

EMAIL OFFICE HEAT AL

₽8 JUN 23 AM 9:53

June 22, 1998

Ms. Susan L. Hugo Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Risk-Based Corrective Action

Shell Service Station 3420 San Pablo Avenue Oakland, California WIC # 204-5508-5306 Cambria Project # 240-0554-11

Dear Ms. Hugo:

On behalf of Shell Oil Products Company (Shell), Cambria Environmental Technology, Inc., (Cambria) has reviewed the project files and prepared this risk-based corrective action (RBCA) analysis for the site referenced above. Specifically, the objective of this evaluation was to assess the potential risk that residual hydrocarbons in soil and ground water underlying the site may have on the health and safety of future occupants of the commercial building that is being constructed on site.

INTRODUCTION

This report documents a RBCA analysis performed by Cambria for the site referenced above. Cambria's analysis was based on RBCA guidelines for petroleum release sites set forth by the American Society for Testing and Materials (ASTM E-1739-95¹), and utilized the RBCA Spreadsheet System developed by Groundwater Services, Inc. (GSI, 1995²).

On January 27, 1998, Paul Waite, Peter McKereghan, and Sampath Rangarajan of Cambria met with

Susan Hugo and Madhulla Logan of the Alameda County Department of Environmental Health

(ACDEH) to discuss the site. At the meeting, it was agreed that Shell would conduct a modified risk-based corrective action (RBCA) analysis to evaluate the potential risk presented by residual

hydrocarbons in soil and ground water to the future occupants of the building. Although the preliminary

analysis indicated that there should be no significant risk to building occupants, it was also agreed that Shell would install the vapor extraction piping beneath the building to prevent hydrocarbon vapors from

accumulating inside of the building if the situation changes. As part of the risk analysis, Cambria would

develop ground water site-specific target levels (SSTLs) for site constituents of concern (COCs). If, in

CAMBRIA

ENVIRONMENTAL

TECHNOLOGY, INC.

1144 65TH STREET,

SUITE B

OAKLAND,

CA 94608

PH: (510) 420-0700

1

Fax: (510) 420-9170

ASTM Designation E 1739-95 (Revised December 1996): Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

Tier 2 RBCA: Spreadsheet System and Modeling Guidelines, 1995: Ground water Services, Inc., 2211 Norfolk, Suite 1000, Houston, TX 77098-4044.

the future, COC ground water concentrations in monitoring wells near the building exceed the SSTL concentrations, an assessment of the indoor air COC concentrations may be conducted, and, if necessary, the vapor extraction piping may be used to abate any COC vapors present.

SITE BACKGROUND

The site is a Shell service station undergoing renovation located at the southeast corner of the intersection of 35th Street and San Pablo Avenue in Oakland. Property use in the site vicinity is mixed residential/commercial. Primary surface water bodies in the vicinity of the site are the San Francisco Bay, which is located approximately 1.1 miles west of the site, the Oakland Inner Harbor approximately 2.0 miles south of the site, and Lake Merritt, a tidal lake, approximately 1.4 miles southeast of the site.

The station is currently not in operation. Site renovation activities include replacing product dispensers and piping, grading the site, installing a canopy, and constructing a commercial training center and a retail gasoline station on site (Attachment A). Currently, ground water quality beneath the site is monitored quarterly by nine monitoring wells (six on-site and three off-site wells). Monitoring wells MW-3 and MW-6 were abandoned due to construction activities in December 1997 and will be replaced, as described in Cambria's December 4, 1997, letter to Susan Hugo of ACDEH.

A brief summary of previous soil and ground water investigations at the site is presented below. This information has been compiled from reports by previous consultants, including Ensco Environmental Services, Inc. and Delta Environmental Consultants, Inc. Soil analytical data from previous investigations are presented as Attachment B. Boring logs and geologic cross-sections for the site are included as Attachment C. Ground water analytic data are included as Attachment D.

December 1984 Dispenser Leak: In December 1984, gasoline-saturated soil was discovered beneath the pump island area. A review of inventory records indicated a loss of approximately 2,500 gallons of super unleaded and 1,500 gallons of regular gasoline.

1985 Tanks Replacement: In January 1985, the steel underground storage tanks (USTs) and the product lines were replaced with double-walled fiberglass tanks and double-walled, fiberglass product lines.

1988 Soil Borings: In August 1988, Ensco Environmental Services, Inc., (Ensco) drilled five soil borings (B-1 through B-5) to a maximum depth of 20.5 feet (ft). Total petroleum hydrocarbons as gasoline (TPHg) was detected at a maximum concentration of 1,400 parts per million (ppm) at 5 ft depth in boring B-1, located at the north end of the UST pit. Benzene was also detected at a maximum concentration of 1.9 ppm in this sample (Attachment B).

1989 Monitoring Wells Installation: In April 1989, Delta Environmental Consultants (Delta) of Rancho Cordova, California, drilled and installed four on-site monitoring wells, MW-1 through MW-4. TPHg was

CAMBRIA

detected at a maximum concentration of 850 ppm at 5.5 ft depth in boring MW-1. The maximum benzene concentration of 1.2 ppm was also detected in this sample. Monitoring well MW-1 is located adjacent to the soil boring B-1, where the maximum TPHg and benzene in soil were previously detected (Attachment B).

1990 Monitoring Wells Installation: In January 1990, Delta drilled and installed five additional monitoring wells, MW-5 through MW-9. Monitoring well MW-5 was drilled to a depth of 26.5 ft below ground surface (bgs) and monitoring wells MW-6 through MW-9 were drilled to depths of 21.5 ft bgs. Monitoring wells MW-5 through MW-8 were located on site, and well MW-9 was located off site to the north, on 35th Street. TPHg was detected at a maximum concentration of 6.1 ppm in soil at 10.5 ft depth in well MW-9. Benzene was detected at a maximum concentration of 0.078 ppm in soil at 5.5 ft depth in well MW-7 (Attachment B).

1991 Monitoring Wells Installation: In October 1991, Delta drilled and installed monitoring wells MW-10 and MW-11 off site. TPHg was detected at a maximum concentration of 1.8 ppm in soil at 10 ft depth in boring MW-10. The maximum benzene concentration of 0.06 ppm was also detected in this soil sample (Attachment B).

1997 Station Renovation: Since mid-1997, the station has been undergoing renovations for subsequent development as a training center and as a retail station. As part of the site renovation, in June 1997, Armer-Norman and Associates of Walnut Creek, California (Armer-Norman), demolished the station building and removed one 550-gallon waste oil UST, and two gasoline dispensers and associated piping. The gasoline USTs were not uncovered during these activities. During the fall of 1997, two residential buildings, located immediately east of the site, were demolished and the entire lot was regraded in preparation for building construction.

1997 Soil Sampling: As presented in Cambria's report dated December 5, 1997, Cambria collected two soil samples from the sidewalls of the waste oil tank pit and ten soil samples from beneath the former dispensers and gasoline product piping on June 26, 1997 (Figure 1). TPHg was detected at a maximum concentration of 120 ppm in sample P-8 at 2.5 ft bgs, which was collected beneath the product piping. The maximum benzene concentration of 0.13 ppm was detected at 2.5 ft depth in piping sample P-1. Maximum concentrations of other constituents detected were: chromium at 38 ppm at 7 ft depth in the waste oil tank pit sample TP-S-7, lead at 2,000 ppm in piping sample P-7-2.0, nickel at 34 ppm in tank pit sample TP-S-7, and zinc at 33 ppm in tank pit sample TP-S-7 (Attachment B).

1998 Construction Activities: Shell is in the process of constructing a new commercial building at the site. During construction of the building, perforated plastic piping was installed beneath the foundation of the building. If necessary and appropriate the piping may be used to remove hydrocarbon vapors, should they accumulate beneath the building.

Soils removed from the lot during grading and footing excavation have been hauled to the Laidlaw facility in Buttonwillow, California, for disposal. These activities will be detailed in a future report to the ACDEH.

CAMBRIA

SITE CONDITIONS

A summary of site conditions, developed from information presented in previous investigation reports, is presented in the following paragraphs.

Regional Geology and Hydrogeology: The site lies within the East Bay Plain ground water basin. The East Bay Plain basin covers an area of about 114 square miles in Western Alameda County. Unconsolidated deposits consisting of older alluvium, "Merritt Sand", bay mud, interfluvial basin deposits, fluvial deposits, and younger alluvium comprise the ground water reservoir (Hickenbottom and Muir, 1988). Maximum aggregate thickness of these deposits is about 1,100 ft. Bedrock forms the bottom and eastern boundaries of the basin. The older alluvium unit is considered the principal water-bearing zone of the basin. Ground water in this zone is mostly under confined conditions due to the presence of clay and other fine-grained material overlying more permeable sand and gravel units.

Local Geology: The site is underlain by silty clay, sandy clay, and gravelly sand of low to high estimated permeability to the total explored depth of 31.5 ft (Attachment C).

Historic Depth to Ground Water: Ground water beneath the site has ranged from 4 to 13 ft depth and generally flows westward (Attachment D).

Area Weli Survey

In December 1988, Delta conducted an area well survey within a 1-mile radius of the site by reviewing the files at the Department of Water Resources (DWR). Delta identified a total of 32 wells within this radius. The nearest municipal well is located about 2,500 northwest of the site. The nearest domestic well is located about 2,500 southwest of the site. Results of the area well survey are included as Attachment E. The City of Oakland receives its potable water supply from the East Bay Municipal Utility District (EBMUD).

RISK ASSESSMENT OBJECTIVES

The need for a RBCA analysis at this site is driven by the presence of residual petroleum hydrocarbon compounds beneath the site. Given the future commercial land use of the site, Cambria analyzed the risk associated with potential exposure of site occupants to the subsurface hydrocarbons under a commercial use scenario.

CAMBRIA

Accordingly, Cambria's specific objectives for this study were:

- To quantify the potential human health risks posed by chemicals detected beneath the site to future occupants of the new on-site building; and
- If necessary, to define risk-based soil and/or ground water cleanup levels protective of human health as set forth by the State of California and the U.S. Environmental Protection Agency (USEPA).

RISK ASSESSMENT

As previously indicated, Cambria's risk assessment followed RBCA guidelines set forth by ASTM for petroleum release sites. The ASTM RBCA process is summarized below, with specific details of this assessment.

Overview of RBCA Process

The RBCA process is the integration of site assessment, remedial action selection, and monitoring with USEPA-recommended risk and exposure assessment practices. This creates a process by which corrective action decisions are made in a consistent manner that is protective of human health and the environment. The RBCA process is implemented in a tiered approach, involving increasingly sophisticated levels of data collection and analysis. Upon completion of each tier, the results are evaluated and, if warranted, assumptions of the current tier are replaced with site-specific data and the analysis proceeds to the next tier.

In the first of the three tiers (Tier 1), a look-up table is used to develop numerical cleanup goals based on very conservative contaminant transport and exposure assumptions. If this initial conservative screening indicates acceptable risk, the site generally poses little danger to human health and no additional work is necessary. However, if the initial screening shows unacceptable risk levels, then the reviewer may proceed to a more site-specific, less-generalized Tier 2 evaluation to establish a more accurate set of site-specific cleanup guidelines. Similarly, if the Tier 2 evaluation shows unacceptable risk, the reviewer may proceed to a more sophisticated and specific Tier 3. The three tiers are described in detail below.

Tier 1 Evaluation: Cambria first reviews the risk associated with the chemicals of concern (COCs) observed beneath a site by comparing site-specific representative COC concentrations to highly conservative, generic, risk-based screening levels (RBSLs) that are developed from default parameters and equations and a generalized conceptual site model. The Tier 1 process uses simplified equilibria models for COCs, addresses both direct and indirect exposure pathways, and anticipates various potential property use categories (residential and commercial/industrial).

Tier 2 Evaluation: Site-specific target levels (SSTLs) for soil and ground water cleanup are based on site-specific physical soil conditions and points of exposure. Both RBSL and SSTL values represent concentration limits for constituents within the source zone. However, SSTLs differ from RBSLs in the following ways:

- Site-specific data are used to calculate risk-based clean up goals (SSTLs);
- SSTLs are based on the assumption that human exposure to affected media may occur at a separate "point of exposure" (POE), not just at the source zone; and
- The effects of natural attenuation during lateral transport from the source to a downgradient POE are considered in the SSTL calculation; they are not in the RBSL calculations.

Tier 3 Evaluation: A Tier 3 evaluation can be conducted if the reviewer believes that the SSTLs produced by the Tier 2 effort remain unrealistically high. A Tier 3 is a sophisticated site-specific analysis that can incorporate, if necessary, a full range of exposure and toxicological considerations.

Conceptual Site Model

Cambria's approach to performing this risk assessment include developing a conceptual site model (CSM) for the risk assessment, conducting Tier 1 and Tier 2 analyses, and documenting the need, if any, for future corrective action at the site. As the initial step in quantifying the human health risks due to COC exposure, Cambria developed a CSM of COC occurrence, transport, and potential exposure. This CSM is based on review of all available hydrogeologic data for the site. Specifically, Cambria reviewed soil and ground water quality, ground water level, and geologic data. In addition, we evaluated future land use and surface features at the site.

Exposure Pathways and Sensitive Receptors

Because the site will be used for commercial purposes, Cambria assumed a commercial land use scenario on site and a conservative target risk level of 1x10⁻⁶. Because hydrocarbons were detected in unsaturated soil and ground water beneath the site, volatilization of COCs from these media were considered complete exposure pathways. Accordingly, Cambria's CSM includes potential exposure of site occupants (outdoor and indoor) to COC emissions from underlying soil and ground water. Complete exposure pathways and the CSM for this site are shown in Figure 2.

Selection of Representative COC Concentrations

COCs in Soil: The historical maximum BTEX soil concentrations were detected nearly ten years ago during the August 1988 site investigation (i.e. 1.9 ppm benzene at 5 ft depth in boring B-1; Attachment B). Assuming natural degradation, we estimate a current corresponding benzene concentration of less

CAMBRIA

than 0.02 ppm.³ In June 1997, additional soil samples were collected at the site (Figure 1). The maximum benzene concentration detected in these soil samples was 0.13 ppm (Attachment B). Based on the assumed degradation of petroleum hydrocarbons detected in 1988, we considered the maximum concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) detected in soil samples collected during the most recent (June 1997) sampling event to be representative of site conditions. As shown in Attachment B, no petroleum hydrocarbons or halogenated volatile organic compounds were detected in the two waste oil tank pit samples collected beneath the footprint of the planned new building. Therefore, our use of 1997 maximum BTEX concentrations as representative of conditions beneath the building is conservative.

COCs in Ground Water: Historically, hydrocarbons have been detected in on-site ground water monitoring wells (Attachment D). The planned commercial building will be located on the eastern portion of the site and the footprint of the building will overlie the location of former monitoring wells MW-3 and MW-6 (Figure 1). Therefore, to assess the risk to future occupants of this building, we used the maximum BTEX concentrations detected in these two wells during the past four sampling events (i.e. since January 1997).

Monitoring wells MW-3 and MW-6 were destroyed to facilitate construction of the building (Figure 1). Upon completion of construction, Shell plans to install new monitoring wells to replace MW-3 and MW-6. Future ground water monitoring data from the new wells may be used in conjunction with the SSTLs presented in this RBCA analysis to evaluate the potential risk to future occupants of the building. Our CSM for this evaluation and the summary considerations for the risk assessment are presented in Table 1. A generic CSM flowchart is presented in Figure 2.

Assuming first-order decay and a degradation half-life of 730 days (ASTM E 1739-95).

Table 1 - Assumptions for Risk Assessment

Item		Comment
Contaminant Source Media:	Underlying Soil and Ground Water	Residual hydrocarbons have been detected in unsaturated and saturated solls beneath the site and in ground water.
Potential Chemicals of Concern (COC):	BTEX	All chemicals detected in representative samples.
Representative COC Source Concentrations in Unsaturated Soil:	benzene: 0.13 toluene: 1.6 ethylbenzene: 0.38 xylenes; 1.6	Maximum concentrations detected in samples collected in June 1997. Benzene from P-1-2.5 and toluene, ethylbenzene and xylenes from sample Disp-2-2.0 (Attachment B).
Representative COC Source Concentrations in Ground Water:	benzene: 0.5 toluene: 0.11 ethylbenzene: 0.84 xylenes: 2.6	Maximum BTEX concentrations detected in monitoring wells MW-3 and MW-6 during 1997.
Target Carcinogenic Risk Level:	1x10 ^e	Conservative target risk level, per USEPA, for on-site commercial receptor scenario.
Non-Carcinogenic Hazard Quotient:	1.0	Consistent with ASTM default value.
Benzene Slope Factor:	0.1 (mg/kg/day)*	Defined by California EPA.
All concentrations in ppm, equivalent t	o milligrams per kilogram for soil and milligrar	ns per liter for ground water.

Tier 1 Analysis

Consistent with the tiered approach adopted by the ASTM RBCA guidelines, Cambria initially quantified the risk associated with the site COCs by performing a Tier 1 evaluation. As outlined in ASTM E-1739-95, the site-specific COC source concentrations are compared to highly-conservative, generic Tier 1 RBSLs, which are based on simplified equations and generalized site conditions. Although a target risk level of 1×10^{-5} is commonly associated with the commercial receptor scenario, we conservatively assumed a more stringent risk level in this RBCA analysis. Table 2 contains the results of our comparison of representative COC source concentrations to Tier 1 RBSLs.

As shown in Table 2, the exposure scenarios exceeding the Tier 1 standards for BTEX compounds are benzene volatilization from both subsurface soil and ground water to indoor air. In addition, the representative benzene soil concentration is nearly equivalent to the Cal-EPA RBSL for benzene volatilization from subsurface soil to outdoor air assuming a 1x10-6 target risk level and a commercial receptor scenario; hence, we included this exposure pathway in our Tier 2 analysis. These three scenarios served as the basis for our Tier 2 analysis.

Table 2 - Results of Tier 1 Analysis for BTEX Compounds

		, ,,,	Representative Concentrations vs. Tier 1			Represei Concent vs. Re	ration
Exposure Pathway	Receptor Scenario	Target Risk Level	Applicable RBSL (USEPA)	Cal EPA RBSL	Representative Concentration (in ppm)	Exceed	Below
, , ,			Ben:	zene			
Volatilization from soil to outdoor air	Commercial	1x10 ⁻⁸	0.457	0.132	0.13		X
Volatilization from soil to indoor air	Commercial	1x10 ⁻⁸	0.0169	0.005	0.13	х	
Volatilization from ground water to outdoor air	Commercial	1x10 ⁻⁶	18.4	5.34	0.5		X
Volatilization from ground water to indoor air	Commercial	1x10*	0.0739	0.021	0.5	Х	
			Tolu	ene			' i
Volatilization from soil to outdoor air	Commercial	HQ=1	PES	RES	1.6		х
Volatilization from soil to indoor air	Commercial	HQ=1	54.5	54.5	1.6		×
Volatilization from ground water to outdoor air	Commercial	HQ≓1	>8	>S	0.11		X
Volatilization from ground water to indoor air	Commercial	HQ=1	85	85	0.11		X

			Concentrati	sentative ons vs. Tier 1 3SLs		Represe Concen vs. R	tration
Exposure Pathway	Receptor Scenario	Target Risk Level	Applicable RBSL (USEPA)	Cal EPA RBSL	Representative Concentration (in ppm)	Exceed	Below
· ·			Ethylbe	enzene			
Volatilization from soil to outdoor air	Commercial	HQ=1	RES	RES	0.38		X
Volatilization from soil to indoor air	Commercial	HQ=1	1,100	1,100	0.38		X
Volatilization from ground water to outdoor air	Commercial	HQ=1	>8	> S	0.84		X
Volatilization from ground water to indoor air	Commercial	HQ=1	Ø	> \$	0.84		X
			Xyle	enes			L
Volatilization from soil to outdoor air	Commercial	HQ≑1	RES	>\$	1.6		X
Volatilization from soil to indoor air	Commercial	HQ=1	RES	RES	1.6		×
Volatilization from ground water to outdoor air	Commercial	∲HQ=1	≯\$	>8	2.6		X
Volatilization from ground water to indoor air	Commercial	HQ=1	>\$	>S	2.6		X

All concentrations in ppm; equivalent to milligrams per kilogram for soil and milligrams per liter for water.

RBSL = Risk-Based Screening Level.

Cal EPA Benzene RBSL = 0.29*(USEPA Benzene RBSL) to account for Cal-EPA benzene slope factor (Table 1).

Cal EPA RBSLs and USEPA RBSLs are the same for toxicants (toluene, ethylbenzene, and xylenes).

Target Risk Level applicable for carcinogens (benzene).

HQ = Hazard Quotient; applicable for toxicants (toluene, ethylbenzene, and xylenes).

>S = Selected risk level is not exceeded for all possible dissolved levels of the constituent.

RES = Selected risk level is not exceeded for pure compound present at any concentration.

CAMBRIA

Tier 2 Analysis

In Cambria's Tier 2 analysis, we re-evaluated the exposure scenarios failing the generic Tier 1 analysis by using site-specific data as input into GSI's RBCA Spreadsheet System. Standard exposure scenarios inherent to the ASTM risk evaluation employ additional conservative assumptions consistent with state and federal guidelines. Risk-related input parameters, such as duration and frequency, are selected to represent the maximally exposed individual and are not an accurate portrayal of time spent at a place of residence or business. The quantitative effect of these uncertainties contributes to overestimation of the overall potential health risk. Because ingestion of ground water beneath the site is not likely, we did not consider this exposure pathway. Our assigned values for key input variables and our justification for use of these values are summarized in Table 3 below and in Attachment F. Results of our calculation of site-specific infiltration rates from precipitation data and soil moisture contents are included in Table A and Table B, respectively. The results of our Tier 2 analysis are summarized in Table 4 and Attachment F.

Table 3 - Assigned Key Parameter Values

Parameter	Units	Default Value	Value Used in Cambria Evaluation	Justification for Use of Value
Depth to Ground Water (DTW)	cm	300	274 %	Based on the average depth to ground water (9 ft bgs) in on-site monitoring wells (October 1997 quarterly monitoring report, Attachment D).
Total soil porosity (θ_{r})	cm³/cm³ of soil	0.38	0.46	Typical for site soils such as clay/silty and sandy clay (Rawls <i>et al.</i> , 1982).
Infiltration rate of water through soil	çm/year	30	20	Based on rainfall data from Berkeley, California and the infiltration equations in the HELP Model (Schroeder <i>et al.</i> , 1994) (Table A).
Volumetric water Content (θ _w)	cm³- water/cm³- soil	0.12	0.38	Calculated from the USEPA equation and the infiltration rate (Soil Screening Guldance, USEPA, 1996) (Table B).
Air content in the vadose zone (θ _s)	cm³- air/cm³-soil	0.26	0.08	Difference of total porosity (θ_{τ}) and the volumetric water content (θ_{τ}) of soil.
Areal crack fraction in building foundation/walls	cm²- cracks/cm²- total area	0.01	0.001	Standard for a new commercial building (TAC, 1997).
Enclosed space air exchange rate	1/second (1/hour)	0.00023 (0.8)	0.0011 (4)	Based on specifications of the proposed on-site commercial building. Typical values range between 2 and 4 exchanges per hour. Value of 4/hour used in this assessment ⁽¹⁾ .
Enclosed space foundation thickness	cm	15	13.6	Based on proposed building specifications. Concrete slab thickness for the building is about 5 inches (2).

USEPA, OSWER, May 1996, Technical Background Document for Soil Screening Guldance.
Rawls et al., Estimating soil water properties. Transaction ASAE, vol 25, No. 5, pages 1316-1320, and 1328.
Schroeder et al., 1994 HELP; Hydrologic Evaluation of Landfill Performance Model, Version 3. U.S. Army Corps of Engineers. Technical Advisory Committee (TAC), 1997. Oakland Urban Redevelopment Program.

(1) Air exchange rates and (2) slab thickness information per Robert H. Lee and Associates; Architects for the proposed commercial building, 1997.

Table 4 - Results of Tier 2 Analysis for Benzene

			Concentrati	sentative ions vs. Tier 2 STL		Representative Concentration vs. SSTL		
Exposure Pathway	Receptor Scenario			Cal EPA SSTL	Representative Concentration (in ppm)	Exceed	Below	
Volatilization from soil to outdoor air on site	Commercial	1x10*	27	7.83	0.13		X	
Volatilization from soil to indoor air on site	Commercial	1x10 ⁻⁸	3.4	0.98	0.13		x	
Volatilization from ground water to indoor air on site	Commercial	1x10*	7.2	2	0.5		X	

All concentrations in ppm; equivalent to mg/kg for soil and mg/L for ground water.

Representative concentrations are 95% UCL on the mean value.

SSTL = Site-specific target level.

Cal-EPA SSTL (for benzene) = USEPA SSTL*0.29 to account for Cal-EPA benzene slope factor (Table 1)

RES = Selected risk level is not exceeded for pure compound present at any concentration.

As shown below in Table 5, the risk associated with potential exposure to the site-specific benzene source concentration is significantly less than the target risk level set forth by the USEPA.

Table 5 - Comparison of Risk Levels

Exposure Scenario	Calculated Risk Level	Target Risk Level	Result
Volatilization of benzene from soil into on-site outdoor air	2x10 ⁻⁸	1 x 10 ^d	Potential health risk associated with site-specific source concentration is below target risk level:
Volatilization of benzene from soil to on-site commercial building	1x10 ⁻⁷	1x10 ⁻⁶	Potential health risk associated with site-specific source concentration is below target risk level.
Volatilization of benzene from ground water to on-site commercial building	3x10 ⁻⁷	1x10 ⁻⁹	Potential health risk associated with site-specific source concentration is below target risk level.

CAMBRIA

DISCUSSION

Consistent with ASTM standards, Cambria's risk assessment employed a conservative approach to mathematical formulation and parameter estimation. The effects of both the ASTM process and our parameter value selections on our conclusions are discussed below.

Inherent Conservatism of ASTM Model

Fate and Transport Modeling: The GSI RBCA Spreadsheet System used by Cambria employs a series of simplified fate and transport models for predicting COC concentrations at points of exposure. The simplified analytic nature of these models often result in over-estimated COC exposure point concentrations. Hence, use of these models may result in over-estimation of health risks.

Toxicological Data: Several aspects of the toxicological data employed in the ASTM RBCA process contain a high degree of uncertainty that affect estimation of risk and delineation of SSTLs. These uncertainties arise in two primary areas. First, slope factors used in this assessment correspond to the 95% upper confidence levels (UCL) on the low-dose portion of the chemical's dose-response curve, as extrapolated from high-dose human or animal response data using the EPA linearized multistage model (LMS). This assumption means actual risks are likely to be lower than the risk estimates calculated in this assessment.

Second, results of animal studies are often used to predict the potential human health effects of a chemical. Extrapolation of toxicological data from animal tests is one of the largest sources of uncertainty in the human health risk evaluation process. There may be important, but unidentified differences in uptake, metabolism, distribution, and elimination of chemicals between a test species and humans. Animal studies are usually conducted under high-dose conditions, whereas humans are rarely exposed to such high doses. The dose level itself may be responsible for the observed carcinogenic effects. Also, animal lifetimes tend to be less than two years, while assumed human life expectancy is 70 years.

Interpretation of Risk Levels: The excess lifetime cancer risk used to evaluate carcinogenic compounds is often misunderstood. For example, a risk level of one-in-one million (1 x 10⁻⁶) associated with exposure to a particular chemical is often misconstrued as an expectation that one out of a million people exposed to the chemical will be stricken with cancer. In actuality the carcinogenic risk is not an actual risk, but rather a mathematical estimate of potential risk based on conservative scientific assumptions used in the risk assessment process. The Food and Drug Administration (FDA) uses conservative estimates such as this to ensure that the risk is not understated. However, the target risk level varies depending on the exposure scenario being commercial or residential.

CAMBRIA

Uncertainties Associated with Combinations of Conservative Assumptions: Uncertainties from the various sources discussed above are additive, hence the overall effect of using conservative assumptions in each step of the risk assessment process potentially results in significant overestimation of potential risks/hazards and an underestimation of action levels. Accordingly, evaluation of applicable SSTLs must be viewed with an understanding of the uncertainty and conservatism involved, and how these effect risk estimations. Cambria's evaluation consistently incorporated conservative assumptions for selection of parameters used to calculate risk, while attempting to maintain a reasonable, site-specific evaluation.

SUMMARY

Cambria's Tier 2 risk assessment demonstrates that the risk associated with exposure to hydrocarbons in soil and ground water beneath the new on-site building is acceptable. As shown in Table 4, benzene concentrations in soil and ground water beneath the vicinity of the building are below the Tier 2 California EPA SSTLs.

Ground water monitoring at the site will continue. Shell plans to install new monitoring wells to replace former monitoring wells MW-3 and MW-6, which were destroyed prior to construction of the on-site building (Figure 1). If the concentrations of COCs in ground water from the new monitoring wells exceed the California EPA SSTLs, the site conditions will be re-evaluated and the potential risk to building occupants will be reassessed. As shown in Table 4, the California EPA SSTL for benzene is 2 mg/l. The SSTLs for toluene, ethylbenzene, or xylenes can be calculated, using the Tier 2 methodology presented in this report, if the concentrations of those constituents exceed their Tier 1 California EPA RBSLs (Table 2). As a possible mitigation measure, a vapor extraction system was installed beneath the commercial building to extract hydrocarbon vapors, should they accumulate beneath the structure. If necessary, the vapor extraction system should further reduce the potential risk of hydrocarbon vapor inhalation by indoor occupants.

CAMBRIA

CLOSING

Cambria appreciates your continued assistance to this case. Please call Paul Waite at (510) 420-0700 if you have any questions or comments.

GEOLOGIST

OF CALLES

Sincerely,

Cambria Environmental Technology, Inc.

Paul Waite Project Engineer

Peter F. McKereghan, CHG Principal Hydrogeologist

Figures: 1 - Monitoring Well and Soil Sampling Location Map (June 1997)

2 - Conceptual Site Model

Tables: Table A - Infiltration Rate Calculation

Table B - Soil Moisture Calculations

Attachments: A - Figures by Previous Consultants

B- Soil Analytic Data

C - Boring Logs and Geologic Cross-Sections

D - Ground Water Analytic Data

E - Area Well Survey

F - Tier 2 RBCA Results

cc: A.E. (Alex) Perez, Shell Oil Products Company, P.O. Box 8080, Martinez, California 94533. Ray Newsome, Shell Oil Products Company, P.O. Box 8080, Martinez, California 94533.

G:\OAK3420\RBCA\Rbca.wpd

Figure 1. Ground Water Monitoring Well Locations - Shell Service Station, WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

05/08/98

Figure 2. Conceptual Site Model with Exposure Pathways - Shell Service Station WIC # 204-5508-5306, 3420 San Pablo Avenue, Oakland, CA

05/08/98

Table A: Infiltration Rate Calculation

Shell Service Station WIC # 204-5508-5306, 3420 San Pablo Avenue, Oakland, California

Month	Average	Runoff	Infiltration
	Precipitation	Q (in)	I (in)
	P (in)		
January	4.71	3.60	1.11
February	3.94	2.86	1.08
March	3.20	2.17	1.03
April	1.72	0.86	0.86
May	0.59	0.09	0.50
June	0.18	0.00	0.18
July	0.04	0.00	0.04
August	0.06	0.00	0.06
September	0.27	0.00	0.27
October	1.26	0.50	0.76
November	2.82	1.82	1.00
December	4.08	3.00	1.08
Yearly Total	22.87	14.90	7.97
Infiltration			
Rate (in/hr) =	0.00091	= 20.2 cm/year	

Calculations:

Monthly precipitation averages (P) are from records between January 1919 and June 1997 at Berkeley, California

Runoff (Q) calculated by the following equation: $Q = (P-0.2S)^2/(P+0.8S)$ where

P = Precipitation, S = Water retention parameter, calculated by the equation: S = (1,000/CN) - 10

C-1 11

CN = the curve number for roads and right of way with moderate runoff potential = 90

Runoff equation valid only when P>0.2S. Else, runoff assumed to be zero.

Infiltration (I) = P-Q

Notes:

Evapotranspiration not considered in the above calculation

References:

- (1) Schroeder et al., The Hydrologic Evaluation of Landfill Performance Model, Version 3 EPA/600/R-94/168b, September 1994.
- (2) Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants in Surface and Ground Water Part I (Revised 1985); EPA/600/6-85/002A

Table B: Soil Parameter Calculation

Shell Service Station WIC # 204-5508-5306, 3420 San Pablo Avenue, Oakland, California

Parameter	Value	
Total Porosity (n)	0.46	
Infiltration Rate I (cm/year) (Table A)	20.2	
Saturated Hydraulic Conductivity $(K_{sat})^{(1)}$ (m/year)	18	
Constant 1/(2b+3) for clay/silty clay (2)	0.042	
Moisture Content (M.C.)	0.38	
Air Content (A.C.)	0.08	

Notes

Saturated hydraulic conductivity calculated as the average value for clay/silty and sandy clay (see VADSAT reference below)

Constant 1/(2b+3) for clay/silty and sandy clay soils (see USEPA Reference below)

Calculations:

Moisture Content calculated by the following equation (USEPA reference cited below):

 $M.C. = n(I/K_{sut})^{(1/2b+3)}$

Air content calculated by the following equation

A.C. = (n-M.C.)

References:

(1) API, 1994: VADSAT: A Monte Carlo Model for Assessing the Effect of Land-Disposal Exploration and Production Wastes on Groundwater Quality

(2) USEPA, 1996: Soil Screening Guidance: Technical Background Document

CAMBRIA

Attachment A

Figures by Previous Consultants

Figure 1. Soil Sampling Locations - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

CAMBRIA

Attachment B

Soil Analytic Data

TABLE 2 Soil Chemical Analysis Concentrations in parts per million (ppm)

Sample <u>Number</u>	Sample Depth (ft)	Date Sampled	Benzene	<u>Toluene</u>	Ethyl- benzene	Xylenes	EDB ^a	EDC ^b	<u>TPH^c</u>	Total <u>Lead</u>
B-1-1 ^d	5-5.5	08/08/88	1.90	42.00	43.00	120.00	NAd	NA	1,400.00	NA
B-1-2d	9.5-10	08/08/88	NA	NA	NA	NA	NA	NA -	80.00	NA
B-1-3 ^d	15-15.5	08/08/88	NA	NA	NA	NA	NA	NA	<5.0	NA
B-1-4 ^d	20-20.5	08/08/88	NA	NA	NA	NA	NA	NA	<5.0	NA
B-2-1 ^d	5-5.5	08/08/88	1.50	16.00	35.00	33.00	NA	NA	550.0	NA
B-2-2 ^d	10-10.5	08/08/88	0.70	3.30	7.80	48.00	NA	NA	580.00	NA
B-3-1-2-3 ^d (composite)	5, 10 and 15	08/08/88	NA	NA	NA	NA	NA	NA	<5.0	NA
B-4-1-2-3 ^d (composite)	5, 10 and 15	08/08/88	NA	NA	NA	NA	NA	NA	<5.0	NA
B-5-1-2-3 ^d (composite)	5, 10 and 15	08/08/88	NA	NA	NA	NA	NA	NA	<5.0	NA

NOTES:

aEthylene dibromide.
b1,2-dichloroethane.
cTotal petroleum hydrocarbons as gasoline.
dSoil samples collected by Ensco Environmental Services, Inc.
eNot analyzed.
fNot detected.
gSoil samples collected by Delta Environmental Consultants, Inc.

TABLE 2-Continued Soil Chemical Analysis Concentrations in parts per million (ppm)

Sample <u>Number</u>	Sample Depth (ft)	Date <u>Sampled</u>	<u>Benzene</u>	Toluene	Ethyl- <u>benzene</u>	Xylenes	EDB ^a	EDC ^b	<u>TPH</u> c	Total <u>Lead</u>
MW-1-1 ⁹	5.5-6	04/11/89	1.2	14	19	100	<0.2	<0.2	850	4
MW-1-2 ⁹	10.5-11	04/11/89	<0.05	1.9	1.9	16	<0.5	<0.5	80	3
MW-2-2 ⁹	10.5-11	04/10/89	0.4	1.5	1.7	15	<0.2	<0.2	70	8
MW-3-2 ⁹	10.5-11	04/10/89	<0.002	0.010	0.008	0.069	<0.002	<0.002	<0.2	3
MW-4-2 ⁹	10.5-11	04/10/89	<0.002	0.005	0.004	0.031	√0.002	<0.002	<0.2	2
MW-5-19	5.5-6	01/19/90	NDf	ND	ND	ND	NA	NA	5.0	NA
MW-6-19	5.5-6	01/19/90	ND	ND	ND	ND	NA	NA	ND	NA
MW-7-1 ⁹	5.5-6	01/19/90	0.078	ND	0.21	ND	NA	NA	14	NA
MW-8-1 ^g	5.5-6	01/18/90	ND	ND	ND	ND	NA	NA	ND	NA
MW-9-2 ^g	10.5-11	01/18/90	ND	ND	0.39	0.14	NA	NA	6.1	NA

NOTES:

NOTES:

^aEthylene dibromide.

^b1,2-dichloroethane.

^cTotal petroleum hydrocarbons as gasoline.

^dSoil samples collected by Ensco Environmental Services, Inc.

^eNot analyzed.

^fNot detected.

^gSoil samples collected by Delta Environmental Consultants, Inc.

Delta Environmental Consultants

3330 Data Drive

Rancho Cordova, CA 95670

Client Project ID: Matrix Descript:

#40-88-666, Shell Soil

Sampled: Received:

Oct 23, 1991 Oct 24, 1991

Attention: Lisa Ranger

Analysis Method: First Sample #:

EPA 5030/8015/8020 110-4496

Analyzed: Reported:

10/29-30/91 Nov 2, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
110-4496	MW-10-5	1.4	0.015	0.0060	0.010	0.0080
110-4497	MW-10-10	1.8	0.060	N.D.	0.027	0.0070
110-4498	MW-11-5	N.D.	N.D.	N.D.	N.D.	N.D.
110-4499	MW-11-10	N.D.	N.D.	N.D.	N.D.	N.D.
110-4500	A,B,C,D	N.D.	N.D.	N.D.	N.D.	N.D.

Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer **Project Manager**

Table 1. Soil Analytic Data - Petroleum Hydrocarbons with BTEX and MTBE - Shell Service Station WIC# 204-5508-5306, 3240 San Pablo Avenue, Oakland, California

Sample ID	Sample Location	Date Sampled	TPPH as Gas (mg/kg)	MTBE (mg/kg)	Benzene (mg/kg)	Tolulene (mg/kg)	Ethyl Benzene (mg/kg)	Xylenes (mg/kg)	TEPH as Diesel (mg/kg)	Notes
Disp-1-2.5	Dispensers	6/26/97	8.4	1.6	0.054	0.046	0.0094	0.21		
Disp-2-2.0	Dispensers	6/26/97	51	7.9	0.075	1.6	0.38	1.6		
TP-N-7	Waste Oil Tank Pit	6/26/97	<1.0	<0.025	<0.0050	<0.0050	<0.0050	<0.0050		a,b
TP-S-7	Waste Oil Tank Pit	6/26/97	<1.0	<0.025	<0.0050	<0.0050	<0.0050	<0.0050	-	a,b
P-1-2.5	Product Lines	6/26/97	39	0.82	0.13	0.051	0.012	0.032		
P-2-2.5	Product Lines	6/26/97	17	0.33	0.035	0.079	0.063	0.11		
P-3-2.5	Product Lines	6/26/97	16	0.092	0.028	0.059	0.019	0.026		
P-4-4.0	Product Lines	6/26/97	19	<0.050	0.041	0.053	<0.010	0.078		
P-5-4.0	Product Lines	6/26/97	3.1	0.028	0.016	0.0054	<0.0050	0.018		
P-6-2.5	Product Lines	6/26/97	<1.0	<0.025	<0.0050	<0.0050	<0.0050	<0.0050		
P-7-2.0	Product Lines	6/26/97	4.5	<0.025	0.040	0.0097	0.0095	0.053		
P-8-2.5	Product Lines	6/26/97	120	<0.62	<0.12	0.43	0.33	0.42		
SP-(1,2,3,4) Comp	Tank Stock Pile	6/26/97			<0.0050	<0.0050	<0.0050	<0.0050		c,d,e,f
SP-5	Piping Stock Pile	6/26/97	5.6		0.046	0.012	0.025	0.088	250	
SP-6	Piping Stock Pile	6/26/97	1.2		0.028	0.012	0.015	0.046	290	
SP-7	Piping Stock Pile	6/26/97	5.5		<0.0050	0.011	0.011	0.053	340	-
SP-8	Piping Stock Pile	6/26/97	3.5		0.087	0.11	0.037	0.025	140	

Page 1 of 2

Table 1. Soil Analytic Data - Petroleum Hydrocarbons with BTEX and MTBE - Shell Service Station WIC# 204-5508-5306, 3240 San Pablo Avenue, Oakland, California

Sample ID	Sample	Date	TPPH as Gas	MTBE	Benzene	Tolulene	Ethyl Benzene	Xvlenes	TEPH as Diesel	Notes
	Location	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	

Abbreviations

TPPH as Gas = Total Purgeable Petroleum Hydrocarbon as Gasoline by Modified EPA Method 8015
TEPH as Diesel = Total Extractable Petroleum Hydrocarbons as Diesel by Modified EPA Method 8015
Benzene, Tolulene, Ethyl Benzene, and Xylenes by EPA Method 8020

MTBE = Methyl tert-Butyl Ether by EPA Method 8020

TCLP = Toxicity Characteristic Leaching Procedure

mg/kg = milligrams per kilogram

<n = Below detection limit of n mg/kg

--- = Not Analyzed

Notes

- a = All Halogenated Volatile Organics EPA Method 8010 were below detection limits
- b = Fuel Fingerprint: Motor Oil by Modified EPA Method 8015 was below detection limit
- c = All Polychlorinated Biphenyls by EPA Method 8080 were below detection limits
- d = TCLP Metal Barium detected at 0.80 mg/L by EPA Method 6010/7470,
- all other analytes tested below detection limits
- $e=All\ TCLP\ Semivolatiles$ by EPA Method 8270 were below detection limits $f=All\ TCLP\ Volatiles$ by EPA Method 8240 were below detection limits

Table 2. Soil Analytic Data - TRPH, Cyanide: Reactive, Sulfide: Reactive, pH, and Organic Lead - Shell Service Station WIC# 204-5508-5306, 3240 San Pablo Avenue, Oakland, California

Sample ID	Sample Location	Date Sampled	TRPH (mg/kg)	Cyanide: Reactive (mg/kg)	Sulfide: Reactive (mg/kg)	рН	Organic Lead (mg/kg)
SP-1	Tank Stock Pile	6/26/97	<15			-	<u>-</u>
SP-2	Tank Stock Pile	6/26/97	<15		-		
P-3	Tank Stock Pile	6/26/97	<15				<u></u>
P-4	Tank Stock Pile	6/26/97	<15				
P-(1,2,3,4) Comp	Tank Stock Pile	6/26/97	-	<0.50	<13	7.5	
P-(5,6,7,8) Comp	Piping Stock Pile	6/26/97	-	_			<5.0

Abbreviations and Notes:

TRPH = Total Recoverable Petroleum Hydrocarbons by EPA Method 418.1

Cyanide: Reactive by EPA Method SW-846, Chapter 7, Section 7.3

Sulfide: Reactive by EPA Method 9030 Organic Lead by California LUFT Method mg/kg = milligrams per kilogram

<n = Below detection limit of n mg/kg

--- = Not Analyzed

Table 3. Soil Analytic Data - Total Metals - Shell Service Station WIC# 204-5508-5306, 3240 San Pablo Avenue, Oakland, California

Sample ID	Sample Location	Date Sampled	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)
Disp-1-2.5	Dispensers	6/26/97			5.8		
Disp-2-2.0	Dispensers	6/26/97			9.6		
TP-N-7	Waste Oil Tank Pit	6/26/97	<0.5	18	<5.0	14	16
TP-S-7	Waste Oil Tank Pit	6/26/97	<0.5	38	6.4	34	33
P-1-2.5	Product Lines	6/26/97	حذين <u></u>	***	7.4	-	
P-2-2.5	Product Lines	6/26/97			7.4	_	**-
P-3-2.5	Product Lines	6/26/97			6.9		
P-4-4.0	Product Lines	6/26/97			7.4		
P-5-4.0	Product Lines	6/26/97			7.4	~~~	
P-6-2.5	Product Lines	6/26/97	***	***	33	-77	al term
P-7-2.0	Product Lines	6/26/97	~~****		2,000		***
P-8-2.5	Product Lines	6/26/97			8.2		

Abbreviations and Notes:

Total Metals by EPA Method 6010 mg/kg = milligrams per kilogram <n = Below detection limit of n mg/kg

--- = Not Analyzed

CAMBRIA

Attachment C

Boring Logs and Geologic Cross Sections

ensco environmental services, inc.

PROJECT NAME: SHELL STATION

3420 SAN PABLO AVE.

OAKLAND, CA

BORING NO. B-1

DATE DRILLED: 8/8/88

PROJECT NUMBER: 1859G

LOGGED BY: RAG

		PROJECT NUMBER: 1009G	1		
SAMPLE No BLOWS/FOOT 140 fl/lds.	UNIFIED SOIL CLASSIFICATION		WATER LEVEL	OVA READING ppm	
		Asphalt - 2°, baserock - 4°		1	
- 2 -	CL	SILTY CLAY, very dark gray (7.5YR 3/0), slight petroleum odor, moderately high plasticity, stiff, moist			
3 -					
5 B-1-1 27	СН	SILTY CLAY, dark gray (10YR 4/1), some angular brown gravel sized fragments, petroleum odor, moderately high plasticity, very stiff, moist,		155	i
- 7 - - 8 -	CL	SILTY CLAY, olive gray to gray (5Y 5/2 to 7.5Y 5/0), localized fine grained sands, some angular gravel up to 1.5" across, petroleum odor, moderate plasticity, very stiff, moist			
- 9 - 10 B-1-2 32 - 11-		· .		150	
- 12- - 13-				-	-
14	CL	SANDY CLAY, mottled browns (10YR 5/4 to 10YR 5/8), some fine to medium sands and angular, medium gravels, no petroleum odor, stiff, moist to very moist			
- 16-				0	
- 17- - 18-	CL	SILTY CLAY, mottled reddish yellow to light yellow (7.5YR 6/8 to 2.5Y 6/4), locally sandy areas, some gravels, no petroleum odor, very stiff, moist to very moist 8/8/88, Groundwate	,	又	
20 B-1-4 32		encountered - 19 ft. Bottom of boring =20.5 feet		0	
21 -	<u> </u>	3	يلد		

SUPERVISED AND APPROVED BY R.G./C.E.G

environmental services, inc.

PROJECT NAME: SHELL STATION

3420 SAN PABLO AVE.

OAKLAND, CA

DATE DRILLED: 8/8/88

BORING NO. B-2

LOGGED BY: RAG

PROJECT NUMBER: 1859G

UNIFIED SOIL OVA READING WATER LEVEL BLOWS/FOOT SAMPLE No 140 ft/lbs. DEPTH (M.) mdd SOIL DESCRIPTION Asphalt - 2°, baserock - 9° 1 SILTY CLAY, very dark gray (7.5 3/0), some fine grained sands and gravels, moderately high CH 2 plasticity, petroleum odor, stiff, moist 3 SILTY CLAY to SANDY CLAY, gray (2.5Y 5/0). fine grained sands, some subangular gravels up B-2-1 30 230 CL to 0.5° across, petroleum odor, very stiff. 6 moist 7 SILTY CLAY, mottled light gray to 8/8/88, grayish brown (7.5YR 6/0 to 10YR Groundwater encountered - 8 ft. 5/2), some medium to coarse CL grained sands and gravels up to 0.5" across, petroleum odor, very stiff, moist 210 30 Bottom of boring = 10.5 feet 19 20

SUPERVISED AND APPROVED BY R.G./C.E.G.

PROJECT NAME: SHELL STATION 3420 SAN PABLO AVE.

OAKLAND, CA

DATE DRILLED: 8/8/88

PROJECT NUMBER: 1859G

LOGGED BY: RAG

BORING NO. B-3

SOIL DESCRIPTION Asphalt - 2*, baserock - 6* CH SILTY CLAY, very dark gray (7.5YR 3/0), localized fine grained sands, no petroleum door, moderately high plasticity, stiff, moist CH SILTY CLAY, motited strong brown to brownish yellow (7.5YR 6/5), localized fine grained sands and angular to subangular gravels up to 0.5* across, no petroleum door, moderately high plasticity, very stiff, moist CL SANDY CLAY, motited brownish yellow to yellowish plasticity, very stiff, moist CL SANDY CLAY, motited brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum cdor, stiff, moist to very moist CL SANDY CLAY, motited brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum cdor, stiff, moist to very moist CL SANDY CLAY to CLAYEY SAND, motited light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 6/5%, no petroleum cdor, stiff to medium dense, wet		;	, 		GGED B	Y: RAC	2
SILTY CLAY, very dark gray (7.5YR 3/0), localized fine grained sands, no petroleum cdor, moderately high plasticity, stiff, moist SILTY CLAY, mottled strong brown to brownish yellow (7.5YR 6/5 to 7.5YR 6/5), localized fine grained sands and angular to subangular gravels up to 0.5' across, no petroleum cdor, moderately high plasticity, very stiff, moist SANDY CLAY, mottled brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum cdor, stiff, moist to very moist CL SANDY CLAY, mottled brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum cdor, stiff, moist to very moist CL SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum cdor, stiff to medium dense, wet 8/8/88, Groundwater encountered - 19 ft.	DEPTH (ft.) SAMPLE No	BLOWS/F00T 140 ft/lbs.	UNIFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	WATER LEVEL	OVA READING PPIM	
SILTY CLAY, motifed strong brown to brownish yellow (7.5YR 6/5 to 7.5YR 6/5), localized fine grained sands and angular to subangular gravels up to 0.5° across, no petroleum odor, moderately high plasticity, very stiff, moist SANDY CLAY, motified brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum odor, stiff, moist to very moist CL SANDY CLAY, motified brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum odor, stiff, moist to very moist CL SANDY CLAY to CLAYEY SAND, motified light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet				Asphalt - 2°, baserock - 6°		 	
yellow (7.5YR 6/5 to 7.5YR 6/5), localized fine grained sands and angular to subangular gravels up to 0.5' across, no petroleum odor, moderately high plasticity, very stiff, moist B-3-2 25 CL SANDY CLAY, mottled brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum odor, stiff, moist to very moist CL SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet	- 2 -		СН	tine grained sands, no petroleum odor, moderately			
yellow (7.5YR 6/5 to 7.5YR 6/5), localized fine grained sands and angular to subangular gravels up to 0.5' across, no petroleum odor, moderately high plasticity, very stiff, moist B-3-2 25 CL SANDY CLAY, mottled brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum odor, stiff, moist to very moist CL SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet	- 3 - - 4 [
SANDY CLAY, mottled brownish yellow to yellowish brown (10YR 6/6 to 10YR 5/8), fine grained sands, no petroleum odor, stiff, moist to very moist SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet	B-3-1	30	сн	yellow (7.5YR 6/6 to 7.5YR 6/5), localized fine grained sands and angular to subangular gravels up to 0.5" across, no petroleum odor, moderately high		0	
SANDY CLAY, mottled brownish yellow to yellowish brown (10YR 6/8 to 10YR 5/8), fine grained sands, no petroleum odor, stiff, moist to very moist SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet	· 8 - · 9 - · 10 B-3-2	25		•			
B-3-3 16 CL brown (10YR 5/8 to 10YR 5/8), fine grained sands, no petroleum odor, stiff, moist to very moist CL SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet B/8/88, Groundwater encountered - 19 ft.	11-						
SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet 8/8/88, Groundwater encountered - 19 ft.	1 2		CL	brown (10YR 6/8 to 10YR 5/8), fine grained sands.			
SANDY CLAY to CLAYEY SAND, mottled light gray to dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to medium dense, wet 8/8/88, Groundwater encountered - 19 ft.							
	17-			dark brown (10YR 7/1 to 10YR 3/8), fine grained sands up to 60%, no petroleum odor, stiff to			
	19 20 B-3-4	16				•	
- ' T Solution of bonng = 20.5 feet	27 -	T		Bottom of boring = 20.5 feet	7		

SUPERVISED AND APPROVED BY R.G./C.E.Q

PROJECT NAME: SHELL STATION

3420 SAN PABLO AVE.

OAKLAND, CA

BORING NO. B-4 DATE DRILLED: 8/8/88

LOGGED BY: RAG

PROJECT NUMBER: 1859G

DEРТН (Л.)	SAMPLE No	BLOYS/F00T 140 ft/bs.	UNIFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	WATER LEVEL	OVA READING PPM	
				Asphalt - 2°, baserock - 4°		,	
- 1 -			СН	SILTY CLAY, very dark gray (7.5YR 3/0), localized fine grained sands, no petroleum odor, moderately high plasticity, stiff, moist			
-3 -		,		ı		Į į	
£ 4 [,	
- 5 - 6 - 7	B-4-1	24	CL	SANDY CLAY, mottled gray to strong brown (7.5YR 5/0 to 7.5YR 5/6), fine to medium grained sands up to 40%, angular to subangular gravels up to 0.5° across, locally very sandy and gravelly, no petroleum odor, very stiff, moist		0	
- в -	┨		ļ		┨		
- 9 - 10	B-4-2	35	CL	SANDY CLAY, motited brown to yellowish brown (10YR 5/3 to 10YR 5/6), fine grained sand, locally very sandy and very clayey, no petroleum odor, hard, moist			
11	-					0	
12]		1	·			
13	1	1				-	
14	d	1		i continued your grouply hade your stiff		1	
15	H	ļ.		Localized very gravelly beds, very stiff		1	
ł.,	B-4 •3	18		Root holes containing free water		0	
F	}		1				
L 17	1		-			1	
18	4		. .	8/8/88, Groundwater	Z	Z	
- 18	d	1		encountered - 19 ft.			
-20	B-4-	4 30			4	0	
21	7			Bottom of boring = 20.5 feet			CAT PROPERTY OF TAX

SUPERVISED AND APPROVED BY R.G.C.E.G.

PROJECT NAME: SHELL STATION

3420 SAN PABLO AVE.

OAKLAND, CA

BORING NO. B-5

DATE DRILLED: 8/8/88

LOGGED BY RAG PROJECT NUMBER: 1859G

					-		
DEPTH (A.)	SAMPLE No	BLOWS/F00T 140 ft/lbs.	UNFIED SOIL CLASSIFICATION	SOIL DESCRIPTION	WATER LEVEL	OVA READING PPM	
				Asphait - 2', baserock - 4'			
1 -			СН	SILTY CLAY, very dark gray (7.5YR 3/0), localized fine grained sands, no petroleum odor, moderately high plasticity, stiff, moist			
3 -				,			
- 5 - 6 - 7	B-5-1	28	CL	SANDY CLAY, mottled grayish brown to yellowish brown (10YR 5/2 to 10YR 5/6), fine to coarse sand up to 40%, locally abundant gravels up to 0.5" across, no petroleum odor, very stiff, moist		0	
- 8 - 9 - 10	B-5-2	38	CL	SANDY CLAY, mottled gray to brownish yellow (10YR 6/1 to 10YR 6/6), fine grained sands up to 30%, root holes, no petroleum odor, low plasticity, hard, moist		0	
- 12 - 13	-					-	
16	1	. 13	CL	SANDY CLAY, mottled yellow browns (10YR 5/4 to 10YR 5/8), fine grained sands up to 40%, locally abundant gravels up to 0.5° across, no petroleum odor, stiff, moist to very moist, free water in root holes		0	
- 17 - 18 - 19 - 20				8/8/88, Groundwater Decreasing sand, very stiff	V		
21	B-5-4	23	-	Bottom of boring = 20.5 feet	1	0	

SUPERVISED AND APPROVED BY R.G.J.C.E.G.

PR	OJEC	MAM 1	E / IO	CATTION		PROJECT NUMBER: 40-88-66	BORING NUMBER: M	W-1 SHEET	1 OF 2	
34	20 S	an Rai	blo Av	enue		CONTRACTOR: West Hazmat I	rilling	DRILLING METHOD: H	.s.A.	
, va	KT G LX	i, ca				DRILLER: Randy Re	dhead	DRILLING RIG: CME-55		
						START: 8:00	START: 8:00 COMPLETED: 4-1		4-11-89/10:30	
OW	AND WNER: Shell Oil Company					SURFACE ELEVATION: 100.0	00 (relative)	LOGGED BY: Hal Hans	en	
ST	s N	BLOW BLOW Fis	SI	SACOV MPL				CONTAMINANT OBSERVATION	GENERAL	
SAMPLE	M M P B	Õ Ŭ W N	S N M T P	MC	DEPIH	DESCRIPTIONS OF A	Taterials NS	INSTRUMENT:	OBSERVATION	
LE	LER	T S	L E(ft)	Ľ V E(in)	SCALE 1"= 4"		-	UNITS: Tip	Odor	
						ASPHALIT AND ROAD I	BASE .	_		
					1 + (IAY; very dark g	ay, highly			
					2 + }	TAY; very dark gr plastic, slightly sand (CH)	motst, no			
					3 +		•			
~	g pr. 04		E ^=	18	5 - 6	CANTO OTAVA		1100	Change adam	
CA	MW1	12/ 15/	5.0- 6.5	 10	6	SANDY CLAY; dark of the control of t	plastic,	1 1100	Strong odor	
		T23			7	gray, moderately is slightly moist, so coarse, some grave the bottom of the	el toward	}		
			٠.		8—	are annually of the		}	ļ	
					٠		-		ļ	
CA	МОЗ	12/	10.0-	18	10			375	Slight odor	
	MW1 2	15/18	10.0-		11 -		***	!		
					12		-	1		
		!	:		13		·	1		
					14			1		
CA	MW1	6/6/	15.0- 16.5	17	15 <u>†</u>			30	Slight odor	
	3	9	16.5		16	SILITY CLAY; dark orown, moderately very moist, stiff at the bottom of the control of the contro	vellowish plastic, —	1		
					17 +	very moist, stiff at the bottom of 1	, some gravel unit (CL) -	4		
					18 —			1	<u> </u>	
		•			19 井			1].	
CA	MWI 4	11/	20.0- 21.5	15	20-		-	3	Very slight	
	4	验	21.5		21 —		-	1	odor	
					22 —			1		
				, ·	23 ———	المراجع المراج والمراجع المراجع المر		}		
	2,12.	THERE Y	EVEL D	AUTA	T processes	IONAL GEOLOGIST		1	<u>Li</u>	
DA		LEK T	CART D	LTV.	FRUTEDO.	IVAN GEVINGTST			ı	
TI		-		_						
GW		-			SIGNATUR	<u> </u>				
		┼─				i				
DE	SING PIH	1			TYPED NA	ME				

PR	OJEC	r Nam	E / LO	CATION		PROJECT BORING SHEET 2 OF 2 NUMBER: 40-88-666 NUMBER: MW-1
34	20 S	an Pai d, CA	blo Av	enue		CONTRACTOR: DRILLING METHOD: H.S.A.
	LLUI	w, ca.	•			DRILLER: Randy Reidhead RIG: CME-55
						START: 8:00/4-11-89 COMPLETED: 10:30/4-11-89
1	NER:			1 Compa	any	SURFACE LOGGED BY: Hal Hansen
S T M P P E	SNAU	B C L O	SIAN	SRAE		CONTAMINANT OBSERVATION GENERAL
MP	MMPB	U O	M T P	MC	DEPIH	DESCRIPTIONS OF MATERIALS AND CONDITIONS INSTRUMENT: NOTES
SAMPLE	TSNBCSISR YAULOANAE PMMOUMT MC DEPIH EPBWNP PO LETTL LY SCALE ERSE(ft) E(in) 1"= 4'				SCALE 1"= 4'	UNITS: Tip
CA	MW1 6		25.0- 26.5		25 — 26 —	GRAVELLY SAND; brown, very coarse sand, saturated, - Lost sample No odor gravel 1/2 inch to 1/4 inch, minor plastic fines (SW)
				Ì	27 —	Total Depth 25.0 feet —
					28 —	·]
					29 —	
					30 -	· —
		ı	,		31 —	
					32 —	• –
					33 +	7 1
		İ			34	
					36	
1 1			·		37	
1 1					38 -	
					39 —	<u>_</u>
i 1	1				40 —	
		,			41 +	
					42 -	
					43 —	-1
					44 —	- <u></u>
					45 —	
} }					46-	· — 1
					47 —	-] -
-	WA	rer L	EVEL D	ATA	PROFES	SSIONAL GEOLOGIST
DA	Œ	Τ				
TI	Œ	1			CT/MILET	TOP
GWI	L.	1			SIGNATU	IKE
CAS DE	SING PIH				TYPED N	VAME

PR	OJEC	r nam	E / LO	CATION		PROJECT NUMBER: 40-88-666	BORING NUMBER: M	W-2 SHEET	1 OF 1
34	20 S	an Pa d, CA	blo Av	enue		CONTRACTOR: West Hazmat		DRILLING METHOD: H	s.A.
	VTG1	u, ca	•			DRILLER: Randy F	eidhead	DRILLING RIG: C	ME-55
}						START: 8:00/4-10	-89	COMPLETED:	9:45/4-10-89
OM	ND NER:		مستحدين	1 Compa	ny	SURFACE ELEVATION: 100.25	(relative)	LOGGED BY: Hal Han	sen
STAY	S N A U	BLOW TS	S I M T P L	S R M C P				CONTAMINANT OBSERVATION	
SAMPE	M M P B	U W W	MT	MCPO	DEPTH	DESCRIPTIONS OF MA	eterials Is	INSTRUMENT:	OBSERVATION NOTES
E	EE	T S	L E(ft)	ILVI	SCALE 1"= 4'			UNITS: Tip	1
					1 + 1	ASPHALIT AND ROAD BY	SE ·		1
]	i i	, + 5	IAY; very dark gra blastic, slightly m no sand (CR)	y, highly		
					2 T	no sand (CR)	ب ب 		\
		:			<u>, † _ </u>	وجياد من أنا بين يونو بار أنا بين بيدارا أنا كان بيرياد ما أ		}	
CA	MW2	6/	5.0-	18	5 + 5	SANDY CLAY; dark on gray, moderately id- icity, slightly mo grades to gravel at of the unit (CL)	reenish w plas	25	Moderate
	[1]	19/	6.5] [6	icity, slightly mo grades to gravel at	pist, sand bottom —	1	odor
					7 + 6	of the unit (CL)	 (1	
					8 +		•	1]-
					9 🕂) (4),p	1	Į Į
CA	MW2	9/ 10/ 14	10.0- 11.5	17	10 —		· · · · · · · · · · · · · · · · · · ·	75	Moderate odor
	2	14	11.5		11 		,		COLL
					12 —		· · · · · · · · · · · · · · · · · · ·]	[
					13 🕂		·	1] [
					14 —			1	
CA	MW2	4/5/	15.0- 16.5	16	15	SILIY CLAY; dark ve	allowish	0	No odor
					16 —	SILITY CLAY; dark ye prown, moderately licity, moist stiff toward bottom of the	low plas- — gravel	1	
						toward bottom of the	e unit -	1	
]					18 —	• •		4	
					19 —		-	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CA	MW2	12/ 26/ 35	20.0- 21.5	17	20	Notal Depth 20.0 fe	eet	10	No odor
		35			21 —	-	-	1	
					22		-	4	\ .
		i			23 —		•••	1	
	WAY	TER L	EVEL D	KTA	PROFESS	IONAL GEOLOGIST			
DA	ΤE								
TI	ME				_ SIGNATUR	2			
GW	L					-			
CA DE	SING PIH				TYPED NAM	Æ			
						l_			

PR	OFC.	r nam	E / LO	CATTON		PROJECT NUMBER: 40-88-66	BORING NUMBER: M	W-3 SHEET	1 OF 2
34	20 S	an Pal	blo Av	enue		CONTRACTOR: West Hazmat		DRILLING METHOD:	H.S.A.
·	VT CIT	u, un				DRILLER: Randy	Reidhead	DRILLING RIG:	CME-55
						START: 11:00/4	-10-89	COMPLETED:	1:00/4-10-89
	NER:			l Compa	ny	SURFACE ELEVATION: 100.0	0 (relative)	LOGGED BY: Hal Hans	en
STAY	STSNBC SI SR AVAULO AN AE MPMMOU MT MC DEPIH PEPBWN P PO L LE T L E ER S E(ft) E(in) 1"= 4'				DEPIH	DESCRIPTIONS OF M	ATERIALS	CONTAMINANT OBSERVATION	GENERAL OBSERVATION
SAYP MPL E	HHT ZEE	ಸಂಗಹ ಚಿಕ್ಕದರಿಂ	P L E(ft)	RECOVÍ SAMPLE	SCALE	AND CONDITIO	NS	INSTRUMENT: UNITS: Tip	NOTES
					1 - 2	ASPHALIT AND ROAD B	 		
CA.	MW3	8/	5.O-	18	2 -	IAY; very dark gr blastic, slightly no sand (CR)	ay, highly moist,	o	No odor
Ğ	MW3 -1	8/1/13	5.0- 6.5	10		SHITY CLAY; olive light olive brown moderately high plants (C	brown with mottles, asticity,		NO COOL
CA.	MW3 -2	13/ 23/ 21	10.0- 11.5	18	10 ————————————————————————————————————			0	No odor
CA.	MW3 -3	11/ 14/ 15	15.0- 16.5	17	14 ————————————————————————————————————	SANDY CIAY; yellow moderately low pla moist, fine sands	ish brown, sticity, (CL)	o	No odor
CA.	M¥3 ~4	3/8/ 15	20.0- 21.5	15	20 21 22 23			0	No odor
اــــا	WAT	TER T	EVEL D	ATTA	PROFESSI	CONAL GEOLOGIST		<u></u>	J
DA			7						
TI		-							
GM.					SIGNATURE				
CA: DE	SING PIH				TYPED NAM	Œ			

PR	OJEC	r nam	E / LO	CATTON		PROJECT NUMBER: 40-88-60	BORING NUMBER:	MW-3 SHEET	2 OF 2	
34	20 Si	an Pal	blo Av	enue		CONTRACTOR: West Hazmat	Drilling	DRILLING METHOD: H	.s.a.	
04	VŸĆII ¥	a, wa				DRILLER: Randy I	Reidhead	DRILLING RIG: CME-55		
<u></u>						START: 11:00/4	-10-89	COMPLETED:	1:00/4-10-89	
	NER:			1 Compa	any	SURFACE ELEVATION: 100.50	o' (relative)			
SAMPLE	S N A U M M	B C C D	S N M T P	RECOV MPL	DEPIH	DESCRIPTIONS OF 1	aterials	CONTAMINANT OBSERVATION	GENERAL OBSERVATION	
PE	PLE PLE	BLOW	P L E(ft)	P O L V E(in)	SCALE 1"= 4'	AND CONDITIO	ONS	INSTRUMENT: UNITS:	NOTES Odor	
CA.	MW3 -5	25/ 25/ 42 18/ 23/	25.0- 26.5	14	26 —— 27 —— 28 —— 29 —— 30 ————	RAVELLY SAND; broand, gravel, satisfing plastic fine		0	No odor	
		39			31 — 32 — 33 — 34 — 35 — 36 — 37 — 38 — 39 — 40 — 41 — 42 — 43 — 44 — 45 — 45 — 45 — 45 — 45 — 45					
	חבשו	T CENT	EVEL D		PROFFECT	ONAL GEOLOGIST	<u> </u>	<u></u>		
		1	الا البناءا		FINEEDOL	CANADATA			·	
DA'		 			_					
TI		<u> </u>			SIGNATURE	:				
GW	<u>.</u>									
CA: DE	SING PIH				TYPED NAM	Œ				

PR	OJEC	r nam	E / IO	CATION		PROJECT NUMBER: 4	0-88-666	BORING NUMBER:	MW-4 SHE	er 1 of 2
34	20 S	an Pa	blo Av	enue		CONTRACTO West	R: Hazmat Dr	illing	DRILLING METHOD:	H.S.A.
. va	KTGL	i, ca	•			DRILLER:	andy Reid	head	DRILLING RIG:	CME-55
						START:	2:30/4-1	.0-89	COMPLETED	6:30/4-10-89
	NER:			Compar	TY Y	SURFACE ELEVATION	: 99.03'	(relative)	IOGGED BY: Hal Hai	nsen
STAY	S N	B C L O	S I A T	SRAE					CONTAMINAL OBSERVATION	VI ON GENERAL
SAMPLE	M M P B	Ŭ Ŭ W W	M T P L	RECO.	DEPTH	DESCRIPTIO AND C	NS OF MAI CONDITIONS	ERIALS	INSTRUMEN	- OBSERVATION
LE	LER	BLOW TS	L E(ft)	1 L V 1	SCALE 1"= 4'				units:	Odor
					1 7	SPHALIT AND	ROAD BAS	E .		
			}		2 + I	FAN CIAY; Lighly plas poist, no s	very dark	gray,		
					3 + n	noist, no s	and (Cf	i) -		
								•		
CA	CA MW4 17/ 5.0- 18 5				5				7	Slight odor
	-1	25/ 32	6.5		6 6	SIMY CLAY; ray, mediu slightly mo	dark gre m plastic	enish —		
					7 + 1	clightly mo	ist, some	gravel -		
					8 —			•	1	
					9 —	Time or are	المراجعة والمراجعة	ماد آدرمی (۱	1	
CA	MW4	6/8/	10.0-	17	10 - 1	SIIIY CLAY; prown, dark pottles, mo poist (CI	cark yel greenish	J-drsh'	o	No odor
	-2	12 ′	11.5		11 — i	poist (CI	veracerà	hraperi,	}	
					12 —			· · · · · · · · · · · · · · · · · · ·]	
			[13 —			· · · · · · · · · · · · · · · · · · ·	1	1
			ĺ		14 5	ANDY CTAV	vellowis	sh brown.	1	1
CA	MW4	8/9/ 12	14.0- 16.5	17	15 🕂	oderately	plastic,	sh brown, moist, — o a coarse of the —	0	No odor
					16	sand at the	bottom o	of the	1	. [
					1/ 🛨					
					18 —				1	
				,	19 —				1	
CA	MW4	9/8/ 24	20.0- 21.5	15	20 —				0	No odor
					21 —			بچ <u>ن</u> ا	1	
					22 —				1	
			}		23 —				1	
 	WA'	IER L	EVEL D	ATA	PROFESSI	ONAL GEOLO	GIST		<u>. </u>	
DA	TE									į
TI	ME	1			CTARMEN					
GW	L	1			SIGNATUR	:				
CA	SING PIH				TYPED NAM	Œ				
		<u>.l</u>								

PROJECT NAME	/ LOCATION		PROJECT NUMBER: 40-88-666	BORING NUMBER:	MW-4 SHEET	2 OF 2
3420 San Pab	lo Avenue		CONTRACTOR: West Hazmat Dr	illing	DRILLING METHOD:	H.S.A.
Oakland, CA			DRILLER: Randy Reidhead I		DRILLING RIG: CME-55	
1			START: 2:30/4-10	-89	COMPLETED:	6:30/4-10-89
ŧ	ll Oil Compa	ny	SURFACE ELEVATION: 99.03 (1	relative)	LOGGED BY: Hal Ha	nsen
STANDOUNT SAYAM PABE LE ER	SI SE A CO POUL (it)	DEPIH	DESCRIPTIONS OF MAT	POTATE	CONTAMINANT OBSERVATION	GENERAL OBSERVATION
BEBRAN	PO	SCALE	AND CONDITIONS	THE COLUMN	Instrument:	NOTES
E ER S	Ē(ft) Ē(in)	1"= 4"			UNITS:	Odor
		23 —		-		
		24 ———	maymy ter graphs have a			
CA MW4 25/ -5 24/ 30	25.0-16 26.5	25 — \$	RAVELLY SAND; brown and, saturated, gra- o 1", some plastic	, coarse . vel 1/2" — fines (SW)	0	No odor
30		26 —		•		
		28 —		•		
		29 —				1
CA MW4 19/ -6 22/ 37	30.0-17 31.5	30 - 7	otal Depth 31.5		0	No odor
37		31 -		-		
		32 +		•		
		34				
		35 🕂		<u> </u>	•	
1 1 1		36 —			}	
}		37 —		•••••	•]
}		38 —			1	
		39 40 -		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]	
		41		-		
		42		-	-	
		43 🕂		-		
	}	44 —		,	}	
		45		-	1	
WATER LE	VEL DATA	PROFESSI	ONAL GEOLOGIST			
DATE						
TIME		SIGNATURE	;			
GWL		1				
CASING DEPTH		TYPED NAM	Œ			·

1		•	CATION		PROJECT NUMBER: 40-88-666	BORING NUMBER: M	W-5	SHEET	1 OF 2
Oaklar 3420 S Oaklar	San P	ablo A	venue		CONTRACTOR: West Hazmat Dril		DRILLI		.s.A.
					DRILLER: Randy Reidhead		DRILLING RIG: CME-75		
4					START: 12:15/01-19-90		COMPLE		2:40/01-19-90
LAND OWNER:	Shel	1 0il	Company	,	SURFACE ELEVATION: 20.91		LOGGED		
STSNAYAU	B C	SIAN	SAE MCO PO			· · · · · · · · · · · · · · · · · · ·	CONTAM	TIVANT	GENERAL
SAMPLE MPLER	TIPE LPA 1			DEPIH SCALE 1"= 4'	DESCRIPTIONS OF MAY AND CONDITIONS	INSTRU OVM UNITS:	' 1	OBSERVATION NOTES	
				1	Asphalt road base	-			
				2 + (CIAY; very dark gravolastic, slightly mi (CH)	y highly -			
CA MW- 5- 1	9/ 12/ 38	5.0- 6.5	18	5 — S 6 — I	SANDY CLAY; yellowi: moderately plastic, moist (CL)	sh brown, — slightly ·	50		Slight odor
CA MW-	12/	10.0	18	8	Catamatad	-			
CA MW-5-2	12/ 16/ 9	10.0- 11.5	10	10	Saturated	- - - -	0		No odor
CA MW- 5- 3	5/ 11	15.0- 16.5	18	15	SIMITY CLAY; dark ye brown, moderately paturated (CL)	ellowish -	0		No odor
CA MW- 5- 4	4/4	20.0- 21.5	18	20	·	-	0		No odor
WAI	ER L	VEL D	VTA	GEOLOGIS	sr l		<u> </u>		
DATE	02-0)2		91.00	Lansen				
TIME	TIME 2:40								
GWL	7.89	,		SIGNATURE	Ī				
CASING DEPIH	CASING Hal Han			Hal Hanse					

PROJ	JECT NAM	E / LO	CATION	-100	PROJECT NUMBER: 40-88-666	BORING NUMBER: N	M-5 SHEET	2 OF 2
342	kland Sh 20 San F	ablo A	venue		CONTRACTOR: West Hazmat Dril		DRILLING	H.S.A.
Oak	kland, C	'A			DRILLER: Randy Reidhead		DRILLING	CME-75
					START: 12:15/01-1	19-90	 	2:40/01-19-90
LAND) ER: Shel	1 Oil	Company	7	SURFACE ELEVATION: 20.91		LOGGED BY: Hal Hanser	<u> </u>
STS	NBC	SIAN	S R A E				CONTAMINANT OBSERVATION	GENERAL
M P M P L E	B L OUNTS	S I A N M T P L E(ft)	SAECOVIII)	DEPIH SCALE 1"= 4'	DESCRIPTIONS OF MAR AND CONDITION	aterials IS	INSTRUMENT: OVM UNITS: ppm	OBSERVATION
CA M	CA MW- 26/ 25.0- 12 25 - G 5- 47/ 26.5 26 - 5 5 for				GRAVELLY SAND; browsand, saturated, miplastic fines (SW) Total Depth at 26.5		1	No odor
				28	-	-		
				31		_		
				33 —		<u>.</u> .		
	ļ			35 				
				38 +			1	
				39 +]	
				41 —			<u> </u>	
		!		43 —		-		
į		,		45 —		_]	
				46				
	WATER I	EVEL D	ATA	GEOLOGI	st T		-	
DATE	02-	02			Haroen			
TIME			_	SIGNATUR	E			
GWL CASI DEPT	7.8 NG H 25			Hal Hans				
CHE I	23		l	11111111111				

,

P	SO JEX	T NAN	Æ / IC	CATION		PROJECT	BORING	l crim		
1	Dakla	ınd St	nell			NUMBER: 40-88-66	6 NUMBER: M	W-6 SHE	T 1 OF 1	
	3420	San I	Pablo A	venue		CONTRACTOR: West Hazmat Dri	lling	DRILLING METHOD:	H.S.A.	
						DRILLER: Randy Reidhead		DRILLING RIG: CME-75		
L					·	START: 9:00/01-1	9-90	COMPLETED	1:00/01-19-90	
O			1 Oil	Company	7	SURFACE ELEVATION: 22.32		LOGGED BY Hal Hans	en	
STAY	SN	BG	S I A N M T	S R M C P O				CONTAMINAL OBSERVATION	VI ON GENERAL	
S T M P P L E	M M E	WN	M T P L	M C P O	DEPIH	DESCRIPTIONS OF M AND CONDITION	ATERTALS NS	INSTRUMEN	- OBSERVATION	
LE	S T S N B C S I S R A Y A U L O A N A E M P M M O U M T M C DEPIH P E P B W N P P O L L E T L L SCALE E E R S E(ft) E(in) 1"= 4'			SCALE 1"= 4'		****	OVM UNITS: pp	<u>-</u>		
				-\-',		Asphalt road base	·	ONTID: Div	<u> </u>	
	}				1	CIAY; very dark g	ray,			
1	i				2 —	CLAY; very dark g highly plastic, s moist (CH)	lightly			
]]	3 —	, -	-	İ		
		,	_		4					
CA	MW- 6-	10/ 12/ 38	5.0- 6.5	18	5 —	SANDY CLAY; green moderately plasti moist (CL)	ish gray, — c, slightly.	0	No odor	
	1	38			6 —	moist (CL)	-			
				Ì	7 +		-			
ł					8 ——			,		
}	'				9 🕂					
CA	MW- 6-	9/ 13/ 20	10.0- 11.5	18	10 —	Color change to you	ellowish —	14	Slight odor	
	2	20			11 🛨		-			
]					12 —					
					13 —	Saturated				
					14				-	
CA	MW- 6- 3	5/ 8/ 11	15.0- 16.5	18	15 —	SILTY CLAY; yello moderately plastic saturated (CL)	wish brown,	0	No odor	
	3	ĭí	10.5		16 —	saturated (CL)	·			
					17 —		_			
					18 —			i		
				1	19 🕂		-			
CA	MW	4/.	20.0- 21.5	18	20			0	No odor	
	6- 4	4/ 11	21.5		21 —	Total Depth at 2	1.5 feet -			
					22					
					23 —					
					<u> </u>		•			
			EVEL D	ATTA	GEOLOGIS					
DA'		02-			- Wal	Warsen			j	
TI		11:			SIGNATUR					
GW.		7.8	6		Hal Hanse	i				
CA: DE	CASING DEPTH 20' TYPED NAM									
									_	

Pi	(O)EC	T NAM	Œ/IC	CATION		PROJECT	BORING	SHEE	T 1 OF 1	
1 3	3420	nd <i>S</i> h San I nd, C	Pablo A	venue		NUMBER: 40-88-60 CONTRACTOR: West Hazmat Dr		DRILLING METHOD:	H.S.A.	
		,				DRILLER: Randy Reidhead		DRILLING RIG: CME-75		
						START: 11:00/01-	-19 - 90	COMPLETED:	12:00/01-19-90	
OW				Company	7	SURFACE ELEVATION: 20.30	5	LOGGED BY: Hal Hanse	en	
SAY MPLE	SAUM BEER	COUNTS BLOW	S I A T P L E(ft)	SREMCO PO L(in)	DEPTH SCALE 1"= 4'	DESCRIPTIONS OF AND CONDITION	MATERIALS ONS	CONTAMINAN OBSERVATIO INSTRUMENT OVM UNITS: pom	OBSERVATION NOTES	
					1 - 1	Asphalt road base				
					2 -	IAY; very dark g plastic, slightly (CH)	ray, highly moist —			
CA	MW- 7- 1	16/ 22/ 30	5.0- 6.5	18	+	SANDY CLAY; green: wderately plastic wist (CL)	ish gray, - c, slightly	95	Moderate odor	
					7 8 9 					
CA	MW- 7- 2	9/ 15/ 25	10.0- 11.5	18	11 -	Color change to ye orown Saturated	ellowish — - 	85	Moderate odor	
CA	MW-7-3	6/ 8/ 10	15.0- 16.5	18	14	GILTY CLAY; yellow moderately plastic (CL)	wish brown, c, saturated	5	Slight odor	
CA	MW- 7- 4	6/ 8/ 14	20.0- 21.5	18	18 ————————————————————————————————————	Otal Depth at 21.	.5 feet	0	No odor	
	WA	एस्ट र	EVEL D	ATA	GEOLOGIS	रा			-	
DA		02-								
<u> </u>	TIME 11:52 Kul L			Lansen						
	GWL 8.91 SIGNATURE									
	CASING Hal Hanse									

P	XOJEX	T NAI	Æ / IC	CATION	· · · · · · · · · · · · · · · · · · ·	PROJECT	BORING		SHEET 1 OF 1	
1	\akla	ınd Sh	- 11			NUMBER: 40-88-6	66 NUMBER: 1			
1 3	3420	San I	Pablo A	venue		CONTRACTOR: West Hazmat Dr	illing	DRILL METHO	D: H.S.A.	
		. ,				DRILLER: Randy Reidhead		DRILL RIG:	ING CME-75	
						START: 2:30/01-	18-90	COMPLETED: 3:45/01-18-9		
O				Company	7	SURFACE ELEVATION: 20.9	5	LOGGE Hal	D BY: Hansen	
STAY	SNAU	BLOW TS	S I A N M T L E(ft)	S R M C P O				CONTAI	MINANT VATION GENERAL	
S T M F L L	M M P B	N N N	MT	M C P O	i	DESCRIPTIONS OF 1 AND CONDITION	MATERIALS ONS	ļ	OBSERVATION MOTES	
E	ER	Š	E(ft)	L V E(in)	SCALE 1"= 4'			OVM UNITS	1	
					1 A	sphalt road base				
					2 + 0	IAY; very dark go lastic, slightly	ray, highly moist]	.	
					3 — (CH)	_	1		
			į į		4 —			1		
CA	MW- 8-	16/ 27/ 28	5.0- 6.5	18	5-	AND WAY.	-	3	Slight odor	
	1	28	0.5		6 — m	ANDY CLAY; green oderately plastic oist (CL)	c, slightly—	1		
					7——"	bisc (ch)	_			
					8			}		
					9 —		_	1	Ì	
CA	MW-	13/	10.0- 11.5	18	+	aturated		100	Moderate odor	
[.	2	19			11		-	1		
		i			12 +			1		
					14 —					
CA.	MW-	4/	15.0-	18	15			0	No odor	
}	₩- 8 3	4/	15.0- 16.5		16 —		_]	I To Guest	
					4	ILIY CLAY; dark y	yellowish -	1		
					18 - b	IIIY CLAY; dark y rown, slightly pl aturated (CL)	lastic,	1		
		į		1	19 🕂		-	1		
CA.	MW-	9/	20.0- 21.5	18	20 —			0	No odor	
	4	9/ 11/ 16	21.5		21 —			1		
					22	Total Depth at 23	l.5 feet —	1		
				1	23 —		<u></u>			
	WAT	TER L	EVEL D	ATA	GEOLOGIS	T		1		
DA'		02-		1		Harsen				
TI	ME	11:	49	1						
GW	Ĺ,	7.3	2		SIGNATURE	1				
CA	SING PIH	20	,		Hal Hanse				ļ	
176	- 111	20	1		TIENT MAN	نهنه		_		

}	KOUEC	I NAI	Æ / 1.C	CATION		PROJECT NUMBER: 40-88-666 NUMBER: MW-9 SHEET 1 OF 1
1 3	3420	ind St San I ind, (Pablo A	venue		CONTRACTOR: DRILLING West Hazmat Drilling METHOD: H.S.A.
	<i></i>		- 			DRILLING Randy Reidhead RIG: CME-75
						START: 12:30/01-19-90 COMPLETED: 2:00/01-19-90
CV	ND WER:	Shel	1 Oil	Company	7	SURFACE LOGGED BY: ELEVATION: 21.19 LOGGED BY: Hal Hansen
SI	SN	BC	SI	SR		CONTAMINANT
SAMPLE	SAMM MAPLE R	BHOW TS	S I M T P L	S R M C M C P L V	DEPIH SCALE	DESCRIPTIONS OF MATERIALS AND CONDITIONS OBSERVATION OBSERVATION OBSERVATION OBSERVATION OBSERVATION OBSERVATION OBSERVATION OBSERVATION
Ē	ĒŔ	ŝ	Ē(ft)	Ē(in)	1"= 4"	OVM UNITS: ppm
	} :				1 +	Asphalt road base
}			Ĭ		2	CIAY; very dark gray, highly- plastic, slighly moist
			}		3	(CH)
}					4 —	
CA	MW-	9/	5.0-	10	5	SANDY CLAY; yellowish brown 0 No odor
	9- 1	9/ 23/ 27	6.5		6	SANDY CIAY; yellowish brown, 0 No odor moderately plastic, slightly moist (CL)
}				}	7 井	
l		i			8 —	
					9 —	
CA	MW-	16/	10.0- 11.5	18	10 —	30 Slight odor
	9-	16/ 21/ 31	11.5		11 —	4
	1			Ì	12 —	
					13 —	1
]			Ì	14 ———	
CA	MW-	5/	15.0- 16.5	18	15	SILTY CLAY; dark yellowish - 0 No odor
	MW- 9- 3	5/ 9/ 12	16.5		16 —	STITY CLAY; dark yellowish — 0 No odor brown, slightly plastic saturated (CL)
	}				17 +	4
					18	
					19 —	4
CA	MW-		20.0-	18	20 —	0 No odor
	9 - 4	i	21.5		21 —	4
]				22	Total Depth at 21.5 feet
					23 —	4
		THEFT T	in the P	ACTIN	<u> </u>	
D31			EVEL D	ATM	GEOLOGIS	
DAY		02-			- Wal	Hansen
TI		11:			SIGNATUR	æ
GW.		9.0	4		Hal Hanse	sen
DE	SING PIH	20	•		TYPED NAM	ME

P	ROJECT I	VAME/LO	CATIO)	1	Project Number	40-88-666	Boring Number	MW-10
3420 S	nd Shell San Pablo	. •			Con- tractor	West Hazmat	Drilling Method	H.S.A 10 ⁴
Oakiai	nd, Califor	mia			Driller	Tom Wright	Drilling Rig	Acker
 					Start	9:00 a.m. 10/23/91	Completed	10:45 a.m. 10/23/91
Landow	vner: City	of Oakla	nd		Surface Elev		Logged By	Charles K. Almeida
Sa	mple		Sar	nple	Depth			Observations
Туре	No	Blow Count	Integral erval (ft)	Rec- overy (in.)	Scale 1" = 4'	Descriptions of and Condit	Materiais ions	Instrument: General OVM Observation Units ppm Notes
					_	Asphalt/Road	d Base	-
					1 -		7	
					2 -		-	
Ï	! !				3 -		7	-
		7.00		10	4 -	- OT AXZ - 214 - 1 - 1		
CA	MW- 10-1	7-20- 25	5-6.5	16	2	CLAY; silty dark gray, dry (CL)	medium plasticity;	- 55
1					6 -	 - 		-
					, ,	- -	7	-
			!		8 -			-
			40	10	9	- -	-	-
CA	MW- 10-2	7-12- 21	10- 11.5	18	10 -	CLAY; silty, some coar	se grained sand	213
					11 - 12 -	CLAY; silty, some coan and .25"- diameter angu moist (CL)	ilar grains, very	-
					13	 -	3	
	,		l		-+	 - -	_	-
	2077	40.15	15	40	14 -			-
CA	MW- 10-3	4-8-15	15- 16.5	18	15	CLAY; silty gray green, gravely sand, minor frag	, medium to coarse	118
			!		16 -	gravely sand, minor trag(CL)	gments; very moist	-
					17		-	-
			i		18 -		7	-
					19	-	7	-
CA	MW- 10-4	6-15- 20	20- 21.5	18	20	SANDY SILT; clayey to fine grained sand, soft;	an brown, very	- 51
		i		!	21 -	•	· · · · · · · · · · · · · · · · · · ·	-
			,	į	22	Total Depth at	21.5 ft	-
					23	- •	7	-
		BOREHO	LE WA	TER LEV	ÆL DATA			
D	ate	10/23	Į.					Sheet 1 of 1
ž	ime	10:50	a.m.				A	,
G	WL.	16.5	4				Delt Delt	a l
Ca De	Casing 19.3 Depth						Environme Consultant	ntel ts, inc.

P	ROJECI 1	VAME/LO	CATION	4:	Project Number	40-88-666 Brumber MW-11
3420 S	nd Shell an Pablo				Con- tractor	Drilling West Hazmat Method H.S.A. 10"
Oaklaı	nd, Califor	rnia			Driller	Tom Wright Rig Acker
					Start	12:20 p.m. 10/23/91 Completed 2:15 p.m. 10/23/91 p.m.
Landow	ner: City	of Oakla	nd		Surface Elevi	Logged By Charles K. Almeida
Sa	mple		Sar	nple	Depth	Observations
Туре	No.	Blow Count	Int- erval (ft)	Rec- overy (in.)	Scale 1" = 4'	Descriptions of Materials and Conditions Instrument: General OVM Observation Units: ppm Notes
	39.50				1 -	Asphalt/Road Base
					2 - 3 - 4 -	
CA	MW- 11-1	4-14- 35	5-6.5	15	5 -	CLAY; silty dark brown, minor fine grained sand, medium plasticity—dry (CL) Tan brown, very moist.
					6 -	(CL)
					7 <u>-</u> 8 -	
					9 -	<u>+</u>
CA	MW-	4-18-	10-	10	10 -	Tan brown, very moist.
	11-2	31	11.5		11 -	+
					12 -	- -
				:	13 —	<u> </u>
		:			14 —	gradational contact
CA	MW- 11-3	6-10- 13	15- 16.5	15	15 -	SILT; clayey, tan brown, minor fine to 0 medium grained sand; saturated (ML)
					16 – 17 –	E E
į		· •			18 -	<u>+</u>
					19 -	‡ ‡
CA	MW-	16-24-	20-	20	20 -	CLAYEY SILTY GRAVEL; brown, .25- 0
	11-4	35	21.5		21 -	sand; saturated (GC) Total Depth at 21.5 ft.
:					22 –	T
		 			23 –	
		BOREHO	LE WA	TER LE	VEL DATA	
) T	ate	10/23				Sheet 1 of 1
Ţ	ime	3:15	p.m.			A D

GWL

Casing Depth 14.0

19.0

Delta Environmental Consultants, Inc.

ŧ

٠.

CAMBRIA

Attachment D

Ground Water Analytic Data

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	Т	E	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	ıs in μg/L) —		<u> </u> →	(mg/L)
. ans 7 1	08/06/91 ^{SPH}	10.00							
MW-1		10.86	22.000	2.700	360	550	2 700		
	10/23/91	11.05	32,000	2,700			3,700		
	01/28/92	10.84	14,000	1,000	106	450	1,600		
	05/05/92	9.42	98,000	11,000	1,200	3,500	18,000	====	
	07/13/92	11.36	11,000	1,100	130	740	1,300		
	10/12/92 ^{SPH}	13.14							
	01/12/93 ^{SPH}	7.52		110					
	04/06/93 ^{SPH}	7.13							
	07/12/93 ^{SPH}	11.02							
	10/13/93 ^{SPH}	12.18							
	01/20/94 ^{SPH}	9.18					*******		
	04/13/94 ^{SPH}	8.72							
	07/19/94	8.76	17,000	420	140	530	1,300		
	10/27/94	10.49	23,000	1,200	130	990	960	<u></u>	
	01/03/95	6.15	31,000	610	160	1,200	5,000		
	04/13/95	5.24	20,000	340	42	680	2,900		*
	06/3095	7.24	16,000	450	62	460	1,200		
	10/11/95	9.48	8,400	660	47	510	850	8,000	
	10/13/95		7.400	730	54	490	1,100	8,200	
	01/17/96	6.48	24,000	570	110	820	2,900	15,000	
	04/10/96	5.38	20,000	120	11	420	1,400	15,000	
	07/30/96	7.61	7,900	240	22	170	300	12,000	*****
	10/17/96	8.66	6,600	1,000	20	120	130	10,000	1.4
	01/22/97	5.00	13,000	170	<50	330	1,200	18,000	1.6
	04/01/97	6.42	7,900	240	26	130	200	6,400	1.4
	07/14/97	8.92	5,000	<20	<20	59	61	9,000	1.9
	10/08/97	9.43	3,200	180	7.6	18	6.1	11,000	4.8
	01/19/98	1.20	8,100	39	<20	280	660	1,100	2.6
	01/19/98 ^{dup}	1.20	8,200	43	<20	280	660	1,100	2.6
	04/28/98	4.81	2,900	62	<10	160	370	1,200(1,200)	2.4°

CAMBRIA

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	Τ	E	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	sinμg/L) —		-	(mg/L)
							40.000		
MW-2	08/06/91	9.72	50,000	15,000		2,700	13,000		*
	10/23/91	10.03	120,000	11,000	1,400	3,500	19,000		
	01/28/92	8.78	49,000	7,400	800	1,800	8,300	_~~	
	05/05/92	7.58	52,000	12,000	1,100	2,200	12,000		
	07/13/92	9.63	47,000	15,000	2,400	4,500	16,000	_ 	
	10/12/92 ^{SPH}	11.66			*****				
	01/12/93 ^{SPH}	7.13							
	04/06/93 ^{SPH}	6.40							
	07/12/93	8.75	59,000	12,000	950	2,400	11,000		
	10/13/93	10.28	54,000	14,000	1,200	3,700	22,000		
	01/20/94								==
	04/13/94	7.35	79,000	9,400	740	2,100	12,000		
	04/13/94 ^{dup}	7.35	110,000	11,000	710	2,400	13,000		
	07/19/94	8.24	63,000	13,000	810	1,900	13,000		
	07/19/94 ^{dup}	8.24	12,000	12,000	140	340	12,000		
	10/27/94	10.26	64,000	8,800	480	2,100	10,000		
	01/03/95	6.44	67,000	9,800	720	2,800	11,000	~~~	
	01/03/95 ^{dup}	6.44	58,000	9,700	620	2,700	12,000		
	04/13/95	5.89	83,000	10,000	490	2,600	13,000		
	04/13/95 ^{dup}	5.89	74,000	9,500	350	2,100	11,000		
	06/30/95	7.41	65,000	12,000	1,800	2,400	12,000		
	10/11/95	8.02	68,000	8,800	840	3,000	13,000	1,400	
	01/17/96	7.42	79,000	12,000	640	2,700	14,000	2,200	
	01/17/96 ^{dup}	7.42	78,000	12,000	920	2,500	12,000	2,500	
	04/10/96	6.91	84,000	7,200	310	1,700	7,800	2,900	
	07/30/96	7.63	26,000	6,800	210	1,300	5,500	4,500	
	10/17/96	8.27	46,000	9,800	340	2,000	6,500	4,900	1.8
	01/22/97	7.09	52,000	6,200	220	1,400	6,600	3,000	1.9
	01/22/97 ^{dup}	7.09	54,000	6,100	230	1,400	6,500	2,600	1.9
	04/01/97	6.91	69,000	6,000	380	2,400	11,000	3,800	2.0

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	E	x	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	s in μg/L) —			(mg/L)
	07/14/97	9.93	53,000	7,700	260	1,600	5,200	2,400	1.2
	07/14/97 dup	9.93	59,000	8,700	400	1,000	6,900	2,700	1.2
	10/08/97	10.43	56,000	8,700	320	1,600	5,100	4,200	2.1
	10/08/97 ^{dup}	10.43	53,000	8,300	330	1,600	5,200	2,900	2.1
		3.60			230	2,400	12,000	2,700	2.1
	01/19/98 04/28/98	WARRANTON AND THE PROPERTY OF	64,000	10,000		na a compression de la compressión del compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compresión de la compressión de la compressión de la compressió	 		2.4 2.0°
	04/28/98 04/28/98 ^{dup}	4.81 4.81	45,000 4,400	9,800 9,200	310 260	2,700 2,500	11,000 9,700	2,400(2,000) 2,300	2.0°
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
/IW-3 ^d	08/06/91	11.18	430	8	1	4	15	<del></del>	
	10/23/91	11.69	390	2.10	<0.3	0.48	2		
	01/28/92	9.99	190	< 0.5	<0.5	<0.5	<0.5		
	05/04/92	9.46	190	<1	<1	<1	0.71		
	07/20/92	11.29	200°	< 0.5	<0.5	< 0.5	<0.5		
	10/12/92	13.10	180°	<0.5	< 0.5	< 0.5	< 0.5		
	01/12/93	7.32	180	<0.5	2.3	0.9	5.6		
	01/12/93 ^{dup}	7.32	260	< 0.5	< 0.5	< 0.5	< 0.5		
	04/06/93	7.44	280	<0.5	< 0.5	< 0.5	< 0.5		
	07/12/93	10.62	310 ^a	<0.5	< 0.5	<0.5	<0.5		
	10/13/93	12.05	150	<0.5	< 0.5	< 0.5	<0.5		
	01/20/94	9.62	180	< 0.5	< 0.5	< 0.5	< 0.5		******
	04/13/94	9.15	270	<0.5	<0.5	<0.5	<0.5		
	07/19/94	10.13	190*	< 0.5	< 0.5	< 0.5	< 0.5		
	10/27/94	11.66	160*	< 0.5	< 0.5	<0.5	< 0.5		
	01/03/95	6.89	100*	<0.5	< 0.5	< 0.5	<0.5		
	04/13/95	6.79	120*	<0.5	<0.5	< 0.5	<0.5		-
	06/30/95	8.94	180*	<0.5	< 0.5	< 0.5	<0.5		
	10/11/95	10.62	150	2.2	<0.5	<0.5	<0.5	2.3	
	01/17/96	7.18	120	<0.5	<0.5	<0.5	<0.5	7.8	
	04/10/96	6.76	160	<0.5	< 0.5	< 0.5	<0.5	12	
	07/30/96	9.04	57	< 0.5	< 0.5	<0.5	< 0.5	<2.5	<del></del>

g:\oak3420\qm\qmt3.xls Page 3 of 13

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	E	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	sinμg/L) —			(mg/L
	10/17/96	9.04	<50	<0.5	<0.5	<0.5	<0.5	<2.5	2.0
	01/22/97	5.03	<50	<0.5	<0.5	<0.5	<0.5 <0.5	3.7	2.4
	04/01/97	8.23	71	<0.50	<0.50	<0.50	<0.50	5.7 e	2.4 1.6
	04/01/97	9.09	√1 <50	< 0.50	<0.50	<0.50	1.5	c	1.0
								c	
	10/08/97	10.23	73	<0.50	<0.50	<0.50	<0.50	_ <del></del>	5.5
MW-4	08/06/91	10.57	1,300	28	18	68	150		
	10/23/91	10.46	1,900	97	6.10	38	77		
	01/28/92	9.54	200	7.60	< 0.5	3	3.30		
	05/04/92	8.33	690	98	3	13	<1		
	07/13/92	9.87	1,500	140	2.90	17	12		****
	07/13/92 ^{dup}	9.87	870	95	1.90	10	7.10		
	10/12/92 ^{SPH}	12.43							
	01/12/93 ^{SPH}	7.12		<b>~-</b>					
	04/06/93 ^{SPH}	7.23							
	07/12/93 ^{SPH}	10.08							
	10/13/93 ^{SPH}	11.35		<i></i>					=
	01/20/94 ^{SPH}	9.06							
	04/13/84 ^{SPH}	8.58		<b></b>		-,			
	07/18/94	9.71	12,000	230	43	230	660		
	10/27/94 ^{SPH}	10.60							
	01/03/95 ^{SPH}	5.49	Min bin yap yap						
	04/13/95 ^{SPH}	6.53							
	06/30/95	9.57	7,400	140	< 0.5	160	350		
	10/11/95	10.30	3,000	29	10	100	82	9,700	
	01/17/96	6.68	9,700	190	< 0.5	190	410	4,500	
	04/10/96	7.90	2,800	16	<0.5	$2\overline{2}$	50	6,100	
	07/30/96	8.73	1,600	68	<12	58	39	8,500	2.8
	10/17/96	7.63	4,800	120	<25	150	96	11,000	2.8
	01/22/97	5.26	12,000	83	<20	170	240	4,300	2.6

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	Е	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	sinμg/L) —			(mg/L)
	04/01/97	8.02	4,800	65	<5.0	81	93	3,200	2.4
	04/01/97 07/14/97	10.05	4,800 2,400	35	<10	30	93 20	5,200 6,000	2.4
			•	66	<10 <20	<20	<20 <20	7,300	2.0 5.9
	10/08/97	10.22	2,900	00	<20	<20		7,300	3.9
	01/19/98 ^b								-
	04/28/98 ⁵								
MW-5	08/06/91	10.23	9,100	210	27	240	660	*******	~
	10/23/91	10.89	12,000	92	18	230	450	****	
	01/28/92	8.45	3,300	130	10	180	220		,
	05/04/92	8.05	3,900	95	<12.5	260	120		,
	07/13/92	10.00	4,100	180	12	250	73		
	10/12/92 ^{SPH}	11.83				+			
	01/12/93 ^{SPH}	6.10				J			
	04/06/93	6.18	6,200	71	< 0.5	53	150		
	07/12/93	9.59	3,400	130	<0.5	170	130		-
	10/13/93 ^{SPH}	10.80			=				
	01/20/94 ^{SPH}	7.42	,						_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	04/13/94 ^{SPH}	7.05							
	07/19/94	8.57	11,000	180	13	180	260		
	10/27/94	10.14	6,900	82	<5	210	1110		چې مندان <u>د</u>
	01/03/95	5.84	12,000	110	46	790	510		
	04/13/95	5.28	10,000	61	<20	330	140		
	06/30/95	7.43	12,000	180	8.60	440	340		
	10/11/95	8.90	11,000	<50	<50	440	340	5,100	
	10/11/96 ^{dup}	8.90	11,000	95	<50	440	330	660	
	01/17/96	6.40	82,000	330	120	960	1,400	820-	
	04/10/96	5.70	23,000	<50	<50	360	190	770	
	04/10/96 ^{dup}	5.70	19,000	84	<50	430	200	590	
	07/30/96	7.71	38,000	3,000	<100	1,100	2,600	560	
	10/17/96	9.04	13,000	36	<10	210	160	720	1.4

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	E	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	s in μg/L) —		<del></del>	(mg/L)
	a o la culo cduo	0.04	11.000	55	40	100	150	450	
	10/17/96 ^{dup}	9.04	11,000	75 60	<10	180	150	450	1.4
	01/22/97	4.85	20,000	63	<50	380	390	650	1.6
	04/01/97	6.54	16,000	110	<50	390	320	2,200	1.4
	07/14/97	8.54	15,000	70	<20	220	170	450	1.8
	10/08/97	9.09	9,100	27	11	170	57	530	4.7
	01/19/98	2.11	9,500	92	<50	200	77	1,100	2.5
	04/28/98	4.90	15,000	100	53	150	80	460	2.2
∕IW-6 ^d	08/06/91	10.61	28,000	1,400	200	1,300	4,200		
Abandoned)	10/23/91	11.68	53,000	1,400	230	1,800	6,700		
,	01/28/92	8.90	87,000	1,200	470	2,000	6,600		
	05/05/92	8.01	230,000	<500	<500	3,200	11,000		
	07/13/92	10.77	2,700,000	<2,500	3,500	14,000	36,000		
	10/12/92 ^{SPH}	8.68				<u></u>			5 4 4 y g
	01/12/93 ^{SPH}	6.40							
	04/06/93	5.93	320,000	2,500	14,000	980	14,000	<del></del>	
	07/12/93	10.25	31,000	1,100	4,500	150	4,500		
	07/12/93 ^{dup}	10.25	25,000	1,200	4,800	270	4,800		,
	10/13/93 ^{SPH}	12.28							
	01/20/94 ^{SPH}	9.14							,
	04/13/94 ^{SPH}	7.67							<b>,</b>
	07/19/94 ^{SPH}	10.07					<b></b>		,
	10/27/94 ^{SPH}	11.84							<b></b>
	01/03/95 ^{SPH}	7.80							
	04/13/95 ^{SPH}	5.77							
	06/30/95	7.78	1,100,000	6,600	6,100	12,000	29,000		<del></del>
	10/11/95	10.06	30,000	130	<50	1,400	4,200	710	
	01/17/96	6.91	450,000	510	1,400	2,700	11,000	630	
	04/10/96	5.92	22,000	47	<10	350	860	<b>&lt;</b> 50	
	07/30/96	8.97	38,000	3,000	<100	1,100	2,600	560	

## **C**AMBRIA

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	E	X	MTBE	DO
Vell ID	Sampled	(ft below TOC)			(Concentration	s in μg/L) —			(mg/L)
	07/30/96 ^{dup}	8.97	38,000	450	100	1,000	3,100	800	
	10/17/96 ^{SPH}	9.87	34,000	470	<100	1,300	3,900	<500	1.0
	01/22/97	4.43	26,000	<100	<100	600	1,700	<500	1.3
	04/01/97	6.84	30,000	96	33	840	2,600	190	1.3
	07/14/97	10.30	29,000	200	<100	690	2,000	<500	2.3
	10/08/97			500 500	110	640		900	2.3 0.0
	10/08/97	10.46	<i>55</i> ,000	300	110	040	1,500	900	0.0
/IW-7	08/06/91	8.00	13,000	4,300	76	<i>7</i> 70	730		
	10/23/91	8.16	18,000	3,200	31	660	770		
	01/28/92	7.11	5,000	1,200	<10	220	54	*****	
	05/05/92	6.47	9,500	3,100	72	620	880		
	07/13/92	7.73	20,000	4,200	130	1,600	1,100	====	
	10/12/92	9.97	16,000	2,500	170	560	170	***	
	01/12/93	6.26	15,000	2,300	<50	690	440		
	04/06/93	5.92	26,000	5,400	< 0.5	1,200	3,000		
	04/06/93 ^{dup}	5.92	21,000	5,200	180	1,200	3,000		
	07/12/93	7.27	10,000	3,000	100	510	530		
	10/13/93	9.40	59,000	13,000	4,400	4,400	20,000		
	01/20/94 ^{SPH}	7.03							
	04/13/94 ^{SPH}	6.56			,		-		
	07/19/94 ^{SPH}	6.91						<del></del>	
	10/27/94 ^{SPH}	8.28							
	01/03/95 ^{SPH}	6.48		*******		-			
	04/13/95 ^{SPH}	6.54							
	06/30/95	7.08	900,000	11,000	8,500	14,000	52,000		
	10/11/95 ^{SPH}	7.88			-				
	01/17/96 ^{SPH}	7.26							
	04/10/96 ^{SPH}	6.98		*****					
	07/30/96	7.34							
•	10/17/96 ^{SPH}	7.63				=		,	

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	E	X	MTBE	DO
Well ID	Sampled	(ft below TOC)	<u> </u>		(Concentration	s in μg/L) -		<b></b>	(mg/L)
	0.1.10.0.10.0		FC 000	0.000	500	1 400	0.400	1 000	0.5
	01/22/97	6.46	56,000	2,000	520	1,400	8,400	1,800	0.5
	04/01/97	6.97	66,000	3,600	460	2,400	10,000	2,300	1.6
	07/14/97 ^{SPH}	8.90							
	10/08/97	9.21	68,000	3,200	470	2,400	9,700	3,300	2.1
	01/19/98	4.65	44,000	1,800	220	1,700	7,800	1,600	1.6
	04/28/98	6.53	82,000	1,500	<500	1,200	8,900	<2,500	1.3°
MW-8	08/06/91	9.60	32,000	3,700	1,100	1,400	6,100		
	10/23/91	9.73	63,000	4,800	1,300	1,300	6,900		
	01/28/92	7.72	32,000	1,900	750	1,400	6,300		
	05/05/92	6.48	180,000	2,200	2,000	2,700	13,000		
	07/13/92	8.55	56,000	4,500	1,500	2,700	9,100	- Section 1	
	10/12/92	9.97	34,000	2,400	550	1,400	6,400		
	10/12/92 ^{dup}	9.97	34,000	3,100	700	1,500	7,200		
	01/12/93	6.94	110,000	2,100	1,200	2,400	12,000	<u></u>	
	04/06/93	5.72	38,000	2,500	840	1,100	4,900	====	
	07/12/93	7.65	27,000	2,800	990	1,200	5,300		
	10/13193	8.25	32,000	3,300	1,300	1,600	8,400		
	10/13/93 ^{dup}	8.25	47,000	3,200	1,300	1,600	8,500		<del></del>
	01/20/94	7.25	78,000	1,900	670	1,300	6,600		
	01/20/94 ^{dup}	7.25	60,000	1,700	680	1,100	5,500		
	04/13/94	7.12	41,000	1,300	720	1,200	6,000		
	07/19/94	7.43	140,000	1,800	1,400	2,000	9,000		
	10/27/94	7.55	32,000	1,200	670	1,200	5,700		
	10/27/94 ^{dup}	7.55	42,000	1,100	650	1,100	5,700		
	01/03/95	6.04	38,000	1,000	7.00	1,500	7,500		
	04/13/95	5.04	31,000	1,200	570	1,000	5,300		
	06/30/95	5.72	110,000	2,000	1,500	2,000	9,700		
	10/11/95	7.06	36,000	170	60	1,300	6,300	510	
	01/17/96	5.84	38,000	1,000	520	1,100	6,200	950	-

g:\oak3420\qm\qmi3.xls Page 8 of 13

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	Е	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	s in μg/L) —			(mg/L)
	04/10/96	<b>5</b> .02	54.000	650	260	850	4 700	-250	
	04/10/96	5.03	54,000				4,700	<250	<del></del>
		6.36	33,000	780	330	830	4,200	1,700	
	10/17/96	5.94	35,000	750	300	1,100	5,000	1,200	1.6
	01/22/97	5.93	25,000	260	78	420	2,400	120	1.8
	04/01/97	6.24	22,000	680	180	550	2,500	. 260	1.8
	07/14/97	8.59	29,000	870	200	850	3,100	500	1.4
	10/08/97	9.04	27,000	1,000	190	960	3,000	170	4.6
	01/19/98	3.34	21,000	660	160	740	3,300	170	2.2
	04/28/98 ^b								
MW-9	08/06/91	10.33	11,000	1,700	95	520	1,400		*******
	10/23/91	11.13	20,000	1,000	47	< 0.3	940		
	01/28/92	9.02	3,500	120	<10	280	36		
	05/04/92	7.67	7,700	1,200	<50	380	630		
	07/20/92	10.26	11,000	910	<50	220	1,200		
	10/12/92	12.19	2,100	340	15	77	44	***=	
	01/12/93 ^b					*****			
	04/06/93 ^b						<del></del>		
	07/12/93 ^b								
	10/13/93	11.17	2,900	140	<5	<5	120		
	01/20/94	8.03	1,700	380	6.90	150	400		
	04/13/94	7.81	6,000	1,000	<20	450	420	****	
	07/19/94	8.96	12,000	1,400	<b>⊲</b> 5	740	1,200		
	10/27/94	11.00	10,000	1,200	160	280	860		
	01/03/95	6.60	4,400	680	7.70	180	370		
	04/13/95	6.73	1,700	270	<10	69	170		******
	06/30/95	7.32	14,000	2,200	18	900	2,600		
	06/30/95 ^{dup}	7.32	13,000	2,100	17	870	2,500		
	10/11/95	8.10	9,600	35	12	360	980	590	
	01/17/96	5.75	2,800	150	7.41	54	130	170	

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	Т	E	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	s in μg/L) —		<b>_</b>	(mg/L)
		# a#			_				
	04/10/96	5.17	5,200	290	ර	92	220	240	
	07/30/96	8.1	5,100	960	<10	380	<i>1</i> 70	670	
	10/17/96	9.12	15,000	2,100	<25	590	1,300	1,500	2.4
	01/22/97	4.72	5,600	690	<5.0	140	310	620	2.2
	04/01/97	6.86	4,000	590	<10	140	200	- 600	2,2
	04/01/97 ^{dup}	6.86	4,800	660	<25	160	230	810	2.2
	07/14/97	10.04	7,100	860	<10	51	230	950	3.8
	10/08/97	11.38	1,500	57	<2.0	2.0	13	540	8.2
	01/19/98	3.88	2,500	280	<20	79	61	620	1.4
	04/28/98	5.87	2,200	330	<20	91	110	640	1.6*
MW-10	10/23/91	8.57	27,000	1,600	110	1,800	510	<b></b>	
	01/28/92	7.60	3,800	360	14	170	39	J	
	05/04/92	7.54	3,000	360	<12.5	140	26		
	07/20/92	8.59	15,000	400	<25	180	67	<del></del>	
	10/12/92	10.23	16,000	320	<50	360	100		
	01/12/93 ^b								
	04/06/93	6.70	14,000	370	<0.5	880	210		
	07/12/93	8.05	10,000	440	58	890	220		
	10/13/93	8.25	15,000	1,000	51	810	170		<b>,</b>
	01/20/94	7.20	12,000	820	56	1,100	350		
	04/13/94	7.57	18,000	760	36	700	130		
	07/19/94	8.18	24,000	400	2.30	800	22		
	10/27/94	8.68	11,000	360	43	310	89		
	01/03/95	6.86	17,000	770	38	690	160		
	04/13/95	6.91	9,900	650	16	280	40		J
	06/30/95	7.61	12,000	750	20	480	130		
	01/17/96	7.00	17,000	870	260	93	830		
	04/10/96	6.80	14,000	470	38	110	370	******	
	07/30/96								

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	T	E	X	MTBE	DO
Vell ID	Sampled	(ft below TOC)			(Concentration	s in μg/L) —			(mg/L)
	10/12/07								
	10/17/96	6.60	10.000				22	100	
	01/22/97	6.68	10,000	520	<20	64	32	180	3.1
	04/01/97	7.34	11,000	590	<20	53	32	210	2.8
	07/14/97	8.10	6,600	410	13	28	11	89	1.4
	10/08/97	8.2	7,600	220	13	65	22	_~ 190	6.4
	01/19/98 ^b								<del></del>
	04/28/98 ^b								***
fW-11	10/23/91	8.06	140	<12	<0.3	0.37	0.56	-	
	01/28/92	13.32	<50	< 0.5	<0.5	<0.5	<0.5		
	05/04/92	13.77	<50	< 0.5	< 0.5	<0.5	< 0.5	<del></del>	
	07/13/92	11.56	140	<0.5	<0.5	<0.5	< 0.5		
	10/12/92	12.40	75	< 0.5	< 0.5	<0.5	< 0.5		-
	01/12/93 ^b	~							
	04/06/93 ^b							*****	
	07/12/93 ^b								
	10/13/93	11.47	<50	<0.5	< 0.5	<0.5	<0.5		
	01/20/94	9.09	<50	<0.5	< 0.5	< 0.5	< 0.5		<b></b>
	04/13/94	8.02	<50	<0.5	< 0.5	< 0.5	<0.5		وسندناني
	07/19/94	9.82	50	<0.5	<0.5	<0.5	<0.5		
	10/27/94	11.66	60*	<0.5	< 0.5	< 0.5	< 0.5	<del></del>	
	01/03/95	6.15	<50	<0.5	< 0.5	< 0.5	< 0.5		
	04/13/95	6.00	<50	<0.5	<0.5	< 0.5	< 0.5		
	06/30/95	8.31	70	<0.5	<0.5	< 0.5	<0.5		
	10/11/95	10.30	60	53	<0.5	<0.5	0.80	3.0	
	01/17/96	6.45	<50	<0.5	<0.5	<0.5	<0.5	<2	
	04/10/96	6.05	<50	<0.5	<0.5	<0.5	<0.5	3.9	
	07/30/96	8.92	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
	10/17/96	9.24	3,000	28	23	29	210	76	
	01/22/97	5.12	<50	<0.5	< 0.5	<0.5	<0.5	<2.5	3.7

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

	Date	Depth to water	TPH-G	В	Т	E	X	MTBE	DO
Well ID	Sampled	(ft below TOC)			(Concentration	sinμg/L) —			(mg/L)
	04/01/97	7.41	<50	<0.50	<0.50	<0.50	<0.50	<2.5	2.8
	07/14/97	9.74	<50 <50	< 0.50	<0.50	<0.50	<0.50	<2.5	1.9
	10/08/97	10.23	<50	<0.50	<0.50	<0.50	<0.50	<2.5	2.4
	01/19/98	3.69	<50 <50	<0.50	<0.50	<0.50	<0.50	<2.5	3.2
	04/28/98	5.83	<50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<2.5	3.0°
	04/28/96	2.03	<b>&lt;</b> 20	<0.50	<0.20	<0.50	C0.30	4.5	3.0
Equipment	07/13/92		<50	<0.5	<0.5	<0.5	<0.5		
Blank	07/20/92		<50	< 0.5	<0.5	<0.5	<0.5		
	10/12/92		<50	< 0.5	<0.5	<0.5	<0.5		
	04/13/94	-	<50	<0.5	0.67	<0.5	<0.5		
	07/19/94		<50	< 0.5	< 0.5	< 0.5	< 0.5		
	10/27/94		<50	< 0.5	<0.5	<0.5	<0.5		
	01/03/95		<50	< 0.5	< 0.5	<0.5	< 0.5	==-,-	
	04/13/95	****	<50	< 0.5	< 0.5	<0.5	< 0.5		
	06/30/95	-	<50	< 0.5	< 0.5	< 0.5	< 0.5		
	10/11/95	<b></b>	<50	< 0.5	<0.5	<0.5	<0.5	<0.5	
	01/17/96		<50	< 0.5	< 0.5	<0.5	< 0.5	<2	
	04/01/97		<50	<0.50	<0.50	< 0.50	<0.50	<2.5	
Frip Blank	01/28/92		<50	<0.5	<0.5	<0.5	<0.5		
	05/05/92		<50	<0.5	<0.5	< 0.5	<0.5		
	07/13/92		<50	< 0.5	<0.5	< 0.5	<0.5		
	07/20/92	<b>←===</b>	<50	<0.5	<0.5	< 0.5	<0.5		
	10/12/92	<del></del>	<50	<0.5	<0.5	<0.5	<0.5		
	01/12/93		<50	< 0.5	<0.5	<0.5	<0.5		
	04/06/93	<del></del>	<50	<0.5	<0.5	< 0.5	<0.5	=	
	07/12/93		<50	<0.5	<0.5	<0.5	<0.5		
	10/13/93		<50	< 0.5	< 0.5	< 0.5	< 0.5		
	01/20/94	-	<50	<0.5	<0.5	<0.5	<0.5		
	04/13/94		<50	<0.5	<0.5	<0.5	<0.5		

Page 12 of 13

Table 3. Analytical Results for Ground Water - Shell Service Station WIC #204-5508-5306, 3420 San Pablo Avenue, Oakland, California

Well ID	Date Sampled	Depth to water (ft below TOC)	TPH-G ◀	В	T (Concentration	E sinμg/L) —	X	MTBE	DO (mg/L)
	07/19/94		<50	<0.5	<0.5	<0.5	<0.5		
	10/27/94		<50	<0.5	<0.5	<0.5	<0.5		
	01/03/95		<50	< 0.5	<0.5	< 0.5	< 0.5		
	04/13/95		<50	<0.5	<0.5	<0.5	<0.5		
	06/30/95		<50	< 0.5	<0.5	< 0.5	<0.5	. <del></del>	
	10/11/95		<50	<0.5	<0.5	<0.5	<0.5	<0.5	
MCLs			NE	1	150	700	1,750	NE	

#### Abbreviations:

TPH-G = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

B = Benzene by EPA Method 8020

T = Toluene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

X = Xylenes by EPA Method 8020

MTBE = Methyl tert-butyl ether by EPA Method 8020. Result in parentheses indicates MTBE by EPA Method 8260

DO = Dissolved oxygen

MCLs = California primary maximum contaminant levels for drinking water (22 CCR 64444)

NE = MCLs not established

--- = Not analyzed

< n =Not detected at detection limits of  $n \mu g/L$ 

dup = Duplicate sample

SPH = Not sampled, separate-phase hydrocarbons detected in well

ug/L = Micrograms per liter

mg/L = Milligrams per liter

TOC = Top of casing

#### Notes:

- a = Concentration reported as gasoline is due to the presence of a discrete hydrocarbon peak that is not indicative of gasoline
- b = Not sampled; well inaccessible
- c = Analytic laboratory noted that MTBE could not be quantified due to co-eluting compounds
- d = Well abandoned December 5, 1997
- e = DO measurements collected May 1, 1998
- The result for gasoline is an unknown hydrocarbon which consists of a single peak as confirmed by NET Laboratory

## **C**AMBRIA

Attachment E

Area Well Survey



### APPOXIMATE WELL LOCATIONS

#### Domestic Well Inventory

Well Property Owner	Well Use
1_ PGME	Industrial
2. PGLE	Industrial
3. Arco	Monitoring
4. Shervis Williams Co.	Industrial
5. Presto-Lite Co.	Industrial
6. AC Transit	Industrial
7. City of Empyville	Aunicipal
8. Del Monte Corp.	Homitoring
9. PGZE	Industria!
10. Yosemite Laundry Co.	Industrial
11. Toscami Bakery	Industrial
12. American Creamery Co.	Industrial
13. California Linen Supply Co.	Industrial
14. City of Paris Laundry	Industrial
15. Arco	Monitoring
16. Providence Hospital	Municipal
17. PGEE .	Industrial
18. Gakland School District	Municipal
19_ Providence Hospital =	Amicipal
29. Chevron Corp.	Monitoring
21. Anheuser-Busch Co.	Monitoring
22. Joseph Kelly	Domestic
23. John Moore	Domestic
24. PGLE	Industrial
25. City of Oakland	Municipal
26. PG&E	Industrial
27. Chevron	Honi toring
28. August Santos	Domestic
29. PSEE	Industrial
30. Shell Development Corp.	Industrial
31. Cetus Corp.	Industrial
32. East Bay D.M.Y.	Monitoring

GENERAL NOTES .

BASE MAP FROM U.S.G.S. CAKLAND WEST, CA. 7.5 MINUTE TOPOGRAPHIC SCALE 1, 24,000







Delta
Environmentai
Consultants, Inc.

FIGURE 3

DOMESTIC WELL LOCATION MAP

3420 SAN PABLO AVENUE OAKLAND, CA.

# CAMBRIA

Attachment F

Tier 2 RBCA Results

Site Name: Shell Service Station WIC # 20/leb Identification: 240-0554 Site Location: 3420 San Pablo Avenue, Oaklattate Completed: 12/8/97

Software: GSI RBCA Spreadsheet Version: 1.0.1

Completed By: Sam Rangarajan, Cambria Env. Tech. Inc.

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

Exposure			Residential		Commerci		Surface				
arameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Constrctn	
Te	Averaging time for carcinogens (yr)	70					A	Contaminated soil area (cm^2)	6.5E+06	1.0E+06	
Tn	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	1.5E+03	1.0E+03	
W	Body Weight (kg)	70	15	35	70		W.gw	Length of affect, soil parallel to groundwater (cm)	1.5E+03		
D	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
	Averaging time for vapor flux (yr)	30			25	1	delta	Air mixing zone height (cm)	2.0E+02		
F	Exposure Frequency (days/yr)	350			250	180	Lss	Thickness of affected surface soils (cm)	1.5E+01		
F.Derm	Exposure Frequency for dermal exposure	350			250		Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
r .pe.m. Rgw	Ingestion Rate of Water (L/day)	2			1				0.02 ()		
ıyın Rs	Ingestion Rate of Soil (mg/day)	100	200		50	100					
		1.1E+02	200		9.4E+01	100	Georgia	r Definition (Units)	Value		
Radj	Adjusted soil ing. rate (mg-yr/kg-d)	15			20		delta.gw	Groundwater mixing zone depth (cm)	2.0E+02	-	
Ra.in	Inhalation rate indoor (m^3/day)	20			20	10	oena.gw				
Ra.out	Inhalation rate outdoor (m^3/day)			0.05.00			1	Groundwater infiltration rate (cm/yr)	3.0E+01		
A	Skin surface area (dermal) (cm^2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	9.4E+02		
Aadı	Adjusted dermal area (cm^2-yr/kg)	2.1E+03			1.7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	2.5E+03		
4	Soil to Skin adherence factor	1					Ks .	Saturated hydraulic conductivity(cm/s)	3.0E-03		
AFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)	1.0E-02		
AFd .	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
ОX	Use EPA tox data for air (or PEL based)?	TRUE					Sd	Depth of groundwater source zone (cm)			
wMCL?	Use MCL as exposure limit in groundwater?	FALSE					phi.eff	Effective porosity in water-bearing unit	3.8E-01		
							foc.sat	Fraction organic carbon in water-bearing unit	1.0É-03		
							BIO?	Is bioattenuation considered?	FALSE		
							BC	Biodegradation Capacity (mg/L)			
latrix of Expo	osed Persons to	Residential				al/Industrial					
omplete Exp	osure Pathways				Chronic	Constrctn	Soil	Definition (Units)	Value	_	
outdoor Air P	athways:						hc	Capillary zone thickness (cm)	3.0E+01		
S.v	Volatiles and Particulates from Surface Soils	FALSE			FALSE	TRUE	hv	Vadose zone thickness (cm)	2.4E+02		
3.v	Volatilization from Subsurface Soils	FALSE			TRUE		rho	Soil density (g/cm^3)	<u>1.65</u>		
v.W	Volatilization from Groundwater	FALSE			TRUE		foc	Fraction of organic carbon in vadose zone	0.01		
ndoor Air Pat	hways:						phi	Soil porosity in vadose zone	<u>0.46</u>		
3.b	Vapors from Subsurface Soils	FALSE			FALSE		Lgw	Depth to groundwater (cm)	2.7E+02		
aW.b	Vapors from Groundwater	FALSE			FALSE		Ls	Depth to top of affected subsurface soil (cm)	1.5E+01		
oil Pathways	;:						Lsubs	Thickness of affected subsurface soils (cm)	2.6E+02		
SS.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	pН	Soil/groundwater pH	6.5		
roundwater							·	-	capillary	vadose	found
€W.ı	Groundwater Ingestion	FALSE			FALSE		phi.w	Volumetric water content	0.38	0.38	0.1
S.I	Leaching to Groundwater from all Soils	FALSE			FALSE		phi.a	Volumetric air content	0.08	0.08	0.
	Endoning to dispatient to the Total										
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
latriy of Page	eptor Distance	Resid	lentia)		Commerci	al/Industrial	ER	Building air exchange rate (s^-1)	1.4E-04	4.2E-04	
	On- or Off-Site	Distance	On-Site	-	Distance	On-Site	Lcrk	Foundation crack thickness (cm)	1.5E+01	4.CL-04	
		Distance	FALSE		Distance	FALSE	eta	Foundation crack fraction	0.001		
€W.	Groundwater receptor (cm)		FALSE			TRUE	eia	Poulication Grack fraction	<u>0.00 i</u>		
3	Inhalation receptor (cm)		FALSE			INOE					
							Transport				
Matrix of							Parameters	Definition (Units)	Residential	Commercial	
		Individual	Cumulative				Groundwate		nessermal	Johnne Cial	
arget Risks	Time to the same and the same a	1.0E-06	oritinisms.	-							
(Rab	Target Risk (class A&B carcinogens)						ax	Longitudinal dispersivity (cm)			
TRo	Target Risk (class C carcinogens)	<u>1.0E-06</u>					ay	Transverse dispersivity (cm)			
THQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
Opt	Calculation Option (1, 2, or 3)	2					Vapor				
Tier	RBCA Tier	2					dcy	Transverse dispersion coefficient (cm)			
							dcz	Vertical dispersion coefficient (cm)			

	RBCA SITE	ASSESSM	ENT	1111				1	ier 2 Worksh	eet 9.2	
Site Name: Shell Service Station	WIC # 204-5508-5306	Completed B	y: Sam Rang	arajan, Cambria Er	nv. Tech. Inc						
Site Location: 3420 San Pablo Avi	enue, Oakland, California	Date Comple	ted: 12/8/199	7							1 OF 1
•••••	SOIL SSTL VALUES FT BGS)	Target	(Class A & B) Risk (Class C) azard Quotien	1.0E-6	☐ MCL expo			Ca	Iculation Option	: 2	
			SSTL	Results For Compl	ete Exposure P	athways ("x" if	Complete)			•	,
CONSTITUENTS OF CONCERN	Representative Concentration	Soil	Leaching to	Groundwater		latilization to	1	olatilization to	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No. Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential: (on-site)	Commercial: (on-site)	(mg/kg)	■ If yes	Only if "yes" left
71-43-2 Benzene	1.3E-1	NA	NA	NA	NA	NA	NA	2.7E+1	2.7E+1		<1
		>Res	ındicates risl	k-based target con	centration grea	ter than constit	uent residual s	aturation value			

Software: GSI RBCA Spreadsheet

Serial: G-273-IBX-894

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

		RBCA	SITE ASS	ESSMENT				:		Tier 2 Wo	rksheet 9.3	
	ell Service Station WIC # 204-5508 3420 San Pablo Avenue, Oakland, (	-		y: Sam Ranga ted: 12/8/199	arajan, Cambria El 7	nv. Tech. Inc						1 OF 1
GI	ROUNDWATER SSTL V	ALUES	Target	k (Class A & B) : Risk (Class C) lazard Quotient	1.0E-6	☐ MCL expo			Cal	culation Option	: 2	
		Representative Concentration		SSTI	Results For Com		Pathways ("x" if		ter Volatilization	Applicable	SSTL Exceeded	
CONSTITUEN	TS OF CONCERN	Concernation		Groundwater	Ingestion		tion to Indoor Air		utdoor Air	SSTL	?	Required CRF
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial. (on-site)	(mg/L	·= if yes	Only if "yes" left
71-43-2	Benzene	5.0E-1	NA	NA	NA	NA	NA	NA	1.7E+2	1.7E+2		<1

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet

Serial: G-273-IBX-894

7

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

### **RBCA TIER 1/TIER 2 EVALUATION**

**Output Table 1** 

Site Name: Shell Service Station WIC # 20/bb Identification: 240-0554

Site Location: 3420 San Pablo Avenue, Oaklahate Completed: 12/8/97

Software: GSI RBCA Spreadsheet Version: 1.0.1

late Completed: 12/6/97 Versi Completed By: Sam Rangarajan, Cambria Env. Tech. Inc

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

Exposure			Residential		Commerc	al/Industrial	Surface				
Parameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Constrctn	
ATC .	Averaging time for carcinogens (yr)	70	<u></u>	- '			A	Contaminated soil area (cm²2)	6.5E+06	1.0E+06	
ATn	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	1.5E+03	1.0E+03	
3W	Body Weight (kg)	70	15	35	70	•	W.gw	Length of affect, soil parallel to groundwater (cm)	1.5E+03		
ED.	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
	Averaging time for vapor flux (yr)	30	ū		25	i	delta	Air mixing zone height (cm)	2.0E+02		
L EF	,	350			250	180	Lss	Thickness of affected surface soits (cm)	1.5E+01		
EF_Derm	Exposure Frequency (days/yr) Exposure Frequency for dermal exposure	350			250	.00	Pe	Particulate areal emission rate (g/cm/2/s)	6.9E-14		
		2			1			Tartisonate arear crisission rate (grent 25)	0.02-14		
IRgw	Ingestion Rate of Water (L/day)		200		50	100					
IRs	Ingestion Rate of Soil (mg/day)	100	200		9.4E+01	100	Canada di sala	r Definition (Units)	Value		
iRadj	Adjusted soil ing rate (mg-yr/kg-d)	1.1E+02								-	
lRa.in	Inhalation rate indoor (m^3/day)	15			20		delta.gw	Groundwater mixing zone depth (cm)	2.0E+02		
1Ra.out	Inhalation rate outdoor (m^3/day)	20			20	10	1	Groundwater infiltration rate (cm/yr)	3.0E+01		
SA	Skin surface area (dermal) (cm^2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	9.4E+02		
SAadj	Adjusted dermal area (cm^2-yr/kg)	2.1E+03			1.7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	2.5E+03		
м	Soil to Skin adherence factor	1					Ks	Saturated hydraulic conductivity(cm/s)	3.0E-03		
AAFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)	1.0E-02		
AAFq	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
tox	Use EPA tox data for air (or PEL based)?	TRUE					Sd	Depth of groundwater source zone (cm)			
gwMCL?	Use MCL as exposure limit in groundwater?	FALSE					phi.eff	Effective porosity in water-bearing unit	3.8E-01		
							foc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
i							BIO?	Is bioattenuation considered?	FALSE		
ľ							BC	Biodegradation Capacity (mg/L)			
Matrix of Exp	osed Persons to	Residential			Commerc	ial/Industrial					
Complete Exp	osure Pathways				Chronic	Constrctn	Soll	Definition (Units)	Value	_	
Outdoor Air P	athways:						hc	Capillary zone thickness (cm)	3.0E+01	=	
SS.v	Voiatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	2.4E+02		
S.v	Volatilization from Subsurface Soils	FALSE			FALSE		rho	Soil density (g/cm/3)	1.65		
GW.v	Volatilization from Groundwater	FALSE			FALSE		foc	Fraction of organic carbon in vadose zone	0.01		
Indoor Air Pat							phi	Soil porosity in vadose zone	0.46		
S.b	Vapors from Subsurface Soils	FALSE			TRUE		Lgw	Depth to groundwater (cm)	2.7E+02		
GW.b	Vapors from Groundwater	FALSE			TRUE		Ls	Depth to top of affected subsurface soil (cm)	1.5E+01		
Soil Pathways							Lsubs	Thickness of affected subsurface soils (cm)	2.6E+02		
ISS.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	рH	Soil/groundwater pH	6.5		
Groundwater					· · · · · · · · ·			g	capillary	vadose	foundation
GW.i	Groundwater Ingestion	FALSE			FALSE		w.ida	Volumetric water content	0.38	0.38	0.11
GW.   S.	Leaching to Groundwater from all Soils	FALSE			FALSE		phi.a	Volumetric air content	0.08	0.08	0.13
5.1	Leaching to Groundwater from all Soils	1 MUJE			TALOL		print	Volumetro dii borneri	0.00	0.00	0.10
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
Matrix of Doo	eptor Distance	Decid	lential		Commerc	ial/Industrial	ĒŘ	Building air exchange rate (s^-1)	1.4E-04	1.1E-03	
	on- or Off-Site	Distance	On-Site		Distance	On-Site	Lork	Foundation crack thickness (cm)	1.3E+01	1.12-05	
		Distance	FALSE		Distance	FALSE	eta	Foundation crack fraction	0.001		
GW	Groundwater receptor (cm)		FALSE			FALSE	eta	Poditication Crack Haction	0.001		
s	Inhalation receptor (cm)		FALSE			FALSE					
							Transport				
10-6-1							Parameters	Definition (Units)	Residential	Commercial	
Matrix of		المسائرة المسا	Comprehense				Groundwate		nesiueiiuai	Commercial	
Target Risks	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Individual	Cumulative	•							
TRab	Target Risk (class A&B carcinogens)	1.0E-06					ax	Longitudinal dispersivity (cm)			
TRe	Target Risk (class C carcinogens)	<u>1.0E-06</u>					ay	Transverse dispersivity (cm)			
THQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
Opt	Calculation Option (1, 2, or 3)	2					Vapor				
Tier	RBCA Tier	2					dcy	Transverse dispersion coefficient (cm)			
)							dcz	Vertical dispersion coefficient (cm)			

RBCAS	ITE ASSES	SMENT	5 - 5 - 5 - 5 <del>-</del>					· Ţ	ier 2 Worksh	eet 9.2	
Site Name: Shell Service Station WIC # 204-5508-5306	Complete	ed By: Sam Ranga	arajan, Cambria E	nv. T	ech. Inc						
Site Location: 3420 San Pablo Avenue, Oakland, California	Date Con	npleted: 12/8/199	7								1 OF 1
SUBSURFACE SOIL SSTL VALUES (> 0.5 FT BGS)	Ts	Risk (Class A & B) irget Risk (Class C) jet Hazard Quotient	1.0E-6		-	sure limit? sure limit?		Cal	culation Option	: 2	
		SSTL	Results For Compl	ete E	xposure P	athways ("x" if C	omplete)				
Representa  Concentrat  CONSTITUENTS OF CONCERN	on l	Soil Leaching to	Groundwater	X		atilization to loor Air		latilization to	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No. Name (mg/kg)	Resident (on-site	1	Regulatory(MCL): (on-site)		sidential: on-site)	Commercial: (on-site)	Residential: (on-site)	Commercial: (on-site)	(mg/kg)	·■• If yes	Only if "yes" left
71-43-2 Benzene 1.3E-1	NA	NA	NA		NA	3.4E+0	NA	NA	3.4E+0		<1
	>R	les indicates risk	c-based target con	cent	ation grea	ter than constitu	uent residual sa	aturation value			

Software: GSI RBCA Spreadsheet

Serial: G-273-IBX-894

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

7		

RBCA				A SITE ASSESSMENT							Tier 2 Worksheet 9.3			
				Completed By: Sam Rangarajan, Cambria Env. Tech. Inc Date Completed: 12/8/1997									1_0F1	
GROUNDWATER SSTL VALUES			Target Risk (Class A & B) 1.0E-6 Target Risk (Class C) 1.0E-6 Target Hazard Quotient 1.0E+0			☐ MCL exposure limit? ☐ PEL exposure limit?			Calculation Option: 2					
Representative Concentration				SSTL Results For Com			Gro	Pathways ("x" if Coundwater	Groundwater Volatilization Applicable Exceeded				Reguired CRF	
CAS No.	Name	(mg/L)	Residential: (on-site)		Regulatory(MCL): (on-site)	Re	esidential: on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	• <b>III</b> • If yes	Only if "yes" left	
71-43-2	2 Benzene	5.0E-1	NA	NA	NA	Ĺ	NA	7.2E+0	NA	NA	7.2E+0		ব	
				>Sol	indicates risk-ba	sed t	arget conc	entration greater	than constituent	solubility				

نب

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-273-IBX-894

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

<u>-</u>