

GOOD CHEVROLET

DATE | SCALE | CPAWN 3" | deg |

LOCATION MAP | Figure 1

Geo Plexus, Inc.

Good Chevrolet 1630 Park Street Alameda, CA 94501

Site /Storage Map Confidential

Map Legend

Fire Extinguisher

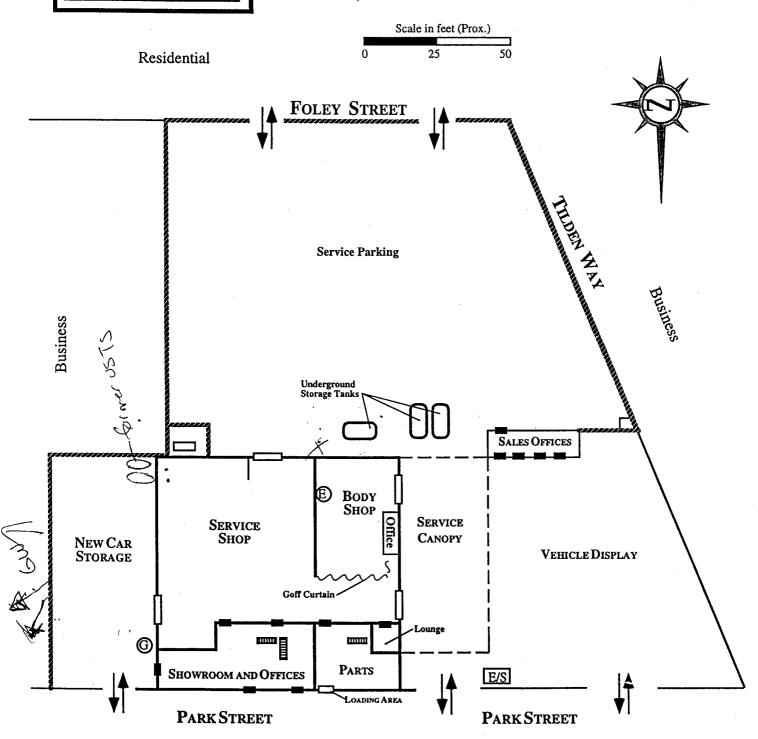
- Stairway

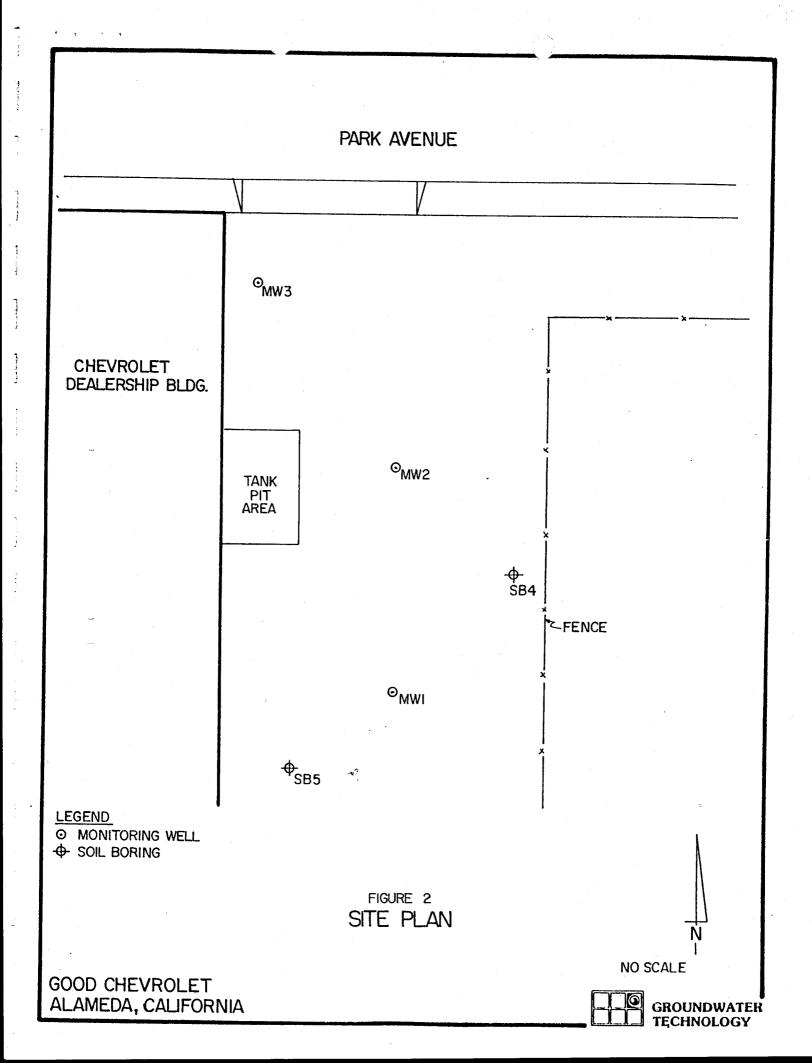
+ - First Aid Kit

Doorway

- Rollup Ďoor

- Vehicle Entrance


- Gas Shutoff


- Electrical Shutoff

- Fence

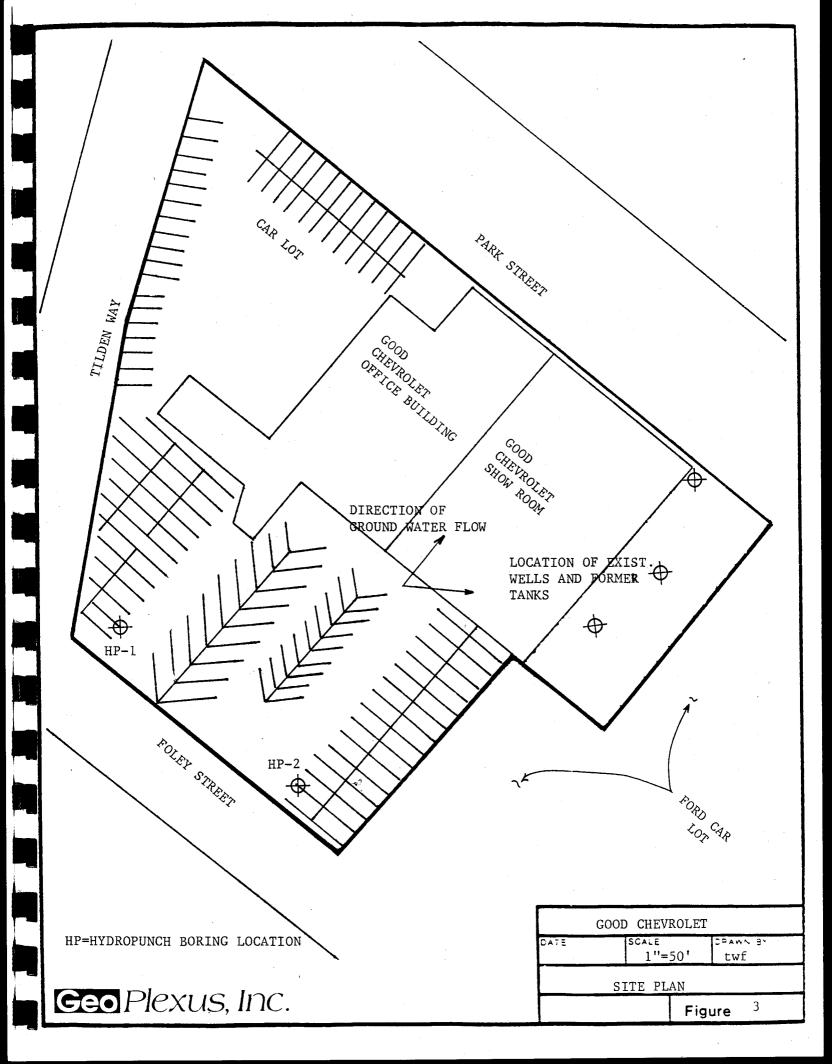
- Evac. Assembly Pt.

Revised: November, 1996

Good Chevrolet April 29, 1987

for PCB analysis. The results of the analyses are summarized in Table 1 below and the laboratory reports are presented in Appendix II.

TABLE I SOIL ANALYSIS

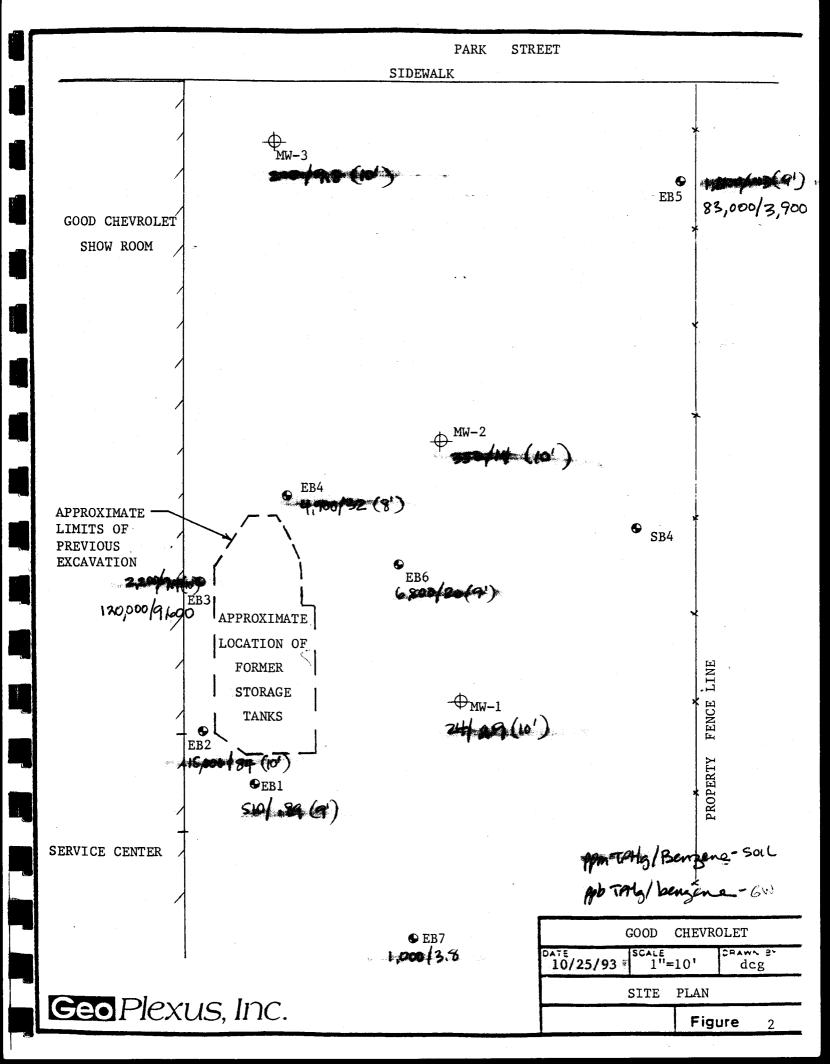

(ppm)

Sample I.D.	Benzene	Toluene	Xylene	Total Hydrocarbons	Lead	РСВ
MW - 1	2.9	3.6	1.8	24	1.3	ND
MW - 1	ND	ND	ND	ND	1.3	ND
MW - 2	ND	ND	ND	ND	.92	ND
MW - 2 10'	14	22	23	350	1.1	ND
MW - 3	9.8	16	16	200	1.1	ND
MW - 3	ND	ND	ND	ND	.74	o
SB - 5	ND	.22	ND	6.5	47	ND

All analyses performed by Sequoia Laboratories, Redwood City, California. For method detection limits, See Appendix II.

^{* -} Analysis not performed

ND - Not Detected


GEO Plex	ŕ	Client Pr	oject ID: #0	C93013; Go	od Chev-	Date Sample	l: 04/23/93	
1900 Wyatt	Drive, #1	10101]	Date Receive	d: 04/26/93	
Santa Clara	a, CA 95054	Client Co	ntact: David	Glick]	Date Extracte	:d:	
		Client P.	O: 93-3024			Date Analyze	d: 05/03/93	
EPA methods	Lo 5030, modified 8015	_	oint (C6-C1: 02; California R)30)	
Lab ID	Client ID	Matrix	TPH(G)+	Benzene	Toluene	Ethyl Ben- zene	Xylenes	% Rec. Surrogate
30325	HP1-WS1A,B	w	ND	ND	ND	ND	ND	105
30326	HP2-WS1A,B	W	ND	ND	ND	ND	ND	106
	·							
								
<u> </u>								
	27			:				
Detaction	n Limit unless	w	50 n=/T	0.5	0.5	0,5	0.5	
otherwis	se stated; ND		50 ug/L					-
means I	Not Detected	S	1.0 mg/kg	0.005	0.005	0.005	0.005	

Edward Hamilton, Lab Director

^{*}water samples are reported in ug/L and soils in mg/kg

[#]cluttered chromatogram; sample peak co-elutes with surrogate peak

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) predominately unmodified or weakly modified gasoline; b) heavier gasoline range compounds predominate (aged gasoline?); c) lighter gasoline range compounds predominate (the most mobile gasoline compounds); d) heavy and light gasoline range compounds predominate (aged gasoline together with introduced light compounds?); e) gasoline range compounds predominate; no recognizable pattern; f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds predominate.

No gasoline vapors were detected within the first 8 feet of the borings advanced across the project area; however, moderate to strong gasoline vapors were encountered in the soil borings at depths ranging from 8.5 - 12 feet below the ground surface and appeared to be confined to a medium- to coarse-grained sand lens. The analytical test data indicates that low to moderate concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds exist in the soil samples obtained from the borings as summarized on Table 2 below:

TABLE 2
SUMMARY OF SOIL BORING ANALYTICAL TEST DATA

<u>Sample</u>	Total Peta Hydroca		enzene T		Ethyl- <u>Senzene</u> Σ	Total <u>Kylenes</u>
EB1-S2, 8.5- EB1-S3, 11- EB2-S2, 10- EB3-S2, 10- EB3-S3, 12 EB4-S2, 8-8 EB4-S3, 10 EB5-S2, 9-9 EB5-S3, 11 EB6-S2, 8.5- EB7-S2, 6.5-	11.5' 2, 10.5' 1; 5-12' 20 10.5' 2, 5-13' 6; 5' 4, 5-11' 7, 5' 1, 5-12' 14	10 ,300 ,5,000 00 ,200 10 ,900 ,600 ,800 4 ,800	0.89 22 84 4.3 9.4 1.2 32 60 N.D. 0.021 20 N.D.	10 190 710 15 71 3.2 230 390 22 1.5 230 N.D.	5.8 57 260 3.9 42 4.5 84 130 27 0.49 100 N.D.	41 280 1400 20 200 2.9 440 630 140 2.5 590 N.D.
EB7-S3, 8.5	9' 1,	,000	3.8	45	21	110

Notes: Concentrations reported as Parts Per Million (mg/kg). N.D. indicates that concentrations below detection limit.

The highest concentrations of gasoline were obtained at a depth of 10-10.5 feet in Boring EB-2 located between the former tank and the former dispenser pump (see Figure 4). The remaining samples indicate that the soil contamination extends in a radial pattern (cross-and down-gradient) from the former tank area with concentrations of 1,000 parts per million in the soil in Boring EB-5 (located adjacent to the down-gradient property boundary). The large extent of the contamination appears to be a direct result of dispersion of the gasoline products with fluctuations in ground water levels of the project area. The analytical test data suggests that the soil contamination extends off-site to the adjacent property (Winner Ford) and beneath Park Street.

The "grab" water samples collected from Borings EB-3 and EB-5 both contained high concentrations of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (Benzene, Toluene, Ethyl Benzene, and Xylene). Table 3 summarizes the results of the analytical test data for the water samples along with the results from the three on-site monitoring wells:

TABLE 3

SUMMARY OF GROUND WATER SAMPLE ANALYTICAL TEST DATA

Sample	Total Petroleum <u>Hydrocarbons</u>	Benzene	<u>Toluene</u>	Ethyl- <u>Benzene</u>	Total <u>Xylenes</u>
Soil Borings EB3-WS1 EB5-WS1	120,000 83,000	9,600 3,900	20,000 15,000	3,400 3,100	14,000 13,000
Monitoring 'MW-1 MW-2 MW-3	Wells 3,700 17,000 11,000	1,400 3,900 3,500	43 870 580	94 500 430	36 940 370

Note: Concentrations in Parts per Billion (ug/l).

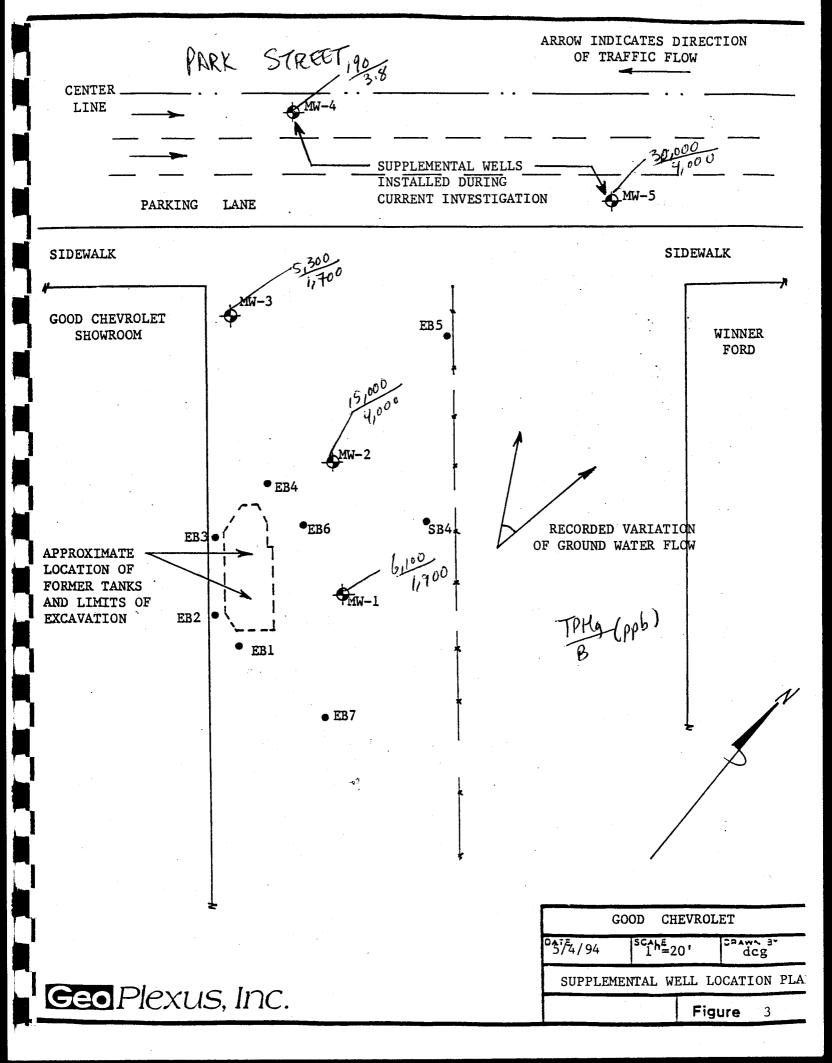
The analytical test data indicates high concentrations of Petroleum Compounds in the ground water in the water sample located between the former tank and dispensing pump (sample EB3-WS1). High concentrations of Petroleum Compounds were also detected in sample EB5-WS1 obtained from the down-gradient soil boring. The concentrations detected are higher than the concentrations detected in the on-site monitoring wells, in-part by the method of sampling which results in high suspended particles in the water samples. The analytical test data suggests that the ground water contamination also extends off-site to the adjacent property (Winner Ford) and beneath Park Street.

The investigations performed at the project site to-date suggest that the source of the hydrocarbon compounds detected in the ground water have originated, at least in-part, from the former underground gasoline storage tank, from the former dispenser pump, from leaks in the former piping systems, or by combinations of these.

TABLE 1

SUMMARY OF SOIL BORING ANALYTICAL TEST DATA

	Petroleum ocarbons	<u>Benzene</u>	Toluene	Ethyl- <u>Benzene</u>	Total <u>Xylenes</u>
MW4-S1, 4.5-6'	N.D.	N.D.	N.D.	N.D.	0.013
MW4-S2, 9-10.5'	9.7	1.1	0.82	0.42	1.3
MW4-S3, 14-15.5'	N.D.	N.D.	0.008	N.D.	0.022
MW5-S1, 4.5-6'	N.D.	N.D.	N.D.	N.D.	N.D.
MW5-S2, 9-10.5'	1,100	12	43	20	93
MW5-S3, 14-15.5'	1.1	0.033	0.17	0.044	0.22


Notes: Concentrations reported as parts per million (mg/kg).

N.D. indicates that concentrations below detection limit.

The analytical test results for the ground water samples obtained for this sampling event detected reportable quantities of Total Petroleum Hydrocarbons as gasoline and Volatile Aromatic Compounds (Benzene, Toluene, Ethyl Benzene, and Xylene) for the samples from Monitoring Wells MW-1, MW-2, MW-3, MW-4 and MW-5.

Total Petroleum Hydrocarbons as gasoline concentrations ranged from 5,300 to 15,000 parts per billion (ppb) on-site to 190 ppb in Monitoring Well MW-4 (in center of Park Street) to 30,000 ppb in Monitoring Well MW-5 located in Park Street down-gradient of the site. Benzene concentrations ranged from 1,700 to 4,000 ppb on-site to 3.8 ppb in Monitoring Well MW-4 (located in Park Street).

Table 2 summarizes the current analytical test results along with the results of the previous analytical testing.

ANALYTICAL TESTING

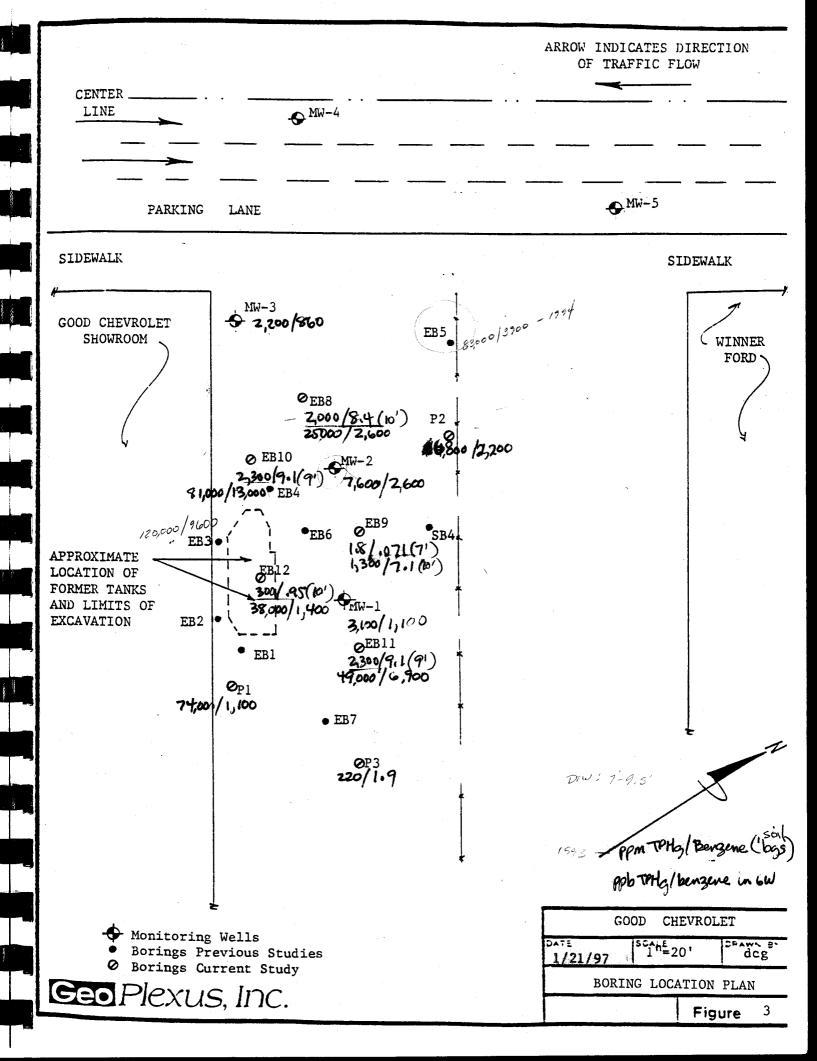
The soil and ground water samples were submitted to and tested by McCampbell Analytical, Inc., a State of California certified laboratory. Analytical testing was scheduled and performed in accordance with the State of California, Regional Water Quality Control Board and Alameda County Department of Environmental Health Guidelines. The samples were tested for Total Petroleum Hydrocarbons as gasoline by Method GCFID 5030/8015 and Volatile Aromatic Compounds (BTEX and MTBE) by EPA Method 8020/5030. The Chain-of-Custody Form and analytical test data are attached in Appendix B.

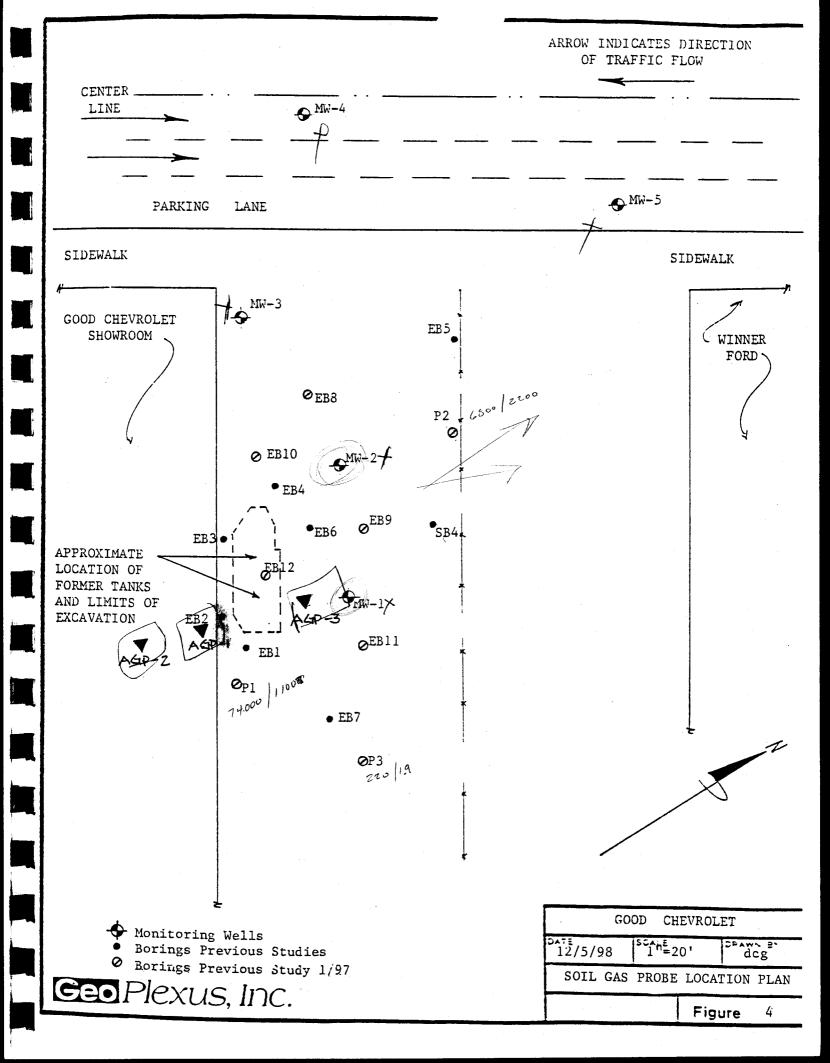
The analytical test data for the geo-probe soil and ground water samples are summarized on Tables 1 and 2, respectfully. Table 3 summarizes the current analytical test results for the monitoring well samples, along with the results of the previous analytical testing.

TABLE 1
GEO-PROBE SOIL ANALYTICAL TEST DATA

T	otal Petroleum			Ethyl-	Total		soil sampl
Sample I	Aydrocarbons	Benzene	Toluene	Benzene	Xylenes	MTBE	were collect
EB8-S2, 9.5-10'	2,000	8.4	83	44	210	NIT)	below 6W
EB8-S3, 13.5-14'	18	3.2	1.2	0.47	1.7	0.10	Text Says 61 at 11-131 ba
EB9-S1, 6.5-7'	1.8	0.071	0.052	0.026	0.074	ND	W 11-13 Ex
EB9-S2, 9.5-10'	1,300	7.1	54	29	130	ND	
EB10-S1, 8.5-9'	2,300	9.1	100	50	190	9.3	
EB11-S1, 9.5-10'	3,800	8.8	190	97	510	ND	
EB11-S2, 12-12.5	13	1.1	1.6	0.47	1.4	ND	
EB12-S1, 9.5-10'	300	0.95	0.59	3.5	18	ND	
EB12-S2, 12-12.5	1,300	9.4	23	35	130	6.2	
3.7						J	

Notes: Concentrations reported as Parts Per Million (mg/kg).


ND indicates that concentrations below detection limit.


TABLE 2
GEO-PROBE GROUND WATER ANALYTICAL TEST DATA

	Total Petroleum			Ethyl-	Total	
<u>Sample</u>	Hydrocarbons	<u>Benzene</u>	Toluene	Benzene	Xylenes	MTBE
EB8-WS1	25,000	2,600	3,200	780	3,600	ND<80
EB10-WS1	81,000	13,000	12,000	3,300	8,000	ND<370
EB11-WS1	49,000	6,900	6,000	2,100	4,600	ND<180
EB12-WS1	38,000	1,400	1,400	1,800	7,400	110
P1-WS1	74,000	1,100	5,800	3,800	18,000	ND<78
P2-WS1	6,800	2,200	290	310	560	ND<10
P3-WS1	220	1.9	17	10	49	ND

Notes: Concentrations reported as Parts Per Billion (ug/l).

ND indicates that concentrations below detection limit.

The summa canisters were verified for integrity prior to connection to the gas probe. After initial purging of the connecting tube, the valve on the summa canister was opened to allow the air sample to enter the canister. The valve was closed upon a reduction in canister vacuum to approximately 4-in. of Hg. and was then sealed. Each canister was properly labeled including: the date, time, sample location (boring number and depth interval), initial and final vacuum pressures, and project number. The samples were placed in a padded shipping container immediately for transport to the laboratory under chain-of-custody documentation.

The probes holes were grouted with a neat bentonite-cement slurry mixed at the project site.

3.2 SOIL GAS ANALYTICAL TESTING

The air samples were submitted to and tested by Air Toxics, Ltd., a State of California, Department of Health Services certified testing laboratory as directed by Alameda County personnel. Analytical testing was scheduled and performed in accordance with the State of California and Alameda County protocols. The samples were tested for:

- Total Petroleum Hydrocarbons as gasoline by EPA Method 170-3, and
- Volatile Aromatics (BTEX and MTBE) by EPA Method TO-31-

The Chain-of-Custody Form and analytical test data are attached in Appendix A.

The analytical test data for the summa canister air samples are summarized on Table 1:

TABLE 1

GAS-PROBE AIR ANALYTICAL TEST DATA

	Total Petroleum			Ethyl-	Total	
<u>Sample</u>	Hydrocarbons	Benzene	Toluene	Benzene	Xvlenes	MTBE
AGP-1	0.46*	0.012	0.030	0.0041	0.022	0.0058
AGP-2	0.73*	0.011	0.091	0.011	0.055	0.032
AGP-3	0.42*	ND	0.045	0.013	0.020	0.014
3 3	1 2 23	orted as Part		\1 \ /	ene at 0.017	7 nnmv

February 12, 2001 Page 4

when benzene concentrations are alreased the RBSLS are SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date Sample	Total Petroleum <u>Hydrocarbons</u>	Benzene	<u>Toluene</u>	Ethyl- Benzene	Total Xylenes	MTBE
	Well MW-1	<u> 25 CHIOCHO</u>	<u> </u>	DUNBURG	<u> </u>	
1-21-87 (1)	21,020	1,148	8,627	1,792	6,012	
1-11-89 (1)	1,400	² 74	10	13	5	
7-12-89 ⁽¹⁾	1,200	470	49	45	33	
4-09-91 (2)	850	260	10	15	12	
7-14-92 ⁽³⁾	13,000	2,300	1,200	1,200	1,200	
10-7-92 ⁽³⁾	3,600	1,600	80	120	120	
1-11-93 (3)	1,200	410	16	23	19	
4-23-93 ⁽³⁾	2,200	720	180	82	150	
7-08-93 ⁽³⁾	3,200	1,200	110	97	100	•
10-15-93 ⁽³⁾	3,700	1,400	43	94	36	
1-25-94 (3)	1,600	680	16	41	35	
4-28-94 ⁽³⁾	6,100	1,900	380	250	340	
7-27-94 ⁽³⁾	6,000	1,800	510	220	450	
10-27-94 ⁽³⁾	3,000	1,100	7 9	82	87	
1-26-95 (3)	1,600	660	100	82	87	
4-13-95 (3)	3,800	1,200	270	120	260	
7-21-95 ⁽³⁾	5,200	1,500	450	190	400	
10-25-95 ⁽³⁾	5,900	1,800	450	210	400	
1-21-97 (3)	3,100	1/2/80	87	160	180	ND<7.3
11-12-98 (3)	1,000	200	3.0	3.3	7.9	ND<30
1-16-01 (3)	4,700	15 00	18	150	49	ND<5
		202 - 1				
Monitoring	Well MW-2					
1-21-87 (1)	5,018	386	1,981	285	1,432	
1-11-89 (1)	10,000	3,000	410	240	190	
7-12 -8 9 ⁽¹⁾	7,600	2,700	540	250	320	
4-09-91 ⁽²⁾	4,900	910	210	130	200	
7-14-92 ⁽³⁾	13,000	4,400	1,500	610	1,100	
10- 7-9 2 ⁽³⁾	11,000	5,200	1,500	500	1,200	
1-11-93 ⁽³⁾	17,000	940	1,100	480	930	
4-23-93 ⁽³⁾	52,000	13,000	8,400	1,700	5,300	
7-08-93 ⁽³⁾	6,400	2,500	470	280	530	
10-15 - 93 ⁽³⁾	17,000	3,900	87 0	500	940	
1-25-94 (3)	16,000	5,400	1,140	640	1,500	
4-28-94 (3)	15,000	4,000	910	480	1,200	
7-27-94 (3)	18,000	6,000	760	630	1,600	
10-27-94 (3)	9,500	2,700	230	320	640	

TABLE 1 (cont'd)
SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date <u>Sample</u>	Total Petroleum <u>Hydrocarbons</u>	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE
	Vell MW-2 (cont'd)					
1-26-95 ⁽³⁾	5,900	1,900	290	230	500	
4-13-95 ⁽³⁾	10,000	3,300	620	360	930	
7-21-95 ⁽³⁾	9,900	3,300	320	390	830	
10-25-95 ⁽³⁾	13,000	A390 0	400	580	990	
1-21-97 (3)	7,600	1,600	310	330	660	ND<20
11-12-98 (3)	31,000	14200	750	1,500	2,300	ND<900
1-16-01 (3)	23,000	********* ***************************	260	1,000	820	ND<30
Monitoring V	Vell MW-3					
1-21-87 ⁽¹⁾	10,287	1,428	3,281	610	2,761	•
1-11-89 (1)	5,300	1,800	340	150	160	
7-12-89 ⁽¹⁾	7,800	3,100	900	300	480	
4-09-91 ⁽²⁾	9,400	1,400	730	200	510	
7-14-92 ⁽³⁾	17,000	3,500	390	390	260	
10-7-92 (3)	9,200	4,300	470	390	610	
1-11-93 (3)	2,000	740	29	58	28	
4-23-93 ⁽³⁾	6,500	2,600	280	260	190	
7-08-93 ⁽³⁾	5,200	2,100	260	250	180	
10-15 - 93 ⁽³⁾	11,000	3,500	580	430	370	
1-25-94 (3)	6,200	2,500	270	160	28	
4-28-94 ⁽³⁾	5,300	1,700	190	210	180	
7-27-94 ⁽³⁾	5,900	2,000	360	260	330	
10-27-94 ⁽³⁾	8,000	2,200	580	260	470	
1-26-95 (3)	3,700	1,200	150	150	190	
4-13-95 ⁽³⁾	4,000	1,400	200	180	210	
7-21-95 ⁽³⁾	5,700	2,000	280	270	280	
10-25-95 ⁽³⁾	11,000	,âgu	1,100	460	680	
1-21-97 ⁽³⁾	2,200	(10)	63	71	80	ND
11-12-98 ⁽³⁾	180	M	0.51	ND	0.92	
1-16-01 (3)	64		0.77	ND	ND	ND<5

TABLE 2 (cont'd)
SUMMARY OF GROUND WATER ANALYTICAL TEST DATA

Date	Total Petroleum			Ethyl-	Total	
Sample	Hydrocarbons	Benzene	Toluene	Benzene	<u>Xylenes</u>	MTBE
Monitoring W	ell MW-4					
4-28-94 ⁽³⁾	190	3.8	2.9	2.1	3.1	
7-27-94 ⁽³⁾	180	15	9.2	7.6	28	
10-27-94 ⁽³⁾	130	8.6	6.6	4.5	17	
1-26-95 (3)	110	6.5	1.2	1.8	11	
4-13 - 95 ⁽³⁾	82	3.9	N.D.	N.D.	2.5	
7-21-95 ⁽³⁾	130	8.8	1.3	4.5	7.6	
10-25-95 ⁽³⁾	95	6.6	1.7	4.3	7.0	
1-21 - 97 ⁽³⁾	not sampled					
11-12-98 ⁽³⁾	not sampled	l				
1-16-01 ⁽³⁾	not accessib	ole				÷
		*				
Monitoring W	<u>'ell MW-5</u>					
4-28-94 ⁽³⁾	30,000	4,000	3,000	810	3,500	
7-27-94 ⁽³⁾	9,300	2,000	800	290	940	
10-27-94 ⁽³⁾	15,000	2,700	1,300	420	1,100	
1-26-95 ⁽³⁾	7,900	2,100	680	240	860	
4-13 - 95 ⁽³⁾	7,900	2,400	580	340	630	
7-21-95 ⁽³⁾	11,000	3,400	7 60	610	1,200	
10-25-95 ⁽³⁾	13,000	2,900	830	570	1,100	
1-21-97 ⁽³⁾	2,600	750	65	1860	280	ND
11-12-98 ⁽³⁾	ND	2.2	ND	ND	ND	ND
1-16-01 (3)	ND	11	ND	ND	0.82	ND<5

Note: (1) Concentrations reported by Groundwater Technology, Inc.

(2) Concentrations reported by Environmental Science & Engineering, Inc.

(3) Samples obtained and reported by Geo Plexus, Inc.

Figures 6 and 7 indicate the concentration distribution maps for Total Petroleum Hydrocarbons as gasoline and Benzene, respectively.

											Т	ier 2 Workshe	et 9.2	
Site Name:	Good Chevrolet		Completed B	y: Cathrene G	Blick									
Site Location	n: 1630 Park Street, Alameda, CA		Date Comple	ted: 12/10/19	98									1 OF 1
	-		Target Rist	k (Class A & B)	1.0E-4		MCL expo	sure limit?			Calcu	lation Option:	3	
SI	UBSURFACE SOIL SSTL	VALUES	Target	Risk (Class C)	1.0E-4		PEL expos	sure limit?						
	(> 3 FT BGS)		Target H	lazard Quotient	1.0E+0									
				SSTL	Results For Comp	lete (xposure P	athways ("x" if	Comp	lete)				
CONSTITUE	NTS OF CONCERN	Representative Concentration	X Soi	Leaching to	Croundwater	x		atilization to	x		latilization to tdoor Air	Applicable SSTL	SSTL Exceeded	Required CRF
CONSTITUE	The state of the s		Residential:	, <u>~_</u> _	·		esidential;	Commercial:		idential:	Commercial:	331L		Required CRF
CAS No.	Name	(mg/kg)	1500 feet	(on-site)	Regulatory(MCL): (on-site)		on-site)	(on-site)		00 feet	(on-site)	(mg/kg)	"■" If yes	Only if "yes" left
71-43-2	Benzene	8.6E+0	1.4E+0	4.5E+0	NA		NA	7.6E-1	1.	7E+2	2.0E+2	7.6E-1		1.1E+01
100-41-4	Ethylbenzene	5.1E+1	3.7E+1	1.0E+2	NA		NA	1.3E+2	>	Res	>Res	3.7E+1		1.0E+00
1634-04-4	Methyl t-Butyl Ether	3.1E+0	3.4E-1	9.4E-1	NA		NA	6.3E+2	>	Res	>Res	3.4E-1		9.0E+00
108-88-3	Toluene	9.0E+1	1.0E+2	2.8E+2	NA		NA	5.4E+1	>	Res	>Res	5.4E+1		2.0E+00
1330-20-7	Xylene (mixed isomers)	2.3E+2	>Res	>Res	NA		NA	>Res	>	Res	>Res	>Res	-0	<1

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Version: v 1.0

Serial: G-265-VHX-686

									Tier 2 Worksheet 9.3					
	ood Chevrolet 1630 Park Street, Alameda, CA	Completed By: Cathrene Glick Date Completed: 12/10/1998										1 OF 1		
GROUNDWATER SSTL VALUES			Target Risk (Class A & B) 1.0E-4 Target Risk (Class C) 1.0E-4			☐ MCL exposure limit?☐ PEL exposure limit?			Calculation Option: 3					
	Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Complete)													
Representative Concentration CONSTITUENTS OF CONCERN			X Groundwater Ingestion			Groundwater Volatilization X to Indoor Air		1	Groundwater Volatilization		Applicable SSTL	SSTL Exceeded ?	Required CRF	
		(mg/L)	Residential: 1500 feet	Commercial:	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)		Residential (on-site)	Commercial: (on-site)	(mg/L	"■" if yes	Only if "yes" left	
	Name	4.5E+0	2.9E-1	9.9E-1	NA.	NA	1.2E+0	NA		1.8E+2	2.9E-1		1.5E+01	
	Benzene	5.7E-1	3.7E+0	1.0E+1	NA.	NA	>Sol	Γ	NA	>Sol	3.7E+0		<1	
	Ethylbenzene	2.0E-2	1.8E-1	5.1E-1	NA	NA	3.6E+3		NA	>Sol	1.8E-1		<1	
	Methyl t-Butyl Ether	4.5E-1	7.3E+0	2.0E+1	NA NA	NA	8.0E+1		NA ·	>Sol	· 7.3E+0		<1	
108-88-3 1330-20-7	Toluene Xylene (mixed isomers)	1.0E+0	7.3E+0 7.3E+1	>Sol	NA NA	NA	>Sol		NA	>Sol	7.3E+1		<1	

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Version: v 1.0

Serial: G-265-VHX-686