RECEIVED

By Alameda County Environmental Health at 10:25 am, May 23, 2013

May 15, 2013

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject:

Perjury Statement and Report Transmittal

1600 Park Street (Parcel A) Alameda, California 94501 AEI Project No. 298931 ACEH RO#0000008

Dear Ms. Detterman:

I declare under penalty of perjury, that the information and/or recommendations contained in the attached report for the above-referenced site are true and correct to the best of my knowledge.

If you have any questions or need additional information, please do not hesitate to call me or Mr. Peter McIntyre at AEI Consultants, (925) 746-6004.

Sincerely,

John Buestad

PAKEMEN OF F.S.I.

-President

JB/pm

Attachment: AEI Consultants, Conceptual Site Model Update & Request for Case Closure – May 2013

cc: Mr. Peter McIntyre, AEI Consultants, 2500 Camino Diablo, Walnut Creek, CA 94597

May 17, 2013

San Francisco HQ

GROUNDWATER MONITORING AND SOIL VAPOR SAMPLING REPORT 1st Quarter 2013

Chicago

Atlanta

Property Identification:

Costa Mesa

1630 Park Street, Parcel B Alameda, California

Dallas

ACEH RO#000008 AEI Project No. 298931 Denver

Prepared for:

Los Angeles

Mr. John Buestad Foley Street Investments, LLC 1980 Mountain Boulevard, Suite 208 Oakland, CA 94611

Miami

Prepared by:

New York

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-746-6000

Phoenix

Portland

San Jose

National Presence

Regional Focus

Local Solutions

Environmental & Engineering Services

May 17, 2013

Mr. John Buestad Foley Street Investments, LLC 1980 Mountain Boulevard, Suite 208 Oakland, California 94611

Subject: Groundwater Monitoring and Soil Vapor Sampling Report

1st Quarter 2013

1630 Park Street, Parcel B Alameda, California ACEH RO#000008 AEI Project No. 298931

Dear Mr. Buestad:

AEI Consultants (AEI) has prepared this report on behalf of Foley Street Investments, LLC, for the property referenced above. AEI has been retained by Foley Street Investments, LLC to provide environmental consulting and engineering services. The ongoing investigation and remediation of the release is being performed under the direction of the Alameda County Environmental Health (ACEH) local oversight program. This report has been prepared to document the field activities and the results of recent groundwater monitoring and soil vapor sampling event.

SITE DESCRIPTION AND HISTORY

The subject property (hereafter referred to as the "site" or "property") is located in a commercial area on the southeast side of Park Street in Alameda, California (Figure 1 and Figure 2). The property is currently a vacant lot which formerly contained an automobile dealership, repair facility, and parking lot.

According to a Phase I Environmental Site Assessment dated July 5, 2011 by AEI, the former building was constructed in 1945 for use as an automobile garage and showroom. A review of historical city directories indicates that the subject property was occupied by various auto dealerships and repair facilities including Good Chevrolet/Good Leasing from at least 1971 to 2006, Fairway Leasing from 1986 to 2006, and Enterprise Rent-A-Car in 1991.

 In 1986, a 300-gallon waste oil underground storage tank (UST) and a 500-gallon UST were reportedly removed from the north end of the building property by Petroleum Engineering, Inc. Soil samples collected from the adjacent tank pits indicated hydrocarbon impacts in the soils. An environmental case was subsequently opened with the ACEH.

- In January 1987, three groundwater monitoring wells (MW-1 through MW-3) were installed at the site to evaluate the groundwater conditions. Two additional borings (SB-4 and SB-5) were advanced at the same time and soil samples were collected from one of the borings (SB-5).
- In October 1993, a supplemental investigation was performed by Geo Plexus which included advancing seven (7) soil borings (EB1 through EB7) across the parking area of the property. The investigation identified concentrations of hydrocarbons and volatile aromatic compounds in the vicinity of the former USTs at depths between 5 to 12 feet below ground surface (bgs).
- In April 1994, two additional groundwater monitoring wells (MW-4 and MW-5) were installed by Geo Plexus to further characterize the downgradient groundwater conditions.
- In January 1997, a remedial investigation was performed by Geo Plexus which included advancing eight (8) soil borings (EB8 through EB12 and P1 through P3) at locations which were immediately upgradient, downgradient, and cross gradient from the former USTs. Soil samples were collected from EB8 through EB12). The investigation indicated that gasoline impacted soil remained at depths ranging from 7 to 11 feet bgs.
- In November 1998, an investigation for a risk assessment was performed by Geo Plexus. The investigation involved the collection of soil gas samples from three (3) soil gas probes. Soil gas samples were collected at a depth of 3 feet bgs and collected in summa canisters. Using a commercial health risk of 1 x 10⁻⁴, a risk-based corrective action analysis indicated that soil gas concentrations do not represent a significant health risk.
- In April 2008, Blymer Engineers collected soil and groundwater samples from 24 soil borings (GP1 to GP24) on and offsite to characterize the extent of soil and groundwater impacts. It should be noted that AEI was not able to review a formal report of these activities, only tables of soil and groundwater data and figures have been located.
- In June 2011, a Phase I ESA was conducted for the subject property as detailed in a report dated July 5, 2011 (AEI 2011a).
- In July 2011, a subsurface investigation was conducted at the property relating to potential environmental issues aside from the Good Chevrolet LUST case. The areas of concern investigated include five former and five existing underground hydraulic lifts, several floor drains, three existing USTs (1 550-gallon waste-oil UST, 1 10,000 gallon and 1 4,000 gallon gasoline UST), and a former gasoline station identified on the southern end of the development site at the intersection of Park Street and Tilden Way. A total of 19 soil borings (AEI-1 to AEI-19) were drilled for soil and groundwater sampling. Results of the investigation are summarized in the August 16, 2011 *Phase II Subsurface Investigation Report* (AEI 2011b) prepared by AEI.
- An Interim Corrective Action Plan (ICAP) dated September 28, 2011 (AEI 2011c) was submitted and followed by an ICAP Comment Letter Response and Pilot Test Workplan Details dated November 14, 2011 (AEI 2011d). Both documents proposed the performance a High Vacuum Dual Phase Extraction (HVDPE) Pilot Test at the site. A

review of multiple remedial options was discussed in these documents and HVDPE was considered the most feasible option given the site conditions.

- In November 2011, three (3) dual phase extraction wells (DPE-1, DPE-2 and DPE-3) and one (1) air sparge well (AS-1) were installed. In early December, three vacuum monitoring points (VP-1, VP-2 and VP-3) were installed and pilot testing began. Results of the HVDPE pilot test were preliminarily provided in the *Investigation and Remedial Action Workplan* dated January 12, 2012 (AEI 2012a). The work plan also proposed the advancement of additional borings and the installation of additional HVPDE wells. In January 2012, borings AEI-20 through AEI-28 were advanced and wells DPE-4 through DPE-6, and DPE-8 through DPE-11 were installed. DPE-7 was advanced as a boring instead of being completed as a well. Soil sample analytical results for samples collected during the drilling were used to help define the extent of impacted soil and groundwater and to identify target areas for additional remedial action.
- A *Corrective Action Plan* (CAP) dated February 3, 2012, (AEI 2012b) was submitted to the ACEH. The CAP documented the December 2011 to January 2012 HVDPE event and based on the results, recommended HVDPE as the remedial option for the site.
- On January 25, 2012, based on the results of the pilot testing, the HVDPE system resumed operation. The system was operated for 94 days and was turned off on April 25, 2012.
- At the request of the ACEH, a Data Gap and Interim Source Removal Workplan, was prepared and submitted on May 4, 2012 (AEI 2012c). The work plan outlined the scope of work to define the lateral extent of impacted groundwater and proposed excavation of known sources of impacts to groundwater. An addendum to the workplan to address ACEH comments was submitted on September 7, 2012 and conditionally approved on October 5, 2012.
- On October 22 to 29, 2012 interim source removal activities were conducted at the site.
 Approximately 450 tons of hydrocarbon impacted soil were removed from the three
 excavation areas. The results of the activities were detailed in the *Interim Source*Removal Report and Well Abandonment and Replacement Workplan Addendum, dated
 December 7, 2012 (AEI 2012d). Observations made during the excavations and
 confirmation soil sampling of the excavation bottoms and sidewalls indicate the
 following:
 - o <u>Former UST-hold (Excavation E1):</u> Hydrocarbon impacts in soil at this location are substantially remediated. One sidewall soil sample was found to slightly exceed the ESLs for THP-g and xylenes and two sidewall samples exceeded the ESLs for benzene. The objectives of this excavation were met since the bottoms samples were below the agreed upon target concentrations.
 - Three former hydraulic lifts (Excavation E2): Hydrocarbon impacts in soil at this location are substantially remediated. One sidewall sample collected from the west wall (closest to the former UST pit) contained concentrations of TPH-g, TPH-mo, ethylbenzene and xylenes at concentrations that exceeded the ESLs. The objectives of this excavation were met since the bottoms samples were below the agreed upon target concentrations.

- o <u>Former hydraulic lift near DPE-5 (Excavation E3):</u> Hydrocarbon impacts in soil at this location remain in the sidewalls at depths between approximately 7 to 11.5 feet bgs. Concentrations of TPHg, TPH-mo and BTEX exceeded the ESLs in all sidewall samples. The objectives of this excavation were met since the bottom samples were below the agreed upon target concentrations.
- o Groundwater monitoring and sampling has been ongoing at the site since 1992. It was conducted approximately quarterly from 1992 through 1995, then sporadically through 2003, once in 2008, and twice in 2011. Groundwater has been monitored on a quarterly basis since December 2011. Soil vapor monitoring from the three vapor monitoring points installed during the HVPDE pilot test was added to the quarterly monitoring schedule in May 2012.

SUMMARY OF GROUNDWATER MONITORING ACTIVITIES

On February 27, 2013, fourteen (14) groundwater monitoring wells (MW-1 to MW-5, DPE-1, DPE-2, DPE-4, DPE-5, DPE-6, DPE-8, DPE-9, DPE-10 and DPE-11) were gauged and sampled in accordance with the groundwater monitoring schedule presented in the May 2012, Data Gap Investigation and Interim Source Removal Workplan (AEI, 2012c) . Well DPE-3 was abandoned in August 2012. Groundwater well field sampling forms are included in Appendix A.

GAUGING

Prior to gauging, the wells caps were opened and allowed to equilibrate with atmospheric pressure. The depths to water from the top of the well casings were then measured with an electric water level indicator accurate to 0.01 feet prior to sampling.

SAMPLING

Groundwater sampling was accomplished using a peristaltic pump and low-flow purge techniques. New disposable ¼-inch polyethylene tubing was set to the approximate depth of the middle of the screened interval and the pump was operated at a flow rate of approximately 250 milliliters per minute or less. The discharge tubing was connected to a flow-through cell fitted with water quality sensors and readings of temperature, pH, conductivity, dissolved oxygen (DO) and oxygen reduction potential (ORP) were recorded. A visual estimate and description of turbidity was also noted for each well. Once the field parameters stabilized, groundwater samples were collected directly from the discharge side of peristaltic pump.

The groundwater samples were collected into laboratory supplied unpreserved 1-liter amber glass bottles and 40-milliliter (mL) volatile organic analysis (VOA) vials preserved with hydrochloric acid capped such that no head space or air bubbles were visible. Samples were labeled with a unique sample name and the date and time of collection, then entered onto a chain of custody record and placed in a pre-chilled cooler on wet ice pending transportation to the laboratory. The samples were delivered on the day of collection, under proper chain of custody protocol and within hold time, to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644) for analysis.

The groundwater samples were analyzed for:

- Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method SW8015B Modified, TPH as diesel (TPH-d) and TPH as motor oil (TPH-mo) by EPA Method SW8015B with silica gel clean-up.
- Benzene, toluene, ethylbenzene, total xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA Method SW8260B.

GROUNDWATER MONITORING RESULTS

GROUNDWATER ELEVATIONS AND HYDRAULIC GRADIENT

The measured depth to water was subtracted from the surveyed top-of-casing elevation for each well to obtain the groundwater elevation at each well. The groundwater elevations, groundwater flow direction and hydraulic gradient are summarized below:

- The groundwater elevations during this event ranged from 16.43 (MW-4) to 19.12 (DPE-6) feet above mean sea level (amsl). Depth to water ranged from 6.55 (MW-1) to 9.15 (MW-4) below ground surface. The average groundwater elevation for this event was 1.30 feet higher than the previous event.
- Based on these data, the groundwater flow direction was to the northwest under a hydraulic gradient of approximately 0.02 ft/ft which is consistent with previous events.

Current and historical groundwater elevations are summarized in Table 2. The groundwater elevation data, flow direction and hydraulic gradient are presented on Figure 3.

GROUNDWATER SAMPLE LABORATORY ANALYTICAL DATA

The groundwater sample analytical data, with a comparison to the previous monitoring event, are summarized below:

- Concentrations of TPH-g increased in wells DPE-5, DPE-9 and DPE-10 compared to the prior event; however, the recent concentrations across the site are well below historical levels. TPH-g decreased in all other wells compared to prior events. The highest concentration of TPH-g was reported in the sample collected from well DPE-5 at 3,900 micrograms per liter (µg/L). TPH-d was detected in 6 of the wells sampled. The highest concentration of TPH-d was reported in the sample collected from DPE-9 at 2,200 µg/L; however, qualitative laboratory notations indicate that this detection of TPH-d is associated with gasoline.
- TPH-mo was detected only in DPE-5 well at a concentration of 2,600 μg/L.
- MTBE was detected in DPE-9 at 16 μg/L and DPE-10 at 4.4 μg/L during the event.
- Concentrations of benzene in groundwater samples increased slightly in wells DPE-4, DPE-5, DPE-9, and DPE-10 and decreased in all other wells compared to prior events. The highest

concentration increased of benzene was reported in the sample collected from well DPE-5 at $440 \mu g/L$.

 Groundwater samples from six wells (MW-1, MW-3, MW-4, MW-5, DPE-8 and DPE-11) were non-detect for all analytes for this event.

The groundwater analytical data are summarized in Table 3 and are presented graphically on Figure 4. Laboratory analytical reports with chain of custody and quality assurance/quality control documentation are included in Appendix B.

SUMMARY OF SOIL VAPOR SAMPLING ACTIVITIES

On February 27, 2013, the three onsite (3) soil vapor probes (VP-1, VP-2, and VP-3) were sampled. The probes are located in the source area near the former tank hold which had recently been excavated and previously undergone HVDPE. The purpose of the sampling was to establish a baseline concentrations post interim remediation and as part of an evaluation of vapor intrusion potential.

Soil vapor samples were collected in one-liter summa canisters fitted with 150 ml/hr flow controllers. Each canister and flow controller was individually checked, tested and certified by the laboratory for air tightness and proper vacuum prior to shipping. A vacuum gauge was used to measure and record the initial and final summa canister vacuum pressure. Prior to collecting each vapor sample, a shut-in test was performed to verify that the sampling train was free of leaks, and approximately three tubing volumes were purged using a spare summa-canister. During sampling a leak check compound (isopropyl alcohol) was used to check for leaks. Upon completion of sampling the valves were removed, the inlet fittings tightly capped, and the canisters were labeled with sample name, date and time of collection, and then entered onto a chain of custody record.

After sample collection, field readings of oxygen (O_2) , methane (CH_4) , carbon dioxide (CO_2) and total volatile hydrocarbons (TVHC) were collected using a multi-gas detector. The instrument uses a photoionization detector (PID) calibrated to 100 ppm isobutylene to read TVHC and contains dedicated O_2 , CH_4 and CO_2 sensors. The field data were recorded on field sampling sheets which are included in Appendix A.

The soil vapor samples were delivered on the day of collection, under proper chain of custody protocol and within hold time, to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification #1644) for analysis. Soil vapor samples were analyzed: by EPA Method TO-15 for total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX), fuel oxygenates and isopropyl alcohol; and by ASTM Method D 1946-90 for atmospheric gasses (CO_2 , CH_4 , nitrogen, and O_2).

SOIL VAPOR SAMPLING ANALYTICAL RESULTS

- All soil vapor samples collected during the event were non-detect for TPH-g and BTEX.
- 30 $\mu g/m3$ and 28 $\mu g/m3$ of tetrachloroethene was detected at VP-1 & VP-2 samples respectively.
- PID and methane field readings from the vapor probes were non-detect (zero).

- Oxygen concentrations in soil vapor ranged from 180,000 μ L/L to 190,000 μ L/L (18% to 19%).
- Carbon dioxide concentrations in soil vapor ranged from 3,700 μ L/L to 15,000 μ L/L (0.37% to 1.5%).

Laboratory analytical results are summarized in Table 4. Copies of the laboratory analytical reports with chain of custody and quality assurance/quality control documentation are included in Appendix C.

SUMMARY

AEI completed a groundwater monitoring and sampling event on February 27, 2013. Fourteen wells were monitored as per the proposed groundwater monitoring schedule. The results of the groundwater monitoring are summarized below:

Groundwater flow is toward northwest under a hydraulic gradient of 0.02 ft/ft, consistent with historic data.

- TPH-g, TPH-d, benzene, toluene, ethylbenzene, and total xylenes were detected in groundwater around the release area. In general the concentrations appear to be decreasing as a result of recent remedial efforts.
- MTBE was detected in two groundwater samples.

AEI also completed a soil vapor sampling event on February 27, 2013. Three soil vapor probes were sampled to determine base line concentrations post-interim remediation. The results of the soil vapor sampling are summarized below:

All soil vapor samples collected during the event were non-detect for TPH-g and BTEX.
 Field monitoring data indicated sufficient oxygen for aerobic degradation of hydrocarbons.

Based on the results of recent groundwater monitoring, groundwater quality has significantly improved since HVDPE implementation and source area excavation. Natural attenuation is expected to continue to reduce impact to groundwater. Groundwater monitoring data will be evaluated following each event to determine the need for further monitoring and to evaluate the site for case closure eligibility.

The next groundwater monitoring and soil gas sampling event is scheduled for May 2013, after which it is anticipated that the onsite groundwater monitoring wells and the three soil gas probes will be decommissioned.

REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work and were performed under the direction of appropriate California-licensed professionals.

Should you have any questions, or need any additional information regarding this report, please do not hesitate to contact us at (925) 746-6000.

Sincerely,

AEI Consultants

Stephen Lao Project Enginee Robert Robitaille Program Manager

Peter McIntyre, PG Executive Vice President

Principal Geologist

ATTACHMENTS

Figures

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Groundwater Elevation Data Figure 4 Groundwater Analytical Data

Tables

Table 1 Well Construction Details
 Table 2 Groundwater Elevation Data
 Table 3 Groundwater Analytical Data
 Table 4 Soil Vapor Analytical Data

Appendices

Appendix A Field Sampling Forms

Appendix B Groundwater Sample Laboratory Analytical Reports
Appendix C Soil Vapor Sample Laboratory Analytical Reports

REFERENCES

AEI Consultants (AEI) 2011a. Phase I Environmental Site Assessment, 1600 – 1650 Park Street, 1600 – 1606 Foley Street, 2329 Pacific Avenue, Alameda, California, July 5, 2011.

AEI Consultants (AEI) 2011b. Phase II Subsurface Investigation, 1600 to 1630 Park Street, Alameda, California, August 16, 2011.

AEI Consultants (AEI) 2011c. Interim Corrective Action Plan, 1630 Park Street, Alameda, California, September 2011.

AEI Consultants (AEI) 2011d. ICAP Comment Letter Response and Pilot Test Workplan Details, 1630 Park Street, Alameda, California, November 14, 2011.

AEI Consultants (AEI) 2012a. Investigation and Remedial Action Workplan, 1630 Park Street, Alameda, California, January 12, 2012.

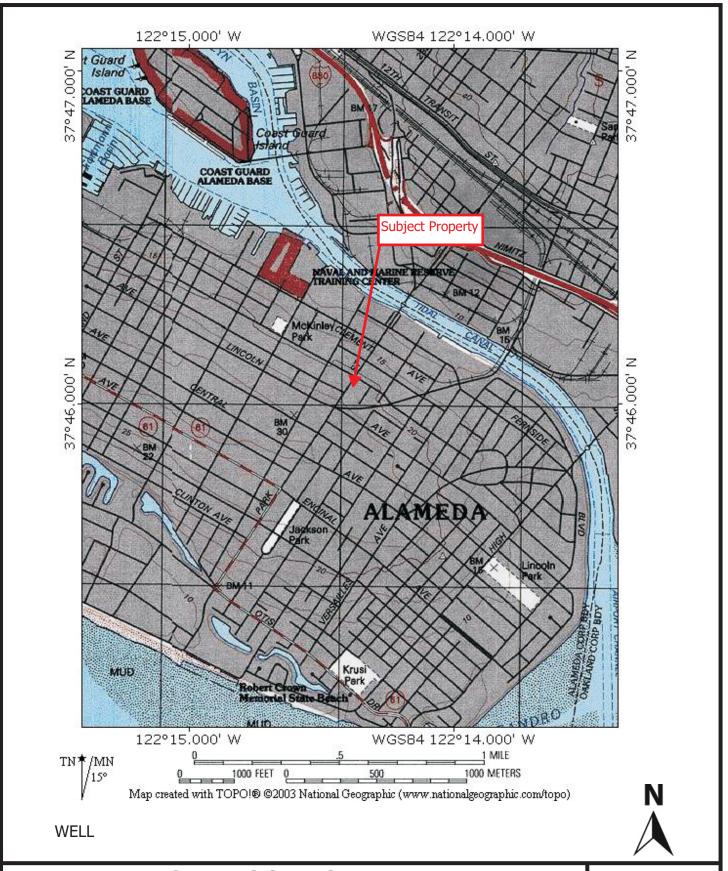
AEI Consultants (AEI) 2012b. Corrective Action Plan, 1630 Park Street, Alameda, California, February 3, 2012.

AEI Consultants (AEI) 2012c. Data Gap and Interim Source Removal Workplan, 1630 Park Street, Alameda, California, May 4, 2012.

AEI Consultants (AEI) 2012d. Interim Source Removal Report and Well Abandonment and Replacement Workplan Addendum, 1630 Park Street, Alameda, California, December 7, 2012

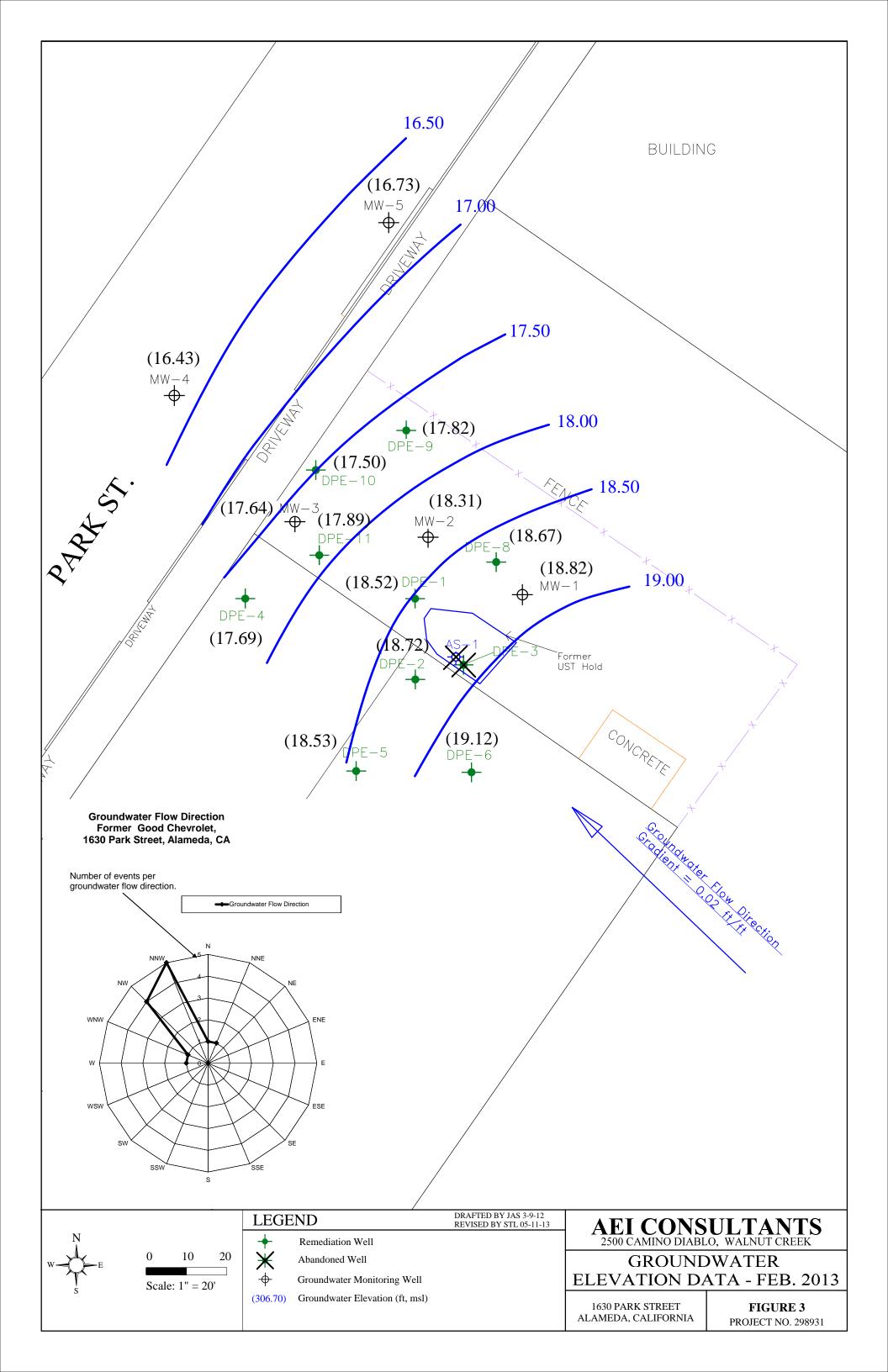
RWQCB 2013. Environmental Screening Levels, Table F-1a & E-2, San Francisco Regional Water Quality Control Board

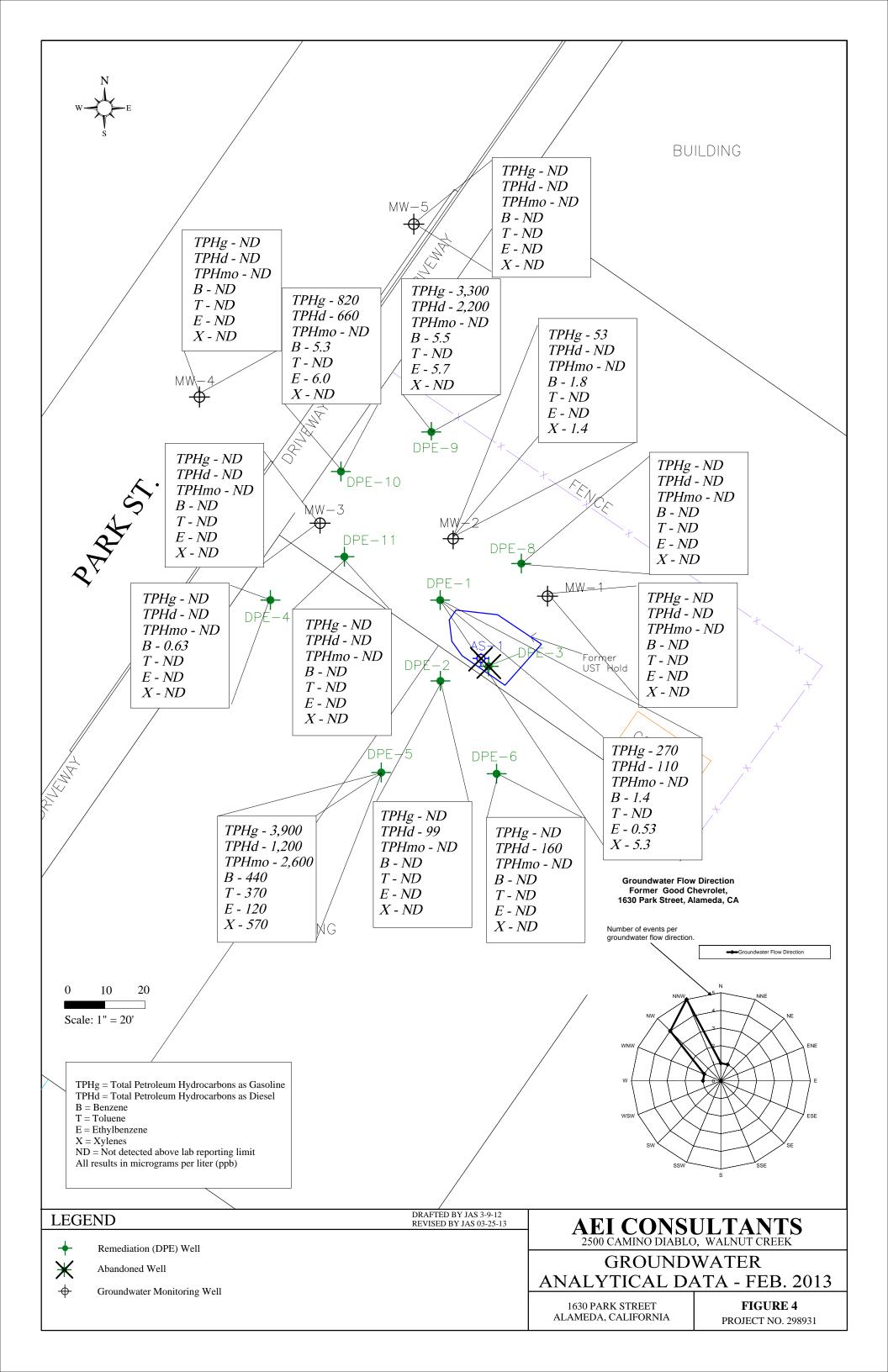
DISTRIBUTION


John Buestad, Foley Street Investments

Karel Detterman, Alameda County Environmental Health Department (FTP Upload) GeoTracker (Upload)

FIGURES


SITE LOCATION MAP


1630 Park Street, Alameda, California **FIGURE 1**

Project Number: 298931

TABLES

Table 1 **Well Construction Details** AEI Project No. 298931, 1630 Park Street, Alameda, California

Well ID Number	Well Installation Date	Elevation TOC (feet)	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material
AS-1	11/14/2011	-	PVC	25	25	8	2	20 - 25	0.020	20 - 25	#3 Sand
DPE-1	11/15/2011	-	PVC	16	15	10	4	7 - 15	0.010	6.5 - 16	#2/12 Sand
DPE-2	11/15/2011	-	PVC	16	15	10	4	7 - 15	0.010	6.5 - 16	#2/12 Sand
DPE-3	11/14/2011	-	PVC	16	14	10	4	7 - 14	0.010	6.5 - 16	#2/12 Sand
DPE-4	1/19/2012	-	PVC	17	17	10	4	8 - 17	0.010	7.5 - 17	#2/12 Sand
DPE-5	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-6	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-8	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-9	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
DPE-10	1/20/2012	-	PVC	17	17	10	4	8 - 17	0.010	7.5 - 17	#2/12 Sand
DPE-11	1/20/2012	-	PVC	18	18	10	4	8 - 18	0.010	7.5 - 18	#2/12 Sand
MW-1	1/15/1987	-	PVC	-	20	8	2	5 - 20	-	-	-
MW-2	1/15/1987	-	PVC	-	20	8	2	5 - 20	-	-	-
MW-3	1/15/1987	-	PVC	-	20	8	2	5 - 20	-	-	-
MW-4	4/20/1994	-	PVC	-	23	8	2	8 - 23	-	-	-
MW-5	4/20/1994	-	PVC	-	22	8	2	7 - 22	-	-	-
VP-1	12/6/2011	-	Stainless Steel	6	6	1.25	1/4	5.1 - 5.6	Mesh	4.7 - 6	#30 Mesh Sanc
VP-2	12/6/2011	-	Stainless Steel	5.9	5.9	1.25	1/4	5.1-5.6	Mesh	4.7-5.9	#30 Mesh Sanc
VP-3	12/6/2011	-	Stainless Steel	5.75	5.75	1.25	1/4	5.1-5.6	Mesh	4.7-5.75	#30 Mesh Sanc

PVC = polyvinyl chloride TOC = top of casing "-" = not available

Table 2

Groundwater Elevation Data
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Well ID	Date	Well	Depth to	Groundwater
(Screen Interval)	Collected	Elevation	Water	Elevation
		(ft ams/*)	(ft)	(ft amsl*)
MW-1	Jul-89	104.76	8.93	95.83
(5 - 20 feet bgs)	Apr-91		7.59	97.17
	Jul-92		8.72	96.04
	Aug-92		9.09	95.67
	Sep-92 Oct-92		9.25 9.34	95.51 95.42
	Nov-92		9.21	95.55
	Dec-92		9.26	95.50
	Jan-93		7.81	96.95
	Feb-93 Mar-93		7.32 7.20	97.44 97.56
	Apr-93		7.20	97.45
	May-93		8.29	96.47
	Jul-93		8.30	96.46
	Oct-93		9.38	95.38
	Jan-94 Apr-94		8.80 8.15	95.96 96.61
	Jul-94		8.70	96.06
	Oct-94		9.37	95.39
	Jan-94		7.18	97.58
	Apr-95		6.76	98.00
	Jan-97 Nov-98		7.03 8.10	97.73 96.66
	Jan-01		7.70	97.06
	Jun-02		7.30	97.46
	Nov-02		8.14	96.62
	Feb-03		6.87 7.05	97.89 97.71
	Jun-03 Apr-08	25.42	7.03	18.29
	Jun-11	25.42	7.54	17.88
	Dec-11	25.37	8.02	17.35
	Jan-12	25.37	8.08	17.29
	May-12 Jul-12	25.37 25.37	6.87 7.34	18.50 18.03
	Nov-12	25.37	8.23	17.14
	Feb-13	25.37	6.55	18.82
MW-2	Jul-89	104.86	9.24	95.62
(5 - 20 feet bgs)	Apr-91	104.00	8.01	96.85
, , , , ,	Jul-92		9.03	95.83
	Aug-92		9.34	95.52
	Sep-92 Oct-92		9.46 9.52	95.40 95.34
	Nov-92		9.42	95.44
	Dec-92		9.47	95.39
	Jan-93		8.25	96.61
	Feb-93		7.85	97.01
	Mar-93 Apr-93		7.77 7.86	97.09 97.00
	May-93		8.20	96.66
	Jul-93		8.72	96.14
	Oct-93		9.64	95.22
	Jan-94		9.12 8.56	95.74 96.30
	Apr-94 Jul-94		8.56 9.02	96.30 95.84
	Oct-94		9.59	95.27
	Jan-94		7.71	97.15
	Apr-95		7.40	97.46
	Jan-97 Nov-98		7.55 8.49	97.31 96.37
	Jan-01		8.08	96.78
	Jun-02		7.77	97.09
	Nov-02		8.50	96.36
	Feb-03 Jun-03		7.38 7.57	97.48 97.29
	Apr-08	25.52	7.57 7.67	97.29 17.85
	Jun-11	25.52	7.35	18.17
	Dec-11	25.48	8.41	17.07
	Jan-12	25.48	8.43	17.05
	May-12 Jul-12	25.48 25.48	7.41 7.83	18.07 17.65
	Jul-12 Nov-12	25.48 25.48	7.83 8.51	16.97
	Feb-13	25.48	7.17	18.31

Table 2Groundwater Elevation DataAEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Well ID (Screen Interval)	Date Collected	Well Elevation	Depth to Water	Groundwater Elevation
		(ft ams/*)	(ft)	(ft ams/*)
MW-3	Jul-89	104.52	9.00	95.52
(5 - 20 feet bgs)	Apr-91		8.06	96.46
	Jul-92		8.82	95.70
	Aug-92		9.05	95.47
	Sep-92		9.09	95.43
	Oct-92 Nov-92		9.15 9.05	95.37 95.47
	Dec-92		9.12	95.40
	Jan-93		8.18	96.34
	Feb-93		7.98	96.54
	Mar-93		7.94	96.58
	Apr-93		8.02	96.50
	May-93		7.69	96.83
	Jul-93		8.65	95.87
	Oct-93		9.32	NC
	Jan-94		8.93	NC 04.00
	Apr-94 Jul-94		8.52 8.86	96.00 95.66
	Oct-94		9.25	95.27
	Jan-94		7.85	96.67
	Apr-95		7.64	96.88
	Jan-97		7.75	96.77
	Nov-98		8.38	96.14
	Jan-01		8.00	96.52
	Jun-02		7.81	96.71
	Nov-02		8.37	96.15
	Feb-03		7.48	97.04
	Jun-03	05.47	7.67	96.85
	Apr-08	25.17 25.17	7.74	17.43
	Jun-11 Dec-11	25.17	7.50 8.25	17.67 16.88
	Jan-12	25.13	8.25	16.88
	May-12	25.13	7.64	17.49
	Jul-12	25.13	7.97	17.16
	Nov-12	25.13	8.40	16.73
	Feb-13	25.13	7.49	17.64
MW-4	Apr-94	104.86	9.29	95.57
(8 - 23 feet bgs)	Jul-94		9.55	95.31
	Oct-94		9.83	95.03
	Jan-94 Apr-95		8.88 8.80	95.98 96.06
	Jan-97		0.00	90.00
	Nov-98		-	-
	Jan-01		_	_
	Jun-02		-	-
	Nov-02		-	-
	Feb-03		-	-
	Jun-03		-	-
	Apr-08	25.53	8.73	16.80
	Jun-11	25.53	8.52	17.01
	Dec-11	25.58	-	-
	Jan-12 May-12	25.58 25.58	- 8.96	- 16.62
	May-12 Jul-12	25.58	9.26	16.32
	Nov-12	25.58	10.04	15.54
	Feb-13	25.58	9.15	16.43
MW-5	Apr-94	103.62	8.27	95.35
(7 - 22 feet bgs)	Jul-94		8.50	95.12
	Oct-94		8.92	94.70
	Jan-94		7.61	96.01
	Apr-95 Jan-97		8.48 6.79	95.14 96.83
	Jan-97 Nov-98		8.12	95.50
	Jan-01		7.67	95.95
	Jun-02		7.61	96.01
	Nov-02		8.01	95.61
	Feb-03		7.22	96.40
	Jun-03		7.43	96.19
	Apr-08	24.31	7.36	16.95
	Jun-11	24.31	7.43	16.88
	Dec-11	24.32	-	-
	Jan-12	24.32	-	-
	May-12	24.32	7.46	16.86
	Jul-12 Nov-12	24.32	7.76 8.47	16.56 15.85
	Nov-12 Feb-13	24.32 24.32	8.47 7.59	15.85 16.73
	1 50-19	24.32	1.37	10.73
L	1			

Table 2 **Groundwater Elevation Data**AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Well ID (Screen Interval)	Date Collected	Well Elevation	Depth to Water	Groundwater Elevation
(==:==:		(ft amsl*)	(ft)	(ft ams/*)
		(17 611161)	()	(
DPE-1	Dec-11	25.00	0.01	17.07
		25.88	8.81	
(7 - 15 feet bgs)	Jan-12	25.88	8.78	17.10
	May-12	25.88	7.72	18.16
	Jul-12	25.88	8.13	17.75
	Nov-12	25.88	8.84	17.04
	Feb-13	25.88	7.36	18.52
DPE-2	Dec-11	26.22	9.29	16.93
(7 - 15 feet bgs)	Jan-12	26.22	7.97	18.25
(7 - 15 leet bgs)				
	May-12	26.22	7.89	18.33
	Jul-12	26.22	8.26	17.96
	Nov-12	26.22	9.02	17.20
	Feb-13	26.22	7.50	18.72
DPE-3	Dec-11	25.27	7.92	17.35
(7 - 15 feet bgs)	Jan-12	25.27	8.98	16.29
(/ - 15 leet bgs)		25.27	6.75	18.52
	May-12 Jul-12			
	Nov-12	25.27 Abandoned	7.20 -	18.07 -
	1404-12	Abandoned	_	-
DPE-4	Jan-12	26.06	9.11	16.95
(8-17 feet bgs)	May-12	26.06	8.59	17.47
(0 17 1001 2go)	Jul-12	26.06	8.84	17.22
	Nov-12	26.06	9.23	16.83
				17.69
	Feb-13	26.06	8.37	17.09
DPE-5	Jan-12	26.25	-	-
(8-18 feet bgs)	Nov-12	26.25	9.94	16.31
	Feb-13	26.25	7.72	18.53
DDE /	In 10	2/ 12	0.50	17.55
DPE-6	Jan-12	26.13	8.58	17.55
(8-18 feet bgs)	May-12	26.13	7.43	18.70
	Jul-12	26.13	7.83	18.30
	Nov-12	26.13	8.71	17.42
	Feb-13	26.13	7.01	19.12
DPE-8	Jan-12	25.36		
(8-18 feet bgs)	Nov-12	25.36	8.31	17.05
(0-10 feet bgs)	Feb-13	25.36	6.69	18.67
	100 10	20.00	0.07	10.07
DPE-9	Jan-12	25.09	8.12	16.97
(8-18 feet bgs)	Jul-12	25.09	7.81	17.28
	Nov-12	25.09	8.38	16.71
	Feb-13	25.09	7.27	17.82
DDE 40	140	05.44		
DPE-10	Jan-12	25.14	-	-
(8-17 feet bgs)	May-12	25.14	7.73	17.41
	Jul-12	25.14	8.09	17.05
	Nov-12	25.14	8.51	16.63
	Feb-13	25.14	7.64	17.50
DPE-11	Jan-12	25.57		_
			7.00	
(8-18 feet bgs)	May-12	25.57	7.90	17.67
	Jul-12	25.57	- 0.74	1/ 00
	Nov-12 Feb-13	25.57 25.57	8.74 7.68	16.83 17.89
	105-13	20.07	7.00	17.07
Average	Dec-11		8.45	17.11
	Jan-12		8.48	17.15
	May-12		7.70	17.82
	Jul-12		8.03	17.45
	Nov-12		8.81	16.73
	NOV-12			
	Feb-13		7.51	18.03

ft amsl *= feet above mean sea level. Note: Data before 2008 are based on a fictitous 100 ft datum. All water level depths are measured from the top of casing "-" = not measured bgs = below ground surface

Table 3

Groundwater Analytical Data- Monitoring Wells
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g EPA	Benzene Methods 8	Toluene 020, 8021		Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA EPA Met	DIPE hod 8260	Ethanol B	ETBE	Methanol	Lead
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	1/21/1987		-	-	21,020	1,148	8,627	1,792	6,012	-	-	-	-	-	-	-	-	-	-	_
	1/11/1989		-	-	1,400	74	10	13	5.0	-	-	-	-	-	-	-	-	-	-	-
	7/12/1989		-	-	1,200	470	49	45	33	-	-	-	-	-	-	-	-	-	-	-
	4/9/1991		-	-	850	260	10	15	12	-	-	-	-	-	-	-	-	-	-	-
	7/14/1992		-	-	13,000	2,300	1,200	1,200	1,200	-	-	-	-	-	-	-	-	-	-	-
	10/7/1992		-	-	3,600	1,600	80	120	120	-	-	-	-	-	-	-	-	-	-	-
	1/11/1993		-	-	1,200	410	16	23	19	-	-	-	-	-	-	-	-	-	-	-
	4/23/1993	a	-	-	2,200	720	180	82	150	-	-	-	-	-	-	-	-	-	-	-
	7/8/1993	a	-	-	3,200	1,200	110	97	100	-	-	-	-	-	-	-	-	-	-	-
	10/15/1993	a	-	-	3,700	1,400	43	94	36	-	-	-	-	-	-	-	-	-	-	-
	1/25/1994	a	-	-	1,600	680	16	41	35	-	-	-	-	-	-	-	-	-	-	-
	4/28/1994	a	-	-	6,100	1,900	380	250	340	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	a	-	-	6,000	1,800	510	220	450	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	a	-	-	3,000	1,100	79	82	87	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995	a	-	-	1,600	660	100	82	87	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	a	-	-	3,800	1,200	270	120	260	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995	a	-	-	5,200	1,500	450	190	400	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995	a	-	-	5,900	1,800	450	210	400	-	-	-	-	-	-	-	-	-	-	-
	1/21/1997	a	-	-	3,100	1,100	87	160	180	<7.3	-	-	-	-	-	-	-	-	-	-
	11/12/1998	a	-	-	1,000	280	3	3.3	7.9	<30	-	-	-	-	-	-	-	-	-	-
	1/16/2001	a	-	-	4,700	1,20	18	150	49	-	<5	<5.0	<25	<5.0	<5.0	<5.0	-	<5.0	-	-
	6/27/2002	a	-	-	5,900	230	7.7	<5	1,500	-	<5	<5.0	<50	<5.0	<5.0	<5.0	-	<5.0	-	-
	11/18/2002	a	-	-	3,100	890	12	310	28	-	<2.5	-	-	<2.5	<2.5	-	-	-	-	-
	2/20/2003	d	-	-	260	100	0.72	< 0.5	<0.5	-	< 0.5	-	-	< 0.5	< 0.5	-	-	-	-	-
	6/11/2003	a	-	-	3,100	480	6.7	220	420	-	<2.5	-	-	<2.5	<2.5	-	-	-	-	-
	4/3/2008	a	-	-	2,700	280	21	130	230	<25	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<100	<1.0	<1,000	< 0.5
	6/23/2011	a	-	-	610	100	6.2	46	77	-	<2.5	<2.5	<10	-	-	<2.5	-	<2.5	-	-
	12/6/2011	a	-	-	900	160	<5.0	68	76	-	<5.0	<5.0	<20	-	-	<5.0	-	<5.0	-	-
	1/24/2012	a	-	-	190	25	<1.0	1.4	4.6	<1.0	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	210	<250	2,600	200	51	93	610	<5.0	-	-	-	-	-	-	-	-	-	-
	7/11/2012	a	700	<250	2,700	190	8.1	100	230	<5.0	-	-	-	-	-	-	-	-	-	-
	11/16/2012	С	140	<250	370	71	<1.7	<1.7	<1.7	<1.7	-	-	-	-	-	-	-	-	-	-
	2/27/2013		<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-

Table 3

Groundwater Analytical Data- Monitoring Wells
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g FPA	Benzene Methods 80		Ethylbenzene	Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA FPA Met	DIPE hod 8260	Ethanol B	ETBE	Methanol	Lead
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2	1/21/1987		-	-	5,018	386	1,981	285	1,432	-	-	-	-	-	-	-	-	-	-	-
	1/11/1989		-	-	10,000	3,000	410	240	190	-	-	-	-	-	-	-	-	-	-	-
	7/12/1989		-	-	7,600	2,700	540	250	320	-	-	-	-	-	-	-	-	-	-	-
	4/9/1991		-	-	4,900	910	210	130	200	-	-	-	-	-	-	-	-	-	-	-
	7/14/1992		-	-	13,000	4,400	1,500	610	1,100	-	-	-	-	-	-	-	-	-	-	-
	10/7/1992		-	-	11,000	5,200	1,500	500	1,200	-	-	-	-	-	-	-	-	-	-	-
	1/11/1993		-	-	17,000	940	1,100	480	930	-	-	-	-	-	-	-	-	-	-	-
	4/23/1993	а	-	-	52,000	13,000	8,400	1,700	5,300	-	-	-	-	-	-	-	-	-	-	-
	7/8/1993	а	-	-	6,400	2,500	470	280	530	-	-	-	-	-	-	-	-	-	-	-
	10/15/1993	а	-	-	17,000	3,900	870	500	940	-	-	-	-	-	-	-	-	-	-	-
	1/25/1994	а	-	-	16,000	5,400	1,140	640	1,500	-	-	-	-	-	-	-	-	-	-	-
	4/28/1994	а	-	-	15,000	4,00	910	480	1,200	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	a	-	-	18,000	6,000	760	630	1,600	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	a	-	-	9,500	2,700	230	320	640	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995	a	-	-	5,900	1,900	290	230	500	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	а	-	-	10,000	3,300	620	360	930	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995	а	-	-	9,900	3,300	320	390	830	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995	а	-	-	13,000	4,900	400	580	990	-	-	-	-	-	-	-	-	-	-	-
	1/21/1997	а	-	-	7,600	2,600	310	330	660	<20	-	-	-	-	-	-	-	-	-	-
	11/12/1998	а	-	-	31,000	11,000	750	1,500	2,300	<900	-	-	-	-	-	-	-	-	-	-
	1/16/2001	а	-	-	23,000	8,200	260	1,000	820	<30	-	<30	<150	<30	<30	<30	-	<30	-	-
	6/27/2002	а	-	-	39,000	7,000	1,800	690	4,000	-	<5	<5.0	<5.0	<5.0	6.1	<5.0	-	<5.0	-	-
	11/18/2002	а	-	-	15,000	5,700	76	1,000	150	-	<12	-	-	<12	<12	-	-	-	-	-
	2/20/2003	а	-	-	26,000	6,300	1,100	1,300	1,900	-	<5.0	-	-	<5.0	<5.0	-	-	-	-	-
	6/11/2003	а	-	-	37,000	7,100	2,300	2,000	3,600	-	<25	-	-	<25	<25	-	-	-	-	-
	4/3/2008	а	-	-	4,100	760	96	250	130	<50	<2.5	<2.5	<10	<2.5	<2.5	<2.5	<250	<2.5	<2,500	< 0.5
	6/23/2011	а	-	-	6,500	2,100	210.0	560	310	-	<50	<50	<200	-	-	<50	-	<50	-	-
	12/6/2011	a	-	-	4,800	1,600	<50	260	<50	-	<50	<50	<200	-	-	<50	-	<50	-	-
	1/24/2012	a	-	-	2,500	100	22.0	<5.0	410	<5.0	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	68	<250	140	14	2.8	2.9	12	<0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	a	270	<250	930	170	< 5.0	24	9.3	<5.0	-	-	-	-	-	-	-	-	-	-
	11/16/2012	С	200	<250	340	15	1.4	5.4	2.1	< 0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013	а	<50	<250	53	1.8	<0.5	<0.5	1.4	<0.5	-	-	-	-	-	-	-	-	-	-

Table 3

Groundwater Analytical Data- Monitoring Wells
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

1/1: 7/1: 4/9 7/1- 10/: 1/1: 4/2: 7/8 10/1 1/2: 4/2: 7/2: 10/2	/21/1987 /11/1989 /12/1989 //9/1991 /14/1992 0/7/1992 /11/1993		(µg/L) - - -	(μg/L) - -	(μg/L) 10,287	Methods 80 (µg/L)	μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(/I.)
1/1: 7/1: 4/9 7/1- 10/: 1/1: 4/2: 7/8 10/1 1/2: 4/2: 7/2: 10/2	/11/1989 /12/1989 //9/1991 /14/1992 0/7/1992 /11/1993		- - -	-		1 // 20				(1-31-)	(P9/L)	(µg/L)	(µg/ L)	(µg/ L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
7/1: 4/9 7/1- 10/: 1/1: 4/2: 7/8 10/1 1/2: 4/2: 7/2: 10/2	/12/1989 //9/1991 /14/1992 0/7/1992 /11/1993		-	-		1,428	3,281	610	2,761	-	-	-	-	-	-	-	-	-	-	-
4/9 7/1- 10/1 1/1: 4/2: 7/8 10/1 1/2: 4/2: 7/2: 10/2	/9/1991 /14/1992 0/7/1992 /11/1993		-		5,300	1,800	340	150	160	-	-	-	-	-	-	-	-	-	-	-
7/14 10/1 1/1: 4/2: 7/8 10/1 1/2: 4/24 7/2: 10/2	/14/1992 0/7/1992 /11/1993			-	7,800	3,100	900	300	480	-	-	-	-	-	-	-	-	-	-	-
10/ 1/1: 4/2: 7/8 10/1 1/2: 4/2i 7/2: 10/2	0/7/1992 /11/1993		-	-	9,400	1,400	730	200	510	-	-	-	-	-	-	-	-	-	-	-
1/1: 4/2: 7/8 10/1 1/2: 4/2: 7/2: 10/2	/11/1993		-	-	17,000	3,500	390	390	260	-	-	-	-	-	-	-	-	-	-	-
4/2: 7/8 10/1 1/2: 4/2: 7/2: 10/2			-	-	9,200	4,300	470	390	610	-	-	-	-	-	-	-	-	-	-	-
7/8 10/1 1/2! 4/2! 7/2: 10/2			-	-	2,000	740	29	58	28	-	-	-	-	-	-	-	-	-	-	-
10/1 1/2! 4/2! 7/2: 10/2	/23/1993	a	-	-	6,500	2,600	280	260	190	-	-	-	-	-	-	-	-	-	-	-
1/2! 4/28 7/2: 10/2	7/8/1993	a	-	-	5,200	2,100	260	250	180	-	-	-	-	-	-	-	-	-	-	-
4/28 7/2 10/2	/15/1993	a	-	-	11,000	3,500	580	430	370	-	-	-	-	-	-	-	-	-	-	-
7/2: 10/2	/25/1994	a	-	-	6,200	2,500	270	160	28	-	-	-	-	-	-	-	-	-	-	-
10/2	/28/1994	a	-	-	5,300	1,700	190	210	180	-	-	-	-	-	-	-	-	-	-	-
	/27/1994	a	-	-	5,900	2,000	360	260	330	-	-	-	-	-	-	-	-	-	-	-
1/20	/27/1994	a	-	-	8,000	2,200	580	260	170	-	-	-	-	-	-	-	-	-	-	-
	/26/1995	a	-	-	3,700	1,200	150	150	190	-	-	-	-	-	-	-	-	-	-	-
	/13/1995	a	-	-	4,000	1,400	200	180	210	-	-	-	-	-	-	-	-	-	-	-
7/2:	/21/1995	a	-	-	5,700	2,000	280	270	280	-	-	-	-	-	-	-	-	-	-	-
10/2	/25/1995	a	-	-	11,000	3,500	1,100	460	680	-	-	-	-	-	-	-	-	-	-	-
	/21/1997	a	-	-	2,200	860	63	71	80	<5	-	-	-	-	-	-	-	-	-	-
	./12/1998	d	-	-	180	44	0.51	<0.5	0.92	<20	-	-	-	-	-	-	-	-	-	-
	/16/2001	a	-	-	64	11	0.77	<0.5	<0.5	-	<5	<1.0	<5.0	<1.0	1.4	<1.0	-	<1.0	-	-
	/27/2002		-	-	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<5.0	<0.5	<0.5	<0.5	-	<0.5	-	-
	./18/2002	a	-	-	110	21	1	<0.5	<0.5	-	<0.5	-	-	<0.5	<0.5	-	-	-	-	-
	/20/2003		-	-	<50	2.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	<0.5	-	-	-	-	-
	/11/2003		-	-	<50	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	<0.5	-	-	-	-	-
	/3/2008	a	-	-	7,600	2,400	58	250	170	<100	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<500	<5.0	<5,000	<0.5
	/23/2011	a	-	-	1,300	560	21	86	150	-	<12	<12	<50	-	-	<12	-	<12	-	-
	2/6/2011	a	-	-	1,800	620	28	22	46	-	<17	<17	<67	-	-	<17	-	<17	-	-
	/24/2012	a	-	-	3,700	1,200	68	34	130	<25	-	-	-	-	-	-	-	-	-	-
	/18/2012	f	<50	<250	75	5.3	<0.5	<0.5	1.6	<0.5	-	-	-	-	-	-	-	-	-	-
	/11/2012	a	<50	<250	78	1.4	0.66	<0.5	5.5	<0.5	-	-	-	-	-	-	-	-	-	-
11/1	/16/2012		<50	<250	<50	< 0.5	<0.5	<0.5	< 0.5	<0.5	-	-	-	-	-	-	-	-	-	-
2/2	1 10/2012	g	<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5										

Table 3

Groundwater Analytical Data- Monitoring Wells
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g FPA	Benzene Methods 8	Toluene 020 8021	Ethylbenzene B	Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA EPA Met	DIPE	Ethanol B	ETBE	Methanol	Lead
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4	4/28/1994	b,c	-	-	190	3.8	2.9	2.1	3.1	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	a	-	-	180	15	9.2	7.6	28	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	a	-	-	130	8.6	6.6	4.5	17	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995		-	-	110	6.5	1.2	1.8	11	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995		-	-	82	3.9	< 0.5	<0.5	2.5	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995		-	-	130	8.8	1.3	4.5	7.6	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995		-	-	95	6.6	1.7	4.3	7	-	-	-	-	-	-	-	-	-	-	-
	4/3/2008		-	-	130	1.6	< 0.5	0.89	0.85	<5.0	< 0.5	< 0.5	<2.0	< 0.5	<0.5	< 0.5	<50	< 0.5	<500	< 0.5
	6/23/2011	a	-	-	53	2.7	< 0.5	1.0	1.7	-	< 0.5	< 0.5	<2.0	-	-	< 0.5	-	< 0.5	-	-
	5/23/2012	f	<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	g	<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	11/16/2012	С	360	<250	440	3.4	< 0.5	1.2	2.1	<0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013		<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5										
MW-5	4/28/1994	а	-	-	30,000	4,000	3,000	810	3,500	-	-	-	-	-	-	-	-	-	-	-
	7/27/1994	а	-	-	9,300	2,000	800	290	940	-	-	-	-	-	-	-	-	-	-	-
	10/27/1994	а	-	-	15,000	2,700	1,300	420	1,100	-	-	-	-	-	-	-	-	-	-	-
	1/26/1995	а	-	-	7,900	2,100	680	240	860	-	-	-	-	-	-	-	-	-	-	-
	4/13/1995	а	-	-	7,900	2,400	580	340	630	-	-	-	-	-	-	-	-	-	-	-
	7/21/1995	а	-	-	11,000	3,400	760	610	1,200	-	-	-	-	-	-	-	-	-	-	-
	10/25/1995	а	-	-	13,000	2,900	830	570	1,100	-	-	-	-	-	-	-	-	-	-	-
	1/21/1997	а	-	-	2,600	750	65	1,860	280	<5	-	-	-	-	-	-	-	-	-	-
	11/12/1998		-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5	-	-	-	-	-	-	-	-	-	-
	1/16/2001		-	-	<50	11	< 0.5	< 0.5	0.82	-	<5	<1.0	< 5.0	<1.0	<1.0	<1.0	-	<1.0	-	-
	6/27/2002		-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5	-	< 0.5	-	-
	11/18/2002	а	-	-	130	17	3.8	2.1	16	-	< 0.5	-	-	< 0.5	< 0.5	-	-	-	-	-
	2/20/2003		-	-	<50	5.6	0.51	< 0.5	0.68	-	< 0.5	-	-	< 0.5	< 0.5	-	-	-	-	-
	6/11/2003	а	-	-	170	48	< 0.5	< 0.5	1.4	-	< 0.5	-	-	< 0.5	< 0.5	-	-	-	-	-
	4/3/2008	а	-	-	31,000	490	3,400	1,600	5,300	<250	<10	<10	<40	<10	<10	<10	<1,000	<10	<10,000	< 0.5
	6/23/2011	а	-	-	82	5.1	<0.5	12.0	8.4	- :	< 0.5	< 0.5	<2.0	-	-	< 0.5	-	< 0.5	-	-
	5/18/2012	f	<50	<250	120	< 0.5	< 0.5	<0.5	< 0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	g	<50	<250	<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	11/16/2012	c	450	<250	580	27	1.7	6.7	7.1	< 0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013		<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-

Table 3

Groundwater Analytical Data- Monitoring Wells
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g EPA		Toluene I 020, 8021B	Ethylbenzene	Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA EPA Met	DIPE hod 8260	Ethanol B	ETBE	Methanol	Lead
			(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DPE-1	12/6/2011	a	-	-	9,200	1,800	570	460	1,100	_	<50	<50	<200	-	-	<50	-	<50	-	-
	1/24/2012	а	-	-	3,200	, 170	58	<5.0	620	< 5.0	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	280	<250	, 540	49	<1.0	<1.0	17	<1.0	-	-	-	-	-	-	-	-	-	-
	7/11/2012	а	860	<250	2,300	240	15	98	88	< 5.0	-	-	-	-	-	-	-	-	-	-
	11/16/2012	С	360	<250	580	3.3	<0.5	2.2	2.8	< 0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013	a,c	110	<250	270	1.4	<0.5	0.53	5.3	<0.5	-	-	-	-	-	-	-	-	-	-
DPE-2	12/6/2011	а	-	_	22,000	2,100	3,300	650	3,300	-	<100	<100	<400	-	-	<100	-	<100	-	-
	1/24/2012	а	-	-	1,100	44	26	11	150	<2.5	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	<50	<250	220	33	3.2	<0.5	30	< 0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	а	400	<250	2,600	300	12	45	390	<10	-	-	-	-	-	-	-	-	-	-
	11/16/2012		<50	<250	<50	3.4	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013	h	99	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
DPE-3	12/6/2011	а	-	_	6,400	550	560	180	1,000	-	<17	<17	<67	-	-	<17	-	<17	-	-
	1/24/2012	a	-	-	5,500	290	240	44	1,000	<5.0	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	260	<250	1,100	78	37	11	89	<1.7	-	-	-	-	-	-	-	-	-	-
	7/11/2012	а	720	<250	2,400	330	19	10	130	<10	-	-	-	-	-	-	-	-	-	-
DPE-4	1/24/2012	a	-	-	730	66	6.0	7.1	83	2.5	-	-	-	-	-	-	-	-	-	-
	5/18/2012	f	<50	<250	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012		<50	<250	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	11/16/2012		<50	<250	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013		<50	<250	<50	0.63	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
DPE-5	11/16/2012	h	560	1,400	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013	a,c,h	1,200	2,600	3,900	440	370	120	570	<10	-	-	-	-	-	-	-	-	-	-
DPE-6	1/24/2012	а	-	_	64*	<0.5	<0.5	<0.5	3.2	<0.5	-	_	_	-	-	-	_	_	-	-
	5/18/2012	f	<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	7/11/2012	g	<50	<250	<50	0.93	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	11/16/2012	_	<50	<250	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013	h	160	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
DPE-8	11/16/2012	С	460	<250	630	13	<0.5	1.1	19	<0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013		<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
DPE-9	1/24/2012	a	<50	<250	4,400	160	390	93	1,100	<5.0	-	_	_	_	-	_	_	_	-	-
	7/11/2012	a	680	<250	1,300	47	3.1	4.0	100	<1.7	-	-	-	-	-	-	-	-	-	-
	11/16/2012	c	470	<250	530	4.7	<0.5	0.78	2.3	<0.5	-	-	-	-	-	-	-	-	-	-
	2/27/2013	b	2200	<250	3,300	5.5	<0.5	5.7	<0.5	16	-	-	-	-	-	-	-	-	-	-

Table 3

Groundwater Analytical Data- Monitoring Wells
AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	Notes	TPH-d	TPH-mo	TPH-g	Benzene Methods 8		Ethylbenzene	Xylenes	MTBE	MTBE	TAME	TBA	EDB	1,2-DCA	DIPE hod 8260	Ethanol	ETBE	Methanol	Lead
10			(µg/L)	(µg/L)	(µg/L)	(µg/L)	020, 8021 (μg/L)	μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DPE-10	5/18/2012 7/11/2012 11/16/2012	f a	420 160 <50	<250 <250 <250	1,700 360 79	150 40 4.9	<5.0 <1.0 <0.5	<5.0 <1.0 <0.5	<5.0 <1.0 <0.5	160 <1.0 <0.5	- -	-	-	-	- -	-	-	-	-	-
	2/27/2013	a	660	<250	820	5.3	<0.5	6.0	<0.5	4.4	-	-	-	-	-	-	-	-	-	-
DPE-11	5/18/2012 7/11/2012 11/16/2012	f a c	260 1,600 540	<250 <250 <250	930 2,400 860	6.4 16 5.3	4.6 <1.0 <0.5	4.6 14 0.81	160 57 1.2	<1.2 <1.0 <0.5	- - -	- - -	- - -	- - -	-	- - -	- - -	- - -	- - -	- - -
	2/27/2013		<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
ESL			100	100	100	1.0	40	30	20	5.0	5.0	NA	12	0.05	0.5	NA	NA	NA	NA	2.5

TPH-g= total petroleum hydrocarbons as gasoline

TPH-d= total petroleum hydrocarbons as diesel

TPH-mo= total petroleum hydrocarbons as motor oil

MTBE = Methyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

DIPE = Diisopropyl ether

ETBE = Ethyl tertiary butyl ether

"-" = Not analyzed or data not available

 $\mu g/L = micrograms per liter (ppb)$

ESL = Environmental Screening Levels, Table F-1a, Groundwater, Potential Drinking Water, San Francisco Regional Water Quality Control Board, Revised February 2013

NA = Not applicable

- a = Laboratory note indicates the unmodified or weakly modified gasoline is significant.
- b = Laboratory note indicates heavier gasoline range compounds are significant (aged gas?).
- c = Laboratory note indicates gasoline range compounds are significant with no recognizable pattern.
- d = Laboratory note indicates that lighter gasoline range coounds (the most mobile fraction) are significant.
- e = Laboratory note indicates that one to a few isloated non-targed peaks are present.
- f = Laboratory note indicates that low surrogate due to matrix interference.
- g = Surrogate recovery exceeds the control limits due to dilution / matrix interference / coelution / presence of surrogate compound in the sample
- h = Laboratory note indicates that diesel & oil range compounds are significant
- * Total petroleum hydrocarbons as diesel = <50; Total petroleum hydrocarbons as motor oil = <250

Table 4 Soil Vapor Analytical Data AEI Project No. 298931, 1600-1630 Park Street, Alameda, CA

Sample ID	Date	TPH-g & TVH (μg/m3)	Benzene (µg/m3)	Toluene (μg/m3)	Ethyl- benzene (µg/m3)	Xylenes (μg/m3)	TBA (μg/m3)	Isopropyl Alcohol (µg/m3)	MTBE (μg/m3)	TAME (µg/m3)	DIPE (µg/m3)	ETBE (µg/m3)	Naphthalene (µg/m3)	Other VOCs (µg/m3)	CO2 (µL/L)	Methane (μL/L)	Nitrogen (µL/L)	Oxygen (µL/L)
VP-1	5/17/2012	<1,800	<6.5	<7.7	<8.8	<27	<62	<50										
	7/12/2012	<1,800	<6.5	<7.7	<8.8	<27	<62	<50	<7.3	<8.5	<8.5	<8.5	<11	-	17,000	<1.0	-	270,000
	11/16/2012	<2,700	<9.7	<11	<13	<40	<93	<50	<11	<13	<13	<13	<16	500°,63b	25,000	<1.5	750,000	180,000
	2/27/2013	<1,800	<6.5	<7.7	<8.8	<27	<62	<50	<7.3	<8.5	<8.5	<8.5	<11	30 ^b	15,000	<1.0	710,000	180,000
VP-2	5/17/2012	<1,800	<6.5	<7.7	<8.8	<27	<62	<50										
	7/12/2012	<1,800	<6.5	<7.7	<8.8	<27	230	<50	<7.3	<8.5	<8.5	<8.5	<11	-	13,000	<1.0	-	280,000
	11/16/2012	<1,800	<6.5	<7.7	<8.8	<27	95	<50	<7.3	<8.5	<8.5	<8.5	<11	95 ^d ,110 ^c , 230 ^a ,72 ^b	23,000	<1.0	610,000	180,000
	2/27/2013	<2,700	<9.7	<11	<13	<40	<93	<50	<11	<13	<13	<13	<16	28 ^b	13,000	<1.5	710,000	190,000
VP-3	5/17/2012	<1,800	<6.5	<7.7	<8.8	<27	<62	<50										
VIS	7/12/2012	<1,800	<6.5	<7.7	<8.8	<27	<62	290*	<7.3	<8.5	<8.5	<8.5	<11	_	24,000	1.1	_	280,000
	11/16/2012	<1,900	<6.9	<8.2	<9.3	<29	<66	<50	<7.7	<9.0	<9.0	<9.0	<12	260ª	8,500	1.5	630,000	210,000
	2/27/2013	<2,700	<9.7	<11	<13	<40	<93	<50	<11	<13	<13	<13	<16	ND	3,700	1.1	710,000	190,000
ESL		3,100,000	420	1,300,000	4,900	440,000	NA	NA	47,000	NA	NA	NA	360		NA	NA	NA	NA

TPH-g= total petroleum hydrocarbons as gasoline

TVH= Total volatile hydrocarbons -aliphatics
TBA = tert-Butyl-alchohol

μg/m3 = micrograms per cubic meter (ppbv)
290* = Isoproyl alchohol used as leak check compound.

ND = Not detected above the reporting limit.

NA = Not applicable

ESL = Environmental Screening Levels, Table E-2, San Francisco Regional Water Quality Control Board (Shallow Soil Gas- Lowest Commercial), Revised February 2013

MTBE= Methyl-tert-butyl ether

TAME= Tert-amyl methyl ether DIPE= Di-isopropyl ether

ETBE= Ethyl tert-butyl ether

a = Hexane

b = Tetrachloroethene

c = Ethanol

d = Tert-butyl alcohol

APPENDIX A FIELD SAMPLING FORMS

AEI CONSULTANTS GROUNDWATER MONITORING WORK ORDER (LOW-FLOW PURGING & SAMPLING)

	Proj	ect Name:	Foley Street		Client Contact:	John Buestad
	Projec	t Number:	Investments 298931	—	Project Manager:	Bob Robitaille
			Hours	Gar	te / System Combo: PO Number:	
	Activit	У	Budget Actual	Sci	heduled Work Date: Flexible:	2-2-13 YES (NO)
				_	Site Contact: Site Phone: Site Address:	N/A N/A 1630 Park St.
						Alameda, CA 94501
H	ummary 'k Reque		sampling method. 2) Run the peristaltic 3) Stabilization criter 4) Collect at least th 5) Collect Soil Vapor 6) Use 1-Liter summ	nd sample All c pump at 150 r ria: pH ±0.1; co ree (3) 40-mL samples from VP a cannisters equi when ~5 in.Hg v	pms x 1.67 ml/rev = nductivity ±3%; DO VOAs and one (1) a -1, 2 and 3. pped with 150 ml/mir acuum remaining in car	±10%; ORP ±10 mV. Imber liter from each well. I regulators.
Completed	Not Complet	red				
	0		d standing water from w	ell boxes; remov	ed well caps; allowed	water levels to stabilize.
	0		I the depth to water in ea			
	0		usly purged up to 10 liter			
ø /	0					a was achieved (see above).
d ,	0	5. Noted a	ppearance of purge wate	er (clear, dark, m	ilky, etc.) and if an im	miscible sheen was present.
4	O	6. Collected	d three (3) 40-ml VOA vi	als per well, cap	ped with zero head sp	ace (no bubbles in the VOAs).
ø	0	7. Noted co	ondition of well boxes, w	ell casing, and w	ell plug; recorded wel	lhead info on the field sheets.
₽	0	8. Recorde	ed the amount of consum	ables (bailers, di	rums, well plugs, tubin	g, etc.) used.
₽ď	0	9. Labeled	purge water drums; reco	orded the total n	umber of drums used	and left onsite below.
Q/	0	10. Transp	orted samples on water i	ice to McCampbe	ell Analytical, Inc. of Pi	ttsburg, CA for analyses.
Lab Ana	alyses:	See Ch	hain-of-Custody		_	
Turnaro	und Tim	e: Rush	24 hours	48 hours	72 hours	Standard
Consum	nables: #	f of Bailers:	# of	Drums:	># of Well Plugs: _	The state of the s

AEI CONSULTANTS

GROUNDWATER MONITORING WORK ORDER (LOW-FLOW PURGING & SAMPLING)

Drums Onsite: # of Water:	# of Soil:	g introduction that the same	# of Other:	
Requested by PM:		Completed by Tech:	Someson	
requested by 1111.			()	

Groundwater Notes:

Need traffic control to access MW-4. Coordinate with Robitaille and/or Campbell.

During each monitoring event, water levels will be measured, and for new wells, light non-aqueous phase liquid (LNAPL) will be checked with an oil-water interface probe. Wells not containing measurable LNAPL will be purged using low flow sampling techniques until field readings have stabilized. During purging the following water quality measurements will be collected: temperature, pH, specific conductivity, and dissolved oxygen (DO). Groundwater samples will be collected into appropriate laboratory-supplied containers using the purge tubing which will consist of new, unused disposable tubing for each well. Samples will then be logged onto the Chain of Custody and placed in a cooler with water ice. All samples will be delivered to a state certified laboratory under Chain of Custody documentation.

One groundwater sample will be analyzed from each well for TPHmo and TPHd by EPA method 8015 Modified with silica gel cleanup, TPHq by EPA method 8015 Modified, and BTEX & MTBE by EPA method 8260B.

Soil Vapor Notes:

To begin, a 1 liter summa canister connected to a flow controller, will be connected to the probe sampling lines. Prior to collecting the sample, soil vapor will be withdrawn from the inert tubing using a calibrated syringe connected via an on-off valve. A total of three purge volumes will be removed from each probe. Following purging, soil gas will be monitoring with an Eagle ® field meter for oxygen (O2), carbon dioxide (CO2), and total hydrocarbons. The sample canister will then be connected, opened, and the initial vacuum recorded. Vapor samples will be collected through the regulator at approximately 150 mL/minute. Upon reaching approximately 5 in Hg vacuum in the canister, the canister will be closed and removed from the sampling line. Samples will be appropriately labeled and entered onto the chain of custody prior to shipping to the laboratory. During sampling, a leak check gas will be used to confirm that the sample train was tight and leak free.

All vapor samples will be sealed and labeled immediately upon collection. Chain of custody documentation will be initiated prior to leaving the site. All samples will be shipped to a state certified laboratory on the day of collection. Soil vapor samples will be analyzed by EPA Method TO-3 for total petroleum hydrocarbons as gasoline (TPHg) and by EPA Method TO-15 for benzene, toluene, ethylbenzene, and xylenes (BTEX) & Naphthalene, N₂, CH₄, O₂, CO₂.

				Mor	nitoring We	ell Number:	MVV-1
Project Name:		Bue	estad		Dat	e of Sampling:	2.27-13
Job Number:			3931			ne of Sampler:	2.27-13 J. Sigg
Project Address:	163		et, Alameda,	CA			3 / 3(3)
			MONITORINA	O MELL DA			
Well Casing Diam	eter (2"/4"/6")		MONITORING	5 WELL DA	IA	2	
Well & Wellhead C					(food	
Elevation of Top o		t above msl)			- 7	1000	
Depth of Well						20.00	
Depth to Water (fro	om top of cas	sing)		Before:	6.59	After:	6.57
Water Elevation (fo				Before:		After:	
Purging and Samp	ling Method	2.4%		Low-Flo	ow (Minimal D	rawdown) Purgi	ng / Sampling
Well Volumes Pur	ged				M	ICROPURG	ED
Pump Speed (Defa	ault = 300 rpr	ns)				300 RPM	
Estimated Purge F	Rate-ml/min(F	ump Speed *	1.67 ml/rev)			/ M.N	
Actual Volume Pur	rged (liters)					5'L	
Appearance of Pu	rge Water/Tu	rbidity/Color			(lear	
			duct Present?	No		Thickness (ft):	
Purging Equipmen	it/Pump: (Pei						
	10 1:		GROUNDWA'				
Number of Sampl		er Size		Three (3) 40	mL VOAs (HC)L)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0520	1	18.06	866	2.21	7.82	-118.2	Clear
	2	18.08	840	2.08	7.80	-113.4	11
	3	18.10	855	1.65	7.78	-107.2	h t
	4	18.10	849	1.21	7.76	-100.8	# 4
0530	5	18.12	844	1,08	7.75	-98.3	TI.
	Stabilization	criteria: pH +	/- 0.1; conducti			DRP +/- 10 meV	
Odor	No.	STATES WHEN SEVE		CC	MMENTS		
Recharge time %	7000/0						
Duplicate sample	No						
Pump intake depth	17FT						
Sample method	PUMP						

bailer/from pump/system

Project Name:	Buestad	Date of Sampling:	2.27-13
Job Number:	298931	Name of Sampler:	J. S199
Project Address:	1630 Park Street, Alameda, CA		9)

Monitoring Well Number:

MW-2

MONITORING	WELL DATA				
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	good				
Elevation of Top of Casing (feet above msl)	0				
Depth of Well	20.00				
Depth to Water (from top of casing)	Before: 7.17 After: 7.19				
Water Elevation (feet above msl)	Before: After:				
Purging and Sampling Method	Low-Flow (Minimal Drawdown) Purging / Sampling				
Well Volumes Purged	Micropurged				
Pump Speed (Default = 300 rpms)	300 RPM				
Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)	15L/Min				
Actual Volume Purged (liters)	5				
Appearance of Purge Water/Turbidity/Color	Clear				
Free Product Present?	No Thickness (ft):				

Purging Equipment/Pump: (Peristalic/) bladder/ centrifugal/ submersible

			GROUNDWA	TER SAMPI	LES		
umber of Samples / Container Size			Three (3) 40i	mL VOAs (HC	CL)		
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0550	t	18:10	1160	6.23	7.60	-138.4	Clear
	2	18.10	1152	6.07	7.53	-134.2	81
	3	18.13	1147	5.13	7.50	-130.1	1 (
	4	18.15	1143	3.82	7.47	-125.7	1 (
0600	5	18.15	1140	2.68	7.43	-1224	11

Odor	No	COMMENTS	
Recharge time %	2900/o		
Duplicate sample	No		
Pump intake depth	IFFT		
Sample method	PUMP		
bailer/from pump/sy	stem		

Monitoring Well Number: MW-3

Project Name:	Buestad	Date of Sampling:	2.27.13
Job Number:	298931	Name of Sampler:	J. Siga
Project Address:	1630 Park Street, Alameda, CA))

MONITORING	WELL DATA	A			
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	good			~	
Elevation of Top of Casing (feet above msl)	9				
Depth of Well	20.00 Before: 7.49 After: 7.50				
Depth to Water (from top of casing)	Before:	7.49	After: 750		
Water Elevation (feet above msl)	Before:		After:		
Purging and Sampling Method	Low-Flow (Minimal Drawdown) Purging / Sampling				
Well Volumes Purged		Micr	ropurged		
Pump Speed (Default = 300 rpms)		2	OO RPM		
Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)			- / aun		
Actual Volume Purged (liters)		N.	5		
Appearance of Purge Water/Turbidity/Color		C	lean		
Free Product Present?	NO	Thi	ckness (ft):		

Purging Equipment/Pump: (Peristalic/bladder/ centrifugal/ submersible

			ROUNDWA	TER SAMPI	LES		
Number of Samples / Container Size				Three (3) 40	mL VOAs (HC	CL)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0620	1	18.13	808	3.95	7.74	-130.8	Clean
	2	18.13	792	3.02	770	-127.1	4.5
	3	18.15	790	2.62	7.68	-125.4	V 1
	4	18.16	787	2.17	7.66	-122.3	1.1
0630	5	18.17	782	1.90	7466	-120-1	18

Odor	No	COMMENTS
Recharge time %	190%	
Duplicate sample	No	
Pump intake depth	17FT	
Sample method	PUMP	
bailer/from pump/sys	stem	

		Monitoring Well Number:	MW-4
Project Name:	Buestad	Date of Sampling:	2-27-13
Job Number:	298931	Name of Sampler:	J. Sigg
Project Address:	1630 Park Street, Alameda, CA		

MONITORING	WELL DAT	Α			
Well Casing Diameter (2"/4"/6")	2				
Wellhead Condition	good				
Elevation of Top of Casing (feet above msl)	U U				
Depth of Well		2	23.00		
Depth to Water (from top of casing)	Before:	9.15	After:	9.17	
Water Elevation (feet above msl)	Before:		After:		
Purging and Sampling Method	Low-Flow (Minimal Drawdown) Purging / Samplin				
Well Volumes Purged		Mich	ropurged	-	
Pump Speed (Default = 300 rpms)		3	OO RPM		
Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)		·5L	/ min		
Actual Volume Purged (liters)			5		
Appearance of Purge Water/Turbidity/Color	2	CI	care		
Free Product Present?	NO	Th	nickness (ft):		

Purging Equipment/Pump: Peristalic/ bladder/ centrifugal/ submersible

oles / Container	Size		Three (3) 40	mL VOAs (HC	CL)	
Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
1	18.10	417	4.90	7.63	-1448	Clean
2	18.12	398	4.62	7.60	-140.2	١t
3	18.13	395	4.17	7.58	-138.7	L
4	18.15	390	3.90	7.55	-136.2	1)
5	18.15	388	3.82	7.53	-133,5	11
	Volume Removed (gallons)	Removed (gallons) 1	Volume Removed (gallons) Temp (C°) Conductivity (μS/cm) 1 1 8 10 417 2 18 12 398 3 18 13 395 4 18 15 390	Volume Removed (gallons) Temp (C°) Conductivity (μS/cm) DO (mg/L) 1 18.10 417 4.90 2 18.12 398 4.62 3 18.13 395 4.17 4 18.15 390 3.90	Volume Removed (gallons) Temp (C°) Conductivity (μS/cm) DO (mg/L) pH 1 18.10 417 4.90 7.63 2 18.12 398 4.62 7.60 3 18.13 395 4.17 7.58 4 18.15 390 3.90 7.55	Volume Removed (gallons) Temp (C°) Conductivity (μS/cm) DO (mg/L) pH ORP (meV) 1 18:10 4:17 4:90 7:63 -144.8 2 18:12 398 4:42 7:60 -140.2 3 18:13 395 4:17 7:58 -138.7 4 18:15 390 3:40 7:55 -136.2

Odor	No	COMMENTS
Recharge time %	2900/c	
Duplicate sample	No	
Pump intake depth	ITFT	
Sample method	PUMP	
bailer/from pump/sy	stem	

		Monitoring Well Number:	MW-5
Name:	Buestad	Date of Sampling:	2-27-13

Project Name:	Buestad	Date of Sampling:	2-27-13
Job Number:	298931	Name of Sampler:	J. 5199
Project Address:	1630 Park Street, Alameda, CA		- 33

MONITORING	WELL DAT	A			
Well Casing Diameter (2"/4"/6")			2		
Wellhead Condition	good				
Elevation of Top of Casing (feet above msl)		0			
Depth of Well		22	2.00		
Depth to Water (from top of casing)	Before:	7.59	After: 7.60		
Water Elevation (feet above msl)	Before:	•	After:		
Purging and Sampling Method	Low-Flow (Minimal Drawdown) Purging / Sampling				
Well Volumes Purged	Micropurged.				
Pump Speed (Default = 300 rpms)	Micropurged.				
Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)	5L/MIN				
Actual Volume Purged (liters)			5		
Appearance of Purge Water/Turbidity/Color		CI	ean		
Free Product Present?	NO Thickness (ft):				

Purging Equipment/Pump/ Peristalic/ bladder/ centrifugal/ submersible

GROUNDWATER SAMPLES							
umber of Sam	ples / Containe	r Size		Three (3) 40	mL VOAs (HC	L)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0450	1	18.08	817	3.65	7.61	-103.2	Clean
	.2	18.10	201	3.21	82.F	-97.8	31
	3	18.10	797	2.79	7.56	-95.4	1.1
	4-	18.11	790	2.53	7.56	-93.1	11
0500	5	18.12	782	2.18	7.55	-91.5	. (

Odor	NO	COMMENTS
Recharge time %	290°/0	
Duplicate sample	NO	
Pump intake depth	17 FT	
Sample method	POMP	
bailer/from pump/sy	stem	

Monitoring Well Number:	DPE-1

Project Name:	Buestad	Date of Sampling:	2-27-13
Job Number:	298931	Name of Sampler:	J. S199
Project Address:	1630 Park Street, Alameda, CA		

MONITORING	WELL DATA				
Well Casing Diameter (2"/4"/6")	4				
Wellhead Condition	domaged				
Elevation of Top of Casing (feet above msl)	9				
Depth of Well	15.00				
Depth to Water (from top of casing)	Before: 7.36 After: 7.38				
Water Elevation (feet above msl)	Before: After:				
Purging and Sampling Method	Low-Flow (Minimal Drawdown) Purging / Sampling				
Well Volumes Purged	micropurged				
Pump Speed (Default = 300 rpms)	300 RPM				
Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)	.SL/min				
Actual Volume Purged (liters)	5				
Appearance of Purge Water/Turbidity/Color	Clear				
Free Product Present?	NO Thickness (ft):				

Purging Equipment/Pump/ Peristalic/ bladder/ centrifugal/ submersible

			ROUNDWA			1	
ımber of Samp	les / Containe	r Size		Three (3) 40n	nL VOAs (HC	,L)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0650	(18.02	907	3.27	7.70	453.8	clean
	2	18.05	895	2.89	7.68	-150.2	11
	3	18.08	890	2.17	7.62	147.6	Ŋ
	4	18.08	882	1.72	7.58	142.3	<i>i</i> 1
0700	5	18.10	8F8	1.26	7.57	140.4	11

Stabilization criteria: pH +/- 0.1; conductivity +/- 3%; DO +/- 10%; ORP +/- 10 meV

Odor	No	COMMENTS	
Recharge time %	700/0		
Duplicate sample	No		
Pump intake depth	13 FT		
Sample method	PUMP		
bailer/from pump/sy	stem "		

Project Name:	Buestad	Date of Sampling:	2-27-13
Job Number:	298931	Name of Sampler:	J.5199
Project Address:	1630 Park Street, Alameda, CA		2)

Monitoring Well Number:

DPE-2

MONITORING	WELL DAT	Α			
Well Casing Diameter (2"/4"/6")	4				
Wellhead Condition	Damaged				
Elevation of Top of Casing (feet above msl)			3		
Depth of Well	15.00				
Depth to Water (from top of casing)	Before:	7.50	After: イジン		
Water Elevation (feet above msl)	Before:		After:		
Purging and Sampling Method	Low-Flow (Minimal Drawdown) Purging / Sampling				
Well Volumes Purged	Micropurged				
Pump Speed (Default = 300 rpms)	300 RPM				
Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)	·SL/min				
Actual Volume Purged (liters)	5				
Appearance of Purge Water/Turbidity/Color	Clean				
Free Product Present?	No	Thi	ckness (ft):		

Purging Equipment/Pump(Peristalic/ bladder/ centrifugal/ submersible

			ROUNDWA				
imber of Sampl	les / Container	Size		Three (3) 40r	nL VOAs (HC	L)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0950	(18.10	1059	2.84	7.60	-1427	Clear
	2	18.12	1050	2.59	7.58	-140.2	1,
	3	18.12	1046	2.18	7.56	-136.4	11
	4	18.14	1043	2.01	7.56	-133.2	11
1000	5	18.15	1040	1.87	7.55	-136.1	1.5
1600	5	18.15	1040	1.87			

Stabilization criteria: pH +/- 0.1; conductivity +/- 3%; DO +/- 10%; ORP +/- 10 meV

Odor	NO		COMMENTS	
Recharge time %	290%			
Duplicate sample	No			
Pump intake depth	13FT			
Sample method	POMP			
bailer/from pump/sy	stem			

				Mon	itoring We	ell Number:	DPE-3
Project Name:		Bu	estad		Date	e of Sampling:	2.27-13
Job Number:		29	8931			ne of Sampler:	2.27-13 J. Sigg
Project Address:	163	D Park Stre	eet, Alameda, C	CA			7 2.1)
			MONITORING	WELL DAT	ΓΛ		
Well Casing Diame	eter (2"/4"/6")		WONTOKING	VALLE DA		4	
Wellhead Condition							
Elevation of Top of	88	above msl)					
Depth of Well	r odomig (root	abo (oo.,				14.00	
Depth to Water (fro	na)		Before:		After:		
Water Elevation (fe			Before:		After:		
Purging and Sampling Method					w (Minimal D	rawdown) Purgi	ng / Sampling
Well Volumes Purg					,	,	
Pump Speed (Defa		s)					
Estimated Purge R		100	* 1.67 ml/rev)				
Actual Volume Pur		тр орсса	1.07 1111/104)				
Appearance of Pur		hidity/Color					
Appearance or r di	ge vvalen rui	The second secon	oduct Present?		19	Thickness (ft):	
Purging Equipmen	t/Pump: Peri			submersible		3.71	
			GROUNDWAT	ER SAMPL	ES		
Number of Sample	es / Container	Size		Three (3) 40n	nL VOAs (HO	CL)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
		(10	8			
		/	93/				
			/				
	Stabilization	criteria: pH	+/- 0.1; conductiv			ORP +/- 10 me\	<i>'</i>
Odor				CO	MMENTS		
Recharge time %							
Duplicate sample							
Pump intake depth							
Sample method							

bailer/from pump/system

Monitoring Well Number: DPE-4 2-27-13 Buestad Date of Sampling: Project Name: 298931 Name of Sampler: Job Number: 1630 Park Street, Alameda, CA

MONITORING	WELL DATA			No.	
Well Casing Diameter (2"/4"/6")		4			
Wellhead Condition		Dama	ged	•	
Elevation of Top of Casing (feet above msl)			0		
Depth of Well		17.0	00		
Depth to Water (from top of casing)	Before:	8.37	After: 8.38		
Water Elevation (feet above msl)	Before:		After:		
Purging and Sampling Method	Low-Flow (Minimal Drawdown) Purging / Sampling				
Well Volumes Purged	Micopurged				
Pump Speed (Default = 300 rpms)	300 RPM				
Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)		isL/	min		
Actual Volume Purged (liters)		5			
Appearance of Purge Water/Turbidity/Color		Clea	an		
Free Product Present?	NO Thickness (ft):				

Purging Equipment/Pump(Peristalic/ bladder/ centrifugal/ submersible

Project Address:

	GROUNDWATER SAMPLES									
lumber of Sam	ples / Container	Size		Three (3) 40r	nL VOAs (HC	L)				
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments			
0920	ı	18.06	798	3.60	7.70	-101.4	Clean			
	2	18.08	796	3.05	7.68	-97.2	(
	3	18.08	790	2.79	7.62	-95.0	11			
	4	18.10	78F	2.32	7.60	-94.3	1(
0930	5	18.11	485	7.01	7.60	-929	11			

Stabilization criteria: pH +/- 0.1; conductivity +/- 3%; DO +/- 10%; ORP +/- 10 meV

Odor	No	COMMENTS	
Recharge time %	>90°/0		
Duplicate sample	No		
Pump intake depth	15 FT		
Sample method	Pomp		
bailer/from pump/sy	vstem		

				Mor	nitoring We	ell Number:	DPE-5							
Duniant Name		Due	ata d		Det	f Cline	2 27 12							
Project Name:		MISTON - MIS	stad			e of Sampling:								
Job Number:	101		3931		Nan	ne of Sampler:	J. 8199							
Project Address:	163	30 Park Stree	et, Alameda,	CA										
			MONITORIN	G WELL DA	\TA									
Well Casing Diam	eter (2"/4"/6")					4								
Wellhead Condition	n				D	amage	1							
Elevation of Top o	f Casing (feet	above msl)				,								
Depth of Well				18.00										
Depth to Water (fr	om top of cas	ing)		Before:	7.72	After:	7.74							
Water Elevation (f	eet above ms	l)		Before:		After:								
Purging and Samp	oling Method			Low-Flo	ow (Minimal D	rawdown) Pur	ging / Sampling							
Well Volumes Pur	ged				Mi	aropung	cd							
Pump Speed (Def	ault = 300 rpm	ns)				300 R-PN								
Estimated Purge F	Rate-ml/min(P	ump Speed *	1.67 ml/rev)			-) v)							
Actual Volume Pur	rged (liters)					. 5								
Appearance of Pu	rge Water/Tui	rbidity/Color		Clean	r W/ SITE	NE BLACK	PARTICIES							
		Free Pro	duct Present?	465		Thickness (ft):	,75 in							
Purging Equipmen	it/Pump(_Per		er/ centrifugal/											
			ROUNDWA											
Number of Sampl		r Size		Three (3) 40	mL VOAs (HC	L)								
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments							
1050	l	18.02	770	3.07	7.95	-88.4	Sheen w/ partic							
	2	1804	766	2:13	7.90	-80.2	71							
	3	18.06	764	1,52	7.88	-77.6	11							
	4	18.06	763	,90	7.87	-74.3	, i							
1100	5	18.07	760	, 65	7.87	-72.1	1							
÷														
	Stabilization	criteria: pH +/	/- 0.1; conduct	ivity +/- 3%; C	OO +/- 10%; O	RP +/- 10 me	\ V							
Odor	405			CO	MMENTS									
Recharge time %	1900/0	NOTE	,75 in	Free	product									
Duplicate sample	NO	Samp					black pes							
Pump intake depth	lbfT	peta	n Odon		,									
Sample method	PUMD													

bailer/from pump/system

3		Monitoring Well Number:	DPE-6
Project Name:	Buestad	Data of Campling	2-27-13
	Box AVGSO Average	Date of Sampling:	
Job Number:	298931	Name of Sampler:	J. S199
Project Address:	1630 Park Street, Alameda, CA		
	MONITORING WE	ELL DATA	
Well Casing Diameter	(2"/4"/6")	4	
Wellhead Condition		Damaged	~
Elevation of Top of Cas	sing (feet above msl)	· ·	
Depth of Well		18.00	

Before:

Before:

7.01

7.03

After:

After:

Low-Flow (Minimal Drawdown) Purging / Sampling

Micropurged

300 RPM

·SL/min

5

Clean

Thickness (ft):

Purging Equipment/Pump. Peristalic/bladder/ centrifugal/ submersible

Estimated Purge Rate-ml/min(Pump Speed * 1.67 ml/rev)

Depth to Water (from top of casing)

Water Elevation (feet above msl)

Pump Speed (Default = 300 rpms)

Appearance of Purge Water/Turbidity/Color

Purging and Sampling Method

Actual Volume Purged (liters)

Well Volumes Purged

mber of Sam	ples / Containe		ROUNDWA	Three (3) 40mL VOAs (HCL)										
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments							
10.50	İ	18.03	782	3.60	7:73	-121.4	Clean							
	2	18.05	782	3.32	7.70	-118.3	11							
	3	18.06	777	2.90	7.68	-113.2	A							
	4	18.08	773	2.21	7.66	-108.4	11							
1030	5	18.09	770	1.97	7.64	-106.1	11							
							541000-1							

Stabilization criteria: pH +/- 0.1; conductivity +/- 3%; DO +/- 10%; ORP +/- 10 meV

Odor	NO	COMMENTS
Recharge time %	1900/0	
Duplicate sample	No	
Pump intake depth	16FT	
Sample method	PUMP	
bailer/from pump/sy	stem	

				Mon	itoring We	ell Number:	DPE-8
Project Name:		Bue	stad		Dat	e of Sampling:	2.27-13
Job Number:		298				ne of Sampler:	J.5199
Project Address:	163		et, Alameda,	CA			3 3147
Well Casing Diam	eter (2"/4"/6")		MONITORING	G WELL DA	IA	4	
Wellhead Condition					a	ood	
Elevation of Top o		ahove msl)				700	
Depth of Well	T Casing (leet	above mai)				18.00	
Depth to Water (fr	om ton of casi	na)		Before:	6.69	After:	6.71
Water Elevation (f				Before:	6.6	After:	W 11
Purging and Samp		/		TOUR PROPERTY AND	w (Minimal D	rawdown) Purg	ing / Sampling
Well Volumes Pur				2011 10		ropurged	(RE) 100 (20)
Pump Speed (Def		s)				300 RPM	
Estimated Purge F			1.67 ml/rev)			5L/MIN	
Actual Volume Pu		amp opour	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5	
Appearance of Pu		biditv/Color		1002	(lear	
			duct Present?	NO		Thickness (ft):	
Purging Equipmer	nt/Pump; Peri		er/ centrifugal/				
			ROUNDWA				
Number of Samp		Size		Three (3) 40r	nL VOAs (HO	CL)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0720	1	18.06	1021	298	7.70	-1,52.7	Clean
	2	18.08	998	2.53	7.62	-150.1	11
	3	18.10	990	2.21	7.60	-144.2	I,
	4	18.10	986	1.97	7.58	140.1	17
0730	5	18.12	980	1.84	7.58	-138.4	11
		criteria: pH +/	/- 0.1; conduct			DRP +/- 10 meV	
Odor	NO			CO	MMENTS		
Recharge time %	7 doops						
Duplicate sample	NO						
Pump intake depth	16FT						
Sample method	PUMP						
bailer/from pump/sy	stem						

				Mor	nitoring We	II Number:	DPE-9
					,		
Project Name:			estad			e of Sampling:	2-27-13
Job Number:		298	3931		Nam	e of Sampler:	J. 8199
Project Address:	163	30 Park Stre	et, Alameda,	CA			3)
			MONITORING	G WELL DA	TA		
Well Casing Diam	eter (2"/4"/6")					4	
Wellhead Condition	n				g	ood	•
Elevation of Top o	f Casing (feet	above msl)			0		
Depth of Well						18.00	
Depth to Water (fr	om top of cas	ing)		Before:	7.27	After:	7.29
Water Elevation (f				Before:	1 - 1	After:	, , ,
Purging and Samp				(200) 1000 1000 1000 1000 1000		rawdown) Purg	ing / Sampling
Well Volumes Pur						aropurge	
Pump Speed (Def	<u> </u>	ns)			,,,,,	300 RPM	
Estimated Purge F			1.67 ml/rev)			5L/nun	
Actual Volume Pu		amp opeca	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5	
Appearance of Pu		rbidity/Color			(lear	
tppedianee err a	igo vvaton ra		duct Present?	No		Thickness (ft):	
Purging Equipmer	nt/Pump: Per		er/ centrifugal/	submersible			
			ROUNDWA	TER SAMPI	_ES		
Number of Sampl	es / Containe	r Size		Three (3) 40:	mL VOAs (HC	L)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0750	l	18.03	772	2.85	7.62	-121.4	Clean
	2	18.05	770	2.22	7.62	-118.4	(1
	3	18.05	768	1.92	7.58	-112.1	11
	4	18.08	762	1.65	7.57	-109.7	1,
0800	5	18.08	758	1.23	7.56	-106.3	11
	Stabilization	criteria: pH +	/- 0.1; conduct	ivity +/- 3%; [00 +/- 10%; O	RP +/- 10 meV	
Odor	403				MMENTS		
Recharge time %	2900/0		0				
Duplicate sample	No	Sligh	+ Senie	r ode	1		
Pump intake depth	IbAT	-) "					
Sample method	pump						
pailer/from pump/sy	stem				. = 11		

$\frac{\text{AEI CONSULTANTS}}{\text{GROUNDWATER MONITORING WELL FIELD SAMPLING FORM}}$

				Mor	nitoring We	ell Number:	DPE-10
							- 57 17
Project Name:			estad			e of Sampling:	2.27-13
Job Number:			3931	P25 W	Nan	ne of Sampler:	J. Sigg
Project Address:	163	30 Park Stre	et, Alameda,	CA			
			MONITORIN	G WELL DA	TA		
Well Casing Diam	eter (2"/4"/6")					4	
Wellhead Condition	n					food	•
Elevation of Top o	f Casing (feet	above msl)			(7	
Depth of Well						17.00	
Depth to Water (fr	om top of casi	ing)		Before:	7.6	After:	7.65
Water Elevation (f	eet above msl)		Before:		After:	
Purging and Samp	oling Method			Low-Flo	ow (Minimal D	rawdown) Purgi	ng / Sampling
Well Volumes Pur	ged				Mie	ropurged	
Pump Speed (Defa	ault = 300 rpm	ns)			3	ropurged, co Rpu	l
Estimated Purge F	Rate-ml/min(P	ump Speed *	1.67 ml/rev)			i./m	
Actual Volume Pur	rged (liters)					5	
Appearance of Pu		bidity/Color			C	seen	
	<u> </u>	1.00	duct Present?	NO		Thickness (ft):	
Purging Equipmen	ıt/Pump: Peri	stalic/ bladde	er/ centrifugal	/ submersible)		
			ROUNDWA				
Number of Sampl		Size		Three (3) 40	mL VOAs (HO	CL)	
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments
0820	1	18.04	804	2.84	7.62	-120.4	clear
	2	18.05	790	2.00	7.60	-118.7	1,
	3	18.07	784	1.74	7.60	-112.3	1.
	+	18.07	7.80	1.53	7.60	-108.7	1,
0830	5	18.09	776	1.21	7.60	-106.2	
3.0							
	Stabilization	criteria: pH +/	/- 0.1: conduct	tivity +/- 3%· D	OO +/- 10%: C	 RP +/- 10 meV	
Odor	N/O	Pi i			MMENTS		
Recharge time %	29000						
Duplicate sample	NO						
Pump intake depth	15FT						

Sample method

bailer/from pump/system

				Mon	itoring W	ell Number:	DPE-11							
Project Name:		Bue	stad		Dat	e of Sampling:	2-27-13							
Job Number:			3931			ne of Sampler:	2-27-13 J Sigg							
Project Address:	163		et, Alameda,	CA			3.79							
			- ,, ,											
			MONITORIN	G WELL DA	TA									
Well Casing Diam						4								
Wellhead Conditio						good								
Elevation of Top or	f Casing (feet	above msl)		9										
Depth of Well				18.00										
Depth to Water (fro	om top of cas	ing)		Before: 7.18 After: 7.70										
Water Elevation (for	eet above ms	1)		Before: After:										
Purging and Samp	ling Method			Low-Flow (Minimal Drawdown) Purging / Sampling										
Well Volumes Purg	ged				MI	cropurge	d							
Pump Speed (Defa	ault = 300 rpn	ns)	-1.1			cropurge 300 RPM								
Estimated Purge F	Rate-ml/min(P	ump Speed *	1.67 ml/rev)		,5	1/min								
Actual Volume Pur	ged (liters)					5								
Appearance of Pur	rge Water/Tu	rbidity/Color			0	leen								
			duct Present?	NO		Thickness (ft):								
Purging Equipmen	t/Pump: /Per													
			ROUNDWA											
Number of Sampl		r Size		Three (3) 40n	nL VOAs (HO	CL)								
Time	Volume Removed (gallons)	Temp (C°)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (meV)	Comments							
0850	1	18.06	1020	3.21	7.52	-202.4	Clear							
	2	18.06	1011	2.79	7.50	-190.72	11							
	3	18.09	1004	7.17	7.48	-187.1	11							
	4	18.11	1001	1.83	7.48	-184.3	11							
0900	5	18.12	997	1,52	7.50	-180.1	1/							
		10:15	1 , 1	(1)	, ,,,,	1.0 - 1								
		criteria: pH +/	/- 0.1; conduct	ivity +/- 3%; D	O +/- 10%; C	ORP +/- 10 meV								
Odor	NO			CO	MMENTS									
Recharge time % —	700													
Duplicate sample	no													
Pump intake depth	IDET													
Sample method	pump													
bailer/from pump/sys	stem													

	McCA	MPBI	ELL ANA	LY	TICA	LI	VC.	· · · · · · · · · · · · · · · · · · ·									_	Н	ΑI	N	OF	· C	US	ST	OI	Ϋ́	R	E)R	\overline{n}		
	1538 W	illow P	ass Road, P	ittsb	urg, C	94	565						T	UF	N	AR						_			<u> </u>			- I			هره		
Telephone: (92					_			ıx: (9:	25)	252	-926	5 9	15.1	ו כוב	D		10	_	T 7	_			RŲ			4 HI			18 H			2 HR	5 DAY
Report To: Ro	-			Bill '	To: AE	[Co			,				E	フドリ	Keq	uire				_	No que		<u> </u>	<u>(U'</u>	· Ke	qui	red		Oth	Yes		No	
Company: AE									459	7		_	_					Ma	lysis	710	yuc	SL	T			- 1	┪	T	Ott	ier	\blacksquare	Com	nents
PO# WC08399	2		Global I	D: T	060010	065	5						İ	can-							İ		ĺ				١	:					
				E-M	ail: rrol	oitail	le@ac	eicons	ulta	tns.c	om		1	8015 M w/ Silica Gel Clean-											ľ								
Telephone: (92		ext. 148		****	(925) 7									ica G								l					Total Carrier						
AEI Project No		1 0			ect Nan	ie:	FSI		·					.v/ Si	<u>@</u>																ļ		
Project Location				945	501				•					5 M.	8260B)												1						
Sampler Signa	ture:		5199	1	<u> </u>	-			_	ME	THE	- D	Σ	1801	(EPA 8																		!
		SAN	MBLING)				AAT)	RIX	P	RES	ERV	ED.	8015	(EPA													١				ı I		
SAMPLE ID	FIELD POINT			er.s	iers								3PA	H-M0	TBI																.		
SAME LE 10	NAME	Date	Time	# of Containers	e tair	ter		dge	5		lő	e l	D D	1/1	X, N														ĺ				
				#07	Type Containers	Water	Soil	Sludge		HCL	HNO	Other	TPH-G (EPA	TPH-D / TPH-MO (up)	BTEX, MTBE							İ											
MW-1		2-27.	13 0530	4	VOA, amber L	X			-	X >			X		-						+			1			-						
MW-2			0600	4	VOA, amber L	X				X X	ζ		X	X	X						+		_	\top		-					_		
MW-3	•		0630		VOA, amber L	X			1	X X		<u> </u>	X		X			_					_				-		-				
MW-4			0430	4	VOA, amber L	X				X X		\vdash	X		X			+					-				_						
MW-5			0500	4	VOA, amber L	X			7	X X	ζ.	1	X		X							-				-	1						
DEP-1			0700	4	VOA, amber L	X			1	X X	ζ		X	X	X						_						1						
DEP-2			1000	4	VOA, amber L	X			2	X X	ζ.		X	X	X								\top				7						
DEP-4			0930	4	VOA, amber L	X]	X X	ζ		X	X	X												-						
										7	i i																1						
DEP-6			1030	4	VOA, amber L	X			2	X X	ζ.		X	X	X								1				1						
DEP-8			0730	4	VOA, amber L	X			2	X y	ζ.		X	X	X												1						
DEP-9			0800	4	VOA, amber L	X]	X Y	ζ		X	X	X												T						
DEP-10			0830	4	VOA, amber L	X]	X >	ζ		X	X	X												1						
DEP-11		4	0900	4	VOA, amber L	X)	X y	ζ.		X	X	X												1						
Relinquished By		Date:	Time:	Re	ecived by	• /			<u> </u>		/			·			<u>l</u>																
>am 8		2-27-		sel.			ve	0	Salar Com	grand the same	70			ICE/	/40							Th.1	n m c	170	T			DAS	Od	&G	М	ETALS	OTHER
Relinquished By:	00	Date:	Time:	Re	ceived By	:		•								CON	DIT.	ION	Į						VAT						_l		
Dalin mich at P		Det		<u> </u>]	HEA	D S	PAC	E A	BSI	INT			\mathbf{C}	ON'	ΓΑΙ	NEI	RS		_					
Relinquished By:		Date:	Time:	Re	ceived By	:								DEC	HL	ORI	NAT	ED	IN]	LAI	3		PE	RSE	ERV	ED I	IN]	LAE	š		-		
		L											<u> </u>																				

	McCA	MPBELL	ANAL	YTICA	LI	IC.					T	·····	*********	(THA	IN	OF	CI	IST	TO'	Y	RF	CO	RT)		
	1538 W	illow Pass I	Road, Pit	tsburg, C	A 94	565						TUR	N AR							<u> </u>				A CAL	Ĺ	1	
Telephone: (92	25) 252-9262					Fa	ıx: (92	25) 2	52-9	269		EDF	Require	ed?	W. V	es l	∃: No	R	USH IOG	2 F Re	4 HR		48 H)		72 I □ ₁ N		DAY
Report To: Rol	ert Robitail	le	В	ill To: Al	EI Co	nsult	ants				+	222 1	coquiit				leque:		1 171	r ICC	quii	T	Oth		-	omme	nts
Company: AE	I Consultant	s, 2500 Can	ino Dial	olo, Wali	ut Cı	eek,	CA 94	1597	7		T											1			+		ares .
PO# WC08399	2	G	lobal ID	: T06001	0065	5						ean-												ĺ			
-			E	-Mail: rr	bitail	le@ae	eiconst	ıltat	ns.co	m		<u>g</u>		,													
Telephone: (92		ext. 148		ax: (925)								ica (į									
AEI Project No		****		roject Na	me:	FSI					_	.// Sil	<u>~</u>														
Project Location				94501							_	Σ	(EPA 8260B)														
Sampler Signa	ture:	2m 21			_						4	∑ ≅	A 8														
		SAMPL	Íμ, G _Ω	1]]	MAT	RIX	P	METI RESE	HOD RVEI	D	TPH-G (EPA 8015 M) TPH-D/TPH-MO (EPA 8015 M w/ Silica Gel Clean-									ľ						
G. 3.474	FIELD			ers ere							1	PA S	MTBE			ļ							ļ				
SAMPLE ID	POINT NAME	Date	Time	r or Containers Type	e.		86	13		اع	ا با	TPH-G (EPA	Z									l					
	TVENTUE	Date	Time	Conts	Water	Soil	Sludge	In July	HCL	HINO ₃	Other	开层。	BTEX														
		227		ZJ VOA		02 7	. 0.	-	+	111		_	m									_					l l
DPE-5		2-27-13	1100	amber	_ X			2	XX		_ _	$X \mid X$	X			_ _											
)																								
			,	1						·	•	'	' '														
,			١	1																		_					
			i										-			_			_			_	_				
														+-	1			\dashv			_	_			— <u> </u> -		
				-										<u> </u>	+	-		\dashv	_			- -					
			- ; 4	- 1									-		++	+	+					- -	-				
<u> </u>		· .	.;	l	-									-	\vdash	+						_ -		\vdash	-		
ļ		 													-		$\perp \perp$	_ _	_			_	_		_		
· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>											_	<u> </u>			_	_								
			_	ال الجميل الم									_														
			<u>.</u>				•						;						١,								
,								_					•														
-					-								;			_								1	-		
Relinquished By:		Date:	rime:	Received	Bÿ;	1	<u> </u>		<u>一</u>		\neg		·		1 !					<u> </u>	<u></u>					-	
Samo	0.C.	2-27-13	\371 ·			U	CC	"	- Alexander	(51												AS G	0&G.	MI	ETALS	OTHER
Relinguished By:	UU	Date:	Time:	Řeceived								ICI	OD CO	NDI	ፐፐር	J			RESE								
													AD SPA						ONT			4					
Relinquished By:		Date:	Time:	Received	By:								CHLO				AB_		PER			IN I	AB_				

AEI CONSULTANTS FIELD WORK ORDER (SOIL VAPOR SAMPLING)

	Project	Name:	Foley Street Investments			Client Co	ntact:	John Buestad
	Project N	umber:	298931			Project Man	ager:	Bob Robitaille
					Gat	te / System Co	mbo:	
	A ctivity		Hour			PO Nur	mber:	
	Activity		Budget	Actual	Sch	neduled Work	Date:	2-27-13
						Fle	xible:	YES NO
			-			Site Cor	ntact:	N/A
				0		Site Pl		N/A
				20		Site Ado	dress:	1630 Park St.
								Alameda, CA 94501
				0.11.1				
				il Vapor samp			a Dry D	Pay- one week from rain)
	ummary of	2	2) Use 1-Lite	e r summa can	nisters equip	ped with 150 m		T:
Woi	rk Requeste	d			* * * * * * * * * * * * * * * * * * *	acuum remaining all of ours are lal		ter.
				il Vapor samp			beieu.	
			· = = ==					
	Not							
Completed	Completed							
	O 1	. Removed	standing water	from well bo	xes; remove	ed well caps; al	lowed wa	ater levels to stabilize.
Œ'	O 3	. Connected	d a 2-foot long	section of nylo	on tubing to	the soil vapor p	orobe usi	ng new brass Swagelok fittings.
型~	O 4	. Determine	ed the "total ler	ngth of tubing	purged" an	d recorded on	the "Soil	Vapor Field Sampling Form"
Q'	O 5	. Determine	e the "total volu	ıme purged" a	and recorded	d on the "Soil V	apor Fiel	d Sampling Form"
II Z ¹	O 6	. Performed	d shut-in leak to	est; monitored	l sampling t	rain for vacuum	n loss for	at least 1 to 2 minutes.
D)	O 7	. Purged th	e dead air fron	n the sampling	train and s	oil gas probe u	sing a 60	-mL plastic syringe.
	O 8	. Connected	d the open end	of the nylon	tubing to the	e sampling trai	n using n	ew Swagelok fittings.
4	O 9	. Placed pla	stic leak test d	ome over sam	pling equip	ment and filled	with 80	to 90% helium gas.
₽ 1	O 1	0. Recorded	d starting vacu	um, opened v	alve on Sum	ıma canister; st	arted col	lecting soil vapor sample.
œ/	O 1	1. Recorded	d ending vacuu	m (4 to 5 in-F	lg remaining	g); closed valve	e and disc	connected Summa canister.
₽/	O 1	0. Transpor	ted samples to	McCampbell	Analytical, I	nc. of Pittsburg	, CA for a	analyses.
Lab Ana	lvses:	See Cha	in-of-Custody					
	116:				· Name and the	70.1		
	und Time:	Rush	24 ho		hours	72 hours	-	ndard —
Consum	ables: # of E	Bailers:	7	# of Drum:	5:	# of Well Pl	ugs:	
Drums C	Onsite: # of \	Water:	<u> </u>	# of Soil: _	,	- # c	of Other:	

AEI CONSULTANTS

FIELD WORK ORDER (SOIL VAPOR SAMPLING)

Requested by PM:	Completed by Tech:

Soil Vapor Notes:

To begin, a 1 liter summa canister connected to a flow controller, will be connected to the probe sampling lines. Prior to collecting the sample, soil vapor will be withdrawn from the inert tubing using a calibrated syringe connected via an on-off valve. A total of three purge volumes will be removed from each probe. Following purging, soil gas will be monitoring with an Eagle ® field meter for oxygen (O2), carbon dioxide (CO2), and total hydrocarbons. The sample canister will then be connected, opened, and the initial vacuum recorded. Vapor samples will be collected through the regulator at approximately 150 mL/minute. Upon reaching approximately 5 in Hg vacuum in the canister, the canister will be closed and removed from the sampling line. Samples will be appropriately labeled and entered onto the chain of custody prior to shipping to the laboratory. During sampling, a leak check gas will be used to confirm that the sample train was tight and leak free.

All vapor samples will be sealed and labeled immediately upon collection. Chain of custody documentation will be initiated prior to leaving the site. All samples will be shipped to a state certified laboratory on the day of collection. Soil vapor samples will be analyzed by EPA Method TO-3 for total petroleum hydrocarbons as gasoline (TPHg) and by EPA Method TO-15 for benzene, toluene, ethylbenzene, and xylenes (BTEX) & Naphthalene, N_2 , CH_4 , O_2 , CO_2 .

AEI CONSULTANTS SOIL VAPOR FIELD SAMPLING FORM

		SC	IL VAPOR PROBE ID	: VP-1										
Project Name:	Foley Street Investmen	te	Date of Sampling	4-										
Job Number:	298931													
Job Number.	290931		Start Time	1120										
Project Address:	1630 Park St. Alameda, CA	94501	End Time	1100										
			Name of Sampler	J. Sigg										
	SOIL GAS	PROBE DA	ΓA											
Starting Vacuum (in-l	lg)		30											
Ending Vacuum (in-H	g)		5											
Flow Controller / Sam	pling Flow Rate (mL/min)		100 - 200											
Tubing Inside Diamet	er (1/8" or 1/4")	1/8" I.D.		V										
Tubing Type (Nylon, I	(ynar, Teflon, Stainless Steel)	NYLON / NYL	AFLOW	V										
Wellbox Condition			- 244 C (1)	▼										
Depth of Probe (ft bgs	\$)	OM5ML	6											
Length of Tubing Abo	ve Grade (ft)	1												
Total Length of Tubing	g Purged (ft)		7											
Number of Purge Volu	umes (default = 3 purge volumes)		3											
	(mL): formula valid only for tubing I mL/ft), 3/16" I.D. (~5.4 mL/ft), and		50											
Appreciable Amount c	of Rain (>1/2") in Last Five Days?		no											
Moisture / Water Pres	ent in Tubing?		no											
Number of Comples /	SOIL GAS SAM													
Summa Canister Num	Container Size and Type		er Summa Canister											
	low Controller Number		6422											
Leak Check Compour	***************************************	***************************************												
	<i>₽</i> Ъ		LCOHOL (2-PROPANOL)	- X										
Eagle Screening TH	V ppmv/ U . CH4 %/	0.0	02%/ 20.7	CO2 %/ O.4										
	NOTES &	COMMENTS	3											

AEI CONSULTANTS SOIL VAPOR FIELD SAMPLING FORM

		SOIL	VAPOR PROBE ID:	VP-2								
Project Name:	Foley Street Investments	S	Date of Sampling:	2-27-13								
Job Number:	298931		Start Time:	1200								
			End Time:	1205								
Project Address:	1630 Park St. Alameda, CA 9	94501	Name of Sampler:									
	SOIL GAS	PROBE DATA										
Starting Vacuum (in-l	Hg)		30									
Ending Vacuum (in-H	lg)		5									
Flow Controller / San	npling Flow Rate (mL/min)		100 - 200									
Tubing Inside Diame	ter (1/8" or 1/4")	1/8" I.D.		444								
Tubing Type (Nylon,	Kynar, Teflon, Stainless Steel)	NYLON / NYLAFLO	OW									
Wellbox Condition												
Depth of Probe (ft bg	s)		6									
Length of Tubing Abo	ove Grade (ft)		1									
Total Length of Tubir	ng Purged (ft)		7									
Number of Purge Vol	lumes (default = 3 purge volumes)		3									
	I (mL): formula valid only for tubing 4 mL/ft), 3/16" I.D. (~5.4 mL/ft), and	50										
Appreciable Amount	of Rain (>1/2") in Last Five Days?		No									
Moisture / Water Pre			no									
	SOIL GAS SAME	PLING EQUIPN	ЛЕNT									
Number of Samples	/ Container Size and Type	One (1) 1-Liter	Summa Canister									
Summa Canister Nur		L	0170									
Sampling Manifold / I	Flow Controller Number	<u></u>	0409									
Leak Check Compou	ınd	ISOPROPYL ALCO	OHOL (2-PROPANOL)									
reak clieck combor	HV ppmv/ ○ CH4 %/	0.00	12%/ 19.6	CO2 %/ -								

cc = cubic centimeter mL = milliliter 1 L = 1000 mL 1 mL = 1 cc in-Hg = inches of mercury ft bgs = feet below ground surface

AEI CONSULTANTS SOIL VAPOR FIELD SAMPLING FORM

		SOIL VAPOR PROBE ID:	VP-3
Project Name:	Foley Street Investments	Date of Sampling:	2-27-13
Job Number:	298931	Start Time:	1230
Project Address:	1630 Park St. Alameda, CA 94501	End Time:	1237
r roject Address.	1030 Fair St. Alaineda, CA 94301	Name of Sampler:	J. Sigg

SOIL GAS	PROBE DATA
Starting Vacuum (in-Hg)	30
Ending Vacuum (in-Hg)	5
Flow Controller / Sampling Flow Rate (mL/min)	100 - 200
Tubing Inside Diameter (1/8" or 1/4")	1/8" I.D.
Tubing Type (Nylon, Kynar, Teflon, Stainless Steel)	NYLON / NYLAFLOW
Wellbox Condition	▼
Depth of Probe (ft bgs)	6
Length of Tubing Above Grade (ft)	1
Total Length of Tubing Purged (ft)	7
Number of Purge Volumes (default = 3 purge volumes)	3
Total Volume Purged (mL): formula valid only for tubing sizes of 1/8" I.D. (~2.4 mL/ft), 3/16" I.D. (~5.4 mL/ft), and 1/4" I.D. (~9.6 mL/ft)	50
Appreciable Amount of Rain (>1/2") in Last Five Days?	no
Moisture / Water Present in Tubing?	no

SOIL GAS SAM	IPLING EQUIPMENT
Number of Samples / Container Size and Type	One (1) 1-Liter Summa Canister
Summa Canister Number	6409
Sampling Manifold / Flow Controller Number	818
Leak Check Compound	ISOPROPYL ALCOHOL (2-PROPANOL)
Eagle Screening THV ppmv/ CH4 %/	0.0 02%/ 19.4 CO2%/ 1.6

NOT.	ES & COMMENTS	
NOI	ES & CUIVINIEN IS	
}		
Ī		

Macan	/DDET	T A TATA	ALYTICAL INC.		CHAIN OF CUSTODY RECORD											
MCCAIN	1534	Willow P	ass Road		CHA TURN AROUND T		CUST	ODY R			10.00 6 •					
	Pittsbu	irg, CA 9	4565-1701 mpbell.com				RUSH		[] 18 HR	□ 72 HR	5 DAY					
Telephone: (925) 25	2-9262		Fax: (925) 252-9269	EDF Required? 🔲 No 👢	Yes										
Report To: Robert Robitaille	e		Bill To: PO# WC	083992												
	···				Lab Use Only											
Company: AEI Consultants									Pı	essuriza	tion Gas					
2500 Camino Diablo, Walnu	ut Creek	, Califor	rnia 94597		Pressurize	l By		Date								
E-Mail: rrobitaille@aeicons	sultants.	com				-			-	N2	He					
Tele: (925) 746-6048			Fax: (925) 746-66	099												
Project #: 298931			Project Name: FS	SI						:						
Project Location: 1630 Parl	k Street,	Alamed	a, California													
Sampler Signature:	blm	Sign	<u></u>		Notes: TO15 Full List,	TPH-g, B	TEX, T\	H, MTBE	, TBA, T	AME, D	PE, ETBE.					
	U	\mathcal{C}		Naphthlene, CO2, metl	nane, Öxyg	en, Nitre	ogen, Isopr	opyl alco	hol	,						
	Collect		•													
Field Sample ID			Canister SN#													
(Location)	Date	Time	Camster 514#	Sampler Kit SN#	Analysis Requested	Indoor	Soil	Caniste	r Pressure/Vacuum							
	Date	Time			TO15 Full List	Air	Gas	Initial	Final	Receip						
		i :									(psi)					
				1			1									
VP-1	2-27-15	1130	6422	722	Atm. Gases, TPH(g), BTEX & Oxygenates		X									
VP-1 VP-2		1130 17 <i>0</i> 0	6422	722 675			X X									
			_		BTEX & Oxygenates Atm. Gases, TPH(g),											
VP-2 VP-3	¥	1260 1230	6409	675	BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Atm. Gases, TPH(g),		X									
VP-2 VP-3 Relinquished By:	Date:	1700 1730 Time:	6170 6409	675 818	BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates	Wilos	X									
VP-2 VP-3 Relinquished By:	¥	1200 1230 Time:	6170 6409 Received Br:	675 818	BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Temp (°C):		X									
VP-2 VP-3 Relinquished By:	Date:	1700 1730 Time:	6170 6409	675	BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Temp (°C): Condition:		X X X r#:									
VP-2 VP-3 Relinquished By:	Date: 2-27-12	1200 1230 Time:	6170 6409 Received Br:	675 818	BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Temp (°C): Condition: Custody Seals Intact?: Y	es N	X X X r#:	 None								
VP-2 VP-3 Relinquished By:	Date: 2-27-12	1200 1230 Time:	6170 6409 Received Br:	675 818	BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Temp (°C): Condition:	es N	X X X r#:	 None								
VP-2 VP-3 Relinquished By: Relinguished By:	Date: 2-27-12 Date:	1200 1230 Time: 1321 Time:	6170 6409 Received By:	675 818	BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Atm. Gases, TPH(g), BTEX & Oxygenates Temp (°C): Condition: Custody Seals Intact?: Y	es N	X X X r#:	 None								

APPENDIX B

LABORATORY ANALYTICAL REPORTS W/ CHAIN OF CUSTODY DOCUMENTATION

Analytical Report

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
2500 Camino Biacio, Ste. 11200	Client Contact: Robert Robitaille	Date Reported: 03/06/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Completed: 03/05/13

WorkOrder: 1302791

March 06, 2013

Dear Robert:

Enclosed within are:

- 1) The results of the 14 analyzed samples from your project: #298931; FSI,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius
Laboratory Manager

McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	McCAMPBELL ANALYTICAL INC.											_				٠.	~				-										
	MCCA	AMPBEI	LL ANA	LY	TICA	LII	NC.															CU	JST	OI	DY	RE	C	OR	D		
	1538 V	Willow Pas	s Road, l	Pittsb	ourg, C	A 94	565]	rui	SN	AR	Ol	UNI	D T	IM	\mathbf{E}							1			
Telephone: (9	25) 252-9262	2					F	ax: (925)	25	2-92	69	E	DF	Rea	uire	d?	-	Ves	П	No	R	USH		4 HR	ed?	48 H			2 HR INo	5 DAY
Report To: Ro	bert Robita	ille		Bill	To: AE	I Co	nsul	tants	3				Ĩ			unc	_			_	ques	t	1 10	1 144	quii	Τ.		her	$\overline{}$		ments
Company: AE	I Consultan	its, 2500 C	amino D	iablo	, Waln	ut C	reek,	CA	9459	97			Т							- 1						+			\Box	Com	incires
PO# WC08399	2		Global I	D: T	060010	065	5						1	can-																	
				E-M	ail: rro	bitail	le@a	eicor	ısulta	atns	.com		1	w/ Silica Gel Clean-																	1
Telephone: (92	-	, ext. 148		Fax:	(925)	746-6	5099							ica G																	
AEI Project N					ect Nai	ne:	FSI							N/Sil	9																
Project Location		1		945	01									8015 M	8260B)																
Sampler Signa	ture:		199	_					_	M	ЕТНО	ND.	2		(EPA 8																
		SAME	FING				MAT	RIX	I		SERV		8015	(EP)																	
SAMPLE ID	FIELD POINT			ers	ers					T	\top	Т		H-MO	ITBE																
SAMPLEID	NAME	Date	Time	fair	tain	ter	237999	lge	er		ن ا	er.	9	/(TP)	X, M																
				# of Containers	Type Containers	Water	Soil	Sludge	Other	eo l	HOL	Other	TPH-G (EPA	TPH-D / TPH-MO (EPA	BTEX, MTBE																
MW-1		2-27-13	0530	4	VOA,	X			_	X	_		v	X					+		+	-			+	+			\dashv		
MW-2		1	0600	4	VOA, amber L	X				X	-	+	X	_					+	+	+	+		-	+	+	\vdash		-		
MW-3			0630		VOA, amber L	X				X	-	H	X						+	+						+			-		
MW-4			0430	4	VOA, amber L	X			_	X	_	H	X			-				+	+	+		+	+	+			\dashv		
MW-5			0500	4	VOA, amber L	X				X			X							+				+	+	+			\dashv		
DEP-1			0 700	4	VOA, amber L	X			_	X			X	200	X										+	+					
DEP-2			1000	4	VOA, amber L	X			_	X	_	Т	X		X	-									+	+					
DEP-4			0930	4	VOA, amber L	X				X	X	Т	X																		
									1	-											+			+	+						
DEP-6		-10	1030	4	VOA, amber L	X				X	X	П	X	X	X																
DEP-8			0730	4	VOA, amber L	X				X	X		X	X	X																
DEP-9			0800	4	VOA, amber L	X				X	X		X	X	X			\top	\top												
DEP-10			0830	4	VOA, amber L	X				X	X		X	X	X																
DEP-11		4	0900		VOA, amber L	X				X :	X		X	X	X																
Relinquished By:		Date:	Time;		elvod By				-		1																		_		
20mg	ac	2-27-13	1321		1/1	u	u	e'	1		0		١,	CP.	1	,8										VOAS	0.	&G	M	ETALS	OTHER
Relinquished By:	00	Date:	Time:	Rec	eived By	:								GOC	D C	ONI	TIC	ION					SER		TE						
7.11													1	HEA	DS	PAC	ΕA	BSE	NT			CON	TAI	NER	RS	100					
Relinquished By:		Date:	Time:	Rec	eived By								1	DEC	HLO	ORIN	TAI	ED	IN L	AB		_ PE	ERSE	RVI	ED IN	LAI	3				

	McCAMPBELL ANALYTICAL INC.												CHAIN OF CUSTODY RECORD																		
	1538 W	illow Pass I	Road, Pi	ttsbu	rg, CA	945	565							TUE	N	AR	OU	INI	T	IM	E						[
Telephone: (92	25) 252-9262						F	x: (925	252	-92	269	١,	EDE	Don		42	_	Vac		Mo	R	USH		24 H			HR			5 DAY
Report To: Ro			F	Rill T	o: AE	Co				,			+	EDF	Keq	uire					ques	f	PD.	r R	equi	reu		Yes	-	No Comm	ents
Company: AE								_		97			t	_			Í	LIII	iyo:	3 ICC	ques				Т	+	Т	Tiller	\neg	Commi	ciits
PO# WC08399			lobal ID						-				1	台																	
E-Mail: rrobitaille@aeiconsultatns.com							n	1	Ö																						
Telephone: (92	5) 746-6000,	ext. 148			(925) 7	_	-							9																	
AEI Project No	. 298931		I	Proje	et Nan	ne:	FSI							/ Sili	0																
Project Location	n: 1630 Par			9450)1									×	(EPA 8260B)																
Sampler Signa	ture: O		aa										1	M)	A 80							1 8									
		SAMPL	TIACO			1	TAIN	RIX		PRE	SEE	OD		8015 M)																	
	FIELD			22	LS		T	T		IND	T	T L	1	MO W	LBE										1						
SAMPLE ID	POINT	Deta	Ti-ma	f of Containers	Type Containers	1		ge	1			n 1	. 1	TPH-G (EPA 8015 M) TPH-D / TPH-MO (EPA 8015 M w/ Silica Gel Clean-	BTEX, MTBE																
	NAME	Date	Time	Cont	ype	Water	Soil	Sludge	Other	Ice	HCL	HNO3		H-D H-D	BTEX																
		L		# 9		2	S	S	0	-	=	Ξ 0	7	FF	m							_				_	_		_		
DPE-5		2-27-13-	1100	4	VOA, amber L	X				X	X			X X	X																
)																												
_			, ,	1									Ċ		1	1.0															
,			,						10.5																						
			1 1	Γ.				004																							
7		T	. ,	-												-					+		1								
		T . —														-		\forall				+	+				\top				
		- '	, ,	+ 1												-				_		+	+				+				-
F			li av	<u>'</u>																-	+	+	+				+	+		-	
-		-		1	5.5											_	-	+		-	-	_	-	-	_		-	-		-	-
			- '-	-												_	-	-		-	+	-	+	-			-	_	-	-	
				-												_	-		_		_	+	1	-				_		-	
				_	1			7																			_				
	-	L' .		1. 1	1		0 13																						_		
			(,																						
Relinquished By:		Date:	11me:	Ret	eived B	1:7				/	2		1															1	1	1	
Samon		2-27-13		1	//	14	w	u	K	1		_ C	2	ICI	E/t°							PR	ESE	RV	ATIO		OAS	0%6		METALS	OTHER
Relinquished By:	00	Date:	Time:	Red	eived B	y:								GC	OD	CO		TIO				AP	PRC	PR	[AT]	E					
Relinquished By: Date: Time: Received By:								HEAD SPACE ABSENT CONTAINERS_ DECHLORINATED IN LAB PERSERVED IN LAB																							
Relinquished By:		Date:	Time:	Red	ceived B	y:								DE	CH.	LUK	LINA	ILEI	ח ווי	LA	ь	'	EK	SEK	VEL	IN	LAB		-		

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

ClientCode: AEL

WorkOrder: 1302791

Page 1 of 1

1534 Willow Pass Rd (925) 252-9262

Pittsburg, CA 94565-1701

		☐ WaterTrax ☐ WriteOn	✓ EDF		xcel		EQuIS	✓	Email		HardC	ору	ThirdF	arty	☐J-fla	g
Report to: Robert Robit	taille	Email: rrobitaille@aeid	consultants.com		Ві	ill to: Sara	Guerin					Reque	sted TAT	ī:	5 d	lays
AEI Consulta 2500 Camin	ants o Diablo, Ste.#200 ek, CA 94597	cc: PO: #WC083992 ProjectNo: #298931; FSI				AEI 2500 Wali	Consulta Camino Camino Cut Cree CountsPay	Diabl	94597		s.co		Received Printed:		02/27/20 02/27/20	
								Re	questec	l Tests (See le	gend be	low)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1302791-001	MW-1	Water	2/27/2013 5:30		Α	Α	С						$\overline{}$			
1302791-002	MW-2	Water	2/27/2013 6:00		Α		С									
1302791-003	MW-3	Water	2/27/2013 6:30		Α		С							1		
1302791-004	MW-4	Water	2/27/2013 4:30		Α		С									
1302791-005	MW-5	Water	2/27/2013 5:00		Α		С							1		
1302791-006	DEP- 1	Water	2/27/2013 7:00		Α		С									
1302791-007	DEP-2	Water	2/27/2013 10:00		Α		С							1		
1302791-008	DEP-4	Water	2/27/2013 9:30		Α		С									
1302791-009	DEP-6	Water	2/27/2013 10:30		Α		С									
1302791-010	DEP-8	Water	2/27/2013 7:30		Α		С									
1302791-011	DEP-9	Water	2/27/2013 8:00		Α		С									
1302791-012	DEP-10	Water	2/27/2013 8:30		Α		С									
1302791-013	DEP-11	Water	2/27/2013 9:00		Α		С									
1302791-014	DEP-5	Water	2/27/2013 11:00		Α		С									
Test Legend:																
1 MBTEX-	8260B_W 2	PREDF REPORT	3 TPH(D	MO)WS	SG_W		4					5	,			
6	7		8				9					10	0			
11	12		L													
,											P	repare	d by: Z	Zoraida	Corte	Z

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	AEI Consultants				Date and	d Time Received:	2/27/2013 7:	07:54 PM
Project Name:	#298931; FSI				LogIn Re	eviewed by:		Zoraida Cortez
WorkOrder N°:	1302791	Matrix: Water			Carrier:	Client Drop-In		
		<u>Chai</u>	n of Cւ	ustody (COC) Informatio	<u>n</u>		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	ibels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
		<u> </u>	Sample	Receipt Inf	ormation			
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗸	
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample contained	rs intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	<u>ervatio</u>	n and Hold	Time (HT) In	<u>formation</u>		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌			
Container/Temp l	Blank temperature		Coole	er Temp: 2.8	3°C		NA \square	
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	No 🗌 N	o VOA vials submi	tted	
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH	l<2)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
(Ice Type: WET ICE)								
* NOTE: If the "N	* NOTE: If the "No" box is checked, see comments below.							
=====						=====		

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
	Client Contact: Robert Robitaille	Date Extracted 03/01/13-03/05/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed 03/01/13-03/05/13

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline *

xtraction method: SW50	on method: SW5030B Analytical methods: SW8015Bm		W	Work Order:		
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	Comments
001B	MW-1	W	ND	1	99	
002B	MW-2	W	53	1	117	d1
003B	MW-3	W	ND	1	#	c1
004B	MW-4	W	ND	1	90	
005B	MW-5	W	ND	1	93	
006B	DEP- 1	W	270	1	92	d1
007B	DEP-2	W	ND	1	99	
008B	DEP-4	W	ND	1	113	
009B	DEP-6	W	ND	1	113	
010B	DEP-8	W	ND	1	99	
011B	DEP-9	W	3300	10	115	d7
012B	DEP-10	W	820	1	#	d1
013B	DEP-11	W	ND	1	101	
014B	DEP-5	W	3900	10	110	d1

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

c1) surrogate recovery outside of the control limits due to dilution / matrix interference / coelution / presence of surrogate compound in the sample

d1) weakly modified or unmodified gasoline is significant

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
	Client Contact: Robert Robitaille	Date Extracted: 02/27/13-03/01/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed: 02/27/13-03/01/13

MTBE and BTEX by GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1302791

Extraction Method: 5W3030B Work Order: 1502/91							
Lab ID	1302791-001A	1302791-002A	1302791-003A	1302791-004A			
Client ID	MW-1	MW-2	MW-3	MW-4	Reporting Limit for DF = 1		
Matrix	W	W	W	W			
DF	1	1	1	1	S	W	
Compound		Conce	entration		ug/kg	μg/L	
Benzene	ND	1.8	ND	ND	NA	0.5	
Ethylbenzene	ND	ND	ND	ND	NA	0.5	
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	NA	0.5	
Toluene	ND	ND	ND	ND	NA	0.5	
Xylenes, Total	ND	1.4	ND	ND	NA	0.5	
Surrogate Recoveries (%)							
%SS1:	106	110	108	107			
%SS2:	103	102	104	105			
Comments							
	/T 11/1 1 / 111	1 1 1	1 . / 11 /		II TOOL D. O. O.	DI D	

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
	Client Contact: Robert Robitaille	Date Extracted: 02/27/13-03/01/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed: 02/27/13-03/01/13

MTBE and BTEX by GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1302791

Extraction Method: 5w3050b Work Order: 1502/91							
Lab ID	1302791-005A	1302791-006A	1302791-007A	1302791-008A			
Client ID	MW-5	DEP- 1	DEP-2	DEP-4	Reporting Limit for DF =1		
Matrix	W	W	W	W	1		
DF	1	1	1	1	S	W	
Compound		Conce	entration		ug/kg	μg/L	
Benzene	ND	1.4	1.3	0.63	NA	0.5	
Ethylbenzene	ND	0.53	ND	ND	NA	0.5	
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	NA	0.5	
Toluene	ND	ND	ND	ND	NA	0.5	
Xylenes, Total	ND	5.3	ND	ND	NA	0.5	
Surrogate Recoveries (%)							
%SS1:	108	91	92	94			
%SS2:	104	105	104	101			
Comments							
la.	/		1 / . 11 /		11 55 5 6 6		

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

%SS = Percent Recovery of Surrogate Standard

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
	Client Contact: Robert Robitaille	Date Extracted: 02/27/13-03/01/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed: 02/27/13-03/01/13

MTBE and BTEX by GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1302791

Extraction Method. 5W5050B Work Order. 1502/91								
Lab ID	1302791-009A	1302791-010A	1302791-011A	1302791-012A				
Client ID	DEP-6	DEP-8	DEP-9	DEP-10	Reporting DF			
Matrix	W	W	W	W	1			
DF	1	1	1	1	S	W		
Compound		Conce	entration		ug/kg	μg/L		
Benzene	ND	ND	5.5	5.3	NA	0.5		
Ethylbenzene	ND	ND	5.7	6.0	NA	0.5		
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	NA	0.5		
Toluene	ND	ND	ND	ND	NA	0.5		
Xylenes, Total	ND	ND	16	4.4	NA	0.5		
Surrogate Recoveries (%)								
%SS1:	95	93	89	88				
%SS2:	103	102	97	102				
Comments								
	~		1 . / 11 /		11 mar p 0 a			

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

When Qua	uuy Counts					•		
AEI Consultants		Client Project ID: #298931; FSI		Date Sampled: 02/27/13				
2500 Camino Diablo, Ste.#200					Date Received:	02/27/13		
2500 Cummo Bruero, Stein 200	Cli	ent Contact: R	obert Ro	obitaille	Date Extracted:	02/27/13-0	03/01/13	
Walnut Creek, CA 94597	Cli	ent P.O.: #WC	083992		Date Analyzed:	02/27/13-0	03/01/13	
Extraction Method: SW5030B	MTBE and BTEX by GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1302791							
Lab ID	1302791-0	013A 1302791	-014A			Reporting Limit for DF =1		
Client ID	DEP-1	1 DEF	P-5					
Matrix	W	W	7					
DF	1	20)			S	W	
Compound			Conce	entration		ug/kg	μg/L	
Benzene	ND	440	0			NA	0.5	
Ethylbenzene	ND	120	0			NA	0.5	
Methyl-t-butyl ether (MTBE)	ND	ND<	(10			NA	0.5	
Toluene	ND	370	0			NA	0.5	
Xylenes, Total	ND	570	0			NA	0.5	
Surrogate Recoveries (%)								
%SS1:	94	99)					
%SS2:	101	95	i					
Comments								
* vyoton and vomen commissions are remorted in the	_ /T :1/_11 _	-/1:-11 :	/1	. 4 / . : 1 /	1:: 41 4	II TOLD & CI	DI D	

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled:	02/27/13
2500 Camino Diablo, Ste.#200		Date Received:	02/27/13
2300 Camino Diabio, Ste.#200	Client Contact: Robert Robitaille	Date Extracted:	02/27/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed:	03/01/13-03/06/13

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW	73510C/3630C	Analytical m	nethods: SW8015B	•	V	Vork Order:	1302791
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
1302791-001C	MW-1	W	ND	ND	1	84	
1302791-002C	MW-2	W	ND	ND	1	90	
1302791-003C	MW-3	W	ND	ND	1	83	
1302791-004C	MW-4	W	ND	ND	1	82	
1302791-005C	MW-5	W	ND	ND	1	90	
1302791-006C	DEP- 1	W	110	ND	1	88	e4
1302791-007C	DEP-2	W	99	ND	1	83	e2
1302791-008C	DEP-4	W	ND	ND	1	85	
1302791-009C	DEP-6	W	160	ND	1	85	e2
1302791-010C	DEP-8	W	ND	ND	1	99	
1302791-011C	DEP-9	W	2200	ND	1	91	e4
1302791-012C	DEP-10	W	660	ND	1	83	e4
1302791-013C	DEP-11	W	ND	ND	1	88	
1302791-014C	DEP-5	W	1200	2600	1	92	e7,e4,e2
	ting Limit for DF =1; cans not detected at or	W	50	250	μg/L		
	ans not detected at or	S	NA	NA		mø/I	ζσ

ND means not detected at or				r-8 -
1 1 1 1 1	S	NA	NA	mg/Kg
above the reporting limit	S	1471	1171	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μ g/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

[%]SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75114 WorkOrder: 1302791

EPA Method: SW8260B Extraction: S	SW5030B					;	Spiked Sam	ple ID:	1302754-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzene	ND	20	96.8	104	7.14	92.3	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	20	92	101	9.67	99.8	70 - 130	20	70 - 130
Toluene	ND	20	89.3	95.5	6.48	90.3	70 - 130	20	70 - 130
%SS1:	106	25	107	107	0	110	70 - 130	20	70 - 130
%SS2:	104	25	102	102	0	103	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75114 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302791-001A	02/27/13 5:30 AM	02/27/13	02/27/13 10:26 PM	1302791-002A	02/27/13 6:00 AM	02/28/13	02/28/13 6:38 PM
1302791-003A	02/27/13 6:30 AM	02/27/13	02/27/13 11:45 PM	1302791-004A	02/27/13 4:30 AM	02/28/13	02/28/13 12:25 AM
1302791-005A	02/27/13 5:00 AM	02/28/13	02/28/13 1:05 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75155 WorkOrder: 1302791

EPA Method: SW8260B Extraction:	SW5030B					,	Spiked Sam	ple ID:	1302791-010A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzene	ND	10	87	83.3	4.18	103	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	99	97.2	1.88	109	70 - 130	20	70 - 130
Toluene	ND	10	88.5	82.6	6.82	102	70 - 130	20	70 - 130
%SS1:	93	25	96	98	2.38	95	70 - 130	20	70 - 130
%SS2:	102	25	100	100	0	102	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75155 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302791-006A	02/27/13 7:00 AM	02/28/13	02/28/13 3:06 PM	1302791-007A	02/27/13 10:00 AM	02/28/13	02/28/13 3:48 PM
1302791-008A	02/27/13 9:30 AM	02/28/13	02/28/13 4:30 PM	1302791-009A	02/27/13 10:30 AM	02/28/13	02/28/13 5:11 PM
1302791-010A	02/27/13 7:30 AM	02/28/13	02/28/13 5:53 PM	1302791-011A	02/27/13 8:00 AM	02/28/13	02/28/13 10:39 PM
1302791-012A	02/27/13 8:30 AM	02/28/13	02/28/13 11:20 PM	1302791-013A	02/27/13 9:00 AM	03/01/13	03/01/13 12:01 AM
1302791-014A	02/27/13 11:00 AM	03/01/13	03/01/13 11:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75160 WorkOrder: 1302791

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					5	Spiked Sam	ple ID:	1302740-008A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, analy c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	104	103	0.658	85.4	70 - 130	20	70 - 130
MTBE	ND	10	89.7	93.4	3.71	94.7	70 - 130	20	70 - 130
Benzene	ND	10	105	107	1.51	100	70 - 130	20	70 - 130
Toluene	ND	10	103	104	1.19	99.4	70 - 130	20	70 - 130
Ethylbenzene	ND	10	106	105	0.738	101	70 - 130	20	70 - 130
Xylenes	ND	30	105	103	1.15	101	70 - 130	20	70 - 130
%SS:	98	10	96	97	1.33	95	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75160 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302791-001B	02/27/13 5:30 AM	03/01/13	03/01/13 5:46 AM	1302791-002B	02/27/13 6:00 AM	03/05/13	03/05/13 5:39 AM
1302791-003B	02/27/13 6:30 AM	03/01/13	03/01/13 11:29 PM	1302791-004B	02/27/13 4:30 AM	03/01/13	03/01/13 11:58 PM
1302791-005B	02/27/13 5:00 AM	03/02/13	03/02/13 12:28 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75164 WorkOrder: 1302791

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					5	Spiked Sam	ple ID:	1302836-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, analy c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	103	98.8	4.55	117	70 - 130	20	70 - 130
MTBE	ND	10	107	105	2.46	106	70 - 130	20	70 - 130
Benzene	ND	10	109	104	4.08	110	70 - 130	20	70 - 130
Toluene	ND	10	106	103	3.13	108	70 - 130	20	70 - 130
Ethylbenzene	ND	10	109	106	2.46	113	70 - 130	20	70 - 130
Xylenes	ND	30	107	106	0.454	111	70 - 130	20	70 - 130
%SS:	94	10	97	94	2.47	95	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75164 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302791-006B	02/27/13 7:00 AM	03/01/13	03/01/13 5:02 PM	1302791-007B	02/27/13 10:00 AM	03/05/13	03/05/13 3:42 AM
1302791-008B	02/27/13 9:30 AM	03/05/13	03/05/13 4:11 AM	1302791-009B	02/27/13 10:30 AM	03/01/13	03/01/13 7:32 PM
1302791-010B	02/27/13 7:30 AM	03/01/13	03/01/13 8:31 PM	1302791-013B	02/27/13 9:00 AM	03/01/13	03/01/13 9:01 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75194 WorkOrder: 1302791

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					5	Spiked Sam	ple ID:	1302809-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, analy c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	103	104	1.02	104	70 - 130	20	70 - 130
MTBE	ND	10	87.4	86.8	0.684	91.6	70 - 130	20	70 - 130
Benzene	ND	10	93.3	94	0.688	101	70 - 130	20	70 - 130
Toluene	ND	10	93.9	95.8	1.98	99.9	70 - 130	20	70 - 130
Ethylbenzene	ND	10	94.9	96.3	1.53	100	70 - 130	20	70 - 130
Xylenes	ND	30	95.9	97.6	1.84	101	70 - 130	20	70 - 130
%SS:	106	10	96	98	1.58	97	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75194 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302791-011B	02/27/13 8:00 AM	03/02/13	03/02/13 1:13 AM	1302791-012B	02/27/13 8:30 AM	03/05/13	03/05/13 3:31 AM
1302791-014B	02/27/13 11:00 AM	03/02/13	03/02/13 3:10 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75070 WorkOrder: 1302791

EPA Method: SW8015B Extraction: SW3510C/3630C							Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)			
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	94.4	N/A	N/A	70 - 130	
%SS:	N/A	625	N/A	N/A	N/A	77	N/A	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75070 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302791-001C	02/27/13 5:30 AM	02/27/13	03/05/13 3:01 AM	1302791-002C	02/27/13 6:00 AM	02/27/13	03/01/13 11:30 PM
1302791-003C	02/27/13 6:30 AM	02/27/13	03/05/13 7:39 AM	1302791-004C	02/27/13 4:30 AM	02/27/13	03/05/13 8:50 AM
1302791-005C	02/27/13 5:00 AM	02/27/13	03/02/13 3:01 AM	1302791-006C	02/27/13 7:00 AM	02/27/13	03/01/13 11:30 PM
1302791-007C	02/27/13 10:00 AM	02/27/13	03/06/13 5:36 AM	1302791-008C	02/27/13 9:30 AM	02/27/13	03/05/13 1:51 AM
1302791-009C	02/27/13 10:30 AM	02/27/13	03/05/13 6:30 AM	1302791-010C	02/27/13 7:30 AM	02/27/13	03/04/13 5:40 PM
1302791-011C	02/27/13 8:00 AM	02/27/13	03/02/13 12:40 AM	1302791-012C	02/27/13 8:30 AM	02/27/13	03/05/13 4:11 AM
1302791-013C	02/27/13 9:00 AM	02/27/13	03/02/13 11:14 AM	1302791-014C	02/27/13 11:00 AM	02/27/13	03/02/13 1:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644

Analytical Report

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
2500 Camino Diacio, Stc.#200	Date Reported: 03/07/13	
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Completed: 03/07/13

WorkOrder: 1302779

March 08, 2013

Dear Robert:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #298931; FSI,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1302779

McCA			ALYTICAL INC	2.	CHAIN OF CUSTODY RECORD						
1534 Willow Pass Road Pittsburg, CA 94565-1701 www.main@mccampbell.com Telephone; (925) 252-9262 Fax: (925) 252-9269				TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? No Yes							
	Report To: Robert Robitaille Bill To: PO# WC083992				Lab Use Only						n/
Company: AEI Consultants	s								P	ressuriza	tion Gas
2500 Camino Diablo, Walnut Creek, California 94597					Pressurize	ed By		Date		1194	
E-Mail: rrobitaille@aeicon						N2	He				
Tele: (925) 746-6048	Tele: (925) 746-6048 Fax; (925) 746-6099										
Project #: 298931			Project Name: I	FSI						1	
Project Location: 1630 Par	rk Street	, Alame	da, California							100	
Sampler Signature:	alm	Cia	@	144	Notes: TO15 Full List						PE, ETBE,
	Colle	ection	O		Naphthlene, CO2, me	thane, Oxy	gen, Nit	rogen, Isopi	ropyl alco	ohol	
Field Sample ID (Location)	Date	Time	Canister SN#	Sampler Kit SN#	Analysis Requested	Indoor	Soil	Caniste	er Pressu	ure/ V ac	uum
	Date	Time			TO15 Full List	Air	Gas	Initial	Final	Receipt	Final (psi)
VP-1	2-27-13	1130	6422	722	Atm. Gases, TPH(g), BTEX & Oxygenates		Х				
VP-2		1200	6170	675	Atm. Gases, TPH(g), BTEX & Oxygenates		х				
VP-3	4	1230	6409	818	Atm. Gases, TPH(g), BTEX & Oxygenates		Х				
Relinquished By:	Date: 2-24-12 Date:	Time:	Received By:	m V	Temp (°C) :						
Relinquished By:	Date:	Time:	Received By:			/es N			_		

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

ClientCode: AEL

WorkOrder: 1302779

Page 1 of 1

1534 Willow Pass Rd (925) 252-9262

Pittsburg, CA 94565-1701

☐ WaterTrax WriteOn ✓ EDF Excel **EQuIS** ✓ Email ☐ HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Robert Robitaille rrobitaille@aeiconsultants.com Sara Guerin Email: **AEI Consultants AEI Consultants** cc: Date Received: 02/27/2013 2500 Camino Diablo, Ste. #200 2500 Camino Diablo, Ste.#200 PO: #WC083992 Walnut Creek, CA 94597 ProjectNo: #298931; FSI Walnut Creek, CA 94597 Date Printed: 02/27/2013 (925) 283-6000 FAX: (925) 283-6121 AccountsPayable@AEIConsultants.c Requested Tests (See legend below) 2 3 5 8 10 12 Lab ID Client ID Matrix Collection Date Hold 4 11 1302779-001 VP-1 Soil Gas 2/27/2013 11:30 Α Α Α 1302779-002 VP-2 Soil Gas 2/27/2013 12:00 Α Α 1302779-003 VP-3 Soil Gas 2/27/2013 12:30 Α Α

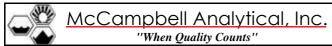
Test Legend:

1	LG_SUMMA_SOILGAS	2 PREDF REPORT	3	TO15+GAS_SOIL(UG/M3)	4	5
6		7	8		9	10
11		12				

The following SampIDs: 001A, 002A, 003A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.


Prepared by: Maria Venegas

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	ina Time Received:	2/2//2013	4:11:26 PW
Project Name:	#298931; FSI				LogIn	Reviewed by:		Maria Venegas
WorkOrder N°:	1302779	Matrix: Soil Ga	<u>s</u>		Carrie	r: Client Drop-In		
			Chain of Cu	ustody (C	COC) Informat	ion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received	d? Yes	✓	No 🗌			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	f collection noted by C	Client on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			<u>Sample</u>	e Receipt	t Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗹	
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample container	rs intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated	test?	Yes	•	No 🗌			
		<u>Sample</u>	<u>Preservatio</u>	n and Ho	old Time (HT)	<u>Information</u>		
All samples recei	ived within holding tim	e?	Yes	•	No 🗌			
Container/Temp l	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA vials	s have zero headspac	ce / no bubbles?	Yes		No 🗌	No VOA vials submi	tted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pF	H<2)?	Yes		No 🗆		NA 🗸	
Samples Receive	ed on Ice?		Yes		No 🗸			
* NOTE: If the "N	lo" box is checked, se	e comments belo	w. 		==:			====
	. — — — — —					. — — — — —		

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
Walnut Creek, CA 94597	Client Contact: Robert Robitaille	Date Reported: 03/07/13
Wallet Cleek, CH 74571	Client P.O.: #WC083992	Date Completed: 03/07/13

Work Order: 1302779

March 07, 2013

CASE NARRATIVE REGARDING TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Advisory of April 2012.

"When Qua	illy Counts		ntep####################################	boen.com/ E-man. manie	meeumpoemeo	
AEI Consultants	Client Pr	roject ID: #2989	Date Sampled: 02/27/13			
2500 Camino Diablo, Ste.#200				Date Received:	02/27/13	
2500 Cammo Diabio, Sec., 200	Client Co	ontact: Robert R	obitaille	Date Extracted:	03/05/13-0	3/07/13
Walnut Creek, CA 94597	Client P.	O.: #WC083992		Date Analyzed:	03/05/13-0	3/07/13
Extraction Method: ASTM D 1946-90	Ana	Light Gases* alytical Method: ASTM			Work Order:	1302779
Lab ID	1302779-001A	1302779-002A	1302779-003A			
Client ID	VP-1	VP-2	VP-3		Domontino	T :::4 £
Matrix	Soil Gas	Soil Gas	Soil Gas		Reporting DF and Pressi	=1
Initial Pressure (psia)	12.72	12.84	12.82		(Final/In	tial) = 2
Final Pressure (psia)	25.35	25.58	25.55			
DF	1	1	1		Soil Gas	W
Compound		Conc	entration	<u>'</u>	μL/L	ug/L
Carbon Dioxide	15,000	13,000	3700		50	NA
Methane	ND	ND	1.1		1.0	NA
Nitrogen	710,000	710,000	710,000		4000	NA
Oxygen	180,000	190,000	190,000		4000	NA
	Surre	ogate Recoveries	s (%)			
%SS:	N/A	N/A	N/A			
Comments	-					

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 G		Date Received: 02/27/13
2500 Camino Diablo, Ste.#200	Client Contact: Robert Robitaille	Date Extracted: 03/04/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed: 03/04/13

TPH gas + Volatile Organic Compounds in μg/m^{3*}

Analytical Method: TO15 Extraction Method: TO15 Work Order: 1302779

Client ID Matrix	Extraction Method: TO15		Analytica	l Method:	TO15	Work Order: 1302	779	
Matrix	Lab ID			1302	2779-001A	Initial Pressur	e (psia)	12.72
Matrix	Client ID		VP-1		Final Pressur	e (psia)	25.35	
Compound Concentration DF Limm Compound Concentration DF Limm Acetone ND 1.0 120 Arylonitrile ND 1.0 4.4	Matrix			5	Soil Gas			
iert-Anyl methyl ether (TAME) ND 1.0 8.5 Benzene ND 1.0 1.5 Benzyl chloride ND 1.0 1.1 17 monoform ND 1.0 1.2 Bromonform ND 1.0 2.2 Bromomethane ND 1.0 1.5 1.3-Butadiene ND 1.0 4.5 2.Butanone (MEK) ND 1.0 150 1.Butyl alcohol (TBA) ND 1.0 4.5 2.Butanone (MEK) ND 1.0 150 Chlorochtane ND 1.0 4.5 2.Butanone (MEK) ND 1.0 9.9 Chlorochtane ND 1.0 4.2 Chlorochtane ND 1.0 9.9 Chlorochtane ND 1.0 5.4 Chloroform ND 1.0 9.9 Chloromethane ND 1.0 1.7 1.2-Dibchorochane ND 1.0 1.2 1.2-Dichlorocherane ND 1.0 1.2 1.4-Dichlorochane ND 1.0	Compound	Concentration *	DF		Compound	Concentration *	DF	Reporting Limit
Benzyl chloride	Acetone	ND	1.0	120	Acrylonitrile	ND	1.0	4.4
Bromoform	tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene	ND	1.0	6.5
1.3-Butadiene ND 1.0 4.5 2-Butanone (MEK) ND 1.0 150 t-Buryl alcohol (TBA) ND 1.0 62 Carbon Disulfide ND 1.0 6.3 Carbon Tetrachloride ND 1.0 1.3 Chlorobene ND 1.0 9.4 Chlorochane ND 1.0 1.5 Chloroform ND 1.0 1.9 9.9 Chloromethane ND 1.0 4.2 Cyclohexane ND 1.0 180 1.2 1.0 1.0 1.0 1.2 1.0 1.0 1.0 1.2 1.4 1.0 1.0 1.2 1.4 1.0 1.0 1.0 1.0 1.2 1.4 1.0 1.0 1.0 1.0 1.0 <t< td=""><td>Benzyl chloride</td><td>ND</td><td>1.0</td><td>11</td><td>Bromodichloromethane</td><td>ND</td><td>1.0</td><td>14</td></t<>	Benzyl chloride	ND	1.0	11	Bromodichloromethane	ND	1.0	14
t-Butyl alcohol (TBA)	Bromoform	ND	1.0	21	Bromomethane	ND	1.0	7.9
Carbon Tetrachloride	1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)	ND	1.0	150
Chloroethane	t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3
Chloromethane ND 1.0 4.2 Cyclohexane ND 1.0 180 Dibromochloromethane ND 1.0 17 1,2-Dibromo-3-chloropropane ND 1.0 20 1,2-Dibromoethane (EDB) ND 1.0 16 1,2-Dichlorobenzene ND 1.0 12 1,3-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,2-Dichloroethane ND 1.0 8.2 1,1-Dichloroethane ND 1.0 8.2 1,2-Dichloroethane (1,2-DCA) ND 1.0 8.2 1,1-Dichloroethene ND 1.0 8.1 1,2-Dichloroethene ND 1.0 8.2 1,1-Dichloroethene ND 1.0 8.1 1,2-Dichloroptopane ND 1.0 8.2 1,1-Dickloroethene ND 1.0 8.1 1,2-Dichloroptopane ND 1.0 9.2 1,2-Dichloroethene ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4
Dibromochloromethane ND 1.0 17 1,2-Dibromo-3-chloropropane ND 1.0 20 1,2-Dibromochtane (EDB) ND 1.0 16 1,2-Dichlorobenzene ND 1.0 12 1,3-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,3-Dichloromethane ND 1.0 10 1,1-Dichlorochtane ND 1.0 12 1,2-Dichloromethane (1,2-DCA) ND 1.0 8.2 1,1-Dichlorochtane ND 1.0 8.2 1,2-Dichlorochtane (1,2-DCA) ND 1.0 8.1 trans-1,2-Dichlorochtene ND 1.0 8.1 1,2-Dichloropropane ND 1.0 9.4 cis-1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloropropane ND 1.0 9.2 1,2-Dichloro-1,1,2,2-tetrafluorochtane ND 1.0 9.2 1,2-Dichloropropane ND 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1,2-Dichloropropane ND 1.0 1.0 1,2-Dichloropropane	Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9
1,2-Dichlorobenzene ND 1.0 16 1,2-Dichlorobenzene ND 1.0 12 1,3-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 8.2 1,2-Dichlorodifluoromethane ND 1.0 8.2 1,1-Dichlorobenzene ND 1.0 8.2 1,2-Dichlorobenzene ND 1.0 8.1 1,1-Dichlorobenzene ND 1.0 8.1 1,2-Dichlorobenzene ND 1.0 8.1 1,2-Dichloropenae ND 1.0 9.4 4 4 5,2-Dichloropenae ND 1.0 9.4 4 5,2-Dichloropenae ND 1.0 1.	Chloromethane	ND	1.0	4.2	Cyclohexane	ND	1.0	180
1,3-Dichlorobenzene	Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane	ND	1.0	20
Dichlorodifluoromethane	1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	ND	1.0	12
1,2-Dichloroethane (1,2-DCA) ND 1.0 8.2 1,1-Dichloroethene ND 1.0 8.1 cis-1,2-Dichloropthene ND 1.0 8.1 trans-1,2-Dichloropthene ND 1.0 8.1 1,2-Dichloropropane ND 1.0 9.4 cis-1,3-Dichloropropene ND 1.0 9.2 1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,2-Dichloropropane ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,2-Dichloropropane ND 1.0 9.2 1,2-Dichloropropene ND 1.0 14 1,2-Dichloropropane ND 1.0 9.2 1,2-Dichloropropene ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene	ND	1.0	12
cis-1,2-Dichloroethene ND 1.0 8.1 trans-1,2-Dichloroethene ND 1.0 8.1 1,2-Dichloropropane ND 1.0 9.4 cis-1,3-Dichloropropene ND 1.0 9.2 trans-1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 1.0 1.0 Diisopropyl ether (DIPE) ND 1.0 8.5 1,4-Dioxane ND ND 1.0 7.3 Ethanol ND 1.0 8.5 1,4-Dioxane ND 1.0 19 Ethyl tetr-butyl ether (ETBE) ND 1.0 8.5 Ethyl acetate ND 1.0 19 Ethyl tetr-butyl ether (ETBE) ND 1.0 10 Freon 113 ND 1.0 10 Heptane ND 1.0 10 Freon 113 ND 1.0 16 Heptane ND 1.0 180 2-Hexanone ND 1.0 12 Heytane ND 1.0 180	Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	ND	1.0	8.2
1,2-Dichloropropane	1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene	ND	1.0	8.1
trans-1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 1.0 14 Diisopropyl ether (DIPE) ND 1.0 8.5 1,4-Dioxane ND 1.0 7.3 Ethanol ND 1.0 96 Ethyl acetate ND 1.0 19 Ethyl tert-butyl ether (ETBE) ND 1.0 8.5 Ethylbenzene ND 1.0 1.0 4-Ethyltoluene ND 1.0 10 Freon 113 ND 1.0 1.0 Heytane ND 1.0 210 Hexachlorobutadiene ND 1.0 22 Hexane ND 1.0 180 2-Hexanone ND 1.0 210 4-Methyl-2-pentanone (MIBK) ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 8.8 Styrene ND 1.0 1.1 Propene ND 1.0 8.8 Styrene ND	cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene	ND	1.0	8.1
Disopropyl ether (DIPE)	1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene	ND	1.0	9.2
Ethanol	trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.0	14
Ethyl tert-butyl ether (ETBE)	Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane	ND	1.0	7.3
4-Ethyltoluene ND 1.0 10 Freon 113 ND 1.0 16 Heptane ND 1.0 210 Hexachlorobutadiene ND 1.0 22 Hexane ND 1.0 180 2-Hexanone ND 1.0 210 4-Methyl-2-pentanone (MIBK) ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 8.8 Styrene ND 1.0 1.1 Propere ND 1.0 1.4 11,2,2-Tetrachlorothane ND 1.0 1.4 Tetrachloroethane ND 1.0 1.5 1,1,1-Tr	Ethanol	ND	1.0	96	Ethyl acetate	ND	1.0	19
Heptane	Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	ND	1.0	8.8
ND	4-Ethyltoluene	ND	1.0	10	Freon 113	ND	1.0	16
4-Methyl-2-pentanone (MIBK) ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 7.1 Naphthalene ND 1.0 11 Propene ND 1.0 88 Styrene ND 1.0 8.6 1,1,1,2-Tetrachloroethane ND 1.0 14 1,1,2,2-Tetrachloroethane ND 1.0 14 Tetrachloroethene 30 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Tot	Heptane	ND	1.0	210	Hexachlorobutadiene	ND	1.0	22
Methylene chloride ND 1.0 7.1 Naphthalene ND 1.0 11 Propene ND 1.0 88 Styrene ND 1.0 8.6 1,1,1,2-Tetrachloroethane ND 1.0 14 1,1,2,2-Tetrachloroethane ND 1.0 14 Tetrachloroethene 30 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2:	Hexane	ND	1.0	180	2-Hexanone	ND	1.0	210
Propene ND 1.0 88 Styrene ND 1.0 8.6 1,1,1,2-Tetrachloroethane ND 1.0 14 1,1,2,2-Tetrachloroethane ND 1.0 14 Tetrachloroethene 30 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 Vinyl Chloride ND 1.0 10 Vinyl Acetate ND 1.0 180 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3
1,1,1,2-Tetrachloroethane ND 1.0 14 1,1,2,2-Tetrachloroethane ND 1.0 14 Tetrachloroethene 30 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 Vinyl Chloride ND 1.0 10 Vinyl Acetate ND 1.0 180 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	Methylene chloride	ND	1.0	7.1	Naphthalene	ND	1.0	11
Tetrachloroethene 30 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	Propene	ND	1.0	88	Styrene	ND	1.0	8.6
Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroethane	ND	1.0	14
1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	Tetrachloroethene	30	1.0	14	Tetrahydrofuran	ND	1.0	6.0
1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	Toluene	ND	1.0	7.7	TPH(g)	ND	1.0	1800
Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	1,2,4-Trichlorobenzene	ND	1.0	15	1,1,1-Trichloroethane	ND	1.0	11
1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	1,1,2-Trichloroethane	ND	1.0	11	Trichloroethene	ND	1.0	11
Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 130 %SS2: 120	Trichlorofluoromethane	ND	1.0	11	1,2,4-Trimethylbenzene	ND	1.0	10
Surrogate Recoveries (%) %SS1: 130 %SS2: 120	1,3,5-Trimethylbenzene	ND	1.0	10	Vinyl Acetate	ND	1.0	180
%SS1: 130 %SS2: 120	Vinyl Chloride	ND	1.0	5.2	Xylenes, Total	ND	1.0	27
			Sur	rogate R	ecoveries (%)			
%SS3: 111	%SS1:	13	30		%SS2:	12	20	
	%SS3:	11	1				·	

*vapor samples are reported in μg/m³.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 G		Date Received: 02/27/13
2500 Camino Diablo, Ste.#200	Client Contact: Robert Robitaille	Date Extracted: 03/04/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed: 03/04/13

TPH gas + Volatile Organic Compounds in μg/m^{3*}

Analytical Method: TO15 Extraction Method: TO15 Work Order: 1302779

Extraction Method: TO15		Analytical	Method:	TO15	Work Order: 1302	779	
Lab ID			1302	2779-002A	Initial Pressur	e (psia)	12.84
Client ID		VP-2		Final Pressur	e (psia)	25.58	
Matrix			S	Soil Gas		•	
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	120	Acrylonitrile	ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene	ND	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethane	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane	ND	1.0	7.9
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)	ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane	ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene	ND	1.0	12
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene	ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane	ND	1.0	7.3
Ethanol	ND	1.0	96	Ethyl acetate	ND	1.0	19
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	ND	1.0	8.8
4-Ethyltoluene	ND	1.0	10	Freon 113	ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene	ND	1.0	22
Hexane	ND	1.0	180	2-Hexanone	ND	1.0	210
4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene	ND	1.0	11
Propene	ND	1.0	88	Styrene	ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroethane	ND	1.0	14
Tetrachloroethene	28	1.0	14	Tetrahydrofuran	ND	1.0	6.0
Toluene	ND	1.0	7.7	TPH(g)	ND	1.0	1800
1,2,4-Trichlorobenzene	ND	1.0	15	1,1,1-Trichloroethane	ND	1.0	11
1,1,2-Trichloroethane	ND	1.0	11	Trichloroethene	ND	1.0	11
Trichlorofluoromethane	ND	1.0	11	1,2,4-Trimethylbenzene	ND	1.0	10
1,3,5-Trimethylbenzene	ND	1.0	10	Vinyl Acetate	ND	1.0	180
Vinyl Chloride	ND	1.0	5.2	Xylenes, Total	ND	1.0	27
		Sur	rogate R	ecoveries (%)			
%SS1:	13	80		%SS2:	12	20	
%SS3:	11	11				<u></u>	

*vapor samples are reported in μg/m³.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

AEI Consultants Client Project ID: #298931; FSI Date Sampled: 02/27/13 Date Received: 02/27/13 2500 Camino Diablo, Ste.#200 Client Contact: Robert Robitaille Date Extracted: 03/04/13 Walnut Creek, CA 94597 Client P.O.: #WC083992 Date Analyzed: 03/04/13

TPH gas + Volatile Organic Compounds in µg/m3*

Analytical Method: TO15 Extraction Method: TO15 Work Order: 1302779

Client ID	Extraction Method: TO15		Analytica	l Method:	TO15	Work Order: 1302	779	
Matrix	Lab ID			130	2779-003A	Initial Pressur	e (psia)	12.82
Matrix	Client ID		VP-3		Final Pressur	e (psia)	25.55	
Compound Concentration	Matrix			S	Soil Gas			
tert-Anyl methyl ether (TAME) ND 1.0 8.5 Benzene ND 1.0 4.5 Benzyl chloride ND 1.0 11 Bromoderhane ND 1.0 1.7 Benzyl chloride ND 1.0 2.2 Bromomethane ND 1.0 1.5 1.3-Butadiene ND 1.0 4.5 2-Butanone (MEK) ND 1.0 150 Baryl alcohal (TBA) ND 1.0 4.5 2-Butanone (MEK) ND 1.0 150 Carbon Tetrachloride ND 1.0 4.5 2-Butanone (MEK) ND 1.0 1.6 Chlorocethane ND 1.0 1.2 Chloroschane ND 1.0 9.9 Chlorocethane ND 1.0 5.4 Chloroform ND 1.0 1.9 Chlorocethane ND 1.0 1.2 Cyclobexane ND 1.0 1.0 Li-2-Dichlorocethane ND 1.0 1.2 1.2-Dichlorocethane ND	Compound	Concentration *	DF		Compound	Concentration *	DF	Reporting Limit
Benzyl chloride	Acetone	ND	1.0	120	Acrylonitrile	ND	1.0	4.4
Bromoform	tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene	ND	1.0	6.5
1,3-Butadiene ND 1,0 4.5 2-Butanone (MEK) ND 1,0 150 L-Buryl alcohol (TBA) ND 1,0 62 Carbon Disulfide ND 1,0 6.3 Carbon Tetrachloride ND 1,0 5.4 Chloroberne ND 1,0 9.9 Chlorochtane ND 1,0 5.4 Chloroform ND 1,0 19.9 Chloromethane ND 1,0 4.2 Cyclohexane ND 1,0 180 Dibromochloromethane ND 1,0 16 1,2-Dichlorochazne ND 1,0 12 1,3-Dichlorochtane (EDB) ND 1,0 16 1,2-Dichlorochazne ND 1,0 12 1,3-Dichlorochtane (EDB) ND 1,0 1,1 1,1-Dichlorochazne ND 1,0 1,2 1,3-Dichlorochtane (EDB) ND 1,0 1,1 1,1-Dichlorochazne ND 1,0 1,0 1,2 1,0 1,0 1,0 1,0 1,0 1	Benzyl chloride	ND	1.0	11	Bromodichloromethane	ND	1.0	14
t-Butyl alcohol (TBA) ND 1.0 62 Carbon Disulfide ND 1.0 6.3 Carbon Tetrachloride ND 1.0 13 Chlorobenzene ND 1.0 9.9 Chloromethane ND 1.0 4.2 Cyclohexane ND 1.0 1.9 Chloromethane ND 1.0 4.2 Cyclohexane ND 1.0 180 Dibromochloromethane ND 1.0 17 1.2-Dibromo-3-chloropropane ND 1.0 12 1.2-Dibromochloromethane (EDB) ND 1.0 16 1.2-Dichloroperopane ND 1.0 12 1.3-Dichlorodrifluoromethane ND 1.0 12 1.4-Dichlorochtane ND 1.0 8.2 1.2-Dichlorodribane (1,2-DCA) ND 1.0 8.2 1.1-Dichlorochtane ND 1.0 8.2 1.1-Dichlorochtane ND 1.0 8.2 1.2-Dichlorochtane (1,2-DCA) ND 1.0 8.2 1.1-Dichlorochtane ND 1.0 8.2 <td>Bromoform</td> <td>ND</td> <td>1.0</td> <td>21</td> <td>Bromomethane</td> <td>ND</td> <td>1.0</td> <td>7.9</td>	Bromoform	ND	1.0	21	Bromomethane	ND	1.0	7.9
Carbon Tetrachloride	1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)	ND	1.0	150
Chloroethane	t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3
Chloromethane	Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4
Dibromochloromethane ND 1.0 17 1,2-Dibromo-3-chloropropane ND 1.0 20	Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9
1,2-Dichlorobenzene ND 1.0 16 1,2-Dichlorobenzene ND 1.0 12 1,3-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 8.2 1,2-Dichlorodifluoromethane ND 1.0 8.2 1,1-Dichlorobenzene ND 1.0 8.2 1,2-Dichlorochtane (1,2-DCA) ND 1.0 8.1 trans-1,2-Dichlorochtene ND 1.0 8.1 trans-1,2-Dichlorochtene ND 1.0 8.1 trans-1,2-Dichlorochtene ND 1.0 8.1 trans-1,2-Dichlorochtene ND 1.0 8.1 trans-1,2-Dichlorochtene ND 1.0 9.2 trans-1,3-Dichloropropane ND 1.0 9.4 cis-1,3-Dichlorochtene ND 1.0 9.2 trans-1,3-Dichlorochtene ND 1.0	Chloromethane	ND	1.0	4.2	Cyclohexane	ND	1.0	180
1,3-Dichlorobenzene ND 1.0 12 1,4-Dichlorobenzene ND 1.0 12 Dichlorodifluoromethane ND 1.0 10 1,1-Dichloroethane ND 1.0 8.2 1,2-Dichloroethane (1,2-DCA) ND 1.0 8.2 1,1-Dichloroethane ND 1.0 8.1 1,2-Dichloroethane ND 1.0 8.1 1,2-Dichloroethane ND 1.0 8.1 1,2-Dichloroptopane ND 1.0 9.4 1,2-Dichloroptopane ND 1.0 9.2 1,2-Dichloroptopane ND 1.0 1.0 1,4-Dioxane ND 1.0 1.0 1,4-Dioxane ND 1.0 1.0 1,4-Dioxane ND 1.0 1.0 1,5-Dichloroptopane ND 1.0 1.0 1,4-Dioxane ND 1.0 1.0 1,5-Dichloroptopane ND 1.0 1.0 1,5-Dichloroptopane ND 1.0 1,0 1,0 1.0 1,0 1,0 1.0 1,0 1.0 1.0 1,0 1.0 1.0 1,0 1.0 1.0 1,0 1.0	Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane	ND	1.0	20
Dichlorodifluoromethane	1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	ND	1.0	12
1,2-Dichloroethane (1,2-DCA) ND 1.0 8.2 1,1-Dichloroethene ND 1.0 8.1 cis-1,2-Dichloropthene ND 1.0 8.1 trans-1,2-Dichloropthene ND 1.0 8.1 1,2-Dichloropropane ND 1.0 9.4 cis-1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 9.2 1,2-Dichloropropene ND 1.0 14 1,0 1.0 8.5 1,4-Dioxane ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene	ND	1.0	12
cis-1,2-Dichloroethene ND 1.0 8.1 trans-1,2-Dichloroethene ND 1.0 9.4 1,2-Dichloropropane ND 1.0 9.4 cis-1,3-Dichloropropene ND 1.0 9.2 trans-1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 1.0 14 Diisopropyl ether (DIPE) ND 1.0 8.5 1,4-Dioxnee ND ND 1.0 19 Ethanol ND 1.0 8.5 1,4-Dioxnee ND 1.0 19 Ethyl tetr-butyl ether (ETBE) ND 1.0 8.5 Ethylacetate ND 1.0 19 Ethyl tetr-butyl ether (ETBE) ND 1.0 10 Freon 113 ND 1.0 16 Heptane ND 1.0 10 Freon 113 ND 1.0 16 Heptane ND 1.0 180 2-Hexanone ND 1.0 12 Hevathely-2-pentanone (MIBK) ND 1.0 <	Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	ND	1.0	8.2
1,2-Dichloropropane	1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene	ND	1.0	8.1
trans-1,3-Dichloropropene ND 1.0 9.2 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 1.0 14 Diisopropyl ether (DIPE) ND 1.0 8.5 1,4-Dioxane ND 1.0 7.3 Ethanol ND 1.0 96 Ethyl acetate ND 1.0 19 Ethyl tert-butyl ether (ETBE) ND 1.0 8.5 Ethylbenzene ND 1.0 8.8 4-Ethyltoluene ND 1.0 10 Freon 113 ND 1.0 1.0 16 Heytane ND 1.0 210 Hexachlorobutadiene ND 1.0 22 Hexane ND 1.0 180 2-Hexanone ND 1.0 210 4-Methyl-2-pentanone (MIBK) ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 8.8 Styrene ND 1.0 1.1 Propene ND 1.0 8.8 Styrene	cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene	ND	1.0	8.1
Diisopropyl ether (DIPE)	1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene	ND	1.0	9.2
Ethanol	trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.0	14
Ethyl tert-butyl ether (ETBE)	Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane	ND	1.0	7.3
4-Ethyltoluene	Ethanol	ND	1.0	96	Ethyl acetate	ND	1.0	19
Heptane	Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	ND	1.0	8.8
ND	4-Ethyltoluene	ND	1.0	10	Freon 113	ND	1.0	16
4-Methyl-2-pentanone (MIBK) ND 1.0 8.3 Methyl-t-butyl ether (MTBE) ND 1.0 7.3 Methylene chloride ND 1.0 7.1 Naphthalene ND 1.0 11 Propene ND 1.0 88 Styrene ND 1.0 8.6 1,1,1,2-Tetrachloroethane ND 1.0 14 1,1,2,2-Tetrachloroethane ND 1.0 14 Tetrachloroethene ND 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Tot	Heptane	ND	1.0	210	Hexachlorobutadiene	ND	1.0	22
Methylene chloride ND 1.0 7.1 Naphthalene ND 1.0 11 Propene ND 1.0 88 Styrene ND 1.0 8.6 1,1,1,2-Tetrachloroethane ND 1.0 14 1,1,2,2-Tetrachloroethane ND 1.0 14 Tetrachloroethene ND 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2:	Hexane	ND	1.0	180	2-Hexanone	ND	1.0	210
Propene ND 1.0 88 Styrene ND 1.0 8.6 1,1,1,2-Tetrachloroethane ND 1.0 14 1,1,2,2-Tetrachloroethane ND 1.0 14 Tetrachloroethene ND 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3
1,1,1,2-Tetrachloroethane	Methylene chloride	ND	1.0	7.1	Naphthalene	ND	1.0	11
Tetrachloroethene ND 1.0 14 Tetrahydrofuran ND 1.0 6.0 Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	Propene	ND	1.0	88	Styrene	ND	1.0	8.6
Toluene ND 1.0 7.7 TPH(g) ND 1.0 1800 1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroethane	ND	1.0	14
1,2,4-Trichlorobenzene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	Tetrachloroethene	ND	1.0	14	Tetrahydrofuran	ND	1.0	6.0
1,1,2-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	Toluene	ND	1.0	7.7	TPH(g)	ND	1.0	1800
Trichlorofluoromethane ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	1,2,4-Trichlorobenzene	ND	1.0	15	1,1,1-Trichloroethane	ND	1.0	11
1,3,5-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 180 Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	1,1,2-Trichloroethane	ND	1.0	11	Trichloroethene	ND	1.0	11
Vinyl Chloride ND 1.0 5.2 Xylenes, Total ND 1.0 27 Surrogate Recoveries (%) %SS1: 129 %SS2: 120	Trichlorofluoromethane	ND	1.0	11	1,2,4-Trimethylbenzene	ND	1.0	10
Surrogate Recoveries (%) %SS1: 129 %SS2: 120	1,3,5-Trimethylbenzene	ND	1.0	10	Vinyl Acetate	ND	1.0	180
%SS1: 129 %SS2: 120	Vinyl Chloride	ND	1.0	5.2	Xylenes, Total	ND	1.0	27
			Sur	rogate R	ecoveries (%)			
%SS3: 111	%SS1:	12	.9		%SS2:	12	20	
	%SS3:	11	1				·	

*vapor samples are reported in µg/m3.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

AEI Consultants	Client Project ID: #298931; FSI	Date Sampled: 02/27/13
2500 Camino Diablo, Ste.#200		Date Received: 02/27/13
	Client Contact: Robert Robitaille	Date Extracted: 03/04/13
Walnut Creek, CA 94597	Client P.O.: #WC083992	Date Analyzed: 03/04/13

Leak Check Compound*

Extraction method: TO15 Analytical methods: TO15 Work Order: 1302779

Extractio	non method: 1015 Analytical methods: 1015				015 Work Order: 1302//9				
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure	Isopropyl Alcohol	DF	% SS	Comments	
001A	VP-1	Soil Gas	12.72	25.35	ND	1	N/A		
002A	VP-2	Soil Gas	12.84	25.58	ND	1	N/A		
003A	VP-3	Soil Gas	12.82	25.55	ND	1	N/A		
	Reporting Limit for DF =1; ND means not detected at or	W	psia	psia	NA			NA	
	above the reporting limit	SoilGas	psia	psia	50		Ļ	ıg/m³	

Reporting Limit for DF =1; ND means not detected at or	W	psia	psia	NA	NA
above the reporting limit	SoilGas	psia	psia	50	μg/m³

^{*} leak check compound is reported in µg/m³.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

The (liquid) Leak Check reference is:

DTSC, Advisory-Active Soil Gas Investigations, April 2012, page 17, section 4.2.2.1:

"The laboratory reports should quantify and annotate all detections of the leak check compound at the reporting limit of the target analytes."

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR ASTM D 1946-90

W.O. Sample Matrix: SoilGas QC Matrix: SoilGas BatchID: 75191 WorkOrder: 1302779

EPA Method: ASTM D 1946-90 Extraction: ASTM D 1946-90 Spiked Sample ID:									
Analyte	Sample	Sample Spiked MS M				LCS	Acceptance Criteria (%)		
,	μL/L	μL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Carbon Dioxide	N/A	50	N/A	N/A	N/A	87.4	N/A	N/A	70 - 130
Methane	N/A	50	N/A	N/A	N/A	72.2	N/A	N/A	70 - 130
Nitrogen	N/A	26000	N/A	N/A	N/A	89.4	N/A	N/A	70 - 130
Oxygen	N/A	7000	N/A	N/A	N/A	88.3	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 75191 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302779-001A	02/27/13 11:30 AM	03/05/13	03/05/13 2:01 PM	1302779-001A	02/27/13 11:30 AM	03/05/13	03/05/13 2:01 PM
1302779-001A	02/27/13 11:30 AM	03/06/13	03/06/13 10:22 AM	1302779-002A	02/27/13 12:00 PM	03/05/13	03/05/13 2:22 PM
1302779-002A	02/27/13 12:00 PM	03/05/13	03/05/13 2:22 PM	1302779-002A	02/27/13 12:00 PM	03/06/13	03/06/13 10:47 AM
1302779-003A	02/27/13 12:30 PM	03/05/13	03/05/13 2:46 PM	1302779-003A	02/27/13 12:30 PM	03/06/13	03/06/13 11:11 AM
1302779-003A	02/27/13 12:30 PM	03/07/13	03/07/13 9:32 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

QC SUMMARY REPORT FOR TO15

QC Matrix: Soilgas BatchID: 75220 WorkOrder: 1302779 W.O. Sample Matrix: Soilgas

EPA Method: TO15	A Method: TO15 Extraction: TO15							Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS MSD MS-MSD LCS				Acceptance Criteria (%)				
7 maly co	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
Acrylonitrile	N/A	25	N/A	N/A	N/A	77	N/A	N/A	60 - 140		
tert-Amyl methyl ether (TAME)	N/A	25	N/A	N/A	N/A	102	N/A	N/A	60 - 140		
Benzene	N/A	25	N/A	N/A	N/A	105	N/A	N/A	60 - 140		
Benzyl chloride	N/A	25	N/A	N/A	N/A	86.7	N/A	N/A	60 - 140		
Bromodichloromethane	N/A	25	N/A	N/A	N/A	115	N/A	N/A	60 - 140		
Bromoform	N/A	25	N/A	N/A	N/A	126	N/A	N/A	60 - 140		
t-Butyl alcohol (TBA)	N/A	25	N/A	N/A	N/A	127	N/A	N/A	60 - 140		
Carbon Disulfide	N/A	25	N/A	N/A	N/A	111	N/A	N/A	60 - 140		
Carbon Tetrachloride	N/A	25	N/A	N/A	N/A	114	N/A	N/A	60 - 140		
Chlorobenzene	N/A	25	N/A	N/A	N/A	98.8	N/A	N/A	60 - 140		
Chloroethane	N/A	25	N/A	N/A	N/A	125	N/A	N/A	60 - 140		
Chloroform	N/A	25	N/A	N/A	N/A	110	N/A	N/A	60 - 140		
Chloromethane	N/A	25	N/A	N/A	N/A	136	N/A	N/A	60 - 140		
Dibromochloromethane	N/A	25	N/A	N/A	N/A	118	N/A	N/A	60 - 140		
1,2-Dibromo-3-chloropropane	N/A	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140		
1,2-Dibromoethane (EDB)	N/A	25	N/A	N/A	N/A	103	N/A	N/A	60 - 140		
1,3-Dichlorobenzene	N/A	25	N/A	N/A	N/A	92	N/A	N/A	60 - 140		
1,4-Dichlorobenzene	N/A	25	N/A	N/A	N/A	77.4	N/A	N/A	60 - 140		
Dichlorodifluoromethane	N/A	25	N/A	N/A	N/A	119	N/A	N/A	60 - 140		
1,1-Dichloroethane	N/A	25	N/A	N/A	N/A	113	N/A	N/A	60 - 140		
1,2-Dichloroethane (1,2-DCA)	N/A	25	N/A	N/A	N/A	111	N/A	N/A	60 - 140		
cis-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	108	N/A	N/A	60 - 140		
trans-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	107	N/A	N/A	60 - 140		
1,2-Dichloropropane	N/A	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140		
cis-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	104	N/A	N/A	60 - 140		
trans-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	106	N/A	N/A	60 - 140		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	N/A	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140		
Diisopropyl ether (DIPE)	N/A	25	N/A	N/A	N/A	115	N/A	N/A	60 - 140		
1,4-Dioxane	N/A	25	N/A	N/A	N/A	101	N/A	N/A	60 - 140		
Ethyl acetate	N/A	25	N/A	N/A	N/A	115	N/A	N/A	60 - 140		
Ethyl tert-butyl ether (ETBE)	N/A	25	N/A	N/A	N/A	106	N/A	N/A	60 - 140		

LCS = Laboratory Control Sample

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

A__QA/QC Officer

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas QC Matrix: Soilgas BatchID: 75220 WorkOrder: 1302779

EPA Method: TO15 Extraction: TO15 S								piked Sample ID: N/A		
Analyte	Sample Spiked MS MSD				MS-MSD	LCS	Acceptance Criteria (%)			
, many c	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Ethylbenzene	N/A	25	N/A	N/A	N/A	92.5	N/A	N/A	60 - 140	
Freon 113	N/A	25	N/A	N/A	N/A	80.8	N/A	N/A	60 - 140	
Hexachlorobutadiene	N/A	25	N/A	N/A	N/A	82.1	N/A	N/A	60 - 140	
4-Methyl-2-pentanone (MIBK)	N/A	25	N/A	N/A	N/A	114	N/A	N/A	60 - 140	
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	110	N/A	N/A	60 - 140	
Methylene chloride	N/A	25	N/A	N/A	N/A	113	N/A	N/A	60 - 140	
Naphthalene	N/A	25	N/A	N/A	N/A	96.3	N/A	N/A	60 - 140	
Styrene	N/A	25	N/A	N/A	N/A	95.7	N/A	N/A	60 - 140	
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	101	N/A	N/A	60 - 140	
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	100	N/A	N/A	60 - 140	
Tetrachloroethene	N/A	25	N/A	N/A	N/A	94.4	N/A	N/A	60 - 140	
Tetrahydrofuran	N/A	25	N/A	N/A	N/A	98	N/A	N/A	60 - 140	
Toluene	N/A	25	N/A	N/A	N/A	102	N/A	N/A	60 - 140	
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	84.5	N/A	N/A	60 - 140	
1,1,1-Trichloroethane	N/A	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140	
1,1,2-Trichloroethane	N/A	25	N/A	N/A	N/A	104	N/A	N/A	60 - 140	
Trichloroethene	N/A	25	N/A	N/A	N/A	104	N/A	N/A	60 - 140	
1,2,4-Trimethylbenzene	N/A	25	N/A	N/A	N/A	95.6	N/A	N/A	60 - 140	
1,3,5-Trimethylbenzene	N/A	25	N/A	N/A	N/A	97.8	N/A	N/A	60 - 140	
Vinyl Chloride	N/A	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140	
%SS1:	N/A	500	N/A	N/A	N/A	116	N/A	N/A	60 - 140	
% SS2:	N/A	500	N/A	N/A	N/A	121	N/A	N/A	60 - 140	
%SS3:	N/A	500	N/A	N/A	N/A	112	N/A	N/A	60 - 140	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

LCS = Laboratory Control Sample

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

A QA/QC Officer

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas QC Matrix: Soilgas BatchID: 75220 WorkOrder: 1302779

EPA Method: TO15 Extraction: TO15							Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)			
	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS			

BATCH 75220 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1302779-001A	02/27/13 11:30 AM	03/04/13	03/04/13 3:19 PM	1302779-002A	02/27/13 12:00 PM	03/04/13	03/04/13 4:00 PM
1302779-003A	02/27/13 12:30 PM	03/04/13	03/04/13 4:41 PM				

LCS = Laboratory Control Sample

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

A QA/QC Officer