

RECEIVED

4:21 pm, Apr 30, 2010

Alameda County
Environmental Health

Stacie H. Frerichs Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

November 21, 2008 (date)

Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Chevron Facility #_9-1583

Address: 5509 Martin Luther King Jr. Way, Oakland, California

I have reviewed the attached report titled <u>Soil Vapor Assessment</u> and dated <u>November 21, 2008</u>.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Stacie H. Frerichs Project Manager

5H Frencho

Enclosure: Report

2000 Opportunity Dr, Suite 110, Roseville, California 95678 Telephone: 916-677-3407, ext. 100 Facsimile: 916-677-3687 www.CRAworld.com

November 21, 2008

Reference No. 611960

Mr. Steven Plunkett Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Soil Vapor Assessment Report

Former Chevron Service Station 9-1583

5509 Martin Luther King Jr. Way

Oakland, California

LOP Case No. RO0000002

Dear Mr. Plunkett:

Conestoga-Rovers & Associates (CRA) has prepared this Soil Vapor Assessment Report on behalf of Chevron Environmental Management Company (Chevron) for the site referenced above. CRA advanced five hand auger soil borings (VP-1 through VP-5) at the site, and completed them as permanent soil vapor wells. The work was requested by Alameda County Health Care Services Agency, Environmental Health Services (ACEH) in a letter dated July 27 2007 (Appendix A), and was performed in general accordance with CRA's Soil Vapor Investigation Workplan, dated August 31, 2007. Please note that CRA did not receive a response from ACEH regarding the work plan within 60 calendar days. Therefore, in a letter dated July 31, 2008, CRA notified ACEH that the work was proceeding as proposed. A copy of the notification letter is presented in Appendix A. The site background, investigation details and results, and our conclusions and recommendations are presented in the following sections.

1.0 SITE DESCRIPTION AND BACKGROUND

The site is located on the northwest corner of the intersection of Martin Luther King Jr. Way and 55th Street in Oakland, California (Figure 1). Land use in the vicinity of the site is mixed commercial and residential. The site was formerly occupied by a Chevron service station with a station building, four dispenser islands, three 10,000-gallon fuel underground storage tanks (USTs), a 1,000-gallon used-oil UST, three hydraulic hoists, and product lines. The used-oil UST and hydraulic hoists were removed in 1995 and 1998, respectively, and Chevron sold the property in November 1998. Since 2003, the site has been occupied by a Super Stop Gas Station. Locations of former and current site features are shown on Figure 2. A summary of previous environmental work performed at the site is included in Appendix B.

Equal Employment Opportunity Employer

Reference No. 611960

-2-

1.1 SITE GEOLOGY

Soil in the site area consists of Pleistocene beach and sand dune deposits (Merritt Sand) of loose, well-sorted fine to medium sand. Based on previous investigations, soil beneath the site generally consists of layers of gravelly to sandy silt, silty to gravelly clay, clayey to sandy gravel, and sand from just below the surface to 26.5 feet below grade (fbg), the maximum depth of exploration.

1.2 SITE HYDROGEOLOGY

Depth to groundwater beneath the site has historically ranged from approximately 6.5 to 14 fbg. Based on historical monitoring data, the groundwater flow direction beneath the site has been variable.

2.0 INVESTIGATION PROCEDURES

The objective of this investigation was to collect soil vapor samples to evaluate potential vapor intrusion issues. To meet this objective, CRA advanced five soil borings to approximately 6 fbg, and completed them as permanent soil vapor wells VP-1 through VP-5. Soil vapor samples were collected from the completed wells. Vapor wells VP-1 through VP-3 were located along the western site boundary, vapor well VP-4 was located near the northeast corner of the existing station building, and vapor well VP-5 was located adjacent to the northeast side of the station building. The vapor well locations are shown on Figure 2.

The details of the investigation are summarized below. Fieldwork was performed by CRA staff Oliver Yan, Lindsay Marsh, and Chris Benedict under the supervision of project geologist Brian Carey (P.G. #7820).

2.1 DRILLING ACTIVITIES

Permit: Prior to drilling, CRA obtained Well Permit W2008-0502 from Alameda County Public Works Agency for the vapor wells. A copy of the permit is included in Appendix C.

Drilling Dates: Borings VP-1 through VP-5 were advanced on August 26, 2008.

Drilling Company: Drilling activities were performed by V & W Drilling, Inc. of Lodi, California (C-57 Lic. # 720904), under CRA's supervision.

Reference No. 611960

-3-

Drilling Method: The borings were advanced using a 3-inch diameter hand auger to the total depth of 6 fbg.

Lithology: The soil encountered in the borings was logged in accordance with the Unified Soil Classification System (USCS), and generally consisted of clayey gravel with sand, clay with sand, clay, and sandy clay to approximately 6 fbg (maximum depth of borings). Groundwater was not encountered in any of the borings. Copies of the boring logs are included in Appendix C.

Soil Screening: Soil samples were screened in the field for the presence of organic vapors using a photo-ionization detector (PID). The PID measurements are also presented on the boring logs.

2.2 SOIL SAMPLING AND LABORATORY ANALYSIS

Soil Sampling: Soil samples were collected from each boring at approximately 3 fbg for laboratory analysis. The soil samples were collected by filling a brass tube with disturbed soil cuttings removed from the boreholes. The brass tubes were capped using Teflon tape and plastic end caps, labeled, placed in an ice-chilled cooler, and transported under chain-of-custody to Lancaster Laboratories, Inc. (Lancaster) in Lancaster, Pennsylvania, for analysis. CRA's standard field procedures for soil sampling from borings are included in Appendix D.

Laboratory Analysis: The six soil samples were analyzed by Lancaster for total petroleum hydrocarbons as gasoline (TPHg) and diesel (TPHd) by EPA Method 8015B; benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tertiary butyl ether (MTBE), tertiary butyl alcohol (TBA), 1,2-dichloroethane (1,2-DCA), and 1,2-dibromoethane (EDB) by EPA Method 8260B.

2.3 SOIL VAPOR WELL CONSTRUCTION

Well Materials: Soil vapor wells VP-1 through VP-5 were constructed with ¼-inch diameter Nylaflow tubing and a 6-inch-long section of 0.010-inch slotted Schedule 40 PVC screen. Monterey Sand #2/16 was used as a filter pack from the bottom of the boring to 3 inches above the top of the screen; 3 inches of dry, granular bentonite was placed above the sand pack, and the remainder of the annular space was filled with hydrated bentonite gel to approximately 0.5 fbg. Well boxes were installed flush to grade and equipped with traffic-rated lids. Well construction diagrams are shown on the boring logs in Appendix C.

Screened Interval: Wells VP-1 through VP-5 are screened from 5 to 5.5 fbg.

Reference No. 611960

-4-

2.4 SOIL VAPOR SAMPLING AND LABORATORY ANALYSIS

Soil Vapor Sampling: On September 11, 2008, soil vapor samples were collected from wells VP-1 through VP-5 in 1-Liter SummaTM canisters and sorbent tubes. A duplicate sample was also collected from well VP-2. A tent was placed over the sampling apparatus and well, and was filled with helium during sample collection in order to evaluate for leaks in the sampling equipment. CRA's standard field procedures for soil vapor sampling are included in Appendix D. Copies of the vapor sampling field data sheets are included in Appendix E.

Laboratory Analysis: The soil vapor samples were kept at ambient temperature and submitted under chain-of-custody to Air Toxics Ltd. in Folsom, California, for analysis. The five soil vapor samples were analyzed for TPHg by EPA Method TO-3; TPHd by EPA Method TO-17; and BTEX, MTBE, TBA, 1,2-DCA, EDB, ethanol, and iso-octane (2,2,4-trimethylpentane) by EPA Method TO-15. To evaluate the data quality, the samples were analyzed for helium (leak check compound) by ASTM Method D-1946. The samples were also analyzed for oxygen and carbon dioxide by ASTM Method D-1946.

2.5 <u>INVESTIGATION-DERIVED WASTE</u>

Soil cuttings were temporarily stored onsite in a 55-gallon steel drum, and sampled for disposal purposes. The drum was removed from the site by Integrated Wastestream Management (IWM) of San Jose, California, and transported to Vasco Road Landfill in Livermore, California, for disposal on October 3, 2008.

3.0 ANALYTICAL RESULTS

3.1 SOIL SAMPLE ANALYTICAL RESULTS

No analytes were detected in any of the soil samples. The soil sample analytical results are presented in Table 1. A copy of the laboratory report and chain-of-custody documentation is presented in Appendix F.

3.2 SOIL VAPOR SAMPLE ANALYTICAL RESULTS

On September 11, 2008, soil vapor samples were collected from wells VP-1 through VP-5. As mentioned above, a field duplicate sample (Dupe) was collected simultaneously with the original sample from VP-2 to further evaluate data quality. The duplicate sample analytical results are not included in the following discussion, as similar concentrations within an

Reference No. 611960

- 5 -

acceptable range were detected in both samples. Please refer to Appendix F for the duplicate sample analytical results.

In accordance with the Department of Toxic Substances Control (DTSC) *Advisory-Active Soil Gas Investigations* guidance document dated January 28, 2003, leak testing was performed during sampling. Helium was used as a leak check compound to evaluate if significant ambient air was entering the Summa™ canisters during sampling. The samples were analyzed for helium by EPA Method ASTM D-1946, which was not detected in any of the samples. Furthermore, a leak test on the aboveground sampling connections was initially performed by creating a test vacuum using the purge pump. A constant vacuum was maintained for at least 10 minutes prior to sample collection, indicating significant leaks were not occurring. Therefore, the samples appear to be representative of subsurface conditions and the results are assumed to be valid.

TPHg was detected in samples VP-1 through VP-5 at concentrations of 550 micrograms per cubic meter ($\mu g/m^3$), 330,000 $\mu g/m^3$, 540 $\mu g/m^3$, 38,000 $\mu g/m^3$, and 46,000 $\mu g/m^3$, respectively. TPHd was only detected in samples VP-2 (6,900 $\mu g/m^3$) and VP-4 (920 $\mu g/m^3$); however, the laboratory reported that the TPH pattern in the samples did not resemble that of diesel fuel. Iso-octane was only detected in samples VP-2 (17,000 $\mu g/m^3$) and VP-4 (5,400 $\mu g/m^3$); BTEX, MTBE, TBA, 1,2-DCA, EDB, and ethanol were not detected in any of the samples.

The soil vapor analytical results were compared to the shallow soil gas environmental screening levels (ESLs) associated with vapor intrusion concerns at commercial/industrial and residential sites (Table E); established by the San Francisco Bay Regional Water Quality Control Board (RWQCB) in May 2008. The ESLs are for use as screening levels in determining if further evaluation is warranted, in prioritizing areas of concern, in establishing cleanup goals, and in estimation of potential health risks. As stated by the RWQCB, the ESLs are considered to be conservative. The presence of a chemical at a concentration above an ESL does not necessarily indicate that adverse impacts to human health or the environment are occurring; exceeding ESLs indicates that the potential for impacts may exist and that additional evaluation may be needed.

The TPHg concentrations detected in samples VP-2, VP-4, and VP-5 exceeded both the commercial/industrial (29,000 g/m³) and residential (10,000 μ g/m³) ESLs. The remaining detected constituents did not exceed the respective ESLs, where established. The soil vapor sample analytical results are presented in Table 2. Copies of the laboratory reports and chain-of-custody documentation are presented in Appendix F.

Reference No. 611960

-6-

4.0 CONCLUSIONS AND RECOMMENDATIONS

CRA installed and sampled soil vapor wells VP-1 through VP-5 to evaluate potential vapor intrusion issues due to residual impacted groundwater and/or soil beneath the site. Petroleum hydrocarbons were not detected in any of the soil samples collected from the well borings. TPHg was detected in all the soil vapor samples. The TPHg concentrations detected in soil vapor samples VP-2, VP-4, and VP-5 exceeded both the commercial/industrial and the residential ESLs associated with vapor intrusion concerns. Only low concentrations of TPHg were detected in samples VP-1 and VP-3. TPHd was only detected in samples VP-2 and VP-4 and the detected concentrations did not exceed the ESLs. The laboratory reported that the TPH pattern in the samples did not resemble that of diesel fuel, and diesel does not appear to have been stored at the site. Therefore, the TPHd detections may be due to weathered gasoline. No BTEX, MTBE, TBA, 1,2-DCA, EDB, or ethanol was detected in any of the samples.

Based on the analytical results, impacted soil vapor is present in the northwest portion of the site. The maximum TPHg concentration was detected in sample VP-2 located on the western site boundary. If a potential source of the impacted soil vapor (residual impacted soil or groundwater) is located in this area, it appears to be somewhat limited as TPHg has not been detected in groundwater in well MW-7 since 1998 and only relatively low concentrations of TPHg (less than 800 micrograms per liter $[\mu g/L]$) have been detected in groundwater in well MW-8 for the past several years. Well VP-2 is located approximately 15 feet from well MW-8.

The detected TPHg concentrations in VP-2, VP-4, and VP-5 exceeded the commercial/industrial and residential ESLs; however, significant concentrations of 2,2,4-Trimethylpentane (iso-octane) were detected in samples VP-2 and VP-4. The presence of iso-octane in the soil vapor samples suggests that at least a portion of the TPHg in soil vapor is due to a recent release. Iso-octane is a significant constituent of California Reformulated Gasoline (CaRFG) Phase 3, which has been used in California since 2004 after the elimination of MTBE and CaRFG Phase 2. A possible cause of the iso-octane detections is a vapor leak from the existing UST equipment as the site remains an active gas station. Additionally, as the site is an active gas station, gasoline vapors will be present in the ambient air due to typical daily operations; and the exposure to these ambient vapors by onsite workers or nearby residents likely is a much more significant risk than that due to potential vapor intrusion. Based on this information, an accurate evaluation of potential vapor intrusion risk due to residual impact from the original release (Chevron) does not appear possible while the site remains an active gas station.

On May 10, 2005, Cambria Environmental Technology, Inc. (now CRA) submitted a site conceptual model (SCM) and closure request report to ACEH. In that report, the case was made for low-risk closure based on improving conditions at the site. A review of current groundwater data confirms this, with most constituents no longer detected or a continued

Reference No. 611960

-7-

decline in concentrations is observed as predicted in site wells. Based on the information presented above, and the likelihood that the site will remain an active gas station for the foreseeable future, CRA will update the SCM and submit it to the ACEH along with an additional request for site closure.

5.0 CLOSING

We appreciate your assistance on this project. If you have any questions please contact Mr. James Kiernan at (916) 677-3407 ext. 102.

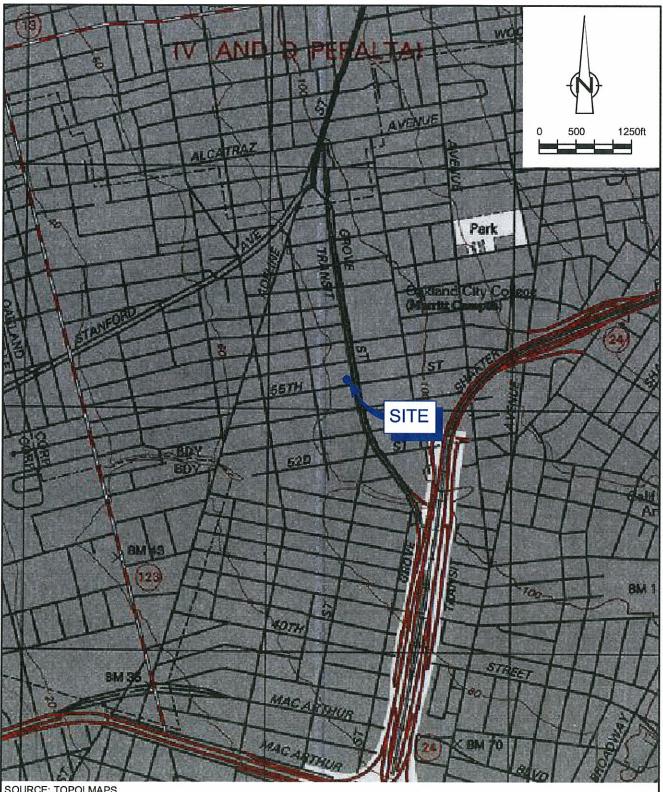
Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Lindsay Marsh Geologist

LM/kw/1 Encl.

cc:

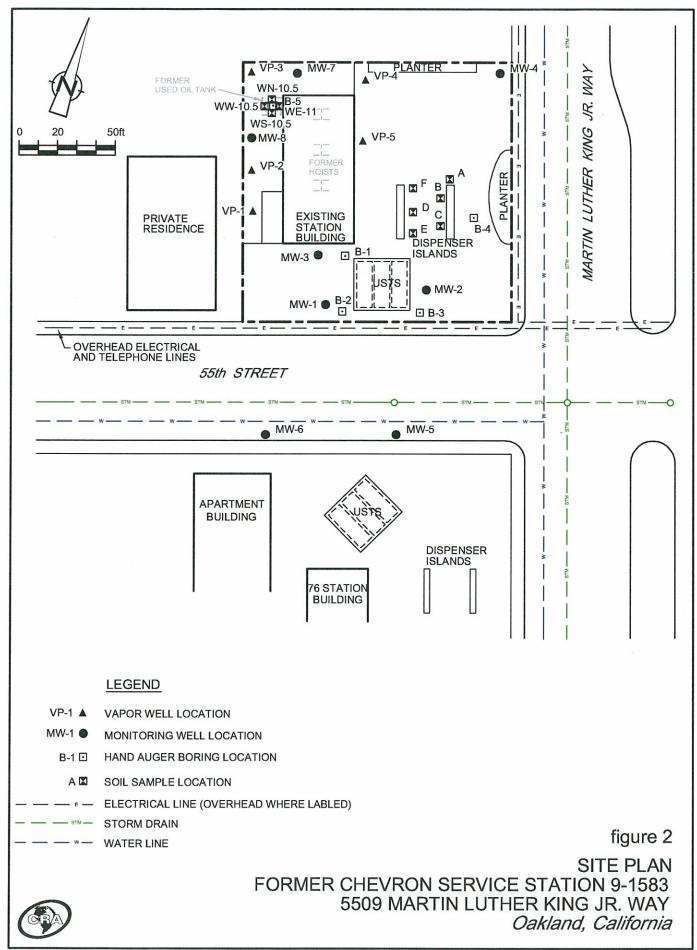

Ms. Stacie Hartung-Frerichs, Chevron Environmental Management Company

Mr. Ben Shimek

No. 68498
Exp. 9/30/09

James P. Kiernan, P.E. #C68498

Project Engineer



SOURCE: TOPO! MAPS.

figure 1

VICINITY MAP FORMER CHEVRON SERVICE STATION 9-1583 5509 MARTIN LUTHER KING JR. WAY Oakland, California

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-1583 5509 MARTIN LUTHER KING JR. WAY OAKLAND, CALIFORNIA

Boring ID	Sample Depth	Date Sampled	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	1,2 - DCA	EDB
ID	(fbg)	Sumpleu				(Concentrations in mg/kg)						
VP-1	3	8/26/2008	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	<0.020	<0.001	<0.001
VP-2	3	8/26/2008	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	<0.020	<0.001	<0.001
VP-3	3	8/26/2008	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	<0.021	<0.001	<0.001
VP-4	3	8/26/2008	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	<0.020	<0.001	<0.001
VP-5	3	8/26/2008	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	<0.020	<0.001	<0.001

Abbreviations and Methods:

fbg = feet below grade

mg/kg = miligrams per kilogram

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015

TPHg = Total petrolum hydrocarbons as gasoline by EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8260B

MTBE = Methyl tertiary butyl ether by EPA Method 8260B

TBA = tertiary butyl alcohol by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane by EPA Method 8260B

EDB = 1,2-Dibromoethane by EPA Method 8260B

<x = not detected at or above the stated laboratory reporting limit

SOIL VAPOR SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-1583 5509 MARTIN LUTHER KING JR. WAY OAKLAND, CALIFORNIA

Sample ID	Sample Date	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	1,2-DCA	EDB	Ethanol	Iso-octane	Helium	Oxygen	Carbon dioxide
	ł	4				Concentrations re	ported in micr	ograms per cub	oic meter (μg/m ³	3) ———				 ← Rej	orted in per	cent —
VP-1	9/11/08	<170	550	<7.5	<8.9	<10	<10	<8.5	<28	<9.5	<18	<18	<11	<0.24	14	6.8
VP-2	9/11/08	6,900	330,000	<52	<62	<71	<71	<59	<200	<66	<130	<120	17,000	<0.12	16	8.7
VP-3	9/11/08	<180	540	<3.9	<4.6	<5.4	<5.4	<4.4	<15	<5.0	<9.5	<9.3	<5.8	<0.12	17	4.7
VP-4	9/11/08	920	38,000	<18	<21	<24	<24	<20	<67	<22	<42	<41	5,400	<0.11	11	10
VP-5	9/11/08	<160	46,000	<7.1	<8.4	<9.6	<9.6	<8.0	<27	<9.0	<17	<17	<10	<0.22	10	14
Commer	rcial ESL	29,000	29,000	280	180,000	3,300	58,000	31,000	NE	310	14	NE	NE			
Residen	itial ESL	10,000	10,000	84	63,000	980	21,000	9,400	NE	94	4.1	NE	NE			

Abbreviations/Notes:

Total petroleum hydrocarbons as diesel (TPHd) by EPA Method TO-17.

Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method TO-3.

Benzene, toluene, ethylbenzene, xylenes (BTEX) by EPA Method TO-15.

Methyl tertiary butyl ether (MTBE) by EPA Method TO-15.

Tertiary butyl alcohol (TBA) by EPA Method TO-15.

1,2-Dichloroethane (1,2-DCA) by EPA Method TO-15.

1,2 Dibromoethane (EDB) by EPA Method TO-15.

Ethanol and iso-octane (2,2,4-Trimethylpentane) by EPA Method TO-15

Oxygen, carbon dioxide and helium by modified ASTM D-1946.

<x = Not detected at or above method detection limit.</p>

ESL = Shallow soil gas environmental screening level associated with vapor intrusion concerns, RWQCB-May 2008 (Table E)

NE = Not established

Bold Indicates concentration exceeds commercial and/or residential ESL

APPENDIX A

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

July 27, 2007

Mr. Tom Bauhs Chevron Environmental Management Co. 6001 Bollinger Canyon Rd., K2204 San Ramon, CA 94583-2324

Dear Mr. Bauhs:

Subject: Fuel Leak Case RO0000002 & Global ID T0600100348, 5509 Martin Luther King Jr. Way, Oakland, CA 94609

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the subject site including the February 28, 2007 Subsurface Investigation Report by Cambria (CRA). This report's work plan was approved in the County's November 11, 2006 letter. The intent of the work was to fill in identified data gaps and move the site towards closure. Unfortunately, not all samples were collected and analyzed as proposed and approved by our office due to boring refusal in B-5. Because of this, the area around the waste oil tank still remains in question. The historic presence of TPHg and MTBE in wells MW-7 and MW-8, adjacent to the former waste oil tank remains unexplained. The sampling of shallow fill material from the tank pit did not provide any information as no contaminants were detected, as expected. Therefore, CRA's recommendation to submit an updated site closure request appears premature without further site information. Please address the following technical comments and submit the requested reports.

TECHNICAL COMMENTS

- 1. Borings Around Former Fuel USTs- Soil samples from 3-9' bgs from the three boring indicate that no shallow contamination exists in the immediate vicinity of the former UST tank pit. Grab groundwater samples from B-1 and B-2 from 11-12' bgs, however, were contaminated with up to 4500 ppb TPHg, which may be residual contamination from historic releases also detected in MW-1 and MW-3. This suggests that there may have been impacted soil or groundwater below the depths of these borings and that groundwater gradient has not always been to the southeast as depicted in monitoring reports. Please provide an explanation or plausible SCM, which explains this data. Propose additional investigation, if necessary. We request soil vapor sampling be done to evaluate potential risks from fuel releases to both on and off-site properties.
- 2. Contaminants in Boring B- The compounds, BTEX, MTBE, other ether oxygenates and the lead scavengers were not analyzed in soil boring B, which detected 1700 ppm TPHg. Soil and groundwater samples from B-4, down-gradient of boring B were ND for TPHg, BTEX, MTBE, oxygenates and lead scavengers. It appears that these other contaminants, including TPHg, have not impacted soil and groundwater downgradient of these dispensers.

3. Waste Oil Tank Area- The historic presence of TPHg and MTBE in wells MW-7 and MW-8 near the former waste oil tank, has not been explained. As mentioned previously, the inability to collect deep soil and groundwater samples from the former pit leaves this area still in question. Was the historic elevated TPHg, BTEX and MTBE contamination in MW-8 from the former waste oil tank or is there another source for these contaminants either on or off-site? Has this contamination migrated off-site and affected neighboring properties? Please provide an explanation or plausible SCM, which explains this data. Propose additional investigation, if necessary. We request soil vapor sampling be done to evaluate potential risks from fuel releases to both on and off-site properties.

TECHNICAL REPORT REQUEST

Please submit the following report according to the following schedule:

 August 31, 2007- Work Plan for Soil Vapor Sampling, Additional SWI and SCM Revision

ELECTRONIC SUBMITTAL OF REPORTS

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic_reporting). In order to facilitate electronic correspondence, we request that you provide up to date electronic mail addresses for all responsible and interested parties. Please provide current electronic mail addresses and notify us of future changes to electronic mail addresses by sending an electronic mail message to me at barney.chan@acgov.org.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the

Mr. Tom Bauhs July 27, 2007 Page 3 of 3

best of my knowledge." This letter must be signed by an officer or legally authorized Please include a cover letter satisfying these representative of your company. requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6765.

Sincerely,

Kawes MCha Barney M. Chan

Hazardous Materials Specialist

cc: files, D. Drogos

Mr. David Herzog, Cambria Environmental, 2000 Opportunity Drive, Suite 110, Roseville, CA 95678

7 25 07 5509 MLKJr Way

Stacie H. FrerichsTeam Lead
Marketing Business Unit

Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

July 31, 2008 (date)

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Chevron Facility #91583

Address: 5509 Martin Luther King Boulevard, Oakland, California, RO0000002

I have reviewed the attached report titled <u>Implementation of Proposed Soil Vapor Work Plan</u> and dated <u>July 31, 2008</u>.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Stacie H. Frerichs Project Manager

Enclosure: Report

2000 Opportunity Dr, Suite 110, Roseville, California 95678 Telephone: 916-677-3407, ext. 100 Facsimile: 916-677-3687 www.CRAworld.com

July 31, 2008

Mr. Steven Plunkett Alameda County Health Care Services Agency (ACHCS) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Implementation of Proposed Soil Vapor Work Plan

Chevron Service Station 91583 5509 Martin Luther King Jr. Way Oakland, California RO0000002

Dear Mr. Plunkett:

Conestoga-Rovers & Associates (CRA) prepared a *Soil Vapor Investigation Workplan (Workplan)*, dated August 31, 2007, on behalf of Chevron Environmental Management Company (Chevron) for the referenced site. The *Workplan* was prepared in response to an ACHCS letter dated July 27, 2007. CRA proposed advancing five hand augered soil borings, to be completed as permanent soil vapor points. Soil vapor points will be used to evaluate potential risks from fuel releases to both on- and off-site properties. More than 60 calendar days have passed since submittal of the *Workplan* and CRA has not received correspondence from the ACHCS regarding the proposed scope of work. Per the California Code of Regulations, Title 23, Division 3, Chapter 16, Article 11, Section 2722 Scope of Corrective Action, part e, CRA will proceed with the scope of work as proposed in the *Workplan*.

SCHEDULE

CRA will notify the ACHCS approximately three days prior to the initiation of the field activities. CRA will submit an investigation report approximately six weeks after receiving soil vapor analytical results.

CLOSING

CRA is performing this work to satisfy site closure requirements and would appreciate any additional comments or concerns from the ACHCS. Please call Sara Giorgi (ext. 122) or Brian Carey (ext. 106) at (916) 677-3407 if you have any questions or comments regarding this work.

Equal Employment Opportunity Employer

Sincerely,

Conestoga-Rovers & Associates

Sara E. Giorgi Senior Project Geologist

cc:

Ms. Stacie Hartung-Frerichs, Chevron Environmental Management Company, PO Box 6012,

San Ramon, CA 94583

Mr. Robert Speers, Chevron Environmental Management Company, PO Box 6012, San

Ramon, CA 94583

Conestoga-Rovers & Associates file copy

I:\rocklin.chevron\9-1583 oakland\reports and investigations\soil vapor investigation 2007-2008\91583 notification of 60 day rule implementation of vapor work plan 07292008.doc

APPENDIX B

SUMMARY OF PREVIOUS ENVIRONMENTAL WORK

SUMMARY OF PREVIOUS ENVIRONMENTAL WORK

1983 Subsurface Investigation: In December 1983, Gettler-Ryan, Inc. (G-R) installed three on-site monitoring wells (MW-1 through MW-3). The wells were installed to a depth of 20 feet below grade (fbg). Groundwater was encountered at depths ranging from 16 to 18 fbg in the well borings. No soil samples were collected and analyzed from the well borings. This investigation was documented in a letter from G-R to Chevron dated January 5, 1984.

1989 Product Piping Upgrade: In December 1989, Geotest collected six soil samples (A through F) at depths ranging from 2 to 4.5 fbg from the piping trenches in the vicinity of the product dispenser islands during piping upgrade work. The samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) only. TPHg (1,700 milligrams per kilogram [mg/kg]) was only detected in sample B, collected at a depth of 3 fbg. A report documenting the details of this work was not available.

1990 Well Redevelopment: In March 1990, Geraghty & Miller, Inc. (G&M) redeveloped and sampled wells MW-1 through MW-3. Laboratory analyses of the groundwater samples detected TPHg in wells MW-1 through MW-3 at concentrations of 50,000 micrograms per liter (μ g/L), 800 μ g/L, and 47,000 μ g/L, respectively. Benzene was detected in wells MW-1 through MW-3 at concentrations of 3,000 μ g/L, 400 μ g/L, and 1,000 μ g/L, respectively. Concentrations of toluene (up to 9,900 μ g/L), ethylbenzene (up to 1,900 μ g/L), and xylenes (up to 18,000 μ g/L) were also detected in all three wells. Details of the investigation were presented in G&M's letter report *Results of Groundwater Sampling Activities*, dated April 2, 1990.

1990 Subsurface Investigation: In October 1990, G&M installed monitoring wells MW-4 through MW-6 to further evaluate the offsite extent of petroleum hydrocarbons in groundwater. Well MW-4 was installed in the northeast corner of the site and wells MW-5 and MW-6 were installed offsite, along the southern shoulder of 55th Street. The wells were installed to depths ranging between 20 and 25 fbg. A total of six soil samples were collected from the borings at depths between 10.5 and 20.5 fbg and analyzed for TPHg only. TPHg was only detected in the sample collected at 10.5 fbg from boring MW-5 (190 mg/kg), and in the sample collected at 10.5 fbg from boring MW-6 (11 mg/kg). Details of the investigation were presented in G&M's Site Assessment Report, dated December 15, 1990.

1994 Subsurface Investigation: In February 1994, Groundwater Technology, Inc. (GTI) installed monitoring wells MW-7 and MW-8 to evaluate the extent of petroleum hydrocarbons in groundwater near the former used-oil UST. Wells MW-7 and MW-8

were installed to a depth of 20 fbg. Four soil samples were collected from the borings at depths between 5 and 15 fbg and analyzed for TPHg and benzene, toluene, ethylbenzene, and xylenes (BTEX), which were not detected in any of the samples. Details of the investigation were presented in GTI's Additional Soil and Groundwater Assessment Report, dated April 8, 1994.

1995 Used-Oil Tank Removal and Soil Excavation: In April 1995, a 1,000-gallon used-oil underground storage tank (UST) was removed from the northwest corner of the site. Touchstone Developments (TD) collected four soil samples from the base of the excavation at depths of 10.5 or 11 fbg. The four samples were analyzed for total oil and grease (TOG). Two of the samples were additionally analyzed for TPHg, TPH as diesel (TPHd), BTEX, volatile organic compounds (VOCs), semi-VOCs, and the metals cadmium, chromium, lead, nickel, and zinc. TOG was detected in all four samples at concentrations ranging from 76 to 2,700 mg/kg. TPHg, BTEX, VOCs, semi-VOCs, and lead were not detected in the two samples analyzed. TPHd was only detected in one of the samples analyzed (75 mg/kg). Cadmium (up to 0.60 mg/kg), chromium (up to 46 mg/kg), nickel (up to 61 mg/kg), and zinc (up to 72 mg/kg) were detected in the two samples. The pit was subsequently over-excavated to 12.5 fbg. Groundwater was encountered in the excavation at approximately 12 fbg. Approximately 80 cubic yards of impacted soil was removed and disposed offsite during the work. Details were presented in TD's Used Oil Tank Removal Report, dated June 12, 1995.

1998 Hydraulic Hoist and Clarifier Removal and Excavation: In November 1998, two single post semi-hydraulic hoists and one dual post hydraulic hoist with clarifier were removed from the site. TD collected one soil sample from beneath each of the hoists at depths of 7.5 fbg or 8 fbg. The sample collected beneath the hoist with clarifier was analyzed for TPHg, TPHd, TPH as hydraulic oil (TPHho), TOG, VOCs, semi-VOCs, and the metals cadmium, chromium, lead, nickel, and zinc. TPHg, TPHd, TPHho, TOG, VOCs, and semi-VOCs were not detected in the sample collected beneath the hoist with clarifier; chromium, nickel, and zinc were detected in the sample at 32.1 mg/kg, 40.8 mg/kg, and 44.0 mg/kg, respectively. The remaining two samples were only analyzed for TPHho, which was not detected. Details were presented in TD's Hoist/Clarifier Removal and Sampling Report, dated January 19, 1999.

2002 Sensitive Receptor Survey: In April 2002, Delta Environmental Consultants, Inc. (Delta) conducted a sensitive receptor survey for the site vicinity. It was determined that drinking water for the site area was supplied by the Alameda County Water District (ACWD) from three sources: treated surface water from the Sacramento/San Joaquin Delta and/or Lake Del Valle, purchased San Francisco water from Hetch Hetchy Reservoir or Calaveras or San Antonio Reservoirs, or blended water consisting of

purchased San Francisco water and local groundwater. The groundwater supply came from the Niles Cone Groundwater Basin. No municipal wells were identified within 2,000 feet of the site. A search of Department of Water Resources (DWR) files was performed to evaluate the presence of domestic, municipal, or irrigation supply wells within 2,000 feet of the site. One industrial well and one cathodic protection well were identified approximately 1,200 feet northwest and 1,800 feet southeast of the site, respectively. Utilities identified adjacent to the site included storm drains, sanitary sewer, television cable, and water lines buried at depths of 4 to 22 fbg. Based on conversations with Alameda County Public Works Agency, the water-bearing materials beneath the site had not been classified as a potential drinking water source. No surface water bodies were located within a one-mile radius of the site. The nearest surface water body identified was Glen Echo Creek, located approximately 7,400 feet southeast of the site. Details were presented in Delta's Sensitive Receptor Survey, dated August 1, 2002.

2005 *Site Conceptual Model and Closure Request:* In May 2005, Cambria Environmental Technology, Inc. (Cambria) submitted a *Site Conceptual Model and Closure Request* to ACEH. ACEH requested further investigation near the USTs, dispenser islands, and former used oil tank.

2007 Subsurface Investigation: In January 2007, Cambria advanced five hand-auger soil borings (B-1 through B-5) to further evaluate hydrocarbon impact to soil and groundwater. Borings B-1 through B-4 were advanced to depths of 11 to 13 fbg. In boring B-5, refusal was encountered at 5.5 fbg. A total of 14 soil samples were collected at various depths from the borings. TPHg, BTEX, fuel oxygenates, ethylene dibromide (EDB), and 1,2-Dichloroethane (1,2-DCA) generally were not detected in the samples with the exception of toluene at 0.001 mg/kg in the sample collected at 3 fbg from boring B-1, and MTBE at 0.0006 mg/kg in the sample collected at 9 fbg from boring B-1. Grab-groundwater samples were collected from borings B-1 through B-4. TPHg was only detected in the groundwater samples collected from borings B-1 (2,600 μ g/L) and B-2 (4,500 μ g/L). BTEX, fuel oxygenates, EDB, and 1,2-DCA generally were not detected in the samples with the exception of ethylbenzene (0.9 μ g/L) and MTBE (2 μ g/L) in the sample collected from boring B-1, and MTBE (5 μ g/L) in the sample collected from boring B-2. Details of the investigation were presented in Cambria's Subsurface Investigation Report, dated February 28, 2007.

APPENDIX C

WELL PERMITS AND BORING LOGS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 07/23/2008 By jamesy

Permit Numbers: W2008-0502

Permits Valid from 08/26/2008 to 08/26/2008

Application Id:

1216417110071

City of Project Site: Oakland

Site Location:

5509 Martin Luther King Jr Way

Completion Date: 08/14/2008

Project Start Date:

08/14/2008 Requested Inspection: 08/14/2008

Scheduled Inspection: 08/14/2008 at 2:00 PM (Contact your inspector, James Yoo at (510) 670-6633, to confirm.)

Extension Start Date: 08/26/2008

Extension End Date: 08/26/2008

Extension Count:

Extended By: jamesy

Applicant:

Conestoga-Rovers & Associates - Lindsay

Phone: 916-677-3407

2000 Opportunity Drive Suite 110, Roseville, CA 95678

Property Owner:

Evelyn Schlichting Trust 31 INDUSTRIAL WAY, GREENBRAE, CA 94904 Phone: --

Client:

Chevron EMC

Phone: --

P.O. Box 6012 Rm K2204, San Ramon, CA 94583

Total Due:

\$230.00

Receipt Number: WR2008-0258

Total Amount Paid:

\$230.00

Payer Name: Conestoga-Rovers & Paid By: CHECK

PAID IN FULL

Associates

Works Requesting Permits:

Remediation Well Construction-Vapor Remediation Well - 5 Wells

Driller: V&W Drilling - Lic #: 720904 - Method: Hand

Work Total: \$230.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2008- 0502	07/23/2008	11/12/2008	VP-1	3.00 in.	2.00 in.	2.00 ft	6.00 ft
W2008- 0502	07/23/2008	11/12/2008	VP-2	3.00 in.	2.00 in.	2.00 ft	6.00 ft
W2008- 0502	07/23/2008	11/12/2008	VP-3	3.00 in.	2.00 in.	2.00 ft	6.00 ft
W2008- 0502	07/23/2008	11/12/2008	VP-4	3.00 in.	2.00 in.	2.00 ft	6.00 ft
W2008- 0502	07/23/2008	11/12/2008	VP-5	3.00 in.	2.00 in.	2.00 ft	6.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

Alameda County Public Works Agency - Water Resources Well Permit

- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.
- 4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 5. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).
- 7. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 9. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA

Telephone: 916-677-3407 Fax: 916-677-3687

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME	
JOB/SITE NAME	9-1583 Oakland	DRILLING STARTED 26-Aug-08	
LOCATION	5509 Martin Luther King Jr Way	DRILLING COMPLETED 26-Aug-08	
PROJECT NUMBER _	611960	WELL DEVELOPMENT DATE (YIELD) NA	
DRILLER _	V&W Drilling	GROUND SURFACE ELEVATION Not Surveyed	
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION Not Surveyed	
BORING DIAMETER	3-inch	SCREENED INTERVAL 5 to 5.5 fbg	
LOGGED BY	O. Yan	DEPTH TO WATER (First Encountered) NA	$\overline{\lambda}$
REVIEWED BY	James Kiernan, PE	DEPTH TO WATER (Static) NA	Ţ

REMARKS CONTACT DEPTH (fbg) GRAPHIC LOG SAMPLE ID WELL LOG (PID) INROCKLIN CHEVRONG 119-1611960 - 9-1583 OAKLANDIG 11960-REPORTSIG 11960-RPT1-SOIL VAPOR ASSESSMENT RPT19-1583 VAPOR PROBES 2008. GPJ DEFAULT. GDT PID (ppm) BLOW DEPTH (fbg) U.S.C.S. EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION Asphalt Concrete 0.5 Clayey GRAVEL with sand: brown; moist; 50% gravel, 25% sand, 25% clay; fine to medium grained sand; low plasticity; high estimated permeability. GC 1.0 CLAY with sand: brown; moist; 70% clay, 15% silt, 15% sand; medium plasticity; low estimated permeability. 1/4"-inner diam. Nylaflow® tubing Hydrated Bentonite Gel VP-1- 3' 0.3 CL Dry granular bentonite Monterey 5 Sand #2/16 1"-diam.. 0.010" Slotted Schedule 40 **PVC** 6.0 Bottom of Boring @ 6 fbg

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA

Telephone: 916-677-3407 Fax: 916-677-3687

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME	VP-2		
JOB/SITE NAME	9-1583 Oakland	DRILLING STARTED	26-Aug-08	Tall	
LOCATION	5509 Martin Luther King Jr Way	DRILLING COMPLETED _	26-Aug-08		
PROJECT NUMBER	611960	WELL DEVELOPMENT DA	TE (YIELD) _	NA	
DRILLER _	V&W Drilling	GROUND SURFACE ELEV	ATION _	Not Surveyed	
DRILLING METHOD _	Hand Auger	TOP OF CASING ELEVATION	ON Not Sur	veyed	
BORING DIAMETER	3-inch	SCREENED INTERVAL	5 to 5.5	fbg	
LOGGED BY	O. Yan	DEPTH TO WATER (First E	ncountered)	NA	Z
REVIEWED BY	James Kiernan, PE	DEPTH TO WATER (Static)	į)	NA	Ž

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG WELL LOG (PID) INROCKLIN CHEVRONIG119-1611960 - 9-1583 OAKLANDIG11960-REPORTSIG11960-RPT1-SOIL VAPOR ASSESSMENT RPT19-1583 VAPOR PROBES 2008.GPJ DEFAULT.GDT PID (ppm) BLOW EXTENT DEPTH (fbg) U.S.C.S. WELL DIAGRAM LITHOLOGIC DESCRIPTION Asphalt Concrete 0.5 <u>Clayey GRAVEL with sand:</u> dark brown; moist; 50% gravel, 25% sand, 25% clay; fine to medium grained sand; low plasticity; high estimated permeability. GC 1.0 CLAY with sand: dark brown; moist; 75% clay, 25% sand; medium plasticity; low estimated permeability. 1/4"-inner diam. Nylaflow® tubing Hydrated Bentonite Gel VP-2-3' 0.2 CL Dry granular bentonite Monterey Sand #2/16 1"-diam., 0.010" Slotted Schedule 40 **PVC** 6.0 Bottom of Boring @ 6 fbg

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916-677-3407

1 010	DITOTIC			0.
Fax.	916-6	377	-36	887

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME VP-3
JOB/SITE NAME	9-1583 Oakland	DRILLING STARTED 26-Aug-08
LOCATION _	5509 Martin Luther King Jr Way	DRILLING COMPLETED 26-Aug-08
PROJECT NUMBER	611960	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER _	V&W Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD _	Hand Auger	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER _	3-inch	SCREENED INTERVAL 5 to 5.5 fbg
LOGGED BY	O. Yan	DEPTH TO WATER (First Encountered)NA
REVIEWED BY	James Kiernan, PE	DEPTH TO WATER (Static) NA

REMARKS CONTACT DEPTH (fbg) GRAPHIC LOG SAMPLE ID WELL LOG (PID) I:ROCKLIN.CHEVRONI6119--1611960 - 9-1583 OAKLAND1611960-REPORTS1611960-RPT1-SOIL VAPOR ASSESSMENT RPT19-1583 VAPOR PROBES 2008 GPJ DEFAULT.GDT PID (ppm) BLOW DEPTH (fbg) U.S.C.S. EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM Asphalt Concrete 0.5 <u>Clayey GRAVEL with sand:</u> dark brown; moist; 50% gravel, 25% sand, 25% clay; fine to medium grained sand; low plasticity; high estimated permeability. GC 1.0 <u>CLAY:</u> dark grey; moist; 70% clay, 20% silt, 10% sand; medium plasticity; low estimated permeability. 1/4"-inner diam. Nylaflow® tubing Hydrated Bentonite Gel VP-3- 3' 0.1 CL At 4 fbg dark brown. Dry granular bentonite Monterey Sand #2/16 1"-diam., 0.010" Slotted Schedule 40 **PVC** 6.0 Bottom of Boring @ 6 fbg

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA

Telephone: 916-677-3407 Fax: 916-677-3687

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME VP-4	
JOB/SITE NAME	9-1583 Oakland	DRILLING STARTED 26-Aug-08	
LOCATION	5509 Martin Luther King Jr Way	DRILLING COMPLETED 26-Aug-08	
PROJECT NUMBER	611960	WELL DEVELOPMENT DATE (YIELD)	IA
DRILLER	V&W Drilling	GROUND SURFACE ELEVATIONN	lot Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION Not Surve	yed
BORING DIAMETER	3-inch	SCREENED INTERVAL 5 to 5.5 fb	g
LOGGED BY	O. Yan	DEPTH TO WATER (First Encountered)	NA ¥
REVIEWED BY	James Kiernan, PE	DEPTH TO WATER (Static)	NA <u>¥</u>
REMARKS			

10/21/08 CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG DEFAULT.GDT PID (ppm) BLOW EXTENT DEPTH (fbg) U.S.C.S. WELL DIAGRAM LITHOLOGIC DESCRIPTION WELL LOG (PID) INROCKLIN CHEVRONIG119-1611960 - 9-1563 OAKLANDIG11960-REPORTSIG11960-RPT1-SOIL VAPOR ASSESSMENT RPT19-1563 VAPOR PROBES 2008.GPJ Asphalt Concrete 0.7 Clayey GRAVEL with sand: dark brown; moist; 50% gravel, 25% sand, 25% clay; fine to medium grained sand; GC low plasticity; high estimated permeability. 1.2 Sandy CLAY: dark brown; moist; 50% clay, 30% sand, 20% silt; low plasticity; moderate estimated permeability. 1/4"-inner CL diam. Nylaflow® 2.0 tubing CLAY: dark brown; moist; 70% clay, 20% silt, 10% sand; medium plasticity; low estimated permeability. Hydrated Bentonite Gel VP-4- 3' 0.3 CL Dry granular bentonite Monterey 5 Sand #2/16 1"-diam., 0.010" Slotted Schedule 40 PVC 6.0 Bottom of Boring @ 6 fbg PAGE 1 OF 1

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA

Telephone: 916-677-3407 Fax: 916-677-3687

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME VP-5	
JOB/SITE NAME	9-1583 Oakland	DRILLING STARTED 26-Aug-08	
LOCATION	5509 Martin Luther King Jr Way	DRILLING COMPLETED26-Aug-08	
PROJECT NUMBER _	611960	WELL DEVELOPMENT DATE (YIELD) NA	
DRILLER	V&W Drilling	GROUND SURFACE ELEVATION Not	Surveyed
DRILLING METHOD _	Hand Auger	TOP OF CASING ELEVATION Not Surveye	d
BORING DIAMETER _	3-inch	SCREENED INTERVAL 5 to 5.5 fbg	
LOGGED BY	O. Yan	DEPTH TO WATER (First Encountered)	NA <u>¥</u>
REVIEWED BY	James Kiernan, PE	DEPTH TO WATER (Static)	NA <u>¥</u>

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG WELL LOG (PID) 1:AROCKLIN.CHEVRONI6119-J611960 - 9-1583 OAKLANDI611960-REPORTSI611960-RPT1-SOIL VAPOR ASSESSMENT RPT19-1583 VAPOR PROBES 2008.GPJ DEFAULT.GDT BLOW PID (ppm) DEPTH (fbg) U.S.C.S. EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION Asphalt Concrete 0.5 <u>Clayey GRAVEL with sand:</u> dark brown; moist; 50% gravel, 25% sand, 25% clay; fine to medium grained sand; low plasticity; high estimated permeability. GC 1.0 <u>CLAY:</u> dark grey; moist; 70% clay, 20% silt, 10% sand; medium plasticity; low estimated permeability. 1/4"-inner diam. Nylaflow® tubing Hydrated Bentonite Gel 0.3 VP-5- 3' CL Dry granular bentonite Monterey Sand #2/16 5 1"-diam., 0.010" Slotted Schedule 40 PVC 6.0 Bottom of Boring @ 6 fbg PAGE 1 OF

APPENDIX D

STANDARD OPERATING PROCEDURES

Conestoga-Rovers & Associates

STANDARD FIELD PROCEDURES FOR SOIL VAPOR PROBE INSTALLATION AND SAMPLING

VAPOR POINT METHODS

This document describes Conestoga-Rovers & Associates' standard field methods for soil vapor sampling. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil vapor samples are collected and analyzed to assess whether vapor-phase subsurface contaminants pose a threat to human health or the environment.

Shallow Soil Vapor Point Installation

The shallow soil vapor point method for soil vapor sampling utilizes a hand auger or drill rig to advance a boring for the installation of a soil vapor sampling point. Once the boring is hand augered to the final depth, a probe, connected with Swagelok fittings to nylon or Teflon tubing of ¼-inch outer-diameter, is placed within 12-inches of number 2/16 filter sand (Figure A). A 12-inch layer of dry granular bentonite is placed on top of the filter pack. Pre-hydrated granular bentonite is then poured to fill the borehole. The tube is coiled and placed within a wellbox finished flush to the surface. Soil vapor samples will be collected no sooner than 48 hours after installation of the soil vapor points to allow adequate time for representative soil vapors to accumulate. Soil vapor sample collection will not be scheduled until after a minimum of three consecutive precipitation-free days and irrigation onsite has ceased. Figure B shows the soil vapor sampling apparatus. A measured volume of air will be purged from the tubing using a different Summa purge canister. Immediately after purging, soil vapor samples will be collected using the appropriate size Summa canister with attached flow regulator and sediment filter. The soil vapor points will be preserved until they are no longer needed for risk evaluation purposes. At that time, they will be destroyed by extracting the tubing, hand augering to remove the sand and bentonite, and backfilling the boring with neat cement. The boring will be patched with asphalt or concrete, as appropriate.

Sampling of Soil Vapor Points

Samples will be collected using a SUMMATM canister connected to sampling tubing at each vapor point. Prior to collecting soil vapor samples, the initial vacuum of the canisters is measured and recorded on the chain-of-custody. The vacuum of the SUMMATM canister is used to draw the soil vapor through the flow controller until a negative pressure of approximately 5-inches of Hg is observed on the vacuum gauge and recorded on the

Conestoga-Rovers & Associates

chain-of-custody. The flow controllers should be set to 100-200 ml/minute. Field duplicates should be collected for every day of sampling and/or for every 10 samples collected.

Prior to sample collection, stagnant air in the sampling apparatus should be removed by purging approximately 3 purge volumes. The purge volume is defined as the amount of air within the probe and tubing.

In accordance with the DTSC Advisory-Active Soil Gas Investigations guidance document, dated January 28, 2003, leak testing needs to be performed during sampling. Helium is recommended, although shaving cream is acceptable.

Vapor Sample Storage, Handling, and Transport

Samples are stored and transported under chain-of-custody to a state-certified analytic laboratory. Samples should never be cooled due to the possibility of condensation within the canister.

FIGURE

Schematic Not to Scale

FIGURE

B

Schematic Not to Scale

APPENDIX E

VAPOR SAMPLING FIELD DATA SHEETS

Soil Vapor Sampli	ng Point ID: VP-\	Date:	9/11/04
Job/Site Name:	9-1583	Technician:	L. Much 5. Giorgi
Project No.	611960	PM:	S. Girarai
Site Address:	5509 M4-51	a	3
Vapor Sampling A	pparatus Pressure Testing		
Time	Vacuum Reading	Unit	Comments
[127	-19+		·
1/32	-19+		fassel
•			1 .
	9		
Purge Volume	* 1		
Calculated Purge V	olume:		
Time	Flow	Volume	PID Reading
1132	4		
1(34	19		
-			
Sample Collection			I so bent to be
Flow Control Orific	e Setting: 167	Summa Canister	ID: 1453 / 118373
	ze: _ /	Analysis:	
Time - Begin		Time - End	
Sampling	Canister Vacuum	Sampling	Canister Vacuum
1035		1141	,
Notes: G	= 39 Se	374	2 = 5.4 L
T=	60 84	51	
C:\Documents and	Settings\cbenedict\Local Set	tings\Temporary l	Internet Files\OLK7B\[Soil Vapor Sampling Form

SOIL VAPOR SAMPLING DATA SHEET

Soil Vapor Sampli	ng Point ID: <u>\\P-Z\D</u> .vpc	Date:	9/11/08
Job/Site Name:	9-191583	Technician:	(B)
Project No.	611960	PM:	S. Gregi
Site Address:	5509 MK Oak	land	3
	-) V (MIN - OUP	112-2	
Vapor Sampling A	pparatus Pressure Testing		
Time	Vacuum Reading	Unit	Comments
1314	19/20.5		
1324	-19/20.5		passed
¥) = 02			1
Purge Volume			2
	olume:		
Time	Flow	Volume	PID Reading
1324			
1326			
TOTAL CONTRACT OF THE STATE OF			
Sample Collection			ID: 36560 / 308=0 118374/
Flow Control Orific	e Setting: 147 my/min	Summa Canister	ID: 36560/20/19374/
Summa Canister Siz		Analysis:	
Time - Begin		Time - End	,
Sampling	Canister Vacuum	Sampling	Canister Vacuum
1326.	-30/-30	1332	-5/-5
Notes:	10-2	Du	2
6	19al = 30 3.11.	45.5.67 gal	-30 38.45.45
	T= 45	7-2	45 30
	And the second s		

C:\Documents and Settings\cbenedict\Local Settings\Temporary Internet Files\OLK7B\[Soil Vapor Sampling Form

Job/Site Name: 9	ing Point ID: VP-3 -1583 (1960 5509 MLK 31	Date: Technician: PM:	9/11/08 CB. Sations
Vapor Sampling A	pparatus Pressure Testing		
Time	Vacuum Reading	Unit	Comments
1264	-19.5	17/49	,
1215	-19,5	1 .)	passel
	*		· ·
		L	
Purge Volume			
Calculated Purge V	olume:		
Time	Flow	Volume	PID Reading
-			
			•
Sample Collection Flow Control Orific	ee Setting:	Summa Canister	ID: 3/800/ 119833
Summa Canister Siz			
Time - Begin		Time - End	
Sampling	Canister Vacuum	Sampling	Canister Vacuum
1219	-30	1226	-5
Notes:	a = 36.	2. 99 8 hr 54 38	5.6.76
T) - 54		
-2			
C:\ Documents and	Sottings\ chanadist\ I agal Sat	tings\ Tomporary	Internet Files OI K7R [Soil Vapor Sampling Forn

Soil Vapor Sampli	ng Point ID: VP-4	Date:	9-11-08
Job/Site Name:		Technician:	
Project No.		PM:	S. Giorai
Site Address:	5569 MLK Jr W	ay, Oaklar	S. Giorgi
Vapor Sampling A	pparatus Pressure Testing		
Time	Vacuum Reading	Unit	Comments
1037	-10	in/Hg	
1047	- 20		Dussel
		-	1
			*
Purge Volume			*
3. 3. 3	olume:		
<u></u>	T.	L	
Time	Flow	Volume	PID Reading
1047			
1049		1	
		-	
Sample Collection			ID: 34600/ 119832
Flow Control Orific	re Setting: / 47 ml/nin	Summa Canister	ID: 34600/ 119832
Summa Canister Siz	ze:	Analysis:	
Time - Begin		Time - End	
Sampling	Canister Vacuum	Sampling	Canister Vacuum
1049	-30	1056	-5
Notes:	aal = 33 sec	3,78	4 4 466 2 5,67
	JT= 48 Sec	337	Suggle Sug Sugarra
C:\Documents and	Settings\cbenedict\Local Set	tings\Temporary l	Internet Files\OLK7B\[Soil Vapor Sampling Forn

Soil Vapor Sampling Point ID: VP-5 Date: Job/Site Name: Technician: Project No. Site Address: Vapor Sampling Apparatus Pressure Testing Time Unit Vacuum Reading Comments - 27 1004 Purge Volume Calculated Purge Volume: Time Flow Volume PID Reading 1006 1958 Sample Collection Summa Canister ID:_ Flow Control Orifice Setting: Summa Canister Size: _ Analysis: Time - Begin Time - End Sampling Canister Vacuum Sampling Canister Vacuum 1004 Notes:

C:\Documents and Settings\cbenedict\Local Settings\Temporary Internet Files\OLK7B\[Soil Vapor Sampling Form

APPENDIX F

LABORATORY ANALYTICAL REPORTS

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1107457. Samples arrived at the laboratory on Thursday, August 28, 2008. The PO# for this group is 91583 and the release number is MTI.

Client Description	Lancaster Labs Number		
VP-3-S-3-080826 Grab Soil	5452714		
VP-2-S-3-080826 Grab Soil	5452715		
VP-4-S-3-080826 Grab Soil	5452716		
VP-5-S-3-080826 Grab Soil	5452717		
VP-1-S-3-080826 Grab Soil	5452718		

ELECTRONIC

Chevron c/o CRA

Attn: CRA EDD

COPY TO

ELECTRONIC

Attn: Sara Giorgi

COPY TO

CRA

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

Barbara F Reedy

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5452714

Group No. 1107457

VP-3-S-3-080826 Grab Soil

Facility# 91583 MTI# 61-1960 CETK 5509 Martin Luther King-Oakland T0600100348 VP-3

Collected: 08/26/2008 09:25

by LM

Account Number: 11997

-- /-- /---

Submitted: 08/28/2008 09:00 Reported: 09/07/2008 at 11:42

Discard: 10/08/2008

Chevron c/o CRA

Suite 110

2000 Opportunity Drive Roseville CA 95678

LUTV3

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils	n.a.	ND	1.0	mg/kg	25
08270	TPH-DRO by 8015B	n.a.	ND	4.0	mg/kg	1
07361	BTEX+5 Oxygenates+EDC+EDB					
02016	Methyl Tertiary Butyl Ether	1634-04-4	ND	0.0005	mg/kg	1.03
02020	t-Butyl alcohol	75-65-0	ND	0.021	mg/kg	1.03
05460	Benzene	71-43-2	ND	0.0005	mg/kg	1.03
05461	1,2-Dichloroethane	107-06-2	ND	0.001	mg/kg	1.03
05466	Toluene	108-88-3	ND	0.001	mg/kg	1.03
05471	1,2-Dibromoethane	106-93-4	ND	0.001	mg/kg	1.03
05474	Ethylbenzene	100-41-4	ND	0.001	mg/kg	1.03
06301	Xylene (Total)	1330-20-7	ND	0.001	mg/kg	1.03
	NAME #12.000-00000 TO TOTAL TO					

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	SW-846 8015B modified	1	09/03/2008 06:31	Linda C Pape	25
08270	TPH-DRO by 8015B	SW-846 8015B	1	09/06/2008 04:44	Heather E Williams	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	09/01/2008 11:31	Kathrine K Muramatsu	1.03
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:33	Larry E Bevins	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	08/29/2008 15:33	Larry E Bevins	n.a.
01150	GC - Bulk Soil Prep	SW-846 5030A	1	08/29/2008 15:35	Larry E Bevins	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:34	Larry E Bevins	n.a.
07004	Extraction - DRO (Soils)	SW-846 3550B	1	09/04/2008 10:40	Jessica Agosto	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5452715

Group No. 1107457

VP-2-S-3-080826 Grab Soil Facility# 91583 MTI# 61-1960 CETK 5509 Martin Luther King-Oakland T0600100348 VP-2

Collected: 08/26/2008 09:39 by L

Submitted: 08/28/2008 09:00 Reported: 09/07/2008 at 11:42

Discard: 10/08/2008

Account Number: 11997

Chevron c/o CRA Suite 110

2000 Opportunity Drive

Roseville CA 95678

LUTV2

				As Received			
CAT			As Received	Method		Dilution	
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor	
01725	TPH-GRO - Soils	n.a.	ND	1.0	mg/kg	25	
08270	TPH-DRO by 8015B	n.a.	ND	4.0	mg/kg	1	
07361	BTEX+5 Oxygenates+EDC+EDB						
02016	Methyl Tertiary Butyl Ether	1634-04-4	ND	0.0005	mg/kg	1.01	
02020	t-Butyl alcohol	75-65-0	ND	0.020	mg/kg	1.01	
05460	Benzene	71-43-2	ND	0.0005	mg/kg	1.01	
05461	1,2-Dichloroethane	107-06-2	ND	0.001	mg/kg	1.01	
05466	Toluene	108-88-3	ND	0.001	mg/kg	1.01	
05471	1,2-Dibromoethane	106-93-4	ND	0.001	mg/kg	1.01	
05474	Ethylbenzene	100-41-4	ND	0.001	mg/kg	1.01	
06301	Xylene (Total)	1330-20-7	ND	0.001	mg/kg	1.01	

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Chronicle
_	31

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	SW-846 8015B modified	d 1	09/03/2008 07:08	Linda C Pape	25
08270	TPH-DRO by 8015B	SW-846 8015B	1	09/06/2008 05:03	Heather E Williams	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	09/01/2008 11:54	Kathrine K Muramatsu	1.01
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:37	Larry E Bevins	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	08/29/2008 15:38	Larry E Bevins	n.a.
01150	GC - Bulk Soil Prep	SW-846 5030A	1	08/29/2008 15:39	Larry E Bevins	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:38	Larry E Bevins	n.a.
07004	Extraction - DRO (Soils)	SW-846 3550B	1	09/04/2008 10:40	Jessica Agosto	1
07004	Extraction - DRO (Soils)	SW-846 3550B	1	09/04/2008 10:40	Jessica Agosto	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5452716

Group No. 1107457

VP-4-S-3-080826 Grab Soil Facility# 91583 MTI# 61-1960 CETK

5509 Martin Luther King-Oakland T0600100348 VP-4 Collected:08/26/2008 10:48 by LM

Submitted: 08/28/2008 09:00

Submitted: 08/28/2008 09:00 Reported: 09/07/2008 at 11:42

Discard: 10/08/2008

Account Number: 11997

Chevron c/o CRA

Suite 110

2000 Opportunity Drive Roseville CA 95678

LUTV4

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils	n.a.	ND	1.0	mg/kg	25
08270	TPH-DRO by 8015B	n.a.	ND	4.0	mg/kg	1
0.002.00						
07361	BTEX+5 Oxygenates+EDC+EDB					
02016	Methyl Tertiary Butyl Ether	1634-04-4	ND	0.0005	mg/kg	1
02020	t-Butyl alcohol	75-65-0	ND	0.020	mg/kg	1
05460	Benzene	71-43-2	ND	0.0005	mg/kg	1
05461	1,2-Dichloroethane	107-06-2	ND	0.001	mg/kg	1
05466	Toluene	108-88-3	ND	0.001	mg/kg	1
05471	1,2-Dibromoethane	106-93-4	ND	0.001	mg/kg	1
05474	Ethylbenzene	100-41-4	ND	0.001	mg/kg	1
06301	Xylene (Total)	1330-20-7	ND	0.001	mg/kg	1

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory	CIII O.	IIICIE		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	SW-846 8015B modified	1 1	09/03/2008 07:44	Linda C Pape	25
08270	TPH-DRO by 8015B	SW-846 8015B	1	09/06/2008 05:21	Heather E Williams	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	09/01/2008 12:16	Kathrine K Muramatsu	1
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:41	Larry E Bevins	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	08/29/2008 15:41	Larry E Bevins	n.a.
01150	GC - Bulk Soil Prep	SW-846 5030A	1	08/29/2008 15:43	Larry E Bevins	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:42	Larry E Bevins	n.a.
07004	Extraction - DRO (Soils)	SW-846 3550B	1	09/04/2008 10:40	Jessica Agosto	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5452717

Group No. 1107457

VP-5-S-3-080826 Grab Soil Facility# 91583 MTI# 61-1960 CETK 5509 Martin Luther King-Oakland T0600100348 VP-5

Collected: 08/26/2008 11:15

2008 II:15 DY L

Submitted: 08/28/2008 09:00 Reported: 09/07/2008 at 11:42

Discard: 10/08/2008

Account Number: 11997

Chevron c/o CRA

Suite 110

2000 Opportunity Drive Roseville CA 95678

LUTV5

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils	n.a.	ND	1.0	mg/kg	25
08270	TPH-DRO by 8015B	n.a.	ND	4.0	mg/kg	1
07361	BTEX+5 Oxygenates+EDC+EDB					
02016	Methyl Tertiary Butyl Ether	1634-04-4	ND	0.0005	mg/kg	0.98
02020	t-Butyl alcohol	75-65-0	ND	0.020	mg/kg	0.98
05460	Benzene	71-43-2	ND	0.0005	mg/kg	0.98
05461	1,2-Dichloroethane	107-06-2	ND	0.001	mg/kg	0.98
05466	Toluene	108-88-3	ND	0.001	mg/kg	0.98
05471	1,2-Dibromoethane	106-93-4	ND	0.001	mg/kg	0.98
05474	Ethylbenzene	100-41-4	ND	0.001	mg/kg	0.98
06301	Xylene (Total)	1330-20-7	ND	0.001	mg/kg	0.98

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	SW-846 8015B modified	1	09/03/2008 09:33	Linda C Pape	25
08270	TPH-DRO by 8015B	SW-846 8015B	1	09/06/2008 08:30	Heather E Williams	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	09/01/2008 12:38	Kathrine K Muramatsu	0.98
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:45	Larry E Bevins	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	08/29/2008 15:46	Larry E Bevins	n.a.
01150	GC - Bulk Soil Prep	SW-846 5030A	1	08/29/2008 15:47	Larry E Bevins	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	08/29/2008 15:46	Larry E Bevins	n.a.
07004	Extraction - DRO (Soils)	SW-846 3550B	1	09/04/2008 10:40	Jessica Agosto	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW5452718

Group No. 1107457

VP-1-S-3-080826 Grab Soil

Facility# 91583 MTI# 61-1960 CETK

5509 Martin Luther King-Oakland T0600100348 VP-1

Collected: 08/26/2008 11:51 Submitted: 08/28/2008 09:00

Discard: 10/08/2008

Reported: 09/07/2008 at 11:42

Account Number: 11997

Chevron c/o CRA

Suite 110

2000 Opportunity Drive

Roseville CA 95678

LUTV1

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils	n.a.	ND	1.0	mg/kg	25
08270	TPH-DRO by 8015B	n.a.	ND	4.0	mg/kg	1
07361	BTEX+5 Oxygenates+EDC+EDB					
07501	DIDN'S ON/GENECES IDECTED					
02016	Methyl Tertiary Butyl Ether	1634-04-4	ND	0.0005	mg/kg	0.98
02020	t-Butyl alcohol	75-65-0	ND	0.020	mg/kg	0.98
05460	Benzene	71-43-2	ND	0.0005	mg/kg	0.98
05461	1,2-Dichloroethane	107-06-2	ND	0.001	mg/kg	0.98
05466	Toluene	108-88-3	ND	0.001	mg/kg	0.98
05471	1,2-Dibromoethane	106-93-4	ND	0.001	mg/kg	0.98
05474	Ethylbenzene	100-41-4	ND	0.001	mg/kg	0.98
06301	Xylene (Total)	1330-20-7	ND	0.001	mg/kg	0.98

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			.		Analysis			Dilution
No.	Analysis Name	Method	Tr	rial#	Date and T	'ime	Analyst	Factor
01725	TPH-GRO - Soils	SW-846 8015B	modified	1	09/03/2008	10:09	Linda C Pape	25
08270	TPH-DRO by 8015B	SW-846 8015B		1	09/06/2008	05:40	Heather E Williams	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B		1	09/01/2008	13:01	Kathrine K Muramatsu	0.98
00374	GC/MS - Bulk Sample Prep	SW-846 5030A		1	08/29/2008	15:49	Larry E Bevins	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A		2	08/29/2008	15:49	Larry E Bevins	n.a.
01150	GC - Bulk Soil Prep	SW-846 5030A		1	08/29/2008	15:51	Larry E Bevins	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A		1	08/29/2008	15:50	Larry E Bevins	n.a.
07004	Extraction - DRO (Soils)	SW-846 3550B		1	09/04/2008	10:40	Jessica Agosto	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 09/07/08 at 11:42 AM Group Number: 1107457

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 08245A34A TPH-GRO - Soils	Sample ND	number(s):	5452714-54 mg/kg	52718 82		67-119		
Batch number: 082470014A TPH-DRO by 8015B	Sample ND	number(s):	5452714-54 mg/kg	52718 92		71-109		
Batch number: A082451AA	Sample	number(s):	5452714-54	52718				
Methyl Tertiary Butyl Ether	ND	0.0005	mg/kg	96	91	72-117	6	30
t-Butyl alcohol	ND	0.020	mg/kg	90	89	66-146	1	30
Benzene	ND	0.0005	mg/kg	99	94	84-115	6	30
1,2-Dichloroethane	ND	0.001	mg/kg	100	94	76-135	7	30
Toluene	ND	0.001	mg/kg	97	93	81-116	4	30
1,2-Dibromoethane	ND	0.001	mg/kg	98	90	77-114	8	30
Ethylbenzene	ND	0.001	mg/kg	93	90	82-115	3	30
Xylene (Total)	ND	0.001	mg/kg	92	89	82-117	4	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD
Batch number: 08245A34A TPH-GRO - Soils	Sample 82	number(s) 82	: 5452714 39-118	-545271 1	8 UNSPI 30	K: P455933			
Batch number: 082470014A TPH-DRO by 8015B	Sample 92	number(s)	: 5452714 52-117	-545271	8 UNSPI	K: P453656 ND	BKG: P453656 ND	0 (1)	20
Batch number: A082451AA Methyl Tertiary Butyl Ether t-Butyl alcohol Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Xylene (Total)	Sample 95 92 102 103 104 96 97	number(s)	: 5452714 59-119 50-143 66-112 62-130 58-116 65-115 54-116 52-117	-545271	8 UNSP	X: 5452714			

Surrogate Quality Control

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron c/o CRA

Group Number: 1107457

Reported: 09/07/08 at 11:42 AM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-GRO - Soils Batch number: 08245A34A Trifluorotoluene-F

5452714	78	- in the second				
5452715	77					
5452716	76					
5452717	71					
5452718	75					
Blank	75					
LCS	82					
MS	77					
MSD	73					
					200.000	

Limits:

Analysis Name: TPH-DRO by 8015B Batch number: 082470014A Orthoterphenyl

Limits:	59-129	
MS	110	8
LCS	109	
DUP	98	
Blank	114	
5452718	99	
5452717	103	
5452716	102	
5452715	90	
5452714	98	

Analysis Name: BTEX+5 Oxygenates+EDC+EDB Batch number: A082451AA

Batch num	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5452714	86	79	89	74
5452715	87	83	87	76
5452716	90	81	86	75
5452717	91	82	94	68*
5452718	89	83	87	76
Blank	88	89	85	81
LCS	87	86	88	84
LCSD	86	83	88	84
MS	87	83	92	79
Limits:	71-114	70-109	70-123	70-111

*- Outside of specification

(2) The unspiked result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

Chevron California Region Analysis Request/Chain of Custody

Lancaster Where quality is a	Labor science.	atories		,			Ad	ct. #:	11	99	7	_ Sa	F ample	or L	ancast 45	er La	abora 7/4	atories	s use	only	SCR#:	4030	
				611960	Č								Α	naly	ses F	Requ	este	ed			#quare	1107	457
Facility #: Chevr	on 9	- 1587	3										P	res	ervati	on C	ode	s				ative Code	
Site Address: 550				ner King Jr	way, C	aklard						g.			1	+	+	+			H = HCI N = HNO₃	T = Thios B = NaOl	
Chevron PM: 5. Fre	crich	5	Lead C	onsultant: CR	A				è			Clean									S = H ₂ SO ₄		
Consultant/Office:	Rose	rille							of Containers	8021		a Gel									☐ J value repor		
Consultant Prj. Mgr.: _	Saro	a Gio	rai						Sonta	X 802		JSilic									possible for t		
Consultant Phone #:	116-67	7-340	7 3	Fax #: 916-6	77-365	37_	l			8260 🏲	GRO	RO [*	7421						8021 MTBE Co	nfirmation	
Sampler: L. Mo	rsh	-						يو ا	Number	是 82	00	OD D	_	Oxygenates	74						Confirm high		260
Service Order #:			_ Noi	n SAR:				posi	03 52	+ MTBE	015 M	015 M	III SCB	Oxyge	420	-					Confirm all h	\$58	st hit
Field	Matrix	Repeat	Top	Year Month Day	Time	New Field Pt	Grab	Composite	Total	ВТЕХ	TPH 8015 MOD	TPH 8015 MOD DRO ☐ Silica Gel Cleanup	8260 full scan	3	Lead 7420 [☐ Run 0		
Point Name	5	Sample	3	08 08 26		У	X	_	i	X	X	_	w	X		\top	T				Comments /	Remarks	
VP-2-3	5		3	08 08 26		У	X		1	X	-	X		X							3 Oxygen	wes z	
VP-4-3	5		3	098 098 76		X	X		1	X	X	X		X		+	+	-	-	-	TBA,	12-10G/	♦ ,
VP-5-3 VP-1-3	5	-	33	08 08 26		У	×		1	X	X			X	\vdash	+	•	+-	+		EDI	3	
VF-1-3	12	 		08 08 26	1131	1.	1^	-	1	_	~	^		1	\vdash	\dashv			+		by 82	OB	
																					1		
								<u> </u>			_		<u> </u>			_	_		_	_			
	_		ļ		 		-	-		-	_		ļ			+	+		-	-			
	 	 	-		-		\vdash			-	-					+	-	-	+	+-			
	+	-					╁				_								+	\dagger			
		161					上									丄					1		,
Turnaround Time Re	auested	(TAT) (ple	ase circ	e)	Relinquishe	d by:	m		•				Date - 27 -		Time		eceiv	ed by:				Date	Time
(STD. TAT)	72 hou		48 hour	,	Relinquishe	d by.	. 1	ص	<u>≫</u> ^		-	0.	Date	-	Time	-	ecei	ed by				Date	Time
24 hour	4 day	Ę	day																	_			
Data Package Option	ıs (please	circle if req	uired)		Relinquishe	d by:			_	_	_	1	Date	'	Time	R	ecei	red by:	i	^		Date	Time
I come a company of the company of t	Type I – F				Relinquishe	d by Comr	nerci	al Ca	rrier:				700			R	eceiv	e by		1	$\overline{}$	Date	Time
Type VI (Raw Data) WIP (RWQCB)	_ Coelt D	eliverable n	ot neede	ea	UPS	FEEE			ther_				12000 200				1	pol.	rim	W	aut	8halin	59,00
Disk					Temperatur	e Upon Re	eceip	t			C°					С	usto	y Sea	ıls Inta	act?	Yee No		

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million – One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weightBesults printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

Inorganic Qualifiers

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" control="" due="" duplicate="" estimated="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used<="" within="" ≥idl=""></crdl,>
	the instrument		for calculation
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX F

LABORATORY ANALYTICAL REPORT FOR SOIL VAPOR

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- · Work order Summary;
- · Laboratory Narrative;
- Results; and
- · Chain of Custody (copy).

(916) 985-1000 .FAX (916) 985-1020 Hours 8:00 A.M to 6:00 P.M. Pacific

WORK ORDER #: 0809235

Work Order Summary

CLIENT:

Ms. Lindsay Marsh

BILL TO: Ms. Lindsay Marsh

Conestoga-Rovers Associates (CRA)

Conestoga-Rovers Associates (CRA) 2000 Opportunity Drive

2000 Opportunity Drive Suite 110

Suite 110

Roseville, CA 95678

Roseville, CA 95678

PHONE: FAX:

916-677-3407 x123

P.O. #

9-1583 Oakland

DATE RECEIVED:

916-677-3687

PROJECT # CONTACT:

Kelly Buettner

DATE COMPLETED:

09/12/2008 09/18/2008

FRACTION#	<u>NAME</u>	<u>TEST</u>
01A	VP-5	Modified TO-17
02A	VP-4	Modified TO-17
03A	VP-1	Modified TO-17
04A	VP-2	Modified TO-17
05A	VP-3	Modified TO-17
06A	Dupe	Modified TO-17
07A	Lab Blank	Modified TO-17
08A	CCV	Modified TO-17
09A	LCS	Modified TO-17

CERTIFIED BY:

Sinda d. Fruman

09/18/08 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE TO-17 - Markes ATD Conestoga-Rovers Associates (CRA) Workorder# 0809235

Six TO-17 Tube (Tenax-GR) samples were received on September 12, 2008. The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for further separation.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-17	ATL Modifications
Laboratory Blank	At least 2 tubes from the same cleaning batch as the samples are analyzed at the beginning and end of the analytical sequence. Do not dry purge Lab Blanks.	Tubes used for daily lab blank may or may not be from the same batch or sampling media. Only I lab blank is analyzed prior to sample analysis. Lab blanks are dry purged to eliminate the possibility of sample anomaly attributed to dry purge process.
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-17 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

A Temperature Blank was included with the shipment. Temperature was measured and was not within 4±2 °C. Coolant in the form of blue ice was present. Analysis proceeded.

Analytical Notes

The TPH pattern in sample VP-4, VP-2 and Dupe did not resemble that of the diesel fuel. Results are reported from the hydrocarbons distributed in the lighter carbon range of diesel.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction no performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED METHOD TO-17

Client Sample ID: VP-5

Lab ID#: 0809235-01A

No Detections Were Found.

Client Sample ID: VP-4

Lab ID#: 0809235-02A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(uG/m3)	(ng)	(uG/m3)
TPH (Diesel Range)	1000	180	5000	920

Client Sample ID: VP-1

Lab ID#: 0809235-03A

No Detections Were Found.

Client Sample ID: VP-2

Lab ID#: 0809235-04A

Compound	Kpt. Limit (ng)	(uG/m3)	(ng)	(uG/m3)	
TPH (Diesel Range)	1000	180	39000	6900	

Client Sample ID: VP-3

Lab ID#: 0809235-05A

No Detections Were Found.

Client Sample ID: Dupe

Lab ID#: 0809235-06A

_	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(uG/m3)	(ng)	(uG/m3)
TPH (Diesel Range)	1000	180	41000	7200

Client Sample ID: VP-5 Lab ID#: 0809235-01A MODIFIED METHOD TO-17

File Name: Dil. Factor:	n091616 Date of Extraction: NA 1.00		Date of Collection: 9/11/08 Date of Analysis: 9/17/08 04:10 AM		
Compound	Rɒt. Lin (ng)	mit Rpt. Limit (uG/m3)	Amount (ng)	Amount (uG/m3)	
TPH (Diesel Range)	1000	160	Not Detected	Not Detected	

Client Sample ID: VP-4 Lab ID#: 0809235-02A

MODIFIED METHOD TO-17

File Name: Dil. Factor:	n091617 Date of 1.00	Extraction: NA	Date of Collection: 9/11/08 Date of Analysis: 9/17/08 04:48 AM		
	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ng)	(uG/m3)	(ng)	(uG/m3)	
TPH (Diesel Range)	1000	180	5000	920	

Client Sample ID: VP-1 Lab ID#: 0809235-03A

MODIFIED METHOD TO-17

File Name: Dil. Factor:	n091618 1.00			Date of Collection: 9/11/08 Date of Analysis: 9/17/08 05:26 AM	
Compound	R¤t. Lir (ng)	mit	Rpt. Limit (uG/m3)	Amount (ng)	Amount (uG/m3)
TPH (Diesel Range)	1000		170	Not Detected	Not Detected

Client Sample ID: VP-2 Lab ID#: 0809235-04A

MODIFIED METHOD TO-17

File Name: Dil. Factor:	n091619 1.00	Date of	Extraction: NA	Date of Collection: Date of Analysis: 9/	
Compound	Rpt. L (ng)		Rpt. Limit (uG/m3)	Amount (ng)	Amount (uG/m3)
TPH (Diesel Range)	1000	 D	180	39000	6900

Client Sample ID: VP-3 Lab ID#: 0809235-05A

MODIFIED METHOD TO-17

File Name:	n091620 Date of Extraction: NA		Date of Collection: 9/11/08	
Dil. Factor:	1.00		Date of Analysis: 9/17/08 06:42 AM	
Compound	Rot. Li	mit Rpt. Limit	Amount	Amount
	(ng)	(uG/m3)	(ng)	(uG/m3)
TPH (Diesel Range)	1000	180	Not Detected	Not Detected

Client Sample ID: Dupe Lab ID#: 0809235-06A

MODIFIED METHOD TO-17

File Name: Dil. Factor:	n091621 Date of Extraction: NA		Date of Collection: 9/11/08 Date of Analysis: 9/17/08 07:20 AM	
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(uG/m3)	(ng)	(uG/m3)
TPH (Diesel Range)	1000	180	41000	7200

Client Sample ID: Lab Blank Lab ID#: 0809235-07A

MODIFIED METHOD TO-17

File Name: Dil. Factor:	n091611 1.00			Date of Collection: NA Date of Analysis: 9/16/08 11:36 PM		
	Rot. Li	mit	Rpt. Limit	Amount	Amount	
Compound	(ng)		(uG/m3)	(ng)	(uG/m3)	
TPH (Diesel Range)	1000		160	Not Detected	Not Detected	

Container Type: NA - Not Applicable

Client Sample ID: CCV Lab ID#: 0809235-08A

MODIFIED METHOD TO-17

File Name: n091608 Date of Extraction: NA Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 9/16/08 06:27 PM

Compound %Recovery

TPH (Diesel Range) 98

Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 0809235-09A

MODIFIED METHOD TO-17

File Name: n091609 Date of Extraction: NA Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 9/16/08 07:05 PM

Compound %Recovery

TPH (Diesel Range) 90

Container Type: NA - Not Applicable

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- · Work order Summary;
- · Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0809246B

Work Order Summary

CLIENT:

Ms. Lindsay Marsh

BILL TO:

Ms. Lindsay Marsh

Conestoga-Rovers Associates (CRA)

Conestoga-Rovers Associates (CRA)

2000 Opportunity Drive

2000 Opportunity Drive

Suite 110

Suite 110

Roseville, CA 95678

Roseville, CA 95678

PHONE:

916-677-3407 x123

P.O. #

FAX:

916-677-3687

PROJECT#

9-1583 Oakland

DATE RECEIVED: DATE COMPLETED: 09/12/2008 09/25/2008

CONTACT:

Kelly Buettner

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	TEST	VAC./PRES.	PRESSURE
01A	VP-5	Modified TO-3	2.5 "Hg	15 psi
02A	VP-4	Modified TO-3	2.5 "Hg	15 psi
03A	VP-1	Modified TO-3	- 4.0 "Hg	15 psi
04A	VP-2	Modified TO-3	5.5 "Hg	15 psi
05A	VP-3	Modified TO-3	5.5 "Hg	15 psi
06A	Dupe	Modified TO-3	4.0 "Hg	15 psi
06AA	Dupe Lab Duplicate	Modified TO-3	4.0 "Hg	15 psi
07A	Lab Blank	Modified TO-3	NA	NA
08A	LCS	Modified TO-3	NA	NA

CERTIFIED BY:

Sinda d. Fruman

09/25/08

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd, certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-3 Conestoga-Rovers Associates (CRA) Workorder# 0809246B

Six 1 Liter Summa Canister (100% Certified) samples were received on September 12, 2008. The laboratory performed analysis for volatile organic compounds in air via modified EPA Method TO-3 using gas chromatography with flame ionization detection. The method involves concentrating up to 200 mL of sample. The concentrated aliquot is then dry purged to remove water vapor prior to entering the chromatographic system. The TPH (Gasoline Range) results are calculated using the response factor of Gasoline. A molecular weight of 100 is used to convert the TPH (Gasoline Range) ppbv result to ug/m3.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-3	ATL Modifications
Daily Calibration Standard Frequency	Prior to sample analysis and every 4 - 6 hrs	Prior to sample analysis and after the analytical batch = 20 samples</td
Initial Calibration Calculation	4-point calibration using a linear regression model	5-point calibration using average Response Factor
Initial Calibration Frequency	Weekly	When daily calibration standard recovery is outside 75 - 125 %, or upon significant changes to procedure or instrumentation
Moisture Control	Nafion system	Sorbent system
Minimum Detection Limit (MDL)	Calculated using the equation DL = A+3.3S, where A is intercept of calibration line and S is the standard deviation of at least 3 reps of low level standard	40 CFR Pt. 136 App. B
Preparation of Standards	Levels achieved through dilution of gas mixture	Levels achieved through loading various volumes of the gas mixture

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

B - Compound present in laboratory blank greater than reporting limit.

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: VP-5				
Lab ID#: 0809246B-01A				
0	Rot. Limit	Amount	Rpt. Limit	Amount (uG/m3)
Compound	(ppbv)	(ppbv)	(uG/m3)	
TPH (Gasoline Range)	55	11000	220	46000
Client Sample ID: VP-4				
Lab ID#: 0809246B-02A				
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
TPH (Gasoline Range)	55	9400	220	38000
Client Sample ID: VP-1				
Lab ID#: 0809246B-03A				
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
TPH (Gasoline Range)	58	130	240	550
Client Sample ID: VP-2				
Lab ID#: 0809246B-04A				
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
TPH (Gasoline Range)	200	80000	810	330000
Client Sample ID; VP-3				
Lab ID#: 0809246B-05A				
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
TPH (Gasoline Range)	62	130	250	540
Client Sample ID: Dupe				
Lab ID#: 0809246B-06A				
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
TPH (Gasoline Range)	190	78000	760	320000

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: Dupe Lab Duplicate

Lab ID#: 0809246B-06AA

O	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	_
TPH (Gasoline Range)	190	76000	760	310000	

Client Sample ID: VP-5 Lab ID#: 0809246B-01A

File Name: Dil. Factor:	d091404 2.20		Date of Collection: 9/11/08 Date of Analysis: 9/14/08 10:19 AM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
TPH (Gasoline Range)	55	11000	220	46000
Container Type: 1 Liter Summa	Canister (100% Certified)			
	,			Method
Surrogates		%Recovery		Limits
Fluorobenzene (FID)		142		75-150

Client Sample ID: VP-4 Lab ID#: 0809246B-02A

File Name: Dil. Factor:	d091403 2.20			Date of Collection: 9/11/08 Date of Analysis: 9/14/08 09:44 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
TPH (Gasoline Range)	55	9400	220	38000	
Container Type: 1 Liter Summa	a Canister (100% Certified)		,	Method	
Surrogates		%Recovery		Limits	
Fluorobenzene (FID)		101		75-150	

Client Sample ID: VP-1 Lab ID#: 0809246B-03A

.	MODIFIED ETA MIETROD 10-3 GCVID				
File Name:	d091405		Date of Collection: 9	9/11/08	
Dil. Factor:	2.33		Date of Analysis: 9/14/08 10:		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
TPH (Gasoline Range)	58	130	240	550	
Container Type: 1 Liter Summa	Canister (100% Certified)				
Surrogates	, ,	%Recovery		Method Limits	
Fluorobenzene (FID)		99		75-150	

Client Sample ID: VP-2 Lab ID#: 0809246B-04A

File Name: Dil. Factor:	d091406 7.90		Date of Collection: 9 Date of Analysis: 9/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
TPH (Gasoline Range)	200	80000	810	330000
Container Type: 1 Liter Summa	Canister (100% Certified)			Method
Surrogates		%Recovery		Limits
Fluorobenzene (FID)		109		75-150

Client Sample ID: VP-3 Lab ID#: 0809246B-05A

File Name: Dil. Factor:	d091407 2.47		Date of Collection: 9/11/08 Date of Analysis: 9/14/08 11:58 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
TPH (Gasoline Range)	62	130	250	540	
Container Type: 1 Liter Summa	Canister (100% Certified)				
Surrogates		%Recovery		Method Limits	
Fluorobenzene (FID)		102		75-150	

Client Sample ID: Dupe Lab ID#: 0809246B-06A

File Name: Dil. Factor:	d091408 7.46		Date of Collection: 9/11/08 Date of Analysis: 9/14/08 12:41 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
TPH (Gasoline Range)	190	78000	760	320000
Container Type: 1 Liter Summa	a Canister (100% Certified)			Method
Surrogates		%Recovery		Limits
Fluorobenzene (FID)		106		75-150

Client Sample ID: Dupe Lab Duplicate

Lab ID#: 0809246B-06AA

File Name: Dil. Factor:	d091409 7.46		Date of Collection: 9/11/08 Date of Analysis: 9/14/08 01:16 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
TPH (Gasoline Range)	190	76000	760	310000
Container Type: 1 Liter Summa	a Canister (100% Certified)			•
Surrogates		%Recovery		Method Limits
Fluorobenzene (FID)		105		75-150

Client Sample ID: Lab Blank Lab ID#: 0809246B-07A

File Name:	d091402		Date of Collection:	NA
Dil. Factor:	1.00		Date of Analysis: 9	/13/08 09:32 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
TPH (Gasoline Range)	25	Not Detected	100	Not Detected
Container Type: NA - Not Applic	able			
Surrogates		%Recovery		Method Limits
Fluorobenzene (FID)		101		75-150

Client Sample ID: LCS Lab ID#: 0809246B-08A

Date of Analysis: 9/14/08 03:34 PM
%Recovery
85

		Metriod
Surrogates	%Recovery	Limits
Fluorobenzene (FID)	106	75-150

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- · Laboratory Narrative;
- · Results; and
- Chain of Custody (copy).

WORK ORDER #: 0809246A

Work Order Summary

CLIENT:

Ms. Lindsay Marsh

2000 Opportunity Drive

BILL TO: Ms. Lindsay Marsh

Conestoga-Rovers Associates (CRA)

Conestoga-Rovers Associates (CRA)

2000 Opportunity Drive

Suite 110

Suite 110

Roseville, CA 95678

PHONE: FAX:

916-677-3407 x123

Roseville, CA 95678

P.O. #

916-677-3687

PROJECT#

9-1583 Oakland

DATE RECEIVED:

09/12/2008

CONTACT:

Kelly Buettner

DATE COMPLETED:

09/26/2008

			RECEIPT	FINAL
FRACTION#	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	VP-5	Modified TO-15	2.5 "Hg	15 psi
02A	VP-4	Modified TO-15	2.5 "Hg	15 psi
02AA	VP-4 Lab Duplicate	Modified TO-15	2.5 "Hg	15 psi
03A	VP-1	Modified TO-15	4.0 "Hg	15 psi
04A	VP-2	Modified TO-15	5.5 "Hg	15 psi
05A	VP-3	Modified TO-15	5.5 "Hg	15 psi
06A	Dupe	Modified TO-15	4.0 "Hg	15 psi
07A	Lab Blank	Modified TO-15	NA	NA
07B	Lab Blank	Modified TO-15	NA	NA
07C	Lab Blank	Modified TO-15	NA	NA
08A	CCV	Modified TO-15	NA	NA
08B	CCV	Modified TO-15	NA	'nΑ
08C	CCV .	Modified TO-15	NA	NA
09A	LCS	Modified TO-15	NA	NA
09B	LCS	Modified TO-15	NA	NA
09C	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

09/26/08

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Std & Soil Gas Conestoga-Rovers Associates (CRA) Workorder# 0809246A

Six 1 Liter Summa Canister (100% Certified) samples were received on September 12, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan mode. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported LCS from instrument MSD-W has been derived from more than one analytical file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.

- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP-5

Lab ID#: 0809246A-01A

No Detections Were Found.

Client Sample ID: VP-4

Lab ID#: 0809246A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
2,2,4-Trimethylpentane	5.5	1100	26	5400	_

Client Sample ID: VP-4 Lab Duplicate

Lab ID#: 0809246A-02AA

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
2 2 4-Trimethylpentane	5.5	1100	26	5000	

Client Sample ID: VP-1

Lab ID#: 0809246A-03A

No Detections Were Found.

Client Sample ID: VP-2

Lab ID#: 0809246A-04A

	Rɒt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
2.2.4-Trimethylpentane	16	3700	77	17000	

Client Sample ID: VP-3

Lab ID#: 0809246A-05A

No Detections Were Found.

Client Sample ID: Dupe

Lab ID#: 0809246A-06A

Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
2,2,4-Trimethylpentane	24	4300	110	20000	_

Client Sample ID: VP-5 Lab ID#: 0809246A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	t092508 4.44	Date of Collection: 9/11/08 Date of Analysis: 9/25/08 12:53 P		
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	2.2	Not Detected	8.0	Not Detected
Benzene	2.2	Not Detected	7.1	Not Detected
Toluene	2.2	Not Detected	8.4	Not Detected
Ethyl Benzene	2.2	Not Detected	9.6	Not Detected
m,p-Xylene	2.2	Not Detected	9.6	Not Detected
o-Xylene	2.2	Not Detected	9.6	Not Detected
tert-Butyl alcohol	8.9	Not Detected	27	Not Detected
1,2-Dibromoethane (EDB)	2.2	Not Detected	17	Not Detected
1,2-Dichloroethane	2.2	Not Detected	9.0	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

2,2,4-Trimethylpentane

Ethanol

		metnoa
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	105	70-130

Not Detected

Not Detected

10

17

Not Detected

Not Detected

2.2

8.9

Client Sample ID: VP-4 Lab ID#: 0809246A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

t092424	Date of Collection: 9/11/08
11.0	Date of Analysis: 9/25/08 01:27 AM

Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	5.5	Not Detected	20	Not Detected
Benzene	5.5	Not Detected	18	Not Detected
Toluene	5.5	Not Detected	21	Not Detected
Ethyl Benzene	5.5	Not Detected	24	Not Detected
m,p-Xylene	5.5	Not Detected	24	Not Detected
o-Xylene	5.5	Not Detected	24	Not Detected
tert-Butyl alcohol	22	Not Detected	67	Not Detected
1,2-Dibromoethane (EDB)	5.5	Not Detected	42	Not Detected
1,2-Dichloroethane	5.5	Not Detected	22	Not Detected
2,2,4-Trimethylpentane	5.5	1100	26	5400
Ethanol	22	Not Detected	41	Not Detected

•	•	Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: VP-4 Lab Duplicate

Lab ID#: 0809246A-02AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	t092425 11.0	Date of Collection: 9/11/08 Date of Analysis: 9/25/08 02:0		-, - ,
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	5.5	Not Detected	20	Not Detected
Benzene	5.5	Not Detected	18	Not Detected
Toluene	5.5	Not Detected	21	Not Detected
Ethyl Benzene	5.5	Not Detected	24	Not Detected
m,p-Xylene	5.5	Not Detected	24	Not Detected
o-Xylene	5.5	Not Detected	24	Not Detected
tert-Butyl alcohol	22	Not Detected	67	Not Detected
1,2-Dibromoethane (EDB)	5.5	Not Detected	42	Not Detected
1,2-Dichloroethane	5.5	Not Detected	22	Not Detected
2,2,4-Trimethylpentane	5.5	1100	26	5000
Ethanol	22	Not Detected	41	Not Detected

		Method
Surrogates ,	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: VP-1 Lab ID#: 0809246A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	t092507	Date of Collection: 9/11/08
Dil. Factor:	4.71	Date of Analysis: 9/25/08 12:16 PM

Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	2.4	Not Detected	8.5	Not Detected
Benzene	2.4	Not Detected	7.5	Not Detected
Toluene	2.4	Not Detected	8.9	Not Detected
Ethyl Benzene	2.4	Not Detected	10	Not Detected
m,p-Xylene	2.4	Not Detected	10	Not Detected
o-Xylene	2.4	Not Detected	10	Not Detected
tert-Butyl alcohol	9.4	Not Detected	28	Not Detected
1,2-Dibromoethane (EDB)	2.4	Not Detected	18	Not Detected
1,2-Dichloroethane	2.4	Not Detected	9.5	Not Detected
2,2,4-Trimethylpentane	2.4	Not Detected	11	Not Detected
Ethanol	9.4	Not Detected	18	Not Detected

Surrogates	, %Recovery	Method Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	84	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: VP-2 Lab ID#: 0809246A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	t092426 32.9	Date of Collection: 9/11/08 Date of Analysis: 9/25/08 0		
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	16	Not Detected	59	Not Detected
Benzene	16	Not Detected	52	Not Detected
Toluene	. 16	Not Detected	62	Not Detected
Ethyl Benzene	16	Not Detected	71	Not Detected
m,p-Xylene	16	Not Detected	71	Not Detected
o-Xylene	16	Not Detected	71	Not Detected
tert-Butyl alcohol	66	Not Detected	200	Not Detected
1,2-Dibromoethane (EDB)	16	Not Detected	130	Not Detected
1,2-Dichloroethane	16	Not Detected	66	Not Detected
2,2,4-Trimethylpentane	16	3700	77	17000
Ethanol	66	Not Detected	120	Not Detected

		Metuod
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: VP-3 Lab ID#: 0809246A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	t092427	Date of Collection: 9/11/08
Dil. Factor:	2.47	Date of Analysis: 9/25/08 04:36 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
Benzene	1.2	Not Detected	3.9	Not Detected
Toluene	1.2	Not Detected	4.6	Not Detected
Ethyl Benzene	. 1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	Not Detected	5.4	Not Detected
o-Xylene	1.2	Not Detected	5.4	Not Detected
tert-Butyl alcohol	4.9	Not Detected	15	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.5	Not Detected
1,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.8	Not Detected
Ethanol	4.9	Not Detected	9.3	Not Detected

	,	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	86	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: Dupe Lab ID#: 0809246A-06A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w092408 4.78	Date of Collection: 9/11/08 Date of Analysis: 9/24/08 03:1		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
tert-Butyl alcohol	96	Not Detected	290	Not Detected
Ethanol	96	Not Detected	180	Not Detected
Methyl tert-butyl ether	24	Not Detected	86	Not Detected
2,2,4-Trimethylpentane	24	4300	110	20000
Benzene	24	Not Detected	76	Not Detected
1,2-Dichloroethane	24	Not Detected	97	Not Detected
Toluene	24	Not Detected	90	Not Detected
1,2-Dibromoethane (EDB)	24	Not Detected	180	Not Detected
Ethyl Benzene	24	Not Detected	100	Not Detected
m,p-Xylene	24	Not Detected	100	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

o-Xylene

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	

Not Detected

100

Not Detected

Client Sample ID: Lab Blank Lab ID#: 0809246A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	t092410		Date of Collection: N	- *
Dil. Factor:	1.00	Date of Analysis: 9/24/08 02:25		24/08 02:25 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
tert-Butyl alcohol	2.0	Not Detected	6.1	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	84	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: Lab Blank Lab ID#: 0809246A-07B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	t092506 1.00		Date of Collection: Date of Analysis: 9	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Ethyl Benzene	0.50	Not Detected	2,2	Not Detected
m,p-Xylene	0.50	Not Detected	2,2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
tert-Butyl alcohol	2.0	Not Detected	6.1	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	82	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: Lab Blank Lab ID#: 0809246A-07C

MODIFIED EPA METHOD TO-15 GC/MS

File Name:	w092405		Date of Collection: N	Α
Dil. Factor:	1.00		Date of Analysis: 9/	24/08 01:34 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
tert-Butyl alcohol	20	Not Detected	61	Not Detected
Ethanol	20	Not Detected	. 38	Not Detected
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected
2,2,4-Trimethylpentane	5.0	Not Detected	23	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
1,2-Dichloroethane	5.0	Not Detected	20	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
1,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xvlene	5.0	Not Detected	22	Not Detected

Summanda		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: CCV Lab ID#: 0809246A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	t092409	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/24/08 01:42 PM

Compound	%Recovery
Methyl tert-butyl ether	99
Benzene	99
Toluene	101
Ethyl Benzene	106
m,p-Xylene	107
o-Xylene	109
tert-Butyl alcohol	81
1,2-Dibromoethane (EDB)	108
1,2-Dichloroethane	98
2,2,4-Trimethylpentane	88
Ethanol	85

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	92	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: CCV Lab ID#: 0809246A-08B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	t092502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/25/08 08:58 AM

Compound	%Recovery
Methyl tert-butyl ether	97
Benzene	94
Toluene	100
Ethyl Benzene	104
m,p-Xylene	104
o-Xylene	106
tert-Butyl alcohol	80
1,2-Dibromoethane (EDB)	105
1,2-Dichloroethane	93
2,2,4-Trimethylpentane	83
Ethanol	84

Container Type: NA - Not Applicable

		metrioa	
Surrogates	%Recovery	Limits	
Toluene-d8	99	. 70-130	
1,2-Dichloroethane-d4	92	70-130	
4-Bromofluorobenzene	107	70-130	

Mathad

Client Sample ID: CCV Lab ID#: 0809246A-08C

MODIFIED EPA METHOD TO-15 GC/MS

File Name:	w092402	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/24/08 11:16 AM

Compound	%Recovery
tert-Butyl alcohol	94
Ethanol	100
Methyl tert-butyl ether	82
2,2,4-Trimethylpentane	107
Benzene	100
1,2-Dichloroethane	88
Toluene	99
1,2-Dibromoethane (EDB)	101
Ethyl Benzene	100
m,p-Xylene	102
o-Xylene	104

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: LCS Lab ID#: 0809246A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

· ·			
File Name:	t092403	Date of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 9/24/08 09:19 AM	

Compound	%Recovery
Methyl tert-butyl ether	105
Benzene	103
Toluene	110
Ethyl Benzene	106
m,p-Xylene	106
o-Xylene	109
tert-Butyl alcohol	90
1,2-Dibromoethane (EDB)	106
1,2-Dichloroethane	103
2,2,4-Trimethylpentane	99
Ethanol	92

Container Type: NA - Not Applicable -

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	97	70-130	
4-Bromofluorobenzene	104	70-130	

Mathad

Client Sample ID: LCS Lab ID#: 0809246A-09B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	t092504	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/25/08 10:16 AM

Compound	%Recovery
Methyl tert-butyl ether	102
Benzene	96
Toluene	107
Ethyl Benzene	104
m,p-Xylene	104
o-Xylene	107
tert-Butyl alcohol	81
1,2-Dibromoethane (EDB)	104
1,2-Dichloroethane	97
2,2,4-Trimethylpentane	82
Ethanol	82

.,		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	89	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: LCS Lab ID#: 0809246A-09C

MODIFIED EPA METHOD TO-15 GC/MS

File Name:	w092403	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/24/08 12:01 PM

Compound	%Recovery
tert-Butyl alcohol	102
Ethanol	108
Methyl tert-butyl ether	86
2,2,4-Trimethylpentane	99
Benzene	100
1,2-Dichloroethane	88
Toluene	99
1,2-Dibromoethane (EDB)	100
Ethyl Benzene	100
m,p-Xylene	102
o-Xvlene	104

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- · Laboratory Narrative;
- · Results; and
- · Chain of Custody (copy).

WORK ORDER #: 0809246C

Work Order Summary

CLIENT:

Ms. Lindsay Marsh

BILL TO: Ms. Lindsay Marsh

Conestoga-Rovers Associates (CRA)

Conestoga-Rovers Associates (CRA)

2000 Opportunity Drive

2000 Opportunity Drive

Suite 110

Suite 110

Roseville, CA 95678

Roseville, CA 95678

PHONE:

916-677-3407 x123

P.O. #

FAX: DATE RECEIVED: 916-677-3687

PROJECT#

09/12/2008

9-1583 Oakland

DATE COMPLETED:

09/25/2008

CONTACT: Kelly Buettner

			RECEIPT	FINAL
FRACTION#	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	VP-5	Modified ASTM D-1946	2.5 "Hg	15 psi
02A	VP-4	Modified ASTM D-1946	2.5 "Hg	15 psi
03A	VP-1	Modified ASTM D-1946	4.0 "Hg	15 psi
04A	VP-2	Modified ASTM D-1946	5.5 "Hg	15 psi
05A	VP-3	Modified ASTM D-1946	5.5 "Hg	15 psi
06A	Dupe	Modified ASTM D-1946	4.0 "Hg	15 psi
07A	Lab Blank	Modified ASTM D-1946	NA	NA
07B	Lab Blank	Modified ASTM D-1946	NA	NA
07C	Lab Blank	Modified ASTM D-1946	NA	NA
07D	Lab Blank	Modified ASTM D-1946	NA	NA
08A	LCS	Modified ASTM D-1946	NA	NA
08B	LCS	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Linda S. Fruma.

DATE:

09/25/08

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1946 Conestoga-Rovers Associates (CRA) Workorder# 0809246C

Six 1 Liter Summa Canister (100% Certified) samples were received on September 12, 2008. The laboratory performed analysis via Modified ASTM Method D-1946 for fixed gases in air using GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration .	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VP-5 Lab ID#: 0809246C-01A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.44	10	
Carbon Dioxide	0.044	14	

Client Sample ID: VP-4

Lab ID#: 0809246C-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	11
Carbon Dioxide	0.022	10

Client Sample ID: VP-1

Lab ID#: 0809246C-03A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.47	14
Carbon Dioxide	0.047	6.8

Client Sample ID: VP-2

Lab ID#: 0809246C-04A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.25	16	
Carbon Dioxide	0.025	8.7	

Client Sample ID: VP-3

Lab ID#: 0809246C-05A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	17
Carbon Dioxide	0.025	4.7

Client Sample ID: Dupe

Lab ID#: 0809246C-06A

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: Dupe

Lab ID#: 0809246C-06A

	Rpt. Limit	. Amount
Compound	(%)	(%)
Oxygen	0.48	8.7
Carbon Dioxide	0.048	10

Client Sample ID: VP-5 Lab ID#: 0809246C-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9092308b	Date of Collection: 9/11/08
Dil. Factor:	4.44	Date of Analysis: 9/23/08 10:44 AM

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.44	10	
Carbon Dioxide	0.044	14	
Helium	0.22	Not Detected	

Client Sample ID: VP-4

Lab ID#: 0809246C-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:			Date of Collection: 9/11/08 Date of Analysis: 9/22/08 07:32 PM	
		Rpt. Limit	Amount	
Compound		(%)	(%)	
Oxygen		0.22	11	
Carbon Dioxide		0.022	10	

0.11

Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

Helium

Client Sample ID: VP-1

Lab ID#: 0809246C-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9092310b 4.71		Date of Collection: 9/11/08 Date of Analysis: 9/23/08 11:35 AM
		Rpt. Limit	Amount
Compound		(%)	ም ሬ)

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.47	14
Carbon Dioxide	0.047	6.8
Helium	0.24	Not Detected

Client Sample ID: VP-2

Lab ID#: 0809246C-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9092224b		Date of Collection: 9/11/08
Dil. Factor:	2.47		Date of Analysis: 9/22/08 08:35 PM
		Rpt. Limit	Amount

 Compound
 (%)
 Amount

 Oxygen
 0.25
 16

 Carbon Dioxide
 0.025
 8.7

 Helium
 0.12
 Not Detected

Client Sample ID: VP-3

Lab ID#: 0809246C-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

		•
File Name:	9092225b	Date of Collection: 9/11/08
Dil. Factor:	2.47	Date of Analysis: 9/22/08 09:06 PM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0,25	17
Carbon Dioxide	0.025	4.7
Helium	0.12	Not Detected

Client Sample ID: Dupe Lab ID#: 0809246C-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

'			
File Name:	9092311b		Date of Collection: 9/11/08
Dil. Factor:	4.78		Date of Analysis: 9/23/08 12:01 PM
		Rpt. Limit	Amount
Compound		(%)	(%)

0.48 8.7 Oxygen 0.048 10 Carbon Dioxide 0.24 Not Detected

Helium

Client Sample ID: Lab Blank Lab ID#: 0809246C-07A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9092204b	Date	of Collection: NA
Dil. Factor:	1.00		of Analysis: 9/22/08 08:48 AM
		Rpt. Limit	Amount
Compound		(%)	(%)
Oxygen		0.10	Not Detected

0.010

Not Detected

Container Type: NA - Not Applicable

Carbon Dioxide

Client Sample ID: Lab Blank

Lab ID#: 0809246C-07B NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9092203Ь 1.00		Date of Collection: NA Date of Analysis: 9/22/08 08:23 AM
		Rpt. Limit	Amount
Compound		(%)	(%)
Helium		0.050	Not Detected

Client Sample ID: Lab Blank Lab ID#: 0809246C-07C

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9092304b		Date of Collection: NA
Dil. Factor:	1.00		Date of Analysis: 9/23/08 08:43 AM
		Rpt. Limit	Amount
Compound		(%)	(%)
Oxygen		0.10	Not Detected

0.010

Not Detected

Container Type: NA - Not Applicable

Oxygen Carbon Dioxide

Client Sample ID: Lab Blank Lab ID#: 0809246C-07D

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9092303b 1.00	_	Date of Collection: NA Date of Analysis: 9/23/08 08:18 AM
		Rpt. Limit	Amount
Compound		(%)	(%)
Helium		0.050	Not Detected

Client Sample ID: LCS Lab ID#: 0809246C-08A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

1		
File Name:	9092229b	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/22/08 10:48 PM

Compound	%Recovery
Oxygen	100
Carbon Dioxide	99
Helium	105

Client Sample ID: LCS Lab ID#: 0809246C-08B

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9092323b	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/23/08 05:11 PM

Compound	%Recovery
Oxygen	100
Carbon Dioxide	99
Helium	103