

By Alameda County Environmental Health 10:43 am, Jun 23, 201

Visit us at www.geosolve-inc.com

Project No. 2015-29 April 3, 2017

Mr. Dan Emerson Vice President of Construction Lennar Multifamily Communities 492 9th Street Suite 300 Oakland, California 94607

Subject: SOIL MANAGEMENT PLAN Proposed Multifamily Development 1750 Webster Street, 1810 Webster Street, and 301 19th Street Oakland, California

Dear Mr. Emerson:

At your request, *GeoSolve, Inc.* has prepared this Soil Management Plan (SMP) for the above referenced properties. The subject site consists of three properties located at 1750 Webster Street, 1810 Webster Street and 301 19th Street in Oakland, California with Alameda County Assessor Parcel Numbers (APNs) 008-625-017; 008-625-018; and 008-625-002-1.

A summary of the previous environmental activities conducted on the subject site are summarized in our Summary of Environmental Activities Report dated November 10, 2016 and is attached to Appendix A of this SMP. The purpose of the Summary of Environmental Activities Report was to summarize previous and current environmental conditions at the subject properties at the request of the Alameda County Health Care Services Agency (ACHCSA) to accommodate site closure activities of all three properties. The subject site has historic ACHCSA Voluntary Remediation Action Program (VRAP) Case Number RO0003229 and Former Site Cleanup Program (SCP) Number RO0002672.

The purpose of this SMP is to provide laboratory analytical results of composited soil samples collected from beneath the subject site to facilitate pre-landfill approval for disposal activities.

Subsurface Soil Characterization Activities

Prior to commencement of fieldwork, *GeoSolve, Inc.* visited the subject property, marked four locations with white paint, and contacted underground service alert (USA) 48-hours before drilling

1807 Santa Rita Road, Suite D-165 • Pleasanton, CA 94566 rcampbell@geosolve-inc.com • (925) 963-1198 activities. In addition, a Site-Specific Health and Safety Plan was prepared for the project, and was kept on site during fieldwork activities.

Fieldwork

Once USA was notified and the underground utilities were marked, a *GeoSolve, Inc.* field geologist observed Penecore Drilling, Inc., a State-licensed drilling contractor (C57-906899) of Woodland, California, advance four borings (SPB-1 through SPB-4) on February 22, 2017. Borings SPB-1 and SPB-2 were advanced on 1750 and 1810 Webster Streets and borings SPB-3 and SPB-4 were advanced on 301 19th Street to approximately 10-feet below ground surface (bgs). The locations of borings SPB-1 through SPB-4 are shown on Figure 2. The borings were advanced using a direct-push drilling rig, equipped with Enviro-Core (dual-tube) sampling system. Each sampling rod was lined with Acetate sample liners and each boring was continuously cored. Soil samples were hand-sawed at 2.5-feet, 5-feet, 7.5-feet, and 10-feet bgs. The soil sample ends were covered with Teflon tape, capped, labeled, and placed within a pre-chilled ice chest for temporary storage.

The soil samples were delivered under chain-of-custody to McCampbell Analytical, Inc. of Pittsburg, California, a State-licensed Hazardous Waste testing laboratory (Certification No. 1644) for analysis. Prior to analysis, the soil samples collected from the borings were composited by the laboratory from 4 discrete soil samples into one composited soil sample per boring and were analyzed for total petroleum hydrocarbons reported as gasoline (TPHg), gasoline constituents benzene, toluene, ethyl benzene, total xylenes (BTEX), MTBE, total recoverable petroleum hydrocarbons (TRPH) using silica gel cleanup, total extractable petroleum hydrocarbons reported as diesel and motor-oil (TEPHd and TEPHmo) using silica-gel cleanup, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), PCBs and pesticides and CAM 17 metals. In addition, lead and chromium were analyzed for soluble threshold leaching concentration (STLC) using Environmental Protection Agency (EPA) Methods SW846/8021, E418.1, SW8015m, SW5030B/SW8260B, SW3550B/SW8270C, SW8081A/8082, 6020B, and CA Title 22.

Once the soil samples were collected from each boring, the borings were backfilled with neat cement to grade.

Laboratory Results

The laboratory analytical results of detected compounds (with the exception of CAM 17 metals) from borings SPB-1 through SPB-4 are shown below on Table 1, Laboratory Analysis of

Composited Soil Samples and a copy of the March 2, 2017 McCampbell Analytical Laboratory Reports and Chain-of-Custody documents are attached to Appendix B.

The laboratory analytical results indicated no detectable concentrations for BTEX, MTBE, pesticides, PCBs, VOCs, or SVOCs. Metals were detected at background concentrations, with the exception of composited soil sample SPB3-A/B/C/D, which indicated an elevated lead concentration of 470 milligrams per kilogram (mg/Kg).

Table 1 Laboratory Analytical Results of Composited Soil Samples 1750 Webster, 1810 Webster and 301 19th Streets Oakland, California February 22, 2017

Sample ID	TPHg (mg/Kg)	TEPHd (mg/Kg)	TEPHmo (mg/Kg)	Pesticides (mg/Kg)	VOCs (mg/Kg)	SVOCs (mg/Kg)	Lead (mg/Kg)	Chromium (mg/Kg)
SPB1-A/B/C/D	<1.0	<1.0	<5.0	<0.005 - <0.1	< 0.005	<0.25 - <1.3	3.5	69
SPB2-A/B/C/D	1.8	<1.0	<5.0	<0.005 - <0.1	< 0.005	<0.25 - <1.3	5.4	58
SPB3-A/B/C/D	<1.0	<1.0	13	<0.005 - <0.1	< 0.005	<4 - <21	470	53
SPB4-A/B/C/D	<1.0	2.5	33	<0.005 - <0.1	< 0.005	<2 - <10	4.2	52
ESLs	100	100	100	1.7	1.2	3	80	.5

mg/Kg = milligrams per kilogram, equivalent to parts per million (ppm).

< = less than laboratory detection limit.

ESL = Environmental Screening Level (RWQCB – Region 2, December 2013, Table B)

Although background concentrations, chromium was detected above 50 milligrams per kilogram (mg/Kg) in all four composited soil samples and lead was detected above 50 mg/Kg in composited soil sample SPB3-A/B/C/D. Composited soil samples SPB1-A/B/C/D through SPB4-A/B/C/D were re-analyzed for STLC chromium and composited soil sample SPB3-A/B/C/D was re-analyzed for STLC lead. Furthermore, discrete soil samples SPB3-A through SPB3-D were also analyzed for total lead. STLC chromium was detected at concentrations ranging from not detected (less than 0.10 milligram per liter [mg/L]) to 0.21 mg/L and STLC lead was detected at 16 mg/L, which exceeded the California Hazardous Waste Level for lead. Composited soil sample SPB3-A/B/C/D was also re-analyzed for toxicity characteristic leaching procedure (TCLP) for lead using EPA Methods SW1311/SW3010/SW6020, which indicated at result of 0.82 mg/L. The laboratory analytical results are shown on Table 2 below and the McCampbell Analytical Inc. chain-of-custody documents and analytical reports are attached to Appendix C.

Table 2Laboratory Analytical Results of STLC and TCLP Lead1750 Webster, 1810 Webster and 301 19th StreetsOakland, CaliforniaFebruary 22, 2017

Sample ID	STLP Chromium (mg/L)	STLC Lead (mg/L)	TCLP Lead (mg/L)	Total Lead (mg/Kg)
SPB1-A/B/C/D	<0.1	NA	NA	NA
SPB2-A/B/C/D	0.11	NA	NA	NA
SPB3-A/B/C/D	0.21	16	0.82	NA
SPB4-A/B/C/D	<0.1	NA	NA	NA
SPB3-A	NA	NA	NA	760
SPB3-B	NA	NA	NA	4.8
SPB3-C	NA	NA	NA	3.1
SPB3-D	NA	NA	NA	3.5
ESLs	5	5	5	80

mg/Kg = milligrams per kilogram, equivalent to parts per million (ppm).

mg/L = milligrams per liter, equivalent to ppm.

< = less than laboratory detection limit.

NA = not analyzed.

ESL = Environmental Screening Level (RWQCB – Region 2, December 2013, Table B.

Based on the laboratory analytical results, only a 10-foot by 10-foot area around soil profile boring SPB-3 was determined to be California Hazardous Waste to 5 feet bgs, but not Federal Hazardous Waste. The remainder of the subject property is considered Class II to Class III material depending on landfill requirements, and/or can be used as off-site fill material. Details of soil management are further discussed below.

SOIL MANAGEMENT PLAN

Prior to excavation activities at the site, a storm water pollution prevention plan (SWPPP) will be prepared and a notice of intent (NOI) will be filed with the California Regional Water Quality Control Board – Region 2 (RWQCB) to obtain a storm water construction permit. The SWPPP will recommend best management practices (BMPs) to be deployed at the site to prevent and/or retard erosion and sediment loss from the site to Webster Street, 19th Street and Harrison Street. The BMPs will most likely be biodegradable wattles and/or silt fencing around the property, storm drain control devices along Webster Street, 19th Street and Harrison Street, and rumble racks along the entrance and exit to and from the subject property. A grading permit will also be obtained by LMC from the City of Oakland to perform sub-excavation activities.

Once the SWPPP and NOI are approved, a grading permit is obtained from the City of Oakland, and the BMPs are installed at the site, soil excavation activities will commence. All of the soil beneath the subject property will be excavated up to approximately 5 feet bgs as stated in the building plans for the new development to accommodate the proposed development. The California Hazardous Waste material around boring SPB-3 will be separated from the remainder of the excavated soil at the site.

Excavation of Soil Activities

Traffic control activities will be placed along Webster Street, 19th Street, and Harrison Street in order to protect public safety and allow ingress and egress to the subject property. Soil will be excavated from around boring SPB-3 in a 10-foot by 10-foot square from the center of the boring location, down to 5 feet bgs and soil will be excavated around boring B-6 in a 10-foot by 10-feet square from the center of the boring down to 6 feet bgs and the excavated soil will be placed within 18-cubic yard dump trucks. The excavated soil within the dump trucks will be covered and the wheels of the trucks will be hand-brushed to remove excess soil prior to leaving the property. The soil will be transported to an accepting and State-licensed Class I landfill under property owner signed Hazardous Waste manifests.

Water will be sprayed into the excavation during excavation activities to suppress dust, and if required, dust monitoring equipment will be installed on the property boundaries by a Certified Industrial Hygienist (C.I.H.) during the course of excavation and disposal activities (refer to the Site-Specific Health and Safety Plan).

We estimate approximately <u>43 tons of California Hazardous Waste Class I material</u> will be generated from the excavation around boring SPB-3 and beneath the subject property. We estimate approximately 45 tons of Class II material will be generated from the excavation around boring B-6.

A letter report will be prepared detailing the excavation and disposal of the California Hazardous Waste Class I soil, which will include a copy of all the signed manifests and will be sealed and signed by a California licensed C.E.G.

Please contact us at your convenience if you have any questions regarding this Soil Management Plan or if you require additional information.

Sincerely, GeoSolve, Inc. GeoSolve, Inc. GeoSolve, Inc. GeoSolve, Inc. Stepsilon CAMPBELL P.G., C.E.G. No. 2089 CERTIFIED ENGINEERING GEOLOGIST FX, Exp. 11-20. OF CALIFOR

Robert D. Campbell, M.S., P.G., C.E.G., Q.S.D. Principal Engineering Geologist

Attachments: Figure A, Site Plan

- Appendix A Summary of Environmental Activities Report by *GeoSolve, Inc.* dated November 10, 2016
- Appendix B McCampbell Laboratory Analytical Report and Chain-of-Custody Document for March 2, 2017
- Appendix C McCampbell Analytical Reports and Chain-of-Custody Documents for March 6 and March 8, 2017

G

REFERENCE

GeoSolve, Inc., November 10, 2016. Summary of Environmental Activities at 1750 Webster Street, 1810 Webster Street and 301 19th Street in Oakland, California. GeoSolve, Inc. Project No. 2015-29.

APPENDIX A

SUMMARY OF ENVIRONMENTAL ACTIVIITES REPORT DATED NOVEMBER 10, 2016

IMC

A Lennar Company

November 16, 2016

Ms. Karel Detterman, PG Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

Subject: Proposed Multifamily Development - 1750 Webster Street, 1810 Webster Street and 301 19th Street (APNs 008-625-017; 008-625-018; and 008-625-002-1) Oakland, California

VRAP Case No. RO0003229 SCP No. RO0002672 COVER LETTER FOR SUMMARY OF ENVIRONMENTAL ACTIVITIES REPORT

Dear Ms. Detterman:

At your request, attached is the GeoSolve, Inc. Summary of Environmental Activities for the above referenced properties located at 1750 Webster Street, 1810 Webster Street and 301 19th Street in Oakland, California with Alameda County Assessor Parcel Numbers (APNs) 008-625-017; 008-625-018; and 008-625-002-1.

Perjury Statement

"I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge."

If you have any questions or need further information regarding this project, please call us at (415) 975-4991.

Sincerelv Mod

Lennar Multifamily Communities Tyler Wood. Development Associate

Visit us at www.geosolve-inc.com

Project No. 2015-29 November 10, 2016

Mr. Tyler Wood Lennar Multifamily Communities, Inc. 492 9th Street Suite 300 Oakland, California 94607

Subject: Proposed Multifamily Development 1750 Webster Street, 1810 Webster Street and 301 19th Street APNs 008-625-017; 008-625-018; and 008-625-002-1 Oakland, California VRAP Case No. RO0003229 SCP No. RO0002672 SUMMARY OF ENVIRONMENTAL ACTIVITIES REPORT

Dear Mr. Wood:

At your request, *GeoSolve, Inc.* has prepared a Summary of Environmental Activities for the above referenced properties. The subject site consists of three properties located at 1750 Webster Street, 1810 Webster Street and 301 19th Street in Oakland, California with Alameda County Assessor Parcel Numbers (APNs) 008-625-017; 008-625-018; and 008-625-002-1.

The purpose of this report is to summarize previous and current environmental conditions at the subject properties at the request of the Alameda County Health Care Services Agency (ACHCSA) to accommodate site closure activities of all three properties. The subject site has historic ACHCSA Voluntary Remediation Action Program (VRAP) Case Number RO0003229 and Former Site Cleanup Program (SCP) Number RO0002672.

Site Geology and Hydrogeology

The materials underlying the site are mapped as the Late Pleistocene Merritt Sand (Qps) by Helley and Lajoie (1979), which consists of beach and eolian (dune) sand deposits, which are loose, well-sorted, fine- to medium-grained sand with silt. The Merritt Sand is approximately 50 feet in thickness. The Merritt Sand was deposited by wind eroding and transporting steam sediments during the lower stands of sea level, which occurred approximately 40,000 years ago and may have been reworked by shoreline processes as sea levels rose. The Late Pleistocene Merritt Sand is underlain by Bay Mud and alternating layers of older alluvial deposits to approximately 1 to 2 kilometers (km). The older alluvial deposits are underlain by Cenozoic marine bedrock units.

1807 Santa Rita Road, Suite D-165 • Pleasanton, CA 94566 rcampbell@geosolve-inc.com • (925) 963-1198 The active trace of the Hayward Fault is situated approximately 3.4-miles northeast of the site and the Hayward Fault is considered active by the Alquist-Priolo Earthquake Fault Zoning Act (AP-Zone) of 1994, and is listed as a strike-slip fault with right-lateral movement (<u>http://gmw.consrv.ca.gov/shmp/download/quad/OAKLAND_EAST/maps/OKLND_E.PDF</u>). Furthermore, the subject site is not situated within a mapped zone for liquefaction during a moderate to violent earthquake event

(http://gmw.consrv.ca.gov/shmp/download/quad/OAKLAND_WEST/maps/ozn_oakw.pdf). Based on previous and current environmental work conducted at the site, depth to groundwater varies from 17 feet to 22 feet below ground surface (bgs) and flows toward the northeast along topography.

The subsurface geology is depicted on Geologic Cross-Sections A-A' and B-B', which are attached to this report and are shown on Figure 1. Geologic Cross-Sections A-A' and B-B' also depict previous groundwater wells, borings, proposed foundations, and proposed elevator pits. Subsurface geology consists of the Merritt Sand and silty clay units, which are discontinuous. The subsurface soil is mostly highly permeable, with the exception of the discontinuous silty clay units.

Previous Environmental Work

GeoSolve, Inc. reviewed previous environmental reports for each property associated with the subject site, which are summarized below.

301 19th Street (1833 Harrison Street)

One 5,000-gallon gasoline and one 550-gallon motor-oil USTs were removed from this property on September 10, 1991. Approximately 250 cubic yards of soil was over-excavated from the USTs and properly disposed. Analytical results indicated no detectable concentrations of petroleum hydrocarbons from the tank bottom samples collected (JM-01 through JM-06), as reported in the Environmental Assessment for Three Parcels located in Oakland, California (Applied GeoSciences, Inc., January 6, 1993). No other investigations have been conducted to date on this parcel. The location of the former gasoline service station is shown on Figure 1, Proposed Development Footprint.

On February 7 and 17, 1998, Norcal Geophysical Consultants, Inc. conducted a magnetometer survey of Parcels 008-0625-002-1 and 008-0625-004, which identified a metallic anomaly on the south-central portion of parcel 008-0625-002-1. No other information was revealed during this survey (Norcal Geophysical Consultants, Inc., March 2, 1998).

1750 Webster Street

Multiple environmental investigations were conducted on the 1750 Webster Street property, which identified elevated concentrations of petroleum hydrocarbons reported as gasoline (TPHg) and benzene, toluene, ethyl benzene and total xylenes (BTEX) in groundwater (Applied GeoSciences, Inc., April 1, 1993). Up to 200,000 micrograms per liter (μ g/L) of TPHg were

Project No. 2015-29

detected. The geophysical survey of the property indicated metallic utility lines only. Further investigations included drilling up to twelve borings to groundwater (ATC Associates, Inc. March 19, 1998), in which TPHg was detected up to 760,000 μ g/L and trichloroethylene (TCE) was detected up 10 13 μ g/L in borings G-3 and G-6, which are located on the southern and central portions of the property. No USTs were identified on the subject property; therefore, the TPHg, TCE and BTEX originated from an off-site and up-gradient source.

ATC Associates, Inc. drilled and installed three groundwater monitoring wells (A-1 through A-3, later renamed MW-1 through MW-3) in April 1998 (ATC Associates, Inc., September 25, 1998) on the subject property. The groundwater gradient was determined to be toward the northeast at 0.01 foot per feet (ft/ft) and TPHg was detected up to 84,000 μ g/L and benzene was detected up to 12,000 μ g/L in wells A-2 and A-1, which were installed on the northern and southern portion of the property. Depth to groundwater was measured at 18 feet to 20 feet bgs. The locations of wells MW-1 through MW-3 are shown on Figure 1 and the laboratory analytical results of soil samples collected from borings A-1 through A-3 are shown on Table 1 below. Groundwater analytical data is not included in this summary since the data is over 15 years old.

Current Environmental Work

1750 Webster Street, 1810 Webster Street and 301 19th Street

In October through November 2015, *GeoSolve, Inc.* conducted a Phase I Environmental Site Assessment (ESA) for all nine parcels at 1732-1734 Webster Street, 1750 Webster Street, 1801 Webster Street, 301 19th Street, 1711 Harrison Street, 1801 Harrison Street, 1805 Harrison Street, 1811 Harrison Street, and 1817-1839 Harrison Street in Oakland, California with APNs 008-0625-016; 008-0625-017; 008-0625-018; 008-0625-002-1; 008-0625-004; 008-0625-005; 008-0625-006; 008-0625-007; and 008-0625-008. The Recognized Environmental Conditions (RECs) identified at the subject property included:

- elevated concentrations of TPHg, BTEX and TCE in groundwater beneath the 1750 Webster Street property;
- the existence of a historic gasoline service station at 1833 and/or 1839 Harrison Street and a third UST maybe present on the south-central portion of the 301 19th Street property;
- possible elevated concentrations of lead and/or ACMs in the surficial soil based on the historical residences which used to occupy every parcel at the site until the late 1940s to early 1950s; and;
- up-gradient sources of TPHg, BTEX and other volatile organic compounds (VOCs) from historical uses as gasoline stations and dry cleaner facilities.

Based on the findings in the Phase I ESA, elevated concentrations of total petroleum hydrocarbons reported as gasoline (TPHg) and benzene were detected in groundwater up to 200,000 micrograms per liter (μ g/L) and 14,000 μ g/L on the southern portion of the property along Webster Street, which were determined to have originated from 1721 Webster Street, which is situated approximately 300 feet northwest of the subject property and immediately upgradient.

<u>*Phase II ESA – 1750 Webster Street and 301 19*th Street – November 2015</u>

In November 2015, *GeoSolve, Inc.* observed the advancement of three borings (B-1 through B-3) on the subject site to evaluate the concentrations of petroleum hydrocarbons in subsurface soil and groundwater in our Phase II ESA (*GeoSolve, Inc.*, November 7, 2015). The locations of borings B-1 through B-3 are shown on Figure 1. Based on the laboratory analytical results of soil samples, concentrations of TPHg, BTEX, or MTBE were not detected in all soil samples analyzed from borings B-1 through B-3 as shown on Table 2, with the exception of total xylenes. Total xylenes was the only chemical constituent detected in soil sample B1-25 at 0.016 mg/Kg, which is significantly below the California Regional Water Quality Control Board – Region 2 (RWQCB) Environmental Screening Level (ESL) of 111 mg/Kg for residential development (Table B, December 2013).

Lead was detected at 170 mg/Kg in soil sample B1-5, which exceeded the residential ESL of 80 mg/Kg and lead was detected below the residential ESL in all other soil samples analyzed from borings B-1 through B-3.

TPHg, BTEX, MTBE and lead were not detected in groundwater samples collected from borings B-2 or B-3 and the groundwater samples are shown on Table 3. MTBE was not detected in groundwater sample B-1. Lead was detected up to 0.54 μ g/L in groundwater sample B-1. An elevated concentration of TPHg was detected at 26,000 μ g/L, which exceed the residential ESL of 500 μ g/L in groundwater sample B-1. Benzene, toluene, ethyl benzene and total xylenes exceeded residential ESLs of 27 μ g/L, 130 μ g/L and 100 μ g/L, respectively.

Additional Phase II ESA – 1750 Webster Street and 301 19th Street – December 2015

In December 2015, *GeoSolve, Inc.* conducted an Additional Phase II ESA at 1750 Webster and 301 19th Streets by observing the advancement of borings B-4 through B-6 to groundwater to evaluate the lateral and vertical extent of the petroleum hydrocarbons and VOCs in the subsurface soil and groundwater beneath the site (*GeoSolve, Inc.*, December 23, 2015). The locations of borings B-4 through B-6 are shown on Figure 1. Based on the laboratory analytical results of the soil and groundwater samples collected from borings B-4 through B-6, no detectable concentrations of TPHg or BTEX were reported in soil samples analyzed from 10 feet and 20 feet bgs; however, minor concentrations of TPHg or BTEX were detected in the soil samples collected from 25 feet bgs in borings B-4 and B-5. Furthermore, no detectable concentrations of chlorinated hydrocarbons or MTBE were detected in any soil and/or groundwater sample collected from borings B-4 through B-6. This data is summarized in Tables

4 and 5. Elevated concentrations of TPHg and BTEX were detected in soil sample B6-25 and in groundwater from borings B-4 through B-6, with the greatest concentration detected in groundwater from boring B-6. These elevated concentrations of TPHg and BTEX are most likely from the up-gradient and off-site source property at 1721 Webster Street.

No elevated concentrations lead were detected in any soil sample analyzed from borings B-4 through B-6.

Phase II ESA – 1810 Webster Street – February 2016

In February 2016, *GeoSolve, Inc.* conducted a Phase II ESA on 1810 Webster Street and observed the advancement of borings B-1 through B-3 on 301 19th Street to groundwater (*GeoSolve, Inc.*, February 11, 2016). The locations of borings B-1 through B-3 are shown on Figure 1. Based on the laboratory analytical results of soil samples, concentrations of TPHg, BTEX, or MTBE were not detected in soil samples analyzed from borings B-1 through B-3 at 15 feet and 20 feet bgs as shown on Table 6, with the exception of a minor detection of ethyl benzene at 0.12 mg/Kg at 20 feet in boring B-2. TPHg was detected above the RWQCB's ESLs for residential development (December 2013) of 100 mg/Kg. Lead was detected above the ESL of 80 mg/Kg in soil sample B2-1 at one foot at 130 mg/Kg. Lead was detected below the ESL in all other soil samples analyzed. Benzene or MTBE were not detected in any soil sample analyzed from borings B-1 through B-3.

TPHg and benzene were detected above the residential ESLs of 500 μ g/L and 27 μ g/L in groundwater samples B-1, B-2, and B-3. The groundwater analytical results are shown on Table 7. Elevated concentrations of toluene, ethyl benzene and total xylenes were detected in groundwater sample B-3, which exceeded the residential ESLs of 130 μ g/L, 43 μ g/L and 100 μ g/L, respectively. MTBE was not detected in any groundwater sample analyzed.

Chlorinated volatile compounds were not detected in any of the soil or groundwater samples.

<u>Soil-Gas Survey – 1750 Webster Street, 1810 Webster Street and 301 19th Street – February</u> 2016

In February 2016, *GeoSolve, Inc.* observed the soil-gas sampling and mobile laboratory analysis of six soil-vapor probes (SG-1 through SG-6) at the subject site (*GeoSolve, Inc.* February 22, 2016). The location of soil-gas probes SG-1 through SG-6 are shown on Figure 1. No detectable concentrations of VOCs were reported in most soil-gas samples collected from the vadose zone. A low concentration of tetrachloroethylene (PCE) was detected in soil-gas samples SG5-15 and duplicate soil-gas sample SG5-15D at 150 micrograms per cubic meter (μ g/m³) and 160 μ g/m³, respectively. A moderate concentration of benzene was detected in soil-gas sample SG5-5 at 120 μ g/m³. PCE was detected below the ESL of 210 μ g/m³ for residential development in soil-gas (December 2013 – Table E). Benzene was detected slightly above the ESL of 42 μ g/m³ in soil-gas sample SG5-5. The concentration of PCE and benzene detected in

vapor samples at SG5-15 and SG5-15D are very low and do not indicate the presence of an ongoing residual source. The soil-gas analytical results are shown on Table 8.

<u>Additional Phase II ESA – 301 19th Street – July 2016</u>

In July 2016, *GeoSolve, Inc.* conducted an Additional Phase II ESA and observed the advancement of borings B-7 through B-9 on 301 19th Street to groundwater (*GeoSolve, Inc.*, August 8, 2016). The locations of borings B-7 through B-9 are shown on Figure 1. Based on the laboratory analytical results of soil samples, concentrations of TPHg, BTEX, or MTBE were not detected in all soil samples analyzed from borings B-7 through B-9 at 1 foot, 10 feet or 15 feet bgs, as shown on Table 1 and were detected below the RWQCB's ESLs listed at the base of Table 8. Lead was detected at concentrations ranging from 1.7 mg/Kg to 9.7 mg/Kg, which were below the residential soil ESL of 80 mg/Kg. In addition, MTBE was not detected in any soil sample analyzed from borings B-7 through B-9.

No detectable concentrations of TPHg (less than 50 μ g/L, BTEX (less than 0.50 μ g/L) or MTBE (less than 0.05 μ g/L) were measured in groundwater grab samples B-7 through B-9, with the exception of a very low concentration of toluene of 0.77 μ g/L in groundwater grab sample B-9. TPHg, BTEX and MTBE were detected below residential ESLs for groundwater as listed at the base of Table 9.

Lead was detected above the residential ESL of 2.5 $\mu g/L$ at concentrations ranging from 34 $\mu g/L$ to 440 $\mu g/L.$

Additional Soil-Gas Survey – 1750 and 1810 Webster Streets, and 301 19th Street – August 2016

In August 2016, *GeoSolve, Inc.* observed the additional soil-gas sampling and mobile laboratory analysis of six soil-vapor probes (SG-1 through SG-6) at the subject site (*GeoSolve, Inc.* August 31, 2016). The location of soil-gas probes SG-1 through SG-6 are shown on Figure 1 and were advanced in the same locations as in February 2016.

Based on the laboratory analytical results of the soil-gas samples collected from vapor-probes SG-1 through SG-6, no detectable concentrations of VOCs were reported in most soil-gas samples collected from the vadose zone. A low concentration of PCE was detected in soil-gas sample SG6-10 at 120 μ g/m³. Low concentrations of benzene were also detected in soil-gas samples SG5-5 at 160 μ g/m³ and in SG5-10 at 88 μ g/m³. PCE detected in soil-gas sample SG6-10 was detected below the ESL of 240 μ g/m³ for residential development in soil-gas. Benzene was detected slightly above the screening level of 48 μ g/m³, but well below the commercial screening level of 420 μ g/m³ in soil-gas sample SG5-5. The concentrations measured do not indicate a significant source for either of these constituents. Although TPHg was not analyzed during this Additional Soil-Gas Survey, TEG or Northern California, Inc. stated their results support no TPHg concentrations greater than 10,000 μ g/m³ were indicated in all soil-gas samples analyzed, exactly like in the initial soil-gas survey conducted in February 2016. The PCE and benzene detected in soil-gas were below the commercial ESLs of 420 μ g/m³ for benzene and

4,200 μ g/m³ for PCE. As underground parking and/or first-level residential occupation are not planned for the development at the site, commercial ESLs are the recommended screening criteria for the site. Therefore, the low concentrations of benzene and PCE detected in soil-gas samples SG5-5, SG5-10, and SG6-10 are not a concern for the subject development at the site. The additional soil-gas analytical results are shown on Table 11.

<u>Oxygen Soil-Gas Survey – 1750 and 1810 Webster Streets, and 301 19th Street – October 21,</u> 2016

On October 21, 2016, *GeoSolve, Inc.* observed the installation of five oxygen soil-gas probes (OG-1 through OG-5) to five feet bgs. Laboratory analytical results of the subsurface soil-gas oxygen samples are shown on Table 12 and oxygen concentrations ranged from 13% to 14%. The location of oxygen soil-gas samples OG-1 through OG-5 are shown on Figure 1.

Summary of Environmental Results

Based on the conclusions of the multiple Phase II ESAs conducted on the subject property, no detectable concentrations of TPHg, BTEX or MTBE or VOCs were reported in soil samples in any boring from ground surface to 20 feet below ground surface (bgs). TPHg was detected at slightly elevated concentrations at 22 feet bgs and represents the groundwater capillary fringe zone derived from dissolved TPHg concentrations in groundwater.

Elevated concentrations of dissolved TPHg and BTEX were detected in groundwater samples collected boring borings B-1, and B-4 through B-6 and borings B-1 through B-3 (1810 Webster Street) at concentrations up to 130,000 μ g/L and 610 μ g/L in boring B-6.

Lead was mostly not detected in any soil sample analyzed form the subject site, with the exception of two samples, which were detected at 170 mg/Kg in sample B1-5 (October 2015) and at 130 mg/Kg in B2-1 (February 2016). These were detected slightly above the ESL of 80 mg/Kg for residential development and will either be removed during excavation of the fill material to accommodate development of the property, or located under the parking garage slab. Moderate concentrations of dissolved lead were detected in all groundwater samples collected from borings B-1 through B-9. These moderately elevated dissolved lead concentrations detected in groundwater grab samples B-1 through B-9 do not pose a significant risk to the property since groundwater is not potable and the groundwater will not be used in the proposed development.

VOCs in soil-gas were determined not to be a concern beneath the subject site and oxygen concentrations in soil-gas were detected at 13% to 14%. Although detection limits for the soil vapor samples exceeded residential screening levels, the detection limits were below commercial screening levels, which are recommended to be used for the site.

Based on the data, the former gasoline service station situated along Harrison Street did not significantly impact the subject property and the existing petroleum-hydrocarbon groundwater

plume detected on 1750 Webster Street has not impacted groundwater under the southern portion of the 301 19th Street property.

The source of the TPHg and BTEX contamination at 1721 Webster Street is under County oversight and residual dissolved petroleum hydrocarbons are expected to continue to naturally attenuate over time. Results of two soil gas sampling events at the site indicate that soil vapor from the underlying dissolved petroleum-hydrocarbon plume is attenuated at depth and vapors measured at the 5-foot depth are not a potential source of vapor intrusion risk for the proposed development.

Based on the findings and results presented in this Summary, *GeoSolve, Inc.* recommends formal closure of ACHCSA VRAP Case No. RO0003229 and SCP No. RO0002672 in response to the ACHCSA comfort letter dated February 16, 2000. It is our understanding that such closure will require recordation of a land use covenant and approved soil management plan for the site.

If you have any questions or need further information regarding this Summary, please call us at (925) 963-1198.

Sincerely, GeoSolve, Inc.

Robert D. Campbell, M.S., P.G., C.E.G., Q.S.D. Principal Engineering Geologist

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS Prentiss Properties LTD, Inc. **1750 Webster Street Oakland**, California April 25, 1998 October 28, 2015

Sample ID	Sample Depth (feet)	TPHg (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl Benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)
A-1-10.5	10.5	<1	<5	<5	<5	<5	<20
A-1-15	15	<1	<5	<5	<5	<5	<20
A-2-11	11	<1	<5	<5	<5	<5	<20
A-2-16	16	<1	<5	<5	<5	<5	<20
A-3-11.5	11.5	<1	<5	<5	<5	<5	<20
A-3-17.5	17.5	<1	<5	<5	<5	<5	<20

mg/Kg =

milligrams per kilogram, equivalent to parts per million (ppm).

TABLE 2 LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES 1750 Webster Street and 301 19th Street Oakland, California October 28, 2015

Sample ID	Sample Depth	TPHg (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl Benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	Lead (mg/Kg)
	(feet)							
B1-5	5	NA	NA	NA	NA	NA	NA	170
B1-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	5.8
B1-15	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B1-17.5	17.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B1-22	22	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B1-25	25	<1.0	< 0.005	< 0.005	< 0.005	0.016	< 0.05	<5.0
B1-30	30	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	6.8
B2-5	5	NA	NA	NA	NA	NA	NA	5.3
B2-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B2-15	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B2-20	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B2-25	25	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	9.8
B3-5	5	NA	NA	NA	NA	NA	NA	5.3
B3-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B3-15	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	6.7
B3-20	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<5.0
B3-20D	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	8.9
B3-25	25	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	7.3
ESLs		100	0.74	9.3	4.7	111	8.4	80

milligrams per kilogram, equivalent to parts per million (ppm). mg/Kg =

NA not analyzed.

Environmental Screening Levels, RWQCB - Region 2 (December 2013, Table B) **ESLs** -

TABLE 3 LABORATORY ANALYTICAL RESULTS OF GROUNDWATER SAMPLES 1750 Webster Street and 301 19th Street Oakland, California October 28, 2015

Sample ID	Sample Depth (feet)	TPHg (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl Benzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)	Lead (µg/L)
B-1	22	26,000	140	1,300	1,100	4,900	<250	0.54
B-2	17	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
B-3	17	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
ESLs		500	27	130	43	100	1,800	80

μg/L

Project No. 2015-29

micrograms per liter, equivalent to parts per billion (ppb).

TABLE 4 LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES 1750 Webster Street Oakland, California December 11, 2015

Sample ID	Sample Depth	TPHg (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl Benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	VOCs (mg/Kg)	Lead (mg/Kg)
	(feet)								
B4-1	1	NA	NA	NA	NA	NA	NA	NA	<5.0
B4-2	2	NA	NA	NA	NA	NA	NA	NA	<5.0
B4-3	3	NA	NA	NA	NA	NA	NA	NA	<5.0
B4-4	4	NA	NA	NA	NA	NA	NA	NA	<5.0
B4-5	5	NA	NA	NA	NA	NA	NA	NA	<5.0
B4-10	10	<1.0	< 0.005	< 0.005	< 0.005	0.016	< 0.05	<0.005 - <0.1	<5.0
B4-20	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.005 - <0.1	<5.0
B4-25	25	1.3	0.074	0.0072	0.089	0.020	< 0.050	0.038	<5.0
B5-1	1	NA	NA	NA	NA	NA	NA	NA	<5.0
B5-2	2	NA	NA	NA	NA	NA	NA	NA	<5.0
B5-3	3	NA	NA	NA	NA	NA	NA	NA	<5.0
B5-4	4	NA	NA	NA	NA	NA	NA	NA	<5.0
B5-5	5	NA	NA	NA	NA	NA	NA	NA	<5.0
B5-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.005 - <0.1	<5.0
B5-20	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.005 - <0.1	<5.0
B5-25	25	<1.0	0.011	< 0.005	< 0.005	< 0.005	< 0.05	0.01	<5.0
B6-1	NA	NA	NA	NA	NA	NA	NA	NA	6.2
B6-2	NA	NA	NA	NA	NA	NA	NA	NA	6.2
B6-3	NA	NA	NA	NA	NA	NA	NA	NA	6.3
B6-4	NA	NA	NA	NA	NA	NA	NA	NA	5.1
B6-5	NA	NA	NA	NA	NA	NA	NA	NA	6.7
B6-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.005 - <0.1	<5.0
B6-20	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.005 - <0.1	<5.0
B6-25	25	800	0.68	4.7	10	45	< 0.05	76 ^a	<5.0
ESLs		100	0.74	9.3	4.7	111	8.4	0.55 - 111	80

mg/Kg = milligrams per kilogram, equivalent to parts per million (ppm). NA not analyzed. = а = Total xylene concentration detected below ESL.

TABLE 5 LABORATORY ANALYTICAL RESULTS OF GROUNDWATER SAMPLES **1750 Webster Street** Oakland, California December 11, 2015

Sample ID	Sample Depth (feet)	TPHg (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl Benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	VOCs (µg/L)	Lead (µg/L)
B-4	21	8,100	1,000	77	580	200	<500	930 ^a	430
B-5	21	6,800	620	73	140	140	<300	490 ^a	550
B-6	22	130,000	610	12,000	3,000	13,000	<900	13,000 ^b	3,500
ESLs		500	27	130	43	100	1,800	27 - 130	2.5

μg/L =

micrograms per liter, equivalent to parts per billion (ppb).

Benzene concentration. a = b

Toluene concentration. =

TABLE 6 LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES **1810 Webster Street** Oakland, California February 2, 2016

Sample ID	Sample Depth	TPHg (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl Benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	VOCs (mg/Kg)	Lead (mg/Kg)
	(feet)								
B1-1	1	NA	NA	NA	NA	NA	NA	NA	7.5
B1-15	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.10	2.2
B1-20	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.10	1.9
B1-22.5	22.5	390	< 0.005	< 0.005	2.5	5.3	< 0.05	17 ^a	2.6
B2-1	1	NA	NA	NA	NA	NA	NA	NA	130
B2-15	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.10	2.2
B2-20	20	46	< 0.005	< 0.005	0.12	< 0.005	< 0.05	0.14 ^b	4.6
B2-22.5	22.5	660	< 0.005	0.34	0.78	0.76	< 0.05	8.1 ^c	3.0
B3-1	1	NA	NA	NA	NA	NA	NA	NA	16
B3-15	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.10	2.2
B3-20	20	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.10	2.3
B3-22.5	22.5	170	< 0.005	0.30	0.39	1.7	< 0.05	14 ^d	3.1
ESLs		100	0.74	9.3	4.7	111	8.4	100	80
n	ng/Kg =	milligr	ams per kilo	gram, equiva	alent to parts per m	illion (ppm).			

milligrams per kilogram, equivalent to parts per million (ppm).

not analyzed. =

NA

а

с

1,2,4-Trimethylbenzene and 4.9 mg/Kg of total xylenes. =

= n-Propyl benzene. b

n-Propyl benzene and 4.1 mg/Kg n-Butyl benzene. =

d = 1,2,4-Trimethylbenzene and 3.4 mg/Kg of total xylenes.

TABLE 7 LABORATORY ANALYTICAL RESULTS OF GROUNDWATER SAMPLES 1810 Webster Street Oakland, California February 2, 2016

Sample ID	Sample Depth (feet)	TPHg (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl Benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	VOCs (µg/L)	Lead (µg/L)
B-1	20.5	7,500	28	14	45	46	<250	1,200 ^a	21
B-2	19	14,000	66	11	99	21	< 0.50	270 ^b	13
B-3	20.5	4,700	110	450	110	300	< 0.50	1,200 ^c	5.9
ESLs		500	27	130	43	100	1,800	100	80

 $\mu g/L =$

a =

=

micrograms per liter, equivalent to parts per billion (ppb).

t-Butyl alcohol (TBA), 670 µg/L of 1,2,4-Trimethylbenzene and 460 µg/L of total xylenes.

n-Propyl benzene, 120 µg/L Naphthalene, and 110 µg/L of ethyl benzene.

= 1,2,4-Trimethylbenzene, 280 μ g/L of benzene, 1,100 μ g/L of toluene, and 930 μ g/L of total

xylenes.

b

С

TABLE 8LABORATORY ANALYTICAL RESULTS OF SOIL-GAS SAMPLES1750 and 1810 Webster Streets and 301 19th StreetOakland, CaliforniaFebruary 3 and 4, 2016

Sample ID	Sample Depth (feet)	TPHg (µg/m ³)	Benzene (µg/m ³)	Toluene (μg/m ³)	Ethyl Benzene (µg/m ³)	Total Xylenes (μg/m ³)	PCE (µg/m ³)	TCE (μg/m ³)
SG1-5	5	<10,000	<80	<200	<100	<200	<100	<100
SG1-10	10	<10,000	<80	<200	<100	<200	<100	<100
SG1-15	15	<10,000	<80	<200	<100	<200	<100	<100
SG1-15D	15	<10,000	<80	<200	<100	<200	<100	<100
SG2-5	5	<10,000	<80	<200	<100	<200	<100	<100
SG2-10	10	<10,000	<80	<200	<100	<200	<100	<100
SG2-15	15	<10,000	<80	<200	<100	<200	<100	<100
SG3-5	5	<10,000	<80	<200	<100	<200	<100	<100
SG3-10	10	<10,000	<80	<200	<100	<200	<100	<100
SG3-15	15	<10,000	<80	<200	<100	<200	<100	<100
SG4-5	5	<10,000	<80	<200	<100	<200	<100	<100
SG4-10	10	<10,000	<80	<200	<100	<200	<100	<100
SG4-15	15	<10,000	<80	<200	<100	<200	<100	<100
SG5-5	5	<10,000	120	<200	<100	<200	<100	<100
SG5-10	10	<10,000	<80	<200	<100	<200	<100	<100
SG5-15	15	<10,000	<80	<200	<100	<200	150	<100
SG5-15D	15	<10,000	<80	<200	<100	<200	160	<100
SG6-5	5	<10,000	<80	<200	<100	<200	<100	<100
SG6-10	10	<10,000	<80	<200	<100	<200	<100	<100
SG6-15	15	<10,000	<80	<200	<100	<200	<100	<100
ESLs	 = m	<i>30,000</i>	42 er cubic met	16,000	490	52,000	210	3,000

 $\mu g/m^3$ = micrograms per cubic meter.

PCE = Tetrachloroethylene.

TCE = Trichloroethylene.

ESLs = Environmental Screening Levels (RWQCB, December 2013 – Table E).

SG1-1D = Duplicate soil-gas sample.

TABLE 9 LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES 301 19th Street Oakland, California July 14, 2016

Sample ID	Sample	TPHg	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE	Lead
	Depth (feet)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
B7-1	1	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	5.1
B7-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	1.7
B7-15	3	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	2.0
B8-1	1	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	9.7
B8-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	2.0
B8-15	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	2.3
B9-1	1	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	NA
B9-10	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	1.6
B9-15	1	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	2.5
ESLs		100	0.74	9.3	4.7	111	8.4	80
mg/Kg =	mil	ligrams per l	cilogram, eq	uivalent to p	arts per million (pp	m).		

mg/Kg = NA =

not analyzed.

TABLE 10 LABORATORY ANALYTICAL RESULTS OF GROUNDWATER SAMPLES 301 19th Street Oakland, California July 14, 2016

Sample ID	Sample Depth (feet)	TPHg (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl Benzene (µg/L)	Total Xylenes (μg/L)	MTBE (µg/L)	Lead (µg/L)
B-7	17.5	<50	< 0.50	< 0.50	< 0.50	< 0.050	<5	280
B-8	15	<50	< 0.50	< 0.50	< 0.50	< 0.050	<5	440
B-9	17.5	<50	< 0.50	0.77	< 0.50	< 0.050	<5	34
ESLs		500	27	130	43	100	1,800	2.5

 $\mu g/L$ = micrograms per liter, equivalent to parts per billion (ppb).

November 10, 2016

TABLE 11 LABORATORY ANALYTICAL RESULTS OF SOIL-GAS SAMPLES 1750 and 1810 Webster Streets and 301 19th Street Oakland, California August 10, 2016

Sample ID	Sample Depth	Benzene (µg/m ³)	Toluene (μg/m ³)	Ethyl Benzene	Total Xylenes (µg/m ³)	PCE (µg/m ³)	TCE (μg/m ³)
	(feet)			$(\mu g/m^3)$			
SG1-5	5	<80	<200	<100	<200	<100	<100
SG1-10	10	<80	<200	<100	<200	<100	<100
SG1-10D	15	<80	<200	<100	<200	<100	<100
SG2-5	5	<80	<200	<100	<200	<100	<100
SG2-10	10	<80	<200	<100	<200	<100	<100
SG3-5	5	<80	<200	<100	<200	<100	<100
SG3-10	10	<80	<200	<100	<200	<100	<100
SG4-5	5	<80	<200	<100	<200	<100	<100
SG4-10	10	<80	<200	<100	<200	<100	<100
SG5-5	5	160	<200	<100	<200	<100	<100
SG5-10	10	. 88	<200	<100	<200	<100	<100
SG6-5	5	<80	<200	<100	<200	<100	<100
SG6-10	10	<80	<200	<100	<200	120	<100
ESL (res)*		97	310,000	1,100	100,000	480	480
$ESL(com)^*$		840	2,600,000	9,800	880,000	4,200	6,000

 $\mu g/m^3 = micrograms per cubic meter.$

PCE = Tetrachloroethylene.

TCE = Trichloroethylene.

ESLs = Environmental Screening Levels – Residential (RWQCB, December 2013 – Table E).

SG1-10D= Duplicate soil-gas sample.

*Soil Vapor ESLs

The SFRWQCB Tier 1 soil vapor ESLs are calculated by dividing the indoor air screening level by the DTSC default attenuation factors of 0.002 and 0.001 for existing residential and commercial building type, respectively (SFRWQCB, 2016; DTSC, 2011). Since, this project involves new commercial/retail on-grade buildings, the DTSC default attenuation factors of 0.001 for future residential building type and 0.0005 for future commercial building type are more appropriate (DTSC, 2011). The SFRWQCB soil vapor ESLs were estimated by dividing the indoor air ESL for residential and commercial land use by the DTSC default attenuation factors of 0.001 and 0.0005, respectively.

TABLE 12 LABORATORY ANALYTICAL RESULTS OF SOIL-GAS OXYGEN SAMPLES 1750 and 1810 Webster Streets and 301 19th Street Oakland, California October 21, 2016

Sample ID	Sample Depth (feet)	Oxygen (µL/L)
OG-1	5	130,000
OG-2	5	140,000
OG-3	5	140,000
OG-4	5	140,000
OG-5	5	140,000
μL/L	= 1	nicroliters per liter

REFERENCES

Alameda County Health Care Services Agency, February 16, 2000. Comfort Letter for 1750 Webster Street in Oakland, California.

September Applied GeoSciences, Inc., January 6, 1993. Environmental Assessment for Three Parcels located in Oakland, California. Project No. A922503.

Applied GeoSciences, Inc., April 1, 1993. *Results of a Geophysical Survey and Groundwater Investigation at Three Parcels located on the Block Bounded by 19th Street and Webster Street in Oakland, California.* Project No. A932558.

ATC Associates, Inc., March 19, 1998. Soil and Groundwater Investigation for 1750 Webster Street in Oakland, California. Project No. 61877.0002.

ATC Associates, Inc., September 25, 1998. Well Installation and Quarterly Groundwater Monitoring Report – Second and Third Quarter 1998 at 1750 Webster Street in Oakland, California. Project No. 61877.004.

GeoSolve, Inc., November 6, 2015. Phase I Environmental Site Assessment at 1732-1734 Webster Street, 1750 Webster Street, 1801 Webster Street, 301 19th Street, 1711 Harrison Street, 1801 Harrison Street, 1805 Harrison Street, 1811 Harrison Street, and 1817-1839 Harrison Street in Oakland, California. GeoSolve, Inc. Project No. 2015-29.

GeoSolve, Inc., November 7, 2015. Phase II Environmental Site Assessment at 1750 Webster Street and 301 19th Street in Oakland, California. GeoSolve, Inc. Project No. 2015-29.

GeoSolve, Inc., December 23, 2015. Additional Phase II Environmental Site Assessment at 1750 Webster Street and 301 19th Street in Oakland, California. GeoSolve, Inc. Project No. 2015-29.

GeoSolve, Inc., February 11, 2016. Phase II Environmental Site Assessment at 1810 Webster Street in Oakland, California. GeoSolve, Inc. Project No. 2016-03.

GeoSolve, Inc., February 22, 2016. Soil-Gas Survey at 1750 Webster Street, 1810 Webster Street and 301 19th Street in Oakland, California. GeoSolve, Inc. Project No. 2016-04.

GeoSolve, Inc., August 8, 2016. *Additional Phase II Environmental Site Assessment at 301 19th* Street in Oakland, California. *GeoSolve, Inc.* Project No. 2015-29.

GeoSolve, Inc., August 31, 2016. Additional Soil-Gas Survey at 1750 Webster Street, 1810 Webster Street and 301 19th Street in Oakland, California. GeoSolve, Inc. Project No. 2016-04.

Helley, E.J and LaJoie, K.R. Flatland Deposits of the San Francisco Bay Region, California – Their Geology and Engineering Properties and Their Importance to Comprehensive Planning. Professional Paper 943, Plate 3.

Norcal Geophysical Consultants, Inc., March 2, 1998. *Geophysical Investigation on Three Parcels of Property Adjacent to Webster Street, 19th Street and Harrison Street in Oakland, California.*

APPENDIX B

McCAMPBELL ANALYTICAL, INC. LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTS DATED MARCH 2, 2017

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1702B47

Report Created for: Geosolve, Inc.

1807 Santa Rita Road, Suite D-165 Pleasanton, CA 94566

Project Contact:	
Project P.O.:	
Project Name:	

Rob Campbell 2016-04 2016-04; 19th of Harrison

Project Received: 02

02/22/2017

Analytical Report reviewed & approved for release on 03/02/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Geosolve, Inc.Project:2016-04; 19th of HarrisonWorkOrder:1702B47

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client:Geosolve, Inc.Project:2016-04; 19th of HarrisonWorkOrder:1702B47

Analytical Qualifiers

a3	sample diluted due to high organic content.
a4	reporting limits raised due to the sample's matrix prohibiting a full volume extraction.
d7	strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
e2	diesel range compounds are significant; no recognizable pattern
e7	oil range compounds are significant

Quality Control Qualifiers

F2	LCS/LCSD recovery an	nd/or RPD is out of acc	eptance criteria.
1 4	200/2000 1000 tory an		optanoo ontona.

Analytical Report

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/23/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	E418.1
Analytical Method:	E418.1
Unit:	mg/kg

Total Recoverable Petroleum Hydrocarbons with Silica Gel Clean-Up by IR Spectrometry

Client ID	Lab ID Matrix Date Collecte		l Instrument	Batch ID	
SPB1-A,B,C,D	A,B,C,D 1702B47-001A Soil 02/22/2017		O&G	134602	
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>		Date Analyzed
TRPH	ND		15 1		02/23/2017 12:55
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
MAI-SS	110		70-130		02/23/2017 12:55
<u>Analyst(s):</u> HN					
Client ID	Lab ID	Matrix	Date Collected	l Instrument	Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/2017	O&G	134602
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>		Date Analyzed
TRPH	ND		15 1		02/23/2017 13:00
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
MAI-SS	111		70-130		02/23/2017 13:00
Analyst(s): HN					
Client ID	Lab ID	Matrix	Date Collected	l Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A	Soil	02/22/2017	O&G	134602
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>		Date Analyzed
TRPH	75		15 1		02/23/2017 13:05
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
MAI-SS	110		70-130		02/23/2017 13:05
Analyst(s): HN					
Client ID	Lab ID	Matrix	Date Collected	l Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/2017	O&G	134602
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
TRPH	62		15 1		02/23/2017 13:10
Surrogates	<u>REC (%)</u>		Limits		
MAI-SS	108		70-130		02/23/2017 13:10

Analytical Report

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8081A/8082
Unit:	mg/kg

Organochlorine Pesticides + PCBs

Client ID	Lab ID	Matrix	Date Collected Instrument		Batch ID
SPB1-A,B,C,D	1702B47-001A	Soil	02/22/20	17 GC22	134574
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Aldrin	ND		0.0010	1	02/28/2017 17:41
a-BHC	ND		0.0010	1	02/28/2017 17:41
b-BHC	ND		0.0010	1	02/28/2017 17:41
d-BHC	ND		0.0010	1	02/28/2017 17:41
g-BHC	ND		0.0010	1	02/28/2017 17:41
Chlordane (Technical)	ND		0.025	1	02/28/2017 17:41
a-Chlordane	ND		0.0010	1	02/28/2017 17:41
g-Chlordane	ND		0.0010	1	02/28/2017 17:41
p,p-DDD	ND		0.0010	1	02/28/2017 17:41
p,p-DDE	ND		0.0010	1	02/28/2017 17:41
p,p-DDT	ND		0.0010	1	02/28/2017 17:41
Dieldrin	ND		0.0010	1	02/28/2017 17:41
Endosulfan I	ND		0.0010	1	02/28/2017 17:41
Endosulfan II	ND		0.0010	1	02/28/2017 17:41
Endosulfan sulfate	ND		0.0010	1	02/28/2017 17:41
Endrin	ND		0.0010	1	02/28/2017 17:41
Endrin aldehyde	ND		0.0010	1	02/28/2017 17:41
Endrin ketone	ND		0.0010	1	02/28/2017 17:41
Heptachlor	ND		0.0010	1	02/28/2017 17:41
Heptachlor epoxide	ND		0.0010	1	02/28/2017 17:41
Hexachlorobenzene	ND		0.010	1	02/28/2017 17:41
Hexachlorocyclopentadiene	ND		0.020	1	02/28/2017 17:41
Methoxychlor	ND		0.0010	1	02/28/2017 17:41
Toxaphene	ND		0.050	1	02/28/2017 17:41
Aroclor1016	ND		0.050	1	02/28/2017 17:41
Aroclor1221	ND		0.050	1	02/28/2017 17:41
Aroclor1232	ND		0.050	1	02/28/2017 17:41
Aroclor1242	ND		0.050	1	02/28/2017 17:41
Aroclor1248	ND		0.050	1	02/28/2017 17:41
Aroclor1254	ND		0.050	1	02/28/2017 17:41
Aroclor1260	ND		0.050	1	02/28/2017 17:41
PCBs, total	ND		0.050	1	02/28/2017 17:41
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Decachlorobiphenyl	123		70-130		02/28/2017 17:41
Analyst(s): CK					

Analytical Report

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8081A/8082
Unit:	mg/kg

Organochlorine Pesticides + PCBs

Client ID	Lab ID	Matrix	Date Collected Instrumen		nt Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/20	17 GC22	134574
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Aldrin	ND		0.0010	1	02/28/2017 19:23
a-BHC	ND		0.0010	1	02/28/2017 19:23
b-BHC	ND		0.0010	1	02/28/2017 19:23
d-BHC	ND		0.0010	1	02/28/2017 19:23
g-BHC	ND		0.0010	1	02/28/2017 19:23
Chlordane (Technical)	ND		0.025	1	02/28/2017 19:23
a-Chlordane	ND		0.0010	1	02/28/2017 19:23
g-Chlordane	ND		0.0010	1	02/28/2017 19:23
p,p-DDD	ND		0.0010	1	02/28/2017 19:23
p,p-DDE	ND		0.0010	1	02/28/2017 19:23
p,p-DDT	ND		0.0010	1	02/28/2017 19:23
Dieldrin	ND		0.0010	1	02/28/2017 19:23
Endosulfan I	ND		0.0010	1	02/28/2017 19:23
Endosulfan II	ND		0.0010	1	02/28/2017 19:23
Endosulfan sulfate	ND		0.0010	1	02/28/2017 19:23
Endrin	ND		0.0010	1	02/28/2017 19:23
Endrin aldehyde	ND		0.0010	1	02/28/2017 19:23
Endrin ketone	ND		0.0010	1	02/28/2017 19:23
Heptachlor	ND		0.0010	1	02/28/2017 19:23
Heptachlor epoxide	ND		0.0010	1	02/28/2017 19:23
Hexachlorobenzene	ND		0.010	1	02/28/2017 19:23
Hexachlorocyclopentadiene	ND		0.020	1	02/28/2017 19:23
Methoxychlor	ND		0.0010	1	02/28/2017 19:23
Toxaphene	ND		0.050	1	02/28/2017 19:23
Aroclor1016	ND		0.050	1	02/28/2017 19:23
Aroclor1221	ND		0.050	1	02/28/2017 19:23
Aroclor1232	ND		0.050	1	02/28/2017 19:23
Aroclor1242	ND		0.050	1	02/28/2017 19:23
Aroclor1248	ND		0.050	1	02/28/2017 19:23
Aroclor1254	ND		0.050	1	02/28/2017 19:23
Aroclor1260	ND		0.050	1	02/28/2017 19:23
PCBs, total	ND		0.050	1	02/28/2017 19:23
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Decachlorobiphenyl	123		70-130		02/28/2017 19:23
Analyst(s): CK					

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8081A/8082
Unit:	mg/kg

Organochlorine Pesticides + PCBs

Client ID	Lab ID	Matrix	Date Co	ollected Instru	iment Batch ID
SPB3-A,B,C,D	1702B47-003A	Soil	02/22/20	17 GC22	134574
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Aldrin	ND		0.010	10	02/28/2017 19:57
a-BHC	ND		0.010	10	02/28/2017 19:57
b-BHC	ND		0.010	10	02/28/2017 19:57
d-BHC	ND		0.010	10	02/28/2017 19:57
g-BHC	ND		0.010	10	02/28/2017 19:57
Chlordane (Technical)	ND		0.25	10	02/28/2017 19:57
a-Chlordane	ND		0.010	10	02/28/2017 19:57
g-Chlordane	ND		0.010	10	02/28/2017 19:57
p,p-DDD	ND		0.010	10	02/28/2017 19:57
p,p-DDE	ND		0.010	10	02/28/2017 19:57
p,p-DDT	ND		0.010	10	02/28/2017 19:57
Dieldrin	ND		0.010	10	02/28/2017 19:57
Endosulfan I	ND		0.010	10	02/28/2017 19:57
Endosulfan II	ND		0.010	10	02/28/2017 19:57
Endosulfan sulfate	ND		0.010	10	02/28/2017 19:57
Endrin	ND		0.010	10	02/28/2017 19:57
Endrin aldehyde	ND		0.010	10	02/28/2017 19:57
Endrin ketone	ND		0.010	10	02/28/2017 19:57
Heptachlor	ND		0.010	10	02/28/2017 19:57
Heptachlor epoxide	ND		0.010	10	02/28/2017 19:57
Hexachlorobenzene	ND		0.10	10	02/28/2017 19:57
Hexachlorocyclopentadiene	ND		0.20	10	02/28/2017 19:57
Methoxychlor	ND		0.010	10	02/28/2017 19:57
Toxaphene	ND		0.50	10	02/28/2017 19:57
Aroclor1016	ND		0.50	10	02/28/2017 19:57
Aroclor1221	ND		0.50	10	02/28/2017 19:57
Aroclor1232	ND		0.50	10	02/28/2017 19:57
Aroclor1242	ND		0.50	10	02/28/2017 19:57
Aroclor1248	ND		0.50	10	02/28/2017 19:57
Aroclor1254	ND		0.50	10	02/28/2017 19:57
Aroclor1260	ND		0.50	10	02/28/2017 19:57
PCBs, total	ND		0.50	10	02/28/2017 19:57
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Decachlorobiphenyl	118		70-130		02/28/2017 19:57
Analyst(s): CK			Analytical Com	<u>ments:</u> a3	

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8081A/8082
Unit:	mg/kg

Organochlorine Pesticides + PCBs

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/20	17 GC22	134574
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Aldrin	ND		0.0050	5	02/28/2017 20:31
a-BHC	ND		0.0050	5	02/28/2017 20:31
b-BHC	ND		0.0050	5	02/28/2017 20:31
d-BHC	ND		0.0050	5	02/28/2017 20:31
g-BHC	ND		0.0050	5	02/28/2017 20:31
Chlordane (Technical)	ND		0.12	5	02/28/2017 20:31
a-Chlordane	ND		0.0050	5	02/28/2017 20:31
g-Chlordane	ND		0.0050	5	02/28/2017 20:31
p,p-DDD	ND		0.0050	5	02/28/2017 20:31
p,p-DDE	ND		0.0050	5	02/28/2017 20:31
p,p-DDT	ND		0.0050	5	02/28/2017 20:31
Dieldrin	ND		0.0050	5	02/28/2017 20:31
Endosulfan I	ND		0.0050	5	02/28/2017 20:31
Endosulfan II	ND		0.0050	5	02/28/2017 20:31
Endosulfan sulfate	ND		0.0050	5	02/28/2017 20:31
Endrin	ND		0.0050	5	02/28/2017 20:31
Endrin aldehyde	ND		0.0050	5	02/28/2017 20:31
Endrin ketone	ND		0.0050	5	02/28/2017 20:31
Heptachlor	ND		0.0050	5	02/28/2017 20:31
Heptachlor epoxide	ND		0.0050	5	02/28/2017 20:31
Hexachlorobenzene	ND		0.050	5	02/28/2017 20:31
Hexachlorocyclopentadiene	ND		0.10	5	02/28/2017 20:31
Methoxychlor	ND		0.0050	5	02/28/2017 20:31
Toxaphene	ND		0.25	5	02/28/2017 20:31
Aroclor1016	ND		0.25	5	02/28/2017 20:31
Aroclor1221	ND		0.25	5	02/28/2017 20:31
Aroclor1232	ND		0.25	5	02/28/2017 20:31
Aroclor1242	ND		0.25	5	02/28/2017 20:31
Aroclor1248	ND		0.25	5	02/28/2017 20:31
Aroclor1254	ND		0.25	5	02/28/2017 20:31
Aroclor1260	ND		0.25	5	02/28/2017 20:31
PCBs, total	ND		0.25	5	02/28/2017 20:31
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Decachlorobiphenyl	119		70-130		02/28/2017 20:31
Analyst(s): CK			Analytical Comr	<u>ments:</u> a3	

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SPB1-A,B,C,D	1702B47-001A	Soil	02/22/20 ⁻	17 GC10	134576
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	02/23/2017 21:34
tert-Amyl methyl ether (TAME)	ND		0.0050	1	02/23/2017 21:34
Benzene	ND		0.0050	1	02/23/2017 21:34
Bromobenzene	ND		0.0050	1	02/23/2017 21:34
Bromochloromethane	ND		0.0050	1	02/23/2017 21:34
Bromodichloromethane	ND		0.0050	1	02/23/2017 21:34
Bromoform	ND		0.0050	1	02/23/2017 21:34
Bromomethane	ND		0.0050	1	02/23/2017 21:34
2-Butanone (MEK)	ND		0.020	1	02/23/2017 21:34
t-Butyl alcohol (TBA)	ND		0.050	1	02/23/2017 21:34
n-Butyl benzene	ND		0.0050	1	02/23/2017 21:34
sec-Butyl benzene	ND		0.0050	1	02/23/2017 21:34
tert-Butyl benzene	ND		0.0050	1	02/23/2017 21:34
Carbon Disulfide	ND		0.0050	1	02/23/2017 21:34
Carbon Tetrachloride	ND		0.0050	1	02/23/2017 21:34
Chlorobenzene	ND		0.0050	1	02/23/2017 21:34
Chloroethane	ND		0.0050	1	02/23/2017 21:34
Chloroform	ND		0.0050	1	02/23/2017 21:34
Chloromethane	ND		0.0050	1	02/23/2017 21:34
2-Chlorotoluene	ND		0.0050	1	02/23/2017 21:34
4-Chlorotoluene	ND		0.0050	1	02/23/2017 21:34
Dibromochloromethane	ND		0.0050	1	02/23/2017 21:34
1,2-Dibromo-3-chloropropane	ND		0.0040	1	02/23/2017 21:34
1,2-Dibromoethane (EDB)	ND		0.0040	1	02/23/2017 21:34
Dibromomethane	ND		0.0050	1	02/23/2017 21:34
1,2-Dichlorobenzene	ND		0.0050	1	02/23/2017 21:34
1,3-Dichlorobenzene	ND		0.0050	1	02/23/2017 21:34
1,4-Dichlorobenzene	ND		0.0050	1	02/23/2017 21:34
Dichlorodifluoromethane	ND		0.0050	1	02/23/2017 21:34
1,1-Dichloroethane	ND		0.0050	1	02/23/2017 21:34
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	02/23/2017 21:34
1,1-Dichloroethene	ND		0.0050	1	02/23/2017 21:34
cis-1,2-Dichloroethene	ND		0.0050	1	02/23/2017 21:34
trans-1,2-Dichloroethene	ND		0.0050	1	02/23/2017 21:34
1,2-Dichloropropane	ND		0.0050	1	02/23/2017 21:34
1,3-Dichloropropane	ND		0.0050	1	02/23/2017 21:34
2,2-Dichloropropane	ND		0.0050	1	02/23/2017 21:34

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected I	nstrument	Batch ID
SPB1-A,B,C,D	1702B47-001A	Soil	02/22/20 ⁻	17 (GC10	134576
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
1,1-Dichloropropene	ND		0.0050	1		02/23/2017 21:34
cis-1,3-Dichloropropene	ND		0.0050	1		02/23/2017 21:34
trans-1,3-Dichloropropene	ND		0.0050	1		02/23/2017 21:34
Diisopropyl ether (DIPE)	ND		0.0050	1		02/23/2017 21:34
Ethylbenzene	ND		0.0050	1		02/23/2017 21:34
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		02/23/2017 21:34
Freon 113	ND		0.0050	1		02/23/2017 21:34
Hexachlorobutadiene	ND		0.0050	1		02/23/2017 21:34
Hexachloroethane	ND		0.0050	1		02/23/2017 21:34
2-Hexanone	ND		0.0050	1		02/23/2017 21:34
Isopropylbenzene	ND		0.0050	1		02/23/2017 21:34
4-Isopropyl toluene	ND		0.0050	1		02/23/2017 21:34
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		02/23/2017 21:34
Methylene chloride	ND		0.0050	1		02/23/2017 21:34
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		02/23/2017 21:34
Naphthalene	ND		0.0050	1		02/23/2017 21:34
n-Propyl benzene	ND		0.0050	1		02/23/2017 21:34
Styrene	ND		0.0050	1		02/23/2017 21:34
1,1,1,2-Tetrachloroethane	ND		0.0050	1		02/23/2017 21:34
1,1,2,2-Tetrachloroethane	ND		0.0050	1		02/23/2017 21:34
Tetrachloroethene	ND		0.0050	1		02/23/2017 21:34
Toluene	ND		0.0050	1		02/23/2017 21:34
1,2,3-Trichlorobenzene	ND		0.0050	1		02/23/2017 21:34
1,2,4-Trichlorobenzene	ND		0.0050	1		02/23/2017 21:34
1,1,1-Trichloroethane	ND		0.0050	1		02/23/2017 21:34
1,1,2-Trichloroethane	ND		0.0050	1		02/23/2017 21:34
Trichloroethene	ND		0.0050	1		02/23/2017 21:34
Trichlorofluoromethane	ND		0.0050	1		02/23/2017 21:34
1,2,3-Trichloropropane	ND		0.0050	1		02/23/2017 21:34
1,2,4-Trimethylbenzene	ND		0.0050	1		02/23/2017 21:34
1,3,5-Trimethylbenzene	ND		0.0050	1		02/23/2017 21:34
Vinyl Chloride	ND		0.0050	1		02/23/2017 21:34
Xylenes, Total	ND		0.0050	1		02/23/2017 21:34
Xylenes, Total	ND		0.0050	1		

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SPB1-A,B,C,D	1702B47-001A Soil	02/22/2017 GC10	134576
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits	
Dibromofluoromethane	99	70-130	02/23/2017 21:34
Toluene-d8	109	70-130	02/23/2017 21:34
4-BFB	102	70-130	02/23/2017 21:34
Benzene-d6	98	60-140	02/23/2017 21:34
Ethylbenzene-d10	119	60-140	02/23/2017 21:34
1,2-DCB-d4	84	60-140	02/23/2017 21:34

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/20 ⁻	17 GC10	134576
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	02/23/2017 22:14
tert-Amyl methyl ether (TAME)	ND		0.0050	1	02/23/2017 22:14
Benzene	ND		0.0050	1	02/23/2017 22:14
Bromobenzene	ND		0.0050	1	02/23/2017 22:14
Bromochloromethane	ND		0.0050	1	02/23/2017 22:14
Bromodichloromethane	ND		0.0050	1	02/23/2017 22:14
Bromoform	ND		0.0050	1	02/23/2017 22:14
Bromomethane	ND		0.0050	1	02/23/2017 22:14
2-Butanone (MEK)	ND		0.020	1	02/23/2017 22:14
t-Butyl alcohol (TBA)	ND		0.050	1	02/23/2017 22:14
n-Butyl benzene	ND		0.0050	1	02/23/2017 22:14
sec-Butyl benzene	ND		0.0050	1	02/23/2017 22:14
tert-Butyl benzene	ND		0.0050	1	02/23/2017 22:14
Carbon Disulfide	ND		0.0050	1	02/23/2017 22:14
Carbon Tetrachloride	ND		0.0050	1	02/23/2017 22:14
Chlorobenzene	ND		0.0050	1	02/23/2017 22:14
Chloroethane	ND		0.0050	1	02/23/2017 22:14
Chloroform	ND		0.0050	1	02/23/2017 22:14
Chloromethane	ND		0.0050	1	02/23/2017 22:14
2-Chlorotoluene	ND		0.0050	1	02/23/2017 22:14
4-Chlorotoluene	ND		0.0050	1	02/23/2017 22:14
Dibromochloromethane	ND		0.0050	1	02/23/2017 22:14
1,2-Dibromo-3-chloropropane	ND		0.0040	1	02/23/2017 22:14
1,2-Dibromoethane (EDB)	ND		0.0040	1	02/23/2017 22:14
Dibromomethane	ND		0.0050	1	02/23/2017 22:14
1,2-Dichlorobenzene	ND		0.0050	1	02/23/2017 22:14
1,3-Dichlorobenzene	ND		0.0050	1	02/23/2017 22:14
1,4-Dichlorobenzene	ND		0.0050	1	02/23/2017 22:14
Dichlorodifluoromethane	ND		0.0050	1	02/23/2017 22:14
1,1-Dichloroethane	ND		0.0050	1	02/23/2017 22:14
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	02/23/2017 22:14
1,1-Dichloroethene	ND		0.0050	1	02/23/2017 22:14
cis-1,2-Dichloroethene	ND		0.0050	1	02/23/2017 22:14
trans-1,2-Dichloroethene	ND		0.0050	1	02/23/2017 22:14
1,2-Dichloropropane	ND		0.0050	1	02/23/2017 22:14
1,3-Dichloropropane	ND		0.0050	1	02/23/2017 22:14
2,2-Dichloropropane	ND		0.0050	1	02/23/2017 22:14

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	t Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/20	17 GC10	134576
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
1,1-Dichloropropene	ND		0.0050	1	02/23/2017 22:14
cis-1,3-Dichloropropene	ND		0.0050	1	02/23/2017 22:14
trans-1,3-Dichloropropene	ND		0.0050	1	02/23/2017 22:14
Diisopropyl ether (DIPE)	ND		0.0050	1	02/23/2017 22:14
Ethylbenzene	ND		0.0050	1	02/23/2017 22:14
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	02/23/2017 22:14
Freon 113	ND		0.0050	1	02/23/2017 22:14
Hexachlorobutadiene	ND		0.0050	1	02/23/2017 22:14
Hexachloroethane	ND		0.0050	1	02/23/2017 22:14
2-Hexanone	ND		0.0050	1	02/23/2017 22:14
Isopropylbenzene	ND		0.0050	1	02/23/2017 22:14
4-Isopropyl toluene	ND		0.0050	1	02/23/2017 22:14
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	02/23/2017 22:14
Methylene chloride	ND		0.0050	1	02/23/2017 22:14
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	02/23/2017 22:14
Naphthalene	ND		0.0050	1	02/23/2017 22:14
n-Propyl benzene	ND		0.0050	1	02/23/2017 22:14
Styrene	ND		0.0050	1	02/23/2017 22:14
1,1,1,2-Tetrachloroethane	ND		0.0050	1	02/23/2017 22:14
1,1,2,2-Tetrachloroethane	ND		0.0050	1	02/23/2017 22:14
Tetrachloroethene	ND		0.0050	1	02/23/2017 22:14
Toluene	ND		0.0050	1	02/23/2017 22:14
1,2,3-Trichlorobenzene	ND		0.0050	1	02/23/2017 22:14
1,2,4-Trichlorobenzene	ND		0.0050	1	02/23/2017 22:14
1,1,1-Trichloroethane	ND		0.0050	1	02/23/2017 22:14
1,1,2-Trichloroethane	ND		0.0050	1	02/23/2017 22:14
Trichloroethene	ND		0.0050	1	02/23/2017 22:14
Trichlorofluoromethane	ND		0.0050	1	02/23/2017 22:14
1,2,3-Trichloropropane	ND		0.0050	1	02/23/2017 22:14
1,2,4-Trimethylbenzene	ND		0.0050	1	02/23/2017 22:14
1,3,5-Trimethylbenzene	ND		0.0050	1	02/23/2017 22:14
Vinyl Chloride	ND		0.0050	1	02/23/2017 22:14
Xylenes, Total	ND		0.0050	1	02/23/2017 22:14

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SPB2-A,B,C,D	1702B47-002A Soil	02/22/2017 GC10	134576
Analytes	Result	<u>RL DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits	
Dibromofluoromethane	99	70-130	02/23/2017 22:14
Toluene-d8	108	70-130	02/23/2017 22:14
4-BFB	107	70-130	02/23/2017 22:14
Benzene-d6	101	60-140	02/23/2017 22:14
Ethylbenzene-d10	120	60-140	02/23/2017 22:14
1,2-DCB-d4	85	60-140	02/23/2017 22:14

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A Soil	02/22/2017 GC18	134576
Analytes	<u>Result</u>	<u>RL DF</u>	Date Analyzed
Acetone	ND	0.10 1	02/24/2017 03:32
tert-Amyl methyl ether (TAME)	ND	0.0050 1	02/24/2017 03:32
Benzene	ND	0.0050 1	02/24/2017 03:32
Bromobenzene	ND	0.0050 1	02/24/2017 03:32
Bromochloromethane	ND	0.0050 1	02/24/2017 03:32
Bromodichloromethane	ND	0.0050 1	02/24/2017 03:32
Bromoform	ND	0.0050 1	02/24/2017 03:32
Bromomethane	ND	0.0050 1	02/24/2017 03:32
2-Butanone (MEK)	ND	0.020 1	02/24/2017 03:32
t-Butyl alcohol (TBA)	ND	0.050 1	02/24/2017 03:32
n-Butyl benzene	ND	0.0050 1	02/24/2017 03:32
sec-Butyl benzene	ND	0.0050 1	02/24/2017 03:32
tert-Butyl benzene	ND	0.0050 1	02/24/2017 03:32
Carbon Disulfide	ND	0.0050 1	02/24/2017 03:32
Carbon Tetrachloride	ND	0.0050 1	02/24/2017 03:32
Chlorobenzene	ND	0.0050 1	02/24/2017 03:32
Chloroethane	ND	0.0050 1	02/24/2017 03:32
Chloroform	ND	0.0050 1	02/24/2017 03:32
Chloromethane	ND	0.0050 1	02/24/2017 03:32
2-Chlorotoluene	ND	0.0050 1	02/24/2017 03:32
4-Chlorotoluene	ND	0.0050 1	02/24/2017 03:32
Dibromochloromethane	ND	0.0050 1	02/24/2017 03:32
1,2-Dibromo-3-chloropropane	ND	0.0040 1	02/24/2017 03:32
1,2-Dibromoethane (EDB)	ND	0.0040 1	02/24/2017 03:32
Dibromomethane	ND	0.0050 1	02/24/2017 03:32
1,2-Dichlorobenzene	ND	0.0050 1	02/24/2017 03:32
1,3-Dichlorobenzene	ND	0.0050 1	02/24/2017 03:32
1,4-Dichlorobenzene	ND	0.0050 1	02/24/2017 03:32
Dichlorodifluoromethane	ND	0.0050 1	02/24/2017 03:32
1,1-Dichloroethane	ND	0.0050 1	02/24/2017 03:32
1,2-Dichloroethane (1,2-DCA)	ND	0.0040 1	02/24/2017 03:32
1,1-Dichloroethene	ND	0.0050 1	02/24/2017 03:32
cis-1,2-Dichloroethene	ND	0.0050 1	02/24/2017 03:32
trans-1,2-Dichloroethene	ND	0.0050 1	02/24/2017 03:32
1,2-Dichloropropane	ND	0.0050 1	02/24/2017 03:32
1,3-Dichloropropane	ND	0.0050 1	02/24/2017 03:32
2,2-Dichloropropane	ND	0.0050 1	02/24/2017 03:32

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

SPB3-A,B,C,D 1702B47-003A Soil 02/22/20 Analytes Result RL 1,1-Dichloropropene ND 0.0050 cis-1,3-Dichloropropene ND 0.0050 trans-1,3-Dichloropropene ND 0.0050 Diisopropyl ether (DIPE) ND 0.0050 Ethylbenzene ND 0.0050 Ethyl tert-butyl ether (ETBE) ND 0.0050 Freon 113 ND 0.0050	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1	134576 <u>Date Analyzed</u> 02/24/2017 03:32 02/24/2017 03:32 02/24/2017 03:32 02/24/2017 03:32
1,1-Dichloropropene ND 0.0050 cis-1,3-Dichloropropene ND 0.0050 trans-1,3-Dichloropropene ND 0.0050 Diisopropyl ether (DIPE) ND 0.0050 Ethylbenzene ND 0.0050 Ethyl tert-butyl ether (ETBE) ND 0.0050 Freon 113 ND 0.0050	1 1 1 1 1	02/24/2017 03:32 02/24/2017 03:32 02/24/2017 03:32
cis-1,3-DichloropropeneND0.0050trans-1,3-DichloropropeneND0.0050Diisopropyl ether (DIPE)ND0.0050EthylbenzeneND0.0050Ethyl tert-butyl ether (ETBE)ND0.0050Freon 113ND0.0050	1 1 1 1	02/24/2017 03:32 02/24/2017 03:32
trans-1,3-DichloropropeneND0.0050Diisopropyl ether (DIPE)ND0.0050EthylbenzeneND0.0050Ethyl tert-butyl ether (ETBE)ND0.0050Freon 113ND0.0050	1 1 1 1	02/24/2017 03:32
Diisopropyl ether (DIPE)ND0.0050EthylbenzeneND0.0050Ethyl tert-butyl ether (ETBE)ND0.0050Freon 113ND0.0050	1	
EthylbenzeneND0.0050Ethyl tert-butyl ether (ETBE)ND0.0050Freon 113ND0.0050	1	02/24/2017 03:32
Ethyl tert-butyl ether (ETBE) ND 0.0050 Freon 113 ND 0.0050		
Freon 113 ND 0.0050	1	02/24/2017 03:32
	1	02/24/2017 03:32
ND COT	1	02/24/2017 03:32
Hexachlorobutadiene ND 0.0050	1	02/24/2017 03:32
Hexachloroethane ND 0.0050	1	02/24/2017 03:32
2-Hexanone ND 0.0050	1	02/24/2017 03:32
Isopropylbenzene ND 0.0050	1	02/24/2017 03:32
4-Isopropyl toluene ND 0.0050	1	02/24/2017 03:32
Methyl-t-butyl ether (MTBE) ND 0.0050	1	02/24/2017 03:32
Methylene chloride ND 0.0050	1	02/24/2017 03:32
4-Methyl-2-pentanone (MIBK) ND 0.0050	1	02/24/2017 03:32
Naphthalene ND 0.0050	1	02/24/2017 03:32
n-Propyl benzene ND 0.0050	1	02/24/2017 03:32
Styrene ND 0.0050	1	02/24/2017 03:32
1,1,1,2-Tetrachloroethane ND 0.0050	1	02/24/2017 03:32
1,1,2,2-Tetrachloroethane ND 0.0050	1	02/24/2017 03:32
Tetrachloroethene ND 0.0050	1	02/24/2017 03:32
Toluene ND 0.0050	1	02/24/2017 03:32
1,2,3-Trichlorobenzene ND 0.0050	1	02/24/2017 03:32
1,2,4-Trichlorobenzene ND 0.0050	1	02/24/2017 03:32
1,1,1-Trichloroethane ND 0.0050	1	02/24/2017 03:32
1,1,2-Trichloroethane ND 0.0050	1	02/24/2017 03:32
Trichloroethene ND 0.0050	1	02/24/2017 03:32
Trichlorofluoromethane ND 0.0050	1	02/24/2017 03:32
1,2,3-Trichloropropane ND 0.0050	1	02/24/2017 03:32
1,2,4-Trimethylbenzene ND 0.0050	1	02/24/2017 03:32
1,3,5-Trimethylbenzene ND 0.0050	1	02/24/2017 03:32
Vinyl Chloride ND 0.0050		02/24/2017 03:32
Xylenes, TotalND0.0050	1	02/24/2011 00.02

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A Soil	02/22/2017 GC18	134576
Analytes	Result	<u>RL</u> DF	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits	
Dibromofluoromethane	94	70-130	02/24/2017 03:32
Toluene-d8	100	70-130	02/24/2017 03:32
4-BFB	109	70-130	02/24/2017 03:32
Benzene-d6	91	60-140	02/24/2017 03:32
Ethylbenzene-d10	101	60-140	02/24/2017 03:32
1,2-DCB-d4	76	60-140	02/24/2017 03:32

Client: Geosolve, Inc. Date Received: 2/22/17 18:20 Date Prepared: 2/22/17 **Project:** 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Co	llected Instr	rument Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/201	7 GC10) 134576
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	02/23/2017 23:35
tert-Amyl methyl ether (TAME)	ND		0.0050	1	02/23/2017 23:35
Benzene	ND		0.0050	1	02/23/2017 23:35
Bromobenzene	ND		0.0050	1	02/23/2017 23:35
Bromochloromethane	ND		0.0050	1	02/23/2017 23:35
Bromodichloromethane	ND		0.0050	1	02/23/2017 23:35
Bromoform	ND		0.0050	1	02/23/2017 23:35
Bromomethane	ND		0.0050	1	02/23/2017 23:35
2-Butanone (MEK)	ND		0.020	1	02/23/2017 23:35
t-Butyl alcohol (TBA)	ND		0.050	1	02/23/2017 23:35
n-Butyl benzene	ND		0.0050	1	02/23/2017 23:35
sec-Butyl benzene	ND		0.0050	1	02/23/2017 23:35
tert-Butyl benzene	ND		0.0050	1	02/23/2017 23:35
Carbon Disulfide	ND		0.0050	1	02/23/2017 23:35
Carbon Tetrachloride	ND		0.0050	1	02/23/2017 23:35
Chlorobenzene	ND		0.0050	1	02/23/2017 23:35
Chloroethane	ND		0.0050	1	02/23/2017 23:35
Chloroform	ND		0.0050	1	02/23/2017 23:35
Chloromethane	ND		0.0050	1	02/23/2017 23:35
2-Chlorotoluene	ND		0.0050	1	02/23/2017 23:35
4-Chlorotoluene	ND		0.0050	1	02/23/2017 23:35
Dibromochloromethane	ND		0.0050	1	02/23/2017 23:35
1,2-Dibromo-3-chloropropane	ND		0.0040	1	02/23/2017 23:35
1,2-Dibromoethane (EDB)	ND		0.0040	1	02/23/2017 23:35
Dibromomethane	ND		0.0050	1	02/23/2017 23:35
1,2-Dichlorobenzene	ND		0.0050	1	02/23/2017 23:35
1,3-Dichlorobenzene	ND		0.0050	1	02/23/2017 23:35
1,4-Dichlorobenzene	ND		0.0050	1	02/23/2017 23:35
Dichlorodifluoromethane	ND		0.0050	1	02/23/2017 23:35
1,1-Dichloroethane	ND		0.0050	1	02/23/2017 23:35
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	02/23/2017 23:35
1,1-Dichloroethene	ND		0.0050	1	02/23/2017 23:35
cis-1,2-Dichloroethene	ND		0.0050	1	02/23/2017 23:35
trans-1,2-Dichloroethene	ND		0.0050	1	02/23/2017 23:35
1,2-Dichloropropane	ND		0.0050	1	02/23/2017 23:35
1,3-Dichloropropane	ND		0.0050	1	02/23/2017 23:35
2,2-Dichloropropane	ND		0.0050	1	02/23/2017 23:35

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

		Matrix	Date Co	ollected Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/20	17 GC10	134576
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
1,1-Dichloropropene	ND		0.0050	1	02/23/2017 23:35
cis-1,3-Dichloropropene	ND		0.0050	1	02/23/2017 23:35
trans-1,3-Dichloropropene	ND		0.0050	1	02/23/2017 23:35
Diisopropyl ether (DIPE)	ND		0.0050	1	02/23/2017 23:35
Ethylbenzene	ND		0.0050	1	02/23/2017 23:35
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	02/23/2017 23:35
Freon 113	ND		0.0050	1	02/23/2017 23:35
Hexachlorobutadiene	ND		0.0050	1	02/23/2017 23:35
Hexachloroethane	ND		0.0050	1	02/23/2017 23:35
2-Hexanone	ND		0.0050	1	02/23/2017 23:35
Isopropylbenzene	ND		0.0050	1	02/23/2017 23:35
4-Isopropyl toluene	ND		0.0050	1	02/23/2017 23:35
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	02/23/2017 23:35
Methylene chloride	ND		0.0050	1	02/23/2017 23:35
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	02/23/2017 23:35
Naphthalene	ND		0.0050	1	02/23/2017 23:35
n-Propyl benzene	ND		0.0050	1	02/23/2017 23:35
Styrene	ND		0.0050	1	02/23/2017 23:35
1,1,1,2-Tetrachloroethane	ND		0.0050	1	02/23/2017 23:35
1,1,2,2-Tetrachloroethane	ND		0.0050	1	02/23/2017 23:35
Tetrachloroethene	ND		0.0050	1	02/23/2017 23:35
Toluene	ND		0.0050	1	02/23/2017 23:35
1,2,3-Trichlorobenzene	ND		0.0050	1	02/23/2017 23:35
1,2,4-Trichlorobenzene	ND		0.0050	1	02/23/2017 23:35
1,1,1-Trichloroethane	ND		0.0050	1	02/23/2017 23:35
1,1,2-Trichloroethane	ND		0.0050	1	02/23/2017 23:35
Trichloroethene	ND		0.0050	1	02/23/2017 23:35
Trichlorofluoromethane	ND		0.0050	1	02/23/2017 23:35
1,2,3-Trichloropropane	ND		0.0050	1	02/23/2017 23:35
1,2,4-Trimethylbenzene	ND		0.0050	1	02/23/2017 23:35
1,3,5-Trimethylbenzene	ND		0.0050	1	02/23/2017 23:35
Vinyl Chloride	ND		0.0050	1	02/23/2017 23:35
Xylenes, Total	ND		0.0050	1	02/23/2017 23:35

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A Soil	02/22/2017 GC10	134576
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits	
Dibromofluoromethane	100	70-130	02/23/2017 23:35
Toluene-d8	108	70-130	02/23/2017 23:35
4-BFB	102	70-130	02/23/2017 23:35
Benzene-d6	101	60-140	02/23/2017 23:35
Ethylbenzene-d10	120	60-140	02/23/2017 23:35
1,2-DCB-d4	87	60-140	02/23/2017 23:35

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Acenaphthene Acenaphthylene Acetochlor Anthracene Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
Acenaphthene Acenaphthylene Acetochlor Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (c), fluoranthene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	1702B47-001A	Soil	02/22/20	17 GC21	134796
Acenaphthylene Acetochlor Anthracene Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (c), fluoranthene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetochlor Anthracene Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (c), fluoranthene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
Anthracene Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		1.3	1	02/28/2017 15:37
Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
Benzo (k) fluoranthene Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
Benzyl Alcohol 1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
1,1-Biphenyl	ND		0.25	1	02/28/2017 15:37
	ND		1.3	1	02/28/2017 15:37
	ND		0.25	1	02/28/2017 15:37
Bis (2-chloroethoxy) Methane	ND		0.25	1	02/28/2017 15:37
Bis (2-chloroethyl) Ether	ND		0.25	1	02/28/2017 15:37
Bis (2-chloroisopropyl) Ether	ND		0.25	1	02/28/2017 15:37
Bis (2-ethylhexyl) Adipate	ND		0.25	1	02/28/2017 15:37
Bis (2-ethylhexyl) Phthalate	ND		0.25	1	02/28/2017 15:37
4-Bromophenyl Phenyl Ether	ND		0.25	1	02/28/2017 15:37
Butylbenzyl Phthalate	ND		0.25	1	02/28/2017 15:37
4-Chloroaniline	ND		0.50	1	02/28/2017 15:37
4-Chloro-3-methylphenol	ND		0.25	1	02/28/2017 15:37
2-Chloronaphthalene	ND		0.25	1	02/28/2017 15:37
2-Chlorophenol	ND		0.25	1	02/28/2017 15:37
4-Chlorophenyl Phenyl Ether	ND		0.25	1	02/28/2017 15:37
Chrysene	ND		0.25	1	02/28/2017 15:37
Dibenzo (a,h) anthracene	ND		0.25	1	02/28/2017 15:37
Dibenzofuran	ND		0.25	1	02/28/2017 15:37
Di-n-butyl Phthalate	ND		0.25	1	02/28/2017 15:37
1,2-Dichlorobenzene	ND		0.25	1	02/28/2017 15:37
1,3-Dichlorobenzene	ND		0.25	1	02/28/2017 15:37
1,4-Dichlorobenzene	ND		0.25	1	02/28/2017 15:37
3,3-Dichlorobenzidine	ND		0.50	1	02/28/2017 15:37
2,4-Dichlorophenol	ND		0.25	1	02/28/2017 15:37
Diethyl Phthalate	ND		0.25	1	02/28/2017 15:37
2,4-Dimethylphenol	ND		0.25	1	02/28/2017 15:37
Dimethyl Phthalate	ND		0.25	1	02/28/2017 15:37
4,6-Dinitro-2-methylphenol	ND		1.3	1	02/28/2017 15:37

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

SPB1-A,B,C,D 1702B47-001A Soil 02/22/2017 GC21 Analytes Result RL DF 2.4-Dinitrophenol ND 6.3 1 2.4-Dinitrophenol ND 0.25 1 2.6-Dinitrotoluene ND 0.25 1 2.6-Dinitrotoluene ND 0.25 1 1 1 1 2.6-Dinitrotoluene ND 0.25 1	ient ID	Lab ID	Matrix	Date C	collected Instrument	Batch ID
2.4-Dinitrophenol ND 6.3 1 2.4-Dinitrotoluene ND 0.25 1 2.6-Dinitrotoluene ND 0.25 1 2.6-Dinitrotoluene ND 0.25 1 Di-n-octyl Phthalate ND 0.25 1 Fluoranthene ND 0.25 1 Fluoranthene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachloropelopentaliene ND 0.25 1 Hexachloropethane ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylphenol (or, Dresol) ND 0.25 1 2-Methylphenol (m, p-Cresol) ND 0.25 1 2-Methylphenol (m, p-Cresol) ND 1.3 1 3 & 4-Methylphenol ND 1.3 1 2-Nitroaniline N	PB1-A,B,C,D	1702B47-001A	Soil	02/22/20	017 GC21	134796
2.4-Dinitrotoluene ND 0.25 1 2,6-Dinitrotoluene ND 0.25 1 Di-n-octyl Phthalate ND 0.25 1 1.2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (n,p-Cresol) ND 0.25 1 2-Mitroaniline ND 0.25 1 3 Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 4-Nitrophenol ND <	alytes	Result		<u>RL</u>	DF	Date Analyzed
A.B. ND 0.25 1 Di-n-octyl Phthalate ND 0.50 1 1.2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluoranthene ND 0.25 1 Fluoranthene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methyliphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m.p-Cresol) ND 0.25 1 2-Mitroaniline ND 1.3 1 3 NItroaniline ND 1.3 1 3 Nitroaniline ND 1.3 1 3 Nitrobenzene ND 0.25 1 2-Nitroaniline ND 1.3	4-Dinitrophenol	ND		6.3	1	02/28/2017 15:37
Di-n-octyl Phthalate ND 0.50 1 1,2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylphenol (or-Cresol) ND 0.25 1 2-Methylphenol (m, p-Cresol) ND 0.25 1 3 & 4-Methylphenol (m, p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 1.3 1 ND 0.25 1 1 ND 0.25 <t< td=""><td>4-Dinitrotoluene</td><td>ND</td><td></td><td>0.25</td><td>1</td><td>02/28/2017 15:37</td></t<>	4-Dinitrotoluene	ND		0.25	1	02/28/2017 15:37
1,2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachloroethane ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m.p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 1.3 1 3 -Nitroaniline ND 1.3 1 ND 1.3 1 1 4-Nitrosoliphenylamine ND 1.3 1 ND 1.3 1 1 1 4-Nitrosoliphenylamine ND 0.25	6-Dinitrotoluene	ND		0.25	1	02/28/2017 15:37
Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methyliphenol (o-Cresol) ND 0.25 1 2-Methyliphenol (o-Cresol) ND 0.25 1 3 & 4 -Methyliphenol (m.p-Cresol) ND 0.25 1 2-Nitroaniline ND 1.3 1 Nitrobenzene ND 1.3 1 2-Nitroaniline ND 1.3 1 1.Nitrobenzene ND 0.25 1 2-Nitrophenol ND 1.3 1 N-Nitrosodiphenylamine ND	-n-octyl Phthalate	ND		0.50	1	02/28/2017 15:37
Fluorene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Inderno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 2-Methylphenol (m,p-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1 3 - Nitroaniline ND 0.25 1 2-Nitroaniline ND 1.3 1 3 - Nitroaniline ND 1.3 1 3 - Nitroaniline ND 1.3 1 3 - Nitroaniline ND 1.3 1 4 - Nitroaniline ND 1.3 1 4 - Nitroaniline ND 0.25 1 ND 0.25	2-Diphenylhydrazine	ND		0.25	1	02/28/2017 15:37
HexachlorobenzeneND0.251HexachlorobutadieneND0.251HexachlorocyclopentadieneND1.31HexachlorocyclopentadieneND0.251Indeno (1,2,3-cd) pyreneND0.251IsophoroneND0.2512-MethylnaphthaleneND0.2512-Methylphenol (o-Cresol)ND0.2513 & 4-Methylphenol (m,p-Cresol)ND0.2513 & 4-Methylphenol (m,p-Cresol)ND0.2512-NitroanilineND0.2513-NitroanilineND1.313-NitroanilineND1.314-NitroanilineND1.314-NitrobenzeneND1.312-NitrophenolND1.31N-NitrosodiphenylamineND0.251N-NitrosodiphenylamineND0.251PentachlorophenolND1.31PhenanthreneND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.25	uoranthene	ND		0.25	1	02/28/2017 15:37
Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 1.3 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 0.25 1 3-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 Nitrobenzene ND 1.3 1 2-Nitrophenol ND 1.3 1 ND 1.3 1 1 Vitrobenzene ND 1.3 1 -Nitrosodiphenylamine ND 0.25 1 ND 0.25 1 1 </td <td>uorene</td> <td>ND</td> <td></td> <td>0.25</td> <td>1</td> <td>02/28/2017 15:37</td>	uorene	ND		0.25	1	02/28/2017 15:37
HexachlorocyclopentadieneND1.31HexachlorocthaneND0.251Indeno (1,2,3-cd) pyreneND0.251IsophoroneND0.2512-MethylnaphthaleneND0.2512-Methylphenol (o-Cresol)ND0.2513 & 4-Methylphenol (m,p-Cresol)ND0.2512-NitroanilineND0.2513-NitroanilineND1.313-NitroanilineND1.313-NitroanilineND1.313-NitroanilineND1.313-NitroanilineND1.313-NitroanilineND0.2513-NitroanilineND1.31ND0.25112-NitrophenolND1.31NitrobenzeneND0.2513-NitrosodiphenylamineND0.251N-NitrosodiphenylamineND0.251PenathreneND0.251PhenolND0.251PhenolND0.2511,2,4-TrichlorobenzeneND0.2512,4,5-TrichlorophenolND0.2512,4,5-TrichlorophenolND0.251	exachlorobenzene	ND		0.25	1	02/28/2017 15:37
Hexachloroethane ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 0.25 1 3-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitrobenzene ND 0.25 1 2-Nitrophenol ND 1.3 1 N-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodiphenylamine ND 0.25 1 Pentachlorophenol ND 0.25 1 Phenol ND 0.25 1<	exachlorobutadiene	ND		0.25	1	02/28/2017 15:37
Indeno (1,2,3-cd) pyreneND0.251IsophoroneND0.2512-MethylnaphthaleneND0.2512-Methylphenol (o-Cresol)ND0.2513 & 4-Methylphenol (m,p-Cresol)ND0.251NaphthaleneND0.2512-NitroanilineND1.313-NitroanilineND1.314-NitroanilineND1.314-NitrobenzeneND1.312-NitrophenolND1.314-NitrobenzeneND1.314-NitrobenzeneND1.311.31114-NitrosodiphenylamineND0.251N-NitrosodiphenylamineND0.251PentachlorophenolND0.251PhenolND0.251PhenolND0.251PyreneND0.2512,4,5-TrichlorophenolND0.2512,4,5-TrichlorophenolND0.251	exachlorocyclopentadiene	ND		1.3	1	02/28/2017 15:37
Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 0.25 1 3-Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitroaniline ND 0.25 1 2-Nitrophenol ND 1.3 1 4-Nitrobenzene ND 0.25 1 2-Nitrophenol ND 1.3 1 4-Nitrophenol ND 0.25 1 N-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodiphenylamine ND 0.25 1 Phenalthrene ND 0.25 1 Phenol ND 0.25 1	exachloroethane	ND		0.25	1	02/28/2017 15:37
2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitrobenzene ND 0.25 1 2-Nitrobenzene ND 0.25 1 2-Nitrophenol ND 1.3 1 4-Nitrophenol ND 1.3 1 N-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodi-n-propylamine ND 0.25 1 Phenalthrene ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1	deno (1,2,3-cd) pyrene	ND		0.25	1	02/28/2017 15:37
2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 4-Nitroaniline ND 0.25 1 2-Nitrophenol ND 1.3 1 4-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodiphenylamine ND 0.25 1 Phenanthrene ND 0.25 1 Phenol ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 1	ophorone	ND		0.25	1	02/28/2017 15:37
3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1 Naphthalene ND 0.25 1 2-Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 3-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitroaniline ND 1.3 1 4-Nitrobenzene ND 0.25 1 2-Nitrophenol ND 1.3 1 4-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodiphenylamine ND 0.25 1 Pentachlorophenol ND 0.25 1 Phenol ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 <td< td=""><td>Methylnaphthalene</td><td>ND</td><td></td><td>0.25</td><td>1</td><td>02/28/2017 15:37</td></td<>	Methylnaphthalene	ND		0.25	1	02/28/2017 15:37
NaphthaleneND0.2512-NitroanilineND1.313-NitroanilineND1.314-NitroanilineND1.314-NitrobenzeneND0.2512-NitrophenolND1.314-NitrophenolND1.314-NitrosodiphenylamineND0.251N-NitrosodiphenylamineND0.251PentachlorophenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PhenolND0.251PyreneND0.2511,2,4-TrichlorobenzeneND0.2512,4,5-TrichlorophenolND0.251	Methylphenol (o-Cresol)	ND		0.25	1	02/28/2017 15:37
2-NitroanilineND1.313-NitroanilineND1.314-NitroanilineND1.314-NitrobenzeneND0.2512-NitrophenolND1.314-NitrophenolND1.314-NitrophenolND1.314-NitrophenolND1.314-NitrophenolND0.251N-NitrosodiphenylamineND0.251N-Nitrosodi-n-propylamineND0.251PentachlorophenolND1.31PhenanthreneND0.251PhenolND0.251PyreneND0.2511,2,4-TrichlorobenzeneND0.2512,4,5-TrichlorophenolND0.251	& 4-Methylphenol (m,p-Cresol)	ND		0.25	1	02/28/2017 15:37
3-NitroanilineND1.314-NitroanilineND1.31NitrobenzeneND0.2512-NitrophenolND1.314-NitrophenolND1.314-NitrophenolND0.251N-NitrosodiphenylamineND0.251N-Nitrosodi-n-propylamineND0.251PentachlorophenolND1.31PhenanthreneND0.251PhenolND0.251PhenolND0.251PhenolND0.251PyreneND0.2511,2,4-TrichlorobenzeneND0.2512,4,5-TrichlorophenolND0.251	aphthalene	ND		0.25	1	02/28/2017 15:37
4-Nitroaniline ND 1.3 1 Nitrobenzene ND 0.25 1 2-Nitrophenol ND 1.3 1 4-Nitrophenol ND 1.3 1 4-Nitrophenol ND 1.3 1 4-Nitrophenol ND 1.3 1 N-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodi-n-propylamine ND 0.25 1 Pentachlorophenol ND 0.25 1 Phenanthrene ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	Nitroaniline	ND		1.3	1	02/28/2017 15:37
NitrobenzeneND0.2512-NitrophenolND1.314-NitrophenolND1.31N-NitrosodiphenylamineND0.251N-Nitrosodi-n-propylamineND0.251PentachlorophenolND1.31PhenanthreneND0.251PhenolND0.251PhenolND0.251PhenolND0.251PyreneND0.2511,2,4-TrichlorobenzeneND0.2512,4,5-TrichlorophenolND0.251	Nitroaniline	ND		1.3	1	02/28/2017 15:37
2-Nitrophenol ND 1.3 1 4-Nitrophenol ND 1.3 1 N-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodi-n-propylamine ND 0.25 1 Pentachlorophenol ND 1.3 1 Pentachlorophenol ND 0.25 1 Phenanthrene ND 0.25 1 Phenol ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	Nitroaniline	ND		1.3	1	02/28/2017 15:37
4-Nitrophenol ND 1.3 1 N-Nitrosodiphenylamine ND 0.25 1 N-Nitrosodi-n-propylamine ND 0.25 1 Pentachlorophenol ND 0.25 1 Phenanthrene ND 0.25 1 Phenol ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	trobenzene	ND		0.25	1	02/28/2017 15:37
N-NitrosodiphenylamineND0.251N-Nitrosodi-n-propylamineND0.251PentachlorophenolND1.31PhenanthreneND0.251PhenolND0.251PyreneND0.2511,2,4-TrichlorobenzeneND0.2512,4,5-TrichlorophenolND0.251	Nitrophenol	ND		1.3	1	02/28/2017 15:37
N-Nitrosodi-n-propylamine ND 0.25 1 Pentachlorophenol ND 1.3 1 Phenanthrene ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	Nitrophenol	ND		1.3	1	02/28/2017 15:37
Pentachlorophenol ND 1.3 1 Phenanthrene ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	Nitrosodiphenylamine	ND		0.25	1	02/28/2017 15:37
Phenanthrene ND 0.25 1 Phenol ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	Nitrosodi-n-propylamine	ND		0.25	1	02/28/2017 15:37
Phenol ND 0.25 1 Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	entachlorophenol	ND		1.3	1	02/28/2017 15:37
Pyrene ND 0.25 1 1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	nenanthrene	ND		0.25	1	02/28/2017 15:37
1,2,4-Trichlorobenzene ND 0.25 1 2,4,5-Trichlorophenol ND 0.25 1	nenol	ND		0.25	1	02/28/2017 15:37
2,4,5-Trichlorophenol ND 0.25 1	rene	ND		0.25	1	02/28/2017 15:37
	2,4-Trichlorobenzene	ND		0.25	1	02/28/2017 15:37
2.4.6-Trichlorophenol ND 0.25 1	4,5-Trichlorophenol	ND		0.25	1	02/28/2017 15:37
	4,6-Trichlorophenol	ND		0.25	1	02/28/2017 15:37

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SPB1-A,B,C,D	1702B47-001A Soil	02/22/2017 GC21	134796
Analytes	<u>Result</u>	<u>RL</u> <u>DF</u>	Date Analyzed
<u>Surrogates</u>	<u>REC (%)</u>	Limits	
2-Fluorophenol	94	30-130	02/28/2017 15:37
Phenol-d5	88	30-130	02/28/2017 15:37
Nitrobenzene-d5	82	30-130	02/28/2017 15:37
2-Fluorobiphenyl	77	30-130	02/28/2017 15:37
2,4,6-Tribromophenol	63	16-130	02/28/2017 15:37
4-Terphenyl-d14	81	30-130	02/28/2017 15:37

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date C	ollected Instrumen	t Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/20	17 GC21	134796
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Acenaphthene	ND		0.25	1	02/28/2017 16:05
Acenaphthylene	ND		0.25	1	02/28/2017 16:05
Acetochlor	ND		0.25	1	02/28/2017 16:05
Anthracene	ND		0.25	1	02/28/2017 16:05
Benzidine	ND		1.3	1	02/28/2017 16:05
Benzo (a) anthracene	ND		0.25	1	02/28/2017 16:05
Benzo (a) pyrene	ND		0.25	1	02/28/2017 16:05
Benzo (b) fluoranthene	ND		0.25	1	02/28/2017 16:05
Benzo (g,h,i) perylene	ND		0.25	1	02/28/2017 16:05
Benzo (k) fluoranthene	ND		0.25	1	02/28/2017 16:05
Benzyl Alcohol	ND		1.3	1	02/28/2017 16:05
1,1-Biphenyl	ND		0.25	1	02/28/2017 16:05
Bis (2-chloroethoxy) Methane	ND		0.25	1	02/28/2017 16:05
Bis (2-chloroethyl) Ether	ND		0.25	1	02/28/2017 16:05
Bis (2-chloroisopropyl) Ether	ND		0.25	1	02/28/2017 16:05
Bis (2-ethylhexyl) Adipate	ND		0.25	1	02/28/2017 16:05
Bis (2-ethylhexyl) Phthalate	ND		0.25	1	02/28/2017 16:05
4-Bromophenyl Phenyl Ether	ND		0.25	1	02/28/2017 16:05
Butylbenzyl Phthalate	ND		0.25	1	02/28/2017 16:05
4-Chloroaniline	ND		0.50	1	02/28/2017 16:05
4-Chloro-3-methylphenol	ND		0.25	1	02/28/2017 16:05
2-Chloronaphthalene	ND		0.25	1	02/28/2017 16:05
2-Chlorophenol	ND		0.25	1	02/28/2017 16:05
4-Chlorophenyl Phenyl Ether	ND		0.25	1	02/28/2017 16:05
Chrysene	ND		0.25	1	02/28/2017 16:05
Dibenzo (a,h) anthracene	ND		0.25	1	02/28/2017 16:05
Dibenzofuran	ND		0.25	1	02/28/2017 16:05
Di-n-butyl Phthalate	ND		0.25	1	02/28/2017 16:05
1,2-Dichlorobenzene	ND		0.25	1	02/28/2017 16:05
1,3-Dichlorobenzene	ND		0.25	1	02/28/2017 16:05
1,4-Dichlorobenzene	ND		0.25	1	02/28/2017 16:05
3,3-Dichlorobenzidine	ND		0.50	1	02/28/2017 16:05
2,4-Dichlorophenol	ND		0.25	1	02/28/2017 16:05
Diethyl Phthalate	ND		0.25	1	02/28/2017 16:05
2,4-Dimethylphenol	ND		0.25	1	02/28/2017 16:05
Dimethyl Phthalate	ND		0.25	1	02/28/2017 16:05
4,6-Dinitro-2-methylphenol	ND		1.3	1	02/28/2017 16:05

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

2,4-Dinitrophenol ND 6.3 1 2,4-Dinitrotoluene ND 0.25 1 2,6-Dinitrotoluene ND 0.25 1 Di-n-octyl Phthalate ND 0.50 1 1,2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	GC21 134796 DF Date Analyzed 1 02/28/2017 16:0 1 02/28/2017 16:0
2,4-Dinitrophenol ND 6.3 1 2,4-Dinitrotoluene ND 0.25 1 2,6-Dinitrotoluene ND 0.25 1 Di-n-octyl Phthalate ND 0.50 1 1,2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
2,4-Dinitrotoluene ND 0.25 1 2,6-Dinitrotoluene ND 0.25 1 Di-n-octyl Phthalate ND 0.50 1 1,2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachloroethane ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	
2,6-Dinitrotoluene ND 0.25 1 Di-n-octyl Phthalate ND 0.50 1 1,2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 3 & 4-Methylphenol (o-Cresol) ND 0.25 1	
Di-n-octyl PhthalateND0.5011,2-DiphenylhydrazineND0.251FluorantheneND0.251FluoreneND0.251HexachlorobenzeneND0.251HexachlorobutadieneND0.251HexachlorocyclopentadieneND0.251HexachloroethaneND0.251Indeno (1,2,3-cd) pyreneND0.251IsophoroneND0.2512-Methylphenol (o-Cresol)ND0.2513 & 4-Methylphenol (m,p-Cresol)ND0.251	1 02/28/2017 16:0
1,2-Diphenylhydrazine ND 0.25 1 Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Fluoranthene ND 0.25 1 Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Fluorene ND 0.25 1 Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Hexachlorobenzene ND 0.25 1 Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 1.3 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Hexachlorobutadiene ND 0.25 1 Hexachlorocyclopentadiene ND 1.3 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocyclopentadiene ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Hexachlorocyclopentadiene ND 1.3 1 Hexachlorocyclopentadiene ND 0.25 1 Hexachlorocethane ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Hexachloroethane ND 0.25 1 Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Indeno (1,2,3-cd) pyrene ND 0.25 1 Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
Isophorone ND 0.25 1 2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
2-Methylnaphthalene ND 0.25 1 2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
2-Methylphenol (o-Cresol) ND 0.25 1 3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
3 & 4-Methylphenol (m,p-Cresol) ND 0.25 1	1 02/28/2017 16:0
	1 02/28/2017 16:0
	1 02/28/2017 16:0
Naphthalene ND 0.25 1	1 02/28/2017 16:0
2-Nitroaniline ND 1.3 1	1 02/28/2017 16:0
3-Nitroaniline ND 1.3 1	1 02/28/2017 16:0
4-Nitroaniline ND 1.3 1	1 02/28/2017 16:0
Nitrobenzene ND 0.25 1	1 02/28/2017 16:0
2-Nitrophenol ND 1.3 1	1 02/28/2017 16:0
4-Nitrophenol ND 1.3 1	1 02/28/2017 16:0
N-Nitrosodiphenylamine ND 0.25 1	1 02/28/2017 16:0
N-Nitrosodi-n-propylamine ND 0.25 1	1 02/28/2017 16:0
Pentachlorophenol ND 1.3 1	1 02/28/2017 16:0
Phenanthrene ND 0.25 1	1 02/28/2017 16:0
Phenol ND 0.25 1	1 02/28/2017 16:0
Pyrene ND 0.25 1	1 02/28/2017 16:0
1,2,4-Trichlorobenzene ND 0.25 1	1 02/28/2017 16:0
2,4,5-Trichlorophenol ND 0.25 1	
2,4,6-Trichlorophenol ND 0.25 1	1 02/28/2017 16:0

Client:	Geosolve, Inc.
Date Received:	2/22/17 18:20
Date Prepared:	2/27/17
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SPB2-A,B,C,D	1702B47-002A Soil	02/22/2017 GC21	134796
Analytes	<u>Result</u>	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits	
2-Fluorophenol	120	30-130	02/28/2017 16:05
Phenol-d5	110	30-130	02/28/2017 16:05
Nitrobenzene-d5	98	30-130	02/28/2017 16:05
2-Fluorobiphenyl	90	30-130	02/28/2017 16:05
2,4,6-Tribromophenol	82	16-130	02/28/2017 16:05
4-Terphenyl-d14	95	30-130	02/28/2017 16:05

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Client ID	Lab ID N	Matrix	Date C	ollected Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A S	Soil	02/22/20	017 GC17	134796
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acenaphthene	ND		4.0	2	03/01/2017 16:37
Acenaphthylene	ND		4.0	2	03/01/2017 16:37
Acetochlor	ND		4.0	2	03/01/2017 16:37
Anthracene	ND		4.0	2	03/01/2017 16:37
Benzidine	ND		21	2	03/01/2017 16:37
Benzo (a) anthracene	ND		4.0	2	03/01/2017 16:37
Benzo (a) pyrene	ND		4.0	2	03/01/2017 16:37
Benzo (b) fluoranthene	ND		4.0	2	03/01/2017 16:37
Benzo (g,h,i) perylene	ND		4.0	2	03/01/2017 16:37
Benzo (k) fluoranthene	ND		4.0	2	03/01/2017 16:37
Benzyl Alcohol	ND		21	2	03/01/2017 16:37
1,1-Biphenyl	ND		4.0	2	03/01/2017 16:37
Bis (2-chloroethoxy) Methane	ND		4.0	2	03/01/2017 16:37
Bis (2-chloroethyl) Ether	ND		4.0	2	03/01/2017 16:37
Bis (2-chloroisopropyl) Ether	ND		4.0	2	03/01/2017 16:37
Bis (2-ethylhexyl) Adipate	ND		4.0	2	03/01/2017 16:37
Bis (2-ethylhexyl) Phthalate	ND		4.0	2	03/01/2017 16:37
4-Bromophenyl Phenyl Ether	ND		4.0	2	03/01/2017 16:37
Butylbenzyl Phthalate	ND		4.0	2	03/01/2017 16:37
4-Chloroaniline	ND		8.0	2	03/01/2017 16:37
4-Chloro-3-methylphenol	ND		4.0	2	03/01/2017 16:37
2-Chloronaphthalene	ND		4.0	2	03/01/2017 16:37
2-Chlorophenol	ND		4.0	2	03/01/2017 16:37
4-Chlorophenyl Phenyl Ether	ND		4.0	2	03/01/2017 16:37
Chrysene	ND		4.0	2	03/01/2017 16:37
Dibenzo (a,h) anthracene	ND		4.0	2	03/01/2017 16:37
Dibenzofuran	ND		4.0	2	03/01/2017 16:37
Di-n-butyl Phthalate	ND		4.0	2	03/01/2017 16:37
1,2-Dichlorobenzene	ND		4.0	2	03/01/2017 16:37
1,3-Dichlorobenzene	ND		4.0	2	03/01/2017 16:37
1,4-Dichlorobenzene	ND		4.0	2	03/01/2017 16:37
3,3-Dichlorobenzidine	ND		8.0	2	03/01/2017 16:37
2,4-Dichlorophenol	ND		4.0	2	03/01/2017 16:37
Diethyl Phthalate	ND		4.0	2	03/01/2017 16:37
2,4-Dimethylphenol	ND		4.0	2	03/01/2017 16:37
Dimethyl Phthalate	ND		4.0	2	03/01/2017 16:37
4,6-Dinitro-2-methylphenol	ND		21	2	03/01/2017 16:37

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

SPB3-A,B,C,D	1702B47-003A Result	Soil	02/22/2	017 GC17	
	Result			UN GCI	134796
<u>Analytes</u>			<u>RL</u>	DF	Date Analyzed
2,4-Dinitrophenol	ND		100	2	03/01/2017 16:37
2,4-Dinitrotoluene	ND		4.0	2	03/01/2017 16:37
2,6-Dinitrotoluene	ND		4.0	2	03/01/2017 16:37
Di-n-octyl Phthalate	ND		8.0	2	03/01/2017 16:37
1,2-Diphenylhydrazine	ND		4.0	2	03/01/2017 16:37
Fluoranthene	ND		4.0	2	03/01/2017 16:37
Fluorene	ND		4.0	2	03/01/2017 16:37
Hexachlorobenzene	ND		4.0	2	03/01/2017 16:37
Hexachlorobutadiene	ND		4.0	2	03/01/2017 16:37
Hexachlorocyclopentadiene	ND		21	2	03/01/2017 16:37
Hexachloroethane	ND		4.0	2	03/01/2017 16:37
Indeno (1,2,3-cd) pyrene	ND		4.0	2	03/01/2017 16:37
Isophorone	ND		4.0	2	03/01/2017 16:37
2-Methylnaphthalene	ND		4.0	2	03/01/2017 16:37
2-Methylphenol (o-Cresol)	ND		4.0	2	03/01/2017 16:37
3 & 4-Methylphenol (m,p-Cresol)	ND		4.0	2	03/01/2017 16:37
Naphthalene	ND		4.0	2	03/01/2017 16:37
2-Nitroaniline	ND		21	2	03/01/2017 16:37
3-Nitroaniline	ND		21	2	03/01/2017 16:37
4-Nitroaniline	ND		21	2	03/01/2017 16:37
Nitrobenzene	ND		4.0	2	03/01/2017 16:37
2-Nitrophenol	ND		21	2	03/01/2017 16:37
4-Nitrophenol	ND		21	2	03/01/2017 16:37
N-Nitrosodiphenylamine	ND		4.0	2	03/01/2017 16:37
N-Nitrosodi-n-propylamine	ND		4.0	2	03/01/2017 16:37
Pentachlorophenol	ND		21	2	03/01/2017 16:37
Phenanthrene	ND		4.0	2	03/01/2017 16:37
Phenol	ND		4.0	2	03/01/2017 16:37
Pyrene	ND		4.0	2	03/01/2017 16:37
1,2,4-Trichlorobenzene	ND		4.0	2	03/01/2017 16:37
2,4,5-Trichlorophenol	ND		4.0	2	03/01/2017 16:37
2,4,6-Trichlorophenol	ND		4.0	2	03/01/2017 16:37

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Client ID	Lab ID M	Aatrix Date (Collected Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A S	ioil 02/22/2	2017 GC17	134796
Analytes	Result	<u>RL</u>	DF	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits		
2-Fluorophenol	113	30-130		03/01/2017 16:37
Phenol-d5	97	30-130		03/01/2017 16:37
Nitrobenzene-d5	100	30-130		03/01/2017 16:37
2-Fluorobiphenyl	88	30-130		03/01/2017 16:37
2,4,6-Tribromophenol	28	16-130		03/01/2017 16:37
4-Terphenyl-d14	102	30-130		03/01/2017 16:37
Analyst(s): REB		Analytical Con	nments: a3,a4	

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/2	017 GC21	134796
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Acenaphthene	ND		2.0	1	02/28/2017 17:01
Acenaphthylene	ND		2.0	1	02/28/2017 17:01
Acetochlor	ND		2.0	1	02/28/2017 17:01
Anthracene	ND		2.0	1	02/28/2017 17:01
Benzidine	ND		10	1	02/28/2017 17:01
Benzo (a) anthracene	ND		2.0	1	02/28/2017 17:01
Benzo (a) pyrene	ND		2.0	1	02/28/2017 17:01
Benzo (b) fluoranthene	ND		2.0	1	02/28/2017 17:01
Benzo (g,h,i) perylene	ND		2.0	1	02/28/2017 17:01
Benzo (k) fluoranthene	ND		2.0	1	02/28/2017 17:01
Benzyl Alcohol	ND		10	1	02/28/2017 17:01
1,1-Biphenyl	ND		2.0	1	02/28/2017 17:01
Bis (2-chloroethoxy) Methane	ND		2.0	1	02/28/2017 17:01
Bis (2-chloroethyl) Ether	ND		2.0	1	02/28/2017 17:01
Bis (2-chloroisopropyl) Ether	ND		2.0	1	02/28/2017 17:01
Bis (2-ethylhexyl) Adipate	ND		2.0	1	02/28/2017 17:01
Bis (2-ethylhexyl) Phthalate	ND		2.0	1	02/28/2017 17:01
4-Bromophenyl Phenyl Ether	ND		2.0	1	02/28/2017 17:01
Butylbenzyl Phthalate	ND		2.0	1	02/28/2017 17:01
4-Chloroaniline	ND		4.0	1	02/28/2017 17:01
4-Chloro-3-methylphenol	ND		2.0	1	02/28/2017 17:01
2-Chloronaphthalene	ND		2.0	1	02/28/2017 17:01
2-Chlorophenol	ND		2.0	1	02/28/2017 17:01
4-Chlorophenyl Phenyl Ether	ND		2.0	1	02/28/2017 17:01
Chrysene	ND		2.0	1	02/28/2017 17:01
Dibenzo (a,h) anthracene	ND		2.0	1	02/28/2017 17:01
Dibenzofuran	ND		2.0	1	02/28/2017 17:01
Di-n-butyl Phthalate	ND		2.0	1	02/28/2017 17:01
1,2-Dichlorobenzene	ND		2.0	1	02/28/2017 17:01
1,3-Dichlorobenzene	ND		2.0	1	02/28/2017 17:01
1,4-Dichlorobenzene	ND		2.0	1	02/28/2017 17:01
3,3-Dichlorobenzidine	ND		4.0	1	02/28/2017 17:01
2,4-Dichlorophenol	ND		2.0	1	02/28/2017 17:01
Diethyl Phthalate	ND		2.0	1	02/28/2017 17:01
2,4-Dimethylphenol	ND		2.0	1	02/28/2017 17:01
Dimethyl Phthalate	ND		2.0	1	02/28/2017 17:01
4,6-Dinitro-2-methylphenol	ND		10	1	02/28/2017 17:01

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

SPB4-A,B,C,D 1702B47-004A Soil 02/22/2017 GC21 Analytes Result RL DE 2,4-Dinitrophenol ND 50 1 2,4-Dinitrophenol ND 2.0 1 2.0 1 2,4-Dinitrotoluene ND 2.0 1 2.0 1 2,6-Dinitrotoluene ND 2.0 1 1 1.2-Diphenylhydrazine ND 2.0 1 Fluoranthene ND 2.0 1 1 1 1.2-Diphenylhydrazine ND 2.0 1 Fluoranthene ND 2.0 1	134796 <u>Date Analyzed</u> 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01
2.4-Dinitrophenol ND 50 1 2.4-Dinitrotoluene ND 2.0 1 2.6-Dinitrotoluene ND 2.0 1 2.6-Dinitrotoluene ND 2.0 1 Din-octyl Phthalate ND 4.0 1 1.2-Diphenylhydrazine ND 2.0 1 Fluoranthene ND 2.0 1 Fluorene ND 2.0 1 Hexachlorobenzene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Indeno (1,2,3-cd) pyrene ND 2.0 1 Isophorone ND 2.0 1 2-Methylphenol (n,p-Cresol) ND 2.0 1 3 & 4-Methylphenol (m,p-Cresol) ND 2.0 1 3-Nitroaniline ND 10 1 4-Nitroaniline ND	02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01
2,4-Dinitrotoluene ND 2.0 1 2,6-Dinitrotoluene ND 2.0 1 Di-n-octyl Phthalate ND 4.0 1 1,2-Diphenylhydrazine ND 2.0 1 Fluoranthene ND 2.0 1 Fluorene ND 2.0 1 Hexachlorobenzene ND 2.0 1 Hexachlorobenzene ND 2.0 1 Hexachlorobenzene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Indeno (1,2,3-cd) pyrene ND 2.0 1 Isophorone ND 2.0 1 2-Methylnaphthalene ND 2.0 1 2-Methylphenol (n,p-Cresol) ND 2.0 1 3 & 4-Methylphenol (m,p-Cresol) ND 2.0 1 2-Nitroaniline ND 10 1 3-Nitroaniline ND	02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01
2,6-DinitrotolueneND2.01Di-n-octyl PhthalateND4.011,2-DiphenylhydrazineND2.01FluorantheneND2.01FluorantheneND2.01HexachlorobenzeneND2.01HexachlorobutadieneND2.01HexachlorocyclopentadieneND101HexachlorocyclopentadieneND2.01Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NphthaleneND1013-NitroanilineND1014-NitroanilineND101AirophenolND101AirophenolND101AirophenolND101AirophenolND101AirophenolND101AirophenolND101AirophenolND101	02/28/2017 17:01 02/28/2017 17:01 02/28/2017 17:01
Dim-octyl Phthalate ND 4.0 1 1,2-Diphenylhydrazine ND 2.0 1 Fluoranthene ND 2.0 1 Fluoranthene ND 2.0 1 Fluorene ND 2.0 1 Hexachlorobenzene ND 2.0 1 Hexachlorobutadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Indeno (1,2,3-cd) pyrene ND 2.0 1 Isophorone ND 2.0 1 2-Methylphenol (o-Cresol) ND 2.0 1 3 & 4-Methylphenol (m,p-Cresol) ND 2.0 1 Naphthalene ND 10 1 2-Nitroaniline ND 10 1 4-Nitroaniline ND 1	02/28/2017 17:01 02/28/2017 17:01
1,2-Diphenylhydrazine ND 2.0 1 Fluoranthene ND 2.0 1 Fluoranthene ND 2.0 1 Fluorene ND 2.0 1 Hexachlorobenzene ND 2.0 1 Hexachlorobenzene ND 2.0 1 Hexachlorobutadiene ND 2.0 1 Hexachlorobutadiene ND 2.0 1 Hexachlorobutadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Hexachlorocyclopentadiene ND 2.0 1 Indeno (1,2,3-cd) pyrene ND 2.0 1 Isophorone ND 2.0 1 2-Methylnaphthalene ND 2.0 1 2-Methylphenol (o-Cresol) ND 2.0 1 3 & 4-Methylphenol (m,p-Cresol) ND 2.0 1 2-Nitroaniline ND 10 1 3-Nitroaniline ND 10 <td>02/28/2017 17:01</td>	02/28/2017 17:01
FluorantheneND2.01FluorantheneND2.01HexachlorobenzeneND2.01HexachlorobutadieneND2.01HexachlorocyclopentadieneND101HexachlorocyclopentadieneND2.01Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-MethylnaphthaleneND2.013 & 4-Methylphenol (o-Cresol)ND2.013-NitroanilineND2.013-NitroanilineND1014-NitrobenzeneND2.012-NitrobenzeneND1014-NitrobenzeneND1014-NitrobenzeneND101A-NitrophenolND101A-NitrophenolND101A-NitrophenolND101A-NitrophenolND101A-NitrophenolND101	
FluoreneND2.01HexachlorobenzeneND2.01HexachlorobutadieneND2.01HexachlorocyclopentadieneND101HexachlorocyclopentadieneND2.01Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.012-NitroanilineND1013-NitroanilineND101NitrobenzeneND1014-NitrophenolND2.012-NitrophenolND1013-NitrophenolND10110101110101111ND10112-NitrophenolND10113-NitrophenolND10114-NitrophenolND10115ND10116ND10117101118101119101119101119101119101119101119101119101119101<	02/28/2017 17:01
HexachlorobenzeneND2.01HexachlorobutadieneND2.01HexachlorocyclopentadieneND101HexachlorocyclopentadieneND2.01Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.012-NitroanilineND2.013-NitroanilineND1014-NitroanilineND1012-NitroanilineND1014-NitrophenolND1014-NitrophenolND10114-NitrophenolND10114-NitrophenolND10114-NitrophenolND10114-NitrophenolND10114-NitrophenolND10114-NitrophenolND10114-NitrophenolND10114-NitrophenolND10114-NitrophenolND101	
HexachlorobutadieneND2.01HexachlorocyclopentadieneND101HexachlorocyclopentadieneND2.01Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NaphthaleneND2.013-NitroanilineND1014-NitrobenzeneND1012-NitrophenolND2.014-NitrophenolND1013-NitrophenolND1011-NitrophenolND1011-NitrophenolND1011-NitrophenolND101	02/28/2017 17:01
HexachlorocyclopentadieneND101HexachlorocyclopentadieneND2.01Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NaphthaleneND2.013-NitroanilineND2.013-NitroanilineND1014-NitrobenzeneND1012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
HexachloroethaneND2.01Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NaphthaleneND2.012-NitroanilineND2.013-NitroanilineND1014-NitrobenzeneND1012-NitrophenolND1014-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
Indeno (1,2,3-cd) pyreneND2.01IsophoroneND2.012-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NaphthaleneND2.012-NitroanilineND1013-NitroanilineND1014-NitrobenzeneND2.012-NitrophenolND1013-NitrophenolND1013-NitrophenolND1013-NitrophenolND1013-NitrophenolND101	02/28/2017 17:01
IsophoroneND2.012-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NaphthaleneND2.012-NitroanilineND1013-NitroanilineND1014-NitrobenzeneND1012-NitrobenzeneND1014-NitrophenolND1011010101101010110101012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
2-MethylnaphthaleneND2.012-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NaphthaleneND2.012-NitroanilineND1013-NitroanilineND1014-NitrobenzeneND2.012-NitrophenolND101	02/28/2017 17:01
2-Methylphenol (o-Cresol)ND2.013 & 4-Methylphenol (m,p-Cresol)ND2.01NaphthaleneND2.012-NitroanilineND1013-NitroanilineND1014-NitrobenzeneND2.012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
3 & 4-Methylphenol (m,p-Cresol) ND 2.0 1 Naphthalene ND 2.0 1 2-Nitroaniline ND 10 1 3-Nitroaniline ND 10 1 4-Nitroaniline ND 10 1 Nitrobenzene ND 2.0 1 2-Nitrophenol ND 10 1 4-Nitrophenol ND 10 1 4-Nitrophenol ND 10 1	02/28/2017 17:01
NaphthaleneND2.012-NitroanilineND1013-NitroanilineND1014-NitroanilineND101NitrobenzeneND2.012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
2-NitroanilineND1013-NitroanilineND1014-NitroanilineND101NitrobenzeneND2.012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
3-NitroanilineND1014-NitroanilineND101NitrobenzeneND2.012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
4-NitroanilineND101NitrobenzeneND2.012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
NitrobenzeneND2.012-NitrophenolND1014-NitrophenolND101	02/28/2017 17:01
2-Nitrophenol ND 10 1 4-Nitrophenol ND 10 1	02/28/2017 17:01
4-Nitrophenol ND 10 1	02/28/2017 17:01
	02/28/2017 17:01
N-Nitrosodiphenylamine ND 2.0 1	02/28/2017 17:01
	02/28/2017 17:01
N-Nitrosodi-n-propylamine ND 2.0 1	02/28/2017 17:01
Pentachlorophenol ND 10 1	02/28/2017 17:01
Phenanthrene ND 2.0 1	02/28/2017 17:01
Phenol ND 2.0 1	02/28/2017 17:01
Pyrene ND 2.0 1	02/28/2017 17:01
1,2,4-Trichlorobenzene ND 2.0 1	02/28/2017 17:01
2,4,5-Trichlorophenol ND 2.0 1	02/28/2017 17:01
2,4,6-Trichlorophenol ND 2.0 1	02/20/2017 17.01

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/27/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg

Client ID	Lab ID N	Matrix	Date C	ollected Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A \$	Soil	02/22/20	017 GC21	134796
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorophenol	89		30-130		02/28/2017 17:01
Phenol-d5	81		30-130		02/28/2017 17:01
Nitrobenzene-d5	75		30-130		02/28/2017 17:01
2-Fluorobiphenyl	70		30-130		02/28/2017 17:01
2,4,6-Tribromophenol	61		16-130		02/28/2017 17:01
4-Terphenyl-d14	66		30-130		02/28/2017 17:01
<u>Analyst(s):</u> REB		4	Analytical Com	ments: a4	

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date C	ollected Instrum	ent Batch ID
SPB1-A,B,C,D	1702B47-001A	Soil	02/22/20	ICP-MS3	134519
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Antimony	ND		0.50	1	02/24/2017 00:08
Arsenic	2.3		0.50	1	02/24/2017 00:08
Barium	95		5.0	1	02/24/2017 00:08
Beryllium	ND		0.50	1	02/24/2017 00:08
Cadmium	ND		0.25	1	02/24/2017 00:08
Chromium	69		0.50	1	02/24/2017 00:08
Cobalt	7.7		0.50	1	02/24/2017 00:08
Copper	9.6		0.50	1	02/24/2017 00:08
Lead	3.5		0.50	1	02/24/2017 00:08
Mercury	ND		0.050	1	02/24/2017 00:08
Molybdenum	ND		0.50	1	02/24/2017 00:08
Nickel	49		0.50	1	02/24/2017 00:08
Selenium	ND		0.50	1	02/24/2017 00:08
Silver	ND		0.50	1	02/24/2017 00:08
Thallium	ND		0.50	1	02/24/2017 00:08
Vanadium	31		0.50	1	02/24/2017 00:08
Zinc	24		5.0	1	02/24/2017 00:08
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Terbium	108		70-130		02/24/2017 00:08
<u>Analyst(s):</u> DB					

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/20)17	ICP-MS3	134519
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Antimony	ND		0.50	1		02/24/2017 00:14
Arsenic	3.9		0.50	1		02/24/2017 00:14
Barium	96		5.0	1		02/24/2017 00:14
Beryllium	ND		0.50	1		02/24/2017 00:14
Cadmium	ND		0.25	1		02/24/2017 00:14
Chromium	58		0.50	1		02/24/2017 00:14
Cobalt	8.9		0.50	1		02/24/2017 00:14
Copper	12		0.50	1		02/24/2017 00:14
Lead	5.4		0.50	1		02/24/2017 00:14
Mercury	ND		0.050	1		02/24/2017 00:14
Molybdenum	ND		0.50	1		02/24/2017 00:14
Nickel	48		0.50	1		02/24/2017 00:14
Selenium	ND		0.50	1		02/24/2017 00:14
Silver	ND		0.50	1		02/24/2017 00:14
Thallium	ND		0.50	1		02/24/2017 00:14
Vanadium	40		0.50	1		02/24/2017 00:14
Zinc	35		5.0	1		02/24/2017 00:14
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	106		70-130			02/24/2017 00:14
<u>Analyst(s):</u> DB						

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date C	ollected I	nstrument	Batch ID
SPB3-A,B,C,D	1702B47-003A	Soil	02/22/20)17 l	CP-MS3	134519
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Antimony	0.70		0.50	1		02/24/2017 00:20
Arsenic	4.1		0.50	1		02/24/2017 00:20
Barium	220		5.0	1		02/24/2017 00:20
Beryllium	ND		0.50	1		02/24/2017 00:20
Cadmium	0.42		0.25	1		02/24/2017 00:20
Chromium	53		0.50	1		02/24/2017 00:20
Cobalt	14		0.50	1		02/24/2017 00:20
Copper	22		0.50	1		02/24/2017 00:20
Lead	470		5.0	10		02/24/2017 12:41
Mercury	0.88		0.050	1		02/24/2017 00:20
Molybdenum	0.56		0.50	1		02/24/2017 00:20
Nickel	57		0.50	1		02/24/2017 00:20
Selenium	ND		0.50	1		02/24/2017 00:20
Silver	ND		0.50	1		02/24/2017 00:20
Thallium	ND		0.50	1		02/24/2017 00:20
Vanadium	34		0.50	1		02/24/2017 00:20
Zinc	130		5.0	1		02/24/2017 00:20
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	99		70-130			02/24/2017 00:20
Analyst(s): DB, MIG						

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
2B4-A,B,C,D 1702B47-004A Soil		02/22/20	02/22/2017 ICF		134519	
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Antimony	ND		0.50	1		02/24/2017 00:27
Arsenic	2.9		0.50	1		02/24/2017 00:27
Barium	78		5.0	1		02/24/2017 00:27
Beryllium	ND		0.50	1		02/24/2017 00:27
Cadmium	ND		0.25	1		02/24/2017 00:27
Chromium	52		0.50	1		02/24/2017 00:27
Cobalt	6.0		0.50	1		02/24/2017 00:27
Copper	9.4		0.50	1		02/24/2017 00:27
Lead	4.2		0.50	1		02/24/2017 00:27
Mercury	0.065		0.050	1		02/24/2017 00:27
Molybdenum	ND		0.50	1		02/24/2017 00:27
Nickel	40		0.50	1		02/24/2017 00:27
Selenium	ND		0.50	1		02/24/2017 00:27
Silver	ND		0.50	1		02/24/2017 00:27
Thallium	ND		0.50	1		02/24/2017 00:27
Vanadium	30		0.50	1		02/24/2017 00:27
Zinc	21		5.0	1		02/24/2017 00:27
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	95		70-130			02/24/2017 00:27
<u>Analyst(s):</u> DB						

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SPB1-A,B,C,D	1702B47-001A	Soil	02/22/20 ⁻	17	GC19	134568
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH(g) (C6-C12)	ND		1.0	1		02/26/2017 03:44
MTBE	ND		0.050	1		02/26/2017 03:44
Benzene	ND		0.0050	1		02/26/2017 03:44
Toluene	ND		0.0050	1		02/26/2017 03:44
Ethylbenzene	ND		0.0050	1		02/26/2017 03:44
Xylenes	ND		0.015	1		02/26/2017 03:44
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
2-Fluorotoluene	86		69-117			02/26/2017 03:44
<u>Analyst(s):</u> LT						
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
Client ID SPB2-A,B,C,D	Lab ID 1702B47-002A	Matrix Soil	Date Co 02/22/20		Instrument GC19	Batch ID 134568
SPB2-A,B,C,D	1702B47-002A		02/22/20	17		134568
SPB2-A,B,C,D	1702B47-002A <u>Result</u>		02/22/20 RL	17 DF		134568 Date Analyzed
SPB2-A,B,C,D Analytes TPH(g) (C6-C12)	1702B47-002A <u>Result</u> 1.8		02/22/20 <u>RL</u> 1.0	17 <u>DF</u> 1		134568 Date Analyzed 02/26/2017 15:30
SPB2-A,B,C,D Analytes TPH(g) (C6-C12) MTBE	1702B47-002A <u>Result</u> 1.8 ND		02/22/20 <u>RL</u> 1.0 0.050	17 <u>DF</u> 1 1		134568 Date Analyzed 02/26/2017 15:30 02/26/2017 15:30
SPB2-A,B,C,D Analytes TPH(g) (C6-C12) MTBE Benzene	1702B47-002A <u>Result</u> 1.8 ND ND		02/22/20 <u>RL</u> 1.0 0.050 0.0050	17 DE 1 1 1 1		134568 Date Analyzed 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30
SPB2-A,B,C,D Analytes TPH(g) (C6-C12) MTBE Benzene Toluene	1702B47-002A <u>Result</u> 1.8 ND ND ND ND		Bits Bits <thbits< th=""> Bits Bits <thb< td=""><td>17 DF 1 1 1 1 1</td><td></td><td>134568 Date Analyzed 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30</td></thb<></thbits<>	17 DF 1 1 1 1 1		134568 Date Analyzed 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30
SPB2-A,B,C,D Analytes TPH(g) (C6-C12) MTBE Benzene Toluene Ethylbenzene	1702B47-002A <u>Result</u> 1.8 ND ND ND ND ND ND		RL 1.0 0.050 0.0050 0.0050 0.0050	17 DF 1 1 1 1 1 1 1		134568 Date Analyzed 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30
SPB2-A,B,C,D Analytes TPH(g) (C6-C12) MTBE Benzene Toluene Ethylbenzene Xylenes	1702B47-002A <u>Result</u> 1.8 ND ND ND ND ND ND ND N		RL 1.0 0.050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	17 DF 1 1 1 1 1 1 1		134568 Date Analyzed 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30 02/26/2017 15:30

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A	Soil	02/22/2017 G		GC19	134568
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH(g) (C6-C12)	ND		1.0	1		02/26/2017 16:01
MTBE	ND		0.050	1		02/26/2017 16:01
Benzene	ND		0.0050	1		02/26/2017 16:01
Toluene	ND		0.0050	1		02/26/2017 16:01
Ethylbenzene	ND		0.0050	1		02/26/2017 16:01
Xylenes	ND		0.015	1		02/26/2017 16:01
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
2-Fluorotoluene	91		69-117			02/26/2017 16:01
<u>Analyst(s):</u> TD						
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/202	17	GC19	134568
SPB4-A,B,C,D Analytes	1702B47-004A <u>Result</u>	Soil	02/22/20 <u>RL</u>	17 DF	GC19	134568 Date Analyzed
Analytes		Soil			GC19	
	Result	Soil	<u>RL</u>	DE	GC19	Date Analyzed
<u>Analytes</u> TPH(g) (C6-C12)	<u>Result</u> ND	Soil	<u>RL</u> 1.0	<u>DF</u> 1	GC19	Date Analyzed 02/26/2017 16:32
<u>Analytes</u> TPH(g) (C6-C12) MTBE	<u>Result</u> ND ND	Soil	<u>RL</u> 1.0 0.050	<u>DF</u> 1 1	GC19	Date Analyzed 02/26/2017 16:32 02/26/2017 16:32
Analytes TPH(g) (C6-C12) MTBE Benzene	Result ND ND ND	Soil	<u>RL</u> 1.0 0.050 0.0050	DF 1 1 1	GC19	Date Analyzed 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32
Analytes TPH(g) (C6-C12) MTBE Benzene Toluene	Result ND ND ND ND ND	Soil	RL 1.0 0.050 0.0050 0.0050	DF 1 1 1 1	GC19	Date Analyzed 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32
Analytes TPH(g) (C6-C12) MTBE Benzene Toluene Ethylbenzene	Result ND ND ND ND ND ND	Soil	RL 1.0 0.050 0.0050 0.0050 0.0050	DF 1 1 1 1 1 1	GC19	Date Analyzed 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32
Analytes TPH(g) (C6-C12) MTBE Benzene Toluene Ethylbenzene Xylenes	Result ND ND ND ND ND ND ND ND	Soil	RL 1.0 0.050 0.0050 0.0050 0.0050 0.015	DF 1 1 1 1 1 1	GC19	Date Analyzed 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32 02/26/2017 16:32

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

 WorkOrder:
 1702B47

 Extraction Method:
 SW3550B/3630C

 Analytical Method:
 SW8015B

 Unit:
 mg/Kg

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
SPB1-A,B,C,D	1702B47-001A	Soil	02/22/201	02/22/2017		134575
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0 1			02/25/2017 12:32
TPH-Motor Oil (C18-C36)	ND		5.0	1		02/25/2017 12:32
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	91		70-130			02/25/2017 12:32
Analyst(s): TK						
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/2017	7	GC9a	134575
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		02/23/2017 20:59
TPH-Motor Oil (C18-C36)	ND		5.0	1		02/23/2017 20:59
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	93		70-130			02/23/2017 20:59
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A	Soil	02/22/201	7	GC6B	134575
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		02/25/2017 20:17
TPH-Motor Oil (C18-C36)	13		5.0	1		02/25/2017 20:17
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	90		70-130			02/25/2017 20:17
<u>Analyst(s):</u> TK			Analytical Comm	<u>ents:</u> e	7	

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 2/22/17

 Project:
 2016-04; 19th of Harrison

 WorkOrder:
 1702B47

 Extraction Method:
 SW3550B/3630C

 Analytical Method:
 SW8015B

 Unit:
 mg/Kg

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Collected Instrum	nent Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/2017 GC6B	134575
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	2.5		1.0 1	02/25/2017 13:11
TPH-Motor Oil (C18-C36)	33		5.0 1	02/25/2017 13:11
Surrogates	<u>REC (%)</u>		<u>Limits</u>	
C9	91		70-130	02/25/2017 13:11
<u>Analyst(s):</u> TK			Analytical Comments: e7,e2	

Quality Control Report

Client:	Geosolve, Inc.
Date Prepared:	2/23/17
Date Analyzed:	2/23/17
Instrument:	O&G
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134602
Extraction Method:	E418.1
Analytical Method:	E418.1
Unit:	mg/kg
Sample ID:	MB/LCS-134602
	1702A72-001AMS/MSD

QC Summary Report for E418.1									
Analyte	MB Result	LCS Result		RL	SPK Val			CS SREC	LCS Limits
TRPH	ND	145		15	156	-	9	3	70-130
Surrogate Recovery									
MAI-SS	152.7	134			150	10	29	0	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSI Limits	D RPD	RPD Limit
TRPH	146	148	156	ND	93	95	70-130	1.72	20
Surrogate Recovery									
MAI-SS	136	137	150		91	91	70-130	0	20

_____QA/QC Officer Page 41 of 60

Quality Control Report

Client:	Geosolve, Inc.
Date Prepared:	2/22/17
Date Analyzed:	2/27/17
Instrument:	GC23
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134574
Extraction Method:	SW3550B
Analytical Method:	SW8081A/8082
Unit:	mg/kg
Sample ID:	MB/LCS/LCSD-134574

QC Summary Report for SW8081A/8082

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
Aldrin	ND	0.0010	-	-	-
a-BHC	ND	0.0010	-	-	-
b-BHC	ND	0.0010	-	-	-
d-BHC	ND	0.0010	-	-	-
g-BHC	ND	0.0010	-	-	-
Chlordane (Technical)	ND	0.025	-	-	-
a-Chlordane	ND	0.0010	-	-	-
g-Chlordane	ND	0.0010	-	-	-
p,p-DDD	ND	0.0010	-	-	-
p,p-DDE	ND	0.0010	-	-	-
p,p-DDT	ND	0.0010	-	-	-
Dieldrin	ND	0.0010	-	-	-
Endosulfan I	ND	0.0010	-	-	-
Endosulfan II	ND	0.0010	-	-	-
Endosulfan sulfate	ND	0.0010	-	-	-
Endrin	ND	0.0010	-	-	-
Endrin aldehyde	ND	0.0010	-	-	-
Endrin ketone	ND	0.0010	-	-	-
Heptachlor	ND	0.0010	-	-	-
Heptachlor epoxide	ND	0.0010	-	-	-
Hexachlorobenzene	ND	0.010	-	-	-
Hexachlorocyclopentadiene	ND	0.020	-	-	-
Methoxychlor	ND	0.0010	-	-	-
Toxaphene	ND	0.050	-	-	-
Aroclor1016	ND	0.050	-	-	-
Aroclor1221	ND	0.050	-	-	-
Aroclor1232	ND	0.050	-	-	-
Aroclor1242	ND	0.050	-	-	-
Aroclor1248	ND	0.050	-	-	-
Aroclor1254	ND	0.050	-	-	-
Aroclor1260	ND	0.050	-	-	-
PCBs, total	ND	0.050	-	-	-
Surrogate Recovery					
Decachlorobiphenyl	0.05959		0.050	119	70-130

A QA/QC Officer Page 42 of 60
Client:	Geosolve, Inc.
Date Prepared:	2/22/17
Date Analyzed:	2/27/17
Instrument:	GC23
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134574
Extraction Method:	SW3550B
Analytical Method:	SW8081A/8082
Unit:	mg/kg
Sample ID:	MB/LCS/LCSD-134574

QC Summary Report for SW8081A/8082

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.0602	-	0.050	120	-	70-130	-	-
g-BHC	0.0748	-	0.050	150, F2	-	70-130	-	-
p,p-DDT	0.0550	-	0.050	110	-	70-130	-	-
Dieldrin	0.0678	-	0.050	136, F2	-	70-130	-	-
Endrin	0.0441	-	0.050	88	-	70-130	-	-
Heptachlor	0.0564	-	0.050	113	-	70-130	-	-
Aroclor1016	0.159	0.160	0.15	106	107	70-130	0.306	20
Aroclor1260	0.170	0.168	0.15	114	112	70-130	1.05	20
Surrogate Recovery								
Decachlorobiphenyl	0.0577	-	0.050	115	-	70-130	-	-

Client:	Geosolve, Inc.
Date Prepared:	2/21/17 - 2/22/17
Date Analyzed:	2/22/17 - 2/23/17
Instrument:	ICP-MS2, ICP-MS3
Matrix:	Soil
Project:	2016-04; 19th of Harrison
Date Analyzed: Instrument: Matrix:	2/22/17 - 2/23/17 ICP-MS2, ICP-MS3 Soil

WorkOrder:	1702B47
BatchID:	134519
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg
Sample ID:	MB/LCS-134519
	1702103-017AMS/MSD

QC Summary Report for Metals

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	46.1	0.50	50	-	92	75-125
Arsenic	ND	48.6	0.50	50	-	97	75-125
Barium	ND	485	5.0	500	-	97	75-125
Beryllium	ND	47.0	0.50	50	-	94	75-125
Cadmium	ND	48.2	0.25	50	-	96	75-125
Chromium	ND	48.9	0.50	50	-	98	75-125
Cobalt	ND	48.6	0.50	50	-	97	75-125
Copper	ND	48.2	0.50	50	-	96	75-125
Lead	ND	48.6	0.50	50	-	97	75-125
Mercury	ND	1.22	0.050	1.25	-	98	75-125
Molybdenum	ND	47.1	0.50	50	-	94	75-125
Nickel	ND	48.2	0.50	50	-	96	75-125
Selenium	ND	47.8	0.50	50	-	96	75-125
Silver	ND	46.1	0.50	50	-	92	75-125
Thallium	ND	46.2	0.50	50	-	92	75-125
Vanadium	ND	48.8	0.50	50	-	98	75-125
Zinc	ND	480	5.0	500	-	96	75-125
Surrogate Recovery							
Terbium	517.5	489		500	103	98	70-130

Client:	Geosolve, Inc.
Date Prepared:	2/21/17 - 2/22/17
Date Analyzed:	2/22/17 - 2/23/17
Instrument:	ICP-MS2, ICP-MS3
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134519
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg
Sample ID:	MB/LCS-134519
	1702103-017AMS/MSD

QC Summary Report for Metals

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	53.9	56.0	50	ND	108	112	75-125	3.86	20
Arsenic	54.2	55.8	50	2.5	103	107	75-125	2.89	20
Barium	574	581	500	13	112	114	75-125	1.26	20
Beryllium	56.0	56.2	50	ND	112	112	75-125	0	20
Cadmium	51.4	52.8	50	ND	103	106	75-125	2.57	20
Chromium	111	110	50	57	109	108	75-125	0.721	20
Cobalt	59.0	59.5	50	3.9	110	111	75-125	0.709	20
Copper	58.1	59.8	50	7.2	102	105	75-125	2.75	20
Lead	97.0	97.7	50	43.43	107	108	75-125	0.637	20
Mercury	1.53	1.56	1.25	0.14	111	114	75-125	2.26	20
Molybdenum	51.8	53.2	50	ND	104	106	75-125	2.59	20
Nickel	67.0	69.5	50	19	96	101	75-125	3.77	20
Selenium	52.1	53.2	50	ND	104	106	75-125	1.98	20
Silver	49.6	50.4	50	ND	99	101	75-125	1.76	20
Thallium	50.5	50.7	50	ND	101	101	75-125	0	20
Vanadium	96.8	100	50	46	102	108	75-125	3.24	20
Zinc	546	566	500	49	99	104	75-125	3.61	20
Surrogate Recovery									
Terbium	588	606	500		118	121	70-130	2.88	20

Analyte	DLT Result	DLTRef Val	%D %D Limit
Antimony	ND<2.5	ND	
Arsenic	ND<2.5	2.5	
Barium	ND<25	13	
Beryllium	ND<2.5	ND	
Cadmium	ND<1.2	ND	
Chromium	55.7	57	2.28 20
Cobalt	3.83	3.9	1.79 -
Copper	6.16	7.2	14.4 -
Lead	41.1	43.43	5.36 20
Mercury	ND<0.25	0.14	
Molybdenum	ND<2.5	ND	
Nickel	18.0	19	5.26 20
Selenium	ND<2.5	ND	

_____QA/QC Officer

Client:	Geosolve, Inc.
Date Prepared:	2/21/17 - 2/22/17
Date Analyzed:	2/22/17 - 2/23/17
Instrument:	ICP-MS2, ICP-MS3
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134519
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg
Sample ID:	MB/LCS-134519
	1702103-017AMS/MSD

QC Summary Report for Metals

Analyte	DLT Result	DLTRef Val	%D %D Limit
Silver	ND<2.5	ND	
Thallium	ND<2.5	ND	
Vanadium	45.2	46	1.74 20
Zinc	49.4	49	0.816 -

%D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

_____QA/QC Officer

Client:	Geosolve, Inc.
Date Prepared:	2/22/17
Date Analyzed:	2/23/17
Instrument:	GC9a
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134575
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8015B
Unit:	mg/Kg
Sample ID:	MB/LCS-134575
	1702B47-002AMS/MSD

QC Report for SW8015B w/ Silica Gel Clean-Up

Analyte	MB Result	LCS Result		RL	SPK Val		BISSILC REC %F	S REC	LCS Limits
TPH-Diesel (C10-C23)	ND	34.6		1.0	40	-	86		70-130
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-	-		-
Surrogate Recovery									
C9	23.33	23.3			25	93	93		62-139
Analuta	MC	MCD	CDK	SDKDof	MC	MeD		חחם	חחם
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Analyte TPH-Diesel (C10-C23)	-	-	-		-	-		RPD 4.51	
-	Result	Result	Val	Val	%REC	%REC	Limits		Limit

_____QA/QC Officer Page 47 of 60

Client:	Geosolve, Inc.
Date Prepared:	2/22/17
Date Analyzed:	2/23/17
Instrument:	GC10, GC18
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134576
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-134576
	1702B47-003AMS/MSD

QC Summary Report for SW8260B

Acetone tert-Amyl methyl ether (TAME)	ND ND					%REC	Limits
tert-Amyl methyl ether (TAME)	ND	-	0.10	-	-	-	-
	ND	0.0372	0.0050	0.050	-	74	53-116
Benzene	ND	0.0455	0.0050	0.050	-	91	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.125	0.050	0.20	-	63	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0444	0.0050	0.050	-	89	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0412	0.0040	0.050	-	82	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0422	0.0040	0.050	-	84	58-135
1,1-Dichloroethene	ND	0.0455	0.0050	0.050	-	91	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-

_____QA/QC Officer

Client:	Geosolve, Inc.
Date Prepared:	2/22/17
Date Analyzed:	2/23/17
Instrument:	GC10, GC18
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134576
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-134576
	1702B47-003AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0417	0.0050	0.050	-	83	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0400	0.0050	0.050	-	80	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0371	0.0050	0.050	-	74	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0486	0.0050	0.050	-	97	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0474	0.0050	0.050	-	95	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-

QA/QC Officer Page 49 of 60

Client:	Geosolve, Inc.
Date Prepared:	2/22/17
Date Analyzed:	2/23/17
Instrument:	GC10, GC18
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134576
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-134576
	1702B47-003AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.1246	0.127		0.12	100	102	70-130
Toluene-d8	0.1386	0.135		0.12	111	108	70-130
4-BFB	0.01277	0.0140		0.012	102	112	70-130
Benzene-d6	0.1021	0.0960		0.10	102	96	60-140
Ethylbenzene-d10	0.1252	0.113		0.10	125	113	60-140
1,2-DCB-d4	0.0871	0.0816		0.10	87	82	60-140

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0447	0.0392	0.050	ND	89	78	53-116	13.1	20
Benzene	0.0532	0.0467	0.050	ND	106	93	63-137	13.2	20
t-Butyl alcohol (TBA)	0.134	0.123	0.20	ND	67	62	41-135	8.18	20
Chlorobenzene	0.0532	0.0459	0.050	ND	106	92	77-121	14.7	20
1,2-Dibromoethane (EDB)	0.0474	0.0405	0.050	ND	95	81	67-119	15.8	20
1,2-Dichloroethane (1,2-DCA)	0.0475	0.0409	0.050	ND	95	82	58-135	15.1	20
1,1-Dichloroethene	0.0556	0.0481	0.050	ND	111	96	42-145	14.3	20
Diisopropyl ether (DIPE)	0.0494	0.0432	0.050	ND	99	86	52-129	13.5	20
Ethyl tert-butyl ether (ETBE)	0.0473	0.0412	0.050	ND	95	82	53-125	13.8	20
Methyl-t-butyl ether (MTBE)	0.0440	0.0384	0.050	ND	88	77	58-122	13.6	20
Toluene	0.0613	0.0524	0.050	ND	123	105	76-130	15.5	20
Trichloroethene	0.0537	0.0476	0.050	ND	107	95	72-132	12.1	20
Surrogate Recovery									
Dibromofluoromethane	0.114	0.116	0.12		91	93	70-130	2.28	20
Toluene-d8	0.134	0.131	0.12		107	105	70-130	2.02	20
4-BFB	0.0131	0.0135	0.012		105	108	70-130	3.26	20
Benzene-d6	0.104	0.0920	0.10		104	92	60-140	12.3	20
Ethylbenzene-d10	0.122	0.104	0.10		121	104	60-140	15.8	20
1,2-DCB-d4	0.102	0.0847	0.10		102	85	60-140	18.4	20

QA/QC Officer Page 50 of 60

Client:	Geosolve, Inc.
Date Prepared:	2/27/17
Date Analyzed:	2/28/17
Instrument:	GC17
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134796
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg
Sample ID:	MB/LCS-134796
	1702D53-001AMS/MSD

QC Summary Report for SW8270C

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	6.32	0.25	5	-	127, F2	46-118
Acenaphthylene	ND	-	0.25	-	-	-	-
Acetochlor	ND	-	0.25	-	-	-	-
Anthracene	ND	-	0.25	-	-	-	-
Benzidine	ND	-	1.3	-	-	-	-
Benzo (a) anthracene	ND	-	0.25	-	-	-	-
Benzo (a) pyrene	ND	-	0.25	-	-	-	-
Benzo (b) fluoranthene	ND	-	0.25	-	-	-	-
Benzo (g,h,i) perylene	ND	-	0.25	-	-	-	-
Benzo (k) fluoranthene	ND	-	0.25	-	-	-	-
Benzyl Alcohol	ND	-	1.3	-	-	-	-
1,1-Biphenyl	ND	-	0.25	-	-	-	-
Bis (2-chloroethoxy) Methane	ND	-	0.25	-	-	-	-
Bis (2-chloroethyl) Ether	ND	-	0.25	-	-	-	-
Bis (2-chloroisopropyl) Ether	ND	-	0.25	-	-	-	-
Bis (2-ethylhexyl) Adipate	ND	-	0.25	-	-	-	-
Bis (2-ethylhexyl) Phthalate	ND	-	0.25	-	-	-	-
4-Bromophenyl Phenyl Ether	ND	-	0.25	-	-	-	-
Butylbenzyl Phthalate	ND	-	0.25	-	-	-	-
4-Chloroaniline	ND	-	0.50	-	-	-	-
4-Chloro-3-methylphenol	ND	5.91	0.25	5	-	118	49-123
2-Chloronaphthalene	ND	-	0.25	-	-	-	-
2-Chlorophenol	ND	5.92	0.25	5	-	118, F2	55-116
4-Chlorophenyl Phenyl Ether	ND	-	0.25	-	-	-	-
Chrysene	ND	-	0.25	-	-	-	-
Dibenzo (a,h) anthracene	ND	-	0.25	-	-	-	-
Dibenzofuran	ND	-	0.25	-	-	-	-
Di-n-butyl Phthalate	ND	-	0.25	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.25	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.25	-	-	-	-
1,4-Dichlorobenzene	ND	4.83	0.25	5	-	97	50-102
3,3-Dichlorobenzidine	ND	-	0.50	-	-	-	-
2,4-Dichlorophenol	ND	-	0.25	-	-	-	-
Diethyl Phthalate	ND	-	0.25	-	-	-	-
2,4-Dimethylphenol	ND	-	0.25	-	-	-	-
Dimethyl Phthalate	ND	-	0.25	-	-	-	-
4,6-Dinitro-2-methylphenol	ND		1.3	-			_

QA/QC Officer

Client:	Geosolve, Inc.
Date Prepared:	2/27/17
Date Analyzed:	2/28/17
Instrument:	GC17
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134796
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg
Sample ID:	MB/LCS-134796
	1702D53-001AMS/MSD

QC Summary Report for SW8270C

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
2,4-Dinitrophenol	ND	-	6.3	-	-	-	-
2,4-Dinitrotoluene	ND	7.26	0.25	5	-	145, F2	47-117
2,6-Dinitrotoluene	ND	-	0.25	-	-	-	-
Di-n-octyl Phthalate	ND	-	0.50	-	-	-	-
1,2-Diphenylhydrazine	ND	-	0.25	-	-	-	-
Fluoranthene	ND	-	0.25	-	-	-	-
Fluorene	ND	-	0.25	-	-	-	-
Hexachlorobenzene	ND	-	0.25	-	-	-	-
Hexachlorobutadiene	ND	-	0.25	-	-	-	-
Hexachlorocyclopentadiene	ND	-	1.3	-	-	-	-
Hexachloroethane	ND	-	0.25	-	-	-	-
Indeno (1,2,3-cd) pyrene	ND	-	0.25	-	-	-	-
sophorone	ND	-	0.25	-	-	-	-
2-Methylnaphthalene	ND	-	0.25	-	-	-	-
2-Methylphenol (o-Cresol)	ND	-	0.25	-	-	-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	-	0.25	-	-	-	-
Naphthalene	ND	-	0.25	-	-	-	-
2-Nitroaniline	ND	-	1.3	-	-	-	-
3-Nitroaniline	ND	-	1.3	-	-	-	-
4-Nitroaniline	ND	-	1.3	-	-	-	-
Nitrobenzene	ND	-	0.25	-	-	-	-
2-Nitrophenol	ND	-	1.3	-	-	-	-
4-Nitrophenol	ND	4.98	1.3	5	-	100	40-102
N-Nitrosodiphenylamine	ND	-	0.25	-	-	-	-
N-Nitrosodi-n-propylamine	ND	4.78	0.25	5	-	95	47-108
Pentachlorophenol	ND	5.71	1.3	5	-	114	39-134
Phenanthrene	ND	-	0.25	-	-	-	-
Phenol	ND	5.49	0.25	5	-	110, F2	49-107
Pyrene	ND	7.18	0.25	5	-	144, F2	55-124
1,2,4-Trichlorobenzene	ND	5.82	0.25	5	-	116	51-121
2,4,5-Trichlorophenol	ND	-	0.25	-	-	-	-
2,4,6-Trichlorophenol	ND	-	0.25	-	-	-	-

Client:	Geosolve, Inc.
Date Prepared:	2/27/17
Date Analyzed:	2/28/17
Instrument:	GC17
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134796
Extraction Method:	SW3550B
Analytical Method:	SW8270C
Unit:	mg/Kg
Sample ID:	MB/LCS-134796
	1702D53-001AMS/MSD

QC Summary Report for SW8270C

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
2-Fluorophenol	5.866	5.94		5	117	119	47-125
Phenol-d5	5.521	5.70		5	110	114	45-117
Nitrobenzene-d5	4.686	5.25		5	94	105	39-121
2-Fluorobiphenyl	4.788	5.35		5	96	107	35-120
2,4,6-Tribromophenol	4.529	4.98		5	91	100	32-111
4-Terphenyl-d14	5.422	5.85		5	108	117	32-128

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acenaphthene	NR	NR		ND<1.2	NR	NR	-	NR	
4-Chloro-3-methylphenol	NR	NR		ND<1.2	NR	NR	-	NR	
2-Chlorophenol	NR	NR		ND<1.2	NR	NR	-	NR	
1,4-Dichlorobenzene	NR	NR		ND<1.2	NR	NR	-	NR	
2,4-Dinitrotoluene	NR	NR		ND<1.2	NR	NR	-	NR	
4-Nitrophenol	NR	NR		ND<6.5	NR	NR	-	NR	
N-Nitrosodi-n-propylamine	NR	NR		ND<1.2	NR	NR	-	NR	
Pentachlorophenol	NR	NR		ND<6.5	NR	NR	-	NR	
Phenol	NR	NR		ND<1.2	NR	NR	-	NR	
Pyrene	NR	NR		ND<1.2	NR	NR	-	NR	
1,2,4-Trichlorobenzene	NR	NR		ND<1.2	NR	NR	-	NR	
Surrogate Recovery									
2-Fluorophenol	NR	NR			NR	NR	-	NR	
Phenol-d5	NR	NR			NR	NR	-	NR	
Nitrobenzene-d5	NR	NR			NR	NR	-	NR	
2-Fluorobiphenyl	NR	NR			NR	NR	-	NR	
2,4,6-Tribromophenol	NR	NR			NR	NR	-	NR	
4-Terphenyl-d14	NR	NR			NR	NR	-	NR	

Client:	Geosolve, Inc.
Date Prepared:	2/22/17
Date Analyzed:	2/22/17 - 2/23/17
Instrument:	GC19
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134568
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg
Sample ID:	MB/LCS-134568
	1702B36-005AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %RE	С	LCS Limits
TPH(btex)	ND	0.638		0.40	0.60	-		106		89-118
MTBE	ND	0.0900		0.050	0.10	-		90		68-116
Benzene	ND	0.117		0.0050	0.10	-		117		85-118
Toluene	ND	0.116		0.0050	0.10	-		116		87-121
Ethylbenzene	ND	0.115		0.0050	0.10	-		115		91-124
Xylenes	ND	0.321		0.015	0.30	-		107		92-126
Surrogate Recovery										
2-Fluorotoluene	0.09754	0.0936			0.10	98		94		88-119
	0.00101									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/N Limit		RPD	RPD Limit
Analyte	MS		-		-	-		ts	RPD NR	
	MS Result	Result	-	Val	%REC	%REC	Limit	ts		
Analyte TPH(btex) MTBE	MS Result NR	Result NR	-	Val 5	%REC	%REC	Limit	ts	NR	
Analyte TPH(btex)	MS Result NR NR	Result NR NR	-	Val 5 ND	%REC NR NR	%REC NR NR	Limit - -	ts	NR NR	
Analyte TPH(btex) MTBE Benzene	MS Result NR NR NR	Result NR NR NR	-	Val 5 ND 0.0071	%REC NR NR NR	%REC NR NR NR	Limit - - -	ts	NR NR NR	
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene	MS Result NR NR NR NR NR	Result NR NR NR NR NR NR NR	-	Val 5 ND 0.0071 0.085	%REC NR NR NR NR	%REC NR NR NR NR	Limit - - - -	ts	NR NR NR NR	
Analyte TPH(btex) MTBE Benzene Toluene	MS Result NR NR NR NR NR NR	Result NR NR NR NR NR NR NR NR	-	Val 5 ND 0.0071 0.085 0.23	%REC NR NR NR NR NR	%REC NR NR NR NR NR	Limit - - - - -	ts	NR NR NR NR NR	

_____QA/QC Officer Page 54 of 60

McCampbell Analytical, Inc.

1534 Willow Pass Rd CA 04565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 52-9262				Worl	cOrde	r: 1702	2B47		ClientC	ode:	GSP						
	[WaterTrax	 ₩riteOn 	EDF	E	xcel		EQuIS		Email]HardC	ору	П	hirdPar	у	_J-flag	g
Report to:						Bi	ll to:						Reque	ested	TAT:	5	days;	
Rob Campbe Geosolve, Inc 1807 Santa R Pleasanton, C (925) 963-1198	c. Rita Road, Suite D-165 CA 94566	Email: cc/3rd Party: PO: ProjectNo:	rcampbell@gec 2016-04 2016-04; 19th c				Geosol 1807 S Pleasa	ampbell Ive, Inc. Santa Rit Inton, C/ Dell@geo	a Roa A 9456	6			Date Date		eived: ged:)2/22/2()2/22/2(
					ſ				Rec	quested	Tests (See leg	jend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8		9	10	11	12
1702B47-001	SPB1-A,B,C,D		Soil	2/22/2017 00:00		А	А	А	А	А	А	А		\top				

1702B47-001	SPB1-A,B,C,D	Soil	2/22/2017 00:00	А	А	Α	А	А	А	А			
1702B47-002	SPB2-A,B,C,D	Soil	2/22/2017 00:00	А	А	Α	А	Α	Α	Α			
1702B47-003	SPB3-A,B,C,D	Soil	2/22/2017 00:00	А	А	Α	А	Α	Α	Α			
1702B47-004	SPB4-A,B,C,D	Soil	2/22/2017 00:00	А	А	А	А	Α	Α	А			

Test Legend:

1	418_SG_S								
5	CAM17MS_TTLC_S								
9									

2	8081PCB_S
6	G-MBTEX_S
10	

3	8260B_S
7	TPH(DMO)WSG_S
11	

4	8270_PNA_S
8	
12	

Prepared by: Briana Cutino

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup Multi RangeWSG_S.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

WORK ORDER SUMMARY

Client Name Client Conta			Projec		Work Order: 1702B47 QC Level:				
	1	@geosolve-inc.com	Comm			e Logged: 2/22/2017			
		WaterTrax	WriteOn EDF	Excel	Fax 🖌 Email	HardC	opyThirdPart	у 🗌	J-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1702B47-001A	SPB1-A,B,C,D	Soil	Multi-Range TPH(g,d,mo) w/ S.G. Clean-Up	4 / (4:1)	Acetate Liner		2/22/2017	5 days	
			SW6020 (CAM 17)					5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8260B (VOCs)					5 days	
			SW8081A/8082 (OC Pesticides+PCBs))				5 days	
			E418.1 (TRPH w/ S.G. Clean-Up)					5 days	
1702B47-002A	SPB2-A,B,C,D	Soil	Multi-Range TPH(g,d,mo) w/ S.G. Clean-Up	4 / (4:1)	Acetate Liner		2/22/2017	5 days	
			SW6020 (CAM 17)					5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8260B (VOCs)					5 days	
			SW8081A/8082 (OC Pesticides+PCBs))				5 days	
			E418.1 (TRPH w/ S.G. Clean-Up)					5 days	
1702B47-003A	SPB3-A,B,C,D	Soil	Multi-Range TPH(g,d,mo) w/ S.G. Clean-Up	4 / (4:1)	Acetate Liner		2/22/2017	5 days	
			SW6020 (CAM 17)					5 days	
			SW8270C (PAHs/PNAs)					5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

WORK ORDER SUMMARY

Client Name	: GEOSOLV	/E, INC.		Proje	ect: 2016-04;	19th of Harrison			Wor	k Order: 1702B47
Client Conta	ct: Rob Camp	bell							Ç	C Level:
Contact's Er	nail: rcampbell	@geosolve-inc.com		Com	ments:				Date	Logged: 2/22/2017
		WaterTrax	WriteOn	EDF	Excel]Fax 🖌 Email	HardCo	py ThirdParty	/	J-flag
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1702B47-003A	SPB3-A,B,C,D	Soil	SW8260B (VO	Cs)	4 / (4:1)	Acetate Liner		2/22/2017	5 days	
			SW8081A/8082	2 (OC Pesticides+PCE	Bs)				5 days	
			E418.1 (TRPH	w/ S.G. Clean-Up)					5 days	
1702B47-004A	SPB4-A,B,C,D	Soil	Multi-Range Tl Clean-Up	PH(g,d,mo) w/ S.G.	4 / (4:1)	Acetate Liner		2/22/2017	5 days	
			SW6020 (CAM	17)					5 days	
			SW8270C (PA)	Hs/PNAs)					5 days	
			SW8260B (VO	Cs)					5 days	
			SW8081A/8082	2 (OC Pesticides+PCE	Bs)				5 days	
			E418.1 (TRPH	w/ S.G. Clean-Up)					5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

		1702B47
McCampbe	ll Analytical, Inc.	CHAIN OF CUSTODY RECORD
1534 Willow Pass Rd. / F	Pittsburg, Ca. 94565-1701	TURN AROUND TIME: RUSH 🔄 1 DAY 🔂 2 DAY 🛄 3 DAY 🗔 5 DAY 🔯
www.mccampbell.com/	/ main@mccampbell.com	GeoTracker EDF PDF EDD Write On (DW) EQuIS 10 DAY
Telephone: (877) 252-93	262 / Fax: (925) 252-9269	Effluent Sample Requiring "J" flag UST Clean Up Fund Project []; Claim #
Proventing PL C abolt	Bill To: Geosolve , Tal.	Analysis Request
Report To: Kos Campbell Company: Lep So Ve, Tox		
1807 Santa Reta 12 =0165	pleasanton, CA 94566	
Tele: (925) 963 - 1198 Project #: 2016-04	E-Mail: Campbelle gesslue-in Project Name: 94 Haco sun	
Project Location: 1752 web star, st	Project Name: 11- 0 Hackbook	8015) 1 8015) 1 8015) 1 80164 80 (1664 1669) 0 10000 0 8 / PNA (cs) (cs) (cs) (cs) (cs) (cs) (cs) (cs)
Sampler Signature:		21/ 80 rease rease resticibes resticib
SAMPLING	MATRIX METHOD PRESERVEI	BTEX & TPH as Gas (8021/ 8015) MTB TPH as Diesel (8015) 4 TC Alvesticides Total Petroleum Hydrocarbons (418.1) EPA 505/ 608 / 8081 (C1 Pesticides) EPA 507 / 8141 (NP Pesticides) EPA 507 / 8141 (NP Pesticides) EPA 515 / 8151 (Acidic C1 Herbicides) EPA 524.2 / 624 / 8260 (VOCs) EPA 525.2 / 625 / 8270 (SVOCs) EPA 525.2 / 624 / 8260 (VOCs) EPA 525.2 / 624 / 8260 (VOCs) EPA 525.2 / 625 / 8270 (SVOCs) EPA 5260 / 810 (PAHs / PNAs) CAM 17 Metals (200.8 / 6020)*** Metals (200.8 / 6020)*** LUFT 5 Metals (200.8 / 6020)*** Lub fo Filter sample for Dissolved metals analysis
SAMPLE ID Location/	ater	BTEX & TPH as Ga TPH as Diesel (8015) Total Petroleum Hyd EPA 505/ 608 / 8081 EPA 507 / 8141 (NP EPA 507 / 8151 (Aci EPA 515 / 8151 (Aci EPA 515 / 8151 (Aci EPA 515 / 8151 (Aci BPA 515 / 8151 (Aci BPA 515 / 8151 (Aci BPA 515 / 8151 (Aci BPA 517 / 8151 (Aci BPA 517 / 8151 (Aci BPA 515 /
Field Point . Name Date Time	# Containers Ground Water Waste Water Drinking Water Sea Water Soil Air Air Air Air Air Air Air Air Air Air	X & TPH As TPH Petroleu (F) 505/ 608, 808 507/ 815 515/ 815/ 815/ 815/ 815/ 815/ 815/ 815/
	# Contan Ground W: Waste Wat Waste Water Sea Water Soil Soil Air Air Air Air Air Air Air Air HNO ₃	BTEX & TPH as Flotal Pe E/B&FJ EPA 50 ⁶ EPA 51 ⁶ EPA 51 ⁶ EPA 51 ⁶ EPA 52 ³ EPA 52 ³ EPA 52 ³ EPA 52 ³ EPA 52 ³ EPA 51 ⁶ EPA 51 ⁶ EPA 51 ⁶ EPA 52 ³ EPA 5
SPB1-A 2.22.17		
		the total to the time to the total t
EPRI-D No		Correst Vice Anthrest
SPBZ-A 2.22.17		XX XX XX XX
SPB2-B 1		
SPB2-C	1	Convert of the
SPB2-D V		
**MAL clients MUST disclose any dangerous chemicals known	to be present in their submitted samples in concentrations that	t may cause immediate harm or serious future health endangerment as a result of brief, gloved, open air, sample
		arm suffered. Thank you for your understanding and for allowing us to work safely.
If metals are requested for water samples and the water to Relinguished By: Date: Time:	ype is not specified on the chain of custody, then MA will defa Received By: ICE/	At to metals by E200.8.
2.22.17 1630	Good Good	D CONDITION # IF Pb Gn2/or Cr > 50 p2
Relinquished By Date: Time:	Received By: DEC	HLORINATED IN LAB
Enf 1 2/12/17 1820	PRE PRE	SERVED IN LAB If pb m2/br (r > 100 ppm)
Relinquished By: Date: Time:	Received By:	VOAS O&G METALS OTHER HAZARDOUS:
×	V V PRE	f^{0} f
		(1 of 2) Page 58 of

	ИсС	am	nobe	ell	Α	nc	alv	/tio	20	л.	In	С							Cł	ΗA		I C)F	С	US	TC	DD	γ	RE	EC	0	RD)		٦
	1534 Wi		•													тι	IRN	AR	DUN	DT	IME	: RI	JSH[1 DA	Y] 2	DAY		3 [DAY		5 DA	Y C	9
M N	ww.mcd	campb	ell.com	n / r	mair	n@m	ncco	amp	bel	l.co	m					Geo	Trac	ker F	EDF [PDF		EDD		Writ	e On	(DW	0	EC	QuIS			10 D	AY [
	Telepho	one: (8.	//) 252-	-926	02 / F	-ax:	(925	o) 25	02-9.	269						Ef	fluen	San	nple	Requ	iring	ç "J"	flag		UST	Clea	an U	p Fu	nd P	roje	ct 🗌	; Clai	im #_		_
Report To: 7	50		all		Bi	ll To	. /	le.		ve	Th	5						0					1.000			Rec									-
Company:	osolve	The				1					1-						K										lucs	Ì	Г	Т	Т	Т			\neg
1807 San	to fut	and	-=>	67		lea.		-	-9	4	9	45	26		-	1	3	0																	
Tele: (925) 76		8		11.10		Mail			10	HC-	7	0)	010	R	- 10	8015) MTBE	3	1552	E		Ŋ		cs)			s)				letals					
Project #: 10 Project Location:		Leh	ster	न		oject			•#	101	6-	-0	G •	200	•	15)1	P.M.s	1664	(418	des)	rs on		bicid			PNA	**	*		red n					
Sampler Signatur		12.5	lel	1	14	ii chia	30 0	Tuel	<i>n</i>	<u>u</u>	-	-	/			1/ 80	12	ease (rbons	estici	roclo	cides)	1 Her	OCs)	/0Cs	Hs/1)20)*	20)**		issolv					
		SAM	PLING				M	IAT	RIX				MI PRE	ETH SER	OD VED	Gas (8021/	5)+	l & Gr	ydrocai	I (CI P	B's ; A	P Pesti	cidic C	260 (V	270 (SV	310 (PA	0.8 / 6(0.8 / 60	***(0	e for D					
SAMPLE ID	Location/ Field Point Name	t Date	Time	Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO3	Other 1 cc	BTEX & TPH as G	TPH as Diesel (8015)	Fotal Petroleum Oil & Grease (1664/552 2/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 507 / 8141 (NP Pesticides)	EPA 515/ 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	LUFT 5 Metals (200.8 / 6020)***	Metals (200.8 / 6020)***	Lab to Filter sample for Dissolved metals	nalysis				
1027 A		2.22.	17	#	0	-	a	s	< s	V	S	°	H	H	×	B	-	ΕΞ	T	E	E	E	E	E	E	E	0	-	~			+		\neg	-
5781-A		1.00	14	1	5		2	E	~	-			_			1	~	-		-	X	27			\sim		X	-	-	1	-				_
CORT - C				1	(-							\mathbb{H}	-		n.		20	ST	k.			0	1	-		A		•			+	-		-	-
ORS-D				1	\rightarrow	-						\square		-(~			-	2	1		1.4		A	~	e	1	n	•		+	-			
4									-	1			_				1					1	0	-							\top				
PBY - A		1227	2.17	1	2		1		×			Π			X	X	X		X	X	X			x	¥		X				5				
134-B		1		1	7			/				П			P		-	-	F	-	-					-	-		-	1					
1984-C				1												1			37	T	e				0	A.	-	To .	+	-					
1984-D				1)												Ø				4-	7	1			N A	h	P	Y						
•																			L		1				10	1						_			
*MAI clients MUST discl andling by MAI staff. N																															ef, glov	/ed, op	oen air	samp	le
Il metals are request	d for water	samples a	nd the wate	er type		_		on the	chain	ofcu	stody	, the	n MAI				netals	by E2	00.8.																
elinquished By:	let	Date: 2-22-	Time:	: 30	Rece	ejved 1	By:	ما		/	7	/	/	0	CE/tº GOOI HEAD	D CO		TION	NT_	_	(Ð	I	F	F	10	COM	NIE	TS:	Çı	~	79	50	۴۴	~
elinquished By:		Date:	Time:	0	M	eived	~	E			Ę	ŧ	Ž	- 1	DECH APPR PRES	OPR	IATE	TED COI N LA	IN LA NTAI B	AB NERS	S		I	F	P	5	0	~2,	100	C	5	79	100	PI	pr
Relinquished By:		D'ate:	Time	:	Rece	eived	By:	~			/	7	7	F	PRES	ERV	ATIC	VC N	DAS	0&0	G M	META H<2_	ALS	OT	HER		HAZ	ARD	ous.	ner			-†		
										1	1								6		of	2	5											Page	59 o

.

Sample Receipt Checklist

Client Name:	Geosolve, Inc.			Date and Time Received	2/22/2017 18:20
Project Name:	2016-04; 19th of Harrison			Date Logged:	2/22/2017
				Received by:	Briana Cutino
WorkOrder №:	1702B47 Matrix: <u>Soil</u>			Logged by:	Briana Cutino
Carrier:	<u>Benjamin Yslas (MAI Courier)</u>				
	Chain of C	ustody	(COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time or	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	\checkmark	No 🗌	
	Sampl	e Rece	eipt Informat	ion	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time (HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗌	
Sample/Temp Bl	ank temperature		Temp: 3°	С	
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	\checkmark	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🖌
Samples Receive		Yes	✓	No 🗌	
	(Ісе Туре	e: WE	TICE)		
UCMR3 Samples	—				
Total Chlorine	tested and acceptable upon receipt for EPA 522?	Yes		No	NA 🖌
Free Chlorine t 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, ?	Yes		No 🗌	NA 🗹

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1702B47 A

Report Created for: Geosolve, Inc.

1807 Santa Rita Road, Suite D-165 Pleasanton, CA 94566

Project Contact: Project P.O.: Project Name:

Rob Campbell 2016-04 2016-04; 19th of Harrison

Project Received: 02/

02/22/2017

Analytical Report reviewed & approved for release on 03/06/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Geosolve, Inc.Project:2016-04; 19th of HarrisonWorkOrder:1702B47

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client:Geosolve, Inc.Project:2016-04; 19th of HarrisonWorkOrder:1702B47

Analytical Qualifiers

a3	sample diluted due to high organic content.
a4	reporting limits raised due to the sample's matrix prohibiting a full volume extraction.
d7	strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
e2	diesel range compounds are significant; no recognizable pattern
e7	oil range compounds are significant

Quality Control Qualifiers

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 3/2/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

		Lead				
Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
SPB3-A	1702B47-003B	Soil	02/22/201	7	ICP-MS2	134984
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Lead	760		5.0	10		03/06/2017 12:54
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Terbium	101		70-130			03/06/2017 12:54
<u>Analyst(s):</u> DVH						
Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
SPB3-B	1702B47-003C	Soil	02/22/201	7	ICP-MS2	134984
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Lead	4.8		0.50	1		03/03/2017 19:40
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	103		70-130			03/03/2017 19:40
<u>Analyst(s):</u> DB						
Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
SPB3-C	1702B47-003D	Soil	02/22/201	7	ICP-MS2	134984
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Lead	3.1		0.50	1		03/06/2017 13:00
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	104		70-130			03/06/2017 13:00
<u>Analyst(s):</u> DVH						
Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
SPB3-D	1702B47-003E	Soil	02/22/201	7	ICP-MS3	134984
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Lead	3.5		0.50	1		03/03/2017 13:16
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Terbium	111		70-130			03/03/2017 13:16
Analyst(s): MIG						

osolve, Inc.
/17
/17
P-MS3
1
6-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	134984
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg
Sample ID:	MB/LCS-134984
	1702B47-003EMS/MSD

	QC Sur	nmary R	eport fo	or Metals					
Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %REC	LCS Limits
Lead	ND	50.1		0.50	50	-		100	75-125
Surrogate Recovery									
Terbium	528.9	557			500	10	06	111	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/N Limit		D RPD Limit
Lead	51.4	51.6	50	3.460	96	96	75-12	5 0	20
Surrogate Recovery									
Terbium	540	546	500		108	109	70-13	60 1.	10 20
Analyte	DLT Result			DLTRef Val				%[) %D Limit
Lead	4.54			3.460				31.	2 -

% D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

_____QA/QC Officer

McCampbell Analytical, Inc.

Report to:

Rob Campbell

Geosolve, Inc.

(925) 963-1198

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

WorkOrder: 1702B47 A ClientCode: GSP WaterTrax WriteOn EDF Excel □Fax 🖌 Email □HardCopy ☐ ThirdParty □ J-flag Bill to: **Requested TAT:** 5 days; rcampbell@geosolve-inc.com Lisa Campbell Email: cc/3rd Party: Geosolve, Inc. Date Received: 02/22/2017 1807 Santa Rita Road, Suite D-165 PO: 2016-04 1807 Santa Rita Road, Suite D-165 Date Logged: 02/22/2017 ProjectNo: 2016-04; 19th of Harrison Pleasanton, CA 94566 Pleasanton, CA 94566 FAX: lcampbell@geosolve-inc.com Date Add-On: 03/02/2017

					Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
		1				1	1	T	1				r		T		
1702B47-003	SPB3-A	Soil	2/22/2017 00:00		В												
1702B47-003	SPB3-B	Soil	2/22/2017 00:00		С												
1702B47-003	SPB3-C	Soil	2/22/2017 00:00		D												
1702B47-003	SPB3-D	Soil	2/22/2017 00:00		Е												

Test Legend:

1	PBMS_TTLC_S
5	
9	

2	
6	
10	

3	
7	
11	

4	
8	
12	

Prepared by: Briana Cutino

Add-On Prepared By: Maria Venegas

Comments: STLC's, TCLP's & TTLC's added 3/2/17 per client TTLC's on separate addon.

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Page 1 of 1

WORK ORDER SUMMARY

Client Name: Client Contae	GEOSOLVE, IN ct: Rob Campbell	С.		Project:	2016-04; 19th of H	Iarrison			ork Order: 1702B47 QC Level:		
Contact's Em	ail rcampbell@geoso	lve-inc.com		Comments	STLC's, TCLP's & T separate addon.	ent TTLC's on	Date Logged: 2/22/2017 Date Add-On: 3/2/2017				
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Hold SubOut Content		
1702B47-003B	SPB3-A	Soil	SW6020 (Lead)		1	Acetate Liner	2/22/2017	5 days			
1702B47-003C	SPB3-B	Soil	SW6020 (Lead)		1	Acetate Liner	2/22/2017	5 days			
1702B47-003D	SPB3-C	Soil	SW6020 (Lead)		1	Acetate Liner	2/22/2017	5 days			
1702B47-003E	SPB3-D	Soil	SW6020 (Lead)		1	Acetate Liner	2/22/2017	5 days			

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

0				١	70	22	B	4	7																									
	ЛсС	am	pbe	əll	A	nc	aly	/tic	cc	ıl,	In	С							Cł	ΗA	١N	I C)F	CI	US	TC	D	Y	RE	C				
1534 Willow Pass Rd. / Pittsburg, Ca. 94565-1701									TU	RN	AR	DUN	D T	IME	RI RI	JSH[1 DA	Y 🗋	2	DAY		3 D/	ΑY [5 DAY	Ø							
w	ww.mcc	campb	ell.com	n/ I	mair	n@m	ccc	amp	bell	.cor	n					Geo	Ta	ker E	EDF [PDF		EDD		Write	e On ((DW		EQ	uIS [10 DA	
	Telepho	one: (8,	//) 252-	926	52 / F	ax:	(925	5) 25	2-92	269						Eff	luen	San	nnle	Reau	iring	".I"	flag	-	UST	Clea	n Ur) Fur	nd Pr	oject	— :	Clair	n #	
- 7	1-0		el					1.	. 1		-	-			_		5	0	-pre /			, .									' '			
Report To: Company: Cer	solve	AL D	e		Bil	ll To:	C	yes!	00	R	1 ho	e ,	•				à							Ana	lysis	Req	uest							
(807 Sant	n hit		9-4 DI	65	pl	Pas	4n	for	C	4	9	45	66	5			3																	
Tele: (925) 76	3-119	13			E-	Mail	: 10	ay	al	P	2			re-	- 10	MTBE	5	5520	-				(9				2			ctals				
Project #: 201	6-0		40	G		oject			19	4				Son	-	5) M	Aur	664	(418.]	cs)	s only		icide			NAS)	*	*		ed me				
Project Location: Sampler Signature	- The	D.S.	Tel	1	Pu	rcha	se O	rder	#		0-	-0	7			/ 8015)	C	ase (1	Suoc	sticid	oclor	ides)	Herb	Cs)	OCs)	Hs / P	20)**	·**(0)		ssolve	2			
Samplet Signatur	. 100	SAM	PLING	İ			Μ	IAT	RIX			Τ		ETHO		Gas (8021/	+1	Total Petroleum Oil & Grease (1664) E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 507 / 8141 (NP Pesticides)	EPA 515/ 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	5 Metals (200.8 / 6020)**	***	Lab to Filter sample for Dissolved metals analysis	The			
	Location/			12	-		er					Π			2	as Ga	TPH as Diesel (8015) -	n Oil	m Hy	8081	2 PCI	I (N	1 (Ac	4/82	5 / 82	1/83	ls (20	s (200	Metals (200.8 / 6020)***	ample	F			11
SAMPLE ID	Field Point			# Containers	Ground Water	ater	Drinking Water	5							2	H	iesel	roleu	roleu	608 /	808	/ 814	/ 815	2 / 62	2 / 62	O SIN	Meta	Actal	00.8/	Iter s	ote			
	Name	Date	Time	onts	pun	Waste Water	king	Sea Water			ge	5		3	Ъ	X&	as D	I Peti	1 Peth	505/	608	507	515	524.	525.	827	117	TSN	uls (2	to Fi vsis	E.S.			
				# C	Gro	Was	Drin	Sea	Soil	Air	Sludge	Other	HCL	HNO3	Other	BTEX	HdT	Tota E/Bd	Tota	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAA	LUFT	Meti	Lab to I analysis	Dis			
CPBJ-A		2.22.	17	T	7			1	×			Ħ	-	-	7	X	X	-	X	×	V	10		×	X		V				X		\neg	+ - 1
5037-13				1	2			C	-	-	-	-	-	1	ŕ	-	-	*	-		-	M.		1	C	-	~	-			X			
SPB7-C				1										1	20	5	20	SL	e			01	ic	-		0.		•			×			
SPB3-D		V		1)												4	1	>	١			72	A	~	k	1	n			×			
-								/	1-	L			-									-1	-					-	-					
SPBY - A		14.27	2.17	1	2		(×						X	X	X		X	x	X			x	¥		X							
5034-B				1				/	-		of the local division	-	-	-	_			-		1	-					_	_		L					
5084-C				1	\wedge													m	37	1	C .	-			p	V	26	00	T.	6			_	
5984-D		4		1	/							\square				C	P			1	4-	7	1		1	A	r							
												\square					-				1	<u> </u>				_								
**MAI clients MUST disclo	ose anv danc	aerous che	micals kno	wn to	be pr	esent	in thei	r subn	nitted	samp	les in		centr	ations	that	may	cause	imme	diate	harm	or set	rious fr	uture	health	enda	ngerm	nent a	is a re	sult o	f brief.	alove	ed, op	en air, s	ample
handling by MAI staff. No																															5			
Relinguished By:	d for water s	amples an Date:	nd the wate Time:	_		speci	~	n the	chain	ofcus	tody	ther	MA	100	lefault CE/t°		netals	by E2	00.8.	ode	led	2	2/1	7 9	511	+1	OM	MEN	TS	~				
A difference by:	let	2.22.	1716		AL AL)	,			7	/	/	G	000	O CO		TION		_	(X	I	F	P	5	0~	0/0	× (r		75	01	ppro 1
Relinquished By:		Date:	Time	_	Rece	eived I	By:		/	/	/	1	7	7 D	ECH	LOF	RINA		IN LA		-				-1	he	~	57	TL.	6				
Bhi h		2/22	19192	0	M	h	~	L	/	i	\langle	+	1					E COI N LAI	NTAI B	NERS	5		I	F	P	5	o	-7/	05	C	5	71	00	ppr
Relinquished By:		Date:	Time:	_	Rece	eived I	By:	C			7	+		-					DAS	0&0	GN	META	LS	от	HER	F	IAZA	RD	JUS.	e	T	cl	-1	
(1.1897.9F					1	7	Р	RESI	ERV.	ATIC					H<2_							40.		20		1	
														-					6		. (. ,	5											
																			K		04	-	-											Page 8

. .

.

APPENDIX C

McCAMPBELL ANALYTICAL, INC. LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTS DATED MARCH 6 AND MARCH 8, 2017

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1702B47 B

Report Created for: Geosolve, Inc.

1807 Santa Rita Road, Suite D-165 Pleasanton, CA 94566

Project Contact: Project P.O.: Project Name:

Rob Campbell 2016-04 2016-04; 19th of Harrison

Project Received: 02/22/2017

Analytical Report reviewed & approved for release on 03/08/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Geosolve, Inc.Project:2016-04; 19th of HarrisonWorkOrder:1702B47

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client:Geosolve, Inc.Project:2016-04; 19th of HarrisonWorkOrder:1702B47

Analytical Qualifiers

a3	sample diluted due to high organic content.
a4	reporting limits raised due to the sample's matrix prohibiting a full volume extraction.
d7	strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
e2	diesel range compounds are significant; no recognizable pattern
e7	oil range compounds are significant

Quality Control Qualifiers

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 3/4/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	CA Title 22
Analytical Method:	SW6020
Unit:	mg/L

		Metals (S	FLC)		
Client ID	Lab ID	Matrix	Date Coll	ected Instrument	Batch ID
SPB1-A,B,C,D	1702B47-001A	Soil	02/22/2017	ICP-MS2	135069
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Chromium	ND		0.10	1	03/06/2017 19:30

Analyst(s): MIG

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SPB2-A,B,C,D	1702B47-002A	Soil	02/22/20	17	ICP-MS2	135069
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Chromium	0.11		0.10	1		03/06/2017 19:54

Analyst(s): DVH

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
SPB4-A,B,C,D	1702B47-004A	Soil	02/22/201	7 ICP-MS2	135069
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Chromium	ND		0.10	1	03/06/2017 20:07

Analyst(s): DVH

 Client:
 Geosolve, Inc.

 Date Received:
 2/22/17 18:20

 Date Prepared:
 3/4/17

 Project:
 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	CA Title 22
Analytical Method:	SW6020
Unit:	mg/L

STLC Metals

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SPB3-A,B,C,D	1702B47-003A	Soil	02/22/20	17	ICP-MS2	135069
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Chromium	0.21		0.10	1		03/06/2017 20:00
Lead	16		0.10	1		03/06/2017 20:00

Analyst(s): DVH

Client: Geosolve, Inc. Date Received: 2/22/17 18:20 Date Prepared: 3/5/17 **Project:** 2016-04; 19th of Harrison

WorkOrder:	1702B47
Extraction Method:	SW1311/SW3010
Analytical Method:	SW6020
Unit:	mg/L

		TCLP Metals						
Client ID Lab ID		Matrix	Date Co		Instrument	Batch ID		
SPB3-A,B,C,D	1702B47-003A	Soil	02/22/20)17	ICP-MS2	135076		
Analytes	Result		<u>RL</u>	DF		Date Analyzed		
Lead	0.82		0.10	1		03/07/2017 17:14		

MIG <u>Analyst(s):</u>

Client:	Geosolve, Inc.
Date Prepared:	3/4/17
Date Analyzed:	3/6/17
Instrument:	ICP-MS3
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	135069
Extraction Method:	CA Title 22
Analytical Method:	SW6020
Unit:	mg/L
Sample ID:	MB/LCS-135069
	1703137-002AMS/MSD

QC Summary Report for Metals (STLC)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Chromium	ND	9.13	0.10	10	-	91	75-125
Lead	ND	9.63	0.10	10	-	96	75-125

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Chromium	9.33	9.58	10	0.2034	91	94	75-125	2.64	20
Lead	9.67	9.87	10	ND	97	99	75-125	2.09	20

_____QA/QC Officer

Client:	Geosolve, Inc.
Date Prepared:	3/5/17
Date Analyzed:	3/6/17 - 3/7/17
Instrument:	ICP-MS3
Matrix:	Soil
Project:	2016-04; 19th of Harrison

WorkOrder:	1702B47
BatchID:	135076
Extraction Method:	SW1311/SW3010
Analytical Method:	SW6020
Unit:	mg/L
Sample ID:	MB/LCS-135076
	1702D97-010AMS/MSD

QC Summary Report for Metals (TCLP)											
Analyte	MB Result			RL	SPK Val		B SS REC			LCS Limits	
Lead	ND	9.90		0.10	10	-		99		75-125	
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/M Limit	-	RPD	RPD Limit	
Lead	9.95	9.98	10	ND	100	100	75-12	:5	0	20	

_____QA/QC Officer Page 8 of 12

McCampbell Analytical, Inc.

Report to:

Lab ID

1534 Willow Pass Rd Pittsbu (925) 2

CHAIN-OF-CUSTODY RECORD

Lab ID Client ID	Matrix Collection Da	ate Hold	1	2	3	Rec 4	quested To 5	ests (See 6	e legend 7 8		10	11	12
						Dee				h a l a)			
Geosolve, Inc. 1807 Santa Rita Road, Suite D-165 Pleasanton, CA 94566 (925) 963-1198 FAX:	PO: 2016-04 ProjectNo: 2016-04; 19th of Harrison		Geosolve, Inc. 1807 Santa Rita Road, Suite D-1 Pleasanton, CA 94566 Icampbell@geosolve-inc.com					0-165	Da	te Received te Logged: te Add-On	•	02/22/2 02/22/2 03/03/2	2017
Rob Campbell	Email: rcampbell@geosolve-inc.com				ampbel								
Report to:	☐ WaterTrax ☐ WriteOn ☐ EDF		Excel B	Bill to:	Fax	✓	Email	∐Ha	ardCopy Rec	ThirdP	,	□ ^{J-fla} 5 days;	•
Pittsburg, CA 94565-1701 (925) 252-9262				er: 1702				Code: O					

1702B47-001	SPB1-A,B,C,D	Soil	2/22/2017 00:00	А					
1702B47-002	SPB2-A,B,C,D	Soil	2/22/2017 00:00	А					
1702B47-003	SPB3-A,B,C,D	Soil	2/22/2017 00:00		А	А			
1702B47-004	SPB4-A,B,C,D	Soil	2/22/2017 00:00	А					

Test Legend:

1	CRMS_STLC_S
5	
9	

2	PBCRMS_STLC_S
6	
10	

3	PBMS_TCLP_S
7	
11	

4	
8	
12	

Prepared by: Briana Cutino

Add-On Prepared By: Maria Venegas

STLC's, TCLP's & TTLC's added 3/2/17 per client TTLC's on separate addon. **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Page 1 of 1

WORK ORDER SUMMARY

Client Name: Client Conta	GEOSOLVE, INC. et: Rob Campbell		Project:	2016-04; 19th of H	larrison			ork Order: (QC Level:	1702B47
Contact's Em	ail rcampbell@geosolv	ve-inc.com	Comments:	STLC's, TCLP's & T separate addon.	TLC's added 3/2/17 per clie	ent TTLC's on		e Logged: 2 Add-On: 3	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1702B47-001A	SPB1-A,B,C,D	Soil	SW6020 (Chromium) (STLC)	4 / (4:1)	Acetate Liner	2/22/2017	5 days*		
1702B47-002A	SPB2-A,B,C,D	Soil	SW6020 (Chromium) (STLC)	4 / (4:1)	Acetate Liner	2/22/2017	5 days*		
1702B47-003A	SPB3-A,B,C,D	Soil	SW6020 (Lead) (TCLP)	4 / (4:1)	Acetate Liner	2/22/2017	5 days*		
			SW6020 (Chromium & Lead) (STLC	2)			5 days*		
1702B47-004A	SPB4-A,B,C,D	Soil	SW6020 (Chromium) (STLC)	4 / (4:1)	Acetate Liner	2/22/2017	5 days*		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

																												7	10	2	Bi	17			
_ 🖉 M	сC	am	pbe	ell	A	nc	ylx	/tic	CC	ıl,	In	С							С	ΗA	٩N	I C)F	С	US	TC	D	Y	RE	С	O	RĎ			
15	534 Wil	low Pc	ass Rd. /	' Pitt	sbur	rg, C	Ca. 9	456	5-17	701							0			D T				Name and A									5 DA	Y 🔽	2
www.	w.mcc	ampb	ell.com 77) 252-	i/n	nain	@m	ccc	mp	bell	.cor	m					Ge	oTra	eker I	EDF		PDF		EDD		Write	e On	(DW		EQ	QuIS			10 DA	Y 🖵	
	elepho	110. (0)	/// 252-	720.	271	ux.	(725) 23	2-72	207							10	-														; Clai	m #		-
Report To: 725	C	ample	ell		Bil	l To:	6	ed	olv	e,	T	τ.	1	1	_	┝								Ana	lysis	Req	uest								
Company: Geos	solve	. 57	2016	-	ot	_		1.			-	S	-				3		Γ	Γ												\square			
1807 Santa Tele: (925) 963	3-11	58	-010	2	E-I	La Mail	: 10	T	he	4 C	30	5	20	2-1	A(.	BE	19	520									6			als					
Project #: 2016					Pro	oject	Nan	ne:	19	Te ,	8	Ha	5	50	~	8015) MTBE	Far	564/5	418.1)	s)	only		cides)			(SAS)	۲			d meta					
Project Location:		hes	tel	T.	Pu	rcha	se O	rder	#	10	16	-	04	-		/ 8015	3	ase (1) suoc	sticide	oclors	des)	Herbi	Cs)	OCs)	Hs / PI	20)***	0)***		solve					
Sampler Signature.		SAMI	PLING	Π			Μ	[AT]	RIX					ETHO SER		Gas (8021/3	1 + (5	Petroleum Oil & Grease (1664/5520 Fi	Total Petroleum Hydrocarbons (418.1)	608 / 8081 (Cl Pesticides)	608 / 8082 PCB's ; Aroclors only	507 / 8141 (NP Pesticides)	515/ 8151 (Acidic Cl Herbicides)	524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	5 Metals (200.8 / 6020)**	***	Lab to Filter sample for Dissolved metals analysis					
SAMPLE ID	ocation/			ers	er		ater					Π				I as G	1 (801	um Oi	um Hy	/ 8081	82 PCI	41 (NI	51 (Ad	24/82	25 / 82	M / 83	als (20	ıls (20	Metals (200.8 / 6020)***	sampl	X				
Fie	eld Point Name	Date	Time	Containers	d Wat	Wate	ng Wa	ater							2	& TPI	Diese	etrole	etrole	5/ 608	8 / 80	1/ 81	5/81	4.2 / 6	5.2/6	270 SI	7 Met	5 Meta	(200.8	Filter	J				
					Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO ₃	Other	BTEX	TPH as	Fotal P	otal P	EPA 505/	EPA 60	EPA 50	EPA 51	EPA 52	EPA 52	EPA 8:	I WY	LUFT	letals	Lab to analysis	E				
(001 A		2.22.	12	#	0	~	-	s	< >	A	S	0	Ξ	H		m X	X			E	CE	E	E	X	X	E	Xc	T/	2	a L				-+	_
CORI-B		1.4.	17	1	5			(<)	-		H	-	-	~	É	-		5		-	_		-		_		-	-	-	H			-+	
SPBI-C				1	\langle													0	si	e		0	ril	x	+	0	1	N	1		Å				
SPBI-D		V		C)												0 '	1	4	~					ŀ	F	June 1	8							
(000 A									1	_	_	H	-		~		7	-	X		-			V	V	-	~								_
CDR7 - R		1.22.	17		5		-(×	_			_		X	-	~		T	X	-		/	2	~		7			1	H/				_
SPB2 -C				1	$\left(\right)$									•					ha	h	e			~	+	0				-	X			-	
58132 - D		V		1)												C	pr	1	5	1		ľr	~	0	~	N	n			/				
												\square	_				*		4	Ľ				Sr	N	7									
**MAI clients MUST disclose	any dang	erous che	micals kno	wn to	be pre	esent i	n their	rsubn	nitted	samp	les in	cond	entro	ations	that	may	cause	imme	ediate	harm	or set	ious fu	iture I	nealth	enda	ngern	nent a	s a re	sult o	f brief	, glov	ed, op	en air,	sampl	
handling by MAI staff. Non-d	disclosure	incurs an	immediate	\$250	surcho	arge a	nd the	e clier	nt is su	bject	to full	lego	ıl liab	ility fo	or har	m su	ffered	Thar	nk you				nding	and f	or allo	wing	us to v	work s	safely	•					
*** If metals are requested for Relinquistred By:	or water so	Date:	Time:		is not Recei			n the o	chain	ofcus	stody,	ther		10	CE/t°									•		(OM	MEN	ŢS:		0			~	-
You All		2.22.	10/	_	ρ	12a	F			/			1	H	IEĄÓ) SP	ONDI' ACE	ABSE	NT_		-		*		. 6	٢	5	Gr	-/0	11	Cr		~ >	0	Im
Relinquished By		Date:	Time: 7 182		Rece	eved I	syf		(\leftarrow	T	A	PPR	OPF	RINA RIATI 'ED II	E CO	NTAI	AB NERS	6			7	ć	Jhe	5		1.		-				
Relinquished By:		Date:	Time:	_	Rech	ived I	Jy:	_	1		1	4	1	Ŧ	NE3	ERV	001			0&	GN	ЛЕТА	18	L OTI	T HER	٢	2	RDC		0	-	71	00	rp.	
					V		~						V	Р	RES	ERV	ATIC					H<2_		511						-	The	~	TC	Lf	Ppm -
																		(1		01	F	2)										11 of 12

×

				1	70	20	B	4	7																										
	ЛсС	am	pbe	Эll	A	nc	ylx	/tic	CC	al,	In	C							Cł	ΗA	٩N	I C)F	C	US	TC	D	Y	RE	С	OF	RD			
	1534 Wi															TU	RN	AR	DUN	DT	IME	RI: RI	JSH [1 DA	Y 🗖	2	DAY		3 D.	AY [5 DA	Y 👩	
w w	ww.mcc Telephc										n					Geo	Ta	ker I	EDF [PDF		EDD		Write	e On	(DW)	EQ	uIS			10 D.	AY 🗋	1
	relepric	ne. (0/	7 252-	720	2/1	ux.	125) 2J	2-71	207						Eff	luen	tSan	nple	Requ	iring	g "J"	flag		UST	Clea	ın Up) Fur	ıd Pı	rojec	t 🗋 ;	Clai	m #		-
Report To: 7	50	ant	all		Bil	l To:	6	te	sala	R	The	~	-	-	_		1	-				-		Ana	lvsis	Reo	uest								-
Company: Ger	solve	the	1 1 21	15		1									_		5		Γ										Γ						
(807 Sant Tele: (925) 96	20119	an	-= DI	6)		Dal Mail	an	free	9	1 C	1	4 5	66	1.	-	E	S	20												s					
	6-0	ř.				oject	_		19	H-	Å	20	ri	Son		MT	3	4/55	8.1)		nly		des)			As)	\circledast			metal					
Project Location:	170-	web	ster.	न	[•] Pu	rcha	se O	rder	#	lõl	6-	-0	4			8015)	2Ph	ie (16	ns (4)	icides)	lors o	cs)	erbici	(s)	Cs)	Nd / S	***(***		olved	9				
Sampler Signatur	e: 10		ler				M	IAT	RIX				M	етно	DD		F	[otal Petroleum Oil & Grease (1664 / J/B&F)	Total Petroleum Hydrocarbons (418.1)	505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 507 / 8141 (NP Pesticides)	515/ 8151 (Acidic Cl Herbicides)	524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)**	LUFT 5 Metals (200.8 / 6020)***	*	Lab to Filter sample for Dissolved metals analysis	CP				
		SAM	PLING									-		SER		Gas (8021/	15)-	Sil &	Hydro	81 (C	CB's	NP Pe	Acidic	8260	8270	8310 (200.8	00.8 /	Metals (200.8 / 6020)***	ple fo	E		0	0	
SAMPLE ID	Location/ Field Point			ners	ater	er	Vater								3	'H as	as Diesel (8015) -	eum	eum	8 / 80	082 P	3141 (3151 (624 /	625 /	/ WIS	ctals (tals (2	.8 / 60	r sam	e.	C	d	Pb	
	Name	Date	Time	Containers	M Pu	Wat	ing V	Water						•	1	& TF	s Dies	Petrol	Petrol	05/ 60	08/8	07/8	15/8	24.2 /	25.2 /	3270 5	17 Mc	5 Me	; (200	Filte	Per	j	4	2	
				# Co	Ground Water	Waste Water	Drinking Water	Sea W	Soil	Air	Sludge	Other	HCL	HNO ₃	Other	BTEX	TPH a	Fotal Pe	[otal]	EPA 5	EPA 6	SPA 5	EPA 5	EPA 5	EPA 5	EPA 8	CAM	UFT	Metak	Lab to 1 analysis	0150	F	F	J	
(027-A		2.22.	12	T C	7	-	_	· ·	XX	-		ľ	_		*	-	X		×	×	7	100	-	×	X			-			X		9	-/	\neg
5033-13		-		1	5			6	41	-	_		-		-	-		-	1	-	P	1		4	\sim			-			X	\forall	\forall	1	
SPB7-C				1										1	composite price and XXXX																				
583-7		~		1)												4	1	>	1		1	D	A	vo	n	V	5			×	$/ \setminus$	/	/	
ingu A			1.12		-				1-1	7	_				V	~			-			-	-	~				1							_
59134 - A 5934-B		1 21 m	LAT		5		- (ア			\square			~	~	X		X	~	X			X	¥					P	-	\mathbb{V}			_
2014-0				1	(-						-	H				-			3	t	e					•	1		F	-		X	-	+	-
5184-D		1		1)											(0	m			4-	>	١			V'	-	2	r	1		/		-	-
1																					1					1									
				Ļ														Ļ	<u> </u>	Ļ					L						Ļ				
**MAI clients MUST disclo handling by MAI staff. No																															, giove	a, op			
*** It metals are requeste Relinguished By:	d for water s	amples ar Date:	nd the wate Time:			speci	<i>(</i>	n the o	chain	ofcus	tody	, the		-	lefaul CE/t°		netals	by E2	00.8.	ade	led	3	2/1	7 9	511	+1	TOM	MEN	OC TS:	ide	d 3	2		TATY	· p
Vlor.	let	2.22.	1 1 1 1		A	his		,		/	7	/		G	100	O CO		TION		-	(×	I	F	P	5	on	0/0	ж (ŗ		75	,0	pp~	^
Relinquished By:	×	Date:	Time:		Rece	iyed	By:	/	/	7	(1	7	7] D	ECH	LOF	RINA	TED	IN LA	AB NERS	-			~	+	he	~	ST	T L	6	~	~			
Expe		2/22/	7 182	0	W.	n	~	F	/	~	F	Ŧ	/					N LA					I	4	P	5	0	-4/	00	C	-	7	00	PP	
Relinquished By:		Date:	Time:		Rece	ived I	By:	0			/	1			DFC	FDV	ATIC		DAS	0&0		META	LS	ΟΤΙ	HER	I	HAZA	RDC	DUS!	re	T	cl	-1		
												_	7		RES	EKV.	ATIC	/N	F	-	- ^p	H<2_													
																			2		o f	2											I	Page 1	12 of

.

.