

RECEIVED

By Alameda County Environmental Health 10:05 am, Aug 01, 201

July 25, 2017

Ms. Dilan Roe Chief-Land Water Division Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Subject: Soil and Groundwater Investigation Report Addendum

Main Street Property 927 Main Street

Pleasanton, California 94566

ACDEH Fuel Leak Case No. RO0003199 GeoTracker Global ID No. T10000008158

Dear Ms. Dilan:

Equity Enterprises is pleased to present the enclosed report addendum, prepared by Environmental Risk Assessors (ERA), presenting the findings of additional investigation at 927 Main Street in Pleasanton, California. ERA performed an investigation in accordance with the Soil and Groundwater Investigation Work Plan, Main Street Property, 927 Main Street, Pleasanton, California 94566, dated April 14, 2017, and presented the findings in the Soil and Groundwater Investigation Report, Main Street Property, 927 Main Street, Pleasanton, California 94566 ("the SWI Report"), dated June 26, 2017. Additional investigation data obtained by the adjoining property owner's consultant and provided to ERA following submittal of the SWI Report is presented in this addendum.

I have read and acknowledge the content, recommendations, and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the State Water Resource Control Board's GeoTracker website.

Please feel free to call me at 925-484-3636 if you have any questions.

Sincerely,

Brad Hirst

Equity Enterprises

(925) 484-3636

Email: brad@equity-enterprises.net

Fax (925) 484-3923

July 25, 2017

Mr. Bradley A. Hirst Equity Enterprises 4460 Black Avenue, Suite L Pleasanton, California 94566

SUBJECT: Soil and Groundwater Investigation Report Addendum

Main Street Property 927 Main Street

Pleasanton, California 94566

ERA Project No. 01-2016-1300-001

Dear Mr. Hirst,

Environmental Risk Assessors (ERA) is pleased to present this Soil and Groundwater Investigation (SSI) Report Addendum for the above-referenced property (the Site). This Addendum summarizes the findings of additional investigation at 927 Main Street in Pleasanton, California. ERA performed an investigation in accordance with the *Soil and Groundwater Investigation Work Plan, Main Street Property, 927 Main Street, Pleasanton, California 94566*, dated April 14, 2017, and presented the findings in the *Soil and Groundwater Investigation Report, Main Street Property, 927 Main Street, Pleasanton, California 94566* ("the SWI Report"), dated June 26, 2017. Additional investigation data obtained by the adjoining property owner's consultant and provided to ERA following submittal of the SWI Report is presented in this addendum.

It has been a pleasure working with you on this project. Please do not hesitate to contact me at (916) 677-9897 and via email at litafreeman@gmail.com if you have any questions or comments regarding this assessment.

Sincerely,

Environmental Risk Assessors

ita D. Fileman

Lita D. Freeman, PG Professional Geologist

* All information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a California Professional Geologist of Environmental Risk Assessors. A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

July 25, 2017

Mr. Bradley A. Hirst Equity Enterprises 4460 Black Avenue, Suite L Pleasanton, California 94566

SUBJECT: Soil and Groundwater Investigation Report Addendum

Main Street Property 927 Main Street

Pleasanton, California 94566

ERA Project No. 01-2016-1300-001

Dear Mr. Hirst,

Environmental Risk Assessors (ERA) is providing environmental services to Equity Enterprises for the property located at 927 Main Street, Pleasanton, Alameda County, California (the "Site"; Figure 1) under the oversight of the Alameda County Department of Environmental Health (ACDEH). The following identification numbers have been assigned to the Site: ACDEH Fuel Leak Case No. RO0003199 and California Environmental Protection Agency (Cal-EPA) State Water Resources Control Board (SWRCB) GeoTracker Global ID No. T10000008158. The findings of the most recent site investigation performed by ERA in accordance with the *Soil and Groundwater Investigation Work Plan* (the "Work Plan"; ERA, 2017a) were presented in the *Soil and Groundwater Investigation Report* (the "SWI Report") dated June 26, 2017 (ERA, 2017b).

This Addendum presents additional investigation data obtained by the legal representative for the southwest adjoining property known as 915 Main Street, Pleasanton, California, hereinafter referred to as the "Adjacent Site."

PURPOSE

The purpose of this Addendum is to summarize additional investigation data provided to ERA. The data was reportedly obtained during field work that included advancing borings SB-10 and SB-11 on the Adjacent Site in June 2017. The purpose of collecting and analyzing soil and groundwater samples from boring SB-10 was to evaluate impacts, if any, to the subsurface near the Site by past activities at off-site upgradient properties and the purpose of collecting and analyzing a soil gas sample from boring SB-11 was to assess if petroleum hydrocarbons reported in groundwater beneath the Site had migrating upward through the soil column to the area of the building addressed 915 Main Street.

SITE DESCRITION AND BACKGROUND

The Site consists of approximately 8,115 square feet of land identified as Alameda County Assessor Parcel Number (APN) 946-3370-22. The single-story 2,340-square-foot building (addressed 927 Main Street) located on site was constructed in 1980 and is currently occupied

Tel 916-677-9897 litafreeman@gmail.com

by a Subway sandwich shop and a Hanadi Sushi restaurant (Figure 2). A multi-tenant single-story commercial building is currently present on the Adjacent Site (APN 946-3370-19).

Information obtained by Basics Environmental, Inc. during their Phase I ESA (Basics Environmental, 2013) indicated that gas and oil facilities were located on the southeastern portion of the Site and on the Adjacent Site from the late-1930s/early-1940s to the early 1950s. In the 1970s a Robo-branded car wash was present on the Adjacent Site and extended onto the Site. The approximate footprints of the former buildings addressed 40 and 40A Santa Rita Road are shown on Figure 2.

No specific information on former operations (i.e., capacity, type, and location of former underground storage tanks [USTs], pump island locations, auto maintenance areas, hazardous materials use, etc.), tank removals, or associated confirmation sampling was obtained from local regulatory agency files by Basics Environmental. Anomalies indicative of USTs or backfilled excavations were not identified during a geophysical survey conducted by CBRE, Inc. in 2016 (CBRE, 2016) at the Site, the Adjacent Site, and the north adjoining property.

An initial investigation conducted on site in 2015 identified petroleum hydrocarbons in groundwater beneath the Site (ERA, 2015) and a subsequent investigation conducted on the Site and Adjacent Site in 2016 identified petroleum hydrocarbons in groundwater in the area of the former on-site gas and oil facility but not in the area of the gas and oil facility formerly located on the Adjacent Site (ERA, 2016). At ACDEH's request, ERA performed additional sampling in May 2017 to help delineate the groundwater plume and evaluate naphthalene in soil gas, indoor air, and ambient air. This sampling was performed in general accordance with the Work Plan (ERA, 2017a) conditionally approved by the ACDEH in their letter dated April 26, 2017 (ACDEH, 2017).

Prior to ERA beginning field work in May 2017, Darrick Sun, Esq. of the Sun Law Firm, representative of the Paul C.K. and Alice T. H. Sun Trust (the owner of the Adjacent Site), notified Equity Enterprises that Sun Trust would retain a consultant to collect samples from borings SB-10 and SB-11 as described in the Work Plan (ERA, 2017a). Sun Law Firm retained ATC Associates, Inc. (ATC) to oversee field work on the Adjacent Site. Data from ATC's investigation is summarized below.

ETIC Engineering, Inc. (ETIC) conducted a groundwater monitoring event in 2009 at the Mobil service station formerly located to the Site's northeast across Main Street (ETIC, 2009). Based on depth-to-water measurements obtained during this monitoring event, local groundwater flow direction was inferred to be to the east-northeast. Historically, local groundwater flow direction was generally northward. Based on a generally northward groundwater flow direction, boring SB-10 would be located upgradient of boring SB-8, advanced during ERA's site investigation in May 2017 on the southwestern portion of the Site, and boring SB-11 would be located crossgradient of boring SB-9, advanced during ERA's site investigation in May 2017 on the northwestern portion of the Site. Petroleum hydrocarbons were not reported in groundwater samples collected from borings SB-8 and SB-9 at concentrations at or above the laboratory reporting limits (lab RL).

ADDITIONAL INVESTIGATION RESULTS

According to information provided by Sun Law Firm, field work was conducted by ATC on June 19, 2017. ERA's representative was not present during this field work and a report documenting

ATC's work was not provided to ERA. Data from ATC's investigation was provided to ERA by Sun Law Firm and included the following:

- Figure 3 from the Work Plan (ERA, 2017a) showing the locations where borings SB-10 and SB-11 were advanced by ATC;
- The log for boring SB-10 prepared by ATC's field technician; and
- The laboratory report for the soil and groundwater samples from boring SB-10 and the soil gas sample from boring SB-11.

Field Work

According to the information presented on ATC's log for boring SB-10 and the chains-of-custody (COC) for the soil, groundwater, and soil gas samples, field work was conducted by ATC on June 19, 2017.

ERA noted that the log for boring SB-10 presents the 927 Main Street address. Figure 3 from the Work Plan (ERA, 2017) shows borings SB-10 and SB-11 on the Adjacent Site and located to the southeast and east, respectively, of the building addressed 915 Main Street. ERA assumes that the log presents the 927 Main Street address because this is the address associated with the ACDEH case.

Information presented on the boring log for SB-10 indicates that the boring was advanced by Gregg (Drilling) using a direct push drilling rig. Soil samples were reported to have been collected from various depths, including at 2.5 feet below ground surface (bgs) and 7 feet bgs, in 2-inch diameter acetate tubes.

Each photoionization detector (PID) reading was recorded on the boring log as 0.0 parts per million volume. Evidence of chemical staining of soil samples collected from boring SB-10 was not noted by ATC's technician on the log. ATC's technician did note that "... the boring caves in to ~ 5' bgs prior to advancement each time, representative soil is only observed in the drill bit and up to 3" in the acetate tube for depth runs from 20' to TD". Based on the soil descriptions provided on the boring log, it appears that sufficient information was obtained to document soil conditions, including staining. ATC's representative confirmed to Sun Law Firm that no evidence of chemical staining of soil samples was observed during drilling of boring SB-10. Moist-wet soil was noted at a depth of approximately 32 feet bgs and wet soil was noted at a depth of approximately 38 feet bgs. Boring SB-10 was drilled to a total depth of 45 feet bgs. The moist and wet soil conditions reported by ATC's technician are generally consistent with ERA findings.

Soil and Groundwater

According to the COCs, the soil samples (SB-10-2.5 and SB-10-7) from depths of 2.5 feet bgs and 7 feet bgs and the groundwater sample (SB-10-GW) collected from boring SB-10 were submitted to McCampbell Analytical, Inc. (McCampbell Analytical) of Pittsburg, California for the following analyses:

- Volatile organic compounds (VOCs) using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B, with only benzene, toluene, ethylbenzene, xylenes (collectively BTEX), methyl tert-butyl ether (MTBE), and naphthalene reported;
- Total petroleum hydrocarbons (TPH) quantified as gasoline (TPHg) using U.S. EPA

SW8015B (purgeable) without silica gel cleanup; and

• TPH quantified as diesel (TPHd) and TPH quantified as motor oil (TPHmo) using U.S. EPA SW8015B (purgeable) without silica gel cleanup.

The analysis of the soil and groundwater samples revealed the following:

- BTEX, MTBE, and naphthalene were not reported in the soil samples at concentrations at or above the lab RL of 0.005 milligrams per kilogram (mg/kg) for each of these compounds or in the groundwater sample at concentrations at or above the lab RL of 0.5 micrograms per liter (µg/L) for each of these compounds;
- TPHg was not reported in the soil or groundwater samples at concentrations at or above the lab RL of 1 mg/kg for soil and 50 μg/L for groundwater;
- TPHd was not reported in the soil or groundwater samples at concentrations at or above the lab RL of 1 mg/kg for soil and 100 µg/L for groundwater; and
- TPHmo was reported in soil sample SB-10-2.5 at a concentration of 13 mg/kg but was not reported in soil sample SB-10-7 or in groundwater SB-10-GW at a concentration at or above the lab RL of 5 mg/kg for soil and 500 µg/L for groundwater.

ERA compared analytical results for samples collected from boring SB-10 to Tier 1 Environmental Screening Levels (ESLs) established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, 2016). The comparison revealed the following:

- The lab RL of 0.005 mg/kg for BTEX, MTBE, and naphthalene in soil samples is below the Tier 1 ESL for each as follows: benzene = 0.044 mg/kg, toluene = 2.9 mg/kg, ethylbenzene = 1.4 mg/kg, xylenes = 2.3 mg/kg, MTBE = 0.023 mg/kg, and naphthalene = 0.023 mg/kg;
- The lab RL of 0.5 μ g/L for BTEX, MTBE, and naphthalene in groundwater is below the Tier 1 ESL for each except naphthalene as follows: benzene = 1 μ g/L, toluene = 40 μ g/L, ethylbenzene = 13 μ g/L, xylenes = 20 μ g/L, MTBE = 5 μ g/L, and naphthalene = 0.12 μ g/L;
- The lab RL of 1 mg/kg for TPHg in soil is below its' Tier 1 ESL of 100 mg/kg and the lab RL of 50 μg/L for TPHg in groundwater is below its' Tier 1 ESL of 100 μg/L;
- The lab RL of 1 mg/kg for TPHd in soil is below its' Tier 1 ESL of 240 mg/kg and the lab RL of 100 μg/L for TPHd in groundwater is equal to its' Tier 1 ESL of 100 μg/L;
- The TPHmo concentration in soil sample SB-10-2.5 (13 mg/kg) and the TPHmo lab RL for soil sample SB-10-7 (5 mg/kg) are below its' Tier 1 ESL of 100 mg/kg; and
- The lab RL of 500 μg/L for TPHmo in groundwater is above the Tier 1 ESL of 100 μg/L for TPHd which is presented for TPHmo because Note 2 of the Tier 1 ESL states that TPHmo is not soluble so TPHmo detections in water are most likely petroleum degradates or less likely non-aqueous phase liquids and, if the detections are degradates, the TPHmo and TPHd concentrations should be added and the result compared to the TPHd criterion; therefore, the TPHmo RL was compared to the Tier 1 ESL for TPHd.

The Work Plan (ERA, 2017a) noted that the VOCs tert-Butyl Alcohol (TBA), 1,2-dichloroethane (EDC [or 1,2-DCA]), and 1,2-dibromoethane (EDB) would be reported by the laboratory for the soil and groundwater samples; however, these VOCs were not reported by the laboratory for the soil and groundwater samples collected from boring SB-10.

Soil Gas

A soil gas sample was collected at a depth of approximately 5 feet bgs from boring SB-11 by ATC's technician, according to the information provided by ATC to Sun Law Firm. The COC indicates that a soil gas sample was collected in a Summa canister and submitted for VOC analysis by TO-15 and in a tube for naphthalene analysis by TO-17. The beginning and ending vacuum readings for the Summa canister were recorded on the COC as -30 inches of mercury (Hg) and -8 inches of Hg, respectively.

Analysis of the soil gas samples did not reveal naphthalene at a concentration at or above the lab RL of 5.3 micrograms per cubic meter ($\mu g/m^3$) using TO-15 analysis or the lab RL of 3.8 $\mu g/m^3$ using TO-17 analysis. EDB and 1,2-DCA were not reported at concentrations at or above their respective lab RL of 3.9 $\mu g/m^3$ and 2.0 $\mu g/m^3$, using TO-15 analysis.

The leak check compound helium was not reported at or above the lab RL of 0.05 percent.

ERA collected a soil gas sample from sampling location SB-5A on the eastern side of the onsite building (927 Main Street) during the recent site investigation (ERA, 2017b). Using the naphthalene concentration of $0.61~\mu g/m^3$ reported for soil gas sample SB-5A and an indoor air concentration of $0.0305~\mu g/m^3$ for the on-site building (calculated based on the naphthalene concentration of $0.61~\mu g/m^3$ and an attenuation factor of 0.05), estimated risks for a commercial worker were calculated by ERA. The estimated risks based on exposure to naphthalene in indoor air include an incremental cancer risk of $1.6~x~10^{-6}$ and a non-cancer hazard index of 0.034 (ERA, 2017b).

DTSC's Guidance (DTSC, 2011) indicates that predicted risks between 1 x 10^{-6} and 1 x 10^{-4} should be evaluated further including monitoring or additional data collection. The risk estimates are considered upper bound estimates of risk; it is very likely that the true risks are less than those predicted. In general, the U.S. EPA considers excess cancer risks that are below about 1 chance in 1,000,000 (1×10^{-6}) to be so small as to be negligible, and risks above 1 x 10^{-4} to be sufficiently large that remediation is desirable (http://www.epa.gov/region8/r8risk/hh_risk.html). Excess cancer risks that range between 1 x 10^{-6} and 1 x 10^{-4} are generally considered to be acceptable but is evaluated on a case-by-case basis.

ERA did not calculate the estimated incremental cancer risk based on exposure to naphthalene in indoor air using a naphthalene soil gas concentration equal to the lab RL of $5.3~\mu g/m^3$ for the soil gas sample from sampling location SB-11 because it is assumed the result would be significantly higher than the result of $1.6~x~10^{-6}$ estimated using the naphthalene soil gas concentration of $0.61~\mu g/m^3$ from sampling location SB-5A.

CONCLUSIONS

No elevated (above background) PID readings and no evidence of petroleum hydrocarbon staining was reported for boring SB-10. Petroleum hydrocarbons that were analyzed for in the soil and groundwater samples from boring SB-10 were not reported at concentrations at or above their respective lab RL except TPHmo reported in soil sample SB-10-2.5 at a

concentration of 13 mg/kg. These findings are consistent with those for boring SB-8, advanced by ERA on the southwestern portion of the Site and located downgradient of boring SB-10.

Based on information provided to ERA, one deviation from the Work Plan (ERA, 2017a) was noted. The VOCs TBA, 1,2-DCA, and EDB were to be reported by the laboratory for soil and groundwater samples; however, these VOCs were not reported by the laboratory for the samples collected from boring SB-10. These compounds were not reported in the soil and groundwater samples collected from borings SB-8 and SB-9 at concentrations at or above their lab RL; therefore, these compounds do not appear to be present in soil and groundwater beneath the western portion of the Site and lack of reporting for these compounds in the soil and groundwater samples from boring SB-10 does not appear to be a significant concern.

The lab RL of $0.5~\mu g/L$ for naphthalene in groundwater sample SB-10-GW is above its' Tier 1 ESL of $0.12~\mu g/L$. However, the naphthalene lab RL of $1.2~\mu g/L$ for the groundwater sample from boring SB-8, located downgradient of boring SB-10, was also above its' Tier 1 ESL. The presence of naphthalene at a concentration equal to the lab RL of $0.12~\mu g/L$ would be unlikely to present a significant environmental concern based on the reported naphthalene concentration of $19~\mu g/L$ for the groundwater sample collected from boring SB-5 and the low risk to indoor air calculated by ERA based on the naphthalene concentration reported in the soil gas sample collected in May 2017 from sampling location SB-5A, located in the same area as boring SB-5.

As discussed in the SWI Report (ERA, 2017b), an incremental cancer risk of 1.6 x 10⁻⁶ was estimated by ERA at the Site using the naphthalene concentration of 0.61 µg/m³ from sampling location SB-5A. Estimating the incremental cancer risk in the area of sampling location SB-11 using a naphthalene concentration equal to the highest lab RL (5.3 µg/m³) would provide a result much higher than that calculated for the area of sampling location SB-5A. However, it is unlikely that the naphthalene concentration in soil gas at and near sampling location SB-11 would be as high as the lab RL of 5.3 µg/m³ because: 1) naphthalene was reported in the groundwater and soil gas samples from borings SB-5 and SB-5A at concentrations of 19 µg/L and 0.61 µg/m³, respectively; 2) naphthalene was not reported in the groundwater samples from borings SB-8 and SB-9 (located approximately 70 feet southeast and 65 feet northeast, respectively, from boring SB-11) at concentrations at or above the lab RL of 1.2 µg/L so naphthalene would likely not be present in soil gas at these locations at concentrations that would result in elevated concentrations of naphthalene in indoor air at the building addressed 915 Main Street; and 3) the presence of more than 30 feet of fine-grained soil (silt and silty clay) in the area of boring SB-11 based on soil types logged by ERA for borings SB-8 and SB-9 would likely impede the upward migration of naphthalene from the groundwater to the surface and into the 915 Main Street building.

RECOMMENDATIONS

The additional data obtained from drilling and sampling borings SB-10 and SB-11 supports the recommendation of no further investigation at the 927 Main Street property presented in the SWI Report (ERA, 2017b).

CLOSING

Use of this letter is limited by and subject to the terms and conditions of the contract between ERA and Equity Enterprises and the qualifications, disclaimers, and limitations stated in the SWI Report (ERA, 2017b).

Please do not hesitate to contact me at (916) 677-9897 or via email at <u>litafreeman@gmail.com</u> if you have any questions or comments regarding this assessment.

Sincerely,

Environmental Risk Assessors

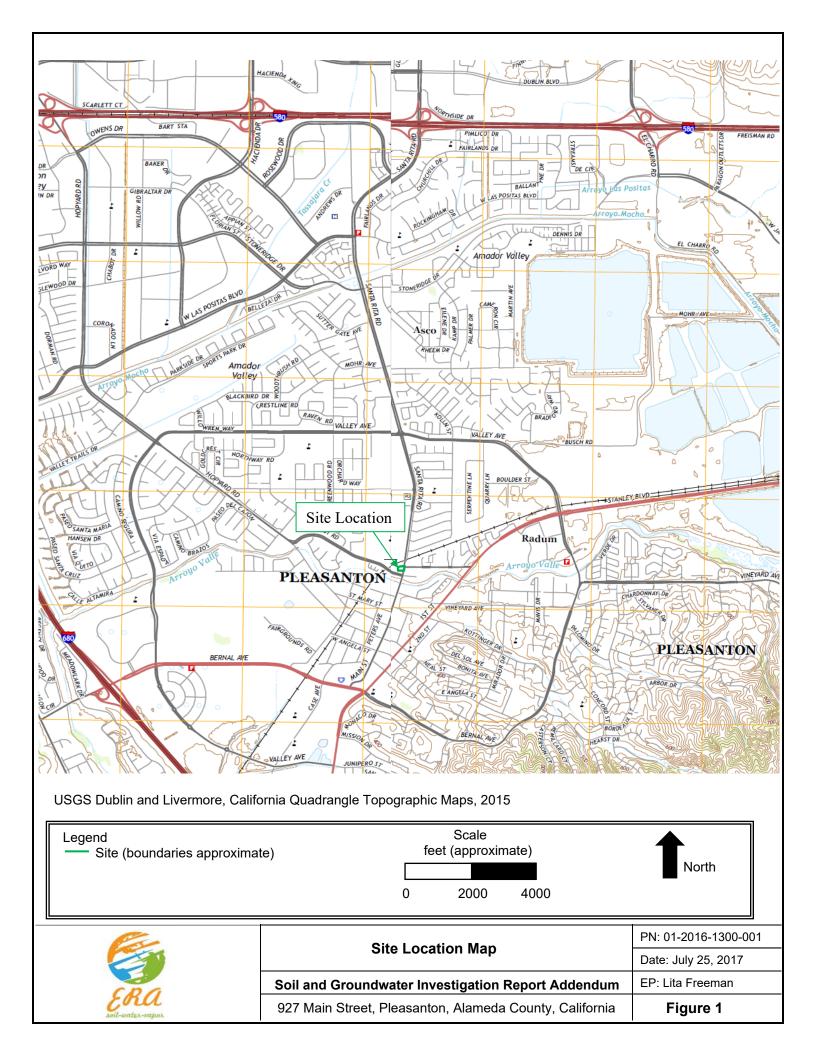
Vita D. Freem

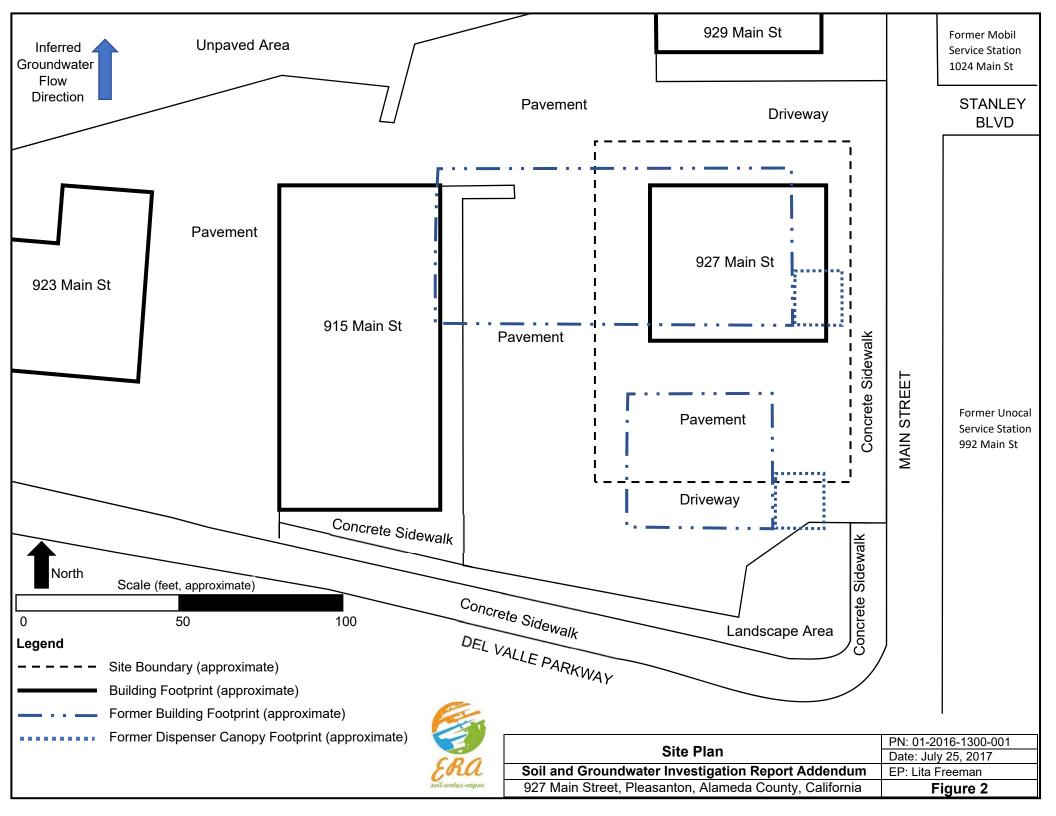
Lita D. Freeman, PG Professional Geologist

Figures

- 1 Site Location Map
- 2 Site Plan

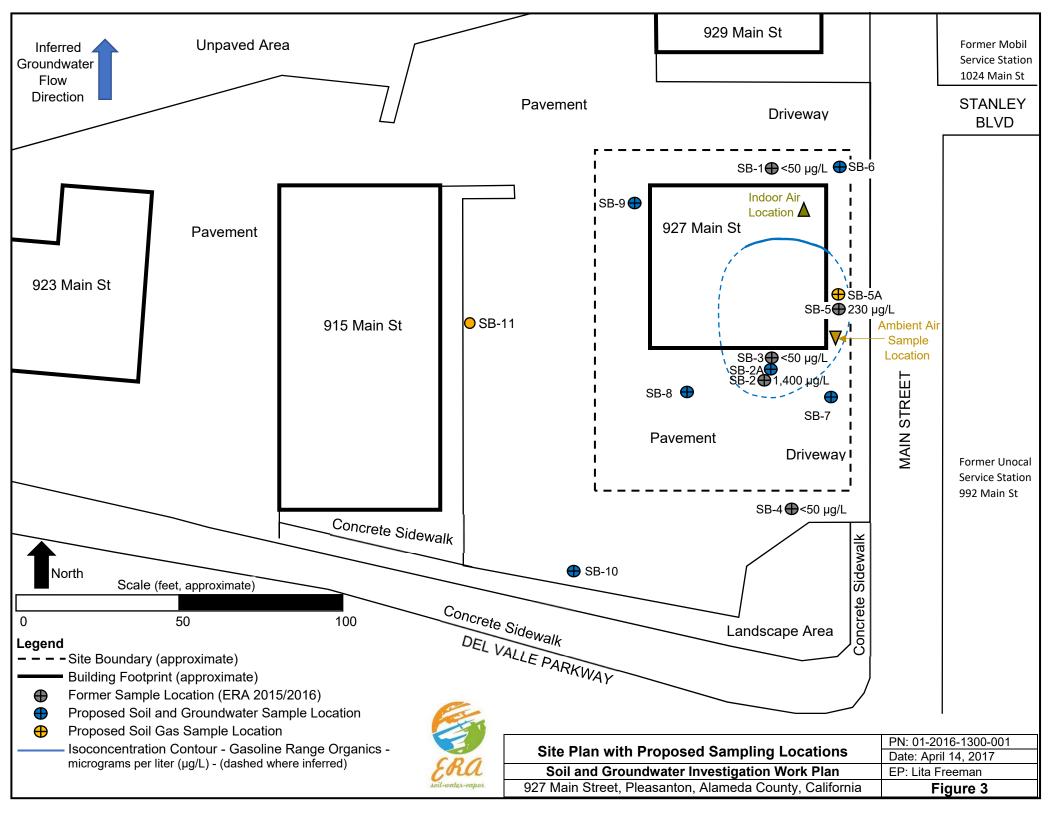
Attachments


1 Documents Related to Investigation by ATC Associates, Inc.


References

- Alameda County Department of Environmental Health (ACDEH). 2017. Conditional Work Plan Approval for Fuel Leak Case No. RO0003199 and GeoTracker Global ID T10000008158, Main Street Property, 927 Main Street, Pleasanton, CA 94566. April 26.
- Basics Environmental, Inc. 2013. *Phase I Environmental Site Assessment, 927 Main Street, Pleasanton, California.* December 5.
- California Environmental Protection Agency Department of Toxic Substances Control (DTSC). 2011. Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air. October.
- California Environmental Protection Agency San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2016. *Environmental Screening Levels*, *Tier 1 ESLs*. February.
- CBRE, Inc. 2016. Geophysical Survey, 915 Main Street, Pleasanton, California. March 30.
- Environmental Risk Assessors. 2015. Limited Phase II Environmental Site Assessment Report, Main Street Property, 927 Main Street, Pleasanton, California 94566. November 27.
- -----. 2016. Soil and Groundwater Investigation Report, Main Street Property, 927 Main Street, Pleasanton. California 94566. October 10.

- ------. 2017a. Soil and Groundwater Investigation Work Plan, Main Street Property, 927 Main Street, Pleasanton, California 94566. April 14.
- ------ 2017b. Soil and Groundwater Investigation Report, Main Street Property, 927 Main Street, Pleasanton, California 94566. June 26.
- ETIC Engineering, Inc. (ETIC). 2009a. Report of Groundwater Monitoring, Third Quarter 2009, Former Mobil Station 04H6J, 1024 Main Street, Pleasanton, California. September 9.


Figures

ATTACHMENT 1

Documents Related to Investigation by ATC Associates, Inc.

	W														-				LD-			
	V					Boreho	ole roc	9							-				visio		.0	
ATC B	ranch:	SSOCIA	TES	IN	c .		Date 6	1.	c /	1	7			salessa	+	Bon	ehole	-	Oct-	-12	1	0
		<u>Sa</u>	11	,			Desired Of	00	7/	1	1,		1	21.	I				J	D	-	0
	epresenta t Informa		LK					<u>ec</u> 17		un	10		<u>'</u>		_		a	5 6 1	to	N/A		
			FLD-1	01) illu	stratir	ng boring/well location	Project No.	<u> </u>	ı	IA	1 81	-	<u> </u>	2			sk No		111	0, 1		
Initial D	epth to C	W Date an	d Time		lı	nitial Depth to GW	Drilling Contr	acto	or		(71	ei	i a					-			
Final D	epth to G	SW Date and	d Time:		F	Final Depth to GW	Rig Type D	P			Drill	ing I	Met	od	p	p	S	Sam	pler	Тур	re	
		on Informat				3	Boring Diame	eter	1	1"							Borin					
If bo	oring com	npleted as w	ell, cor	nplete	Well	Completion Details (Form FLD 106b).	Logged By:	C	· 0 1	in	Ķ	Grad	a T	Gr	Mo		oring Relati		-	-	_	D emen-
Depth (Ft bgs) Recovery (inches)	Blow Counts / 6" Increment	Sample ID	Sample Time	Vapor Reading (ppm)	JSCS Soil	SOIL TYPE DESCRIPTION (Modifier, Munsell Color, Density, Mo	isture, etc)	Gravel	٥		+	atio		Sha	ape	1	Densi	ity	_	т.	t	Moderate uoita
0'	ш 6	0	0	> 5	100	Asphalt + AB 0-1		0	0)	o)	0 3	> 2	IT A	0)	0) [T		1 2	21		- -	1 2
						Grovel up to 1. 5" long, be		EA	20	30	1				X	k				-	×	$\dagger \dagger$
		53-10-2	1,955	0.0		inoist		00			1											
		How	jode	90	-		a		A										The second secon			
5'				0.0										-				-				
				-									T					-	-			
		SB-16-7"	1000	0.0													0					
						pry-moist appears be semi-decon pose	sto	20	70	16	×	(×	X	×					×	
10'							C			-	+		+		+	+	\mathbf{H}	H			+	++
						granitic material					+		+	+		+		H			\vdash	+
		SB-10-12'	1005	0.0																		
15'							- 1				+											
											1											
		5B-10-17'	1010	0.0							1											
20'				0.0		Brown gravel is fine,	moist	15	10	75	X			x	x	X			r		X	
						1725					1		I			F						
		SB-10-22	1020	0.0		This is believed to	be															
	- v =					sluff as the boring in to - sibgs prior to	caves									L						
25'						each time. Representation only observed in	u advance	roy		all and a second				***************************************								

				NAME OF STREET			2												1	FLD	-108	3		
		W					Boreh	ole Log	g			- Taket							Re	evis	ion C).0		
		A	SSOCIA	TES	IN	c .		•			j	Pg	2	of	2						t-12			
AT	C Br	ranch:	Sa	C				Date	la de la constante de la const								Bo	reho	ole II	25/	B-1	0		
ATO	C Re	presenta		K				Project																
		Informat						Location:																
							ng boring/well location	Project No.									Та	ask I	No.					
			W Date and				nitial Depth to GW	Drilling Cont	ract	or		l= :							10		_			_
L		-	W Date and on Information				Final Depth to GW	Rig Type Boring Diam	otor			Dri	lling	ivie	thoo		tal	Bor		nple	r Typ	e 		_
					nnlete	Wall	Completion Details (Form FLD 106b).	Logged By:	etei												nent			-
L	T	ing com	l leteu as w	Eii, coi	Tipiete	T	Tompietion Details (Form FLD 1000).	Logged by.	Т		%		Gra	ad-	G	rain	T		ative		sticity	vI C	eme	n-
Depth (Ft bgs)	Recovery (inches)	unts nent	Q	Time	Vapor Reading (ppm)	USCS Soil	SOIL TYPE DESCRIPTIO (Modifier, Munsell Color, Density, Mo				Γ		ati	on	SI	nape	+	Der	sity	 	Medium	1	ation	
Septh	Secove	Blow Counts 6" Increment	Sample ID	Sample Time	(apor F	JSCS			Gravel	and	Silt	Clay	Vell	00 c	Angula	ubrou	Sound	Aed. D	Jense /erv D	lone	Mediur	one	Joden Joden	leavy
0'	<u> </u>	ш ю	Λ	0)	> 3				1	0)	0)	U	> 2	111	/	1		212		/ -	12	Á		Ħ
1			$/ \setminus$						Λ					/	+					\parallel		\mathbb{H}	+	
\vdash	H				-	1		_/_	\mathbb{H}					\mathbb{H}	\vdash						+	\mathbb{H}	-	
	1				-	-			\mathbb{H}				\wedge	+					ii.			\blacksquare	+	
_					/			/				/		+	-				1					
								/		1	1						1							
5'				\subseteq					1														Y	
								F									I					П	The Second Park Spirits	
													-				T							
		5			0.6												1							
					0,0	-	Brown, noist, silt	100000	3.8		100			H		+	>	<		X		7		H
	H							1°J	10					+	+		+			H		+		Н
30'	Н					-			┞				+	+	+	+	+	-	+	H	+	+	+	Н
_	Н								L					\parallel			+							Н
					0,0		moist-net										1		7 =	Ш				
																							To a constant of the constant	
																-							The second second	
} 5'																								
100	П				0.6		Grades to a ~ 02 fine sand, noist, br	6		40	60			\dagger	\dagger		\dagger			\dagger	+	\dagger		H
						-	fine sand noist br	0 1/0	1		60			×			,			X	\parallel	X	T	П
	H						1		-	9						$\frac{1}{1}$	1						-	H
	H						Wet							H		+	+			+	-	\perp	-	H
	Ш						-										1						-	
0'	Ц																1					Ш		Ц
			B-10-Gw		1130		Sample by hx because boring stay open	Lexand	1.					П			-							
			10 10		11~0		horance hann	17	1								1							
							Charles No. 19	WUU '									-		-	\parallel		\mathbf{H}		
15'	H						stay of and						-		A. C.		-			H	+	+		H
5'	ıl					1			1		1 1			1			1	1		1		1		

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1706926

Report Created for: ATC Group Services

2400 Camino Ramon, Suite 360

San Ramon, CA 94583

Project Contact:

Bryan Campbell

Project P.O.:

Project Name: Pleasanton PhII

Project Received: 06/19/2017

Analytical Report reviewed & approved for release on 06/29/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: ATC Group Services
Project: Pleasanton PhII

WorkOrder: 1706926

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: ATC Group Services Project: Pleasanton PhII

WorkOrder: 1706926

Analytical Qualifiers

а3 Sample diluted due to high organic content.

Reporting limit changed due to variable volume of air that pumped through each filter / sorbent tube. a10

Aqueous sample that contains greater than ~1 vol. % sediment b1

Oil range compounds are significant e7

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

LCS/LCSD recovery and/or RPD is out of acceptance criteria. F2

Case Narrative

Client: ATC Group Services Work Order: 1706926

Project: Pleasanton PhII June 29, 2017

TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Active Soil Gas Advisory of July 2015.

Analytical Report

Client: ATC Group Services **Date Received:** 6/19/17 17:00

Date Prepared: 6/20/17

Project: Pleasanton PhII

WorkOrder: 1706926
Extraction Method: SW5030B

Analytical Method: SW8260B **Unit:** mg/Kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-10-2.5'	1706926-002A	Soil	06/19/20	17 09:55 GC10	140653
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.0050	1	06/22/2017 06:23
Ethylbenzene	ND		0.0050	1	06/22/2017 06:23
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	06/22/2017 06:23
Naphthalene	ND		0.0050	1	06/22/2017 06:23
Toluene	ND		0.0050	1	06/22/2017 06:23
Xylenes, Total	ND		0.0050	1	06/22/2017 06:23
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	116		70-130		06/22/2017 06:23
Toluene-d8	128		70-130		06/22/2017 06:23
4-BFB	99		70-130		06/22/2017 06:23
Benzene-d6	94		60-140		06/22/2017 06:23
Ethylbenzene-d10	107		60-140		06/22/2017 06:23
1,2-DCB-d4	76		60-140		06/22/2017 06:23
Analyst(s): JFM					

<u>Anal</u>	yst(s	<u>):</u>	JEM

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-10-7'	1706926-003A	Soil	06/19/20	17 10:00 GC10	140653
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.0050	1	06/21/2017 03:09
Ethylbenzene	ND		0.0050	1	06/21/2017 03:09
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	06/21/2017 03:09
Naphthalene	ND		0.0050	1	06/21/2017 03:09
Toluene	ND		0.0050	1	06/21/2017 03:09
Xylenes, Total	ND		0.0050	1	06/21/2017 03:09
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	117		70-130		06/21/2017 03:09
Toluene-d8	128		70-130		06/21/2017 03:09
4-BFB	101		70-130		06/21/2017 03:09
Benzene-d6	95		60-140		06/21/2017 03:09
Ethylbenzene-d10	109		60-140		06/21/2017 03:09
1,2-DCB-d4	77		60-140		06/21/2017 03:09

Analytical Report

Client: ATC Group Services

Date Received: 6/19/17 17:00 **Date Prepared:** 6/23/17

Project: Pleasanton PhII

WorkOrder: 1706926 Extraction Method: SW5030B Analytical Method: SW8260B

Unit: $\mu g/L$

Vo	latile	Org	anics
7 0	uuu	OLE	ames

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-10-GW	1706926-004E	B Water	06/19/20	017 11:30 GC18	140934
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.50	1	06/23/2017 04:29
Ethylbenzene	ND		0.50	1	06/23/2017 04:29
Methyl-t-butyl ether (MTBE)	ND		0.50	1	06/23/2017 04:29
Naphthalene	ND		0.50	1	06/23/2017 04:29
Toluene	ND		0.50	1	06/23/2017 04:29
Xylenes, Total	ND		0.50	1	06/23/2017 04:29
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	120		70-130		06/23/2017 04:29
Toluene-d8	98		70-130		06/23/2017 04:29
4-BFB	111		70-130		06/23/2017 04:29
Analyst(s): JEM			Analytical Com	ments: b1	

Analytical Report

Client:ATC Group ServicesWorkOrder:1706926Date Received:6/19/17 17:00Extraction Method:SW5030B

Date Prepared: 6/20/17 **Analytical Method:** SW8021B/8015Bm

Project: Pleasanton PhII Unit: mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-10-2.5'	1706926-002A	Soil	06/19/20	17 09:55 GC19	140651
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g) (C6-C12)	ND		1.0	1	06/22/2017 06:52
MTBE			0.050	1	06/22/2017 06:52
Benzene			0.0050	1	06/22/2017 06:52
Toluene			0.0050	1	06/22/2017 06:52
Ethylbenzene			0.0050	1	06/22/2017 06:52
Xylenes			0.015	1	06/22/2017 06:52
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	82		62-126		06/22/2017 06:52
Analyst(s): HD					

Analyst(s): HD

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-10-7'	1706926-003A	Soil	06/19/20 ⁻	17 10:00 GC19	140651
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g) (C6-C12)	ND		1.0	1	06/23/2017 03:56
MTBE			0.050	1	06/23/2017 03:56
Benzene			0.0050	1	06/23/2017 03:56
Toluene			0.0050	1	06/23/2017 03:56
Ethylbenzene			0.0050	1	06/23/2017 03:56
Xylenes			0.015	1	06/23/2017 03:56
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	82		62-126		06/23/2017 03:56
Analyst(s): HD					

Analytical Report

Client:ATC Group ServicesWorkOrder:1706926Date Received:6/19/17 17:00Extraction Method:SW5030B

Date Prepared: 6/22/17 **Analytical Method:** SW8021B/8015Bm

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-10-GW	1706926-004A	Water	06/19/20	17 11:30 GC3	140940
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g) (C6-C12)	ND		50	1	06/22/2017 20:14
MTBE			5.0	1	06/22/2017 20:14
Benzene			0.50	1	06/22/2017 20:14
Toluene			0.50	1	06/22/2017 20:14
Ethylbenzene			0.50	1	06/22/2017 20:14
Xylenes			1.5	1	06/22/2017 20:14
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	100		89-115		06/22/2017 20:14
Analyst(s): HD			Analytical Comr	ments: b1	

1706926

Analytical Report

Client: ATC Group Services WorkOrder:

Date Received:6/19/17 17:00Extraction Method:ASTM D 1946-90Date Prepared:6/27/17Analytical Method:ASTM D 1946-90

Project: Pleasanton PhII Unit: 9

		Helium	1			
Client ID	Lab ID	Matrix	Date Collected	Instrun	nent	Batch ID
SB-11	1706926-001A	SoilGas	06/19/2017 14:50	GC26		141127
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
11.56	23.05					нк
Analytes		<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Helium		ND		0.050	1	06/27/2017 12:42

SB-11-H	1706926-001B SoilGas	06/19/2017 14:50 GC26	141127
Initial Pressure (psia)	Final Pressure (psia)		Analyst(s)
13.14	26.26		нк
Analytes Helium	<u>Result</u> ND	<u>RL</u> <u>DF</u> 0.050 1	<u>Date Analyzed</u> 06/27/2017 12:55

Analytical Report

Client:ATC Group ServicesWorkOrder:1706926Date Received: $6/19/17 \ 17:00$ Extraction Method:TO15Date Prepared:6/27/17Analytical Method:TO15Project:Pleasanton PhIIUnit: $\mu g/m^3$

Volatile Organic Compounds						
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID		
SB-11	1706926-001A	SoilGas	06/19/2017 14:50 GC24	141287		

Acrolein 31 5.8 1 06/27/2017 20:20 Acrylonitrile ND 1.1 1 06/27/2017 20:20 Entr-Amyl methyl ether (TAME) ND 2.1 1 06/27/2017 20:20 Benzene ND 1.6 1 06/27/2017 20:20 Benzyl chloride ND 2.6 1 06/27/2017 20:20 Bromodichloromethane ND 3.5 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-	Initial Pressure (psia)	Final Pressure (psia)			Analyst(s)
Acetone 65 60 1 06/27/2017 20:20 Acrolein 31 5.8 1 06/27/2017 20:20 Acrylonitrile ND 1.1 1 06/27/2017 20:20 Lert-Amyl methyl ether (TAME) ND 2.1 1 06/27/2017 20:20 Benzene ND 1.6 1 06/27/2017 20:20 Benzene ND 2.6 1 06/27/2017 20:20 Benzyl chloride ND 3.5 1 06/27/2017 20:20 Bromodichloromethane ND 3.5 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 Bromomethane 3.1 2.0 1 06/27/2017 20:20 Bromodichloromethane ND 7.1 3.1 1 06/27/2017 20:20	11.56	23.05			AK
Acrolein 31 5.8 1 06/27/2017 20:20 Acrylonitrile ND 1.1 1 06/27/2017 20:20 Entr-Amyl methyl ether (TAME) ND 2.1 1 06/27/2017 20:20 Benzene ND 1.6 1 06/27/2017 20:20 Benzyl chloride ND 2.6 1 06/27/2017 20:20 Bromodichloromethane ND 3.5 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-	Analytes	<u>Result</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Acrylonitrile	Acetone	65	60	1	06/27/2017 20:20
tert-Amyl methyl ether (TAME) ND 2.1 1 06/27/2017 20:20 Benzene ND 1.6 1 06/27/2017 20:20 Benzyl chloride ND 2.6 1 06/27/2017 20:20 Bromodichloromethane ND 3.5 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 Bromomethane 3.1 2.0 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 75 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 1,3-Butadiene ND 1.6 1 06/27/2017 20:20	Acrolein	31	5.8	1	06/27/2017 20:20
Benzene ND 1.6 1 06/27/2017 20:20 Benzyl chloride ND 2.6 1 06/27/2017 20:20 Bromodichloromethane ND 3.5 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 Bromomethane 3.1 2.0 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 2-Butal alcohol (TBA) ND 75 1 06/27/2017 20:20 1-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 3.3 1 06/27/2017 20:20 Chlorobenzene ND 1.3 1 06/27/2017 20:20 Chloromethane ND 1.3 1 06/27/2017 20:20 <	Acrylonitrile	ND	1.1	1	06/27/2017 20:20
Benzyl chloride ND 2.6 1 06/27/2017 20:20 Bromodichloromethane ND 3.5 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 Bromomethane 3.1 2.0 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 2-Butanone (MEK) ND 75 1 06/27/2017 20:20 1-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 3.2 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 <t< td=""><td>tert-Amyl methyl ether (TAME)</td><td>ND</td><td>2.1</td><td>1</td><td>06/27/2017 20:20</td></t<>	tert-Amyl methyl ether (TAME)	ND	2.1	1	06/27/2017 20:20
Bromodichloromethane ND 3.5 1 06/27/2017 20:20 Bromoform ND 5.2 1 06/27/2017 20:20 Bromomethane 3.1 2.0 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 2-Butanone (MEK) ND 75 1 06/27/2017 20:20 2-Butanone (MEK) ND 76 1 06/27/2017 20:20 1-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroothane ND 1.3 1 06/27/2017 20:20 Chloroothane ND 1.3 1 06/27/2017 20:20 Chloroothane ND 1.0 1 06/27/2017 20:20	Benzene	ND	1.6	1	06/27/2017 20:20
Bromoform ND 5.2 1 06/27/2017 20:20 Bromomethane 3.1 2.0 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 2-Butanone (MEK) ND 75 1 06/27/2017 20:20 1-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloroform ND 1.3 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 1.8 1 06/27/2017 20:20 Cyclohexane ND 4.4 1 06/27/2017 20:20 1/	Benzyl chloride	ND	2.6	1	06/27/2017 20:20
Bromomethane 3.1 2.0 1 06/27/2017 20:20 1,3-Butadiene ND 1.1 1 06/27/2017 20:20 2-Butanone (MEK) ND 75 1 06/27/2017 20:20 1-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chlorotemane ND 1.3 1 06/27/2017 20:20 Chlorotemane ND 1.3 1 06/27/2017 20:20 Chloromethane ND 1.3 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 18 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichlorobenzene ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethane ND 2	Bromodichloromethane	ND	3.5	1	06/27/2017 20:20
1,3-Butadiene ND 1.1 1 06/27/2017 20:20 2-Butanone (MEK) ND 75 1 06/27/2017 20:20 1-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chlorobenzene ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 4.4 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.0 1 06/27/2017 20:	Bromoform	ND	5.2	1	06/27/2017 20:20
2-Butanone (MEK) ND 75 1 06/27/2017 20:20 t-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 1.8 1 06/27/2017 20:20 Obitromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 3.9 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.0 1	Bromomethane	3.1	2.0	1	06/27/2017 20:20
It-Butyl alcohol (TBA) 71 31 1 06/27/2017 20:20 Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,1-Dichlorobenzene ND 2.5 1 <td< td=""><td>1,3-Butadiene</td><td>ND</td><td>1.1</td><td>1</td><td>06/27/2017 20:20</td></td<>	1,3-Butadiene	ND	1.1	1	06/27/2017 20:20
Carbon Disulfide ND 1.6 1 06/27/2017 20:20 Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Cyclohexane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 3.9 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/	2-Butanone (MEK)	ND	75	1	06/27/2017 20:20
Carbon Tetrachloride ND 3.2 1 06/27/2017 20:20 Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,1-Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1	t-Butyl alcohol (TBA)	71	31	1	06/27/2017 20:20
Chlorobenzene ND 2.4 1 06/27/2017 20:20 Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.5 1 06/27/2017 20:20 1,2-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06	Carbon Disulfide	ND	1.6	1	06/27/2017 20:20
Chloroethane ND 1.3 1 06/27/2017 20:20 Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 3.0 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.5 1 06/27/2017 20:20 1,2-Dichloroethane ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1	Carbon Tetrachloride	ND	3.2	1	06/27/2017 20:20
Chloroform ND 2.4 1 06/27/2017 20:20 Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichloroethane ND 3.0 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.5 1 06/27/2017 20:20 1,2-Dichloroethane ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1<	Chlorobenzene	ND	2.4	1	06/27/2017 20:20
Chloromethane ND 1.0 1 06/27/2017 20:20 Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichloroethane ND 3.0 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.5 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0	Chloroethane	ND	1.3	1	06/27/2017 20:20
Cyclohexane ND 18 1 06/27/2017 20:20 Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,1-Dichlorotifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	Chloroform	ND	2.4	1	06/27/2017 20:20
Dibromochloromethane ND 4.4 1 06/27/2017 20:20 1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	Chloromethane	ND	1.0	1	06/27/2017 20:20
1,2-Dibromo-3-chloropropane ND 0.12 1 06/27/2017 20:20 1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	Cyclohexane	ND	18	1	06/27/2017 20:20
1,2-Dibromoethane (EDB) ND 3.9 1 06/27/2017 20:20 1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	Dibromochloromethane	ND	4.4	1	06/27/2017 20:20
1,2-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloroptopane ND 2.4 1 06/27/2017 20:20	1,2-Dibromo-3-chloropropane	ND	0.12	1	06/27/2017 20:20
1,3-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.0 1 06/27/2017 20:20	1,2-Dibromoethane (EDB)	ND	3.9	1	06/27/2017 20:20
1,4-Dichlorobenzene ND 3.0 1 06/27/2017 20:20 Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	1,2-Dichlorobenzene	ND	3.0	1	06/27/2017 20:20
Dichlorodifluoromethane ND 2.5 1 06/27/2017 20:20 1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	1,3-Dichlorobenzene	ND	3.0	1	06/27/2017 20:20
1,1-Dichloroethane ND 2.0 1 06/27/2017 20:20 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	1,4-Dichlorobenzene	ND	3.0	1	06/27/2017 20:20
1,2-Dichloroethane (1,2-DCA) ND 2.0 1 06/27/2017 20:20 1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	Dichlorodifluoromethane	ND	2.5	1	06/27/2017 20:20
1,1-Dichloroethene ND 2.0 1 06/27/2017 20:20 cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	1,1-Dichloroethane	ND	2.0	1	06/27/2017 20:20
cis-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	1,2-Dichloroethane (1,2-DCA)	ND	2.0	1	06/27/2017 20:20
trans-1,2-Dichloroethene ND 2.0 1 06/27/2017 20:20 1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	1,1-Dichloroethene	ND	2.0	1	06/27/2017 20:20
1,2-Dichloropropane ND 2.4 1 06/27/2017 20:20	cis-1,2-Dichloroethene	ND	2.0	1	06/27/2017 20:20
	trans-1,2-Dichloroethene	ND	2.0	1	06/27/2017 20:20
cis-1,3-Dichloropropene ND 2.3 1 06/27/2017 20:20	1,2-Dichloropropane	ND	2.4	1	06/27/2017 20:20
	cis-1,3-Dichloropropene	ND	2.3	1	06/27/2017 20:20

Angela Rydelius, Lab Manager

Analytical Report

Client:ATC Group ServicesWorkOrder:1706926Date Received: $6/19/17 \ 17:00$ Extraction Method:TO15Date Prepared:6/27/17Analytical Method:TO15Project:Pleasanton PhIIUnit: $\mu g/m^3$

Volatile Organic Compounds					
Client ID	Lab ID	Matrix	Date Collected Inst	trument	Batch ID
SB-11	1706926-001A	SoilGas	06/19/2017 14:50 GC2	24	141287

Initial Pressure (psia)	Final Pressure (psia)			Analyst(s)
11.56	23.05			AK
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
trans-1,3-Dichloropropene	ND	2.3	1	06/27/2017 20:20
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	3.6	1	06/27/2017 20:20
Diisopropyl ether (DIPE)	ND	2.1	1	06/27/2017 20:20
1,4-Dioxane	ND	1.8	1	06/27/2017 20:20
Ethanol	ND	96	1	06/27/2017 20:20
Ethyl acetate	ND	1.8	1	06/27/2017 20:20
Ethyl tert-butyl ether (ETBE)	6.4	2.1	1	06/27/2017 20:20
Ethylbenzene	ND	2.2	1	06/27/2017 20:20
4-Ethyltoluene	ND	2.5	1	06/27/2017 20:20
Freon 113	ND	3.9	1	06/27/2017 20:20
Heptane	ND	21	1	06/27/2017 20:20
Hexachlorobutadiene	ND	5.4	1	06/27/2017 20:20
Hexane	ND	18	1	06/27/2017 20:20
2-Hexanone	ND	2.1	1	06/27/2017 20:20
4-Methyl-2-pentanone (MIBK)	ND	2.1	1	06/27/2017 20:20
Methyl-t-butyl ether (MTBE)	ND	1.8	1	06/27/2017 20:20
Methylene chloride	ND	8.8	1	06/27/2017 20:20
Methyl methacrylate	ND	2.1	1	06/27/2017 20:20
Naphthalene	ND	5.3	1	06/27/2017 20:20
Propene	ND	88	1	06/27/2017 20:20
Styrene	ND	2.2	1	06/27/2017 20:20
1,1,1,2-Tetrachloroethane	ND	3.5	1	06/27/2017 20:20
1,1,2,2-Tetrachloroethane	ND	3.5	1	06/27/2017 20:20
Tetrachloroethene	8.9	3.4	1	06/27/2017 20:20
Tetrahydrofuran	5.6	3.0	1	06/27/2017 20:20
Toluene	3.4	1.9	1	06/27/2017 20:20
1,2,4-Trichlorobenzene	ND	3.8	1	06/27/2017 20:20
1,1,1-Trichloroethane	ND	2.8	1	06/27/2017 20:20
1,1,2-Trichloroethane	ND	2.8	1	06/27/2017 20:20
Trichloroethene	ND	2.8	1	06/27/2017 20:20
Trichlorofluoromethane	ND	2.8	1	06/27/2017 20:20
1,2,4-Trimethylbenzene	2.8	2.5	1	06/27/2017 20:20
1,3,5-Trimethylbenzene	8.7	2.5	1	06/27/2017 20:20

Angela Rydelius, Lab Manager

Analytical Report

Client: ATC Group Services **Date Received:** 6/19/17 17:00

Date Prepared: 6/27/17

Project: Pleasanton PhII

WorkOrder: 1706926

Extraction Method: TO15 **Analytical Method:** TO15

Unit: $\mu g/m^3$

Volatile Organic Compounds								
Client ID	Lab ID	Matrix	Date Collected	Instru	nent	Batch II		
SB-11	1706926-001A	SoilGas	06/19/2017 14:50	GC24		141287		
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)		
11.56	23.05					AK		
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed		
Vinyl Acetate		ND		18	1	06/27/2017 20:20		
Vinyl Chloride		ND		1.3	1	06/27/2017 20:20		
Xylenes, Total		ND		6.6	1	06/27/2017 20:20		
Surrogates		REC (%)		<u>Limits</u>				
1,2-DCA-d4		97		70-130		06/27/2017 20:20		
Toluene-d8		95		70-130		06/27/2017 20:20		
4-BFB		91		70-130		06/27/2017 20:20		

Analytical Report

Client: ATC Group Services

Date Received: 6/19/17 17:00

Date Prepared: 6/20/17

Project: Pleasanton PhII

WorkOrder: 1706926
Extraction Method: TO17
Analytical Method: TO17

Unit: $\mu g/m^3$

	TO17				
Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID
SB-11-N	1706926-001C	Sorbent Tube	06/19/2	2017 14:50 GC37	140756
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Naphthalene	ND		3.8	1	06/20/2017 19:35
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
1,2-DCA-d4	107		70-130		06/20/2017 19:35
Analyst(s): KBO		<u>Aı</u>	nalytical Cor	mments: a10	

Analytical Report

Client: ATC Group Services **Date Received:** 6/19/17 17:00

Date Prepared: 6/20/17

Project: Pleasanton PhII

WorkOrder: 1706926 Extraction Method: SW3550B

Analytical Method: SW8015B **Unit:** mg/Kg

Total Extractable Petroleum Hydr	cocarbons w/out SG Clean-Up
----------------------------------	-----------------------------

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
SB-10-2.5'	1706926-002A	Soil	06/19/20	017 09:55 GC9b	140692
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	06/20/2017 21:51
TPH-Motor Oil (C18-C36)	13		5.0	1	06/20/2017 21:51
Surrogates	REC (%)		<u>Limits</u>		
C9	89		78-109		06/20/2017 21:51
Analyst(s): TK			Analytical Com	nments: e7	

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
SB-10-7'	1706926-003A	Soil	06/19/2	017 10:00 GC9b	140692
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	06/20/2017 20:34
TPH-Motor Oil (C18-C36)	ND		5.0	1	06/20/2017 20:34
Surrogates	REC (%)		<u>Limits</u>		
C9	88		78-109		06/20/2017 20:34
Analyst(s): TK					

Analytical Report

Client: ATC Group Services **Date Received:** 6/19/17 17:00

Date Prepared: 6/20/17

Project: Pleasanton PhII

WorkOrder: 1706926 Extraction Method: SW3510C Analytical Method: SW8015B

Unit: $\mu g/L$

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-10-GW	1706926-004A	Water	06/19/20	017 11:30 GC39A	140648
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		100	1	06/21/2017 00:56
TPH-Motor Oil (C18-C36)	ND		500	1	06/21/2017 00:56
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	102		66-138		06/21/2017 00:56
Analyst(s): TK			Analytical Com	ments: a3,b1	

Quality Control Report

 Client:
 ATC Group Services
 WorkOrder:
 1706926

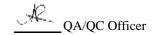
 Date Prepared:
 6/19/17 - 6/20/17
 BatchID:
 140653

 Date Analyzed:
 6/20/17 - 6/21/17
 Extraction Method:
 SW5030B

 Instrument:
 GC10, GC28
 Analytical Method:
 SW8260B

Matrix: Soil

Project: Pleasanton PhII Sample ID: MB/LCS-140653


1706926-002AMS/MSD

mg/kg

QC Summary Report for SW8260B

Unit:

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	0.980	0.10	1	-	98	72-156
tert-Amyl methyl ether (TAME)	ND	0.0363	0.0050	0.050	-	73	53-116
Benzene	ND	0.0425	0.0050	0.050	-	85	63-137
Bromobenzene	ND	0.0448	0.0050	0.050	-	90	68-126
Bromochloromethane	ND	0.0453	0.0050	0.050	-	91	72-126
Bromodichloromethane	ND	0.0374	0.0050	0.050	-	75	61-127
Bromoform	ND	0.0304	0.0050	0.050	-	61	49-100
Bromomethane	ND	0.0632	0.0050	0.050	-	126	40-161
2-Butanone (MEK)	ND	0.155	0.020	0.20	-	77	43-157
t-Butyl alcohol (TBA)	ND	0.152	0.050	0.20	-	76	41-135
n-Butyl benzene	ND	0.0667	0.0050	0.050	-	133	102-160
sec-Butyl benzene	ND	0.0664	0.0050	0.050	-	133	74-168
tert-Butyl benzene	ND	0.0563	0.0050	0.050	-	113	88-157
Carbon Disulfide	ND	0.0528	0.0050	0.050	-	106	42-151
Carbon Tetrachloride	ND	0.0449	0.0050	0.050	-	90	49-149
Chlorobenzene	ND	0.0434	0.0050	0.050	-	87	77-121
Chloroethane	ND	0.0464	0.0050	0.050	-	93	41-134
Chloroform	ND	0.0432	0.0050	0.050	-	86	69-133
Chloromethane	ND	0.0403	0.0050	0.050	-	81	31-119
2-Chlorotoluene	ND	0.0521	0.0050	0.050	-	104	79-139
4-Chlorotoluene	ND	0.0497	0.0050	0.050	-	99	77-138
Dibromochloromethane	ND	0.0348	0.0050	0.050	-	70	58-121
1,2-Dibromo-3-chloropropane	ND	0.0127	0.0040	0.020	-	64	39-115
1,2-Dibromoethane (EDB)	ND	0.0403	0.0040	0.050	-	81	67-119
Dibromomethane	ND	0.0393	0.0050	0.050	-	79	66-117
1,2-Dichlorobenzene	ND	0.0400	0.0050	0.050	-	80	59-109
1,3-Dichlorobenzene	ND	0.0452	0.0050	0.050	-	90	75-130
1,4-Dichlorobenzene	ND	0.0446	0.0050	0.050	-	89	71-122
Dichlorodifluoromethane	ND	0.0206	0.0050	0.050	-	41, F2	43-68
1,1-Dichloroethane	ND	0.0433	0.0050	0.050	-	87	62-139
1,2-Dichloroethane (1,2-DCA)	ND	0.0395	0.0040	0.050	-	79	58-135
1,1-Dichloroethene	ND	0.0459	0.0050	0.050	-	92	42-145
cis-1,2-Dichloroethene	ND	0.0431	0.0050	0.050	-	86	67-129
trans-1,2-Dichloroethene	ND	0.0435	0.0050	0.050	-	87	54-139
1,2-Dichloropropane	ND	0.0408	0.0050	0.050	-	82	68-125
1,3-Dichloropropane	ND	0.0394	0.0050	0.050	-	79	65-125
2,2-Dichloropropane	ND	0.0468	0.0050	0.050	_	94	45-151

Quality Control Report

 Client:
 ATC Group Services
 WorkOrder:
 1706926

 Date Prepared:
 6/19/17 - 6/20/17
 BatchID:
 140653

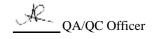
 Date Analyzed:
 6/20/17 - 6/21/17
 Extraction Method:
 SW5030B

 Instrument:
 GC10, GC28
 Analytical Method:
 SW8260B

Matrix: Soil

Project: Pleasanton PhII

Unit: mg/kg


Sample ID:

1706926-002AMS/MSD

MB/LCS-140653

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
1,1-Dichloropropene	ND	0.0433	0.0050	0.050	-	87	64-138	
cis-1,3-Dichloropropene	ND	0.0395	0.0050	0.050	-	79	62-134	
trans-1,3-Dichloropropene	ND	0.0368	0.0050	0.050	-	74	59-128	
Diisopropyl ether (DIPE)	ND	0.0401	0.0050	0.050	-	80	52-129	
Ethylbenzene	ND	0.0452	0.0050	0.050	-	90	74-142	
Ethyl tert-butyl ether (ETBE)	ND	0.0390	0.0050	0.050	-	78	53-125	
Freon 113	ND	0.0430	0.0050	0.050	-	86	51-126	
Hexachlorobutadiene	ND	0.0586	0.0050	0.050	-	117	70-158	
Hexachloroethane	ND	0.0436	0.0050	0.050	-	87	80-160	
2-Hexanone	ND	0.0287	0.0050	0.050	-	57	41-116	
Isopropylbenzene	ND	0.0570	0.0050	0.050	-	114	77-146	
4-Isopropyl toluene	ND	0.0589	0.0050	0.050	-	118	96-159	
Methyl-t-butyl ether (MTBE)	ND	0.0380	0.0050	0.050	-	76	58-122	
Methylene chloride	ND	0.0462	0.0050	0.050	-	92	58-135	
4-Methyl-2-pentanone (MIBK)	ND	0.0302	0.0050	0.050	-	60	40-112	
Naphthalene	ND	0.0195	0.0050	0.050	-	39	23-73	
n-Propyl benzene	ND	0.0574	0.0050	0.050	-	115	82-160	
Styrene	ND	0.0429	0.0050	0.050	-	86	68-124	
1,1,1,2-Tetrachloroethane	ND	0.0453	0.0050	0.050	-	91	70-128	
1,1,2,2-Tetrachloroethane	ND	0.0333	0.0050	0.050	-	67	57-111	
Tetrachloroethene	ND	0.0504	0.0050	0.050	-	101	73-145	
Toluene	ND	0.0428	0.0050	0.050	-	86	76-130	
1,2,3-Trichlorobenzene	ND	0.0271	0.0050	0.050	-	54	43-72	
1,2,4-Trichlorobenzene	ND	0.0349	0.0050	0.050	-	70	47-95	
1,1,1-Trichloroethane	ND	0.0451	0.0050	0.050	-	90	60-141	
1,1,2-Trichloroethane	ND	0.0389	0.0050	0.050	-	78	62-118	
Trichloroethene	ND	0.0466	0.0050	0.050	-	93	72-132	
Trichlorofluoromethane	ND	0.0456	0.0050	0.050	-	91	43-135	
1,2,3-Trichloropropane	ND	0.0401	0.0050	0.050	-	80	57-122	
1,2,4-Trimethylbenzene	ND	0.0506	0.0050	0.050	-	101	81-152	
1,3,5-Trimethylbenzene	ND	0.0542	0.0050	0.050	-	108	78-160	
Vinyl Chloride	ND	0.0440	0.0050	0.050	-	88	42-131	
Xylenes, Total	ND	0.134	0.0050	0.15	-	89	70-130	

Quality Control Report

 Client:
 ATC Group Services
 WorkOrder:
 1706926

 Date Prepared:
 6/19/17 - 6/20/17
 BatchID:
 140653

 Date Analyzed:
 6/20/17 - 6/21/17
 Extraction Method:
 SW5030B

 Instrument:
 GC10, GC28
 Analytical Method:
 SW8260B

Matrix: Soil Unit:

Project: Pleasanton PhII **Sample ID:** MB/LCS-140653

1706926-002AMS/MSD

mg/kg

QC Summary Report for SW8260B									
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits		
Surrogate Recovery									
Dibromofluoromethane	0.1297	0.129		0.12	104	104	70-130		
Toluene-d8	0.1437	0.148		0.12	115	118	70-130		
4-BFB	0.01163	0.0118		0.012	93	94	70-130		
Benzene-d6	0.08548	0.0854		0.10	85	85	60-140		
Ethylbenzene-d10	0.1049	0.105		0.10	105	105	60-140		
1,2-DCB-d4	0.07659	0.0805		0.10	77	80	60-140		

Quality Control Report

 Client:
 ATC Group Services
 WorkOrder:
 1706926

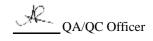
 Date Prepared:
 6/19/17 - 6/20/17
 BatchID:
 140653

 Date Analyzed:
 6/20/17 - 6/21/17
 Extraction Method:
 SW5030B

 Instrument:
 GC10, GC28
 Analytical Method:
 SW8260B

Matrix: Soil

Project: Pleasanton PhII **Sample ID:** MB/LCS-140653


1706926-002AMS/MSD

mg/kg

QC Summary Report for SW8260B

Unit:

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acetone	1.18	1.18	1	ND	118	118	72-156	0	20
tert-Amyl methyl ether (TAME)	0.0396	0.0394	0.050	ND	79	79	53-116	0	20
Benzene	0.0436	0.0441	0.050	ND	87	88	63-137	1.12	20
Bromobenzene	0.0368	0.0374	0.050	ND	74	75	68-126	1.75	20
Bromochloromethane	0.0430	0.0434	0.050	ND	86	87	72-126	0.972	20
Bromodichloromethane	0.0417	0.0421	0.050	ND	83	84	61-127	0.805	20
Bromoform	0.0329	0.0316	0.050	ND	66	63	49-100	4.24	20
Bromomethane	0.0516	0.0525	0.050	ND	103	105	40-161	1.81	20
2-Butanone (MEK)	0.199	0.193	0.20	ND	100	96	43-157	3.22	20
t-Butyl alcohol (TBA)	0.178	0.175	0.20	ND	89	88	41-135	1.68	20
n-Butyl benzene	0.0546	0.0560	0.050	ND	109	112	102-160	2.40	20
sec-Butyl benzene	0.0531	0.0556	0.050	ND	106	111	74-168	4.67	20
tert-Butyl benzene	0.0479	0.0505	0.050	ND	96	101	88-157	5.13	20
Carbon Disulfide	0.0391	0.0400	0.050	ND	78	80	42-151	2.29	20
Carbon Tetrachloride	0.0413	0.0420	0.050	ND	83	84	49-149	1.71	20
Chlorobenzene	0.0399	0.0403	0.050	ND	80	81	77-121	1.16	20
Chloroethane	0.0519	0.0527	0.050	ND	104	105	41-134	1.49	20
Chloroform	0.0442	0.0448	0.050	ND	89	90	69-133	1.34	20
Chloromethane	0.0491	0.0498	0.050	ND	98	100	31-119	1.47	20
2-Chlorotoluene	0.0437	0.0449	0.050	ND	87	90	79-139	2.63	20
4-Chlorotoluene	0.0401	0.0417	0.050	ND	80	83	77-138	4.03	20
Dibromochloromethane	0.0376	0.0363	0.050	ND	75	73	58-121	3.45	20
1,2-Dibromo-3-chloropropane	0.0126	0.0124	0.020	ND	63	62	39-115	1.69	20
1,2-Dibromoethane (EDB)	0.0399	0.0405	0.050	ND	80	81	67-119	1.47	20
Dibromomethane	0.0429	0.0430	0.050	ND	86	86	66-117	0	20
1,2-Dichlorobenzene	0.0353	0.0361	0.050	ND	71	72	59-109	2.14	20
1,3-Dichlorobenzene	0.0418	0.0426	0.050	ND	84	85	75-130	1.70	20
1,4-Dichlorobenzene	0.0394	0.0406	0.050	ND	79	81	71-122	2.85	20
Dichlorodifluoromethane	0.0198	0.0209	0.050	ND	40,F1	42,F1	43-68	5.26	20
1,1-Dichloroethane	0.0450	0.0453	0.050	ND	90	91	62-139	0.602	20
1,2-Dichloroethane (1,2-DCA)	0.0456	0.0461	0.050	ND	91	92	58-135	1.06	20
1,1-Dichloroethene	0.0392	0.0400	0.050	ND	78	80	42-145	1.92	20
cis-1,2-Dichloroethene	0.0429	0.0430	0.050	ND	86	86	67-129	0	20
trans-1,2-Dichloroethene	0.0414	0.0424	0.050	ND	83	85	54-139	2.41	20
1,2-Dichloropropane	0.0445	0.0443	0.050	ND	89	89	68-125	0	20
1,3-Dichloropropane	0.0425	0.0426	0.050	ND	85	85	65-125	0	20
2,2-Dichloropropane	0.0432	0.0428	0.050	ND	86	86	45-151	0	20

Quality Control Report

 Client:
 ATC Group Services
 WorkOrder:
 1706926

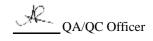
 Date Prepared:
 6/19/17 - 6/20/17
 BatchID:
 140653

 Date Analyzed:
 6/20/17 - 6/21/17
 Extraction Method:
 SW5030B

 Instrument:
 GC10, GC28
 Analytical Method:
 SW8260B

Matrix: Soil

Project: Pleasanton PhII Sample ID: MB/LCS-140653


1706926-002AMS/MSD

mg/kg

QC Summary Report for SW8260B

Unit:

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
1,1-Dichloropropene	0.0418	0.0428	0.050	ND	84	86	64-138	2.22	20
cis-1,3-Dichloropropene	0.0428	0.0433	0.050	ND	86	87	62-134	1.14	20
trans-1,3-Dichloropropene	0.0439	0.0440	0.050	ND	88	88	59-128	0	20
Diisopropyl ether (DIPE)	0.0448	0.0452	0.050	ND	90	90	52-129	0	20
Ethylbenzene	0.0435	0.0449	0.050	ND	87	90	74-142	3.07	20
Ethyl tert-butyl ether (ETBE)	0.0442	0.0444	0.050	ND	88	89	53-125	0.439	20
Freon 113	0.0343	0.0350	0.050	ND	69	70	51-126	1.99	20
Hexachlorobutadiene	0.0439	0.0438	0.050	ND	88	88	70-158	0	20
Hexachloroethane	0.0467	0.0479	0.050	ND	93	96	80-160	2.43	20
2-Hexanone	0.0356	0.0356	0.050	ND	71	71	41-116	0	20
Isopropylbenzene	0.0437	0.0453	0.050	ND	87	91	77-146	3.59	20
4-Isopropyl toluene	0.0456	0.0472	0.050	ND	91,F1	94,F1	96-159	3.37	20
Methyl-t-butyl ether (MTBE)	0.0444	0.0446	0.050	ND	89	89	58-122	0	20
Methylene chloride	0.0466	0.0471	0.050	ND	93	94	58-135	1.22	20
4-Methyl-2-pentanone (MIBK)	0.0384	0.0377	0.050	ND	77	75	40-112	1.87	20
Naphthalene	0.0222	0.0217	0.050	ND	44	43	23-73	2.17	20
n-Propyl benzene	0.0487	0.0515	0.050	ND	97	103	82-160	5.45	20
Styrene	0.0380	0.0390	0.050	ND	76	78	68-124	2.49	20
1,1,1,2-Tetrachloroethane	0.0404	0.0403	0.050	ND	81	81	70-128	0	20
1,1,2,2-Tetrachloroethane	0.0394	0.0390	0.050	ND	79	78	57-111	1.08	20
Tetrachloroethene	0.0395	0.0402	0.050	ND	79	81	73-145	1.88	20
Toluene	0.0409	0.0416	0.050	ND	82	83	76-130	1.70	20
1,2,3-Trichlorobenzene	0.0245	0.0243	0.050	ND	49	49	43-72	0	20
1,2,4-Trichlorobenzene	0.0298	0.0294	0.050	ND	60	59	47-95	1.69	20
1,1,1-Trichloroethane	0.0422	0.0429	0.050	ND	84	86	60-141	1.65	20
1,1,2-Trichloroethane	0.0408	0.0412	0.050	ND	82	82	62-118	0	20
Trichloroethene	0.0400	0.0410	0.050	ND	80	82	72-132	2.37	20
Trichlorofluoromethane	0.0369	0.0377	0.050	ND	74	75	43-135	2.02	20
1,2,3-Trichloropropane	0.0445	0.0438	0.050	ND	89	87	57-122	1.75	20
1,2,4-Trimethylbenzene	0.0470	0.0481	0.050	ND	94	96	81-152	2.37	20
1,3,5-Trimethylbenzene	0.0488	0.0500	0.050	ND	98	100	78-160	2.29	20
Vinyl Chloride	0.0492	0.0509	0.050	ND	98	102	42-131	3.43	20
Xylenes, Total	0.123	0.128	0.15	ND	82	85	70-130	4.23	20

Quality Control Report

Unit:

 Client:
 ATC Group Services
 WorkOrder:
 1706926

 Date Prepared:
 6/19/17 - 6/20/17
 BatchID:
 140653

 Date Analyzed:
 6/20/17 - 6/21/17
 Extraction Method:
 SW5030B

 Instrument:
 GC10, GC28
 Analytical Method:
 SW8260B

Matrix: Soil

Project: Pleasanton PhII **Sample ID:** MB/LCS-140653

1706926-002AMS/MSD

mg/kg

	QC Summary Report for SW8260B								
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Surrogate Recovery									
Dibromofluoromethane	0.153	0.154	0.12		123	123	70-130	0	20
Toluene-d8	0.157	0.157	0.12		126	125	70-130	0.288	20
4-BFB	0.0127	0.0127	0.012		102	102	70-130	0	20
Benzene-d6	0.0912	0.0919	0.10		91	92	60-140	0.863	20
Ethylbenzene-d10	0.0975	0.0994	0.10		97	99	60-140	1.99	20
1,2-DCB-d4	0.0735	0.0746	0.10		73	75	60-140	1.48	20

Quality Control Report

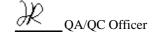
Client: ATC Group Services

Date Prepared:6/22/17Date Analyzed:6/22/17Instrument:GC16Matrix:Water

Project: Pleasanton PhII

WorkOrder: 1706926 **BatchID:** 140934

Extraction Method: SW5030B


Analytical Method: SW8260B **Unit:** μg/L

Sample ID: MB/LCS/LCSD-140934

QC Summary Report for SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
	Nesun		Vai	701CEO	Lillits
Acetone	ND	10	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.50	-	-	-
Benzene	ND	0.50	-	-	-
Bromobenzene	ND	0.50	-	-	-
Bromochloromethane	ND	0.50	-	-	-
Bromodichloromethane	ND	0.50	-	-	-
Bromoform	ND	0.50	-	-	-
Bromomethane	ND	0.50	-	-	-
2-Butanone (MEK)	ND	2.0	-	-	-
t-Butyl alcohol (TBA)	ND	2.0	-	-	-
n-Butyl benzene	ND	0.50	-	-	-
sec-Butyl benzene	ND	0.50	-	-	-
tert-Butyl benzene	ND	0.50	-	-	-
Carbon Disulfide	ND	0.50	-	-	-
Carbon Tetrachloride	ND	0.50	-	-	-
Chlorobenzene	ND	0.50	-	-	-
Chloroethane	ND	0.50	-	-	-
Chloroform	ND	0.50	-	-	-
Chloromethane	ND	0.50	-	-	-
2-Chlorotoluene	ND	0.50	-	-	-
4-Chlorotoluene	ND	0.50	-	-	-
Dibromochloromethane	ND	0.50	-	-	-
1,2-Dibromo-3-chloropropane	ND	0.20	-	-	-
1,2-Dibromoethane (EDB)	ND	0.50	-	-	-
Dibromomethane	ND	0.50	-	-	-
1,2-Dichlorobenzene	ND	0.50	-	-	-
1,3-Dichlorobenzene	ND	0.50	-	-	-
1,4-Dichlorobenzene	ND	0.50	-	-	-
Dichlorodifluoromethane	ND	0.50	-	-	-
1,1-Dichloroethane	ND	0.50	-	_	_
1,2-Dichloroethane (1,2-DCA)	ND	0.50	-	-	-
1,1-Dichloroethene	ND	0.50	-	_	_
cis-1,2-Dichloroethene	ND	0.50	-	_	_
trans-1,2-Dichloroethene	ND	0.50	-	-	-
1,2-Dichloropropane	ND	0.50	-	_	-
1,3-Dichloropropane	ND	0.50	-	-	_
2,2-Dichloropropane	ND	0.50	-	-	-
1,1-Dichloropropene	ND	0.50	-	-	-
cis-1,3-Dichloropropene	ND	0.50	_	-	-

(Cont.)

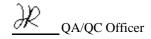
Quality Control Report

ATC Group Services **Client:**

Date Prepared: 6/22/17 **Date Analyzed:** 6/22/17 GC16 **Instrument: Matrix:**

Water

Project: Pleasanton PhII WorkOrder: 1706926 **BatchID:** 140934


Extraction Method: SW5030B

Analytical Method: SW8260B **Unit:** μg/L

Sample ID: MB/LCS/LCSD-140934

QC	Summary	Report	for	SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
trans-1,3-Dichloropropene	ND	0.50	-	-	-
Diisopropyl ether (DIPE)	ND	0.50	-	-	-
Ethylbenzene	ND	0.50	-	-	=
Ethyl tert-butyl ether (ETBE)	ND	0.50	-	-	=
Freon 113	ND	0.50	-	-	=
Hexachlorobutadiene	ND	0.50	-	-	=
Hexachloroethane	ND	0.50	-	-	=
2-Hexanone	ND	0.50	-	-	=
Isopropylbenzene	ND	0.50	-	-	=
4-Isopropyl toluene	ND	0.50	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.50	-	-	=
Methylene chloride	ND	0.50	-	-	=
4-Methyl-2-pentanone (MIBK)	ND	0.50	-	-	=
Naphthalene	ND	0.50	-	-	=
n-Propyl benzene	ND	0.50	-	-	=
Styrene	ND	0.50	-	-	-
1,1,1,2-Tetrachloroethane	ND	0.50	-	-	=
1,1,2,2-Tetrachloroethane	ND	0.50	-	-	=
Tetrachloroethene	ND	0.50	-	-	=
Toluene	ND	0.50	-	-	=
1,2,3-Trichlorobenzene	ND	0.50	-	-	=
1,2,4-Trichlorobenzene	ND	0.50	-	-	=
1,1,1-Trichloroethane	ND	0.50	-	-	=
1,1,2-Trichloroethane	ND	0.50	-	-	=
Trichloroethene	ND	0.50	-	-	=
Trichlorofluoromethane	ND	0.50	-	-	=
1,2,3-Trichloropropane	ND	0.50	-	-	=
1,2,4-Trimethylbenzene	ND	0.50	-	-	=
1,3,5-Trimethylbenzene	ND	0.50	-	-	=
Vinyl Chloride	ND	0.50	-	-	-
Xylenes, Total	ND	0.50	-	-	-
Surrogate Recovery					
Dibromofluoromethane	27.52		25	110	70-130
Toluene-d8	25.46		25	102	70-130
4-BFB	2.85		2.5	114	70-130

Quality Control Report

Client: ATC Group Services

Date Prepared:6/22/17Date Analyzed:6/22/17Instrument:GC16

Matrix: Water

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 140934

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: μg/L

Sample ID: MB/LCS/LCSD-140934

QC Summary Report for SW8260B

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acetone	145	149	200	72	74	46-155	2.93	20
tert-Amyl methyl ether (TAME)	8.65	8.86	10	86	89	54-140	2.39	20
Benzene	9.83	9.89	10	98	99	47-158	0.656	20
Bromobenzene	9.55	9.13	10	95	91	50-155	4.48	20
Bromochloromethane	9.04	9.14	10	90	91	48-160	1.03	20
Bromodichloromethane	9.06	9.17	10	91	92	60-156	1.24	20
Bromoform	8.87	9.06	10	89	91	43-149	2.11	20
Bromomethane	10.7	10.7	10	107	107	61-159	0	20
2-Butanone (MEK)	32.8	33.4	40	82	83	61-124	1.82	20
t-Butyl alcohol (TBA)	27.9	28.3	40	70	71	42-140	1.52	20
n-Butyl benzene	10.4	10.6	10	104	106	74-138	1.78	20
sec-Butyl benzene	10.4	10.2	10	104	102	72-142	2.07	20
tert-Butyl benzene	10.1	9.83	10	101	98	74-140	3.18	20
Carbon Disulfide	9.76	9.89	10	98	99	64-127	1.41	20
Carbon Tetrachloride	10.1	10.1	10	101	101	61-158	0	20
Chlorobenzene	9.09	9.17	10	91	92	43-157	0.878	20
Chloroethane	10.3	10.3	10	103	103	50-127	0	20
Chloroform	9.52	9.64	10	95	96	56-154	1.25	20
Chloromethane	9.73	9.81	10	97	98	41-132	0.802	20
2-Chlorotoluene	10.5	10.1	10	105	101	50-155	3.21	20
4-Chlorotoluene	10.2	9.86	10	102	99	53-153	3.02	20
Dibromochloromethane	9.02	9.14	10	90	91	49-156	1.38	20
1,2-Dibromo-3-chloropropane	3.45	3.58	4	86	90	46-149	3.69	20
1,2-Dibromoethane (EDB)	8.65	8.75	10	86	88	44-155	1.18	20
Dibromomethane	8.72	8.85	10	87	89	50-157	1.44	20
1,2-Dichlorobenzene	9.26	9.36	10	93	94	48-156	1.08	20
1,3-Dichlorobenzene	9.93	10.0	10	99	100	49-159	1.05	20
1,4-Dichlorobenzene	9.49	9.59	10	95	96	51-151	1.02	20
Dichlorodifluoromethane	9.15	9.40	10	92	94	61-117	2.68	20
1,1-Dichloroethane	9.53	9.68	10	95	97	53-153	1.59	20
1,2-Dichloroethane (1,2-DCA)	8.79	8.95	10	88	89	66-125	1.77	20
1,1-Dichloroethene	9.51	9.56	10	95	96	47-149	0.585	20
cis-1,2-Dichloroethene	9.26	9.32	10	93	93	54-155	0	20
trans-1,2-Dichloroethene	9.64	9.72	10	96	97	46-151	0.780	20
1,2-Dichloropropane	9.38	9.49	10	94	95	54-153	1.19	20
1,3-Dichloropropane	8.63	8.79	10	86	88	49-150	1.90	20
2,2-Dichloropropane	9.84	9.89	10	98	99	74-147	0.484	20
1,1-Dichloropropene	9.76	9.76	10	98	98	54-150	0	20
cis-1,3-Dichloropropene	9.16	9.27	10	92	93	55-159	1.24	20

(Cont.)

A QA/QC Officer

Quality Control Report

Client: ATC Group Services

WorkOrder: 1706926 **Date Prepared:** 6/22/17 **BatchID:** 140934 **Date Analyzed:** 6/22/17 **Extraction Method: SW5030B** GC16 **Instrument: Analytical Method:** SW8260B **Matrix:** Water **Unit:** $\mu g/L$

Project: Pleasanton PhII **Sample ID:** MB/LCS/LCSD-140934

QC Summary Report for SW8260B

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
trans-1,3-Dichloropropene	9.24	9.35	10	92	93	74-131	1.17	20
Diisopropyl ether (DIPE)	9.25	9.33	10	92	93	57-136	0.878	20
Ethylbenzene	9.32	9.35	10	93	94	60-152	0.300	20
Ethyl tert-butyl ether (ETBE)	9.12	9.28	10	91	93	55-137	1.76	20
Freon 113	9.90	9.89	10	99	99	47-138	0	20
Hexachlorobutadiene	9.60	9.37	10	96	94	66-160	2.42	20
Hexachloroethane	10.1	10.2	10	101	102	75-130	1.33	20
2-Hexanone	7.88	8.19	10	79	82	70-115	3.79	20
Isopropylbenzene	9.32	9.25	10	93	92	59-156	0.784	20
4-Isopropyl toluene	10.2	10.0	10	102	100	75-138	1.58	20
Methyl-t-butyl ether (MTBE)	8.64	8.81	10	86	88	53-139	1.90	20
Methylene chloride	8.26	8.32	10	83	83	66-127	0	20
4-Methyl-2-pentanone (MIBK)	7.81	8.08	10	78	81	42-153	3.39	20
Naphthalene	8.45	8.39	10	84	84	66-127	0	20
n-Propyl benzene	10.4	9.97	10	104	100	54-155	3.87	20
Styrene	9.47	9.42	10	95	94	51-152	0.464	20
1,1,1,2-Tetrachloroethane	9.34	9.46	10	93	95	58-159	1.28	20
1,1,2,2-Tetrachloroethane	8.39	8.42	10	84	84	51-150	0	20
Tetrachloroethene	9.09	9.06	10	91	91	55-145	0	20
Toluene	9.13	9.23	10	91	92	52-137	1.09	20
1,2,3-Trichlorobenzene	8.73	8.75	10	87	87	70-136	0	20
1,2,4-Trichlorobenzene	9.30	9.13	10	93	91	74-137	1.88	20
1,1,1-Trichloroethane	9.66	9.68	10	97	97	57-156	0	20
1,1,2-Trichloroethane	8.54	8.60	10	85	86	51-150	0.622	20
Trichloroethene	9.43	9.57	10	94	96	43-157	1.39	20
Trichlorofluoromethane	9.98	10.0	10	100	100	50-147	0	20
1,2,3-Trichloropropane	8.56	8.54	10	86	85	41-152	0.144	20
1,2,4-Trimethylbenzene	10.4	10.2	10	104	102	57-157	1.63	20
1,3,5-Trimethylbenzene	10.5	10.2	10	105	102	56-159	2.32	20
Vinyl Chloride	10.8	10.9	10	108	109	42-137	0.471	20
Xylenes, Total	28.3	28.0	30	94	93	70-130	0.941	20
Surrogate Recovery								
Dibromofluoromethane	27.4	27.4	25	110	109	70-130	0.226	20
Toluene-d8	25.9	25.7	25	104	103	70-130	0.641	20
4-BFB	2.65	2.60	2.5	106	104	70-130	1.95	20

Quality Control Report

Client: ATC Group Services

Date Prepared: 6/19/17

Date Analyzed: 6/20/17 - 6/21/17

Instrument: GC7 **Matrix:** Soil

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 140651

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit: mg/Kg

Sample ID: MB/LCS-140651

1706880-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.515	0.40	0.60	-	86	82-118
MTBE	ND	0.0881	0.050	0.10	-	88	61-119
Benzene	ND	0.0819	0.0050	0.10	-	82	77-128
Toluene	ND	0.0864	0.0050	0.10	-	86	74-132
Ethylbenzene	ND	0.126	0.0050	0.10	-	126	84-127
Xylenes	ND	0.349	0.015	0.30	-	116	86-129
Surrogate Recovery							
2-Fluorotoluene	0.1007	0.101		0.10	101	101	75-134

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.524	0.547	0.60	ND	87	91	58-129	4.18	20
MTBE	0.0702	0.0661	0.10	ND	70	66	47-118	6.07	20
Benzene	0.0674	0.0635	0.10	ND	67	64	55-129	5.94	20
Toluene	0.0725	0.0703	0.10	ND	71	69	56-130	3.08	20
Ethylbenzene	0.105	0.101	0.10	ND	105	101	63-129	4.01	20
Xylenes	0.315	0.309	0.30	ND	104	102	64-131	2.00	20
Surrogate Recovery									
2-Fluorotoluene	0.0885	0.0849	0.10		88	85	62-126	4.14	20

Quality Control Report

Client: ATC Group Services

Date Prepared: 6/22/17 **Date Analyzed:** 6/22/17 **Instrument:** GC3

Matrix: Water

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 140940

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit: $\mu g/L$

Sample ID: MB/LCS-140940

1706A12-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	51.2	40	60	-	85	78-116
MTBE	ND	11.3	5.0	10	-	113	72-122
Benzene	ND	9.16	0.50	10	-	92	81-123
Toluene	ND	9.82	0.50	10	-	98	83-129
Ethylbenzene	ND	10.1	0.50	10	-	101	88-126
Xylenes	ND	29.4	1.5	30	=	98	87-131
Surrogate Recovery							
aaa-TFT	10.61	10.3		10	106	103	80-116

aaa-TFT 10	0.61	10.3	10	106	103	89-116
------------	------	------	----	-----	-----	--------

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	52.9	53.7	60	ND	88	90	63-133	1.43	20
MTBE	11.1	11.6	10	ND	111	116	69-122	3.93	20
Benzene	9.02	9.41	10	ND	90	94	84-125	4.21	20
Toluene	9.53	9.97	10	ND	95	100	87-131	4.54	20
Ethylbenzene	9.71	10.1	10	ND	97	101	92-126	3.64	20
Xylenes	28.9	28.6	30	ND	96	95	88-132	1.04	20
Surrogate Recovery									
aaa-TFT	10.3	10.5	10		103	105	90-117	2.47	20

Quality Control Report

Client: ATC Group Services

Date Prepared: 6/27/17

Date Analyzed: 6/27/17 **Instrument:** GC26

Matrix: Soilgas

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 141127

Extraction Method: ASTM D 1946-90 **Analytical Method:** ASTM D 1946-90

Unit: %

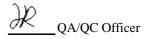
Sample ID: MB/LCS-141127

QC Summary Report for ASTM D1946-90

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Helium	ND	0.0856	0.025	0.10	_	86	60-140

Quality Control Report

Client: ATC Group Services WorkOrder: 1706926

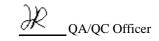

Date Prepared: 6/27/17 BatchID: 141287

Date Analyzed:6/27/17Extraction Method:TO15Instrument:GC24Analytical Method:TO15Matrix:SoilGasUnit:μg/m³

Project: Pleasanton PhII Sample ID: MB/LCS-141287

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	ND	30	60	-	99	60-140
Acrolein	ND	44.3	2.9	58.25	-	76	60-140
Acrylonitrile	ND	52.5	0.55	55	-	95	60-140
tert-Amyl methyl ether (TAME)	ND	95.6	1.0	105	-	91	60-140
Benzene	ND	71.6	0.80	80	-	89	60-140
Benzyl chloride	ND	181	1.3	132.5	-	136	60-140
Bromodichloromethane	ND	168	1.8	175	-	96	60-140
Bromoform	ND	317	2.6	262.5	-	121	60-140
Bromomethane	ND	80.9	1.0	97.5	-	83	60-140
1,3-Butadiene	ND	39.8	0.55	55	-	72	60-140
2-Butanone (MEK)	ND	ND	38	75	-	99	60-140
t-Butyl alcohol (TBA)	ND	83.0	16	77.5	-	107	60-140
Carbon Disulfide	ND	79.2	0.80	80	-	99	60-140
Carbon Tetrachloride	ND	140	1.6	160	-	87	60-140
Chlorobenzene	ND	132	1.2	117.5	-	112	60-140
Chloroethane	ND	69.9	0.65	67.5	-	104	60-140
Chloroform	ND	110	1.2	122.5	-	90	60-140
Chloromethane	ND	43.8	0.50	52.5	-	84	60-140
Cyclohexane	ND	82.0	9.0	87.5	-	94	60-140
Dibromochloromethane	ND	241	2.2	217.5	-	111	60-140
1,2-Dibromo-3-chloropropane	ND	352	0.060	245	-	143, F2	60-140
1,2-Dibromoethane (EDB)	ND	209	2.0	195	-	107	60-140
1,2-Dichlorobenzene	ND	191	1.5	152.5	-	125	60-140
1,3-Dichlorobenzene	ND	189	1.5	152.5	=	124	60-140
1,4-Dichlorobenzene	ND	190	1.5	152.5	=	124	60-140
Dichlorodifluoromethane	ND	114	1.2	125	-	91	60-140
1,1-Dichloroethane	ND	128	1.0	102.5	-	125	60-140
1,2-Dichloroethane (1,2-DCA)	ND	82.0	1.0	102.5	-	80	60-140
1,1-Dichloroethene	ND	87.0	1.0	100	-	87	60-140
cis-1,2-Dichloroethene	ND	103	1.0	100	-	103	60-140
trans-1,2-Dichloroethene	ND	102	1.0	100	-	102	60-140
1,2-Dichloropropane	ND	100	1.2	117.5	-	85	60-140
cis-1,3-Dichloropropene	ND	124	1.2	115	-	107	60-140
trans-1,3-Dichloropropene	ND	115	1.2	115	-	100	60-140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	158	1.8	177.5	-	89	60-140
Diisopropyl ether (DIPE)	ND	89.0	1.0	105	-	85	60-140
1,4-Dioxane	ND	99.1	0.90	92.5	_	107	60-140


Quality Control Report

Client:ATC Group ServicesWorkOrder:1706926Date Prepared:6/27/17BatchID:141287

Project: Pleasanton PhII Sample ID: MB/LCS-141287

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethanol	ND	ND	48	47.5	-	77	60-140
Ethyl acetate	ND	80.4	0.90	92.5	-	87	60-140
Ethyl tert-butyl ether (ETBE)	ND	95.8	1.0	105	-	91	60-140
Ethylbenzene	ND	120	1.1	110	-	109	60-140
4-Ethyltoluene	ND	144	1.2	125	-	115	60-140
Freon 113	ND	193	2.0	195	-	99	60-140
Heptane	ND	86.8	10	105	-	83	60-140
Hexachlorobutadiene	ND	389	2.7	270	-	144, F2	60-140
Hexane	ND	78.3	9.0	90	-	87	60-140
2-Hexanone	ND	145	1.0	105	-	138	60-140
Isopropyl Alcohol	ND	ND	25	62.5	-	93	60-140
4-Methyl-2-pentanone (MIBK)	ND	97.1	1.0	105	-	92	60-140
Methyl-t-butyl ether (MTBE)	ND	89.5	0.90	92.5	-	97	60-140
Methylene chloride	ND	80.0	4.4	87.5	-	91	60-140
Methyl methacrylate	ND	94.4	1.0	104	-	91	60-140
Naphthalene	ND	438	2.6	265	-	165, F2	60-140
Propene	ND	ND	44	42.5	-	88	60-140
Styrene	ND	124	1.1	107.5	-	116	60-140
1,1,1,2-Tetrachloroethane	ND	188	1.8	175	-	107	60-140
1,1,2,2-Tetrachloroethane	ND	185	1.8	175	-	106	60-140
Tetrachloroethene	ND	194	1.7	172	-	113	60-140
Tetrahydrofuran	ND	64.8	1.5	75	-	86	60-140
Toluene	ND	101	0.95	95	-	107	60-140
1,2,4-Trichlorobenzene	ND	281	1.9	187.5	-	150, F2	60-140
1,1,1-Trichloroethane	ND	142	1.4	137.5	-	103	60-140
1,1,2-Trichloroethane	ND	139	1.4	137.5	-	101	60-140
Trichloroethene	ND	138	1.4	137.5	-	100	60-140
Trichlorofluoromethane	ND	134	1.4	142.5	-	94	60-140
1,2,4-Trimethylbenzene	ND	147	1.2	125	-	117	60-140
1,3,5-Trimethylbenzene	ND	144	1.2	125	-	115	60-140
Vinyl Acetate	ND	80.7	9.0	90	-	90	60-140
Vinyl Chloride	ND	44.7	0.65	65	-	69	60-140
Xylenes, Total	ND	325	3.3	330	-	98	60-140

Quality Control Report

Client: ATC Group Services

Date Prepared: 6/27/17Date Analyzed: 6/27/17Instrument: GC24Matrix: SoilGas

Project:

Pleasanton PhII

WorkOrder: 1706926

BatchID: 141287

Extraction Method: TO15

Analytical Method: TO15

Unit: $\mu g/m^3$

Sample ID: MB/LCS-141287

	QC Sur	QC Summary Report for TO15					
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
1,2-DCA-d4	399.1	381		500	80	76	70-130
Toluene-d8	476.7	477		500	95	95	70-130
4-BFB	485.9	483		500	97	97	70-130

Quality Control Report

Client: ATC Group Services

Date Prepared: 6/20/17 **Date Analyzed:** 6/20/17 **Instrument:** GC37

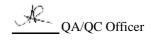
Matrix: Sorbent Tube

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 140756

Extraction Method: TO17


Analytical Method: TO17

Unit: $\mu g/m^3$

Sample ID: MB/LCS-140756

QC Summary Report for VOCs by TO17

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1,1-Trichloroethane	ND	47.2	2.0	50	-	94	60-140
1,1-Dichloroethane	ND	53.1	2.0	50	-	106	60-140
1,1-Dichloroethene	ND	51.6	2.0	50	-	103	60-140
1,1-Dichloropropene	ND	48.3	2.0	50	-	97	60-140
2,2-Dichloropropane	ND	66.2	2.0	50	-	132	60-140
2-Butanone (MEK)	ND	221	8.0	200	-	111	60-140
2-Hexanone	ND	51.3	2.0	50	-	103	60-140
4-Methyl-2-pentanone (MIBK)	ND	47.0	10	50	-	94	60-140
Acetone	ND	1210	100	1000	-	121	60-140
Bromochloromethane	ND	43.9	2.0	50	-	88	60-140
Carbon Disulfide	ND	59.7	10	50	-	119	60-140
Carbon Tetrachloride	ND	47.1	2.0	50	-	94	60-140
Chloroform	ND	46.9	2.0	50	-	94	60-140
cis-1,2-Dichloroethene	ND	50.8	2.0	50	-	102	60-140
Dibromomethane	ND	47.4	2.0	50	-	95	60-140
Dichlorodifluoromethane	ND	47.2	2.0	50	-	94	60-140
Diisopropyl ether (DIPE)	ND	51.0	2.0	50	-	102	60-140
Ethyl tert-butyl ether (ETBE)	ND	54.3	2.0	50	-	109	60-140
Methylene chloride	ND	55.2	10	50	-	110	60-140
n-Butyl benzene	ND	49.6	2.0	50	-	99	60-140
t-Butyl alcohol (TBA)	ND	206	8.0	200	-	103	60-140
tert-Amyl methyl ether (TAME)	ND	58.0	2.0	50	-	116	60-140
Tetrahydrofuran	ND	460	2.0	500	-	92	60-140
trans-1,2-Dichloroethene	ND	41.1	2.0	50	-	82	60-140
Trichlorofluoromethane	ND	51.9	2.0	50	-	104	60-140
Benzene	ND	47.8	2.0	50	-	96	60-140
Bromobenzene	ND	50.3	2.0	50	-	101	60-140
Bromodichloromethane	ND	46.6	2.0	50	-	93	60-140
Bromoform	ND	46.0	2.0	50	-	92	60-140
sec-Butyl benzene	ND	52.2	2.0	50	-	104	60-140
tert-Butyl benzene	ND	51.3	2.0	50	-	103	60-140
Chlorobenzene	ND	45.3	2.0	50	-	91	60-140
2-Chlorotoluene	ND	47.8	2.0	50	-	96	60-140
4-Chlorotoluene	ND	49.9	2.0	50	-	100	60-140
Dibromochloromethane	ND	44.3	2.0	50	-	89	60-140
1,2-Dibromo-3-chloropropane	ND	19.0	2.0	20	-	95	60-140
1,2-Dibromoethane (EDB)	ND	47.7	2.0	50	-	95	60-140

Quality Control Report

QC Summary Report for VOCs by TO17

Client: ATC Group Services

Date Prepared: 6/20/17 **Date Analyzed:** 6/20/17 **Instrument:** GC37

Xylenes, Total

1,2-DCA-d4

toluene-d8

4-BFB

Surrogate Recovery

Matrix: Sorbent Tube

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 140756

Extraction Method: TO17

Analytical Method: TO17

6.0

150

100

100

100

Unit: $\mu g/m^3$

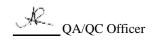
Sample ID: MB/LCS-140756

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,2-Dichlorobenzene	ND	46.1	2.0	50	=	92	60-140
1,3-Dichlorobenzene	ND	46.3	2.0	50	-	93	60-140
1,4-Dichlorobenzene	ND	48.5	2.0	50	-	97	60-140
1,2-Dichloroethane (1,2-DCA)	ND	48.5	2.0	50	-	97	60-140
1,2-Dichloropropane	ND	54.2	2.0	50	-	108	60-140
1,3-Dichloropropane	ND	49.8	2.0	50	-	100	60-140
cis-1,3-Dichloropropene	ND	54.4	2.0	50	-	109	60-140
trans-1,3-Dichloropropene	ND	57.8	2.0	50	-	116	60-140
Ethylbenzene	ND	49.1	2.0	50	-	98	60-140
Hexachlorobutadiene	ND	43.7	2.0	50	-	87	60-140
Isopropylbenzene	ND	49.2	2.0	50	-	98	60-140
4-Isopropyl toluene	ND	53.9	2.0	50	-	108	60-140
Methyl-t-butyl ether (MTBE)	ND	59.8	2.0	50	-	120	60-140
Naphthalene	ND	50.2	2.0	50	-	100	60-140
n-Propyl benzene	ND	49.2	2.0	50	-	98	60-140
Styrene	ND	50.5	2.0	50	-	101	60-140
1,1,1,2-Tetrachloroethane	ND	48.8	2.0	50	-	98	60-140
1,1,2,2-Tetrachloroethane	ND	49.5	2.0	50	-	99	60-140
Tetrachloroethene	ND	42.9	2.0	50	-	86	60-140
Toluene	ND	42.9	2.0	50	-	86	60-140
1,2,3-Trichlorobenzene	ND	45.5	2.0	50	-	91	60-140
1,2,4-Trichlorobenzene	ND	45.3	2.0	50	-	91	60-140
1,1,2-Trichloroethane	ND	43.9	2.0	50	-	88	60-140
Trichloroethene	ND	42.6	2.0	50	-	85	60-140
1,2,3-Trichloropropane	ND	49.0	2.0	50	-	98	60-140
1,2,4-Trimethylbenzene	ND	50.0	2.0	50	-	100	60-140
1,3,5-Trimethylbenzene	ND	51.3	2.0	50	-	103	60-140

ND

100.9

98.71


96.72

146

108

104

104

97

108

104

104

101

99

97

60-140

70-130

70-130

70-130

Quality Control Report

Client: ATC Group Services

Date Prepared: 6/19/17Date Analyzed: 6/20/17Instrument: GC9aMatrix: Soil

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 140692

Extraction Method: SW3550B

Analytical Method: SW8015B **Unit:** mg/Kg

Sample ID: MB/LCS-140692

1706907-004AMS/MSD

QC Report for	· SW8015B	w/out SG	Clean-Up
---------------	-----------	----------	----------

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	40.2	1.0	40	-	101	79-133
TPH-Motor Oil (C18-C36)	ND	-	5.0	-	-	-	-
Surrogate Recovery							
C9	24.95	25.3		25	100	101	77-109

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	47.1	48.6	40	5.258	105	108	59-150	3.01	30
Surrogate Recovery									
C9	25.2	25.2	25		101	101	78-109	0	30

Quality Control Report

Client: ATC Group Services

Date Prepared: 6/19/17

Date Analyzed: 6/19/17 - 6/20/17 **Instrument:** GC39A, GC9b

Matrix: Water

Project: Pleasanton PhII

WorkOrder: 1706926

BatchID: 140648

Extraction Method: SW3510C

Analytical Method: SW8015B **Unit:** μg/L

Sample ID: MB/LCS/LCSD-140648

Analyte	MB Result			RL	SPK Val		B SS REC		IB SS imits
TPH-Diesel (C10-C23)	ND			50	-	-		-	
TPH-Motor Oil (C18-C36)	ND			250	=	-		-	
Surrogate Recovery									
C9	616.7				625	99)	7	9-111
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	1140	1060	1000		115	106	88-134	7.30	30
Surrogate Recovery									
C9	623	578	625		100	92	79-111	7.49	30

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1706926 ClientCode: ATCE

EDF □WaterTrax WriteOn Excel **EQuIS** ✓ Email ☐ HardCopy ☐ ThirdParty □ J-flag

Report to: Requested TAT: 5 days; Bryan Campbell bryan.campbell@atcassociates.com Accounts Payable Email:

cc/3rd Party: **ATC Group Services ATC Group Services**

Date Received: 06/19/2017 2400 Camino Ramon, Suite 360 PO: 2400 Camino Ramon, Suite 360 ProjectNo: Pleasanton PhII San Ramon, CA 94583 San Ramon, CA 94583 Date Logged: 06/20/2017

(925) 460-5300 FAX: (925) 328-1090 maurice.mckinnies@atcassociates.com

						Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1706926-001	SB-11	SoilGas	6/19/2017 14:50						Α	Α	Α	Α	Α			
1706926-001	SB-11-H	SoilGas	6/19/2017 14:50						В							
1706926-001	SB-11-N	Sorbent Tube	6/19/2017 14:50											С		
1706926-002	SB-10-2.5'	Soil	6/19/2017 09:55		Α		Α								Α	
1706926-003	SB-10-7'	Soil	6/19/2017 10:00		Α		Α								Α	
1706926-004	SB-10-GW	Water	6/19/2017 11:30			В		Α								Α

Test Legend:

1	8260VOC_S
5	HELIUM_LC_SOILGAS(%)
9	TO15-8260_SOIL(UG/M3) [N]

2	8260VOC_W
6	PRHELIUM SHROUD
10	TO17VOC_ST(UGM3)

3	G-MBTEX_S
7	TO15_HIGHLEVEL_SOIL(UG/M3)
11	TPH(DMO)_S

4	G-MBTEX_W
8	TO15_Scan-SIM_SOIL(UG/M3) [N]
12	TPH(DMO)_W

Prepared by: Jena Alfaro

The following SampIDs: 002A, 003A contain testgroup Multi Range_S.; The following SampID: 004A contains testgroup Multi Range_W.; The following SampID: 001A contains testgroup TO15He_SG(UG/M3).

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

Contact's Email: bryan.campbell@atcassociates.com

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	ATC GROUP SERVICES	Project: Pleasanton PhII	Work Order: 1706926
--------------	--------------------	---------------------------------	----------------------------

Comments:

Client Contact: Bryan Campbell QC Level: LEVEL 2

EDF □ WaterTrax WriteOn HardCopy ☐ ThirdPartv ☐ J-flag Excel Fax ✓ Email Lab ID Client ID Matrix **Test Name** Containers **Bottle & Preservative** De-**Collection Date** TAT Sediment Hold SubOut /Composites chlorinated & Time Content 1706926-001A SB-11 SoilGas TO15 w/ Helium 1L Summa 6/19/2017 14:50 1 5 days ASTM D1946-90 (Helium) 1L Summa 1706926-001B SB-11-H SoilGas 1 6/19/2017 14:50 5 days TO17 (VOCs) (µg/m³) <Naphthalene, 1706926-001C SB-11-N Sorbent Tube 1 Sorbent Tube 6/19/2017 14:50 5 days Xylenes, Total> 1706926-002A SB-10-2.5' Soil Multi-Range TPH(g,d,mo) by EPA 1 4OZ Tall GJ 6/19/2017 9:55 5 days 8015Bm SW8260B (VOCs) <Benzene, 5 days Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total> 1706926-003A SB-10-7' Soil Multi-Range TPH(g,d,mo) by EPA 1 4OZ Tall GJ 6/19/2017 10:00 5 days 8015Bm SW8260B (VOCs) <Benzene, 5 days Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total> 1706926-004A SB-10-GW Multi-Range TPH(g,d,mo) by EPA 2 VOAs w/HCL + 2-aVOAs Water 4 6/19/2017 11:30 5 days 20% +8015Bm (multi-range) SW8260B (VOCs) <Benzene, 1706926-004B SB-10-GW Water 2 VOA w/ HCl 6/19/2017 11:30 5 days 20% +Ethylbenzene, Methyl-t-butyl ether (MTBE), Naphthalene, Toluene, Xylenes, Total>

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Date Logged: 6/20/2017

MAI Work Order#

1706926

" McCA	MPB.	ELL	ANA	LYTICAL	L, INC.						CH	AIN	OF (CUS	TODY	REC	COF	SD.			
	534 Willo	w Pass R	d. Pittsbı	ırg, Ca. 94565-170	1	Turn /	Around	Time	1 Day	Rush		2 Day	Rush		3 Day R	Rush	5	STD >	< (Quote #	
T	elephone:	(877) 25	2-9262/	Fax: (925) 252-926	59	J.	-Flag /	MDL		ESL			Clean	ір Арр	roved			В	ottle (Order#	
www.mcca	ımpbell.c	om		main@mccampb	ell.com	Delive	ery For	mat:	PDF		Geo	Γracke	EDF		EDD		Write	On (D	W)	E	QuIS
Report To: Bryan Camp	obell		Bill To:						Aı	alysi	s Re	quest	ed			Не	ium S	hroud SN	N#		
Company: ATC Group		vices),	ic,		le e			1			Leak C	Check I	Default is	IPA
Email: bryan.campbella				e, C(thyler	-	APH: Aliphatic and/or Aromatic (circle one) μg/m³			1		Notes: Please specify units if different than				A CONTRACTOR OF THE PARTY OF TH					
Alt Email: coline Klinesteke						otes			ehyd	ne, E		natic		e, 1,1	2					ted in µg/	m ³ , fixed
Project Name: Pleasanton	PhIL		Project#:			- See Notes			mald	, Etha		Aron	_	loran	(0)	lS	epor	ted in 9	70.	1 1 9	The state of the s
Project Location: 917 Mail	n St-		PO#	N.		1 ³) - 5	/m³)		, For	thane O) %	% (d/or	к %	Norf n ³	160				-01		2012
Sampler Signature:	6					n/gn)	8010 by TO-15 (µg/m³)	£_	PCH), Me ine, C	2, N2)	ic an	Chec	IPA,	ha		M	latrix	- 1	Can	ister
	Sampli	ng Start	End		C 1- V:+/	VOCs TO-15 (μg/m³)	0-1	ГРН(g) (µg/m³)	LEED: (inc. 4PCH, Formaldehyde, CO, Total VOCs)	Fixed Gas (CO _{2,} Methane, Ethane, Ethylene, Acetylene, Propane, CO) %	Fixed Gas: (O ₂ ,	iphat n³	Helium Leak Check %	Leak Check (IPA, Norflorane, 1,1-difluroethane) µg/m³	Naphthalene		2	Air		Pressure	
SAMPLE ID Location / Field Point	17	50 No. 1		Canister SN#	Sample Kit / Manifold #	Cs T() by	I(g) (3D: (a	d Ga	og Pa	APH: Alipl one) µg/m³	lum I	k Ch uroet	3		Songas	Indoor Air	\vdash	r ·.· 1	F: 1
Location / Field Foint	Date	Time	Time	150	Wallifold #	Λον	8010	TPF	LEEI Total	Fixe	Fixe	APF one	Heli	Lea	2	,	3	Ē		Initial	Final
5R-11	6/19/17	1430	1450	R1205-25%		X	1						,				X		-	30+	- 8
SR-11-11	9 3	1	1	R12042537									X			j				20	-4
(R-11-N	V	V	V		sorbent tob										X	3	χ.			_	_
ON THE STATE OF TH	-				70.0										-						
	\$													<u> </u>		\dashv	+	\dashv	+		
34	*	-6				\vdash										-	+	+	+		
5 287	4					_			_							-	+	+	+		
and the second																	\perp	\perp	_		
* WH																					
																	1		\top		VI
et				ii ii		-										-	+	+	+		
											<u> </u>						丄		丄		
**MAI clients MUST disclose any dangerous staff. Non-dis	chemicals k sclosure incu	nown to be	present in t liate \$250 s	heir submitted samples urcharge and the client	in concentrations that is subject to full legal	may cat liability	se imn for har	nediate m suffe	harm or	r seriou ank yo	s future ı for ye	e health our unde	endan erstand	germenting and	t as a resu for allow	ilt of brie ing us to	f, glov work	ed, oper safely.	n air, sa	mple handl	ing by MAI
					Pl L															All I	
P. II. 11 1D /C	11			Data	Time		D	agairea	d Dv/	Comp	ny Ma	ma		D	ate	Time		C	'omme	nts / Instru	ctions

Relinquished By / Company Name	Date	Time	Received By / Company Name	Date	Time	Comments / Instructions
CORLA ATC	6/19/17	1659		(1/9/17	-1700	
		20	/	9,1,1		
		à	4.00			
V			XX			, W

124

Page of Page 38 of 40

M

MAI Work Order#	171	100	21	P	
į.	1 0	~		1	

6 McCAMPBELL ANALYTICAL, INC.									CHAIN OF CUSTODY RECORD															
					, 1110.	Turn Around Time: 1 Day Rush 2 Day Rush 3 Day Rush STD Quote #																		
1534 Willow Pass Rd. Pittsburg, Ca. 94565-1701 Telephone: (877) 252-9262 / Fax: (925) 252-9269								J-Flag / MDL ESL				Cleanup Approved					310	-	le Or	$\overline{}$				
www.mccampb				nccampbell.	com	_	ery Fo		PDF	LSL	Geo	I Tracke		ip App	EDD		Wr	ite On				QuIS		_
Report To: Bryan Campbell	/ /	Bill To:		ile campo em		Den.	cij i o	· mat.	101		000	Trucke		alvs	is Rec	nuest		ne on	(1)			Quid		
Company: ATC		Din ro.				3E		Ι.,	峀					111.5		14001				s		0	,	
Email:						Gas (8021/ 8015) MTBE		With	Vitho	Sil &	18.1)		yluo			As)				netal	60	26		
Alt Email:		Tele:				8015)	ē	ē	71) Y	ns - C ica G	ns (4	cides	lors	(s	Cs)	/ PN	*(lved 1	82	0	5	
Project Name:		Project #:				021/3	Motor	Motor	4 / 90	th Sil	arbo	Pesti	Aroc	VOC	SVO	PAHS	6020			disso)	16	2	
Project Location:		PO#				as (8	(8015) + Motor Oil Gel	5)+1	e (166	ydroc I) Wi	ydroc	[]	B's;	90 (270 (310 (1	0.8	6	nents	e for	78	0	0	
Sampler Signature:						Se	(801 Ge1	(801	rease	m H;	III II	808/	2 PC	24/8	8/57	M / 8.	ls (20	/ 602	uiren	ample	1	DY		
CAMPLEID	Sam	pling	ıers			втех & трн	TPH as Diesel Without Silica	TPH as Diesel (8015) + Motor Oil With Silea Gel	Fotal Oil & Grease (1664 / 9071) Without Silica Gel	Total Petroleum Hydrocarbons - Oil & Grease (1664/9071) With Silica Gel	Total Petroleum Hydrocarbons (418.1) <u>With</u> Silica Gel	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	Metals (200.8 / 6020)	Baylands Requirements	Lab to filter sample for dissolved metals analysis	1	7	H)
SAMPLE ID Location / Field Point			#Containers	Matrix	Preservative	SX &	I as I hout	I as I a Gel	al Oil	al Per ase (al Pet h Sili	1 505	809 \	1 524	1 525	827	И 17	als (2	lands	Lab to fi	FEX	5	2	
Location / Tield Tollit	Date	Time	Ű#			ВТІ	Wit	TPH	Total Silica	Tota Gre	Tot	EP/	EP/	EP	EP/	EP/	CAI	Met	Bay	Lab	87	>	1	
SB-10-2.5'	6/19/17	0955	1	Soil	cold		X														X	X	X	
SB-10-7'	1	1000	1	soil	cold		X														X	X	X	
CR-10-GW	V	1130	6	GW	2 Amber WAS TVOAS WITK		X							10 =							X	X	X	
ор то от		11-0		0,00	1 40-8 24110																			
						┢	\vdash	+														\dashv	\dashv	
	-					-	\vdash	-	_		_											-	\dashv	
							_	<u> </u>															\dashv	
																							\perp	
						N																		
						┢		<u> </u>														\dashv	\neg	
MAI clients MUST disclose any dangerous chemica	ls known to be r	present in their	cubmitt	ed samples in co	ncentrations th	at may	cause in	nmedia	te harm	or seri	oue fut	ire heal	th enda	ngerme	nt ac a	result o	fhrief	aloved	onen	air cam	nle hanc	lling by	MALet	taff
Non-disclosure incurs an immediate \$250 surcharge															are as a	icsuit 0	i orici,	gioved	, open a	iii, saiii	pre nane	ning oy	WAY SE	aii.
* If metals are requested for water samples and	the water type	e (Matrix) is r	ot spe	cified on the c	nain of custody	y, MA	I will d	efault 1	to meta	als by I	E200.8								Co	ommen	ts / Inst	ructio	ns	
Please provide an adequate volume of sample.	If the volume	is not sufficie	nt for a	a MS/MSD a I	CS/LCSD wil	l be pr	epared	in its p	olace a	nd note	ed in th	ne repo	rt.											
Relinquished By / Compan	y Name	<i>-</i>	1		ime	1	Recei	ived B	y / Con	npany	Name				ate		me							
CONTO	AT		6/19	117 16	59	4	_		_					4/1	9/17	17	100							
CR.			4.0		U CO	ι								-										
Matrix Code: DW=Drinking Water, C	W-C-ave	d Wotan W	/W-V	Vocto Water	CW-Coo-	into-	C-C-	il er	-C1	das	A - A :	. W/r)_\\!	20. 0	-O+l-									
Preservative Code: 1=4°C 2=HCl									,–siu	uge, A	A-Al	ı, wr	-wij	be, O	-Oine		emp	1 2	U	°C	Initi	als		
1 reservative code. 1 4 C 2 Her	112004		- 11	0 2		. ,	1 1011									1	cmp	16	10			-		

Sample Receipt Checklist

Client Name: Project Name:	ATC Group Service Pleasanton PhII	s			Date and Time Received Date Logged: Received by:	6/19/2017 17:00 6/20/2017 Kena Ponce
WorkOrder №: Carrier:	1706926 Client Drop-In	Matrix: Soil/SoilGas/Sorbe	ent Tub	e/Water	Logged by:	Jena Alfaro
		Chain of C	ustody	(COC) Infor	mation	
Chain of custody	present?		Yes	✓	No 🗆	
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆	
Date and Time o	f collection noted by 0	Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
		<u>Sampl</u>	e Rece	eipt Informati	<u>ion</u>	
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No 🗆	
Sample containe	ers intact?		Yes	✓	No 🗆	
Sufficient sample	e volume for indicated	test?	Yes	•	No 🗆	
		Sample Preservation	on and	Hold Time (HT) Information	
All samples rece	ived within holding tim	ne?	Yes	✓	No 🗌	NA 🗌
Sample/Temp Bl	ank temperature			Temp: 12	2.4°C	NA 🗌
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌	
pH acceptable up	pon receipt (Metal: <2	; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ice Type	e: WE	TICE)		
UCMR Samples: Total Chlorine		e upon receipt for EPA 522?	Yes		No 🗌	na 🗹
Free Chlorine t 300.1, 537, 539		e upon receipt for EPA 218.7,	Yes		No 🗌	NA 🗹
Comments:		=====:		====		