in determining the threshold limits:

- •State of California Leaking Underground Fuel Tank Field Manual

 This document provides regulatory agencies with guidelines in dealing with leaking fuel tank problems. The manual is intended to assist in assessing fuel leaks, by providing a framework for determining required investigation of sites and of cleanup levels, of screening sites, and for determining remedial actions. It provides general guidance, and is not a standard or specific guideline.
- •State of California Regional Water Quality Control Board Tri-Regional Guidelines
 These documents present recommendations for the initial investigation of
 Underground Storage Tank (UST) releases and tank removal processes. The
 reports describe fuel leak indicators, and present the requirements for site
 investigations (soil and ground water).
- •California Code of Regulations Title 22

 Presents environmental health standards for the classification and management of hazardous waste. The document also establishes drinking water standards, waste treatment standards, and threshold limit concentrations for hazardous materials.
- •Resource Conservation and Recovery Act
 Provides framework for federal regulation of hazardous waste and controls the
 generations, transportation, treatment, storage, and disposal of hazardous waste.
 RCRA established the "cradle to grave" aspect of hazardous waste management
 and disposal.
- •ASTM E-1739-95 Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites

Provides a decision making process for the assessment and response to subsurface (soil and ground water) contamination based on risk to human health and environmental resources. The Risk-Based Corrective Action (RBCA) process recognizes the variability in complexity, physical and chemical characteristics and risk to human health and environmental resources of sites and utilizes a tiered approach to match appropriate assessments and remedial activities in consideration of more cost-effective remedial action.

•EPA SW846

Provides sampling and analytical testing methodology for solid waste.

•Federal OSHA and CAL OSHA guidelines

Documents provide guidelines, standards, and regulations to protect workers from occupational hazards, including mandating training in various aspects of hazardous materials handling and exposure.

•NIOSH and ACGIH Threshold Limit Values

Documents present published information on health effects and standards or guidelines for protection of workers from exposure to various chemicals and compounds.

6.0 EVALUATION OF APPLICABLE CRITERIA

The principal guidance document applicable to estimating the human health and environmental risk of site contaminants is the ASTM Risk-Based Corrective Action (RBCA) document. The ASTM-RBCA document outlines general assessment criteria based on the risk of exposure to the contaminated soil (by off-gassing and/or direct contact), by the potential for contaminants to leach to the ground water, by off-gassing from ground water, and from ground water ingestion.

6.1 SITE-SPECIFIC EVALUATION CRITERIA

Although the Tri-Regional Guidelines and State of California Drinking Water Standards have been used a standard for petroleum hydrocarbon clean-up activities throughout the San Francisco Bay Area, the ASTM-RBCA criteria provide a conservative level of assurance that potential risks have been mitigated. Using the ASTM-RBCA approach, the following site conditions and assumptions were used to assess the project site:

- (1) the project site is a commercial/industrial land use site and is surrounded by commercial and industrial properties;
- (2) the site is planned for continued commercial/industrial use and is not anticipated to be developed in the future for residential use;
- (3) ground water is at a depth of 8- to 13-feet below the ground surface;
- (4) the existing soil contamination does not extend beneath the existing building;
- (5) the ground water contaminant plume is located beneath paved open space areas and does not extend beneath the existing building; and
- (6) domestic ground water wells do not exist within 500-feet from the property.

Based on the above factors, use of a commercial cancer risk of 1 x 10⁻⁴ as outlined in the ASTM-RBCA document is considered to be conservative and applicable for the development of petroleum related evaluation levels for the project site. The risk-based analysis required establishing Tier-II Evaluation Risk-Based Site Specific Threshold Levels (SSTL's) for the contaminants of concern.

but 8,5 to 12.5' bas is belown GW elevation

should all onsite mus be used for resco?

To asses the potential health risk of the project site, a Tier II Risk Based Corrective Action analysis was performed in accordance with the procedures presented in ASTM E 1739-95 using a commercially available, automated process known as "Tier 2 RBCA Tool Kit" published by Groundwater Services, Inc. using a "commercial" health risk of 1 x 10⁻⁴ as established and included the petroleum constituents known to be present. The results of the analysis are included as Appendix C.

6.2 REPRESENTATIVE DATA SELECTION

The soil contaminant data set was derived from the previous soil borings/geoprobes EB-9, EB-10, EB-11, and EB-12 to represent the "source area" at a depth of 8.5- to 12.5-feet. The contaminant concentrations were averaged from each sample for each individual constituent. The actual values used for the soil are presented on Input Screen 7 in Appendix C.

Similarly, the ground water contaminant data set was derived from averaging the last five (5) sample events for Monitoring Well MW-2 (also to represent the "source area"). The actual values used for the ground water are also presented on Input Screen 7 in Appendix C.

6.3 SITE-SPECIFIC DATA SET RESULTS

The analysis did not identify the shallow soils (less than 3-feet) to be a source of contaminant risk for: (1) soil contaminant leaching to the underlying ground water resources, or (2) for dermal contact or ingestion with the soil.

The analysis indicated that the concentrations of Benzene and MTBE in the subsurface soils (below 3-feet) represented a risk for impacting the underlying ground water and that the concentrations of Benzene and Ethylbenzene in the subsurface soils represented a risk for generation of gas to indoor air.

The analysis further indicated that the concentrations of Benzene present in the ground water exceed the SSTL's for drinking water and for generation of gas to indoor air.

7.0 SUMMARY OF FINDINGS

The analytical test data from previous investigation activities indicate that low to moderate concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (BTEX) remain in the soil in the immediate vicinity of the former tanks; however, the extent of soil contamination is limited. There is no significant presence of MTBE in the soil. The highest concentrations of gasoline were detected in Borings EB-9, 10, and 11 which are located downgradient of the former tanks and dispenser pump. The remaining samples indicate that the soil contamination extends in a radial pattern (cross- and down-gradient) from the former tank area.

There values can be for 600 vegos to author ain.
Whereas SV data can be compared w/ RWACK deaff #5.
for 600 vagos to indoor an

The monitoring wells continue to exhibit low to moderate concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (Benzene, Toluene, Ethyl Benzene, and Xylene) suggesting that the source of these compounds is the former underground storage tanks. However, the concentrations reduce significantly with distance from the source area and there is no detectable presence of MTBE in the ground water.

The concentrations of Benzene in the soil exceed the Tier-II SSTL's for contaminant leaching to ground water and gas migration to indoor air; however, the concentrations are not significantly elevated from the SSTL's (less than one order of magnitude difference). Furthermore, the contaminant area is located beneath paved parking areas and not located beneath structures. It is our opinion that the concentrations and extent of contaminants present do not warrant soil remediation.

The concentrations of Benzene in the ground water exceed the Tier-II SSTL's for ground water ingestion and gas migration to indoor air; however, the shallow ground water is not used for human consumption and that there are no buildings existing or planned within the boundaries of the plume. Noting that the concentrations of Benzene are below the Tier-II SSTL's for gas migration to outdoor air, the two previous exposure pathways are of limited concern for the site conditions and ground water remediation is not warranted.

The analytical testing of the soil gas probe samples did not indicate the presence of significant volatile organic vapors within the upper 3-feet of soil at the "source area". This confirms that, although there is some soil and ground water contaminants remaining, the extent of off-gassing through the upper soils is very low and does not represent a significant health risk.

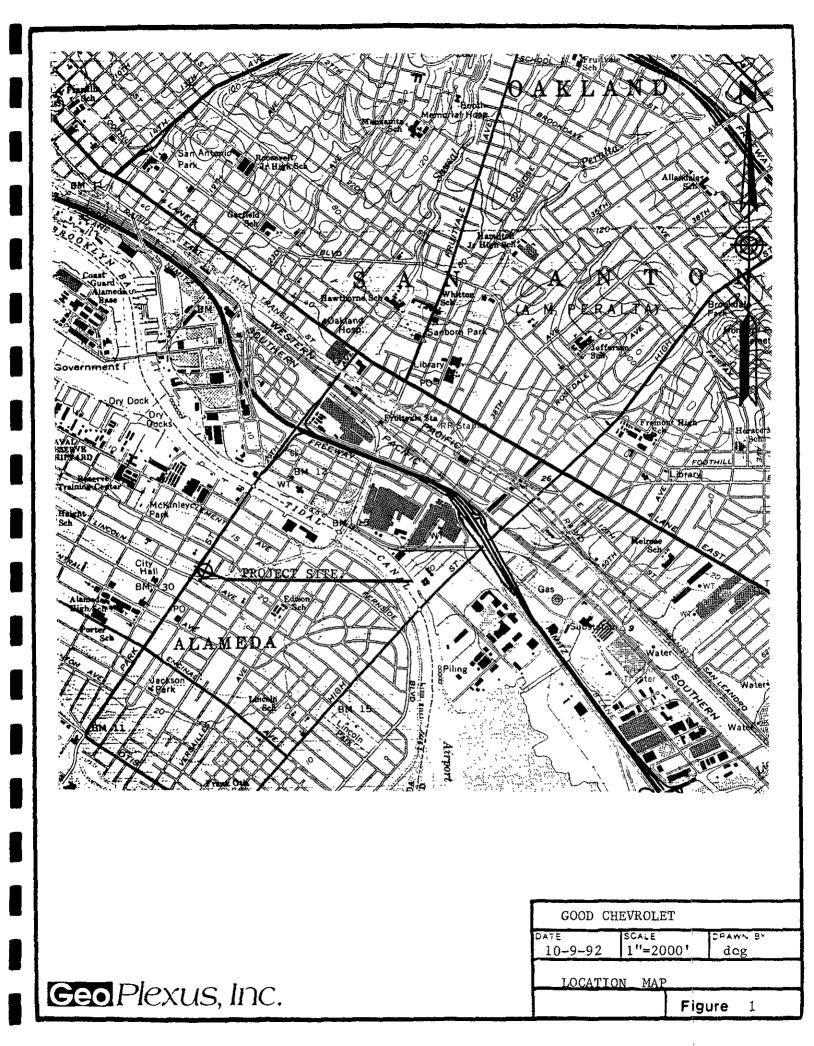
RECOMMENDATIONS

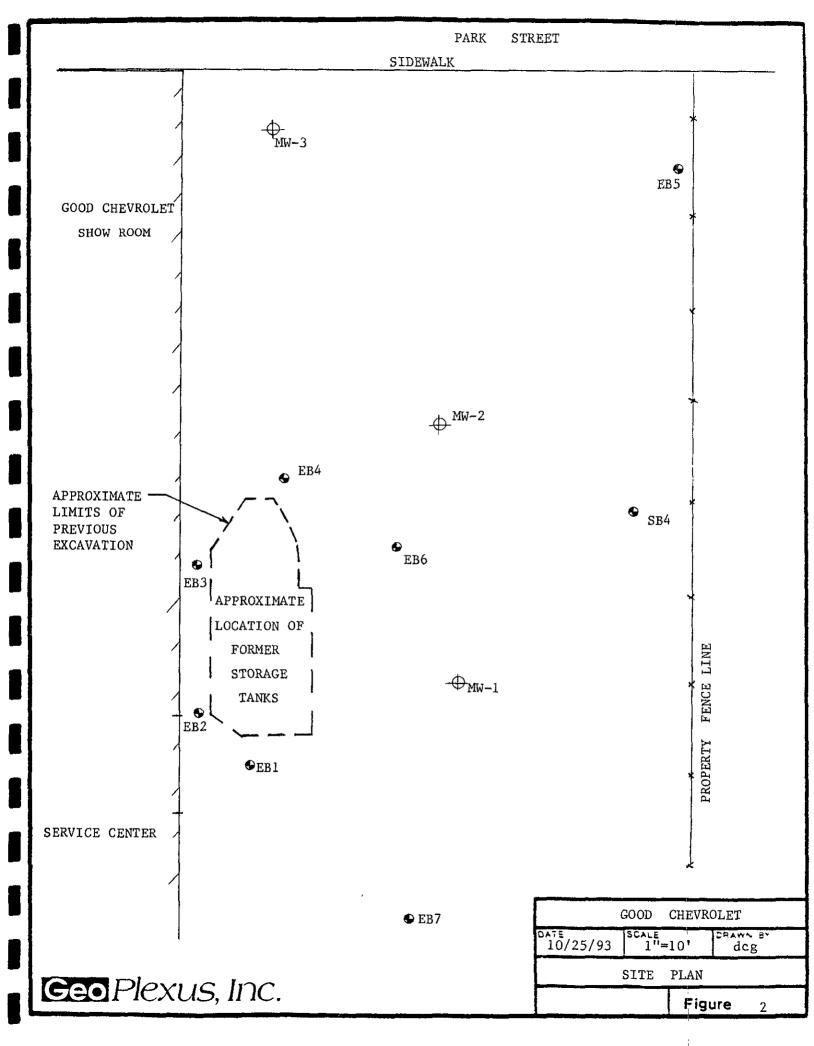
It is our opinion that the project site should be considered for closure as a "low risk" site without further investigation or remediation.

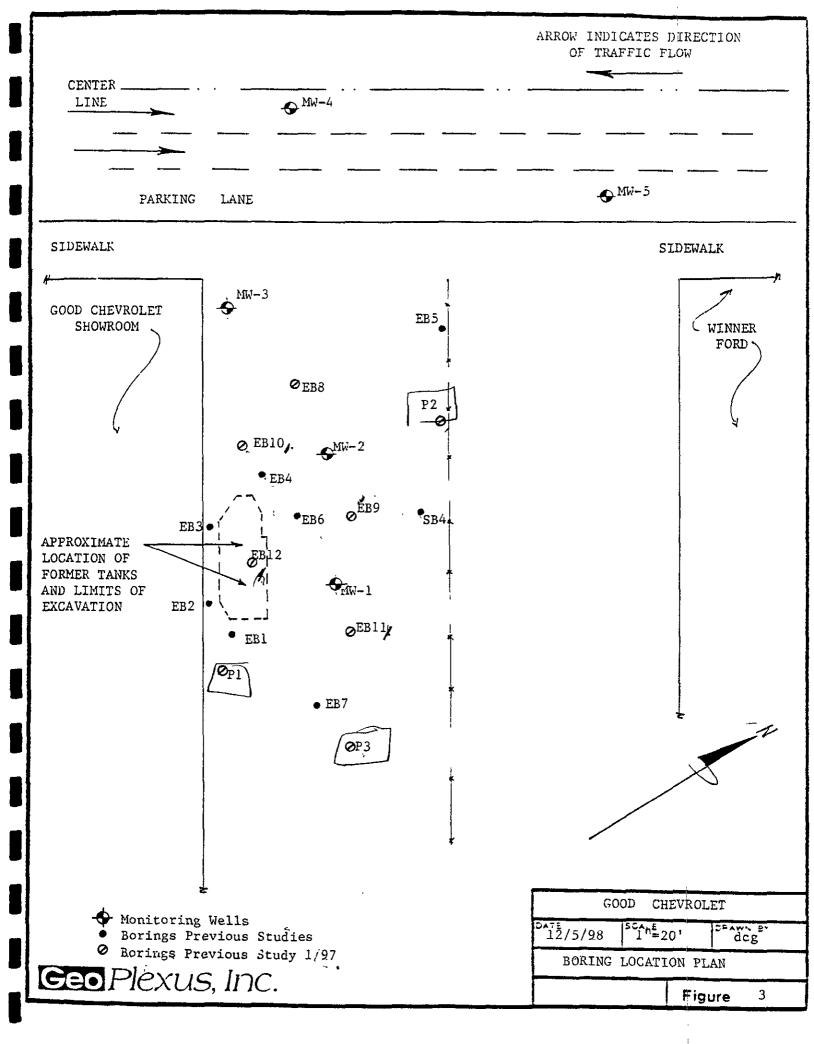
LIMITATIONS

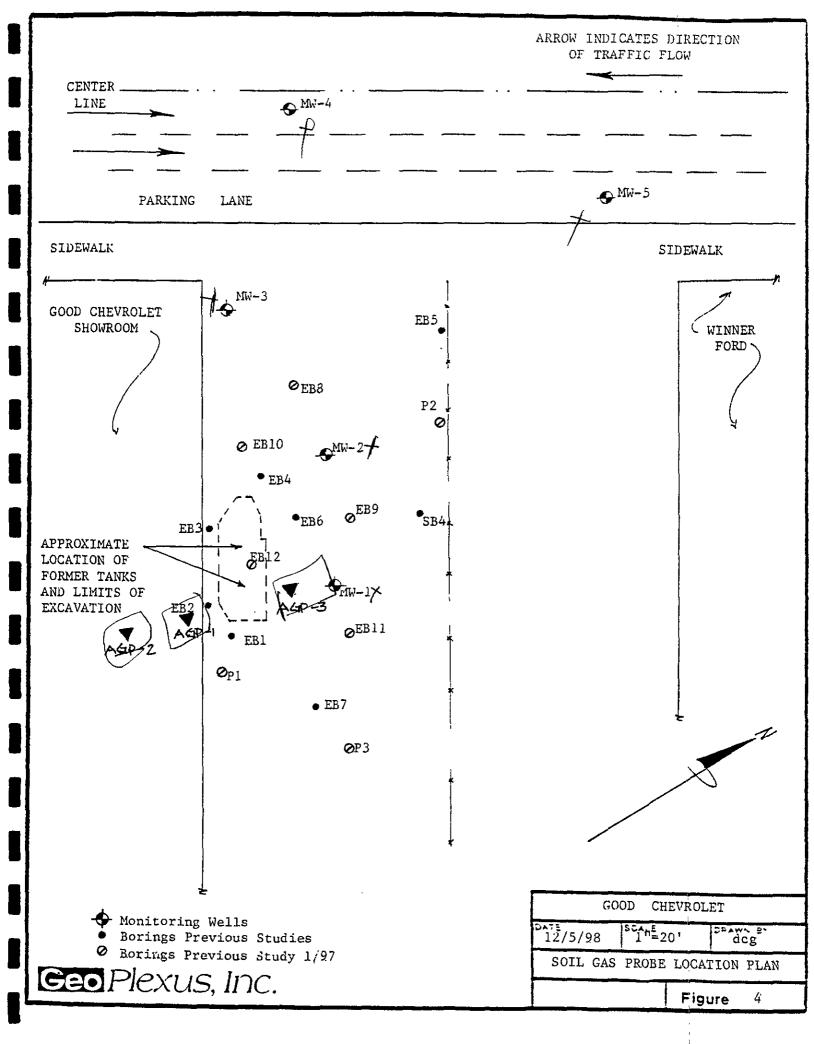
This report has been prepared for the exclusive use of Good Chevrolet and their authorized representatives. No reliance on this report shall be made by anyone other than the client for whom it was prepared.

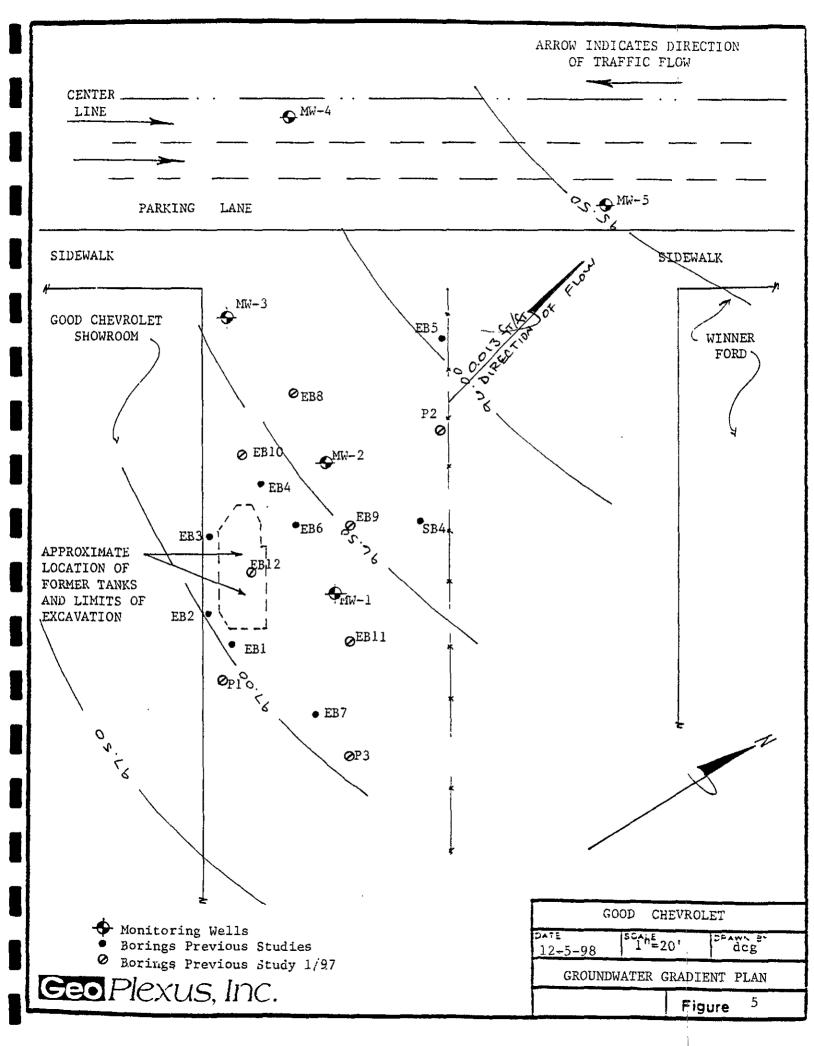
We have only observed a small portion of the pertinent subsurface and ground water conditions present at the site. The conclusions and recommendations made herein are based on the assumption that subsurface and ground water conditions do not deviate appreciably from those described in the reports and observed during the field investigation.

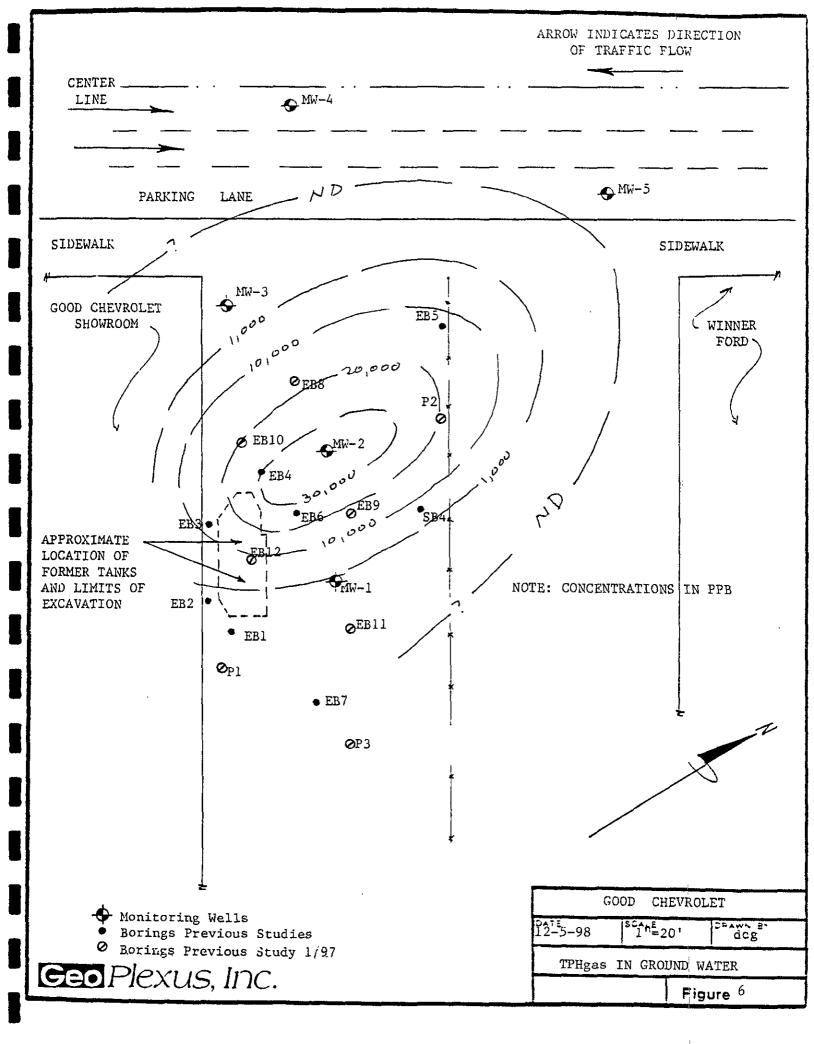

This report provides neither certification nor guarantee that the property is free of hazardous substance contamination.

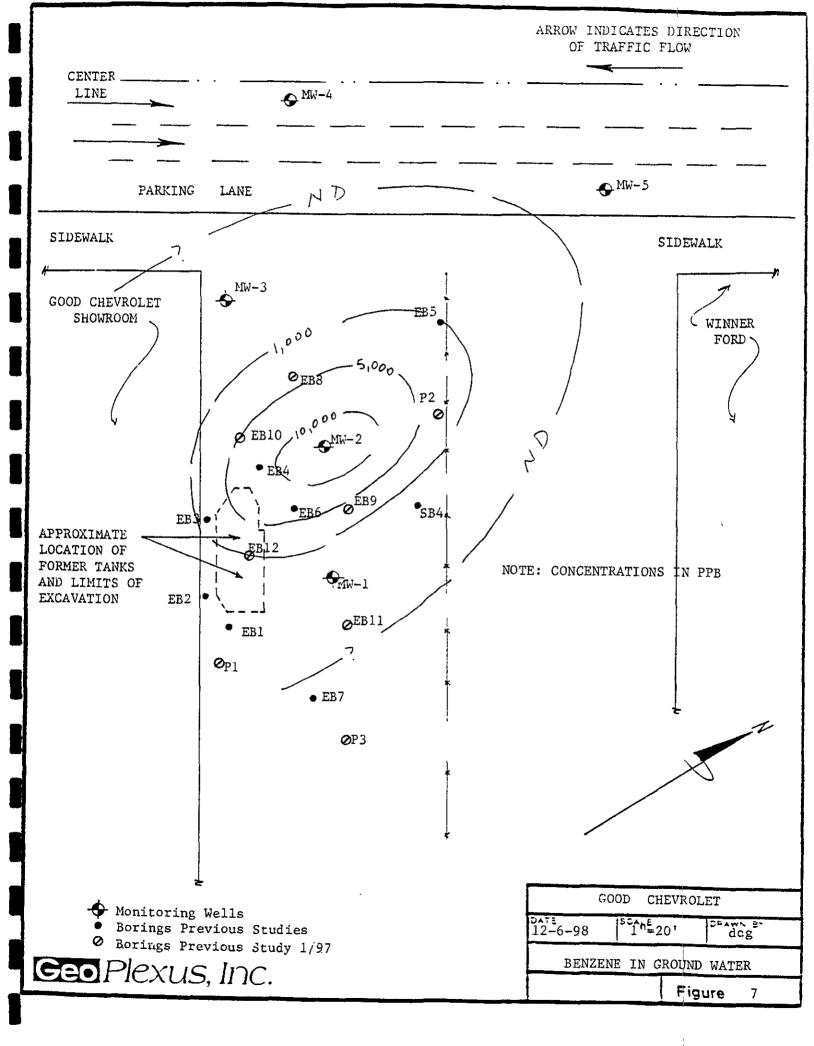

Geo Plexus, Incorporated provides consulting services in the fields of Geology and Engineering Geology performed in accordance with presently accepted professional practices. Professional judgments presented herein are based partly on information obtained from review of published documents, partly on evaluations of the technical information gathered, and partly on general experience in the fields of geology and engineering geology.


No attempt was made to verify the accuracy of the published information prepared by others used in preparation of this assessment report.


If you have questions regarding the findings, conclusions, or recommendations contained in this report, please contact us. We appreciate the opportunity to serve you.


Geo Plexus, Incorporated





APPENDIX A

CHAIN-OF-CUSTODY FORM AND ANALYTICAL TEST DATA

Geo Plexus, inc.

CHAIN-OF-C U98 11 243

1900 Wyatt Drive, Suite 1, Santa Clara, California 9505 Phone 408/987-0210 Fax 408/988-0815

									<u> </u>						
PR	ROJECT NUMBER		PROJECT HA	ME		1			র্ম স	e of Analysis	6	1149	五		
Se	93013	ntion of:		Re	port Du	e { Verbal Du	e Number	Туре	575			٤ ا	<u> </u>	Condition	
C	MHREN	IE A	Lick		, ,	, ,	of	of	15			22	75 7	of	Initial
	ample Number	Date	Time	Сопр	Grab	Station Locati		Containers	加			127	125	Samples	
1 AZ	4P1 1018 4P2 2365	1/12/98	948		/	GVS PROBI	3 A Ica	1 LTD SUMMA CONSTEAL				27.5		4.5.5	٠,
NA	APZ 1		955		/	AM PROBE	1 1		14			27.5	-	20.5145	
NAZ	4P3	1	1010		/	GA3 POOL	300	1	V			28.5		24.5 42	150
					, 				<u> </u>			ļ 	 		
				! !	 				1-1						
·				<u> </u>	 						 				
					<u> </u> 							-			
												_			
	•	?													
			 									_			
	111			l Bass		(Signature)	Date/Time	Remarks:							
-1/	.77 #4"41 1 . 7.	Kli	11/18	-				VEINGI VS.	<u> </u>	ANDM	D Y	U//	NTh	noung	•
Rei	linquished by:	6 ignature)	Date/Time	Rece	ived by	: (Signature)	Date/Time	<u> </u>	 						
Rel	tinquished by:(Signature)	Date/Time	1 11		(signature)	Date/Time 11/13/98	910		, 			····		p. An

WORK ORDER #: 9811243

Work Order Summary

CLIENT:

Ms. Cathrene Glick

BILL TO: Same

GeoPlexus

1900 Wyett Drive, Suite #1 Santa Clara, CA 95054

PHONE:

408-987-0210

P.O. # NR

FAX:

408-988-0815

PROJECT # C93013 Good Chevrolet

DATE RECEIVED:

11/13/98

DATE COMPLETED:

11/30/98

			RECEIPT
FRACTION#	NAME	TEST	VAC./PRES.
01A	AGP1 21018	TO-3	4.5 "Hg
02A	AGP2 12365	TO-3	20.5 "Hg
03A	AGP3 24403	TO-3	24.5 "Hg
04A	Lab Blank	TO-3	NA

LAB NARRATIVE:

Compounds detected between the detection limit and the low point on the curve are "J" flagged.

CERTIFIED BY:

Laboratory Director

DATE:_

Certification numbers: CA ELAP - 1149, NY ELAP - 11291, UT ELAP - E-217

SAMPLE NAME: AGP1 21018

ID#: 9811243-01A

EPA Method TO-3 GC/PID/FID

Etlastiamas 2000 to 15 to	6112419 Date of Collection: 11/12/98	2
File Name: A State of the State	Dill2415	
The state of the s	2:38 Date of Analysis; 11/24/98	
Dil. Factor:	2.30 Z.30	CANE.
		_

Compound	Det. Limit (ppmv)	Det. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.0024	0.0077	0.012	0.038
Toluene	0.0024	0.0091	0.030	0.11
Ethyl Benzene	0.0024	0.011	0.0041 J	0.018 J
Total Xylenes	0.0024	0.011	0.022 J	0.096 J
Methyl tert-Butyl Ether	0.0024	0.0087	0.0058 J	0.021 J
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.024	0.099	0.46 B	1.9 B
C2-C4 Hydrocarbons ref. to Gasoline	0.024	0.044	0.029 J	0.053 J

B = Compound present in laboratory blank, background subtraction not performed.

J = Estimated value.

Container Type: 1 Liter Summa Canister

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	86	50-150
Fluorobenzene (FID)	96	50-150

SAMPLE NAME: AGP2 12365

ID#: 9811243-02A

EPA Method TO-3 GC/PID/FID

	6112420	Date of Collection: 11/12/98
DII. Factor:	6.38	Date of Analysis: 11/24/98

_	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.0064	0.021	0.011 J	0.036 J
Toluene	0.0064	0.024	0.091	0.35
Ethyl Benzene	0.0064	0.028	0.011 J	0,050 J
Total Xylenes	0.0064	0.028	0.055 J	0.24 J
Methyl tert-Butyl Ether	0.0064	0.023	0.032	0.12
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.064	0.27	0.73 B	3.0 B
C2-C4 Hydrocarbons ref. to Gasoline	0.064	0.12	Not Detected	Not Detected

B = Compound present in laboratory blank, background subtraction not performed.

J = Estimated value.

Container Type: 1 Liter Summa Canister

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	99	50-150
Fluorobenzene (FID)	108	50-150

SAMPLE NAME : AGP3 24403 ID#: 9811243-03A

EPA Method TO-3 GC/PID/FID

		Date of Collection: 11/12/98
上File Name:这些种心态,还是是否就是否	6112421	
		Date of Analysis: 11/24/98
Dil. Factor:		

Compound	Det. Limit (ppmv)	Det. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.011	0.036	Not Detected	Not Detected
Toluene	0.011	0.042	0.045 J	0.17 J
Ethyl Benzene	0.011	0.049	0.013 J	0.056 J
Total Xylenes	0.011	0.049	0.020 J	01090 J
Methyl tert-Butyl Ether	0.011	0.040	0.014 J	0.053 J
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.11	0.46	0.42 J,B	1.7 J,B
C2-C4 Hydrocarbons ref. to Gasoline	0.11	0.20	Not Detected	Not Detected

B = Compound present in laboratory blank, background subtraction not performed.

J = Estimated value.

Container Type: 1 Liter Summa Canister

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	100	50-150
Fluorobenzene (FID)	109	50-150

SAMPLE NAME : Lab Blank

ID#: 9811243-04A

EPA Method TO-3 GC/PID/FID

	. I - Low L. N. Co. L. L. L. L. A. A. A. M. C. C. G. Garding the Deliver in the Alignment of the Co.	THE RESIDENCE OF THE PROPERTY
L/File:Name: / / / / / / / / / / / / / / / / / / /	6112404	Date of Collection: NA
[4] HO HOUR OF \$ 1. \(\infty \) \(\text{Prop}	0112707	Control Control Control and September 2011 Control Con
■ 1 1 1 19 1 1 10 10 11 14 1 14 1 14 1 15 1 16 1 16 1 16 1 1		
Dil. Factor:		Date of Analysis: 11/24/98
TABLE LOCK OF STATE OF THE STAT		

Compound	Det. Limit (ppmv)	Det. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.0010	0.0032	Not Detected	Not Detected
Toluene	0.0010	0.0038	Not Detected	Not Detected
Ethyl Benzene	0.0010	0.0044	Not Detected	Not Detected
Total Xylenes	0.0010	0.0044	Not Detected	Not Detected
Methyl tert-Butyl Ether	0.0010	0.0037	Not Detected	Not Detected
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.010	0.042	0.017 J	0.071 J
C2-C4 Hydrocarbons ref. to Gasoline	0.010	0.018	Not Detected	Not Detected

J = Estimated value.

Container Type: NA

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	87	50-150
Fluorobenzene (FID)	95	50-150

APPENDIX B

CHAIN-OF-CUSTODY FORM AND ANALYTICAL TEST DATA

Geoplexus, Inc. Phone 408/987-0210 Fax 408/988-0815 13002XGP404 Hype of Analysis PROJECT NUMBER GOOD CHEUROIST C93013 Condition Send Report Attention of: Report Due Verbal Due Number Type 872 CATHERNE GICK Initial Containers Samoles Cntnrs Grab Station Location Sample Number Date Time Comp 11/12/98 Another Home 98589 MWI mon well ! ZeA 950 WSIAB 98590 mw2 MONWEllZ 1015 W51 AB 98591 mw3 monwell 3 WSIAB 1033 98592 MW5 mon wells 89 WSIAB Date/Time/ () Remarks: STAM AND TUNN ANOUND Date/Time 11-13-198 VOAS | O&G | METALS | OTHER ICE/IO___ PRESERVATION -GOOD CONDITION . Date/Time | Reseived by: (Signature) Date/Time **APPROPRIATE** HEAD SPACE ABSENT

110 Second Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Geo Plexus, Inc.	Client Project ID: #C93013; Good	Date Sampled: 11/12/98
1900 Wyatt Drive, Suite 1	Chevrolet	Date Received: 11/13/98
Santa Clara, CA 95054	Client Contact: Cathrene Glick	Date Extracted: 11/13/98
	Client P.O:	Date Analyzed: 11/13-11/18/98

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	MTBE	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
98589	MWI- WSIA,B	W	1000,a	ND<30	280	3.0	3.3	7.9	104
98590	MW2- WS1A,B	W	31,000,a	ND<900	11,000	750	1500	2300	95
98591	MW3- WS1A,B	w	180,c	ND<20	44	0.51	ND	0.92	94
98592	MW5- WSIA,B	w	ND	ND	2.2	ND	ND	ND	91
	<u></u>	<u> </u>							
_ 	<u></u>	 							
								<u> </u>	
	ng Limit unless stated; ND means	w	50 ug/L	5.0	0.5	0.5	0.5	0.5	
	ected above the orting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

*The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

[&]quot;cluttered chromatogram; sample peak coelutes with surrogate peak

QC REPORT FOR HYDROCARBON ANALYSES

Date: 11/13/98-11/14/98 Matrix: SOIL

	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample (#95603)	MS	MSD	Amount Spiked	MS	MSD	RPD
	1 (#33003)	110				1,00	
 TPH (gas)	 0.000	1 700	1.761	2.03	88	87	1.5
IPH (gas) Benzene	0.000	0.208	0.208	0.2	104	104	0.0
Toluene	0.000	0.210	0.203	0.2	105	104	1.9
, 	!					-	
Ethylbenzene	0.000	0.212	0.212	0.2	106	106	0.0
Xylenes 	0.000 	0.638	0.640	0.6 	106 	107	0.3
TPH(diesel)	0	331	331	300	110	110	0.1
TRPH	[0.0 	19.3	19.6	20.8	93	94	1.5

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

^{*} Rec. = (MS - Sample) / amount spiked x 100

APPENDIX C

ASTM RBCA TIER-1 DATA

Output Table 1

	Sto Name	Good Chevrolet	10	b Identification			Software	GSI RBCA Spreadsheet			
		1630 Park Stree			12/10/98		Version:				
	Site Location.	1030 Park Stee		Completed By			YEISION.	. * 1 0			
				Compreted by	Caunelle Glick		NOTE: values	which differ from Tier 1 default values are shown i	n bold italies and	underlined	
	DEEA	ULT PARA	METEDO				NOIL Tailes	strings, gines train fres a decide value and an array	1, 40.0 NONOS (21.1	4.102.111.20	
_	DEFA	UL I PARA				10-44-1-1	Ada			Commercia	al/Industrial
Exposure	- mulai- u 411 to 4		Residential	44.45	Commercia		Surface	Definition (Heito)	Residential	Chronic	Construction
Parameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units) Exposure duration (yr)	30	25	Construction
ATc	Averaging time for carcinogens (yr)	70 30	6	16	25	1	A	Contaminated soil area (cm^2)	6.5E+06	23	9.3E+05
ATn	Averaging time for non-carcinogens (yr)		15	35	25 70	1	ŵ	Length of affected soil parallel to wind (cm)	2.4E+03		1.5E+03
BW ED	Body Weight (kg)	70 30	6	16	70 25	1	W gw	Length of affected soil parallel to groundwater (c	3.0E+03		1.55.403
EF	Exposure Duration (yr)	350	•	10	250 250	180	Vair	Ambient air velocity in mixing zone (cm/s)	2 3E+02		
I	Exposure Frequency (days/yr)	350 350			250 250	100	delta	Air mixing zone height (cm)	2 0E+02		
EF Derm	Exposure Frequency for dermal exposure	350			250 1		Lss	Definition of surficial soils (cm)	9.1E+01		
IRgw	Ingestion Rate of Water (I/day) Ingestion Rate of Soil (mg/day)	100	200		50	100	Pe	Particulate areal emission rate (g/cm^2/s)	2 2E-10		
IRs IRadi	Adjusted soil ing_rate (mg-yr/kg-d)	1 1E+02	200		9 4E+01	100	re	Talliculate areas emission rate (great 23)	2 24-10		
IRa in	Inhalation rate indoor (m^3/day)	15			20		Groundwato	r Definition (Units)	Value		
IRa in	Inhalation rate outdoor (m^3/day)	20			20	10	delta gw	Groundwater mixing zone depth (cm)	2.6E+02	-	
SA OUT	Skin surface area (dermal) (cm^2)	5 8E+03		20E+03	5 8E+03	5 8E+03	1	Groundwater infiltration rate (cm/yr)	1.5E+01		
SA SAadj	Adjusted dermal area (cm^2-yr/kg)	2 1E+03		202703	1 7E+03	J 0E-103	Ugw	Groundwater Darcy velocity (cm/yr)	1.5E+03		
M SWadi	Soil to Skin adherence factor	1			172703		Ugw tr	Groundwater Transport velocity (cm/yr)	6 6E+03		
AAFs	Age adjustment on soil ingestion	TRUE			TRUE		Ks .	Saturated Hydraulic Conductivity(cm/s)	0 02.40		
AAFd	Age adjustment on skin surface area	TRUE			TRUE		grad	Groundwater Gradient (cm/cm)			
	Use EPA tox data for air (or PEL based)	TRUE			TRUE		Sw	Width of groundwater source zone (cm)			
tox gwMCL?	Use MCL as exposure limit in groundwater?	FALSE					Sd Sd	Depth of groundwater source zone (cm)			
gwiviCt,	Ose MICE as exposure with it globilowater	FALSE					BC	Biodegradation Capacity (mg/L)			
l							BIO?	Is Bioattenuation Considered	TRUE		
į.							ph: eff	Effective Porosity in Water-Bearing Unit	3.8E-01		
							foc sat	Fraction organic carbon in water-bearing unit	1 0E-03		
Martin of Evo.	osed Persons to	Residential			Commercis	Il/Industrial	IOC SAL	raction organic carbon in water-searing one	. 01-00		
	osure Pathways	Resideritial			Chronic	Constrctn	Soil	Definition (Units)	Value		
Groundwater					O I I O I I O	Oditation	hc	Capillary zone thickness (cm)	4.6E+00		
GW I	Groundwater Ingestion	TRUE			TRUE		hv	Vadose zone thickness (cm)	2.4E+02		
IGW v	Votatilization to Outdoor Air	FALSE			TRUE		rho	Soil density (g/cm^3)	17		
GW b	Vapor Intrusion to Buildings	FALSE			TRUE		foc	Fraction of organic carbon in vadose zone	0.01		
Soil Pathways		171202					phi	Soil porosity in vadose zone	0.38		
Sv	Volatiles from Subsurface Soils	TRUE			TRUE		Ęgw	Depth to groundwater (cm)	2.4E+02		
SSV	Volatiles and Particulate Inhalation	TRUE			TRUE	TRUE	Ls	Depth to top of affected soil (cm)	9.1E+01		
SS d	Direct Ingestion and Dermal Contact	FALSE			TRUE	TRUE	Lsubs	Thickness of affected subsurface soils (cm)	3.7E+02		
SI	Leaching to Groundwater from all Soils	TRUE			TRUE		pH	Soil/groundwater pH	65		
S b	Intrusion to Buildings - Subsurface Soils	FALSE			TRUE		P ···	3	capillary	vadose	foundation
	Alliagion to Ballango Cadaanisco Cana						w ıdg	Volumetric water content	0.342	0 12	0 12
1							phia	Volumetric air content	0.038	0.26	0,26
1							* *-	. ••••			y
1							Building	Definition (Units)	Residential	Commercial	
i							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
Matrix of Rec	eptor Distance	Resid	lentiaf		Commercia	Il/Industrial	ER	Building air exchange rate (s^-1)	1 4E-04	2 3E-04	
and Location		Distance	On-Site	_	Distance	On-Site	Lcrk	Foundation crack thickness (cm)	1 5E+01		
				****	·		eta	Foundation crack fraction	0 01		
GW	Groundwater receptor (cm)	4 6E+04	FALSE			TRUE					
s	inhalation receptor (cm)	4 6E+04	FALSE			TRUE					
							Dispersive T	'ransport			
Matrix of				_			Parameters	Definition (Units)	Residential	Commercial	
Target Risks		Individual	Cumulative	_			Groundwate	T			
				_			ax	Longitudinal dispersion coefficient (cm)			
TRab	Target Risk (class A&B carcinogens)	1.0E-04	1 0E-04		-		ау	Transverse dispersion coefficient (cm)			-
TRe	Target Risk (class C carcinogens)	1.0E-04					az	Vertical dispersion coefficient (cm)			
		4.05.00	1 0E+00				Vapor				
THQ	Target Hazard Quotient	1 0E+00	I UETUU				vapoi				
	Target Hazard Quotient Calculation Option (1, 2, or 3)	1 UE+00	I UE+UU				dcy	Transverse dispersion coefficient (cm)			

	Tox	icity	Data
--	-----	-------	------

		eferend Dose g/kg/da			F	Slope actors g/kg/d			EPA Weight	ls
CAS	Oral		Inhalation		Oral		Inhalation		of	Constituent
Number Constituent	RfD_oral	ref	RfD_inhal	re	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2 Benzene	-	Ŕ	1.70E-03	R	2.90E-02	A	2.90E-02	Α	Α	TRUE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-	R	-	R	D	FALSE
1634-04-4 Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R	-	R	-	R		FALSE
108-88-3 Toluene	2.00E-01	A,R	1,14E-01	,	-	R	-	R	ā	FALSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A.R	2.00E+00	A	_	R	_	R	D	FALSE

Site Name: Good Chevrol Site Location 1630 Park Street, Ala Completed By. Cathrene Glick

Date Completed: 12/10/1998

Software version: v 1.0

© Groundwater Services, Inc (GSI), 1995. All Rights Reserved.

Physical	Property	Data
----------	----------	------

Date Completed: 12/10/1998

												Vapor						
				D	iffu	sion		log (Kod	•			Pressure						
		Molect	ılar	Co	effi	cients		log(Ko	i)	Henry's La	aw Constant	(@ 20 - 25 (C)	Solubility	•			
		Weig	ht	in air		in wate	2r	(@ 20 - 2	5 C)	(@ 20) - 25 C)	(mm Hg)	•	(@ 20 - 25 (C)			
CAS		(g/mo	ie)	(cm2/s)	ŀ	(cm2/s)	(l/kg	}	(atm-m3)	(unitless)	Pure		(mg/l) Pu	re	acid	base	
Number Constituent	type	MW	ref	Dair	re	Dwat	re	Koc	ref	mol	re	Component	ref	Component	ref	pK <u>a</u>	pKb	
71-43-2 Benzene	Α	78.1	5	9.30E-02	Α	1.10E-05	5 A	1.58	A	5.29E-03	2.20E-01 A	9.52E+01	4	1.75E+03	_ A			_
100-41-4 Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	S A	1.98	Α	7.69E-03	3.20E-01 A	1.00E+01	4	1.52E+02	5			
1634-04-4 Methyl t-Butyl Ether	0	88 146	5	7.92E-02	6	9.41E-05	7	1.08	Α	5.77E-04	2.40E-02	2.49E+02		4.80E+04	Α			
108-88-3 Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	3 A	2.13	Α	6.25E-03	2.60E-01 A	3.00E+01	4	5.15E+02	29			
1330-20-7 Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	3 A	2 38	Α	6.97E-03	2.90E-01 A	7.00E+00	4	1.98E+02	5			

Site Location: 1630 Park Street, Al Completed By: Cathrene Glick

Software version: v 1 0

Site Name Good Chevrolet

CAS		Maximum Contaminant Level		Permiss Exposi Limit PEI	ure	Abs	lative orption ictors	Detect Groundw (mg/L	ater	Limits Soil (mg/ki	,	First-Or	lf Life der Decay) ays)	
Number	Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermai		ref		re Sat	turated	Unsaturated	re
71-43-2	Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	С	0.005	S	720	720	Н
100-41-4	l Ethylbenzene	7,00E-01	6 FR 3526 (30 Jan 91	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	Н
1634-04-4	Methyl t-Butyl Ether		•	1.44E+02	ACGIH	1	0.5					360	360	Н
108-88-3	3 Toluene	1.00E+00	6 FR 3526 (30 Jan 91	1.47E+02	ACGIH	1	0.5	0 002	С	0.005	S	28	28	Н
1330-20-7	' Xylene (mixed isomers)	1.00E+01	6 FR 3526 (30 Jan 91	4.34E+02	ACGIH	1	0.5	0.005	С	0 005	S	360	360	Н

Site Name: Good Chevrol Site Location: 1630 Park Street, Alameda, CA

Completed By: Cathrene Glick Date Completed: 12/10/1998

Software version: v 1.0

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

CONSTITUENT

Mole Fraction of Constituent in Source Material

Benzene	
Ethylbenzene	
Methyl t-Butyl Ether	
Toluene	
Xylene (mixed isomers)	

Site Name: Good Chevrolet

Completed By: Cathrene Glick

Site Location: 1630 Park Street, Alamed Date Completed: 12/10/1998

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Exposure Limits

	Applied to Receptors						
CONSTITUENT	Groundwater	Air (Comm. only)					
	(MCL) (mg/L)	(PEL/TLV) (mg/m ³)					
Benzene							
Ethylbenzene							
Methyl t-Butyl Ether							
Toluene							
Xylene (mixed isomers)							

Site Name: Good Chevrolet Site Location: 1630 Park Street, Alameda, CA Completed By: Cathrene Glick Date Completed: 12/10/1998

Input Screen 7

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

Representative COC Concentration

	, to pro- to the total and the									
CONSTITUENT	in Groundw	in Surface	Soil	in Subsurface Soil						
	value (mg/L)	note	value (mg/kg_	note	alue (mg/kg	note				
Benzene	4.5E+0		7.1E-2		8.6E+0					
Ethylbenzene	5.7E-1		2.6E-2		5.1E+1					
Methyl t-Butyl Ether	2.0E-2		1.0E-2		3.1E+0	*				
Toluene	4.5E-1		5.2E-2		9.0E+1					
Xylene (mixed isomers)	1.0E+0		7.4E-2		2.3E+2					

Site Name: Good Chevrolet
Site Location: 1630 Park Street, Alameda, CA

Completed By: Cathrene Glick Date Completed: 12/10/1998

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT

Half-Life of Constituent

(day)

Benzene	720				
Ethylbenzene	228				
Methyl t-Butyl Ether	360				
Toluene	28				
Xylene (mixed isomers)	360				

Site Name: Good Chevrolet

Completed By: Cathrene Glick

Site Location: 1630 Park Street, Alameda Date Completed: 12/10/1998

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)

Dilution Attenuation Factor (DAF) in Groundwater

	(2) (1) (1)						
CONSTITUENT	Residential	Comm,/Ind.					
	Receptor	Receptor					
Benzene	1.0E+0	1.0E+0					
Ethylbenzene	1.0E+0	1.0E+0					
Methyl t-Butyl Ether	1.0E+0	1.0E+0					
Toluene	1.0E+0	1.0E+0					
Xylene (mixed isomers)	1.0E+0	1.0E+0					

Site Name: Good Chevrolet Completed By: Cathrene Glick Site Location: 1630 Park Street, Alameda, CA Date Completed: 12/10/1998

					Tier 2 Worksheet 8.1	
Site Name: Good Chevrolet		Site Location: 1630 Park Street	, Alameda, CA Completed By: C	Cathrene Glick	Dale Completed: 12/10/1998	1 OF (
		IER 2 EXPOSURE CONCENT	RATION AND INTAKE CALCULAT	TION		
AIR EXPOSURE PATHWAYS	orangre, sukustavan degresis.	名[4]。[4] [4] [4] [4] [4] [4] [4] [4] [4] [4]	(CHECKED IF PATHWAY IS ACTIVE)	ca) Kapaza a ibio	Million Krypsbartski falkisz	2. 23
SURFACE SOILS: VAPOR AND	Exposure Concentration					
DUST INHALATION	1) Source Medium	1) Source Medium 2) NAF Value (m^3/kg) Receptor		4) Exposure Multiplier (RxETxEFxE0)(BWxAT) (m*3Ag-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	
	1		1 1]	1	

6.3E-7

2.3E-7

8.9E-8

4.6E-7

6.6E-7

7.6E-7

2.8E-7

1.1E-7

5.6E-7

7.9E-7

Ñ	OTE	ABS = Dermal absorption factor (dim) AF = Adherance factor AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exp duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Intake rate (L/day or mg/day)	POE = Point of exposure SA = Skin surface area (cm^2)

1.1E+5

1.1E+5

1.1E+5

1.1E+5

1.1E+5

Serial G-265-VHX-686

1.2E-1

2.7E-1

2.7E-1

2.7E-1

2 7E-1

7.0E-2

2.0E-1

2.0E-1

2.0E-1

2.0E-1

Software GSI RBCA Spreadsheet

7.4E-8

6.4E-8

2.4E-8

1 3E-7

1.8E-7

@ Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

9.3E+4

9.3E+4

9.3E+4

9.3E+4

9.3E+4

7.1E-2

2.6E-2

1.0E-2

5.2E-2

7.4E-2

Benzene

Toluene

Ethylbenzene

Methyl t-Butyl Ether

Xylene (mixed isomers)

Version: v 1 0

5.3E-8

5.4E-8

2.1E-8

1.1E-7

1.5E-7

									Tier 2 W	orksheet 8.1			
Site Name: Good Chevrolet Site Location: 1630 Park Street, Alameda, CA Completed By: Cathrene Glick Date Completed: 12/10/1998											2 OF 6		
			TIER 2 EX	POSURE CON	ENTRATION AN	ID INTAKE CALC	ULATION			<u> </u>			
AIR EXPOSURE PATHWAYS	ing in likerasiyara	deg Xin Zirdi	ka eginai ke∎.	CHECKED IF PA	THWAY IS ACTIVE	"sjrigreja ogsleje".	100 gr. 1103 jaga 1	pysika (II), gladia	:48°827. 1 2% 3	gentine garaz	9352CG - 1 25°K		
SUBSURFACE SOLS: VAPOR	Exposure Concentration									TOTAL PATHWAY			
HHALATION	1) Source Medium 2)		Source Medium 2) NAF Value (m*3/kg) Receptor		3) <u>Exposure Medium</u> Air: POE Conc. (mg/m^3) (1) / (2)		4) Exposure Multiplier (IRXETXEFXED)(BWXAT) (m*3Ag-day)		5) Average Daily Intake Rate (mg/kg-day) (3) X (4)		(Sum intake values from surface & subsurface routes.)		
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residental	On-Site Commercial	Off-Site Residential		
Benzene	8.6E+0	2.3E+4	2.8E+4	3.7E-4	3.0E-4	7.0E-2	1.2E-1	2.6E-5	3.6E-5	2.6E-5	3.6E-5		
Ethylbenzene	5.1E+1	2.3E+4	2.8E+4	2.2E-3	1.8E-3	2.0E-1	2.7E-1	4.3E-4	5.0E-4	4.3E-4	5.0E-4		
Methyl t-Butyl Ether	3.1E+0	2.3E+4	2.8E+4	1.3E-4	1.1E-4	2.0E-1	2.7E-1	2.6E-5	3.0E-5	2.6E-5	3.0E-5		
Toluene	9.0E+1	2.3E+4	2.8E+4	3.8E-3	3.2E-3	2.0E-1	2.7E-1	7.5E-4	8.8E-4	7.5E-4	8.8E-4		
Xylene (mixed isomers)	2.3E+2	2.3E+4	2.8E+4	1.0E-2	8.3E-3	2.0E-1	2.7E-1	2.0E-3	2.3E-3	2.0E-3	2.3E-3		

NOTE. ABS = Dermal absorption factor (dim) AF = Adherance factor AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exp. duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Intake rate (L/day or mg/day)	POE = Point of exposure SA = Skin surface area (cm^2)
Y			

Software' GSI RBCA Spreadsheet

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved

Version v 10

					Tier 2 Worksheet 8.1	
Site Name: Good Chevrolet	Site Location: 1630 Park Street, Alameda C	Completed By: Cathrene Glic	k	Date Completed: 12/10/19	98	3 (
	TIER 2 EXPOSUR	RE CONCENTRATION AND	INTAKE CALCULATION			
SOIL EXPOSURE PATHWAYS		CHECKED IE PATHWAY IS ACT	VE)			
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					
DERMAL CONTACT	1) Source Medium	4) Exposure Multiplier 5) Average Daily Intake Rate				
		(SAxAFxABSxCFxEFxED	V(BWxAT) (1/day)	(mg/l	(g-day)	
Constituents of Concern	Surface Soil Conc (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene	7.1E-2	_	8.2E-6		5.8E-7	
Ethylbenzene	2.6E-2		2.3E-5		5.9E-7	
Methyl t-Butyl Ether	1.0E-2		2.3E-5		2.3E-7	
Toluene	5.2E-2		2.3E-5		1.2E-6	
Xylene (mixed isomers)	7.4E-2		2.3E-5		1,7E-6	

NOTE	ABS = Dermal absorption factor (dim)	BW = Body Weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
	AF = Adherance factor AT = Averaging time (days)	CF = Units conversion factor ED = Exp. duration (yrs)	ET = Exposure time (hrs/day) IR = Intake rate (L/day or mg/day)	SA = Skin surface area (cm^2)

GSI RBCA Spreadsheet Version, v 1 0

Tier 2 Worksheet 8.1

Site Name: Good Chevrolet	Site Location: 1630 Park Stre TIER 2 EXPOSI	JRE CONCENTRA	Completed By: C		Date Completed: 1	2/10/1950	4 OF 6
SOIL, EXPOSURÉ PATHWAYS		CHECKED IF PATH	(WAY IS ACTIVE)				
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					TOTAL PATHWAY	NTAKE (mg/kg-day)
INGESTION	7						values from estion routes.)
Constituents of Concern	Surface Soil Conc (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercal
Benzene	7.1E-2		9.2E-7		6.5E-8		6.5E-7
Ethylbenzene	2.6E-2	T	2.6E-6		6.7E-8		6.6E-7
Methyl t-Butyl Ether	1.0E-2		2.6E-6		2.6E-8	T	2.5E-7
Toluene	5.2E-2		2.6E-6		1.3E-7		1.3E-6
Xylene (mixed isomers)	7.4E-2	T	2.6E-6		1.9E-7		1.9E-6

ABS = Dermal absorption factor (dim) ABS = Dermal absorption factor (dim) AF = Adherance factor AF = Adherance factor AT = Averaging time (days) BW = Body Weight (kg) CF = Units conversion factor ET = Exposure time (hrs/day) SA = Skin surface area (conversion factor) ED = Exp duration (yrs) R = Intake rate (L/day or mg/day)	m^2)
---	------

Serial G-265-VHX-686

Software GSI RBCA Spreadsheet

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Version v 1.0

								Tie	er 2 Worksheet 8.1	
Site Name: Good Chevrolet		Site Location: 1	630 Park Street,	Alameda, CA	Completed By: C	Cathrene Glick		Date Completed	d: 12/10/1998	5
		TIER 2 EXPOSE	JRE CONCENT	RATION AND IN	AKE CALCULA	TION				
GROUNDWATER EXPOSURE PATHWAYS	ause februs yawas e basik	i-Tail Royal	a:2008 is 16987 ii 1	CHECKED IF PAT	HWAY IS ACTIVE	2384 M.S. 200	unio de la constanta de la cons		e. Paring in Mily i	ની રહેડી
SOIL: LEACHING TO GROUNDWATER/	Exposure Concentration									
NGESTION	1) Source Medium		alue (L/kg)		SENEGHEM(movr)	1 2	e Multiplier		aily Intake Rate	
		Reco	eptor	(1)	(2)	(IRXEFXED)(BW	λ:AT) (Ukg-day)	(""9"	(g-day)	
Constituents of Concern	Soil Concentration (mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Sta Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residentual	
Benzene	8.6E+0	4.6E+0	4.6E+0	1.9E+0	1.9E+0	3.5E-3	1.2E-2	6.5E-3	2 2E-2	
Elhylbenzene	5.1E+1	1.0E+1	1.0E+1	5.0E+0	5.0E+0	9.8E-3	2.7E-2	4.9E-2	1.4E-1	
Methyl t-Butyl Ether	3,1E+0	1.8E+0	1.8E+0	1.7E+0	1.7E+0	9.8E-3	2.7E-2	1.6E-2	4.6E-2	
Toluene	9.0E+1	1.4E+1	1.4E+1	6.5E+0	6,5E+0	9.8E-3	2.7E-2	6.4E-2	1.8E-1	
Xylene (mixed isomers)	2.3E+2	2.4E+1	2.4E+1	9.8E+0	9,8E+0	9.8E-3	2.7E-2	9.6E-2	2.7E-1	

NOTE	AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exp duration (yrs)	EF = Exposure frequencey (days/yr) IR = Intake rate (L/day)	POÉ ≈ Point of exposure

Software: GSI RBCA Spreadsheet

© Groundwater Services, Inc. (GSI), 1995 All Rights Reserved

Version v 1.0

									Tier 2 Wo	orksheet 8.1	
Site Name: Good Chevrolet	1		Site Location: 16	30 Park Street,	Alameda, CA	Completed By: Ca	threne Glick		Date Complete	d: 12/10/1998	6 OF 6
			TIER 2 EXI	POSURE CONC	ENTRATION A	ND INTAKE CALC	JLATION				
GROUNDWATER EXPOSURE P	ATRIWAYS - SEVANATA	ar Paring er	Vigozota (1-100a m u	(CHECKED IF PA	THWÁY IS ACTIVE	estava edest des		www.			(yy.0). (92.048)
GROLINDWATER: INGESTION	Exposure Concentration									MAX. PATHWAY INTA	KE (mg/kg-day)
	1) Source Medium		Value (dim) ceptor		re Medium Conc. (mo/L) (1)(2)	4) Exposure I		5) Average Da (mg/kg	· .	(Maximum Intake of active pathwa sulf leaching & groundwater route	
							,- 2		"		
	Groundwater	On-Site		On-Site	Off-Site]	Off-Site	On-Site	Off-Site	On-Site	Off-Site
Constituents of Concern	Concentration (mg/L)	Commercial	Off-Site Residential	Commercial	Residential	On-Site Commercial	Residential	Commercial	Residential	Commercial	Residential
Benzene	4.5E+0	1.0E+0	1.0E+0	4.5E+0	4.5E+0	3 5E-3	1.2E-2	1.6E-2	5.3E-2	1.6E-2	5.3E-2
Ethylbenzene	5.7E-1	1,0E+0	1.0E+0	5.7E-1	5.7E-1	9.8E-3	2.7É-2	5.5E-3	1.5E-2	4.9E-2	1 4E-1
Methyl t-Butyl Ether	2.0E-2	1.0E+0	1.0E+0	2.0E-2	2.0E-2	9.8E-3	2.7E-2	2.0E-4	5.5E-4	1.6E-2	4.6E-2
Toluene	4.5E-1	1.0E+0	1.0E+0	4.5E-1	4.5E-1	9.8E-3	2.7E-2	4.4E-3	1.2E-2	6.4E-2	1.8E-1
Xylene (mixed isomers)	1.0E+0	1.0E+0	1.0E+0	1.0E+0	1,0E+0	9.8E-3	2.7E-2	1.0E-2	2.8E-2	9.6E-2	2.7E-1

NOTE	AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exp duration (yrs)	EF = Exposure frequencey (days/yr) IR = Intake rate (L/day or mg/day)	POE = Point of exposure
			·	

Software GSI RBCA Spreadsheet

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Version v 1.0

				TIER 2 I	PATHWAY R	ISK CALCUL	ATION				
AIR EXPOSURE PATHWAYS:		ua awraa	ene la dissi	a like ita is	ário jakyst je y	CHECKED IF P	ATHWAYS ARE AC	fiverity film:	rada nije palani. Tad	erek jirke	98, 4201, 1-51, 18, 1
· · · · · · · · · · · · · · · · · · ·	······································	***************************************		RCINOGENIC RI					TOXIC EFFECTS		
	(i) EPA		arcinogenic (mg/kg/day)	(3) Inhalation Slope Factor	, , ,	dual COC 2) x (3)	(5) Total Intake Rate		(6) Inhalation Reference Dose	, ,	vidual COC uotient (5) / (6)
Constituents of Concern	Carcinogenic Classification	On-Site Commercial	Off-Site Residential	(mg/kg-day)^-1	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	(mg/kg-day)	On-Site Commercial	Off-Site Residential
Benzene	A	2.6E-5	3.6E-5	2.9E-2	7.4E-7	1.0E-6	7.2E-5	8.4E-5	1.7E-3	4.2E-2	4.9E-2
Ethylbenzene	D		<u> </u>	T			4.3E-4	5.0E-4	2.9E-1	1.5E-3	1.7E-3
Methyl t-Butyl Ether]			2.6E-5	3.0E-5	8.6E-1	3.0E-5	3.5E-5
Toluene	D			1		, , , , , , , , , , , , , , , , , , , 	7 5E-4	8.8E-4	1.1E-1	6 6E-3	7.7E-3
Xylene (mixed isomers)	D						2.0E-3	2.3E-3	2.0E+0	9.8E-4	1.1E-3
		Total Paths	way Carcinog	enic Risk =	7.4E-7	1.0E-6	1	otal Pathway i	łazard Index =	5.1E-2	6.0E-2

Senal: G-265-VHX-686

Software, GSI RBCA Spreadsheet Version, v 10

Site Name: Good Chevrolet			Site Location:	1630 Park Str	reet Alameda	Completed By: 0	Cathrene Glick		Date Completed	: 12/10/1998	2
One Hame. Good one Hotel			ONG EGGGGGG			SK CALCULAT					
SOIL EXPOSURE PATHWAYS			200 (200) 21-22-23			(CHECKED # PAI	HWAYS ARE ACT	VEI			
				ARCINOGENIC					TOXIC EFFECTS		
	(2) Total Carcinog (1) EPA Intake Rate (mg/kg					dual COC 2) x (3)	` .	Toxicant (mg/kg/day)	(6) Oral Reference Dose	, -	idual COC otient (5) / (6)
Constituents of Concern	Carcinogenio Classificatio	On-Site Residential	On-Site Commercial	(mg/ko-day)^-1	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	(mg/kg-day)	On-Site Residential	On-Site Commercial
Benzene	A		6,5E-7	2.9E-2		1.9E-8					
thylbenzene	D							6.6E-7	1.0E-1		6.6E-6
lethyl t-Butyl Ether			-					2.5E-7	5.0E-3		5.1E-5
Toluene	ם							1.3E-6	2.0E-1		6.6E-6
(ylene (mixed isomers)	D			1				1.9E-6	2.0E+0		9.4E-7
		Total Path	way Carcinog	enic Risk =	0.0E+0	1.9E-8		Total Pathway H	azard Index =	0.0E+0	6.5E-5

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Senal: G-265-VHX-686

Software: GSI RBCA Spreadsheet

Version: v 1.0

Site Name: Good Chevrolet			Site Location:	1630 Park St	reet, Alamed	Completed By	: Cathrene Glic	k	Date Complete	d: 12/10/1998	3
				TIER 2 PATH	WAY RISK	CALCULATIO	N			······	
GROUNDWATER EXPOSURE PAI	HWAYS : -	ž živi skišeni.	militar (n.d.)	Larin(), KGC	BYA,D×&C≣.	(Checked if P	ATHWAYS ÂRE	ĆTIVE)	. Tahi kendad	www.je.selje	in 41 %. 2561
			CA	RCINOGENIC RI	sk				TOXIC EFFECTS		
		(2) Total C	arcinogenic	(3) Oral	(4) Individ	fual COC	(5) Total	Toxicant	(6) Oral	(7) Individ	tual COC
	(1) EPA	Intake Rate	(mg/kg/day)	Slope Factor	Risk (2) x (3)	intake Rate	(mg/kg/day)	Reference Dose	(7) Individual COC Hazard Quotient (5) f (6)	
Constituents of Concern	Carcinogeni c Classificati on	On-Site Commercial	Off-Site Residential	(mg/kg-day)^-1	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	(mg/kg-day)	On-Site Commercial	Off-Site Residential
Benzene	A	1.6E-2	5.3E-2	2.9E-2	4.6E-4	1.5E-3					
Ethylbenzene	D						4.9E-2	1.4E-1	1.0E-1	4.9E-1	1.4E+0
Methyl t-Bulyl Ether					1		1.6E-2	4.6E-2	5.0E-3	3.3E+0	9.2E+0
Toluene							6.4E-2	1.8E-1	2.0E-1	3 2E-1	8.9E-1
Xylene (mixed isomers)	T o						9.6E-2	2.7E-1	2.0E+0	4 8E-2	1.3E-1
		Total Pathy	vay Carcinog	enic Risk =	4.6E-4	1.5É-3	Tota	il Pathway H	azard Index = [4.1E+0	1,2E+1

Software GSI RBCA Spreadsheet

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Version, v 1 0

										Tier 2 Wo	rksheet 9.1		
Site Name: G	Good Chevrolet		Completed B	y: Cathrene Gl	ick								
Site Location:	: 1630 Park Street, Alameda, CA		Date Complet	ted: 12/10/199	8							1 OF 1	
			Target Risk (Class A & B) 1.0E-4						Calculation Option: 3				
;	SURFACE SOIL SSTL VAL	.UES	Targe	t Risk (Class C)	1.0E-4	☐ PEL exp	osure limit?						
	(< 3 FT BGS)		Target F	Target Hazard Quotient 1.0E+0									
				SSTL Result	s For Complete Ex	posure Pathw	ays ("x" if Comp	lete)			-		
		X Soil Leaching to Groundwater X Dermal Contact						Construction	Applicable	SSTL Exceeded	D. wind Off		
CONSTITUE	NTS OF CONCERN	T	X So	I Leaching to	Groundwater	X Derr	nai Contact	-	Worker	SSTL	<u>-</u>	Required CRF	
CAS No	Name	(ma/ka)	Residential 1500 feet	Commercial (on-site)	Regulatory(MCL)	Residential 1500 feet	Commercial (on-site)	(Commercial: (on-site)	(mg/kg)	"" If ves	Only if "yes" left	
-		(mg/kg)	1.4E+0	4.5E+0	NA	>Res	3.5E+2	╁─	>Res	1.4E+0		<1	
	Benzene	2.6E-2	 		NA NA	>Res	>Res	_	>Res	3.7E+1		<1	
<u> </u>	Ethylbenzene		3.7E+1	1.0E+2				├-				 	
1634-04-4	Methyl t-Butyl Ether	1.0E-2	3.4E-1	9.4E-1	NA	>Res	2.0E+2	_	2.4E+2	3.4E-1	<u> </u>	<1<1	
108-88-3	Toluene	5.2E-2	1.0E+2	2.8E+2	NA	>Res_	>Res	<u> </u>	>Res	1.0E+2		<1	
1330-20-7	Xylene (mixed isomers)	7.4E-2	>Res	>Res	NA	>Res	>Res_		>Res	>Res		<1	

Software: GSI RBCA Spreadsheet

Serial: G-265-VHX-686

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Version: v 1.0

										Tier 2 Worksheet 9.2						
Site Name: 0	Good Chevrolet		Completed B	y: Cathrene G	lick											
Site Location	Date Completed: 12/10/1998										1 OF 1					
			Target Risk (Class A & B) 1.0E-4			☐ MCL exposure limit?			Calculation Option: 3							
SUBSURFACE SOIL SSTL VALUES			Target Risk (Class C) 1 0E-4			☐ PEL exposure limit?										
	(> 3 FT BGS)		Target H	azard Quotient	1.0E+0											
				SSTLF	Results For Comp	lete E	xposure P	athways ("x" if	Com	piete)						
Representative Concentration CONSTITUENTS OF CONCERN		X Soil Leaching to Groundwater			х		latilization to	Soil Volatilization to X Outdoor Air		Applicable SSTL	SSTL Exceeded	Required CRF				
CAS No.	Name	(mg/kg)	Residential 1500 feet		Regulatory(MCL). (on-site)	R	esidential on-site)	Commercial (on-site)	Re	sidential 500 feet	Commercial (on-site)	(mg/kg)	"E" If yes	Only if "yes" left		
71-43-2	Benzene	8.6E+0	1.4E+0	4.5E+0	NA		NA	7.6E-1	1	.7E+2	2.0E+2	7.6E-1		1.1E+01		
100-41-4	Ethylbenzene	5.1E+1	3.7E+1	1.0E+2	NA _		NA	1.3E+2		>Res_	>Res	3.7E+1		1.0E+00		
1634-04-4	Methyl t-Butyl Ether	3.1E+0	3.4E-1	9.4E-1	NA		NA	6.3E+2		>Res	>Res	3.4E-1		9.0E+00		
108-88-3	Toluene	9.0E+1	1.0E+2	2.8E+2	NA _		NA	5.4E+1		>Res	>Res	5.4E+1		2.0E+00		
1330-20-7	Xylene (mixed isomers)	2.3E+2	>Res	>Res	NA		NA	>Res	Ĺ.	>Res	>Res	>Res		<1		
	· — — · · · - · · · - · · · · · · · · · · · 															

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: v 1.0 Serial: G-265-VHX-686

											Tier 2 Worksheet 9.3				
	Good Chevrolet n: 1630 Park Street, Alameda, CA	•	y: Cathrene G ted: 12/10/199										1 OF 1		
(GROUNDWATER SSTL \	Target Risk (Class A & B) 1.0E-4 Target Risk (Class C) 1 0E-4			☐ MCL exposure limit? ☐ PEL exposure limit?				Calculation Option: 3						
			Target	lazard Quotient	1.0E+0										
******		L Results For Con	nplete	Exposure	Pathways ("x" if (om	plete)				T*************************************				
Representative Concentration CONSTITUENTS OF CONCERN		X Groundwater Ingestion			Groundwater Volatilizatio X to Indoor Air			Groundwater Volatilization X to Outdoor Air			Applicable SSTL	SSTL Exceeded ?	Required CRF		
CAS No.	Name	(mg/L)	Residential	Commercial (on-site)	Regulatory(MCL) (on-site)		esidential on-site)	Commercial (on-site)		Residential (on-site)	Commercial (on-site)	(mg/L	"■" if yes	Only if "yes" le	
	Benzene	4.5E+0	2.9E-1	9.9E-1	NA		NA	1.2E+0		NA	1.8E+2	2.9E-1		1.5E+01	
	Ethylbenzene	5.7E-1	3.7E+0	1.0E+1	NA		NA	>Sol		NA	>Sol	3.7E+0		<1	
	Methyl t-Butyl Ether	2.0E-2	1.8E-1	5.1E-1	NA		NA	3,6E+3		NA	>Sol	1.8E-1		<1	
108-88-3	Toluene	4.5E-1	7.3E+0	2 0E+1	NA	Γ	NA	8.0E+1		NA	>Sol	7.3E+0		<1	
1330-20-7	Xylene (mixed isomers)	1.0E+0	7.3E+1	>Sol	NA		NA	>Sol		NA	>Soi	7.3E+1		<1	

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: v 1.0

Serial: G-265-VHX-686