SUPPLEMENTAL SOIL AND
GROUNDWATER INVESTIGATION
2801 MacARTHUR BOULEVARD
OAKLAND, CALIFORNIA
SCI 838.001

Jul 14,93

Some of the

No. GE 000157

Prepared for:

A.P.A. Fund, Ltd. c/o Ms. Aniko Molnar 1920 Main Street, Suite 400 Irvine, California 92714

By:

Maxianne F. Watada

Project Engineer

James P. Bowers

Geotechnical Engineer 157 (expires 3/31/9

Subsurface Consultants, Inc. 171 12th Street, Suite 201 Oakland, California 94607 (510) 268-0461

July 14, 1993

I INTRODUCTION

This report presents the results of a supplemental soil and groundwater investigation conducted by Subsurface Consultants, Inc. (SCI) at 2801 MacArthur Boulevard in Oakland, California. The investigation was required by the Alameda County Department of Environmental Health (ACDEH) to further evaluate impacts to soil and groundwater quality due to hydrocarbon releases from previous underground fuel storage tanks. The site location is shown on the Site Plan, Plate 1.

The site was previously occupied by a gasoline service station. In May 1989, three underground gasoline storage tanks were removed from the site and approximately 435 cubic yards of petroleum contaminated soil was excavated. Subsequent soil and groundwater investigations indicated that impacts from former tank releases remain on-site. The ACDEH has requested further definition of the extent of soil and groundwater contamination. The scope of our services were as outlined in a Work Plan by Streamborn, dated January 31, 1992 and approved by ACDEH on February 3, 1993. In brief, our services included the following tasks:

- 1. Obtaining a drilling permit, from the Alameda County Flood Control and Water Conservation District, Zone 7,
- 2. Performing a utility check to clear drilling locations,
- 3. Drilling 3 test borings approximately 45 feet deep,

- 4. Constructing a groundwater monitoring well in two of the test borings,
- 5. Developing, purging and sampling the wells in accordance with Regional Water Quality Control Board guidelines,
- 6. Performing analytical tests on selected soil and groundwater samples,
- 7. Performing a level survey of the top of well casings, and
- 8. Preparing a written report recording the results of the investigation.

II FIELD INVESTIGATION

Subsurface conditions were investigated by SCI on April 27 and 28, 1993 by drilling and sampling three test borings (B-12, M-3, M-4) about 45 feet deep. Two of the borings (M-3 and M-4) were completed as monitoring wells. Boring and well locations are shown on the Site Plan. For completeness, the location of test borings and wells installed previously by other consultants are also shown on Plate 1. A discussion of procedures followed during drilling, soil sampling, monitoring well installation, well development and sampling is provided below.

A. Test Borings

Prior to drilling the test borings, SCI obtained a groundwater protection ordinance permit from the Alameda County Flood Control and Water Conservation District, Zone 7. The project permit number is 93200. A copy of the permit is included in Appendix A. Additionally, underground service alert was notified and performed an underground utility check to clear drilling locations.

The test borings were drilled using a truck-mounted drill rig equipped with 8-inch-diameter hollow stem augers. Our field engineer observed drilling operations, prepared detailed logs of the test borings and obtained undisturbed samples of the materials encountered. Test boring logs are presented in Appendix A on Plates A1 through A3. Soils are classified in accordance with the Unified Soil Classification System described on Plate A4.

A California Drive Sampler (outside diameter: 2.5 inches, inside diameter: 2.0 inches), Modified California Drive Sampler (outside diameter: 3.0 inches, inside diameter: 2.5 inches), and Standard Penetration Test Sampler (outside diameter: 2 inches, inside diameter: 1.4 inches) were used to obtain soil samples. The number of blows required to drive the sampler the final 12 inches of each 18-inch penetration was recorded and are presented on the boring logs. The drilling and sampling equipment was thoroughly steam-cleaned prior to each use to reduce the likelihood of cross-contamination between samples and/or borings.

Soil samples were retained in brass liners. Teflon sheeting was placed over the ends of the soil liners; the liners were subsequently capped and sealed with duct tape. The shoe sample from each drive was retained in a plastic bag and screened in the laboratory at the end of the day for volatile organics using an Organic Vapor Meter (OVM). The bag samples were screened with the OVM at room temperature. OVM measurements are recorded on the test boring logs. The sealed liners were placed in ice-filled coolers

and remained iced until delivery to the analytical laboratory. Chain-of-Custody records accompanied the samples to the laboratory.

Two of the test borings were completed as groundwater monitoring wells (M-3 and M-4), as detailed in the following section. The third boring (B-12) was backfilled with cement-bentonite grout upon completion of drilling.

Soil cuttings generated during drilling were placed in sealed, 55-gallon steel drums and left on-site for later disposal.

B. Groundwater Monitoring Wells and Sampling

At the completion of drilling, monitoring wells were installed Well schematics are shown on the in Borings M-3 and M-4. respective test boring logs. The wells consist of 2 inch diameter, Schedule 40 PVC pipe having flush-threaded joints. The pipe was steam-cleaned prior to being placed in the boreholes. The lower 15 feet of the wells consist of machine-slotted well screen having 0.02-inch slots. The remaining portion of the wells consist of blank pipe. The wells were provided with bottom caps and locking The well screen is encased in a filter composed of top caps. Lonestar No. 3 washed sand. The suitability of this sand filter material was evaluated in the field based upon the soil conditions encountered. It was considered a suitable selection for the given The filter sand was placed by carefully pouring it conditions. through the annulus between the hollow stem of the auger and the well casing. Periodically, the augers were raised to allow the sand to fill the annulus between the casing and borehole. filter extends from just below the bottom of the well to two feet above the top of the screened section. A two-foot thick bentonite pellet seal was placed above the sand filter. The annulus above the bentonite seal was backfilled with cement grout. The monitoring wells were completed below grade and are protected by traffic-rated valve boxes.

The wells were developed approximately 1 week after the grout seal was placed in order to allow for proper set up of the seal and stabilization of groundwater levels. Initially, the depth to water was measured below the top of the well casings using an electronic The wells were then developed by initially surging the sounder. well, and then removing water with a hand bailer. The wells were surged by rapidly raising and lowering the bailer. Temperature, conductivity and pH were measured every 1 to 2 gallons during The measurements were recorded on Well Development development. Development was terminated in Well M-3 after approximately 7 well volumes had been removed and temperature, conductivity and pH measurements had stabilized. Well M-4 was bailed dry after 7 well volumes were removed; the rate of recharge in this well was very slow.

As discussed previously, Well M-4 recharged very slowly. The wells were not sampled until approximately 10 days after development, in order to allow Well M-4 to recharge sufficiently. During this 10 day period, groundwater levels were periodically checked. Prior to sampling, two existing wells (P-2, M-2) and the two new wells (M-3, M-4) were purged of about 3 to 4 well casing volumes of water and allowed to recharge. Wells M-2 and M-3

recharged comparatively fast and were sampled after recovering to approximately 80 percent of the original well level. Wells P-2 and M-4 recharged more slowly. They were bailed dry and allowed to recharge for 4 hours. At this point, the wells had recovered to about 50 percent of their original level. The wells were purged dry again, allowed to recharge, and were sampled. Well development and purge water was placed in 55 gallon drums and stored on-site. Well development and sampling forms are presented in Appendix A.

Groundwater samples were retained in pre-cleaned containers supplied by the laboratory. Water samples were placed in ice-filled coolers and remained iced until delivery to the analytical laboratory. Chain-of-Custody records accompanied the samples to the laboratory.

C. <u>Level Survey</u>

A level survey was performed to determine the elevation of the top of the well casings. The elevations were referenced to the same datum used during previous investigations. The top of the concrete at the west corner of the northernmost dispenser island was used as the benchmark. It was assigned an elevation of 1000.00 feet. The top of casing elevations are presented in Table 1.

III ANALYTICAL TESTING

Selected soil and groundwater samples were analyzed by Curtis & Tompkins, Ltd., a laboratory certified by the California Department of Health Services (DHS) for hazardous waste and water testing. The samples were analyzed for the following:

- 1. Total petroleum hydrocarbons, as gasoline (TPH-gas)¹, EPA 5030/8015 modified, and
- 2. Benzene, toluene, xylene, and ethylbenzene (BTXE), EPA 5030/8020.

The results of the soil analyses are presented in Table 2 and on Plate 2. Results of groundwater analyses are presented in Table 3 and on Plate 3. For completeness, analytical results generated during previous investigations are also presented. Analytical test reports and Chain-of-Custody documents are presented in Appendix B.

IV SITE CONDITIONS

A. Surface Conditions

The site was previously occupied by a gasoline service station. The garage, canopy and former pump islands remain on-site. Currently, the garage is being used by an auto repair facility. The eastern portion of the property is occupied by a

¹ Curtis and Tompkins, Ltd. lab reports refer to this quantity as total volatile hydrocarbons, as gasoline (TVH).

one-story shopping center occupied by several businesses, such as an ice cream parlor and TV repair shop. The remainder of the site is covered by asphalt concrete parking areas.

B. soil Conditions

The test borings encountered alluvial soils consisting predominantly of interlayered dense clayey sands and stiff to very stiff sandy clays. The soils are generally fine grained and clayey; however, they do contain occasional gravel varying up to about 2 inches in diameter. Boring M-3 encountered a thin clayey gravel layer between depths of 27 and 29 feet. The soils encountered were judged to possess low hydraulic conductivities.

The occasional sandy and gravelly layers that were encountered in the borings drilled by SCI and other previous consultants do not appear to exist as continuous units in the area. Rather, they appear to exist as discontinuous zones or lenses within the stiff clayey soils. The sandy lenses likely have limited hydraulic connectivity, as evidenced by the widely varying recharge rates observed in the on-site wells.

C. <u>Groundwater Conditions</u>

Stabilized groundwater depths in the wells varied from about 23 (Well M-3) to 32.5 (Well M-4) feet. Stabilized groundwater elevation data from past and current events are presented in Table 1.

Based on the data, it is apparent that groundwater flows toward the south southeast at gradients varying from about 4 to 6 percent. This flow direction and gradient are generally consistent

with those recorded during previous sampling events. Groundwater surface contours on June 1, 1993 are presented on Plate 3. As discussed previously, it is probable that groundwater flow is largely controlled by the clayey, fine grained nature of the soils in the area.

V CONCLUSIONS AND RECOMMENDATIONS

A. Soil Contamination

The lateral and vertical extent of soil contamination has been relatively well defined by the investigations completed to date. Petroleum hydrocarbons, as gasoline, were not present at detectable concentrations in soil samples obtained from Borings B-12 and M-3. Analytical data from Boring M-4 revealed that soils containing up to 130 mg/kg of TPH-gas are present at that location. Chemical concentrations in Boring M-4 suggest that the southerly extent of soil contamination is close to that location. From a practical standpoint, it is our opinion that Well M-4 represents the southerly extent of soil contamination. The approximate extent of soils containing more than 100 mg/kg of TPH-gas is shown on Plate 2. The area measures approximately 90 by 150 feet in plan.

Over much of the site, the soils containing elevated levels of TPH-gas appear to exist within a relatively narrow zone between depths of approximately 30 and 35 feet. This zone is generally coincident with historical groundwater levels. An isolated area of shallower contamination was encountered in Boring B-9, which is

situated near the previous fuel dispenser islands. Elevated concentrations (490 mg/kg) of TPH-gas were detected at a depth of 16 feet in this boring.

B. Groundwater Contamination

The groundwater quality data generated by the most recent phase of study provides valuable information regarding the extent of chemicals in groundwater. The analytical data are graphically It is apparent that TPH-gas and BTXE are summarized on Plate 3. present in groundwater. The highest concentrations exist on-site, near the previous fuel tanks Well M-2, and at Well P-2. The elevated concentrations of TPH-gas in Well P-2 may be due to releases from pipelines that previously existed in the area or possibly, may represent contributions from an upgradient source of contamination. The chemicals in groundwater extend generally south of this area in the direction of groundwater flow. TPH-gas concentrations in groundwater decrease substantially in areas downgradient of the previous tanks and Well P-2, as evidenced by the substantially lower TPH-gas concentrations encountered in Well The data also suggests that there has been very little contaminant migration toward a more south easterly direction, since gasoline was not present in the groundwater sample obtained from Well M-3.

BTXE were present in the wells sampled, except for Well M-3. The BTXE concentrations in Well P-2 exceed the EPA maximum contaminant levels (MCL) for drinking water. However, in the other wells the toluene, xylene and ethylbenzene concentrations are below

the drinking water MCLs. Benzene concentrations exceed its MCL in all of the wells sampled, except Well M-3. Given the apparently low hydraulic conductivity of the formation, we judge that it is unlikely that groundwater in the area will be viewed as a potential source of drinking water.

C. Recommendations

We recommend that an evaluation of alternatives to remediate areas of significant soil contamination and to control potential future migration of contaminated groundwater be performed. Upon determination of a viable remediation option, a conceptual workplan should be prepared and submitted to the ACDEH for their review and approval prior to proceeding with a detailed design.

Based upon the data, we do not consider it necessary to conduct further investigations at this point. Quarterly groundwater monitoring will continue in accordance with the approved monitoring program.

Tables:

Table 1 Groundwater Elevation Data

Table 2 Hydrocarbon Concentrations in Soil

Table 3 Hydrocarbon Concentrations in Groundwater

List of Attached Plates:

Plate 1 Site Plan

Plate 2 Summary of Gasoline Concentrations in Soil

Plate 3 Hydrocarbon Concentrations in Groundwater

Appendix A:

Plates A1 through A3 Logs of Test Borings B-12, M-3,

and M-4

Plate A4 Unified Soil Classification System

Well Permit

Well Development Forms Well Sampling Forms

Appendix B: Analytical Test Reports

Chain-Of-Custody Documents

Distribution:

3 copies: A.P.A Fund, Ltd.

c/o Ms. Aniko Molnar

1920 Main Street, Suite 400 Irvine, California 92714

1 copy: Mr. Nicholas Molnar

A.P.A. Fund, Ltd.

1904 Franklin Street, Suite 501

Oakland, California 94612

1 copy: Mr. Thomas Peacock

Alameda County of Department

of Environmental Health 80 Swan Way, Room 200

Alameda, California 94621

1 copy: Mr. Rich Hiett

Regional Water Quality Control Board

2101 Webster Street

Oakland, California 94612

1 copy: Mr. Gil Jensen

Consumer Fraud and Environmental Protection

Alameda County District Attorney's Office

7677 Oakport Street, Suite 400

Oakland, California 94621

1 copy: Mr. Raymond W. Yu

4098 Laguna Avenue

Oakland, California 94602

MFW: JPB: egh

TABLE 1 Groundwater Elevation Data

4.3	TOC ¹	Data	Groundwater Depth	Groundwater Elevation (feet)
<u>Well</u>	<u>Elevation</u>	<u>Date</u>	<u>(feet)</u>	
Ml	1000.00	10/24/90	36.1	963.9
***	400000	10/25/90	36.1	963.9
		$11/02/90^2$	36.4	963.6
		11/06/90	36.8	963.2
		11/16/90	36.8	963.2
		11/23/90	36.9	963.1
		11/28/90	37.0	963.0
		12/05/90	37.2	963.0
		03/18/91	35.8	964.2
		03/29/91	32.4	967.6
		04/03/91	31.9	968.1
		04/09/91	31.6	968.4
		04/16/91	31.2	968.8
		04/18/91	31.1	968.9
		04/30/91	31.1	968.9
		05/07/91	31.2	968.8
		01/23/92	35.5	964.5
		06/01/93	27.5	972.9
M2	999.6	04/30/91	31.1 ³	968.5^{3}
		05/07/91	31.3^{3}	968.3^{3}
		01/16/92	35 .1 ³	964.5 ³
		05/17/93	27.2^{3}	972.4^{3}
		06/01/93	27.6^{3}	972.0^{3}
мз	992.8	05/17/93	22.2	970.6
		06/01/93	23.3	969.5
M4	999.6	05/17/93	33.8	965.8
		06/01/93	32.5	967.1
P1	999.6	10/24/90	37.9	961.7
		10/25/90	38.0	961.6
		$11/02/90^2$	38.4	961.2
		11/06/90	38.7	960.9
		11/16/90	38.3	961.3
		11/23/90	38.1	961.5
		11/28/90	38.3	961.3
		12/05/90	38.2	961.4
		03/18/91	37.8	961.8
		03/29/91	36.9	962.7
		04/03/91	36.8	962.8
		04/09/91	36.9	962.7
		04/16/91	36.7	962.9
		04/18/91	36.8	962.8
		04/30/91	36.3	963.3
		05/07/91	36.2	963.4
		01/16/92	36.6 ³	963.0^{3}
		06/01/93	30.0^{3}	969.6 ³

TABLE 1 Groundwater Elevation Data (continued)

Well	TOC ¹ <u>Elevation</u>		Groundwater Depth (feet)	Groundwater Elevation (feet)
P2	997.8	10/24/90	41.1	956.7
		10/25/90	40.6	957.2
		$11/02/90^2$	38.4	959.4
		11/06/90	37.0	960.8
		11/16/90	37.4	960.4
		11/23/90	35.9	961.9
		11/28/90	35.4 ³	962.4^{3}
		12/05/90	35.0^{3}	962.8^{3}
		03/18/91	31.4^{3}	966.4^{3}
		03/29/91	$28 \cdot 2^3$	969.6^{3}
		04/03/91	26.8 ³	971.0^{3}
		04/09/91	26.5 ³	971.3^{3}
		04/16/91	26.5^{3}	971.3^{3}
		04/18/91	26.5^{3}	971.3^{3}
		04/30/91	26.7^{3}	971.1^{3}
		05/07/91	27.0^{3}	970.8^{3}
		01/16/92	33.7 ³	964.1 ³
		05/17/93	23.7^{3}	974.1^{3}
		06/01/93	24.4^{3}	973.4 ³
Р3	999.1	03/29/91	24.7	974.4
		04/03/91	25.1	974.0
		04/09/91	25.9	973.2
		04/16/91	26.2	972.9
		04/18/91	26.2	972.9
		04/30/91	26.8	972.3
		05/07/91	27.4	971.7
		01/23/92	32.5	966.6
		06/01/93	23.9	975.2

Elevations relative to site-specific datum. Temporary Bench Mark No. 1, top of concrete at west corner of northernmost pump island. Assumed elevation = 1,000.00 feet.

An interface probe was used to discern whether free product was present - free product was not detected with the probe.

³ A petroleum odor and/or coating was observed on the water level probe.

Table 2 Hydrocarbon Concentrations in Soil

Sample Location	Sample Depth ² (feet)	Sample <u>Date</u>	Sampler	TPH- Gasoline (mq/kq) ¹	Benzene (mg/kg)	Toluene (mq/kq)	Ethyl- Benzene (mg/kg)	Xylenes	Oil & Grease (mq/kg)
B1	20.0	06/12/89	Riedel ³	<1.0	<0.05	<0.1	<0.1	<0.1	
B1	25.0	06/12/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B1	30.0	06/12/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B2	5.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B2	10.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B2	15.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B2	20.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B2	25.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B2	30.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B2	35.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
в3	5.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B3	10.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В3	15.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B3	20.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В3	25.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В3	30.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	-
В3	35.0	07/14/89	Riedel	72	<0.05	<0.1	<0.1	<0.1	
B3	38.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В3	39.5	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В3	41.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В3	42.0	07/13/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В4	5.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B4	10.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B4	15.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
₿4	20.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
В4	25.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B4	30.0	07/14/89	Riedel	150	<0.25	<0.5	<0.5	<0.5	
B4	35.0	07/14/89	Riedel	5300	<5.0	<10.0	<10.0	<10.0	
B4	36.5	07/14/89	Riedel	7.9	<0.05	<0.1	<0.1	<0.1	
B4	38.0	07/14/89	Riedel	<1.0	<0.05	<0.1	<0.1	<0.1	
B4	39.0	07/14/89	Riedel	71	<0.25	<0.5	<0.5	<0.5	
B4	40.5	07/14/89	Riedel	15	<0.05	<0.1	<0.1	<0.1	
В5	20.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B5	25.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B5	30.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
■ B5	35.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B5	40.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B5	45.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
в6	20.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
В6	25.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
В6	30.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B6	35.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B6	40.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	

Table 2
Hydrocarbon Concentrations in Soil (Continued)

Sample Location	Sample Depth ² (feet)	Sample <u>Date</u>	Sampler	TPH- Gasoline (mg/kg) ¹	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- Benzene (mq/kg)	Xylenes (mg/kg)	Oil & Grease (mg/kg)
В7	15.0	08/24/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
	20.0	08/25/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
В7	25.0	08/25/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B7 B7	30.0	08/25/89	Riedel	<10	0.130	<0.025	<0.075	<0.075	
B7	33.0	08/25/89	Riedel	380	<0.025	3.00	1.00	3.50	
_ в7	36.0	08/25/89	Riedel	65	<0.025	0.120	0.190	0.440	
В7	41.0	08/25/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B7	45.5	08/25/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B7 B7	51.0	08/28/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
	15.0	08/28/89	Riedel	<10	<0.025	0.097	<0.075	<0.075	
B8 B8	20.0	08/28/89	Riedel	21	<0.025	0.190	0.360	0.630	
B8	25.0	08/28/89	Riedel	<10	<0.025	0.050	<0.075	<0.075	
	30.0	08/30/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B8	35.5	08/30/89	Riedel	<10	<0.025	0.130	0.150	0.260	
B8 B8	40.5	08/30/89	Riedel	<10	<0.025	0.056	<0.075	<0.075	
B8	45.0	08/30/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
B8	50.0	08/30/89	Riedel	<10	<0.025	0.2220	<0.075	<0.075	
B9 B9	6.5	08/30/89	Riedel	20	0.026	0.046	<0.075	0.200	
В9	9.5	08/30/89	Riedel	<10	<0.025	<0.025	<0.075	<0.075	
В9	16.5	08/30/89	Riedel	490	0.700	0.610	2.000	15.000	
В9	21.0	08/30/89	Riedel	1500	4.1	3.4	14.0	62.0	
В9	26.5	08/30/89	Riedel	1100	3.0	28.0	13.0	68.0	
B9 B9	31.5	08/30/89	Riedel	79	0.350	0.800	0.610	2.0	
В9	35.0	08/30/89	Riedel	<10	0.390	0.130	<0.075	0.200	
В9	40.5	08/30/89	Riedel	<10	<0.025	0.043	<0.075	<0.075	
B9 B9	45.5	08/30/89	Riedel	<10	<0.025	0.066	<0.075	<0.075	
B9	51.0	08/30/89	Riedel	<10	0.310	0.046	<0.075	<0.075	
В10	15.5	10/18/90	Stream ⁴	<2.5	<0.005	<0.005	<0.005	<0.075	<10
B10 B10	21	10/18/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
B10	30.5	10/18/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
В10	45.5	10/18/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
B11	21	10/18/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
B11 B11	31	10/18/90	Stream	230	0.15	0.47	0.88	1.60	<10
B11	36	10/18/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
B11	46	10/18/90		<2.5	<0.005	<0.005	<0.005	<0.005	<10
B12	28	04/28/93	sc15	<1	<0.005	<0.005	<0.005	<0.005	
	30	04/28/93	SCI	<1	<0.005	<0.005	<0.005	<0.005	
B12	34.5	04/28/93	SCI	<1	<0.005	<0.005	<0.005	<0.005	
P1	25.5	10/19/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	
P1	35	10/19/90	Stream	7.4	0.011	<0.005	<0.005	<0.005	
P1	40.5	10/19/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	
P1	49.7	10/19/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	

Table 2 Hydrocarbon Concentrations in Soil (Continued)

Sample <u>Location</u>	Sample Depth ² (feet)	Sample Date	<u>Sampler</u>	TPH- Gasoline (mg/kg) ¹	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- Benzene (mg/kg)	Xylenes (mq/kq)	Oil & Grease (mg/kg)
P2	20.5	10/19/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
P2	30	10/19/90	Stream	20	0.018	<0.005	<0.005	0.013	<10
_ P2	35.5	10/19/90	Stream	95	0.21	0.20	14	0.33	<10
P2	55.5	10/19/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
P3	35.5	03/18/91	Stream	990	5.8	24	11	20	
P3	40.5	03/18/91	Stream	<1	<0.005	<0.005	<0.005	<0.005	
м1	20.5	10/20/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
M1	25.5	10/20/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
M1	35.5	10/20/90	Stream	82	<0.005	0.019	0.028	0.026	<10
М1	45.5	10/20/90	Stream	<2.5	<0.005	<0.005	<0.005	<0.005	<10
м2	26	04/18/91	Stream	1.3	0.32	<0.005	0.04	0.036	
M2	31	04/18/91	Stream	490	<0.005	0.41	3.4	7.5	
M2	36	04/18/91	Stream	33	<0.005	0.072	0.099	0.094	
M2	41	04/18/91	Stream	25	0.17	0.079	0.13	0.12	
M2	46	04/18/91	Stream	<1	<0.005	<0.005	<0.005	<0.005	
_ мз	22	04/28/93	SCI	<1	<0.005	<0.005	<0.005	<0.005	
м3	27	04/28/93	SCI	<1	<0.005	<0.005	<0.005	<0.005	
мЗ	30.5	04/28/93	SCI	<1	<0.005	<0.005	<0.005	<0.005	
м4	31	04/27/93	SCI	<1	<0.005	<0.005	<0.005	<0.005	
M4	33	04/27/93	SCI	130	0.43	0.49	2.0	4.5	
M4	36	04/27/93	SCI	120	0.54	0.90	1.1	4.4	
M4	39	04/27/93	SCI	<1	<0.005	<0.005	<0.005	<0.005	

mg/kg = milligrams per kilogram
Top of sample depth
Riedel = Riedel Environmental Services, Inc.

Stream = Streamborn

⁼ Subsurface Consultants, Inc.

Table 3 Hydrocarbon Concentrations in Groundwater

Sample Locatio		<u>TPH¹</u>	Benzene	<u>Toluene</u>	Ethyl- <u>benzene</u>	Xylenes
P2	11/06/90	33000 ²	4700	2100	380	630
	01/16/92	99000	6500	12000	2000	16000
	03/09/93	70000	5900	11000	2100	12000
	05/17/93	87000	6600	13000	2200	13000
M2	05/07/91	16000	1300	950	170	890
	01/16/92	22000	960	570	370	1800
	03/09/93	27000	1100	970	490	1400
	05/17/93	17000	1200	770	480	1300
МЗ	05/17/93	<50	<0.5	<0.5	<0.5	<0.5
M4	05/17/93	7500	1200	230	11	350
P1	01/16/92	6700	500	4.4	80	40
	03/09/93	5600	1100	29	63	120

TPH = Total petroleum hydrocarbons, as gasoline
All concentrations are reported in micrograms per liter (ug/l)

(GENERAL SOIL	CATEGORIES	SYM	BOLS	TYPICAL SOIL TYPES
		Clean Gravel with	GW		Well Graded Gravel, Gravel-Sand Mixtures
seive	GRAVEL More than half	little or no fines	GP		Poorly Graded Gravel, Gravel-Sand Mixtures
SOILS No. 200 t	coarse fraction is larger than No. 4 seive size	Gravel with more	GM	886 886	Silty Gravel, Poorly Graded Gravel-Sand-Silt Mixtures
AINED ger than	GHAVEL More than half coarse fraction is larger than No. 4 seive size Gravel with more than 12% fines Clean Sand with little or no fines SAND More than half coarse fraction is emaller than		GC		Clayey Gravel, Poorly Graded Gravel-Sand-Clay Mixtures
SE GR		Clean Sand with			Well Graded Sand, Gravelly Sand
COAF e than h	COARSE Han half see than half	little or no fines	SP		Poorly Graded Sand, Gravelly Sand
Mor	coarse fraction is smaller than No. 4 seive size	s smaller than	SM		Silty Sand, Poorly Graded Sand-Silt Mixtures
		than 12% fines	sc		Clayey Sand, Poorly Graded Sand-Clay Mixtures
eive			ML		Inorganic Silt and Very Fine Sand, Rock Flour, Silty or Clayey Fine Sand, or Clayey Silt with Slight Plasticity
SOILS an No. 200 s		ND CLAY t Less than 50%	CL		Inorganic Clay of Low to Medium Plasticity, Gravelly Clay, Sandy Clay, Silty Clay, Lean Clay
ED SO			OL		Organic Clay and Organic Silty Clay of Low Plasticity
GRAINED is smaller th			МН		Inorganic Silt, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silt
FINE GRAINED SOILS More than half is smaller than No. 200 seive		ND CLAY Greater than 50%	СН		Inorganic Clay of High Plasticity, Fat Clay
More			ОН		Organic Clay of Medium to High Plasticity, Organic Silt
	HIGHLY ORGA	NIC SOILS	РТ		Peat and Other Highly Organic Soils

UNIFIED SOIL CLASSIFICATION SYSTEM

Subsurface Consultants JOB NUMBER

2801 MacARTHUR BLVD. - OAKLAND, CA

NUMBER DATE APPROVED

838.001 5/3/93 MW

PLATE

A-4

APPLICANTS

SIGNATURE Marianne, Watada Date 4/21/93

70 1 HOCH

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 452-3914

91992

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 2801 Mac Arthur Blvd Oakland, CA	PERMIT NUMBER 93200 LOCATION NUMBER
CLIENT Name APA Fund, Lita Go Anika Malnar Address 3419 Via Lida 4621 Volce 714-675-1267 City New part Beach, (A. Zip 92663	PERMIT CONDITIONS Circled Permit Requirements Apply
APPLICANT Name Subsurface Consultants Trac Fax B(0 - 268 - 0/37) Address 71. 13th St 50 17/ Voice 510 - 368 - 046/ City Ochroad Zip 34607 TYPE OF PROJECT Well Construction General Cathodic Protection General Water Supply Contamination Well Destruction PROPOSED WATER SUPPLY WELL USE Domestic Industrial Other Municipal Irrigation DRILLING METHOD: Mud Rotary Air Flotary Auger Cable Other DRILLER'S LICENSE NO. 384/67 WELL PROJECTS Drill Hole Diameter Z In. Depth 45 ft. GEOTECHNICAL PROJECTS Number of Borings In. Depth 45 ft. GEOTECHNICAL PROJECTS Number of Borings In. Depth 45 ft.	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well Projects, or drilling logs and location skatch for geotechnical projects. 3. Permit is void it project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of cement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for menitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backlill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In sreas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by tremie. E. WELL DESTRUCTION. See attached.
ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Approved Wyman Hong Date 22 Apr 9

		WELL DE	VELOPMENT FO)RM	
Project Name: 2	801 Ma	c Arthur	blid Well Nur	mber: M3	3
Job No.:	38.00)		sing Diameter: _	Z inches
Developed By:	,		 Date: _	516 193	inches
TOC Elevation:			Weather	. clear	
100 Elevation. —				··· - ··· - ···	
Depth to Casing Bot	tom (below TC	oc) 39.	86		
Depth to Groundwal		7	84	21.84	on $5/7/93$ leet
Feet of Water in We			02		feet
Casing Volume (fee		sinn DIA 2 y 0	0408) 2-94		gallons
				onic Sounder /	Other
Depth Measuremen					Outo:
Development Metho	od	POSIIS	LE BAILS	(6-	
Gallons Removed	7,44	67.1	(micromhos/cm) 2.22 × 10.0		Clear
Gallons Removed	pH → μ <i>U</i>	Temp (%)	Conductivity (micromhos/cm)	Salinity S%	Comments
3	7.64	63.3	1.87 X 100		1,
5	7:30	61.3	2.36 x 100		
7	7.10	59.7	2.38 x 100	·	Semi-clear
9	7.09	61.2	2.50 X100)	
1)	6.48	59.3	234×100	e	
13	6.93	608	2.06× 100		murky
15	6.87	60.5	2.15 × 100	 	1/
18	690	61.2	2.09 × 100		<u>''</u>
20 -	6.84	62.2	2.15 × 100		gallons
Total Gallons Remov					
Depth to Groundwate	er After Develo	pment (below	TOC)		feet
	. <u>-</u>				
ubsurface	~	1.			PLATE

	WELL DE	VELOPMENT FORM	I	
Project Name: 280	1 Mar Arthur	r Dive Well Numbe	. <u>M4</u>	,
Job No.: 838	OD)	Well Casing	~	inches
Developed By:			5/6/43 Clear	
TOC Elevation:		Weather: _	C CRONY	
	10	~ 7.0		
Depth to Casing Bottom (below TOC)	7	(36.42 on 51	Jan feet
Depth to Groundwater (be	elow TOC)	<u> </u>	(36.420n S)	feet
Feet of Water in Well —	8.	7-8		feet
Casing Volume (feet of wa		.0408) 1.43		gallons
				•
Depth Measurement Meth	hod Tape & F	aste / Electronic	Sourider Out	(e)
Development Method	VIS805)(3C	E BAILOU		
		4.09×100 4.79×100 5.65×100 12.44×100	Sen	odor 11 11 11 11 11 11 11 11
10	65.4	14.73x100		
Dey E				gallons
10 E	10			
bey E	10			-
10 E	10			_

. · :31

WELL SAMPLING FORM	
Project Name: 2801 MacArthur bld Well Number: MZ	
Job No.: 838.001 Well Casing Diameter: 2	inch
Sampled By: FV Date: 5/17/93	
TOC Elevation: Weather: C/EAR	
Depth to Casing Bottom (below TOC) 44,90	feet
Depth to Groundwater (below TOC) 27-15	feet
Feet of Water in Weil	feet
2020	feet
2 00	gallons
	ner
Purge Method	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comments ar; gas oda 11 11 11 11 gallons feet
111(D7\ () () () () () () () () () (
Sampling Method DISPOSIBLE BAILER	
Containers Used Separation Containers Used Containers Used	
Containers Used	PLATE

\$5° , 48°

	WEL	LSAMPLIN	G FORM			-
Project Name: 28	101 MacArT	iur blid	Well Numb	oer: <u>M</u> 3	· >	
	8.00)		Well Casir	ng Diameter:	2	inch
Sampled By:	-1		Date:	5/17	193	
TOC Elevation:			Weather:	<u> </u>	AR	
	· —					
Depth to Casing Bot	tom (below TOC)	39.86				feet
Depth to Groundwat	ter (below TOC)	22.15				feet
Feet of Water in We		17.71				feet
Depth to Groundwat	ter When 80% Recovered	1 25.6	59			feet
Casing Volume (fee	t of water x Casing DIA ²	× 0.0408)	2.80	1	ga	ıllons
	t Method Tape	**		ic Sounder	Y Other	
Free Product				The same and the s		
	-	MEASUREN				
Gallons Removed	ව pH Temp (එර	Conduct		Salinity S%	Comme	nts
2	9.75 68.	7 290	X 100		Semickay	<u>no 1</u>
4	7.83 67.	<u> </u>	× 100		- tv *	
<u> </u>	7.74 67.6		× 100		11	t
10	7.61 67.0		× 100			
10	7.69 66.3	<u> (۱۰۲ ر</u>	/ (· ·		* *	
					 	
Total Gallons Purged	d		·		g	jallons
Total Gallons Purged	er Before Sampling (belo	w тос) _2°	5.45		g	gallons - feet
Total Gallons Purged Depth to Groundwat Sampling Method	er Before Sampling (belo	w тос) _2°	5.45		g	
Depth to Groundwat	er Before Sampling (belo	OW TOO) 25	5.45	nint	g	
Depth to Groundwat	er Before Sampling (belo	w тос) _2°	5.45	pint	g	
Depth to Groundwat	er Before Sampling (belo	OW TOO) 25	5.45	pint	g	
Depth to Groundwat Sampling Method Containers Used	er Before Sampling (belo	Iliter	5.45	pint	APPROVED	- feet

Project Name: 2801	MacArThur 1	Well Number	•	/	
Job No.: 838.00	/	Well Casing	, 1	62	inch
Sampled By: FV		Date:	5/17/	<u>4)</u>	· · · · · · · · · · · · · · · · · · ·
TOC Elevation:		Weather:	CVE	912	<u> </u>
	ur Tê)			
Depth to Casing Bottom (be	elow TOC) $\frac{45.70}{23.8}$, 			feet
Depth to Groundwater (belo	w тос) <u>33.8</u> 11.39			<u></u>	feet
Feet of Water in Well	11.5				feet
Depth to Groundwater Whe	n 80% Recovered				feet
Casing Volume (feet of wat	er x Casing DIA ² x 0.0	1.86			gallons
Depth Measurement Metho			Sounder	/ Other	, ,
Free Product					
Purge Method DIS	PDS1B15	BALLSE			
Purge Method		ASUREMENTS			
Gallons Removed p 1 6.8 3 6.3 6.3 6.6 DPY Total Gallons Purged L Depth to Groundwater Befo	FIELD MEA OF Temp (%) 72	Conductivity (micromhos/cm) Si 19.57 × 100 2.11 × 1000 2.11 × 1000 1.92 × 1000 2.07 × 1000	alinity S%	Clear, g	
Gallons Removed p 1 6.8 6.9 5 6.2 6.2 Total Gallons Purged 6	FIELD MEA OF Temp (%) 72	Conductivity (micromhos/cm) Si 19.57 × 100 2.11 × 1000 2.11 × 1000 1.92 × 1000 2.07 × 1000		Clear, g	echar
Gallons Removed p 1 6.8 3 6.3 6.3 6.6 DPY Total Gallons Purged L Depth to Groundwater Befo	FIELD MEA OF Temp (%) 72	Conductivity (micromhos/cm) Si 19.57 × 100 2.11 × 1000 2.07 × 1000 1.92 × 1000 3+c gallons (micromhos/cm) Si 38.75 MLS12		Clear, g	echar
Gallons Removed p 1 6.8 3 6.9 5 6.7 6.8 Total Gallons Purged Sampling Method P15	FIELD MEA OF Temp (%) 72	Conductivity (micromhos/cm) Si 19.57 × 100 2.11 × 1000 2.07 × 1000 1.92 × 1000 3+c gallons (micromhos/cm) Si 38.75 MLS12	and sa	Clear, g	echar
Gallons Removed p 1 6.8 3 6.9 5 6.7 6.8 Total Gallons Purged Sampling Method P15	FIELD MEA OF Temp (%) 72	Conductivity (micromhos/cm) Si 19.57 × 100 2.11 × 1000 2.11 × 1000 1.92 × 1000 2.07 × 1000 2.07 × 1000 2.07 × 1000 2.07 × 1000 2.07 × 1000 2.07 × 1000 2.07 × 1000 2.00 38.75 2.00 38.75 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	and sa	Clear, g	echar

3. <u>2</u>. 34

	WELL S	SAMPLING FORM	1	-
Project Name: 2801	MacArthur	rblud well Num	iber: PZ	•
Job No.: 838.0	01	Well Cas	ing Diameter:	Z inch
Sampled By: FV				3
TOC Elevation:		Weather:	CLE	712
Depth to Casing Bottom (bel	ow TOC) 42	2.20		feet
Depth to Casing Bottom (belowed) Depth to Groundwater (belowed)	v TOC) 2	3-66		feet
Feet of Water in Well	18	.54		feet
Depth to Groundwater When	80% Recovered -	27,37		feet
Casing Volume (feet of water			3	gallons
Depth Measurement Method			nic Sounder	Other
Free Product				
	FIELD ME	EASUREMENTS		
en II Danie and	OF L Tomp/80f	+ +···	Salinity S%	Comments
Gallons Removed ph 2 9.6		7.15 × 100		Sheen- gas oc
4 9.0		5.54 × 100		Clear gas a
	24 67.7	5.33×100		- 11
8 9.9		5.48×100		
10 11.7	$\frac{.3}{23} \frac{68.9}{68.3}$	8.48 × 100		
Total Gallons Purged	13 68.3		-	note a a longallons
Depth to Groundwater Befor	e Sampling (below T	-00) -36.42	<u> </u>	low recharg feet
Sampling Method <u>DISP</u>	-			
Containers Used				
	40 ml	liter	pint	
	·····			PLATE
Subsurface Co	nsultants	JOB NUMBER	DATE	APPROVED
accuration of		-5555		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

DATE RECEIVED: 05/03/93 DATE REPORTED: 05/10/93

LABORATORY NUMBER: 110775

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 838.001

LOCATION: A.P.A. FUND

RESULTS: SEE ATTACHED

Reviewed by

Reviewed b

This report may be reproduced only in its entirety.

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 838.001 LOCATION: A.P.A. FUND DATE SAMPLED: 04/27,28/93
DATE RECEIVED: 05/03/93
DATE ANALYZED: 05/02-03/93
DATE REPORTED: 05/10/93

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE	TOLUENE	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
110775-1	B-12@28.5	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
110775-3	B-12@34.5	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
110775-4	M-3@22	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
110775-5	M-3@27	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
110775-6	M3@30.5	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
110775-7	M-4@31	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY

LCS RECOVERY, % 104

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 838.001 LOCATION: A.P.A. FUND DATE SAMPLED: 04/27,28/93 DATE RECEIVED: 05/03/93 DATE ANALYZED: 05/04/93

DATE REPORTED: 05/10/93

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE (ug/Kg)	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
110775-2	B-12@30.5	ND(1)	ND(5)	ND (5)	ND(5)	ND(5)
110775-10	M-4@39	ND(1)	ND(5)	ND (5)	ND(5)	ND(5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY

RPD, %

RECOVERY, %

90

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 838.001 LOCATION: A.P.A. FUND DATE SAMPLED: 04/27,28/93 DATE RECEIVED: 05/03/93 DATE ANALYZED: 05/05/93 DATE REPORTED: 05/10/93

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE (ug/Kg)	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
110775-8	M-4@33	130	430	490*	2,000	4,500*
110775-9	M-4@36	120	540	900	1,100	4,400

* Presence of this compound confirmed by second column; however, the confirmation concentration differed from the reported result by more than a factor of two.

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SI	JMMARY
----------	--------

RPD, %	3
RECOVERY, %	93

CHAIN OF CU	ISTODY FOR	M																								P	AG				<u>\</u>	O		(
			4																							ļ		A	NAL	YSIS	3 RE	:QU	EST	ED .	
PROJECT NAME: 2	A.P. A. Fu	MC	<u> </u>																							١.	Ì			İ					
JOB NUMBER: 🖂	138.00L								LAB:	ک :		<u>t-</u>														-	ł			-			ì		11
PPO IECT CONTAC	T. Maxian	ے	المل	\triangle	Tao	۵	-		TUR	NAI	ROU	ND	: _	V	10	VV	<u> </u>	ک	<u>)</u>							-							1		
SAMPLED BY:	tohn Wo	lfc						_	REC	UE	STE	D B	Y:	7	1.	_4	<u></u>	$\overline{\mathcal{I}}$	<u>o</u>	<u>d</u>	<u> </u>					-	Щ						ļ		
O/1111 LED D1:	,																								_	4	图	ĺ							
			N	MAT	RIX		co	NTAI	NERS				THO	D VED	١			_		31 IA	10 D	ATC			١		M								
	sci		П	\neg		1	П		\top	Τ					٦	•		5	AM	71.11	IG D	AIE			ı		任				١				
LABORATORY I D. NUMBER	SAMPLE NUMBER	E	ł	삗		-	æ		ш			8	<u></u>		ᄬ		Т		Т		Τ				7	NOTES	1								
	, ,	WATER	SOIL	WASTE	H	Ş	LITER	Z	1285		호	ξ. Σ.	扎	띨	Ś	МОИ	TH	DA	Y	YE.	AR		TIM	E	_	왿		_	_	_	\perp	_	\downarrow	_	
11-25-1011	B-12@285		K	\exists					X					X			1,	2	8	3	3	_	_	_	4		×		_	-	\dashv	\dashv	\dashv	+	-
-2	K-12@ 30.5		X				_		<u> </u>	1		_	_	X			4	11	4		_	\dashv	\dashv			_	X		-+	\dashv	\dashv	\dashv	+		
-3	K-Qe345	. 1	X			1	 		X _	 		_		X		\vdash	-	H	\dashv			\dashv	-	+		-	쉬	\dashv		\dashv	\dashv	\dashv	\dashv	╁	-
		1-			_	- -	╁	$\left \cdot \right $	a	+	1-			Ø	\dashv	\vdash	-	H			\dashv	\dashv	十	\dashv	-		М		_	-	7	十		+	
~ (M-3022	-	X			+	┼─	╁╌╁	슀	┨┈				$\sqrt{}$				T	一				寸				X								
	M-3627	╁╌	Х			+	T	\vdash		+-				X													X								_ _
-6	M-3 & 30%	4				1	\top	1 1		\top																				,	\rightarrow	_	\dashv	-	
-7	M-4831		×						X					λ			4	2	7	ኅ	3			\dashv		_	X					-	\dashv		
-8	M-4833		M	T 1					×.	1	1			X				+		_	-					_	X	-			-	\dashv		\dashv	_
-9	M-4036	1_	X	_		_	-		\times	-	-	ļ . .	_	X				1		-	-			\dashv		-	Š				$ \cdot $	\dashv	-	1	
-10	M-4039		\perp	1		_ _		1	X			<u> </u>	<u> </u>	<u>IX</u>	<u> </u>		لــــا	V		L	<u> </u>				_		Z 1	<u> </u>	ئــــا			1	سلسييي		
•			ادرون بن																																
	CHAIN	OF (cus	STC	DY RE	COF	D								_	CO	MM	ENT	S &	ИО	TES	:													
RELEASED BY: (Sign	DATE	/ TIN	Æ,	F	ECEIVE	BY:	(Slgı	natur	⊕)		D	AT	E/1	IME	l																				
Denni alexa	de 5/3/93	11.	W.									_			Ī																				
RELEASED BY: (Sign				F	IEGEIVEI	BY:	(Sign	natur	в)			TA	E/1	IME																					
FILELACED ST. (Oigi																																			

DATE / TIME

DATE / TIME

RECEIVED BY: (Signature)

RECEIVED BY (Signature)

DATE / TIME

DATE / TIME

RELEASED BY: (Signature)

RELEASED BY: (Signature)

Subsurface Consultants, Inc.

171 12TH STREET, SUITE 201, OAKLAND, CALIFORNIA 94607 (510) 268-0461 • FAX: 510-268-0137

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

DATE RECEIVED: 05/18/93 DATE REPORTED: 05/26/93

LABORATORY NUMBER: 110941

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 838.001

LOCATION: 2801 MAC ARTHUR BLVD

RESULTS: SEE ATTACHED

Reviewed by

Reviewed

This report may be reproduced only in its entirety.

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 838.001

LOCATION: 2801 MAC ARTHUR BLVD

DATE SAMPLED: 05/17/93
DATE RECEIVED: 05/18/93

DATE ANALYZED: 05/24/93

DATE REPORTED: 05/26/93

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
110941-1	M2	17,000	1,200	770	480	1,300
110941-3	M4	7,500	1,200	230	11	350
110941-4	P2	87,000	6,600	13,000	2,200	13,000

QA/QC SUMMARY

RPD, % 7
RECOVERY, % 96

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 838.001

LOCATION: 2801 MAC ARTHUR BLVD

DATE SAMPLED: 05/17/93
DATE RECEIVED: 05/18/93
DATE ANALYZED: 05/23/93

DATE REPORTED: 05/26/93

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
110941-2	мз	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY	
RPD, %	2
RECOVERY, %	98

CHAIN OF CL	JSTODY FOR	- RM		_				•					•		_								_				PA	GE				(<u>OF</u>		
PROJECT NAME: _	2801 MA	()	1,1	٧,	ur bl	4					~	_																T	AN	ALY:	SIS	REQ	UES	TEC)
JOB NUMBER: PROJECT CONTAC SAMPLED BY:	838.001 T: MARIANI	K	w	· A-	TAD#				711	DNIA	NDO!	I INII	n.	,	Ų	X	M	17	<u>_</u>			ارل	97	A	D/A		<u>U</u>								
	SCI		; 	MAT	RIX	_	co	NTA	INER	s			SER)			s	АМ	PLII	VG I	DAT	E		-		/ RTX								
LABORATORY I.D. NUMBER	SAMPLE NUMBER	WATER	SOIL	WASTE	AIR	VOA	LTER	PINT	TUBE		고	H2SO4	HNO3	ICE	NONE	MOI	итн	DA	Y	ΥE	ΑR		TI	ME		NOTES	TV#								
110941 -1	M2 M3	人				3 3					X			X X		-	5		<u>}</u>	Q Q	3	1	237	3	000		X							-	
-3	M4 P2	X				3					1/			之 之		0	5		7 7	9	<u>2</u> 3	i	5		0		X								
																										L	-				_				
											+										_						-	-		+	+				
	CHAIN	OF (cus	то	DY RE	COR	D			1					T	со	MME	NTS	8 8	NO	ΓES	:									 	···········			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
RELEASED BY: (SIGNA WWW. (LLW/WW	aw 5/18/93		38	,	ECEIVED	A-	3/0		M	1	5/18	3/4	3/1	<u> 73</u>	æ																				
RELEASED BY! (Signa	ature) DATE	E/TIN	ME		ECEIVE							DAT		*IVIC									<u></u>												
RELEASED BY: (Signa		E/TIN			ECEIVED			,			Ţ.		E/T				Sı																		
RELEASED BY: (Signa	ature) DATI	E/TIN	ME	R	ECEIVED) BY: ((Sign	ature	9)		1	DAT	E/T	IME			171	12	TH:	STI					201 61 •							RNI	4 94	160	7