US TP SRM TEMESCAL, LLC

Spokane, WA 99201 509-455-5477 509-838-0933 Fax

February 4, 2016

Mr. Mark Detterman Alameda County Environmental Health Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502-6577

RECEIVED

By Alameda County Environmental Health 10:16 am, Feb 17, 2016

Re: Revised Soil Profiling and Site Assessment Report 4901, 4915, 4919, 4921, 4939, and 4945 Broadway; Parcel No. 013-1136-008-04 (no address); 311 and 313 51st Street; 4974, 4970, 4966 and 4964 Desmond Street; Oakland, California

Dear Mr. Detterman:

US TP SRM Temescal, LLC, has retained Pangea Environmental Services, Inc. (Pangea) for environmental consulting matters at the project referenced above. Pangea is submitting the attached report on our behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Sincerely,

Trevor Ashenbrener

US TP SRM Temescal, LLC

February 4, 2016

Mr. Trevor Ashenbrener US TP SRM Temescal, LLC 101 North Post, Suite 200 Seattle, WA 99201

Re: Revised Soil Profiling and Site Assessment Report

4901, 4915, 4919, 4921, 4939, and 4945 Broadway; Parcel No. 013-1136-008-04 (no address); 311 and 313 51st Street; 4974, 4970, 4966 and 4964 Desmond Street; Oakland, California

Dear Mr. Ashenbrener:

Pangea Environmental Services, Inc. (Pangea) prepared this *Revised Soil Profiling and Site Assessment Report* for the subject site. *Per agency direction, this SMP was revised to incorporate additional soil and groundwater sampling conducted in January 2016 near the former dry cleaning facility.* This report represents implementation of the Soil and Groundwater Management Plan (SMP) for the subject site. The SMP was designed to help safeguard human health and safety with respect to potential petroleum hydrocarbons and lead present in soil and/or groundwater during planned site improvement. The SMP incorporated comments from Alameda County Environmental Health (ACEH), who is providing oversight via a Voluntary Remediation Action Agreement. The site background, site assessment procedures, site assessment results, and conclusions and recommendations are described below.

SITE BACKGROUND

The subject site is comprised of numerous parcels located along Broadway Avenue and 51st Street within a mixed commercial and residential area of Oakland, California. The site has four dilapidated buildings that are currently vacant. One of these buildings (4901 Broadway) was formerly occupied by a dry cleaner. Former structures have been demolished in other areas of the site. Some of the paved areas are leased to a car dealership to be used for overflow parking

A mixed commercial and residential development is planned for the subject site located at the western intersection area of Broadway and 51 Street and bounded by Desmond Street to the west and 49th Street to the south. Development plans include the excavation and removal of approximately 38,000 cubic yards of soil from the site. The excavation will extend approximately 5 ft deep in the western area, 10 ft deep in the southern area, and 20 ft deep in the northeastern area.

According to subsurface investigation data, lead and petroleum hydrocarbon impact has been identified in site soil and/or groundwater in select locations in excess of select conservative environmental screening levels (ESLs) established by the Regional Water Quality Control Board - San Francisco Bay Region. Site conditions are documented in a *Phase II Environmental Site Assessment Report* (Phase II ESA) by ERS Corporation dated May 3, 2013. The Phase II ESA reported a lead concentration of 550 mg/kg in soil boring SB-10 at 2.5 ft depth. This lead concentration exceeds the ESL of 80 mg/kg for residential site use and 320 mg/kg for commercial site use. The reported lead concentrations may be due to fill material used at the site or due to naturally occurring metals in site soil. The Phase II ESA also reported total petroleum hydrocarbons as motor oil (TPHmo) in soil at 2.5 ft depth (220mg/kg) in boring SB-10. This TPHmo concentration in soil exceeds the ESL of 100 mg/kg for residential site use (a ceiling value based on odor/nuisance), but is below the 500 mg/kg for commercial site use. Note that the reported TPHmo of 220 mg/kg is well below the ESL protective

Revised Soil Profiling and Site Assessment Report 51st and Broadway Oakland, California February 4, 2016

of human health direct contact to TPHmo-impacted soil of 1,000 and 10,000 mg/kg for residential and commercial site use, respectively. A TPHmo concentration of 330 ug/L was reported for a groundwater sample from nearby boring SB-7. This TPHmo concentration in groundwater exceeds the ESL of 100 ug/L for residential and commercial site use, but state and local agencies generally do not require corrective action for such low TPHmo concentrations. Low lead and TPHmo concentrations were detected at 5 and 10 ft depth in boring SB-10 and no significant impact was detected in surrounding borings, suggesting the lateral and vertical extent of lead-impacted material is limited in extent.

During drilling for the Phase II ESA, bedrock was encountered in the upper 10 feet in the northern portion of the site and refusal prevented collection of groundwater samples. Groundwater samples were collected from the samples collected in the southern portion of the site, when sufficient groundwater was encountered. Groundwater samples was collected from an approximate depth of 15 feet.

SITE ASSESSMENT - JANUARY 2016

This is the revised portion of the soil profiling and site assessment report.

Site Assessment Procedures – January 2016

On January 27, 2016, Pangea advanced four soil borings using hand auger techniques to address ACEH requirements emailed January 26 and 27, 2016. Borings PB-1 through PB-4 were installed within the cavity of the former basement of the former dry cleaning facility at 4901 Broadway. Soil and groundwater sampling was performed to assess conditions up to 8 ft depth beneath the planned future foundation, since two prior attempted borings could not be completed in this pit area due to the steep slope for the drilling equipment. The grade of the former basement cavity is the approximate elevation of the planned foundation.

The January 2016 assessment work scope included the following:

- Advancing four borings to 8 ft depth below the future foundation depth to provide good coverage of the former dry cleaner site.
- Collecting soil samples from approximately 1, 3, 5 and 8 ft depth from each boring.
- Constructing temporary wells in each borehole and collecting a grab groundwater water sample from each boring the following day.
- Analyzing each sample for TPHg/d/mo with silica gel cleanup for TPHd/mo analysis (to evaluate possible TPH Stoddard solvent use) and HVOCs by EPA Method 8010. (The Method 8010 reporting limit for PCE is 0.005 mg/kg and well below the residential ESL of 0.55 mg/kg).

Water had collected in the center of the former basement cavity prior to the sampling. The four borings were completed within the cavity but beyond the boundary of the water. The collected water is presumably due to run off across the unpaved site from recent winter storms. The contractor completed dewatering of the cavity by the morning of the temporary well sampling on January 28, 2016. The morning after temporary well installation, the depth to water measured inside the wells was near (about 1 ft below) the surface of the excavation cavity.

To help provide representative groundwater samples, Pangea constructed temporary wells in each borehole. Borings PB-1, PB-2 and PB-4 were completed to approximately 7 ft depth below the planned foundation until refusal with the hand augering equipment. Boring PB-3 was completed successfully to the extent of the available equipment (8 ft depth). The temporary groundwater monitoring wells were constructed of 1-inch diameter PVC piping in the 3.5-inch diameter boreholes. The wells consist of a 5 foot section of slotted screen with blank carrier pipe to the surface. Wells were set at the bottom of the borehole and manually held in the

Revised Soil Profiling and Site Assessment Report 51st and Broadway Oakland, California February 4, 2016

center of the borehole while a sand pack of #2/12 sand was constructed around the well screen from the bottom of the hole to the top of the screened section. The well was then completed using hydrated ¼" bentonite crumbles to fill the borehole to the surface. Grab groundwater samples were collected by following Pangea's standard operating procedures for groundwater sampling using a new pin bailer for each well. No purging was conducted prior to temporary well sampling.

Site Assessment Results - January 2016

Soil and/or groundwater samples were analyzed for TPHg/d/mo, BTEX and chlorinated VOCs (EPA Method 8010 list). Soil and/or groundwater analytical results are summarized on Tables 1 and 3. The laboratory analytical reports are included in Appendix F.

All new soil and groundwater analytical results from this assessment were well below the final environmental screening levels (ESLs), other than TPHd and TPHmo in soil from boring PB-4 and in groundwater. The maximum TPHd and TPHmo concentrations detected in soil were 110 mg/kg and 490 mg/kg, respectively, in soil sample PB-4-5'. The maximum TPHd and TPHmo concentrations detected in groundwater was 5,200 ug/L and 27,000 ug/L (PB-4), while TPHd and TPHmo in groundwater in the three other PB borings were <300 ug/L. Based on agency correspondence regarding analytical results, Pangea subsequently requested full list EPA Method 8260 reporting for key samples from boring PB-4: soil sample PB-4-5' and the PB-4 water. The EPA Method 8260 full list analyses confirmed that no naphthalene or other VOCs were present in soil or groundwater above ESLs (the only detected VOCs were low concentrations of acetone (13 ug/L) and tertbutyl alcohol (5 ug/L).

Chromatograms for soil and groundwater from boring PB-4, included in Appendix F, indicate two distinct patterns. The laboratory notes that oil range hydrocarbons are significant and that the TPHd-range impact may resemble 'kerosene, kerosene-range or jet fuel'. During laboratory correspondence, the laboratory indicated the TPHd-range hydrocarbons (first pattern on the chromatogram) could represent Stoddard solvent.

No VOCs were detected in site soil or groundwater that would represent a significant vapor intrusion risk from a historic release of chlorinated dry cleaner compounds into the site subsurface. The non-volatile nature of TPHd and TPHmo-range compounds suggests that these compounds would not represent a significant vapor intrusion risk to future site occupants.

Site Figures and Cross Section - January 2016

Per ACEH request for illustration of site data in plan and cross-section view, Pangea prepared four new site figures. Figures 3 and 4 present all available data and isoconcentration contours for TPHmo in soil and groundwater, respectively. Figure 5 presents the areas with planned environmental oversight during excavation and anticipated compliance sampling locations. Figure 6 is a cross section of the planned excavation extent with key groundwater analytical data and boring/soil sampling locations. Figure 6 also shows the planned future development.

SITE ASSESSMENT PROCEDURES - NOVEMBER 2015

Soil assessment procedures for sampling in November 2015 are described herein.

Pre-Drilling Activities

A comprehensive site safety plan was prepared to protect site workers and the plan was kept onsite during all field activities. A drilling permit was obtained from Alameda County Public Works Agency (Appendix A). The proposed drilling locations were marked and Underground Service Alert was notified at least 48 hours before the proposed field activities.

Drilling Procedures

On November 19, 2015, Pangea retained Confluence Environmental (Confluence) of Sacramento, California, to advance select deeper borings using direct-push sampling techniques and shallower borings using hand auger techniques. The eleven borings conducted using direct-push techniques included B-2, B-3, B-5 through B-7, B-9 through B-12, B-14, and B-15. Soil and groundwater sampling was performed at locations shown on Figure 2. Boring refusal depths at select locations are also shown on Figure 2. A groundwater sample was collected for laboratory analysis from boring B-12 using temporary PVC casing. Completed borings were tremie-grouted from the bottom of the hole to the surface.

The completed sampling program and sampling depths are summarized on Table A. As shown on Table A, one soil profiling sample planned from 8 ft depth was substituted by a 3 ft depth sample due to refusal at four prior locations for boring B-3 (S10-8'). One boring (B-13) was not completed due to limited access to the excavated former basement location. Boring B-12 was moved to the western edge of the former basement area. Groundwater sampling was performed from boring B-12, the only boring that encountered water. Due to field observations at 6' depth at boring B-15, a soil sample was collected analyzed per below. Field activities were conducted in general accordance with the Standard Operating Procedures (SOPs) provided in Appendix C.

Confluence conducted the associated soil and groundwater sampling using a direct push rig equipped with dual tube sampling equipment. Dual-tube direct-push drilling methods employ an outer tube to help avoid cross contamination within the inner sampling tube. This drilling method allows collection of continuously cored soil samples. All borings were first hand augered to approximately five feet below grade surface (bgs) to avoid damaging any unmarked subsurface utilities.

Select soil and water samples were collected from each boring in accordance with Pangea's Standard Field Procedures for Soil Borings (Appendix C). Soil samples were collected for laboratory analysis in acetate liners, and capped with Teflon tape and plastic end caps. To sample first-encountered groundwater in boring B-12, the inner drilling rods were removed, temporary PVC piping and well screen was installed within the boring, and the outer drill rods were then removed. The grab groundwater sample was collected with a disposable bailer and was then decanted into the appropriate laboratory supplied containers. The boring permit is included in Appendix A. Boring logs are included in Appendix B. All samples were shipped under chain of custody to Sunstar Laboratories, Inc., of Lake Forest, California, a California-certified laboratory.

The drilling was observed in the field by Pangea staff and supervised by Bob Clark-Riddell, a California Registered Professional Civil Engineer (P.E.). Soil characteristics such as color, texture, and relative water content were noted in the field using the USCS classification system and entered onto a field boring log. Field screening of soil samples for potential hydrocarbons and volatile organic compounds included visual and olfactory observations.

Soil Export Profiling

For soil profiling for planned soil export for redevelopment, Pangea collected insitu soil samples at 12 locations (locations S1 through S12). One sample was collected from each location per soil profiling protocol, with sample analysis depth ranging from approximately 0.5 to 16 ft depth across the site. These sample locations evaluate the planned excavation extending approximately 5 ft deep in the western area, 10 ft deep in the southern area, and 20 ft deep in the northeastern area.

These 12 samples were submitted for laboratory testing for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8260B;
- Total petroleum hydrocarbons as diesel (TPHd) & motor oil (TPHmo) by EPA Method 8015Cm;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270D;
- PCBs by EPA Method 8082;
- CAM-17 Metals by EPA Method 6010/200.7;
- Organochloride pesticides by EPA Method 8081A, and
- Asbestos by EPA Method 600 with CARB 435 and 0.25% target sensitivity.

For location S12-0.5' a duplicate sample was collected later due to insufficient soil volume for all requested analyses. For select locations with total lead above 50 mg/kg, STLC and/or TCLP testing was conducted to help characterize soil for offsite disposal.

Site Assessment per County Requirements

Per Alameda County requirements, soil sampling was conducted at three locations (borings B-9, B-10 and B-11) to delineate lead and hydrocarbon impact previously identified at at 2.5 ft depth at prior boring SB-10. Borings B-11, B-12, B-17 and B-18 also helped characterize soil near the former dry cleaner facility at 4901 Broadway. Two borings (B-1 and B-2) were completed in the townhome area, with boring B-2 sampling soil outside the proposed basement area. Select soil samples (boring B-2 at 6' and boring B-17 at 4') were analyzed for:

- Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8260B;
- Total petroleum hydrocarbons as diesel (TPHd) & motor oil (TPHmo) by EPA Method 8015Cm;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270D;
- PCBs by EPA Method 8082;
- CAM-17 Metals by EPA Method 6010/200.7;
- Organochloride pesticides by EPA Method 8081A, and
- Asbestos by EPA Method 600 with CARB 435 and 0.25% target sensitivity.

Remaining soil samples were analyzed for:

- Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8260B;
- Total petroleum hydrocarbons as diesel (TPHd) and motor oil (TPHmo) by EPA Method 8015Cm:
- Volatile organic compounds (VOCs) by EPA Method 8260B; and
- Lead by EPA Method 6010/200.7.

Due to black clayey sand found in boring B15, a soil sample from 6' depth was collected analyzed for TPH, VOCs, SVOCs, and PCBs.

The one grab groundwater sample (boring B-12) was analyzed for:

- Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8260B;
- Total petroleum hydrocarbons as diesel (TPHd) and motor oil (TPHmo) by EPA Method 8015Cm;
- Volatile organic compounds (VOCs) by EPA Method 8260B; and
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270D;
- PCBs by EPA Method 8082; and
- Organochloride pesticides by EPA Method 8081A.

Waste Management and Disposal

Soil cuttings was stored onsite in Department of Transportation (DOT)-approved 55-gallon drums. The drums and their contents are held onsite pending transportation to an appropriate disposal/recycling facility.

SITE ASSESSMENT RESULTS - NOVEMBER 2015

Physical Observations

Drilling refusal was observed at several locations at varying depths. Most notable was the shallow refusal (about 1 to 3' depth) at five locations for boring B-3 where shown on Figure 2. Boring refusal at B-3 is presumably related to rocky conditions at that location.

Groundwater was only encountered in boring B-12 to 24' depth. Groundwater was not encountered in boring B-11 to 30' depth, or in boring B-6 to 22' depth.

Gray soil was observed at 1' depth at location S9 (boring B-4) where soil analytical results reported lead STLC concentrations exceeding non-RCRA hazardous waste classification criteria. Other site soil was primarily brown.

Soil and Groundwater Analytical Results

Soil analytical results are summarized on Table 1. Soil analytical results for SVOCs are shown on Table 2.

Soil Export Profiling

The laboratory analytical reports for soil profiling tests of the 12 sample locations are included in Appendix D. As shown on Tables 1 and 2, all soil analytical data is below final Environmental Screening Levels (ESLs) established for residential and/or commercial site use by the San Francisco Regional Water Quality Control Board, except for arsenic concentration of 5.4 mg/kg at location S12-0.5°. This arsenic concentration likely represents background soil conditions. The following limited organic impact was detected in soil that is scheduled for overexcavation during development: 0.04 mg/kg PCBs at 2° depth at S11 (boring B-2), and low concentrations of SVOCs (<0.062 mg/kg) at 0.5° in S12 (boring B-1). Each of these results are for shallow soil beneath imported rock covering the parking area near the construction trailer. The PCB and SVOC concentrations are well below the final ESLs for residential site use. Detected metal concentrations likely represent background levels from naturally occurring metals, except for perhaps lead at location S9-1°. The lead STLC concentration of 5.2 mg/L at S9-1° exceeds the non-RCRA hazardous waste classification criteria of 5.0 mg/L. Other lead STLC and TCLP analyses were below hazardous waste classification criteria.

Site Assessment for County

The laboratory analytical reports for County-required assessment from November 2015 are included in Appendix E. As shown on Tables 1 and 2, all soil analytical data is below final Environmental Screening Levels (ESLs). Detected metal concentrations likely represent background levels from naturally occurring metals. Other than metals, the only reported concentration was 49 mg/kg TPH as motor oil in sample from boring B-17 at 4' depth, within the sloped wall along the southern property boundary.

The one grab groundwater sample was analyzed for TPH, VOCs, SVOCs, PCBs and organochloride pesticides. No analytes were detected in grab groundwater. The laboratory analytical report is included in Appendix E.

CONCLUSIONS & RECOMMENDATIONS

This section was revised.

Based on the above information, Pangea offers the following conclusions and recommendations:

- Soil and/or groundwater samples were analyzed for TPH, VOCs, SVOCs, PCBs, pesticides, metals, and asbestos. All soil and groundwater analytical results from this assessment were well below conservative environmental screening levels (ESLs), other than TPHd and TPHmo in soil in boring PB-4 and in groundwater in new PB borings, and one arsenic concentration (5.4 mg/kg) described above that likely represents background soil conditions. The TPHd and TPHmo-range impact may represent Stoddard solvent from the former dry cleaning operations and other oil-range impact. TPHmo impact in soil and groundwater is summarized on Figures 3 and 4, respectively.
- No VOCs were detected in site soil or groundwater that would represent a significant vapor intrusion risk from a historic release of chlorinated dry cleaner compounds into the site subsurface. The non-volatile nature of TPHd and TPHmo-range compounds suggests that these compounds would not represent a significant vapor intrusion risk to future site occupants.
- No further investigation is recommended at this time other than ongoing implementation of the approved Soil and Groundwater Management Plan (SMP) and Addendum during site redevelopment. The SMP Addendum specifies that site environmental manager/consultant will be onsite to observe excavation of known or suspect impact (including shallow TPHmo impact at SB-10, suspect gray material at 1 ft depth in boring B-4, and the suspect black clayey sand at 6 ft depth in boring B-15). Confirmation soil samples will be collected beneath these locations, and within any lateral sidewalls near the location or in the closest final excavation sidewall. In addition, the site environmental manager/consultant will be onsite to observe excavation of the known TPHd/TPHmo range impact at location PB-4, which is below the planned future foundation.
- The environmental oversight excavation extent and depth for known or suspect impact is shown on Figure 5. This oversight was required by ACEH. Planned soil confirmation sampling is also shown on Figure 5. Figure 6 presents the planned excavation in cross section with respect to the planned development.

Pangea trusts this information satisfies your requirements. If additional information is required, please feel free to contact me at (510) 435-8664.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E. Principal Engineer

Figure 1 – Site Vicinity Map

Figure 2 – Boring Locations

Figure 3 – TPHmo Concentrations in Soil

Figure 4 – TPHmo Concentrations in Groundwater

Figure 5 – Environmental Oversight Locations and Compliance Sampling Locations

Figure 6 – Cross Section of Planned Excavation

Table A – Sampling and Analysis Program

Table 1 – Soil Analytical Data

Table 2 – Soil Analytical Data: SVOCs

Table 3 – Groundwater Analytical Data

Appendix A – Boring Permit

Appendix B – Boring Logs

Appendix C – Standard Operating Procedures

Appendix D – Laboratory Analytical Reports: Export Profiling

Appendix E – Laboratory Analytical Reports: County Assessment, November 2015

Appendix F – Laboratory Analytical Reports: County Assessment, January 2016

Approximate Scale (in Miles)

Table 1. Soil Analytical Data - 4901 Broadway, Oakland, California

			/		/ /		/	/ /	7	/					<i>-</i>	/ /	/ /				/	/ /	/		7 7
			/	/			/			» /			/			' /		. /	» /	. /	/	′ /			′ . /
					/ .		/.	_ /	S. S	* / _*	. / .	/ .	_/_	# / .i	<u> </u>	/ .	, cond. (2)			§ / ,	. /		§ /		
Boring/	Date	Sample Depth			, out the				/ Š	4.56 SNT O.	Arsemic	Barium	P. Person			/ de	100	1	1	Mencin	Nicke	Zamed.	/ 2		solo _v
Sample ID	Sampled	(ft bgs)		/ ~	/ ~	/ =	/ 5	/ ~ /	/ 0	/ ₹	4	/ ॐ mg/kg	/ &	/ 0 ,	/ 0	/ 0 /	<i>y</i>	/ 3	<i>\\</i> \(\frac{1}{2} \)	/ ₹	/ ~	7.	/ V	/ 0	<i>/</i>
esidential final ESL		(It ogs)	100	100	100	varies	varies	0.22	varies	NA	0.39	750	12	1,000	23	230	80	NA	NA	6.7	150	200	600	Varies	ì
esidential human hea		eoil:	770	240	10,000	varies	varies	0.22	varies	NA	0.39	15,000	160	NV	23	3,100	80	NA NA	NA	6.7	1.500	390	23,000	_	-
Commercial ESL for s		3011.	500	110	500	varies	varies	0.74	varies	NA	1.6	1,500	12	2,500	80	230	320	NA NA	NA	10	150	200	600	Varies	
												-,		_,											
xport Profiling - No 1-1'(B16)	ovember 2015 11/19/2015	1.0	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	<5.0	160	<1.0	32	8.1	10	7.8			< 0.10	46	22	33	ND	
2-6' (B11)	11/19/2015	6.0	<10	<10	<10	< 0.010	1.0	< 0.010	<0.20	ND	<5.0	340	<1.0	38	15	14	8.6	-		0.10	45	28	40	ND	
3-2' (B8)	11/19/2015	2.0	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	<5.0	210	<1.0	19	11	7.6	10			0.10	59	27	20	ND	
4-14'(B15)	11/19/2015	14	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	< 5.0	60	<1.0	10	7.3	4.0	7.6			0.11	10	14	11	ND	
5-10'(B7)	11/19/2015	10	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	< 5.0	180	<1.0	19	6.3	7.5	8.8			0.10	15	13	20	ND	
5-4'(B14)	11/19/2015	4.0	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	< 5.0	90	<1.0	14	5.2	5.3	7.9			0.33	21	10	15	ND	
7-12'(B6)	11/19/2015	12	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	< 5.0	63	<1.0	13	3.4	3.8	7.9			0.15	20	26	13	ND	
I-16'(B5)	11/19/2015	16	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	< 5.0	32	<1.0	3.5	< 2.0	1.7	6.7			0.13	8.0	< 5.0	4.1	ND	
1-1'(B4)	11/19/2015	1.0	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	< 5.0	220	<1.0	10	5.5	27	150	5.2	b	0.73	12	9.5	10	ND	STLC above non-RCRA haz waste
0-3'(B3)	11/19/2015	3.0	<10	<10	<10	< 0.010	1.0	< 0.010	< 0.20	ND	< 5.0	73	<1.0	2.3	3.8	2.1	7.8			0.75	4.7	< 5.0	<1.0	ND	Refusal at 4 locations. No 8' sample.
1-2'(B2)	11/19/2015	2.0	<10	<10	<10	< 0.010	1.0	0.04	< 0.20	ND	<5.0	120	<1.0	18	4.0	11	<3.0			0.10	16	20	20	ND	See note a
2-0.5(B1) 2-0.5(B1)(2)	11/19/2015 11/25/2015	0.5 0.5	<10	<10	<10	<0.010	Table 2	<0.010	<0.20	ND	5.4	200	<1.0	12	6.0	15	87 110	b 3.4	<0.20	0.26	14	12	12	ND 	Insufficient soil for all analyses. Second sample due to insufficent so
12-0.5 (B1)(2)	11/23/2013	0.5					Table 2	<0.010	<0.20		-						110	3.4	<0.20	-			-		Second sample due to insufficent so
	n for County - Nove	mber 2015								a															
!-6'	11/19/2015	6.0	<10	<10	<10	< 0.010	<1.0	< 0.010	< 0.20	ND	<5.0	52.0	<1.0	8.4	3.3	3.1	<3.0			0.15	7.3	12.0	9.3	ND	
5-18'	11/19/2015	18	<10	<10	<10	< 0.010			-								<3.0								
9-2' 9-4'	11/19/2015	2.0	<10	<10	<10								-				13							-	
9-4' 10-2'	11/19/2015	4.0	<10	<10	<10			-					-				40 29								
10-2	11/19/2015 11/19/2015	2.0 4.0	<10 <10	<10 <10	<10 <10												11								
11-2'	11/19/2015	2.0	<10	<10	<10		-	-	-	-	-	-			-	-	27	-				-	-		
11-6'	11/19/2015	6.0	<10	<10	<10	< 0.010		_	_	_	_		_				<3.0	-					_	_	
11-12'	11/19/2015	12	<10	<10	<10	< 0.010											<3.0								
12-12'	11/19/2015	12	<10	<10	<10	< 0.010											<3.0								
15-6'	11/19/2015	6.0	<10	<10	<10	< 0.010	<1.0	< 0.010																	Different chain of custody
17-4'	11/20/2015	4.0	<10	<10	49	< 0.010	<1.0	< 0.010	< 0.20	ND	< 5.0	150	<1.0	16	6.6	26	210	2.9	< 0.10	0.28	27	13	17	ND	
18-4'	11/20/2015	4.0	<10	<10	<10	< 0.010											13								
	n for County near F					0 00 #H																			
3-1-1'	1/27/2016	1.0**	<1.0	4.2	62	<0.005 ^H					-												-		In pit at former dry cleaner
3-1-3' 3-1-5'	1/27/2016	3.0**	<1.0	3.2	79	<0.005 ^H <0.005 ^H					-														In pit at former dry cleaner
3-1-7'	1/27/2016 1/27/2016	5.0** 7.0**	<1.0 <1.0	2.0 <1.0	28 11	<0.005 ^H		-															-		In pit at former dry cleaner In pit at former dry cleaner
	1/2//2010	7.0	~1.0	~1.0	- 11	-0.003		-			-							-							in pri in tornici dry cicanci
3-2-1'	1/27/2016	1.0**	<1.0	3.6	61	< 0.005 H																			In pit at former dry cleaner
B-2-3'	1/27/2016	3.0**	<1.0	<1.0	5.9	< 0.005 H																			In pit at former dry cleaner
3-2-5'	1/27/2016	5.0**	<1.0	<1.0	<5.0	$< 0.005^{H}$																			In pit at former dry cleaner
3-2-7'	1/27/2016	7.0**	<1.0	<1.0	<5.0	< 0.005 ^H																			In pit at former dry cleaner
3-3-1'	1/27/2016	1.0**	<1.0	<1.0	<5.0	<0.005 ^H																			In pit at former dry cleaner
3-3-3'	1/27/2016	3.0**	<1.0	<1.0	<5.0	<0.005 ^H																			In pit at former dry cleaner
B-3-5' B-3-8'	1/27/2016	5.0**	<1.0	1.0	13	<0.005 ^H <0.005 ^H					-												-		In pit at former dry cleaner
3-3-8	1/27/2016	8.0**	<1.0	<1.0	<5.0	~0.005 °					-														In pit at former dry cleaner
B-4-1'	1/27/2016	1.0**	<1.0	<1.0	9.5	< 0.005 ^H		-	-	_				-			_	_		_	-	-			In pit at former dry cleaner
3-4-3'	1/27/2016	3.0**	<1.0	<1.0	<5.0	<0.005 ^H					_					-		-		-		-	_		In pit at former dry cleaner
		5.0**	20	110	490	< 0.005		-	-	-	-										-		-	-	In pit at former dry cleaner
3-4-5'	1/27/2016																								

Table 1. Soil Analytical Data - 4901 Broadway, Oakland, California

Boring/	Date	Sample Depth		n _{Hill}	Juliu On Harris Control				C. Passing.	4.56.50.00.00.00.00.00.00.00.00.00.00.00.00.	Arsenie	Parinin I	Berning		OLL MAD	side of	TUDPO T	() (1.(S) Pag.)		Mercin.	Nicke J	, Yameli,		Other Medias	$\lambda^0_{OE_S}$
Sample ID	Sampled	(ft bgs)		1		1						mg/kg	_							_				<u> </u>	
	L for shallow soil:		100	100	100	varies	varies	0.22	varies	NA	0.39	750	12	1,000	23	230	80	NA	NA	6.7	150	200	600	Varies	
esidential human h	nealth ESL for shallov	v soil:	770	240	10,000	varies	varies	0.22	varies	NA	0.39	15,000	160	NV	23	3,100	80	NA	NA	6.7	1,500	390	23,000	Varies	
ommercial ESL for	r shallow soil:		500	110	500	varies	varies	0.74	varies	NA	1.6	1,500	12	2,500	80	230	320	NA	NA	10	150	200	600	Varies	
oil Characterizatio	on from Prior Assess	ment - January	2013																						
B-3	1/14/2013	2.5'	<1.1	<1.0	< 5.0	< 0.05					2.2			8.7											
B-3	1/14/2013	4.0'	<1.1	<1.0	< 5.0	< 0.05	-				1.8		-	40										_	
B-3	1/14/2013	9.0'	<1.1	<1.0	<5.0	< 0.05					1.6			78										-	
B-5	1/14/2013	2.5'	<1.1	<1.0	<5.0	< 0.05					2.0			7.8											
B-5	1/14/2013	5.0'	<1.1	<1.0	< 5.0	< 0.05	-				1.8		-	13										-	
3-5	1/14/2013	10'	<1.1	<1.0	< 5.0	< 0.05	-				3.2			41											
3-6	1/14/2013	2.5'	<1.1	<1.0	<5.0	< 0.05					2.3		-	16										-	
B-6	1/14/2013	4.5'	<1.1	<1.0	<5.0	< 0.05					2.4		-	20										-	
B-6	1/14/2013	9.0'	<1.1	<1.0	< 5.0	< 0.05	-				3.2			31										-	
B-7	1/14/2013	2.0'	<1.1	1.5	5.6	< 0.05	-				3.7			41										-	
B-7	1/14/2013	4.5'	<1.1	1.8	5.6	< 0.05	-				2.8		-	64										-	
B-7	1/14/2013	10'	<1.1	<1.0	< 5.0	< 0.05	-				3.5		-	41											
B-8	1/14/2013	2.5'	<1.1	<1.0	< 5.0	< 0.05	-	-			2.8		-	53										-	
B-8	1/14/2013	5.0'	<1.1	1.4	9.5	< 0.05	-	-			1.9		-	23										-	
B-8	1/14/2013	10'	<1.1	<1.0	<5.0	< 0.05					3.4			33											
B-9	1/14/2013	2.5'	<1.1	1.4	16.0	< 0.05					2.6			29											
B-9	1/14/2013	5.0'	<1.1	1.2	17.1	< 0.05					4.4			35											
B-9	1/14/2013	10'	<1.1	<1.0	<5.0	< 0.05	-				2.8			45											
B-10	1/14/2013	2.5'	<1.1	21	220	< 0.05	-				6.0			39											
B-10	1/14/2013	5.0'	<1.1	<1.0	<5.0	< 0.05	-				2.6			41										-	
B-10	1/14/2013	10'	<1.1	1.4	16	< 0.05					3.5			48										-	
B-12	4/15/2013	17.5'	<1.1	1.8	<5.0	< 0.05		-																	
B-13	4/15/2013	15.5'	<1.1	1.2	<5.0	< 0.05																			
B-14	4/15/2013	3.5'	<1.1	1.1	6.4	< 0.05	-	-			2.5		-	17			9.2							-	
3-15	4/15/2013	3.5'	<1.1	38.0	19.0	< 0.05					2.1			33			18								
B-16	4/15/2013	3.5'	<1.1	8.7	25.0	< 0.05		-			3			32			26								
B-17	4/15/2013	3.5'	<1.1	8.4	27.0	< 0.05					3.2			43			14								

Notes and Abbreviations:

TPH (g, d, and m) - Total Petroleum Hydrocarbons (as gasoline, diesel, and motor oil) by EPA Method 8015C. Silica gel cleanup on 1/27/16 analyses for TPHd and TPHmo.

VOCs = Volatile Organic Compounds by EPA Method 8260B; January 2016 analysis included BTEX analyses by Method 8021 (sample PB-4-5' reported full 8260 list).

H = VOCs by EPA Method 8260B (reported Method 8010 list for chlorinated VOCs).

SVOCs = Semivolatile Organic Compounds by EPA Method 8270C PCB = Polychlorinated Biphenyls by EPA Method 8082

OC Pesticides = Organochloride Pesticides by EPA Method 8081A

Asbestos = Asbestos by EPA Method 600 with CARB 435 and 0.25% Target Sensitivity

Metals by EPA Method 6010B.

mg/Kg = milligrams per Kilogram

ft bgs = Depth below ground surface (bgs) in feet.

< n = Chemical not present at a concentration in excess of detection limit shown.

Bold = Non-metal concentration detected above method reporting limits. Lead and/or chromium above 50 mg/kg also bold.

Bold = Concentration in bold italics exceeds residential ESLs. Arsenic may represent background conditions.

= Exceeds hazardous waste screening criteria.

--- = Not analyzed

STLC = Solubility Threshold Level Concentration. TCLP = Toxic Characteristic Leaching Potential

* = STLC and TCLP analytical results reported in milligrams per liter (mg/L). < 5 mg/L STLC and TCLP lead is non-hazardous.

** = Approximate depth below planned foundation. Sample collected in pit within cavity of former basement of dry cleaning facility.

ESL established by the SFBRWQCB, Interim Final - February 2005 and amended in December 2013.

a = PCB aroclor 1254 (0.04 mg/kg).

 $b = Insufficient \ sample \ volume \ to \ perform \ this \ extraction/analysis.$

Table 2. Soil Analytical Data: Sem-Volatile Organic Compounds - 4901 Broadway, Oakland, California

Boring/	Date	Sample Depth	Berto a athle	Bento a Price	E BERTO TO HURT	Berlo Ehil Per	Jerë Jirjerë	Fluoranthene	Indepo (1.2.34	Therathrate	Pyrene Pyrene	Other	Notes
Sample ID	Sampled	(ft bgs)					mg/kg -					<u> </u>	
Residential final ESL fo	or shallow soil:		0.38	0.038	0.38	27	3.8	40	0.38	11	85	varies	
Residential human heal	lth ESL for shal	llow soil:	0.38	0.038	0.38	No Value	3.8	2,300	0.38	No Value	3,400	varies	
Commercial final ESL	for shallow soil	:	1.3	0.13	1.3	27	13	40	1.30	11	85	varies	
S12-0.5'(B1)(2)	11/25/2015	0.5	0.021	0.031	0.033	0.032	0.037	0.056	0.022	0.053	0.062	ND	

Notes and Abbreviations:

SVOCs = Semivolatile Organic Compounds by EPA Method 8270C

mg/Kg = milligrams per Kilogram

ft bgs = Depth below ground surface (bgs) in feet.

< n = Chemical not present at a concentration in excess of detection limit shown.

Bold = Concentration above residential ESLs

--- = Not analyzed

ESL established by the SFBRWQCB, Interim Final - February 2005 and amended in December 2013.

Table 3. Groundwater Analytical Data - 4901 Broadway, Oakland, California

			Photography.	and Children	a dua	Penere (Timene	Oppos POC.	Sing.		P. Williams	drone.	Promp.	, Made	and the second	Lean.	Merciny	Maynen	in hinder	Shr	Tamanan,	it. /	Other Mercal	, January		Notes
Final ESL for	groundwater, nor	n-dw:	500	640	640	27	130	varies	varies	varies	varies	1,000	180	3.0	3.1	2.5	0.025	240	8.2	0.19	19	81	varies	1	N/A	
Final ESL for	groundwater, dw	:	100	100	100	1.0	40	varies	varies	varies	varies	1,000	50	3.0	3.1	2.5	0.025	78	8.2	0.19	19	81	varies	1	N/A	_
			←							Д	g/L													\longrightarrow		
Sample ID	Date Sampled	Sample Depth (ft - ft)																								
- Sample ID	Dumpica	(11 11)																						-		-
2013 Phase	I Assessment																									
SB-7	1/14/2013	15	<50	75	330	< 0.5	< 0.5	<10		-		<5.0	<5.0	-	-	<5.0	-	-	-	-	-	-	-	-	-	
SB-8	1/14/2013	15	<50	<49	<290	< 0.5	< 0.5	<10		-		<5.0	< 5.0	-	-	<5.0			-		-	-		-		
SB-9	1/14/2013	15	<50	<49	<290	< 0.5	< 0.5	<10		-		<5.0	< 5.0	-	-	<5.0			-		-	-		-		
SB-10	1/14/2013	15	<50	<49	<290	< 0.5	< 0.5	<10	-	-		<5.0	<5.0	-	-	<5.0	-	-	-	-	-	-	-	-		
2015 Assess	ment																									
B12-W	11/20/2015	19-24	<50	<50	<100	<0.5	< 0.5	<1.0	<50	<2.0	20	-		-	-	-	-	-	-	-	-	-	-	-	-	
2016 Assess	ment																									
PB-1	1/28/2016	1-7	<50	160	<250	< 0.5	< 0.5	< 0.5 ^H		-		-		-	-		-	-	-	-	-	-		-		In pit
PB-2	1/28/2016	1-7	<50	190	290	< 0.5	< 0.5	< 0.5 ^H		-		-		-	-		-	-	-	-	-	-		-		In pit
PB-3	1/28/2016	1-8	<50	180	<250	< 0.5	< 0.5	< 0.5 ^H		-		-		-	-		-	-	-		-	-		-		In pit
PB-4	1/28/2016	1-7	54	5,200	27,000	< 0.5	< 0.5	a, tba	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		In pit

Explanation:

 $TPH\left(g,d,and\ m\right)-Total\ Petroleum\ Hydrocarbons\ (as\ gasoline,\ diesel,\ and\ motor\ oil)\ by\ EPA\ Method\ 8015C.$

VOCs = Volatile Organic Compounds by EPA Method 8260B unless otherwise notes.

 $H = VOCs\ by\ EPA\ Method\ 8260B\ (reported\ Method\ 8010\ list\ for\ chlorinated\ VOCs).$

SVOCs = Semivolatile Organic Compounds by EPA Method 8270C.

PCB = Polychlorinated Biphenyls by EPA Method 8082.

Pesticides = Organochlorine Pesticides by EPA Method 8081A.

Dissolved Metals by EPA Method E200.8

Cyanide by EPA Method 9014. µg/L = micrograms per Liter

< n = Chemical not present at a concentration in excess of detection limit shown.

-- = Not analyzed

ND = Not Detected at levels above laboratory reporting limits. Limits vary by constituent.

ft - ft = Approximate groundwater sample depth interval, in feet below grade surace. ESL = Environmental Screening Level for groundwater, Groundwater is not a current or potential source of drinking water. (Table F-1b).

ESL = Environmental Screening Level for Groundwater, groundwater is a current or potential source of drinking water. (Table F-1a). ESL established by the SFBRWQCB, Interim Final - February 2005 and amended in December 2013.

Bold = Concentration above final ESLs for groundwater. Site groundwater is not used for beneficial use.

non-dw = groundwater is not a current or potential source of drinking water dw = groundwater is a current or potential source of drinking water

 $a=acetone,\,13\;ug/L$

tba = tert-butyl alcohol, 5 ug/L

APPENDIX A

Boring Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/12/2015 By jamesy

Permit Numbers: W2015-1013

Permits Valid from 11/19/2015 to 11/19/2015

Application Id: 1447114591290 City of Project Site:Oakland

Site Location: 4901 Broadway, Oakland

Project Start Date: 11/19/2015 **Completion Date:**11/19/2015 **Completion Date:**11/19/2015 **Contact Balance Hydrologics, Inc at (510) 473-5663 or acwells@balancehydro.com**

Applicant: Pangea Environmental Services - Elizabeth Phone: 510-965-5489

Avery

1710 Franklin Street #200, Oakland, CA 94612

Property Owner: US TP SRM Temescal, LLC Phone: --

101 North Post, Suite 200, Spokane, WA 99201

** same as Property Owner **

Contact: Erik Lervaag Phone: 925-822-6749

Cell: --

Total Due: \$265.00

Receipt Number: WR2015-0553 Total Amount Paid: \$265.00
Payer Name: Robert Clark-Riddell Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 8 Boreholes

Driller: Confluence Environmental - Lic #: 913194 - Method: DP Work Total: \$265.00

Specifications

Permit Issued Dt Expire Dt # Hole Diam Max Depth

Number Boreholes

W2015- 11/12/2015 02/17/2016 8 2.25 in. 25.00 ft

1013

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Alameda County Public Works Agency - Water Resources Well Permit

6. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

- 8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B

Boring Logs

Oal Tele	0 Franklin Stre kland, CA 9461 ephone: 510-8 : 510-836-370	12 336-3700		BORING NUMBER_ B-1 PAGE 1 OF 1
DRILLING CONTI DRILLING METHI LOGGED BY	PACTOR C	on fluer	GROUND WATER LE AT TIME OF DR KED BY AT END OF DR	N HOLE SIZE
O DEPTH (ft bgs) SAMPLE TYPE NUMBER	PID (ppm)	GRAPHIC	MATERIAL DESCRIPTION	BORING DIAGRAM
5 	-0.5 (1		k brown clayer gravel boring terminated & 1'bgs	Backfill will native soil

PANGE	Pangea 1710 F Oaklan Teleph Fax: 5	ranklin d, CA 9 one: 5	Street 94612 10-836	, Suite			RING NUMBER 日一点 PAGE 1 OF 1
	SRN					PROJECT NAME 4901 Broad	way
	T NUMBER		.15		COMPLETED 11.19.15	PROJECT LOCATION	
DRILLIN	G CONTRAC	CTOR	C	m	Vence	GROUND ELEVATION HOL	E SIZE
	G METHOD					AT TIME OF DRILLING	
LOGGE	DBY E. L	erve	nag		CHECKED BY	AT END OF DRILLING	
NOTES						AFTER DRILLING	
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC	M	ATERIAL DESCRIPTION	BORING DIAGRAM
	311-	ر) د	63	.)	_1	gravelly clay	NATIVE
5	82	أعا			- Brown cla	ndy clay to 6' bgs	Grout to 1' below gradi
						ro sand/cemented sa	nd
 					- Boring Termi	nated (refusal)	
15							

PANGEA		ranklin 3 d, CA 9 one: 51	Street, 4612 0-836	Suite	vices, Inc. 200		BORING NUMBER PAGE 1 OF
CLIENT	4.0 .		5103			PROJECT NAME 4901 B	roadwar
22-20-21-2	T NUMBER					PROJECT LOCATION	,
DATE ST	ARTED 11	.19.	15		COMPLETED 11.19.15	GROUND ELEVATION	HOLE SIZE
DRILLING	CONTRAC	CTOR	Co	nF	luence	GROUND WATER LEVELS:	
	METHOD						
		to the same			CHECKED BY		
NOTES						AFTER DRILLING	
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	МА	TERIAL DESCRIPTION	BORING DIAGRAM
5	510-	3'(0	3)		at location 1) o" penetro 2) 1' penetro 3) 3' penetro	were made B-3 (see map) ation	arout grout
20					20.0		

CLIENT	1710 F Oaklan Telepho Fax: 5	ranklin \$ d, CA 94 one: 51 10-836-3	Street, Suit 4612 0-836-370			PROJECT NAME 4901	B-1 Broadway	PAGE 1 OF 1
DATE ST	G CONTRAC G METHOD D BY <u></u> と。	TOR_	con	COMPLETED 11. Fluence Aug LT CHECKED BY		GROUND WATER LEVELS: AT TIME OF DRILLING	HOLE SIZE	
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S. GRAPHIC			TERIAL DESCRIPTION	В	ORING DIAGRAM
5 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	39-1'	(18.4)		- Boring	gravel	ly clay a fed 1.25° bgs		Native Sockfill

PROJECT DATE ST DRILLING	TAUMBER TARTED 1 G CONTRA G METHOD D BY 2. L	ranklin nd, CA 9 none: 5 10-836	Street 94612 10-836 -3709	S-3700	COMPLETED 11.19.15	GROUND WATER LEVELS: AT TIME OF DRILLING	HOLE SIZE	PAGE 1 OF 1
o DEPTH (ft bgs)	SAMPLE TYPE NUMBER	(mdd) Old	U.S.C.S.	GRAPHIC LOG		TERIAL DESCRIPTION	BORIN	NG DIAGRAM
5	38-	16'(1		13	brown clay to 13' be	dry sand oyellow, dry		Growt To 1' below 9 rade
20				2	0.0			

PANGEA	Pangea 1710 F Oaklan Telepho Fax: 5	ranklin d, CA 9 one: 5	Street, 4612 10-836	Suite	vices, Inc. 200	ВО	RING NUI B-6	MBER_ PAGE 1 OF %
CLIENT	SRY	V.				PROJECT NAME 4901 Broad	dway	
	NUMBER					PROJECT LOCATION 4901 Broad	way, on	Lland
DATE ST	ARTED 11	19.	15		COMPLETED (1.19.15	GROUND ELEVATION HO	OLE SIZE	
					luence	GROUND WATER LEVELS:		
DRILLING	METHOD	0	red	6	osh	AT TIME OF DRILLING		
LOGGED	BY E. LE	cvac	25		CHECKED BY	AT END OF DRILLING		
NOTES _						AFTER DRILLING		*
O (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MA	TERIAL DESCRIPTION	BORING	DIAGRAM
				3		nd, clay to 31 bgs	(1111)	Backfill w/ native soil
5					FO 7	y Clay, Dry. No o Col bg :		frout TO 1' below grade
				7	Brown Clau	1 0 5 4	111111	
10							1111	
<u> </u>	37-1	a'(36)				11111	
15							1111	
15	B6-1	8					11111	
20		100		19	Light brown	cemented sand	111	

PANGEA	1710 F Oaklan Teleph Fax: 5	ranklin d, CA 9 one: 51	Street, 4612 10-836	Suite			BORING NUMBER B-6 PAGE 1 OF
CLIENT _	SRM					PROJECT NAME 4901	
	NUMBER					PROJECT LOCATION 490\	Broadway, Oakland
DATE ST	ARTED \	1.19.	15	_	COMPLETED 11. 19. 15	GROUND ELEVATION	HOLE SIZE
					luence		
					Push		
		es vo	Las		CHECKED BY	AT END OF DRILLING	
NOTES _						AFTER DRILLING	*
(ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	м	ATERIAL DESCRIPTION	BORING DIAGRAM
	1				Light Brown	Cemented sand.	
-	ادد				- Boring termi	nated(refusal)	
_	¥ .						
+							
5							
			-				
-							
-							
1							
7							
10							
-							
1							
7							
4							
1 5							
-							
1							
_							
-							
1		1 1					

DRILLING CO	TED 11.19. ONTRACTOR _	Street, Suite 20 4612 0-836-3700 3709	00	AT TIME OF DRILLING	Broadway, o	PAGE 1 OF 1
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER PID (ppm)	U.S.C.S. GRAPHIC LOG	MAT	TERIAL DESCRIPTION	BORI	ING DIAGRAM
10	35-10'		brown gravely TO Z' 3 andy clay To 8' b To 10' b Boring termi	elay, dry		Brout to below grade

PANGEA	1710 F Oaklar Teleph Fax: 5	ranklin nd, CA s none: 5 10-836	Street, 94612 10-836	, Suite		BORING NUMBER 13 - 8 PAGE 1 OF 1				
-21.00 mesos	SRI		-	-		PROJECT NAME 4901				
	T NUMBER		1.15		COMPLETED [1.19.15	GROUND ELEVATION	Browny, Oakland			
DRILLING	G CONTRA	CTOR	C	on f	luence	GROUND WATER LEVELS:	HOLE SIZE			
DRILLING	G METHOD	1	tan	d	Auger	AT TIME OF DRILLING				
LOGGED	BY E.L	eruc	ag		CHECKED BY	AT END OF DRILLING				
NOTES		1	_			AFTER DRILLING				
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MA	TERIAL DESCRIPTION	BORING DIAGRAM			
_					brown gravell	y clay	Backfill will Native			
X	33-	2'(Bg)	- Boring termi	nated	Sail.			
5 10										
15				٠	20.0					

CLIENT		klin Stree CA 94612 : 510-83 : 336-3709	6-3700	110.	PROJECT NAME 4901 Broadway Dakland				
DRILLING	S CONTRACTO S METHOD _ (BYE, Ler	Dire	et Pus	NEED 11.19.15 NEE NEED BY	GROUND ELEVATION HOLE SIZE GROUND WATER LEVELS: AT TIME OF DRILLING				
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	GRAPHIC	MA	TERIAL DESCRIPTION		BORING DIAGRAM		
10	139-2 139-4			brown grav	elly clay, probys		Grout to l'below grade		

PANGE		ranklin d, CA 9 one: 5°	Street, 14612 10-836-	Suite 20	ces, Inc. 00	BORING NUMBER B-10 PAGE 1 OF 1			
CLIENT	00		307.35.TG			PROJECT NAME 4901 Broadway			
PROJEC	T NUMBER		t.			PROJECT LOCATION 49			
DATE S	TARTED 1	1.19	.15	c	OMPLETED 11.19.15	GROUND ELEVATION			
DRILLIN	G CONTRAC	TOR	Co	nfl	vence	GROUND WATER LEVELS:			
DRILLIN	G METHOD	O	rec	士一	Push	AT TIME OF DRILLING			
LOGGE	BY E. LE	100	nag	CI	HECKED BY	AT END OF DRILLING	-		
NOTES						AFTER DRILLING			
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC	MA	MATERIAL DESCRIPTION BORING DIAGRAM			
			Ă.		brown sand To 4'b	y clay		in Native	
					TO 4 b	2.0		1) grout	
	8 B10-	2'						I' below	
-	2 .5.0	~						grade	
								2	
	2010	41				1 1			
5	B10-	4			- Boring termin	ates		2	
								16	
	e			3					
10								1.0	
						45			
15									
				20	0.0				

PROJECT NOMBER DATE STATED IL 19-15 COMPLETED IL 19-15 GROUND MATERIAL DESCRIPTION BRILLING CONTRACTOR CONFLORATE DRILLING CONTRACTOR CONFLORATE DRILLING METHOD DYRCH POST LOGGED BY LLVLAG CHECKED BY NOTES AT TIME OF DRILLING — AFTER DRILLING — AFTER DRILLING — BORING DIAGRAM BORING DIAGRAM	CLIENT	1710 Fr Oakland Telepho Fax: 51	Environmeranklin Street, CA 9461 one: 510-8 0-836-370	et, Suite 12 336-3700			BORING NUMBER B-14 PAGE 1 OF 1 PROJECT NAME 4901 Broadway			
DRILLING CONTRACTOR Confluence DRILLING METHOD Direct Posh LOGGED BY Levage CHECKED BY NOTES AT TIME OF DRILLING AFTER DRILLING BORING DIAGRAM BORING DIAGRAM To 4' Day's STAYETH Clay, Brown, Dry To 4' Day's STAYETH Clay, Brown, Dry To 4' Day's To 4' Day's 10			19.15		COMPLETED 1).)Q. 15	PROJECT LOCATION 1401				
DRILLING METHOD Direct Push LOGGED BY ELEVAGE CHECKED BY NOTES AFTER DRILLING — A							HOLE SIZE			
LOGGED BY LEVOAG CHECKED BY AT END OF DRILLING — AFTER DRILLING — AFTER DRILLING — AFTER DRILLING — BORING DIAGRAM BORING DIAGRAM BORING DIAGRAM CONTROL OF THE CONT										
NOTES HE STATE PRILLING MATERIAL DESCRIPTION BORING DIAGRAM BORING DIAGRAM Party Clay, Brown, Dry To 4' by's State Boring term mated										
Held Boring Diagram To y' by's Start (Big) Boring Diagram Boring Diagram Symbolic Light Sont To y' by's Start (Big) Fractor To y' by's To y' be'law Start (Big) Fractor To y' by's To y' be'law Start (Big) Fractor To y' by's To y' be'law Start (Big) Fractor To y' by's To y' be'law Start (Big) Fractor To y' by's To y' b		DI <u>C</u> ,	C. 060	ng	CHECKED BT					
Ste-4 (BI4) Strang terminated Si Native Soil Growt To 4' by's To 1' belangerate	NOTES _					AFTER DRILLING				
Story (BI4) Baserock Gravelly clay, Brown, Dry To 4' bys Boring terminated To 4' (BI4) Boring terminated		SAMPLE TYPE NUMBER	PID (ppm)	GRAPHIC		MATERIAL DESCRIPTION	BORING DIAGRAM			
	5	. St L		4)	gravelly to 4'1	clay, Brown, Dr	y Grout			

PANGE	1710 F Oaklar Teleph		Street, 4612 10-836-	al Services, Inc. Suite 200 3700		BORING NUMBER B-15 PAGE 1 OF 1			
CLIENT	0	2m	1			PROJECT NAME 4901 B	roadway		
	CT NUMBER					PROJECT LOCATION 4901 R	stoudway, 00	ekland	
					TED 11.19.15		HOLE SIZE		
DRILLII	NG CONTRA	CTOR_	Ca	ont luen	ce	GROUND WATER LEVELS:			
DRILLI	NG METHOD	000	116	Ct Push		_ AT TIME OF DRILLING			
NOTES		961 0	wa g	CHECKE	D BY	AT END OF DRILLING AFTER DRILLING			
	1700					AI TEN DIVIEENO		-	
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC		TERIAL DESCRIPTION	BORING	G DIAGRAM	
				.6	ravelly clay	Brown Dry	173	Native	
+ +	3 8		A	-1'	sandy Cla	Brown Dry Brown, Dry	1	5011	
	4				TO L	1 , 13,000,101.4			
1					10 6		7		
	-							grant to	
-							1	1' below	
5								2,000	
-	7 0	,	1	5.5 - BI	ack clayey	sand. No odor			
- 3	B15-	6		- L'					
				ابهلكا	Brown clay	, Dry			
1				1	TO 14'				
				*					
10									
) ·		
							1	× ,	
1								1	
					*			1	
7	\$ 54-	ILI'	RIC	-)					
	10 2 1	1-1	1101	- Bor	ing termin	nated 14' bgs	,		
15							1	•	
							50 V 50	1	
				-					
		6							

PANGE	1710 F Oaklan	ranklin St d, CA 94	mental Sen treet, Suite 612 I-836-3700			BORING B-16	PAGE 1 OF 1				
CLIENT	Fax: 5	10-836-3			PROJECT NAME 4901 A		- 12				
The second designation	T NUMBER			11.0.0	_ PROJECT LOCATION 4901 Broadway, Oakland						
DATE ST	TARTED \	1.19	C - C	COMPLETED (1.19.15	2 Section Comments Commented to the Commented Commenter	HOLE SIZE					
				luence.	GROUND WATER LEVELS:						
				Auger	AT TIME OF DRILLING						
The second second		er va	ag	CHECKED BY	The second discount of						
NOTES					AFTER DRILLING						
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S. GRAPHIC LOG	N	MATERIAL DESCRIPTION	В	ORING DIAGRAM				
5	₹ S \-	1'(18	(16)	Brown sandy - Boring term	clay with some inated		Backfilled wather Native Soil				
15				20.0							

Pangea Environmental Services, Inc. PANGEA **BORING NUMBER** 1710 Franklin Street, Suite 200 PAGE 1 OF 1 13-17 Oakland, CA 94612 Telephone: 510-836-3700 Fax: 510-836-3709 PROJECT NAME 4901 Broadway CLIENT PROJECT LOCATION 4901 Broadway, Oakland PROJECT NUMBER DATE STARTED 11.19.15 COMPLETED 11.19.15 HOLE SIZE GROUND ELEVATION DRILLING CONTRACTOR Confluence **GROUND WATER LEVELS:** DRILLING METHOD Hand Auger AT TIME OF DRILLING ---LOGGED BY &. LETVAR & CHECKED BY AT END OF DRILLING _---AFTER DRILLING _--SAMPLE TYPE NUMBER PID (ppm) GRAPHIC U.S.C.S. DEPTH (ft bgs) MATERIAL DESCRIPTION **BORING DIAGRAM** Black clay to 1' Dry native **愛**B17-1' ok brown clay with large rubble or rock. Hard to hand to 3' Auger ground them. Grouted 1' below grade Sandy Clay Brown, Dry Boring terminated S B17-4' 10 BH COPY BLANK (2).GPJ GINT US.GDT 4/24/09

15

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700 Fax: 510-836-3709

BORING NUMBER

B 18 PAGE 1 OF 1

Fax: 510-836-3709	
PROJECT NUMBER	PROJECT NAME PROJECT LOCATION 4901 Broadway, Oakland
DATE STARTED 11.19.15 COMPLETED 11.19.13	GROUND ELEVATION HOLE SIZE
DRILLING CONTRACTOR Confluence	GROUND WATER LEVELS:
DRILLING METHOD Hand Auger	AT TIME OF DRILLING
LOGGED BY E. LECUGA CHECKED BY	
NOTES STEERING TO STREET T	AFTER DRILLING
10120	AFTER DRILLING
SAMPI O DE COMPI O DECOMPI O DECOMP	MATERIAL DESCRIPTION BORING DIAGRAM
Black clay to Brown clay rock to Sandy Clay Big-4' Boring Term 10 200 200	with rubble or large Groot Groot in Auger.
20.0	

APPENDIX C

Standard Operating Procedures

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Pangea Environmental Services' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist, scientist or engineer working under the supervision of a California Registered Engineer, California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color.
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- · Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic-push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. With hollow-stem drilling, samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. With hydraulic-push drilling, samples are typically collected using acetate liners. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler or the acetate tube. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes or cut acetate liners chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

Soil samples collected during drilling will be analyzed in the field for ionizable organic compounds using a photo-ionization detector (PID) with a 10.2 eV lamp. The screening procedure will involve placing an undisturbed soil sample in a sealed container (either a zip-lock bag, glass jar, or a capped soil tube). The container will be set aside, preferably in the sun or warm location. After approximately fifteen minutes, the head space within the container will be tested for total organic vapor, measured in parts per million on a volume to volume basis (ppmv) by the PID. The PID instrument will be calibrated prior to boring using hexane or isobutylene. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples collected from borings are either collected from the open borehole, from within screened PVC inserted into the borehole, or from a driven Hydropunch-type sampler. Groundwater is typically extracted using a bailer, check valve and/or a peristaltic pump. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Pangea often performs electrical conductivity (EC) logging and/or continuous coring to identify potential water-bearing zones. Hydropunch-type sampling is then performed to provide discrete-depth grab groundwater sampling within potential water-bearing zones for vertical contaminant delineation. Hydropunch-type sampling typically involves driving a cylindrical sheath of hardened steel with an expendable drive point to the desired depth within undisturbed soil. The sheath is retracted to expose a stainless steel or PVC screen that is sealed inside the sheath with Neoprene O-rings to prevent infiltration of formation fluids until the desired depth is attained. The groundwater is extracted using tubing inserted down the center of the rods into the screened sampler.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

APPENDIX D

Laboratory Analytical Results: Export Profiling

04 December 2015

Bob Clark-Riddell
Pangea Environmental Services, Inc.
1710 Franklin Street, Suite 200
Oakland, CA 94612

RE: 4901 Broadway

Enclosed are the results of analyses for samples received by the laboratory on 11/21/15 10:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine RunningCrane

Katherine Running Crane

Project Manager

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S12-0.5' (B1)	T152950-01	Soil	11/19/15 13:45	11/21/15 10:20
S11-2' (B2)	T152950-02	Soil	11/19/15 09:46	11/21/15 10:20
S10-3' (B3)	T152950-03	Soil	11/19/15 15:20	11/21/15 10:20
S9-1' (B4)	T152950-04	Soil	11/19/15 14:00	11/21/15 10:20
S8-16' (B5)	T152950-05	Soil	11/19/15 13:00	11/21/15 10:20
S7-12' (B6)	T152950-06	Soil	11/19/15 10:15	11/21/15 10:20
S5-10' (B7)	T152950-07	Soil	11/19/15 13:20	11/21/15 10:20
S3-2' (B8)	T152950-08	Soil	11/19/15 14:50	11/21/15 10:20
S2-6' (B11)	T152950-09	Soil	11/19/15 12:50	11/21/15 10:20
S6-4' (B14)	T152950-10	Soil	11/19/15 14:10	11/21/15 10:20
S4-14' (B15)	T152950-11	Soil	11/19/15 11:00	11/21/15 10:20
S1-1' (B16)	T152950-12	Soil	11/19/15 14:30	11/21/15 10:20

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc.

Project: 4901 Broadway

1710 Franklin Street, Suite 200 Oakland CA, 94612

Project Number: [none]

Project Manager: Bob Clark-Riddell

Reported:

12/04/15 16:58

DETECTIONS SUMMARY

Sample ID:	S12-0.5' (B1)	Labora	tory ID:	T152950-01		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Arsenic		5.4	5.0	mg/kg	EPA 6010B	
Barium		200	1.0	mg/kg	EPA 6010B	
Chromium		12	2.0	mg/kg	EPA 6010B	
Cobalt		6.0	2.0	mg/kg	EPA 6010B	
Copper		15	1.0	mg/kg	EPA 6010B	
Lead		87	3.0	mg/kg	EPA 6010B	
Nickel		14	2.0	mg/kg	EPA 6010B	
Vanadium		12	5.0	mg/kg	EPA 6010B	
Zinc		12	1.0	mg/kg	EPA 6010B	
Mercury		0.26	0.10	mg/kg	EPA 7471A Soil	
Sample ID:	S11-2' (B2)	Labora	Laboratory ID:			
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		120	1.0	mg/kg	EPA 6010B	
Chromium		18	2.0	mg/kg	EPA 6010B	
Cobalt		4.0	2.0	mg/kg	EPA 6010B	
Copper		11	1.0	mg/kg	EPA 6010B	
Nickel		16	2.0	mg/kg	EPA 6010B	
Vanadium		20	5.0	mg/kg	EPA 6010B	
Zinc		20	1.0	mg/kg	EPA 6010B	
PCB-1254		40	10	ug/kg	EPA 8082	
Sample ID:	S10-3' (B3)	Labora	tory ID:	T152950-03		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		73	1.0	mg/kg	EPA 6010B	
Chromium		2.3	2.0	mg/kg	EPA 6010B	
Cobalt		3.8	2.0	mg/kg	EPA 6010B	
Copper		2.1	1.0	mg/kg	EPA 6010B	
Lead		7.8	3.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Sample ID:	S10-3' (B3)	Laborate	ory ID:	T152950-03		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Nickel		4.7	2.0	mg/kg	EPA 6010B	
Mercury		0.75	0.10	mg/kg	EPA 7471A Soil	
Sample ID:	S9-1' (B4)	Laborato	ory ID:	T152950-04		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		220	1.0	mg/kg	EPA 6010B	
Chromium		10	2.0	mg/kg	EPA 6010B	
Cobalt		5.5	2.0	mg/kg	EPA 6010B	
Copper		27	1.0	mg/kg	EPA 6010B	
Lead		150	3.0	mg/kg	EPA 6010B	
Nickel		12	2.0	mg/kg	EPA 6010B	
Vanadium		9.5	5.0	mg/kg	EPA 6010B	
Zinc		10	1.0	mg/kg	EPA 6010B	
Lead		5.2	0.10	mg/l	STLC Waste Extraction T	
Mercury		0.73	0.10	mg/kg	EPA 7471A Soil	
Sample ID:	S8-16' (B5)	Laborate	ory ID:	T152950-05		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		32	1.0	mg/kg	EPA 6010B	
Chromium		3.5	2.0	mg/kg	EPA 6010B	
Copper		1.7	1.0	mg/kg	EPA 6010B	
Lead		6.7	3.0	mg/kg	EPA 6010B	
Nickel		8.0	2.0	mg/kg	EPA 6010B	
Zinc		4.1	1.0	mg/kg	EPA 6010B	
Mercury		0.13	0.10	mg/kg	EPA 7471A Soil	
	S7-12' (B6)	Laborate	ory ID:	T152950-06		
Sample ID:			Reporting			
Sample ID:			1	** **	M-4b-1	Notes
•		Result	Limit	Units	Method	110163
Analyte Barium					EPA 6010B	Notes
Analyte		Result 63 13	1.0 2.0	mg/kg mg/kg		Notes

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Sample ID:	S7-12' (B6)	Labora	tory ID:	T152950-06		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Copper		3.8	1.0	mg/kg	EPA 6010B	
Lead		7.9	3.0	mg/kg	EPA 6010B	
Nickel		20	2.0	mg/kg	EPA 6010B	
Vanadium		26	5.0	mg/kg	EPA 6010B	
Zinc		13	1.0	mg/kg	EPA 6010B	
Mercury		0.15	0.10	mg/kg	EPA 7471A Soil	
Sample ID:	S5-10' (B7)	Labora	tory ID:	T152950-07		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		180	1.0	mg/kg	EPA 6010B	
Chromium		19	2.0	mg/kg	EPA 6010B	
Cobalt		6.3	2.0	mg/kg	EPA 6010B	
Copper		7.5	1.0	mg/kg	EPA 6010B	
Lead		8.8	3.0	mg/kg	EPA 6010B	
Nickel		15	2.0	mg/kg	EPA 6010B	
Vanadium		13	5.0	mg/kg	EPA 6010B	
Zinc		20	1.0	mg/kg	EPA 6010B	
Sample ID:	S3-2' (B8)	Labora	tory ID:	T152950-08		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		210	1.0	mg/kg	EPA 6010B	
Chromium		19	2.0	mg/kg	EPA 6010B	
Cobalt		11	2.0	mg/kg	EPA 6010B	
Copper		7.6	1.0	mg/kg	EPA 6010B	
Lead		10	3.0	mg/kg	EPA 6010B	
Nickel		59	2.0	mg/kg	EPA 6010B	
Vanadium		27	5.0	mg/kg	EPA 6010B	
Zinc		20	1.0	mg/kg	EPA 6010B	
Sample ID:	S2-6' (B11)	Labora	tory ID:	T152950-09		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

ample ID: S2-6' (B11) Laboratory ID:		T152950-09				
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		340	1.0	mg/kg	EPA 6010B	
Chromium		38	2.0	mg/kg	EPA 6010B	
Cobalt		15	2.0	mg/kg	EPA 6010B	
Copper		14	1.0	mg/kg	EPA 6010B	
Lead		8.6	3.0	mg/kg	EPA 6010B	
Nickel		45	2.0	mg/kg	EPA 6010B	
Vanadium		28	5.0	mg/kg	EPA 6010B	
Zinc		40	1.0	mg/kg	EPA 6010B	
Sample ID:	S6-4' (B14)	Laborat	tory ID:	T152950-10		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		90	1.0	mg/kg	EPA 6010B	
Chromium		14	2.0	mg/kg	EPA 6010B	
Cobalt		5.2	2.0	mg/kg	EPA 6010B	
Copper		5.3	1.0	mg/kg	EPA 6010B	
Lead		7.9	3.0	mg/kg	EPA 6010B	
Nickel		21	2.0	mg/kg	EPA 6010B	
Vanadium		10	5.0	mg/kg	EPA 6010B	
Zinc		15	1.0	mg/kg	EPA 6010B	
Mercury		0.33	0.10	mg/kg	EPA 7471A Soil	
Sample ID:	S4-14' (B15)	Laborat	tory ID:	T152950-11		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		60	1.0	mg/kg	EPA 6010B	
Chromium		10	2.0	mg/kg	EPA 6010B	
Cobalt		7.3	2.0	mg/kg	EPA 6010B	
Copper		4.0	1.0	mg/kg	EPA 6010B	
Lead		7.6	3.0	mg/kg	EPA 6010B	
Nickel		10	2.0	mg/kg	EPA 6010B	
		14	5.0	mg/kg	EPA 6010B	
Vanadium					TT 1 6010T	
Vanadium Zinc		11	1.0	mg/kg	EPA 6010B	

Katherine Running Crane

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Sample ID: S1-1	(B16) L	aboratory ID:	T152950-12		
		Reporting			
Analyte	Resul	t Limit	Units	Method	Notes
Barium	160	1.0	mg/kg	EPA 6010B	
Chromium	32	2.0	mg/kg	EPA 6010B	
Cobalt	8.1	2.0	mg/kg	EPA 6010B	
Copper	10	1.0	mg/kg	EPA 6010B	
Lead	7.8	3.0	mg/kg	EPA 6010B	
Nickel	46	2.0	mg/kg	EPA 6010B	
Vanadium	22	5.0	mg/kg	EPA 6010B	
Zinc	33	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S12-0.5' (B1) T152950-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 801	5C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112322	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		99.0 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	5.4	5.0	"	"	"	"	"	"	
Barium	200	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	12	2.0	"	"	"	"	"	"	
Cobalt	6.0	2.0	"	"	"	"	"	"	
Copper	15	1.0	"	"	"	"	"	"	
Lead	87	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	14	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	12	5.0	"	"	"	"	"	"	
Zinc	12	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	0.26	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Soil

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S12-0.5' (B1) T152950-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

S12-0.5' (B1) T152950-01 (Soil)

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
cis-1,3-Dichloropropene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		118 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		185 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		86.1 %	85.5	-116	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S11-2' (B2) T152950-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112322	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		101 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	120	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	18	2.0	"	"	"	"	"	"	
Cobalt	4.0	2.0	"	"	"	"	"	"	
Copper	11	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	16	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	20	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S11-2' (B2) T152950-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		48.5 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		46.9 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	40	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S11-2' (B2) T152950-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		91.7 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		97.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S11-2' (B2) T152950-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		116 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		133 %	95.7		"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S11-2' (B2) T152950-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		89.8 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds b	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S11-2' (B2) T152950-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	,,	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	,,	,,	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S11-2' (B2) T152950-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by El	PA Method 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		28.7 %	15	121	"	"	"	"	
Surrogate: Phenol-d6		47.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		21.6 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		43.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		79.3 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		84.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S10-3' (B3) T152950-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112322	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		99.8 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	73	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	2.3	2.0	"	"	"	"	"	"	
Cobalt	3.8	2.0	"	"	"	"	"	"	
Copper	2.1	1.0	"	"	"	"	"	"	
Lead	7.8	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.7	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	ND	5.0	"	"	"	"	"	"	
Zinc	ND	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	0.75	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S10-3' (B3) T152950-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4'-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Chlordane (tech)	ND	50	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		47.5 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		44.3 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S10-3' (B3) T152950-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	ahoratori	os Inc		-			
Dalarda aka da Diada araba ka EDA Ma	-41 - 1 0002	Sunstai L	abui atui i	es, me.					
Polychlorinated Biphenyls by EPA Me PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	ug/kg "	"	3112343	"	12/01/13	EFA 8082	
PCB-1232	ND	10	"	,,	"	,,	"	"	
PCB-1242	ND	10	"	,,	"	,,	"	"	
PCB-1248	ND	10	,,	,,	"	"	"	"	
PCB-1254	ND	10	,,	,,	"	"	"	"	
PCB-1260	ND	10	"	"	,,	,,	"	"	
Surrogate: Tetrachloro-meta-xylene	TVD	96.2 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		96.3 %	35 35		,,	"	"	"	
surrogaie. Decacmorovipnenyi		90.5 70	33	140					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S10-3' (B3) T152950-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.	_				
Volatile Organic Compounds by EP.	A Method 8260B								
1,4-Dichlorobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
o-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Γrichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	,,	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S10-3' (B3) T152950-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Vinyl chloride	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		129 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		266 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		92.6 %	85.5	-116	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	,,	,,	,,		,,	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S10-3' (B3) T152950-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S10-3' (B3) T152950-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Isophorone	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		49.4 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		50.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		52.7 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		58.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		79.8 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		71.1 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S9-1' (B4) T152950-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 8015	5C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112322	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		93.2 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	220	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	10	2.0	"	"	"	"	"	"	
Cobalt	5.5	2.0	"	"	"	"	"	"	
Copper	27	1.0	"	"	"	"	"	"	
Lead	150	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	12	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	9.5	5.0	"	"	"	"	"	"	
Zinc	10	1.0	"	"	"	"	"	"	
STLC Metals by 6000/7000 Series Methods									
Lead	5.2	0.10	mg/l	1	5120128	12/01/15	12/04/15	STLC Waste Extraction	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S9-1' (B4) T152950-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/747	71								
Mercury	0.73	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	
Organochlorine Pesticides by EPA M	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4´-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4´-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	n .	
Surrogate: Tetrachloro-meta-xylene		50.9 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		42.9 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S9-1' (B4) T152950-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	ahoratori	es Inc		-			
Polychlorinated Biphenyls by EPA Me	ethod 8082	Sunstai L	aboi atoi i	cs, inc.					
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		93.4 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		85.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	,,	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S9-1' (B4) T152950-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
1,4-Dichlorobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S9-1' (B4) T152950-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Vinyl chloride	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		118 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		165 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		99.5 %	85.5	-116	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	,,	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S9-1' (B4) T152950-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S9-1' (B4) T152950-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by I	EPA Method 8270C								
Isophorone	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		53.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		58.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		56.0 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		60.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		89.4 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		80.8 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S8-16' (B5) T152950-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		90.6 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	32	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	3.5	2.0	"	"	"	"	"	"	
Cobalt	ND	2.0	"	"	"	"	"	"	
Copper	1.7	1.0	"	"	"	"	"	"	
Lead	6.7	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	8.0	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	ND	5.0	"	"	"	"	"	"	
Zinc	4.1	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	0.13	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S8-16' (B5) T152950-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Mo	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		59.6 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		51.2 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S8-16' (B5) T152950-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		103 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		94.3 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S8-16' (B5) T152950-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		121 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		198 %	95.7		,,	"	,,	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S8-16' (B5) T152950-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		88.2 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds b	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S8-16' (B5) T152950-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S8-16' (B5) T152950-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		56.8 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		55.9 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		55.8 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		90.7 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		82.4 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S7-12' (B6) T152950-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		89.3 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	63	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	13	2.0	"	"	"	"	"	"	
Cobalt	3.4	2.0	"	"	"	"	"	"	
Copper	3.8	1.0	"	"	"	"	"	"	
Lead	7.9	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	20	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	26	5.0	"	"	"	"	"	"	
Zinc	13	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	0.15	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S7-12' (B6) T152950-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		49.2 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		52.3 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S7-12' (B6) T152950-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		80.7 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		88.5 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S7-12' (B6) T152950-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		196 %	95.7		,,	"	,,	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S7-12' (B6) T152950-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		89.5 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds b	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S7-12' (B6) T152950-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S7-12' (B6) T152950-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		50.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		66.6 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		49.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		60.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		93.4 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		80.4 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S5-10' (B7) T152950-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons b	y 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		92.8 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	180	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	6.3	2.0	"	"	"	"	"	"	
Copper	7.5	1.0	"	"	"	"	"	"	
Lead	8.8	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	15	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	13	5.0	"	"	"	"	"	"	
Zinc	20	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S5-10' (B7) T152950-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Mo	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		50.9 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		54.7 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S5-10' (B7) T152950-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		78.9 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		83.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S5-10' (B7) T152950-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		237 %	95.7		,,	"	,,	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S5-10' (B7) T152950-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		94.4 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds b	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S5-10' (B7) T152950-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	,,	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S5-10' (B7) T152950-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by El	PA Method 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		49.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		58.3 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		45.7 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		57.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		78.2 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		73.8 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S3-2' (B8) T152950-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		91.0 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	210	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	7.6	1.0	"	"	"	"	"	"	
Lead	10	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	59	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	27	5.0	"	"	"	"	"	"	
Zinc	20	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S3-2' (B8) T152950-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Mo	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		44.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		46.7 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S3-2' (B8) T152950-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		74.6 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		80.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	,,	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S3-2' (B8) T152950-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		202 %	95.7		"	"	"	"	S-GC
3		. , ,		-					

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S3-2' (B8) T152950-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		86.1 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds by	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S3-2' (B8) T152950-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S3-2' (B8) T152950-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		45.9 %	15	121	"	"	"	"	
Surrogate: Phenol-d6		56.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		48.8 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		51.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		74.9 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		68.0 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S2-6' (B11) T152950-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbon	ıs by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		94.5 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	340	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	38	2.0	"	"	"	"	"	"	
Cobalt	15	2.0	"	"	"	"	"	"	
Copper	14	1.0	"	"	"	"	"	"	
Lead	8.6	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	45	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	28	5.0	"	"	"	"	"	"	
Zinc	40	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/74	71								
Mercury	ND	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S2-6' (B11) T152950-09 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Mo	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		41.0 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		41.8 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S2-6' (B11) T152950-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		68.3 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		73.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S2-6' (B11) T152950-09 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		191 %	95.7	-135	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S2-6' (B11) T152950-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		86.2 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds by	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S2-6' (B11) T152950-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	,,	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	,,	,,	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S2-6' (B11) T152950-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Metho	od 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		38.7 %	15-1	'21	"	"	"	"	
Surrogate: Phenol-d6		53.4 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		33.6 %	21.3-	119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		43.1 %	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		80.5 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		73.7 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S6-4' (B14) T152950-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80)15C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		90.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	90	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	14	2.0	"	"	"	"	"	"	
Cobalt	5.2	2.0	"	"	"	"	"	"	
Copper	5.3	1.0	"	"	"	"	"	"	
Lead	7.9	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	21	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	10	5.0	"	"	"	"	"	"	
Zinc	15	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	0.33	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S6-4' (B14) T152950-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Mo	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		51.2 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		51.1 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S6-4' (B14) T152950-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		102 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		95.5 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S6-4' (B14) T152950-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		118 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		181 %	95.7		,,	,,	,,	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S6-4' (B14) T152950-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		92.6 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds by	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S6-4' (B14) T152950-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	,,	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S6-4' (B14) T152950-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		40.9 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		51.8 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		46.4 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		54.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		74.5 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		65.5 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S4-14' (B15) T152950-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons b	oy 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		91.3 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	60	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	10	2.0	"	"	"	"	"	"	
Cobalt	7.3	2.0	"	"	"	"	"	"	
Copper	4.0	1.0	"	"	"	"	"	"	
Lead	7.6	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	10	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	14	5.0	"	"	"	"	"	"	
Zinc	11	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	0.11	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S4-14' (B15) T152950-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		57.4 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		53.9 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S4-14' (B15) T152950-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		89.3 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		93.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S4-14' (B15) T152950-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP.	A Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		117 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		207 %	95.7		"	"	"	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S4-14' (B15) T152950-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		84.5 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	S-GC
Semivolatile Organic Compounds by	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S4-14' (B15) T152950-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	,,	,,	"	,,	,,	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S4-14' (B15) T152950-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Mo	ethod 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		30.3 %	15	121	"	"	"	"	
Surrogate: Phenol-d6		46.9 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		25.0 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		35.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		68.6 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		66.6 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S1-1' (B16) T152950-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		88.4 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	160	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	32	2.0	"	"	"	"	"	"	
Cobalt	8.1	2.0	"	"	"	"	"	"	
Copper	10	1.0	"	"	"	"	"	"	
Lead	7.8	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	46	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	22	5.0	"	"	"	"	"	"	
Zinc	33	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	5112013	11/20/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S1-1' (B16) T152950-12 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		51.7 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		49.4 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S1-1' (B16) T152950-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		87.2 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		94.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	,,	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S1-1' (B16) T152950-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		198 %	95.7		,,	"	,,	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S1-1' (B16) T152950-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		85.9 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds b	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S1-1' (B16) T152950-12 (Soil)

	- ·	Reporting	** **	D.11 - 1	D	ъ.		36.4.	• •
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

S1-1' (B16) T152950-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Meth	od 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		40.6 %	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		51.8 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		43.7 %	21.3-	.119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		52.1 %	32.4-	·102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		78.9 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		73.9 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Extractable Petroleum Hydrocarbons by 8015C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112322 - EPA 3550B GC										
Blank (5112322-BLK1)				Prepared &	& Analyzed:	: 11/23/15				
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	98.6		"	100		98.6	65-135			
LCS (5112322-BS1)				Prepared &	& Analyzed:	: 11/23/15				
C13-C28 (DRO)	430	10	mg/kg	500		86.3	75-125			
Surrogate: p-Terphenyl	97.2		"	100		97.2	65-135			
Matrix Spike (5112322-MS1)	Source	: T152943	-02	Prepared:	11/23/15 A	nalyzed: 11	1/24/15			
C13-C28 (DRO)	520	10	mg/kg	500	ND	104	75-125			
Surrogate: p-Terphenyl	111		"	100		111	65-135			
Matrix Spike Dup (5112322-MSD1)	Source	: T152943	-02	Prepared:	11/23/15 A	nalyzed: 11	1/24/15			
C13-C28 (DRO)	500	10	mg/kg	500	ND	100	75-125	3.33	20	
Surrogate: p-Terphenyl	103		"	99.9		103	65-135			
Batch 5112330 - EPA 3550B GC										
Blank (5112330-BLK1)				Prepared:	11/23/15 A	nalyzed: 11	1/24/15			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	89.5		"	100		89.5	65-135			
LCS (5112330-BS1)				Prepared:	11/23/15 A	nalyzed: 11	1/24/15			
C13-C28 (DRO)	460	10	mg/kg	500		92.0	75-125			
Surrogate: p-Terphenyl	96.7		"	99.9		96.8	65-135			

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

Extractable Petroleum Hydrocarbons by 8015C - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112330 - EPA 3550B GC										
Matrix Spike (5112330-MS1)	Sourc	e: T152950-	-05	Prepared:	11/23/15 A	nalyzed: 11	/25/15			
C13-C28 (DRO)	450	10	mg/kg	500	ND	89.8	75-125			
Surrogate: p-Terphenyl	98.0		"	100		98.0	65-135			
Matrix Spike Dup (5112330-MSD1)	Sourc	e: T152950-	-05	Prepared:	11/23/15 A	nalyzed: 11	/25/15			
C13-C28 (DRO)	450	10	mg/kg	500	ND	90.9	75-125	1.25	20	
Surrogate: p-Terphenyl	104		"	100		104	65-135			

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112325 - EPA 3051										
Blank (5112325-BLK1)				Prepared: 1	11/23/15 A	nalyzed: 11	/24/15			
Antimony	ND	3.0	mg/kg							
Silver	ND	2.0	"							
Arsenic	ND	5.0	"							
Barium	ND	1.0	"							
Beryllium	ND	1.0	"							
Cadmium	ND	2.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Lead	ND	3.0	"							
Molybdenum	ND	5.0	"							
Nickel	ND	2.0	"							
Selenium	ND	5.0	"							
Thallium	ND	2.0	"							
Vanadium	ND	5.0	"							
Zinc	ND	1.0	"							
LCS (5112325-BS1)				Prepared: 1	11/23/15 A	nalyzed: 11	/24/15			
Arsenic	90.6	5.0	mg/kg	100		90.6	75-125			
Barium	84.1	1.0	"	100		84.1	75-125			
Cadmium	83.4	2.0	"	100		83.4	75-125			
Chromium	85.7	2.0	"	100		85.7	75-125			
Lead	90.5	3.0	"	100		90.5	75-125			
Matrix Spike (5112325-MS1)	Source	e: T152950-	-01	Prepared: 1	11/23/15 A	nalyzed: 11	/24/15			
Arsenic	75.8	5.0	mg/kg	99.0	5.42	71.1	75-125			QM-0:
Barium	224	1.0	"	99.0	201	24.2	75-125			QM-0:
Cadmium	70.3	2.0	"	99.0	0.484	70.6	75-125			QM-0:
Chromium	80.8	2.0	"	99.0	11.9	69.6	75-125			QM-0:
Lead	143	3.0	"	99.0	86.8	57.0	75-125			QM-0:

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112325 - EPA 3051										
Matrix Spike Dup (5112325-MSD1)	Sourc	e: T152950-	-01	Prepared:	11/23/15 A	nalyzed: 11	/24/15			
Arsenic	73.4	5.0	mg/kg	100	5.42	67.9	75-125	3.24	20	QM-05
Barium	226	1.0	"	100	201	25.5	75-125	0.691	20	QM-05
Cadmium	71.2	2.0	"	100	0.484	70.8	75-125	1.27	20	QM-05
Chromium	81.0	2.0	"	100	11.9	69.1	75-125	0.217	20	QM-05
Lead	146	3.0	"	100	86.8	59.5	75-125	2.09	20	QM-05

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

STLC Metals by 6000/7000 Series Methods - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5120128 - STLC Metals										
Blank (5120128-BLK1)				Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	ND	0.10	mg/l							
LCS (5120128-BS1)				Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	9.68	0.10	mg/l	10.0		96.8	75-125			
Matrix Spike (5120128-MS1)	Sour	ce: T152950-	04	Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	14.7	0.10	mg/l	10.0	5.24	94.8	75-125			
Matrix Spike Dup (5120128-MSD1)	Sour	ce: T152950-	04	Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	15.2	0.10	mg/l	10.0	5.24	99.6	75-125	3.21	30	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112013 - EPA 7471A Soil										
Blank (5112013-BLK1)				Prepared: 1	1/20/15 A	nalyzed: 11	/24/15			
Mercury	ND	0.10	mg/kg							
LCS (5112013-BS1)				Prepared: 1	1/20/15 A	nalyzed: 11	/24/15			
Mercury	0.347	0.10	mg/kg	0.417		83.3	75-125			
Matrix Spike (5112013-MS1)	Sour	rce: T152873-	-15	Prepared: 1	1/20/15 A	nalyzed: 11	/24/15			
Mercury	0.295	0.10	mg/kg	0.410	ND	72.0	75-125			QM-05
Matrix Spike Dup (5112013-MSD1)	Sour	ce: T152873-	-15	Prepared: 1	1/20/15 A	nalyzed: 11	/24/15			
Mercury	0.308	0.10	mg/kg	0.417	ND	74.0	75-125	4.35	20	QM-05

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

RPD

Pangea Environmental Services, Inc. Project: 4901 Broadway

Result

5.63

5.34

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

Limit

$Organochlorine\ Pesticides\ by\ EPA\ Method\ 8081A-Quality\ Control$

SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

Blank (5112345-BLK1)				Prepared: 11/25	5/15 Analyzed: 11	1/30/15	
alpha-BHC	ND	5.0	ug/kg				
gamma-BHC (Lindane)	ND	5.0	"				
oeta-BHC	ND	5.0	"				
delta-BHC	ND	5.0	"				
Heptachlor	ND	5.0	"				
Aldrin	ND	5.0	"				
Heptachlor epoxide	ND	5.0	"				
gamma-Chlordane	ND	5.0	"				
alpha-Chlordane	ND	5.0	"				
Endosulfan I	ND	5.0	"				
4,4′-DDE	ND	5.0	"				
Dieldrin	ND	5.0	"				
Endrin	ND	5.0	"				
4,4′-DDD	ND	5.0	"				
Endosulfan II	ND	5.0	"				
4,4′-DDT	ND	5.0	"				
Endrin aldehyde	ND	5.0	"				
Endosulfan sulfate	ND	5.0	"				
Methoxychlor	ND	10	"				
Endrin ketone	ND	5.0	"				
Гохарhene	ND	200	"				
Chlordane (tech)	ND	50	"				
Surrogate: Tetrachloro-meta-xylene	5.63		"	9.97	56.5	35-140	
Surrogate: Decachlorobiphenyl	5.36		"	9.97	53.8	35-140	
LCS (5112345-BS1)				Prepared: 11/25	5/15 Analyzed: 11	1/30/15	
gamma-BHC (Lindane)	24.1	5.0	ug/kg	40.0	60.3	40-120	
Heptachlor	23.8	5.0	"	40.0	59.4	40-120	
Aldrin	23.7	5.0	"	40.0	59.3	40-120	
Dieldrin	24.6	5.0	"	40.0	61.6	40-120	
Endrin	27.1	5.0	"	40.0	67.9	40-120	
1,4'-DDT	23.4	5.0	"	40.0	58.4	33-147	

10.0

10.0

SunStar Laboratories, Inc.

Surrogate: Tetrachloro-meta-xylene

Surrogate: Decachlorobiphenyl

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

56.3

53.4

35-140

35-140

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5112345 - EPA 3550 ECD/GCMS										
Matrix Spike (5112345-MS1)	Sou	rce: T152950-	03	Prepared: 1	11/25/15 A	nalyzed: 11	/30/15			
gamma-BHC (Lindane)	25.0	5.0	ug/kg	40.0	ND	62.4	30-120			
Heptachlor	23.8	5.0	"	40.0	ND	59.6	30-120			
Aldrin	23.2	5.0	"	40.0	ND	57.9	30-120			
Dieldrin	24.7	5.0	"	40.0	ND	61.7	30-120			
Endrin	26.3	5.0	"	40.0	ND	65.7	30-120			
4,4'-DDT	28.7	5.0	"	40.0	ND	71.8	30-120			
Surrogate: Tetrachloro-meta-xylene	5.08		"	10.0		50.8	35-140			
Surrogate: Decachlorobiphenyl	4.80		"	10.0		48.0	35-140			
Matrix Spike Dup (5112345-MSD1)	Sou	rce: T152950-	03	Prepared: 1	11/25/15 A	nalyzed: 11	/30/15			
gamma-BHC (Lindane)	23.4	5.0	ug/kg	39.9	ND	58.5	30-120	6.48	30	
Heptachlor	22.8	5.0	"	39.9	ND	57.1	30-120	4.20	30	
Aldrin	22.4	5.0	"	39.9	ND	56.0	30-120	3.34	30	
Dieldrin	23.7	5.0	"	39.9	ND	59.4	30-120	3.75	30	
Endrin	25.6	5.0	"	39.9	ND	64.1	30-120	2.59	30	
4,4'-DDT	27.9	5.0	"	39.9	ND	69.8	30-120	2.92	30	
Surrogate: Tetrachloro-meta-xylene	4.97		"	9.98		49.8	35-140			
Surrogate: Decachlorobiphenyl	4.68		"	9.98		46.9	35-140			

SunStar Laboratories, Inc.

RPD

%REC

Source

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112343 - EPA 3550 ECD/GCMS										
Blank (5112343-BLK1)				Prepared: 1	11/23/15 A	nalyzed: 12	/01/15			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	7.48		"	10.0		74.8	35-140			
Surrogate: Decachlorobiphenyl	7.94		"	10.0		79.4	35-140			
LCS (5112343-BS1)				Prepared: 1	11/23/15 A	nalyzed: 12	/01/15			
PCB-1016	93.8	10	ug/kg	99.9		93.9	40-130			
PCB-1260	103	10	"	99.9		104	40-130			
Surrogate: Tetrachloro-meta-xylene	7.80		"	9.99		78.1	35-140			
Surrogate: Decachlorobiphenyl	8.32		"	9.99		83.3	35-140			
Matrix Spike (5112343-MS1)	Sourc	e: T152951-	-01	Prepared: 1	11/23/15 A	nalyzed: 12	/01/15			
PCB-1016	102	10	ug/kg	99.7	ND	103	40-130			
PCB-1260	117	10	"	99.7	ND	117	40-130			
Surrogate: Tetrachloro-meta-xylene	8.31		"	9.97		83.3	35-140			
Surrogate: Decachlorobiphenyl	8.76		"	9.97		87.9	35-140			
Matrix Spike Dup (5112343-MSD1)	Sourc	e: T152951-	-01	Prepared: 1	11/23/15 A	nalyzed: 12	/01/15			
PCB-1016	116	10	ug/kg	100	ND	116	40-130	12.8	30	
PCB-1260	130	10	"	100	ND	130	40-130	10.6	30	
Surrogate: Tetrachloro-meta-xylene	8.42		"	10.0		84.2	35-140			
Surrogate: Decachlorobiphenyl	9.97		"	10.0		99.7	35-140			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112333 - EPA 5030 GCMS

Blank (5112333-BLK1)				Prepared: 11/23/15 Analyzed: 12/03/15
Bromobenzene	ND	5.0	ug/kg	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	10	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

		Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112333 - EPA 5030 GCMS										
Blank (5112333-BLK1)				Prepared:	11/23/15 A	nalyzed: 12	/03/15			
p-Isopropyltoluene	ND	5.0	ug/kg							
Methylene chloride	ND	5.0	"							
Naphthalene	ND	5.0	"							
n-Propylbenzene	ND	5.0	"							
Styrene	ND	5.0	"							
1,1,2,2-Tetrachloroethane	ND	5.0	"							
1,1,1,2-Tetrachloroethane	ND	5.0	"							
Tetrachloroethene	ND	5.0	"							
1,2,3-Trichlorobenzene	ND	5.0	"							
1,2,4-Trichlorobenzene	ND	5.0	"							
1,1,2-Trichloroethane	ND	5.0	"							
1,1,1-Trichloroethane	ND	5.0	"							
Trichloroethene	ND	5.0	"							
Trichlorofluoromethane	ND	5.0	"							
1,2,3-Trichloropropane	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
Benzene	ND	5.0	"							
Toluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
m,p-Xylene	ND	10	"							
o-Xylene	ND	5.0	"							
Surrogate: 4-Bromofluorobenzene	46.3		"	40.0		116	81.2-123			
Surrogate: Dibromofluoromethane	64.4		"	40.0		161	95.7-135			S-0
Surrogate: Toluene-d8	38.6		"	40.0		96.4	85.5-116			
LCS (5112333-BS1)				Prepared:	11/23/15 A	nalyzed: 12	/03/15			
Chlorobenzene	120	5.0	ug/kg	100		120	75-125			
1,1-Dichloroethene	122	5.0	"	100		122	75-125			
Trichloroethene	121	5.0	"	100		121	75-125			
Benzene	119	5.0	"	100		119	75-125			
Toluene	119	5.0	"	100		119	75-125			
Surrogate: 4-Bromofluorobenzene	43.7		"	40.0		109	81.2-123			
Surrogate: Dibromofluoromethane	74.1		"	40.0		185	95.7-135			S-0
Surrogate: Toluene-d8	35.9		"	40.0		89.8	85.5-116			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112333 - EPA 5030 GCMS										
LCS Dup (5112333-BSD1)				Prepared: 1	11/23/15 A	nalyzed: 12	2/03/15			
Chlorobenzene	124	5.0	ug/kg	100		124	75-125	3.24	20	
1,1-Dichloroethene	124	5.0	"	100		124	75-125	1.46	20	
Trichloroethene	120	5.0	"	100		120	75-125	0.871	20	
Benzene	124	5.0	"	100		124	75-125	4.15	20	
Toluene	117	5.0	"	100		117	75-125	1.10	20	
Surrogate: 4-Bromofluorobenzene	46.2		"	40.0		116	81.2-123			
Surrogate: Dibromofluoromethane	68.6		"	40.0		172	95.7-135			S-GC
Surrogate: Toluene-d8	36.3		"	40.0		90.8	85.5-116			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112334 - EPA 3550 ECD/GCMS

Blank (5112334-BLK1)				Prepared: 11/23/15 Analyzed: 11/25/15
Carbazole	ND	300	ug/kg	
Aniline	ND	300	"	
Phenol	ND	1000	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112334 - EPA 3550 ECD/GCMS

Blank (5112334-BLK1)				Prepared: 11/23/15 Analyzed: 11/25/15
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
Pyridine	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (5112334-BLK1)				Prepared: 1	1/23/15 A	Analyzed: 1	1/25/15	
Surrogate: 2-Fluorophenol	1530		ug/kg	3330		45.9	15-121	
Surrogate: Phenol-d6	1980		"	3330		59.4	24-113	
Surrogate: Nitrobenzene-d5	1740		"	3330		52.3	21.3-119	
Surrogate: 2-Fluorobiphenyl	1830		"	3330		55.0	32.4-102	
Surrogate: 2,4,6-Tribromophenol	2530		"	3330		75.9	18.1-105	
Surrogate: Terphenyl-dl4	2290		"	3330		68.7	29.1-130	
LCS (5112334-BS1)				Prepared: 1	1/23/15 A	Analyzed: 1	1/25/15	
Phenol	1950	1000	ug/kg	3330		58.5	34-114	
2-Chlorophenol	1750	1000	"	3330		52.5	34-114	
1,4-Dichlorobenzene	1600	300	"	3330		48.0	34-114	
N-Nitrosodi-n-propylamine	1940	300	"	3330		58.3	30-110	
1,2,4-Trichlorobenzene	1760	300	"	3330		52.7	39-119	
4-Chloro-3-methylphenol	2270	1000	"	3330		68.2	50-130	
Acenaphthene	2060	300	"	3330		61.9	34-114	
4-Nitrophenol	2450	1000	"	3330		73.7	40-120	
2,4-Dinitrotoluene	1560	300	"	3330		46.9	35-115	
Pentachlorophenol	2880	1000	"	3330		86.5	50-130	
Pyrene	2060	300	"	3330		61.8	30-110	
Surrogate: 2-Fluorophenol	1300		"	3330		39.0	15-121	
Surrogate: Phenol-d6	1640		"	3330		49.1	24-113	
Surrogate: Nitrobenzene-d5	1390		"	3330		41.7	21.3-119	
Surrogate: 2-Fluorobiphenyl	1530		"	3330		46.0	32.4-102	
Surrogate: 2,4,6-Tribromophenol	2190		"	3330		65.8	18.1-105	
Surrogate: Terphenyl-dl4	2040		"	3330		61.2	29.1-130	
Matrix Spike (5112334-MS1)	Sourc	e: T152950-	01	Prepared: 1	1/23/15 A	analyzed: 1	1/25/15	
Phenol	2210	1000	ug/kg	3330	ND	66.3	34-114	
2-Chlorophenol	1930	1000	"	3330	ND	57.8	34-114	
1,4-Dichlorobenzene	941	300	"	3330	ND	28.2	34-114	QM-
N-Nitrosodi-n-propylamine	1980	300	"	3330	ND	59.3	30-110	
1,2,4-Trichlorobenzene	1580	300	"	3330	ND	47.3	39-119	
4-Chloro-3-methylphenol	2500	1000	"	3330	ND	74.9	50-130	
Acenaphthene	2190	300	"	3330	ND	65.8	34-114	
4-Nitrophenol	2500	1000	"	3330	ND	75.0	40-120	
2,4-Dinitrotoluene	1690	300	"	3330	ND	50.7	35-115	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

RPD

Pangea Environmental Services, Inc. Project: 4901 Broadway

Result

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Reporting

Limit

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

Matrix Spike (5112334-MS1)	Source: T152950-01			Prepared: 11/23/15 Analyzed: 11/25/15						
Pentachlorophenol	3310	1000	ug/kg	3330	ND	99.2	50-130			
Pyrene	2400	300	"	3330	105	68.9	30-110			
Surrogate: 2-Fluorophenol	1620		"	3330		48.6	15-121			
Surrogate: Phenol-d6	2080		"	3330		62.3	24-113			
Surrogate: Nitrobenzene-d5	1730		"	3330		51.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	1900		"	3330		57.0	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2660		"	3330		79.9	18.1-105			
Surrogate: Terphenyl-dl4	2570		"	3330		77.0	29.1-130			
Matrix Spike Dup (5112334-MSD1)	Source: T152950-01 P			Prepared: 11/23/15 Analyzed: 11/25/15						
Phenol	1990	1000	ug/kg	3330	ND	59.7	34-114	10.4	42	
2-Chlorophenol	1950	1000	"	3330	ND	58.5	34-114	1.17	40	
1,4-Dichlorobenzene	1060	300	"	3330	ND	31.8	34-114	12.0	28	QM-0
N-Nitrosodi-n-propylamine	1970	300	"	3330	ND	59.2	30-110	0.169	38	
1,2,4-Trichlorobenzene	1700	300	"	3330	ND	50.9	39-119	7.41	28	
4-Chloro-3-methylphenol	2480	1000	"	3330	ND	74.5	50-130	0.562	42	
Acenaphthene	2210	300	"	3330	ND	66.3	34-114	0.788	31	
4-Nitrophenol	2410	1000	"	3330	ND	72.2	40-120	3.71	50	
2,4-Dinitrotoluene	1540	300	"	3330	ND	46.3	35-115	9.08	38	
Pentachlorophenol	3380	1000	"	3330	ND	101	50-130	2.05	50	
Pyrene	2460	300	"	3330	105	70.5	30-110	2.25	31	
Surrogate: 2-Fluorophenol	1530		"	3330		45.9	15-121			
Surrogate: Phenol-d6	1830		"	3330		54.9	24-113			
Surrogate: Nitrobenzene-d5	1730		"	3330		52.0	21.3-119			
Surrogate: 2-Fluorobiphenyl	1910		"	3330		57.2	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2740		"	3330		82.3	18.1-105			
Surrogate: Terphenyl-dl4	2520		"	3330		75.6	29.1-130			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/04/15 16:58

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kotherine Running Crane

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE Laboratories, Inc.

Chain of Custody Record

Page 105 of 108

949-297-5020 25712 Commercentre Drive, Lake Forest, CA 92630

coc 141044

SAMPLE RECEIVING REVIEW SHEET

BATCH# 7/52950				
Client Name: Project: 4	1901 BROA	DWAY	*	
Received by: Date/Time Re	eceived:	11-21-15	/10:20	
Delivered by : ☐ Client ☐ SunStar Courier ☐ GSO ☐ FedEx	Other		<u> </u>	
Total number of coolers received Temp criteria = 6°C	> 0°C (no	frozen co	ntainers)	
Temperature: cooler #1 $\underline{s_3}$ °C +/- the CF (-0.2°C) = $\underline{s_{i!}}$ °C corre	cted temperat	ure		
cooler #2°C +/- the CF (- 0.2°C) =°C corre	cted temperat	ure		
cooler #3°C +/- the CF (- 0.2°C) =°C corre	cted temperat	ure		
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	Yes Yes	□No*	□N/A	
Custody Seals Intact on Cooler/Sample	⊠Yes	□No*	□N/A	
Sample Containers Intact	⊠Yes	□No*		
Sample labels match COC ID's	⊠Yes	□No*		
Total number of containers received match COC	∀es	□No*		
Proper containers received for analyses requested on COC	∑ Yes	□No*		
Proper preservative indicated on COC/containers for analyses requested	Yes	□No*	⊠N/A	× 0
Complete shipment received in good condition with correct temperatures, corpreservatives and within method specified holding times. Yes No		abels, volu	mes	
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample R	eview - Initi	als and date	St. 11.21.15	
Comments:		2 ²⁴		
	-			
	* 1			

EMSL Analytical, Inc

464 McCormick Street, San Leandro, CA 94577 (510) 895-3675 / (510) 895-3680 Phone/Fax:

http://www.EMSL.com sanleandrolab@emsl.com

EMSL Order: 091519860 CustomerID: CustomerPO:

32SUNS45 T152950

ProjectID:

Attn: Katherine RunningCrane Sunstar Laboratories, Inc. 25712 Commercentre Drive Lake Forest, CA 92630

Phone: (949) 297-5020 Fax: (949) 297-5027 Received: 11/24/15 9:00 AM Analysis Date: 12/1/2015 Collected: 12/17/2015

Project: **T152950**

Test Report: PLM Analysis of Bulk Samples for Asbestos via EPA 600/R-93/116 Method with CARB 435 Prep (Milling) Level A for 0.25% Target Analytical Sensitivity

				<u>Non</u>	-Asbestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
T152950-01		Brown			100.00% Non-fibrous (other)	None Detected
091519860-0001		Non-Fibrous Homogeneous				
T152950-02		Brown			100.00% Non-fibrous (other)	None Detected
091519860-0002		Non-Fibrous Homogeneous				
T152950-03		Brown			100.00% Non-fibrous (other)	None Detected
091519860-0003		Non-Fibrous Homogeneous				
T152950-04		Brown			100.00% Non-fibrous (other)	None Detected
091519860-0004		Non-Fibrous Homogeneous				
T152950-05		Brown			100.00% Non-fibrous (other)	None Detected
091519860-0005		Non-Fibrous Homogeneous				
T152950-06		Brown			100.00% Non-fibrous (other)	None Detected
091519860-0006		Non-Fibrous Homogeneous				
T152950-07		Brown			100.00% Non-fibrous (other)	None Detected
091519860-0007		Non-Fibrous Homogeneous				

Analyst(s)	
Adam C. Fink (12)	

Chris Dojlidko, Laboratory Manager or other approved signatory

This report relates only to the samples listed above and may not be reproduced except in full, without EMSL's written approval. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. EMSL is not responsible for sample collection activities or method limitations. Some samples may contain asbestos fibers below the resolution limit of PLM. EMSL recommends that samples reported as none detected or less than the limit of detection undergo additional analysis via TEM.Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc San Leandro, CA

Initial report from 12/01/2015 22:25:41

EMSL Analytical, Inc

464 McCormick Street, San Leandro, CA 94577 Phone/Fax: (510) 895-3675 / (510) 895-3680

sanleandrolab@emsl.com http://www.EMSL.com

EMSL Order: 091519860 CustomerID: CustomerPO:

32SUNS45 T152950

ProjectID:

Attn: Katherine RunningCrane Sunstar Laboratories, Inc. 25712 Commercentre Drive Lake Forest, CA 92630

Phone: (949) 297-5020 Fax: (949) 297-5027 Received: 11/24/15 9:00 AM Analysis Date: 12/1/2015 Collected: 12/17/2015

Project: **T152950**

Test Report: PLM Analysis of Bulk Samples for Asbestos via EPA 600/R-93/116 Method with CARB 435 Prep (Milling) Level A for 0.25% Target Analytical Sensitivity

				<u>Non</u>	-Asbestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
T152950-08		Brown Non-Fibrous Homogeneous			100.00% Non-fibrous (other)	None Detected
T152950-09		Brown Non-Fibrous Homogeneous			100.00% Non-fibrous (other)	None Detected
T152950-10		Brown Non-Fibrous Homogeneous			100.00% Non-fibrous (other)	None Detected
T152950-11		Brown Non-Fibrous Homogeneous			100.00% Non-fibrous (other)	None Detected
T152950-12 091519860-0012		Brown Non-Fibrous Homogeneous			100.00% Non-fibrous (other)	None Detected

Analyst(s)	
Adam C. Fink (12)	

Chris Dojlidko, Laboratory Manager or other approved signatory

This report relates only to the samples listed above and may not be reproduced except in full, without EMSL's written approval. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. EMSL is not responsible for sample collection activities or method limitations. Some samples may contain asbestos fibers below the resolution limit of PLM. EMSL recommends that samples reported as none detected or less than the limit of detection undergo additional analysis via TEM.Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc San Leandro, CA

Initial report from 12/01/2015 22:25:41

"When Quality Counts"

Analytical Report

WorkOrder: 1511B02

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact: Bob Clark-Riddell

Project P.O.:

Project Name: 1740.001.110; 4901 BWAY

Project Received: 11/25/2015

Analytical Report reviewed & approved for release on 12/01/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc. Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1511B02Date Received:11/25/15 17:02Extraction Method:SW3550B

Date Prepared: 11/30/15 Analytical Method: SW8270C-SIM

Project: 1740.001.110; 4901 BWAY **Unit:** mg/kg

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
S12-0.5' (B1)2	1511B02-001A	Soil	11/25/201	15 11:00 GC35	113532
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acenaphthene	ND		0.020	2	11/30/2015 17:20
Acenaphthylene	ND		0.020	2	11/30/2015 17:20
Anthracene	ND		0.020	2	11/30/2015 17:20
Benzo (a) anthracene	0.021		0.020	2	11/30/2015 17:20
Benzo (a) pyrene	0.031		0.020	2	11/30/2015 17:20
Benzo (b) fluoranthene	0.033		0.020	2	11/30/2015 17:20
Benzo (g,h,i) perylene	0.032		0.020	2	11/30/2015 17:20
Benzo (k) fluoranthene	ND		0.020	2	11/30/2015 17:20
Chrysene	0.037		0.020	2	11/30/2015 17:20
Dibenzo (a,h) anthracene	ND		0.020	2	11/30/2015 17:20
Fluoranthene	0.056		0.020	2	11/30/2015 17:20
Fluorene	ND		0.020	2	11/30/2015 17:20
Indeno (1,2,3-cd) pyrene	0.022		0.020	2	11/30/2015 17:20
1-Methylnaphthalene	ND		0.020	2	11/30/2015 17:20
2-Methylnaphthalene	ND		0.020	2	11/30/2015 17:20
Naphthalene	ND		0.020	2	11/30/2015 17:20
Phenanthrene	0.053		0.020	2	11/30/2015 17:20
Pyrene	0.062		0.020	2	11/30/2015 17:20
Surrogates	REC (%)		<u>Limits</u>		
1-Fluoronaphthalene	80		30-130		11/30/2015 17:20
2-Fluorobiphenyl	88		30-130		11/30/2015 17:20
Analyst(s): HK					

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1511B02Date Prepared:11/30/15BatchID:113532Date Analyzed:11/30/15Extraction Method:SW3550BInstrument:GC35Analytical Method:SW8270C-SIM

Matrix: Soil Unit: mg/kg

Project: 1740.001.110; 4901 BWAY **Sample ID:** MB/LCS-113532

1511B02-001AMS/MSD

QC Summary Report for SW8270C

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	-	0.010	-	-	-	-
Acenaphthylene	ND	-	0.010	-	-	-	-
Anthracene	ND	-	0.010	-	-	-	-
Benzo (a) anthracene	ND	-	0.010	-	-	-	-
Benzo (a) pyrene	ND	0.124	0.010	0.20	-	62	30-130
Benzo (b) fluoranthene	ND	-	0.010	-	-	-	-
Benzo (g,h,i) perylene	ND	-	0.010	-	-	-	-
Benzo (k) fluoranthene	ND	-	0.010	-	-	-	-
Chrysene	ND	0.136	0.010	0.20	-	68	30-130
Dibenzo (a,h) anthracene	ND	-	0.010	-	-	-	-
Fluoranthene	ND	-	0.010	-	-	-	-
Fluorene	ND	-	0.010	-	-	-	-
Indeno (1,2,3-cd) pyrene	ND	-	0.010	-	-	-	-
1-Methylnaphthalene	ND	0.143	0.010	0.20	-	71	30-130
2-Methylnaphthalene	ND	0.146	0.010	0.20	-	73	30-130
Naphthalene	ND	-	0.010	-	-	-	-
Phenanthrene	ND	0.136	0.010	0.20	-	68	30-130
Pyrene	ND	0.116	0.010	0.20	-	58	30-130
Surrogate Recovery							
1-Fluoronaphthalene	0.357	0.391		0.50	71	78	30-130
2-Fluorobiphenyl	0.377	0.395		0.50	75	79	30-130

Instrument:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

WorkOrder: **Client:** Pangea Environmental Svcs., Inc. 1511B02 **Date Prepared:** 11/30/15 **BatchID:** 113532 **Date Analyzed:** 11/30/15 **Extraction Method:** SW3550B GC35 **Analytical Method:** SW8270C-SIM

Matrix: Soil Unit: mg/kg

Project: 1740.001.110; 4901 BWAY Sample ID: MB/LCS-113532

1511B02-001AMS/MSD

QC Summary Report for SW8270C

Analyte	MS	MSD	SPK	SPKRef	MS	MSD	MS/MSD Limits	RPD	RPD
	Result	Result	Val	Val	%REC	%REC			Limit
Benzo (a) pyrene	NR	NR		0.031	NR	NR	-	NR	
Chrysene	NR	NR		0.037	NR	NR	-	NR	
1-Methylnaphthalene	NR	NR		ND<0.02	NR	NR	-	NR	
2-Methylnaphthalene	NR	NR		ND<0.02	NR	NR	-	NR	
Phenanthrene	NR	NR		0.053	NR	NR	-	NR	
Pyrene	NR	NR		0.062	NR	NR	-	NR	
Surrogate Recovery									
1-Fluoronaphthalene	NR	NR			NR	NR	-	NR	
2-Fluorobiphenyl	NR	NR			NR	NR	-	NR	

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

11/25/2015

Date Received:

WorkOrder: 1511B02 ClientCode: PEO

Report to: Requested TAT: 3 days;

Bob Clark-Riddell Email: BRiddell@pangeaenv.com Bob Clark-Riddell

Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

PO:

Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

(510) 836-3700 FAX: (510) 836-3709

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
1511B02-001	S12-0.5' (B1)2	Soil	11/25/2015 11:00	Α											

Test Legend:

1 8270_PNA_S	2	3	4
5	6	7	8
9	10	11	12

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

1511B02-001A S12-0.5' (B1)2

McCampbell Analytical, Inc.

"When Quality Counts"

Soil

SW8270C (PAHs/PNAs)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

11/25/2015 11:00

3 days

WORK ORDER SUMMARY

Lab ID (Client ID	Matrix	Test Name		Containe /Composi		Preservative	De- chlorinated	Collection Date & Time	TAT Sediment Content	t Hold SubOu
		WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	pyThirdParty	J-flag	
Comments:					Contact's Email:	BRiddell@p	angeaenv.com				
Project:	1740.001.110;	4901 BWAY			Client Contact:	Bob Clark-R	Riddell			Date Logged:	11/25/2015
Client Name:	PANGEA ENV	VIRONMENTAL SV	VCS., INC.		QC Level:	LEVEL 2				Work Order:	1511B02

Stainless Steel tube 2"x6"

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

15/1802

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. 1534 Willow Pass Road TURN AROUND TIME Pittsburg, CA 94565-1701 RUSH 24 HR 72 HR 5 DAY 48 HR Website: www.mccampbell.com Email: main@mccampbell.com EDF Required? Coelt (Normal) No Write On (DW) No Telephone: (925) 252-9262 Fax: (925) 252-9269 Bill To: Pangea Report To: Bob Clark Riddell **Analysis Request** Other Comments Company: Pangea Environmental Services, Inc. Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 TPH as Diesel (8015) w/ Silica Gel Cleanup Total Petroleum Oil & Grease (5520 E&F/B&F) BTEX & TPH as Gas (602/8020 + 8015)/MTBE Samples PAH's / PNA's by EPA 625 / 8270 / 8310 E-Mail: briddell@pangeaenv.com Total Petroleum Hydrocarbons (418.1) for Metals Tele: (510) 435-8664 Fax: (510) 836-3709 analysis: Project #: 1740,001,110 Project Name: 4901 BTEX ONLY (EPA 602 / 8020) Yes / No EPA 608 / 8082 PCB's ONLY CAM-17 Metals (6010 / 6020) Project Location: 4901 BROADWAY LUFT 5 Metals (6010 / 6020) Lead (200.8 / 200.9 / 6010) Sampler Signature: EPA 524.2 / 624 / 8260 EPA 601 / 8010 / 8021 METHOD EPA 525 / 625 / 8270 SAMPLING Type Containers MATRIX PRESERVED EPA 8140 / 8141 EPA 8150 / 8151 Containers EPA 608 / 8081 SAMPLE ID LOCATION (Field Point Name) Sludge Time Date HNO3 HCL ICE Soil 512-0,5/181) 11/25/15 11:00 Relinguished By: Received By: Date: Time: ICE/t° COMMENTS: GOOD CONDITION 12:45 11/25/15 HEAD SPACE ABSENT Received By: Relinquished By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Received By Relinquished By: Date: Time: VOAS O&G METALS OTHER

PRESERVATION

pH<2

Sample Receipt Checklist

Client Name: Pangea Environmental Svcs., Inc.			Date and Time Received:	11/25/2015 16:20
Project Name: 1740.001.110; 4901 BWAY WorkOrder №: 1511B02 Matrix: <u>Soil</u>			Date Logged: Received by:	11/25/2015 Agustina Venegas
Carrier: Bernie Cummins (MAI Courier)			Logged by:	Agustina Venegas
<u>Chain of C</u>	ustody	/ (COC) In	<u>formation</u>	
Chain of custody present?	Yes	✓	No 🗌	
Chain of custody signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted by Client on COC?	Yes	✓	No 🗌	
Date and Time of collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name noted on COC?	Yes	✓	No 🗌	
<u>Sampl</u>	e Rece	eipt Inform	nation_	
Custody seals intact on shipping container/cooler?	Yes		No 🗆	NA 🗹
Shipping container/cooler in good condition?	Yes	✓	No 🗌	
Samples in proper containers/bottles?	Yes	✓	No 🗌	
Sample containers intact?	Yes	✓	No 🗌	
Sufficient sample volume for indicated test?	Yes	✓	No 🗌	
Sample Preservation	on and	Hold Time	e (HT) Information	
All samples received within holding time?	Yes	✓	No 🗌	
Sample/Temp Blank temperature		Temp:	3°C	NA 🗆
Water - VOA vials have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels checked for correct preservation?	Yes	✓	No 🗌	
pH acceptable upon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Received on Ice?	Yes	✓	No 🗌	
(Ісе Турє	e: WE	TICE)		
<u>UCMR3 Samples:</u> Total Chlorine tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine tested and acceptable upon receipt for EPA 218.7, 300.1, 537, 539?	Yes		No 🗆	NA 🗹
* NOTE: If the "No" box is checked, see comments below.				
Comments:			=======	========

"When Quality Counts"

Analytical Report

WorkOrder: 1511B02 A

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact: Bob Clark-Riddell

Project P.O.:

Project Name: 1740.001.110; 4901 BWAY

Project Received: 11/25/2015

Analytical Report reviewed & approved for release on 12/08/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc. Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a3 sample diluted due to high organic content.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc. Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.
F9 MS/MSD recovery and/or RPD was out of acceptance criteria; DLT validated the prep batch.

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 11/25/15 17:02

Date Prepared: 12/4/15

Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Extraction Method: SW3050B

Analytical Method: SW6010B

Unit: mg/Kg

		Lead			
Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
S12-0.5' (B1)2	1511B02-001A	Soil	11/25/20	15 11:00 ICP-JY	113736
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Lead	110		5.0	1	12/07/2015 12:44
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Terbium	88		70-130		12/07/2015 12:44
Analyst(s): BBO					

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1511B02Date Prepared:12/4/15BatchID:113736Date Analyzed:12/7/15Extraction Method:SW3050BInstrument:ICP-JYAnalytical Method:SW6010B

Matrix: Soil Unit: mg/Kg

Project: 1740.001.110; 4901 BWAY **Sample ID:** MB/LCS-113736

1512163-035AMS/MSD

	QC Su	mmary F	Report 1	for Lead						
Analyte	MB Result	LCS Result		RL	SPK Val			.CS %REC	LC: Lim	_
Lead	ND	48.0		5.0	50	-	9	6	75-	125
Surrogate Recovery										
Terbium	439	442			500	88	8	8	70-	130
Analyte	MS	MSD	SPK	SPKRef	MS	MSD	MS/MS	D RPI	D	RPD
	Result	Result	Val	Val	%REC	%REC	Limits			Limit
Lead	580	947	50	861.5	0,F9	170,F9	75-125	NA		25
Surrogate Recovery										
Terbium	370	472	500		74	94	70-130	24.3	3,F1	20
Analyte	DLT			DLTRef				RPI	D	RPD
	Result			Val						Limit
Lead	874			861.5				1.48	3	10

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PANGEA ENVIRONMENTAL SVCS., INC.

QC Level: LEVEL 2

Work Order: 1511B02

Project: 1740.001.110; 4901 BWAY

Client Contact: Bob Clark-Riddell

Date Logged: 11/25/2015

Comments: Lead added 12/3/15 1day TAT

Contact's Email: BRiddell@pangeaenv.com

Date Add-On: 12/3/2015

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Hold SubOut Content
1511B02-001A	S12-0.5' (B1)2	Soil	SW6010B (Lead)	1	Stainless Steel tube 2"x6"	11/25/2015 11:00	1 day	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	r															A			1	5	5/	1	B	0	2	_							
• · · · M	IcCAMP	BELL	ANA	LYI	TIC	AL	, II	NC					L	Ø,				C	_		_	_	_	_			Y	RI	EC	O	RI)	
um — i		1534 W	Villow Pass	Road			,					BATHS.		Т	UR	N	AR	OU	ND	TI	MI	7	_	ũ			1	141			ILL	V	
Web	site: www.mc		rg, CA 945			ıccaı	mph	ell.c	om					-				00	. 12			-	R	USI	H	24 I	HR	4	18 H	R	72	2 HR	5 DAY
	ne: (925) 252		2111			ax:				269	ĺ			EI)F F	tequ	iire	d? C	oelt	t (N	orm	al)	(N	0						N			
Report To: Bob	Clark Riddel	1	E	Bill To			_												A	naly	sis	Rea	ues			*		,63.11	Т	C	the	r	Comments
Company: Pange	a Environme	ental Ser																		1				П					\dashv				Comment
1710 Franklin Str	eet, Suite 20	0, Oakla	and, CA	94612				7.00						1	dn	9															2		Filter
			F	-Mai	l: bri	ddel	l@r	ang	geae	nv.	com			8015)/MTBE	ean	B&I	1									310			5				Samples
Tele: (510) 435-8				ax: ((S)/N	D I	&F	418.									8/			37	7	_		for Metals
Project #: 1740	0.001 110		P	rojec	t Nan	ne:	40	iol	B	WH	4			801	3	520 E	ns (6							827			7	A d			analysis: Yes / No
Project Location:	4901 30	OADWAY	1000				-				1			+ 070	ilica	e (55	rbo		802		Ĭ,					122)20)	20)	-	_			1 63 / 110
Sampler Signatur		kelly	Kell											(602/8020	w/S	reas	roca		02 /		O					A 62	9/	09/	(0109/				
		SAMI	PLING		ers	I	MA'	ΓRΙ	X		MET			Gas (60	TPH as Diesel (8015) w/ Silica Gel Cleanup	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)		EPA 608 / 8082 PCB's ONLY			EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	200.9 / 6		6		
SAMPLE ID				Containers	Type Containers					Т				BTEX & TPH as Gas) las	E C	enn	010	Λ (1	180	082	EPA 8140 / 8141	EPA 8150 / 8151	624	25/	A's	etals	tals	_				
(Field Point Name)	LOCATION	_		tair	On				۵.					TPI	Die	role	etro	1/8	NC	EPA 608 / 8081	8/8	40/	20 /	4.2	9/9	PN	7 MG	Me	(200.8				
()		Date	Time	lo) e C	ıteı			Sludge	2 .		HNO	Other	X	I as	l Pet	al P	09 1	X	09 1	09 1	181	81	52	52	I's /	<u>-1</u>	T.5					
	*			#	Ţ	Water	Soil	Air	Sludge	5	HCF		Ö	BTE	TPI	Tota	Tot	EP/	BTI	EP	EP/	EP	EP	EPA	EPA	PAI	CAI	5	Lead			20	
512-0.5(81)2		11/25/15	11'25	1			X	+	+	V	/				201				22 8		15				7.00	V		-	3			-	
10-015 (01)0		אונפווו	11.00		TUBE			+	+	1		-	\vdash							-	-	-	-	-		\wedge		_	Q)		-	
							-	+	+	-		-					_		_					_									
								1		┖																							
																																5.6	
																		*															
	×=											T																		_			
							-	+		\vdash			\vdash					\vdash	-										\dashv		77. 1975	-	
								+		+	-	-	\vdash		-													\rightarrow	\dashv				
								+		-							-	_	-			_	_	_				_	_				
			8					_		┖																							
										Т												T											
						\vdash	1	\top		t											1	-	+			-		-	+				
						+	+		-	-	+	-	\vdash			2		+	-	+	-	+	-	-			-	-	-	-		\dashv	
Relinguished By:		Date:	Time:	Dage	ived By									ICI	2./40	5														1000			
arten o	0111	100000000000000000000000000000000000000		Rece	/	· .	_	-	1	_		->			OD (CON	DIT	ION									C	COM	ME	NIS:			
Relinquished By:	all	Date:	Time:	D	ived By			1		_			_	HE	AD S	PAC	EA	BSE			_												
Actinquisited by:	6	WT.		Rece	Ved By	11	4	i	0	1	1							ED I			S	-											
Pelinguished Day	/ //	Date	1670	a	91	4	1	N	1	V	-		_					LAB															
Relinquished By:		Date:	Time:	Recei	ived B													***			_												

VOAS O&G METALS OTHER pH<2

PRESERVATION

"When Quality Counts"

Analytical Report

WorkOrder: 1511B02 B

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact: Bob Clark-Riddell

Project P.O.:

Project Name: 1740.001.110; 4901 BWAY

Project Received: 11/25/2015

Analytical Report reviewed & approved for release on 12/08/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc. Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a3 sample diluted due to high organic content.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc. Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.
F9 MS/MSD recovery and/or RPD was out of acceptance criteria; DLT validated the prep batch.

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1511B02Date Received:11/25/15 17:02Extraction Method:SW3550B

Date Prepared: 12/4/15 **Analytical Method:** SW8081A/8082

Project: 1740.001.110; 4901 BWAY **Unit:** mg/kg

Organochlorine Pesticides (Basic Target List) + PCBs

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
S12-0.5' (B1)2	1511B02-001	A Soil	11/25/20	15 11:00	GC22	113762
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aldrin	ND		0.010	10		12/05/2015 09:25
a-BHC	ND		0.010	10		12/05/2015 09:25
b-BHC	ND		0.010	10		12/05/2015 09:25
d-BHC	ND		0.010	10		12/05/2015 09:25
g-BHC	ND		0.010	10		12/05/2015 09:25
Chlordane (Technical)	ND		0.25	10		12/05/2015 09:25
a-Chlordane	ND		0.010	10		12/05/2015 09:25
g-Chlordane	ND		0.010	10		12/05/2015 09:25
p,p-DDD	ND		0.010	10		12/05/2015 09:25
p,p-DDE	ND		0.010	10		12/05/2015 09:25
p,p-DDT	ND		0.010	10		12/05/2015 09:25
Dieldrin	ND		0.010	10		12/05/2015 09:25
Endosulfan I	ND		0.010	10		12/05/2015 09:25
Endosulfan II	ND		0.010	10		12/05/2015 09:25
Endosulfan sulfate	ND		0.010	10		12/05/2015 09:25
Endrin	ND		0.010	10		12/05/2015 09:25
Endrin aldehyde	ND		0.010	10		12/05/2015 09:25
Endrin ketone	ND		0.010	10		12/05/2015 09:25
Heptachlor	ND		0.010	10		12/05/2015 09:25
Heptachlor epoxide	ND		0.010	10		12/05/2015 09:25
Hexachlorobenzene	ND		0.10	10		12/05/2015 09:25
Hexachlorocyclopentadiene	ND		0.20	10		12/05/2015 09:25
Methoxychlor	ND		0.010	10		12/05/2015 09:25
Toxaphene	ND		0.50	10		12/05/2015 09:25
Aroclor1016	ND		0.50	10		12/05/2015 09:25
Aroclor1221	ND		0.50	10		12/05/2015 09:25
Aroclor1232	ND		0.50	10		12/05/2015 09:25
Aroclor1242	ND		0.50	10		12/05/2015 09:25
Aroclor1248	ND		0.50	10		12/05/2015 09:25
Aroclor1254	ND		0.50	10		12/05/2015 09:25
Aroclor1260	ND		0.50	10		12/05/2015 09:25
PCBs, total	ND		0.50	10		12/05/2015 09:25
Surrogates	REC (%)		<u>Limits</u>			
Decachlorobiphenyl	78		70-130			12/05/2015 09:25
Analyst(s): CK			Analytical Comr	ments: a	3	

mg/kg

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1511B02Date Prepared:12/4/15BatchID:113762Date Analyzed:12/5/15Extraction Method:SW3550B

Instrument: GC22 Analytical Method: SW8081A/8082

Project: 1740.001.110; 4901 BWAY **Sample ID:** MB/LCS-113762

1512194-001AMS/MSD

QC Summary Report for SW8081A/8082

Unit:

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
PCBs, total	ND	-	0.050	-	-	-	-
Aldrin	ND	0.0437	0.0010	0.050	-	87	70-130
a-BHC	ND	-	0.0010	-	-	-	-
b-BHC	ND	-	0.0010	-	-	-	-
d-BHC	ND	-	0.0010	-	-	-	-
g-BHC	ND	0.0458	0.0010	0.050	-	92	70-130
Chlordane (Technical)	ND	-	0.025	-	-	-	-
a-Chlordane	ND	-	0.0010	-	-	-	-
g-Chlordane	ND	-	0.0010	-	-	-	-
p,p-DDD	ND	-	0.0010	-	-	-	-
p,p-DDE	ND	-	0.0010	-	-	-	-
p,p-DDT	ND	0.0368	0.0010	0.050	-	74	70-130
Dieldrin	ND	0.0489	0.0010	0.050	-	98	70-130
Endosulfan I	ND	-	0.0010	-	-	-	-
Endosulfan II	ND	-	0.0010	-	-	-	-
Endosulfan sulfate	ND	-	0.0010	-	-	-	-
Endrin	ND	0.0400	0.0010	0.050	-	80	70-130
Endrin aldehyde	ND	-	0.0010	-	-	-	-
Endrin ketone	ND	-	0.0010	-	-	-	-
Heptachlor	ND	0.0491	0.0010	0.050	-	98	70-130
Heptachlor epoxide	ND	-	0.0010	-	-	-	-
Hexachlorobenzene	ND	-	0.010	-	-	-	-
Hexachlorocyclopentadiene	ND	-	0.020	-	-	-	-
Methoxychlor	ND	-	0.0010	-	-	-	-
Toxaphene	ND	-	0.050	-	-	-	-
Aroclor1016	ND	-	0.050	-	-	-	-
Aroclor1221	ND	-	0.050	-	-	-	-
Aroclor1232	ND	-	0.050	-	-	-	-
Aroclor1242	ND	-	0.050	-	-	-	-
Aroclor1248	ND	-	0.050	-	-	-	-
Aroclor1254	ND	-	0.050	-	-	-	-
Aroclor1260	ND	-	0.050	-	-	-	-

Decachlorobiphenyl 0.0466 0.0462 0.050 93 92 70-130

Matrix:

Soil

Instrument:

GC22

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

WorkOrder: **Client:** Pangea Environmental Svcs., Inc. 1511B02 **Date Prepared:** 12/4/15 **BatchID:** 113762 **Date Analyzed:** 12/5/15 **Extraction Method: SW3550B**

Analytical Method: SW8081A/8082 **Matrix:** Soil Unit: mg/kg

Project: 1740.001.110; 4901 BWAY Sample ID: MB/LCS-113762

1512194-001AMS/MSD

QC Summary Report for SW8081A/8082

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aldrin	NR	NR		ND<0.01	NR	NR	-	NR	
g-BHC	NR	NR		ND<0.01	NR	NR	-	NR	
p,p-DDT	NR	NR		0.03	NR	NR	-	NR	
Dieldrin	NR	NR		ND<0.01	NR	NR	-	NR	
Endrin	NR	NR		0.028	NR	NR	-	NR	
Heptachlor	NR	NR		ND<0.01	NR	NR	-	NR	
Surrogate Recovery									
Decachlorobiphenyl	NR	NR			NR	NR	-	NR	

FAX: (510) 836-3709

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Oakland, CA 94612

(510) 836-3700

CHAIN-OF-CUSTODY RECORD

Page 1 of

12/04/2015

WorkOrder: 1511B02 B ClientCode: PEO

	WriteOn	□ EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
Report to:			Bill to):		Rea	uested TAT:	2 days:

Bob Clark-Riddell Email: BRiddell@pangeaenv.com
Pangea Environmental Svcs., Inc.
1710 Franklin Street, Ste. 200 PO:

ProjectNo: 1740.001.110; 4901 BWAY

Bob Clark-Riddell
Pangea Environmental Svcs., Inc.
1710 Franklin Street, Ste. 200
Oakland, CA 94612

Date Received: 11/25/2015
11/25/2015

Date Add-On:

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
1511B02-001	S12-0.5' (B1)2	Soil	11/25/2015 11:00	Α											

Test Legend:

1 8081PCB_S	2	3	4
5	6	7	8
9	10	11	12

Prepared by: Agustina Venegas

Add-On Prepared By: Shino KH

Comments: Lead added 12/3/15 1day TAT. OC Pesticides/PCBs added 12/04/15 48hr.

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PANGEA ENVIRONMENTAL SVCS., INC.

QC Level: LEVEL 2

Work Order: 1511B02

Project: 1740.001.110; 4901 BWAY

12/04/15 48hr.

Client Contact: Bob Clark-Riddell

Date Logged: 11/25/2015

Comments: Lead added 12/3/15 1day TAT. OC Pesticides/PCBs added

ded

Contact's Email: BRiddell@pangeaenv.com

Date Add-On: 12/4/2015

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1511B02-001A	S12-0.5' (B1)2	Soil	SW8081 A/8082 (OC Pesticides+PCBs)	1	Stainless Steel tube 2"x6"	11/25/2015 11:00	2 days		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

6			9								1			7	圖					/	5	5/	1/	B	0	2	_							
McCAMPBELL ANALYTICAL, INC.													7				C	HA	II	1)F	C	US	T	OD	Y	RI	EC	O	RD		2.1		
			illow Pass											T	CHAIN OF CUSTODY RECORD TURN AROUND TIME																			
Web	Pittsburg, CA 94565-1701 Website: www.mccampbell.com Email: main@mccampbell.com													RUSH 24 HR 48 HR 72 HR 5 DAY																				
Telephone: (925) 252-9262 Fax: (925) 252-9269													EDF Required? Coelt (Normal) No Write On (DW) No																					
Report To: Bob Clark Riddell Bill To: Pangea																		A	naly	sis	Req	ues	t						O	ther		Comment		
Company: Pangea Environmental Services, Inc.												_																			П	T		
1710 Franklin Street, Suite 200, Oakland, CA 94612													4	BE	dnu	(F)													(0		7		Filter Samples	
E-Mail: briddell@pangeaenv.com													4	8015)/MTBE	lea	F/B&	3.1									831(1	100	7		for Metals	
Tele: (510) 435-8				ax: (. /	24	141			4	015)	je.	E&	418								201	/ 02			3	£	4		analysis:
Project #: 1740	001 110	A.A. III		rojec	t Nan	ne:	4	901	1 5	sw.	77		O.	_	+	ca C	5520	ons		(20)		7					/82	6		12	0	6		Yes / No
Project Location:		צושטונס	0000											4	8020	Sili	ase (carb		/ 80		ONLY					625	602	020	6	7	4/1		
Sampler Signatur	e: 900	egus	KII			_				_		rome	IOD	4	(602/8020	/W (Gre	dro	12	602		3,s (9		PA	/ 01	9/0	109	П	X	- 1	
		SAMP	LING	L.S	iners		MA	TR	IX	4		METHOD RESERVED			s Gas ((8015	ı Oil &	ım Hy	08/0	(EPA	=	82 PCI	41	51	24 / 82	3 / 8270	s by E	09) sp	ls (601	7 6.002	1	Bs 1		
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO3	Other	BTEX & TPH a	TPH as Diesel (8015) w/ Silica Gel Cleanup	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)		081+PC		
512-0,5'(61)2		11/25/15	11'81	1			X	7	-	+	V	7		7			-5	-	-			_	_		_	_	V	_	_	-	\	00	+	
112-0,5 (01)0		11/05/15	11:00	1	TUBE			-		-	^	+	+	+		-	-				-			<						7)	S	+	
					-		-	-	+	+	+	+	-	+	-	+	_				-					_		-				_	-	
								_	_	4	_	4	1	4		_																	_	
										_				1																				
										T																								
					-					+		7	+	\dagger														\dashv		-		-	-	
				Α		H	-	+	+	$^{+}$		-		+	-		\dashv			+	\dashv		-					-		-			+	
			41	-		\vdash		+	-	+	-	-		+		-	-	-			-				-		-	-	-			-	+	
							4	4	4	4	_		4	+	~						_		_										_	
										4																								
**************************************			-					15		1				1			2																†	
Relinquished By:		Date:	Time:	Rece	ived B	y:			-	_				ICE/tºCOMMENTS:																				
Botales	SIV	11/25/15	12:45		1			-	/	(7			OD C				NITTE:	_							7						
Relinquished By:	1	Date:	Time:	Rece	ived B	y;		1											BSE! ED I		B	_												
17-1	9 11	25-1	1/670	5/	11	1	9	41	12	` ر	V	-			DECHLORINATED IN LAB APPROPRIATE CONTAINERS																			
Relinquished By:	Date:	Time:											rki	SEF	VE) IN	LAE				PRESERVED IN LAB													

VOAS O&G METALS OTHER pH<2

PRESERVATION

"When Quality Counts"

Analytical Report

WorkOrder: 1511B02 C

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact: Bob Clark-Riddell

Project P.O.:

Project Name: 1740.001.110; 4901 BWAY

Project Received: 11/25/2015

Analytical Report reviewed & approved for release on 12/10/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc. Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a3 sample diluted due to high organic content.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc. Project: 1740.001.110; 4901 BWAY

WorkOrder: 1511B02

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.
F9 MS/MSD recovery and/or RPD was out of acceptance criteria; DLT validated the prep batch.

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Prepared: 12/7/15

Date Received: 11/25/15 17:02

Project: 1740.001.110; 4901 BWAY WorkOrder: 1511B02

Extraction Method: CA Title 22

Analytical Method: SW6010B

Unit: mg/L

STLC Metals

		DIEC M			
Client ID	Lab ID	Matrix	Date Col	lected Instrument	Batch ID
S12-0.5' (B1)2	1511B02-001A	Soil	11/25/2015	5 11:00 ICP-JY	113866
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Lead	3.4		0.20	1	12/10/2015 10:56

Analyst(s): BBO

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Pangea Environmental Svcs., Inc. WorkOrder: 1511B02

Date Received: 11/25/15 17:02 **Extraction Method:** SW1311/SW3010

Date Prepared: 12/8/15 Analytical Method: SW6010B

Project: 1740.001.110; 4901 BWAY **Unit:** mg/L

TCLP Metals

		1 0221 1121	70028		
Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
S12-0.5' (B1)2	1511B02-001A	Soil	11/25/201	15 11:00 ICP-JY	113864
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Lead	ND		0.20	1	12/10/2015 11:28

Analyst(s): BBO

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1511B02Date Prepared:12/7/15BatchID:113866Date Analyzed:12/10/15Extraction Method:CA Title 22Instrument:ICP-JYAnalytical Method:SW6010B

Matrix: Soil Unit: mg/L

Project: 1740.001.110; 4901 BWAY **Sample ID:** MB/LCS-113866

1511317-001AMS/MSD

QC Summary Report for Metals (STLC)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Lead	ND	0.845	0.20	1	-	85	75-125

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Lead	0.944	0.924	1	ND	94	92	70-130	2.19	30

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

1511B02

Quality Control Report

Client: Pangea Environmental Svcs., Inc. WorkOrder:

Date Prepared:12/7/15BatchID:113864Date Analyzed:12/8/15Extraction Method:SW1311/SW3010

Instrument: ICP-JY Analytical Method: SW6010B

Matrix: Soil Unit: mg/L

Project: 1740.001.110; 4901 BWAY **Sample ID:** MB/LCS-113864

1512264-001AMS/MSD

QC Summary Report for Metals (TCLP)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Lead	ND	1.02	0.20	1	-	102	75-125

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Lead	1.16	0.957	1	ND	116	96	70-130	19.4	30

McCampbell Analytical, Inc.

FAX: (510) 836-3709

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(510) 836-3700

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1 day;

12/07/2015

Requested TAT:

Date Add-On:

WorkOrder: 1511B02 C ClientCode: PEO

Report to:

Bill to:

Bob Clark-Riddell Email: BRiddell@pangeaenv.com Bob Clark-Riddell

Bob Clark-Riddell Email: BRiddell@pangeaenv.com Bob Clark-Riddell
Pangea Environmental Svcs., Inc. cc/3rd Party: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200 PO: 1710 Franklin Street, Ste. 200 Date Received: 11/25/2015
Oakland, CA 94612 ProjectNo: 1740.001.110; 4901 BWAY Oakland, CA 94612 Date Logged: 11/25/2015

Requested Tests (See legend below) Lab ID Client ID Matrix Collection Date Hold 2 3 5 7 10 11 12 1511B02-001 S12-0.5' (B1)2 Soil 11/25/2015 11:00 Α Α

Test Legend:

1 PB_STLC_S	2 PB_TCLP_S	3	4
5	6	7	8
9	10	11	12

Prepared by: Agustina Venegas

Add-On Prepared By: Agustina Venegas

Comments: Lead added 12/3/15 1day TAT. OC Pesticides/PCBs added 12/04/15 48hr. STLC & TCLP Pb added 12/7/15 RUSH

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PANGEA ENVIRONMENTAL SVCS., INC.

QC Level: LEVEL 2

Work Order: 1511B02

Project: 1740.001.110; 4901 BWAY

Client Contact: Bob Clark-Riddell

Date Logged: 11/25/2015

Comments: Lead added 12/3/15 1day TAT. OC Pesticides/PCBs added 12/04/15 48hr. STLC & TCLP Pb added 12/7/15 RUSH

Contact's Email: BRiddell@pangeaenv.com

Date Add-On: 12/7/2015

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment I Content	Hold SubOut
1511B02-001A	S12-0.5' (B1)2	Soil	SW6010B (Lead) (TCLP)	1	Stainless Steel tube 2"x6"	11/25/2015 11:00	1 day*		
			SW6010B (Lead) (STLC)				1 day*		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

k -55										1	6							2	/	5	5/	10	B	0	2					150				8
5 - 15 M	cCAMPI	BELL	ANAI	LYI	TICA	۸L,	IN	C.						9				C	HA	I	10	F	C	US	T	OD	Y	R	EC	CO	RI)	N	
		1534 W	illow Pass g, CA 9456	Road										TU	JRI	N A			ND								3) ,	inue	X		
Web	site: www.mcc					ccan	ıpbel	ll.co	m															USI		24 I			48 H			2 HI	R 5 DAY	
	ne: (925) 252-				F	ax: (59				ED.	FR	equ	ired	? C	oelt	-					W	rite	On	(D)	W)	N				
Report To: Bob (: Par	igea							┸	_		_		_	Ar	aly	sis l	Req	uest			- 12		_		(Othe	r	Commen	ts
Company: Pange	There is the second of the sec	OF THE RESERVE	THE THE PARTY OF T	ALVIN STREET									4																		1	(1	Filter	
1710 Franklin Str	eet, Suite 200), Oakla											4	BE	dnu	&F)			0							9		1	(1		7	1	Samples	
m 1 (#10) 12# 0					l: bric			- 50	aen	v.co	m		-	8015)/MTBE	w/ Silica Gel Cleanup	¿F/B	(8.1)									/8310			4	7	4	1	for Meta	
Tele: (510) 435-86					510) 8 t Nan				Bu	IAN			+	8015	Gel	0 E8	s (4)								8	8270			3	40	7	12	analysis:	
Project #: 1740 Project Location:		Andry		rojec	t Ivan	ie:	47		010	71	-			+ 0:	lica	(552	noq.		3020		LY					625/8	20)	(0)	17	_	1/5	2	Yes / No	
Sampler Signatur		6/4	elle										1	(602/8020 +	v/Si	rease	ocar		12/8		O					4 62	09/	/ 602	010)		14			
Sampler Signatur	- 200	CAME	NI INC		T		/ A T	DIX	,	M	ЕТН	OD	1	9	(5)	& G	lydr	021	A 60		B's			3260	92	EP.	010	010	19/6	Ţ.	7	3	4	
		SAMP	LING	2	ner	1	1AT	KIZ		PRE	SER	VE	D	s Gas	(8015)	Ö	E	8/0	(EP	_	2 P(4	51	24/	/ 82	s by	sls (9) sı	200		3	14	2	
SAMPLE ID	I O C LITTON			Containers	Type Containers									ь Н	TPH as Diesel	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	ead (200.8 / 200.9 / 6010)		20	1.0		
(Field Point Name)	LOCATION	Date	Time	nta	ပိ	r		90	1 1			3	7	втех & трн	as D	Petro	Peti	201	0	809	809	8140	8150	524.	525	s/P	-12	5 1	(200		+	J		
		Dute		ြိ	ype	Water	Soil	Sludge	Other	ICE	HCL	HNO,	Other	TEX	PH	otal	otal	PA (TE	PA (PA (PA	PA	PA	PA	AH	AM	UE	ead		80	E		
	5			#	F	>	S	0	20	Ť	Ξ_	7	9	B	Т	F	۲	Θ	<u>m</u>	Θ	Ξ	田	Θ	Θ	田	_	0				S.	V		_
512-0,5 (61)		11/25/15	11:00	1	TUBE					X																X	A		X		X	(x)		
																																983		
											XII		3																				15	
V.		119						100																										
		- 16						1																										10
<u> </u>	17	-										+	+		+	+	1	1						1							-			
100	W 1		15			\vdash				+		+	71	1		-	+	-	-	-	-				-		-		-		-	-		_
	=i/		<u> </u>		-	\vdash			- 25		-	+	+			-	+	+	-	-				-										
	W	_				\vdash	-	-	-	-	+	+	+	+	-	-	-	-	-		-	-	-	-							-	-		_
	P		Ja						1	-		-	_				_		2		_		_	_							-			
												1	-											_							_			
1 1	101					N.						W																						
	P			- 10	1000																													
				8								2																						
1 1			- 500				0.0									2	,																	
Relinquished By:	4	Date:	Time:	Rece	eived B	y:		_	,	_					/t°_												-	CON	1ME	ENTS	S:			
BotGlod	ll	11/25/15	12:45		1		_	/	_		_	-			OD C					-														
Relinquished By:	1	Date:	Time:		eived B	у;	/	1		2	_		1	DEC	CHL	ORI	NAT	ED I	N LA															
10	9/1	25-1	1/670	50	CAI	4	4	N	2	V	-	i			ROF				TAII		S		=											
Relinquished By:		Date:	Time:		eived B		,				7		٦.																					
													1	PRE	SER	VA			AS	0&		ME pH<		5 (OTH	ER								

APPENDIX E

Laboratory Analytical Results: County Assessment, November 2015

09 December 2015

Bob Clark-Riddell Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

RE: 4901 Broadway

Enclosed are the results of analyses for samples received by the laboratory on 11/21/15 10:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine RunningCrane

Katherine Running Crane

Project Manager

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B2-6'	T152951-01	Soil	11/19/15 09:55	11/21/15 10:20
B6-18'	T152951-02	Soil	11/19/15 10:45	11/21/15 10:20
B9-2'	T152951-03	Soil	11/19/15 14:25	11/21/15 10:20
B9-4'	T152951-04	Soil	11/19/15 14:20	11/21/15 10:20
B10-2'	T152951-05	Soil	11/19/15 14:35	11/21/15 10:20
B10-4'	T152951-06	Soil	11/19/15 14:30	11/21/15 10:20
B11-2'	T152951-07	Soil	11/19/15 12:55	11/21/15 10:20
B11-6'	T152951-08	Soil	11/19/15 12:50	11/21/15 10:20
B11-12'	T152951-09	Soil	11/19/15 13:00	11/21/15 10:20
B12-12	T152951-10	Soil	11/19/15 16:00	11/21/15 10:20
B17-4'	T152951-12	Soil	11/20/15 10:30	11/21/15 10:20
B18-4'	T152951-14	Soil	11/20/15 10:00	11/21/15 10:20
B12-W	T152951-15	Water	11/20/15 12:15	11/21/15 10:20

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc.

Project: 4901 Broadway

1710 Franklin Street, Suite 200

Oakland CA, 94612

Project Number: [none]
Project Manager: Bob Clark-Riddell

Reported: 12/09/15 15:21

DETECTIONS SUMMARY

		Reporting			
Analyte	Result	Limit	Units	Method	Note
Barium	52	1.0	mg/kg	EPA 6010B	
Chromium	8.4	2.0	mg/kg	EPA 6010B	
Cobalt	3.3	2.0	mg/kg	EPA 6010B	
Copper	3.1	1.0	mg/kg	EPA 6010B	
Nickel	7.3	2.0	mg/kg	EPA 6010B	
Vanadium	12	5.0	mg/kg	EPA 6010B	
Zinc	9.3	1.0	mg/kg	EPA 6010B	
Mercury	0.15	0.10	mg/kg	EPA 7471A Soil	

No Results Detected

Sample ID:	B9-2'	Lab	oratory ID:	T152951-03		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Lead		13	3.0	mg/kg	EPA 6010B	
Sample ID:	B9-4'	Lab	oratory ID:	T152951-04		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Lead		40	3.0	mg/kg	EPA 6010B	
Sample ID:	B10-2'	Lab	oratory ID:	T152951-05		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Lead		29	3.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc.

Project: 4901 Broadway

1710 Franklin Street, Suite 200

Oakland CA, 94612

Project Number: [none]

Project Manager: Bob Clark-Riddell

Reported:

12/09/15 15:21

Samp	le ID):	B1()-4'
------	-------	----	-----	------

Laboratory ID:

T152951-06

Analyte Lead

Result 11

Reporting Limit

3.0

Units mg/kg

Method EPA 6010B Notes

Sample ID: B11-2'

Laboratory ID:

T152951-07

Reporting

Method

Analyte Lead

Result 27

Limit 3.0

Units mg/kg

EPA 6010B

Notes

Sample ID: B11-6' Laboratory ID:

T152951-08

No Results Detected

Sample ID: B11-12' Laboratory ID:

T152951-09

No Results Detected

Sample ID: B12-12 **Laboratory ID:**

T152951-10

No Results Detected

Sample ID: B17-4' Laboratory ID:

T152951-12

-					
Analyte	Result	Limit	Units	Method	Notes
C29-C40 (MORO)	49	10	mg/kg	EPA 8015C	
Barium	150	1.0	mg/kg	EPA 6010B	
Chromium	16	2.0	mg/kg	EPA 6010B	
Cobalt	6.6	2.0	mg/kg	EPA 6010B	
Copper	26	1.0	mg/kg	EPA 6010B	
Lead	210	3.0	mg/kg	EPA 6010B	
Nickel	27	2.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Sample ID:	B17-4'	Laborato	ory ID:	T152951-12		
Analyte		Result	Limit	Units	Method	Notes
Vanadium		13	5.0	mg/kg	EPA 6010B	
Zinc		17	1.0	mg/kg	EPA 6010B	
Lead		2.9	0.10	mg/l	STLC Waste Extraction T	
Mercury		0.28	0.10	mg/kg	EPA 7471A Soil	
Sample ID:	B18-4'	Laborato	ory ID:	T152951-14		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Lead		13	3.0	mg/kg	EPA 6010B	
Sample ID:	B12-W	Laborato	ory ID:	T152951-15		

No Results Detected

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B2-6' T152951-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		91.4 %	65-1	35	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	52	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	8.4	2.0	"	"	"	"	"	"	
Cobalt	3.3	2.0	"	"	"	"	"	"	
Copper	3.1	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	7.3	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	12	5.0	"	"	"	"	"	"	
Zinc	9.3	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	0.15	0.10	mg/kg	1	5112323	11/23/15	11/24/15	EPA 7471A Soil	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B2-6' T152951-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Me	thod 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4´-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		56.9 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		56.5 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B2-6' T152951-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		96.0 %	35-	140	5112343	11/23/15	12/01/15	EPA 8082	
Surrogate: Decachlorobiphenyl		99.6 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B2-6' T152951-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.		_	_		
Volatile Organic Compounds by EPA I	Method 8260B								
1,3-Dichloropropane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	<u> </u>	114 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		185 %	95.7		"	"	,,	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B2-6' T152951-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Surrogate: Toluene-d8		86.9 %	85.5	-116	5112333	11/23/15	12/03/15	EPA 8260B	
Semivolatile Organic Compounds by	y EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B2-6' T152951-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Chloronaphthalene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	,,	,,	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B2-6' T152951-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
N-Nitrosodimethylamine	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		41.5 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		54.6 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		36.3 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		42.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		71.0 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		69.9 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B6-18' T152951-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		92.1 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	5112516	11/25/15	11/30/15	EPA 6010B	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	,,	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B6-18' T152951-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B6-18' T152951-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		188 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		81.1 %	85.5	-116	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B9-2' T152951-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 8015	С								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		75.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	13	3.0	mg/kg	1	5112328	11/23/15	11/23/15	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B9-4' T152951-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		96.5 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Lead	40	3.0	mg/kg	1	5112328	11/23/15	11/23/15	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B10-2' T152951-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarbons by 80150	2								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		92.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	29	3.0	mg/kg	1	5112328	11/23/15	11/23/15	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B10-4' T152951-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		90.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	11	3.0	mg/kg	1	5112328	11/23/15	11/23/15	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B11-2' T152951-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 8015	C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		91.2 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	27	3.0	mg/kg	1	5112328	11/23/15	11/23/15	EPA 6010B	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B11-6' T152951-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		93.1 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	,,	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B11-6' T152951-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B11-6' T152951-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		116 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		188 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		89.0 %	85.5	-116	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B11-12' T152951-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		94.7 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	5112516	11/25/15	11/30/15	EPA 6010B	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B11-12' T152951-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B11-12' T152951-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		116 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		184 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		87.5 %	85.5	-116	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-12 T152951-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112410	11/24/15	11/26/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		111 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Lead	ND	3.0	mg/kg	1	5112516	11/25/15	11/30/15	EPA 6010B	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-12 T152951-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EF	A Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-12 T152951-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		116 %	81.2-123		"	"	"	"	
Surrogate: Dibromofluoromethane		187 %	95.7-135		"	"	"	"	S-GC
Surrogate: Toluene-d8		97.2 %	85.5	-116	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B17-4' T152951-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 801	5C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	49	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		101 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	150	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	16	2.0	"	"	"	"	"	"	
Cobalt	6.6	2.0	"	"	"	"	"	"	
Copper	26	1.0	"	"	"	"	"	"	
Lead	210	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	27	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	13	5.0	"	"	"	"	"	"	
Zinc	17	1.0	"	"	"	"	"	"	
TCLP Metals by 6000/7000 Series Methods									
Lead	ND	0.10	mg/l	1	5120841	12/08/15	12/09/15	EPA 1311	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B17-4' T152951-12 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
STLC Metals by 6000/7000 Series M	lethods								
Lead	2.9	0.10	mg/l	1	5120128	12/01/15	12/04/15	STLC Waste Extraction Test	
Cold Vapor Extraction EPA 7470/74	471								
Mercury	0.28	0.10	mg/kg	1	5112323	11/23/15	11/24/15	EPA 7471A Soil	
Organochlorine Pesticides by EPA	Method 8081A								
alpha-BHC	ND	5.0	ug/kg	1	5112345	11/25/15	11/30/15	EPA 8081A	
gamma-BHC (Lindane)	ND	5.0	"	"	"	"	"	"	
beta-BHC	ND	5.0	"	"	"	"	"	"	
delta-BHC	ND	5.0	"	"	"	"	"	"	
Heptachlor	ND	5.0	"	"	"	"	"	"	
Aldrin	ND	5.0	"	"	"	"	"	"	
Heptachlor epoxide	ND	5.0	"	"	"	"	"	"	
gamma-Chlordane	ND	5.0	"	"	"	"	"	"	
alpha-Chlordane	ND	5.0	"	"	"	"	"	"	
Endosulfan I	ND	5.0	"	"	"	"	"	"	
4,4′-DDE	ND	5.0	"	"	"	"	"	"	
Dieldrin	ND	5.0	"	"	"	"	"	"	
Endrin	ND	5.0	"	"	"	"	"	"	
4,4′-DDD	ND	5.0	"	"	"	"	"	"	
Endosulfan II	ND	5.0	"	"	"	"	"	"	
4,4′-DDT	ND	5.0	"	"	"	"	"	"	
Endrin aldehyde	ND	5.0	"	"	"	"	"	"	
Endosulfan sulfate	ND	5.0	"	"	"	"	"	"	
Methoxychlor	ND	10	"	"	"	"	"	"	
Endrin ketone	ND	5.0	"	"	"	"	"	"	
Toxaphene	ND	200	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		54.8 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		39.6 %	35-		"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B17-4' T152951-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	ahoratori	os Inc		-	-		
Polychlorinated Biphenyls by EPA Me	othed 9092	Sunstai L	avvi atul l	cs, inc.					
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	ug/kg "	"	J112343	11/23/13	12/01/13	LIA 6062	
PCB-1232	ND	10	,,	,,	"	"	"	"	
PCB-1242	ND	10		,,	"	"	"	,,	
PCB-1248	ND	10		,,	"	"	"	,,	
PCB-1254	ND	10		,,	"	"	"	,,	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene	T(D	88.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		77.0 %	35 35		,,	"	,,	"	
Surrogate. Decacnioroutphenyi		77.0 70	33	140					
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B17-4' T152951-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP.	A Method 8260B								
1,4-Dichlorobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
o-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	,,	"	"	"	"	,,	
1,2,4-Trimethylbenzene	ND	5.0	"	,,	,,	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B17-4' T152951-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Vinyl chloride	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		193 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		89.1 %	85.5	-116	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	,,	,,	,,	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B17-4' T152951-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	,,	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B17-4' T152951-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Isophorone	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		56.4 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		66.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		60.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		65.7 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		92.1 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		85.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B18-4' T152951-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112330	11/23/15	11/25/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		102 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Lead	13	3.0	mg/kg	1	5112325	11/23/15	11/24/15	EPA 6010B	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	,,	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B18-4' T152951-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B18-4' T152951-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA Method	8260B								
Ethylbenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
m,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		195 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		86.6 %	85.5	-116	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-W T152951-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015C								
C6-C12 (GRO)	ND	0.050	mg/l	1	5112408	11/24/15	11/24/15	EPA 8015C	
C13-C28 (DRO)	ND	0.050	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		65.5 %	65-	135	"	"	"	"	
Organochlorine Pesticides by EPA	Method 8081A								
alpha-BHC	ND	1.00	ug/l	1	5112409	11/24/15	12/01/15	EPA 8081A	
gamma-BHC (Lindane)	ND	1.00	"	"	"	"	"	"	
beta-BHC	ND	1.00	"	"	"	"	"	"	
delta-BHC	ND	1.00	"	"	"	"	"	"	
Heptachlor	ND	1.00	"	"	"	"	"	"	
Aldrin	ND	1.00	"	"	"	"	"	"	
Heptachlor epoxide	ND	1.00	"	"	"	"	"	"	
gamma-Chlordane	ND	1.00	"	"	"	"	"	"	
alpha-Chlordane	ND	1.00	"	"	"	"	"	"	
Endosulfan I	ND	1.00	"	"	"	"	"	"	
4,4′-DDE	ND	1.00	"	"	"	"	"	"	
Dieldrin	ND	1.00	"	"	"	"	"	"	
Endrin	ND	1.00	"	"	"	"	"	"	
4,4´-DDD	ND	1.00	"	"	"	"	"	"	
Endosulfan II	ND	1.00	"	"	"	"	"	"	
4,4′-DDT	ND	2.00	"	"	"	"	"	"	
Endrin aldehyde	ND	1.00	"	"	"	"	"	"	
Endosulfan sulfate	ND	1.00	"	"	"	"	"	"	
Methoxychlor	ND	5.00	"	"	"	"	"	"	
Endrin ketone	ND	1.00	"	"	"	"	"	"	
Toxaphene	ND	20.0	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		42.1 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		60.7 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-W T152951-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	2.00	ug/l	1	5112342	11/23/15	12/02/15	EPA 8082	
PCB-1221	ND	2.00	"	"	"	"	"	"	
PCB-1232	ND	2.00	"	"	"	"	"	"	
PCB-1242	ND	2.00	"	"	"	"	"	"	
PCB-1248	ND	2.00	"	"	"	"	"	"	
PCB-1254	ND	2.00	"	"	"	"	"	"	
PCB-1260	ND	2.00	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		73.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		84.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	5112038	11/20/15	11/26/15	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	,,	,,	"	,,	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-W T152951-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EI	PA Method 8260B								
1,4-Dichlorobenzene	ND	1.0	ug/l	1	5112038	11/20/15	11/26/15	EPA 8260B	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-W T152951-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Vinyl chloride	ND	1.0	ug/l	1	5112038	11/20/15	11/26/15	EPA 8260B	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		91.8 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		95.9 %	88.8	-117	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	10	ug/l	1	5112332	11/23/15	11/24/15	EPA 8270C	
Phenol	ND	10	"	"	"	"	"	"	
Aniline	ND	10	"	"	"	"	"	"	
Acenaphthylene	ND	10	"	"	"	"	"	"	
2-Chlorophenol	ND	10	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	10	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	5.0	"	"	"	"	"	"	
Anthracene	ND	10	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1-Methylnaphthalene	ND	10	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	10	"	"	"	"	"	"	
2-Methylnaphthalene	ND	20	"	"	"	"	"	"	
Acenaphthene	ND	10	"	"	"	"	"	"	
Benzo (a) anthracene	ND	10	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	10	"	"	"	"	"	"	
4-Nitrophenol	ND	10	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	10	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	10	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	20	"	"	"	"	"	"	
Pentachlorophenol	ND	10	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	,,	,,	"	,,		,,	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-W T152951-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Pyrene	ND	10	ug/l	1	5112332	11/23/15	11/24/15	EPA 8270C	
Benzyl alcohol	ND	50	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	10	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	5.0	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	20	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	10	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	5.0	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	10	"	"	"	"	"	"	
4-Chloroaniline	ND	20	"	"	"	"	"	"	
2-Chloronaphthalene	ND	10	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	20	"	"	"	"	"	"	
Chrysene	ND	10	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	10	"	"	"	"	"	"	
Dibenzofuran	ND	20	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	10	"	"	"	"	"	"	
Diethyl phthalate	ND	10	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	5.0	"	"	"	"	"	"	
Dimethyl phthalate	ND	10	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	5.0	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	20	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	10	"	"	"	"	"	"	
Fluoranthene	ND	5.0	"	"	"	"	"	"	
Fluorene	ND	10	"	"	"	"	"	"	
Hexachlorobenzene	ND	20	"	"	"	"	"	"	
Hexachlorobutadiene	ND	10	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	20	"	"	"	"	"	"	
Hexachloroethane	ND	5.0	,,	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	10	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

B12-W T152951-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Isophorone	ND	10	ug/l	1	5112332	11/23/15	11/24/15	EPA 8270C	
2-Methylphenol	ND	10	"	"	"	"	"	"	
4-Methylphenol	ND	20	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
2-Nitroaniline	ND	10	"	"	"	"	"	"	
3-Nitroaniline	ND	10	"	"	"	"	"	"	
4-Nitroaniline	ND	20	"	"	"	"	"	"	
Nitrobenzene	ND	20	"	"	"	"	"	"	
2-Nitrophenol	ND	10	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	10	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	25	"	"	"	"	"	"	
Phenanthrene	ND	10	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	20	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	10	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	10	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	10	"	"	"	"	"	"	
1,4-Dinitrobenzene	ND	10	"	"	"	"	"	"	
Pyridine	ND	10	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		33.4 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		24.7 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		64.2 %	14.7	-110	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		64.3 %	33.3	-110	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		88.6 %	12.9	-110	"	"	"	"	
Surrogate: Terphenyl-dl4		80.5 %	15.8	-136	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

$Extractable\ Petroleum\ Hydrocarbons\ by\ 8015C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112330 - EPA 3550B GC										
Blank (5112330-BLK1)				Prepared:	11/23/15 A	nalyzed: 1	1/24/15			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	89.5		"	100		89.5	65-135			
LCS (5112330-BS1)				Prepared:	11/23/15 A	nalyzed: 1	1/24/15			
C13-C28 (DRO)	460	10	mg/kg	500		92.0	75-125			
Surrogate: p-Terphenyl	96.7		"	99.9		96.8	65-135			
Matrix Spike (5112330-MS1)	Sourc	e: T152950-	-05	Prepared:	11/23/15 A	nalyzed: 1	1/25/15			
C13-C28 (DRO)	450	10	mg/kg	500	ND	89.8	75-125			
Surrogate: p-Terphenyl	98.0		"	100		98.0	65-135			
Matrix Spike Dup (5112330-MSD1)	Sourc	e: T152950-	-05	Prepared:	11/23/15 A	nalyzed: 1	1/25/15			
C13-C28 (DRO)	450	10	mg/kg	500	ND	90.9	75-125	1.25	20	
Surrogate: p-Terphenyl	104		"	100		104	65-135			
Batch 5112408 - EPA 3510C GC										
Blank (5112408-BLK1)				Prepared &	& Analyzed:	: 11/24/15				
C6-C12 (GRO)	ND	0.050	mg/l							
C13-C28 (DRO)	ND	0.050	"							
C29-C40 (MORO)	ND	0.10	"							
Surrogate: p-Terphenyl	2.66		"	4.00		66.5	65-135			
LCS (5112408-BS1)				Prepared &	& Analyzed:	: 11/24/15				
C13-C28 (DRO)	17.2	0.050	mg/l	20.0		85.9	75-125			
Surrogate: p-Terphenyl	2.74		"	4.00		68.4	65-135			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

$Extractable\ Petroleum\ Hydrocarbons\ by\ 8015C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5112408 - EPA 3510C GC								<u> </u>		
LCS Dup (5112408-BSD1)				Prepared &	t Analyzed	: 11/24/15				
C13-C28 (DRO)	17.1	0.050	mg/l	20.0	<u> </u>	85.3	75-125	0.691	20	
Surrogate: p-Terphenyl	3.25		"	4.00		81.3	65-135			
Batch 5112410 - EPA 3550B GC										
Blank (5112410-BLK1)				Prepared:	11/24/15 A	nalyzed: 11	/26/15			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	109		"	99.7		109	65-135			
LCS (5112410-BS1)				Prepared:	11/24/15 A	nalyzed: 11	/26/15			
C13-C28 (DRO)	570	10	mg/kg	500		113	75-125			
Surrogate: p-Terphenyl	114		"	100		114	65-135			
Matrix Spike (5112410-MS1)	Source	e: T152951-	-10	Prepared:	11/24/15 A	nalyzed: 11	/26/15			
C13-C28 (DRO)	520	10	mg/kg	498	ND	105	75-125			
Surrogate: p-Terphenyl	109		"	99.5		110	65-135			
Matrix Spike Dup (5112410-MSD1)	Source	e: T152951-	-10	Prepared:	11/24/15 A	nalyzed: 11	/26/15			
C13-C28 (DRO)	530	10	mg/kg	500	ND	106	75-125	1.16	20	
Surrogate: p-Terphenyl	90.7		"	100		90.7	65-135			

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Reporting

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112325 - EPA 3051										
Blank (5112325-BLK1)				Prepared:	11/23/15 A	nalyzed: 11	/24/15			
Antimony	ND	3.0	mg/kg							
Silver	ND	2.0	"							
Arsenic	ND	5.0	"							
Barium	ND	1.0	"							
Beryllium	ND	1.0	"							
Cadmium	ND	2.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Lead	ND	3.0	"							
Molybdenum	ND	5.0	"							
Nickel	ND	2.0	"							
Selenium	ND	5.0	"							
Thallium	ND	2.0	"							
Vanadium	ND	5.0	"							
Zinc	ND	1.0	"							
LCS (5112325-BS1)				Prepared:	11/23/15 A	nalyzed: 11	/24/15			
Arsenic	90.6	5.0	mg/kg	100		90.6	75-125			
Barium	84.1	1.0	"	100		84.1	75-125			
Cadmium	83.4	2.0	"	100		83.4	75-125			
Chromium	85.7	2.0	"	100		85.7	75-125			
Lead	90.5	3.0	"	100		90.5	75-125			
Matrix Spike (5112325-MS1)	Source	e: T152950-	-01	Prepared:	11/23/15 A	nalyzed: 11	/24/15			
Arsenic	75.8	5.0	mg/kg	99.0	5.42	71.1	75-125			QM-0
Barium	224	1.0	"	99.0	201	24.2	75-125			QM-0
Cadmium	70.3	2.0	"	99.0	0.484	70.6	75-125			QM-0
Chromium	80.8	2.0	"	99.0	11.9	69.6	75-125			QM-0
Lead	143	3.0	"	99.0	86.8	57.0	75-125			QM-0

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112325 - EPA 3051										
Matrix Spike Dup (5112325-MSD1)	Sourc	e: T152950-	-01	Prepared:	11/23/15 A	nalyzed: 11	/24/15			
Arsenic	73.4	5.0	mg/kg	100	5.42	67.9	75-125	3.24	20	QM-0
Barium	226	1.0	"	100	201	25.5	75-125	0.691	20	QM-0
Cadmium	71.2	2.0	"	100	0.484	70.8	75-125	1.27	20	QM-0
Chromium	81.0	2.0	"	100	11.9	69.1	75-125	0.217	20	QM-0
Lead	146	3.0	"	100	86.8	59.5	75-125	2.09	20	QM-0
Batch 5112328 - EPA 3051										
Blank (5112328-BLK1)				Prepared &	& Analyzed:	: 11/23/15				
Lead	ND	3.0	mg/kg							
LCS (5112328-BS1)				Prepared &	& Analyzed:	: 11/23/15				
Lead	106	3.0	mg/kg	100		106	75-125			
Matrix Spike (5112328-MS1)	Source	e: T152951-	-03	Prepared &	& Analyzed:	: 11/23/15				
Lead	101	3.0	mg/kg	98.0	12.8	90.0	75-125			
Matrix Spike Dup (5112328-MSD1)	Sourc	e: T152951-	-03	Prepared &	& Analyzed:	: 11/23/15				
Lead	88.9	3.0	mg/kg	100	12.8	76.1	75-125	12.8	20	
Batch 5112516 - EPA 3051										
Blank (5112516-BLK1)				Prepared:	11/25/15 A	nalyzed: 11	/30/15			
Lead	ND	3.0	mg/kg							
LCS (5112516-BS1)				Prepared:	11/25/15 A	nalyzed: 11	/30/15			
Lead	103	3.0	mg/kg	100	·	103	75-125			

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112516 - EPA 3051										
Matrix Spike (5112516-MS1)	Source	Source: T152974-01				nalyzed: 11				
Lead	82.7	3.0	mg/kg	100	ND	82.7	75-125			
Matrix Spike Dup (5112516-MSD1)	Source	Source: T152974-01			11/25/15 A	nalyzed: 11	/30/15			
Lead	84.1	3.0	mg/kg	100	ND	84.1	75-125	1.70	20	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

TCLP Metals by 6000/7000 Series Methods - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5120841 - TCLP Metals										
Blank (5120841-BLK1)				Prepared: 1	2/08/15 A	nalyzed: 12	/09/15			
Lead	ND	0.10	mg/l							
LCS (5120841-BS1)				Prepared: 1	2/08/15 A	nalyzed: 12	/09/15			
Lead	0.545	0.10	mg/l	0.500		109	75-125			
Matrix Spike (5120841-MS1)	Sour	ce: T152951-	12	Prepared: 1	2/08/15 A	nalyzed: 12	/09/15			
Lead	0.607	0.10	mg/l	0.500	0.0583	110	75-125			
Matrix Spike Dup (5120841-MSD1)	Sour	ce: T152951-	12	Prepared: 1	2/08/15 A	nalyzed: 12	/09/15			
Lead	0.601	0.10	mg/l	0.500	0.0583	109	75-125	0.906	30	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

STLC Metals by 6000/7000 Series Methods - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5120128 - STLC Metals										
Blank (5120128-BLK1)				Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	ND	0.10	mg/l							
LCS (5120128-BS1)				Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	9.68	0.10	mg/l	10.0		96.8	75-125			
Matrix Spike (5120128-MS1)	Sourc	e: T152950-	04	Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	14.7	0.10	mg/l	10.0	5.24	94.8	75-125			
Matrix Spike Dup (5120128-MSD1)	Sourc	ee: T152950-	04	Prepared: 1	2/01/15 A	nalyzed: 12	/04/15			
Lead	15.2	0.10	mg/l	10.0	5.24	99.6	75-125	3.21	30	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112323 - EPA 7471A Soil										
Blank (5112323-BLK1)				Prepared: 1	1/23/15 A	nalyzed: 11	/24/15			
Mercury	ND	0.10	mg/kg							
LCS (5112323-BS1)				Prepared: 1	1/23/15 A	nalyzed: 11	/24/15			
Mercury	0.355	0.10	mg/kg	0.417		85.3	75-125			
Matrix Spike (5112323-MS1)	Sour	rce: T152948-	01	Prepared: 1	1/23/15 A	nalyzed: 11	/24/15			
Mercury	0.379	0.10	mg/kg	0.417	0.0490	79.3	75-125			
Matrix Spike Dup (5112323-MSD1)	Sour	rce: T152948-	01	Prepared: 1	1/23/15 A	nalyzed: 11	/24/15			
Mercury	0.381	0.10	mg/kg	0.417	0.0490	79.8	75-125	0.552	20	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Pangea Environmental Services, Inc. Project: 4901 Broadway

Result

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Reporting

Limit

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (5112345-BLK1)				Prepared: 11/25/	/15 Analyzed: 11	1/30/15	
alpha-BHC	ND	5.0	ug/kg				
gamma-BHC (Lindane)	ND	5.0	"				
beta-BHC	ND	5.0	"				
delta-BHC	ND	5.0	"				
Heptachlor	ND	5.0	"				
Aldrin	ND	5.0	"				
Heptachlor epoxide	ND	5.0	"				
gamma-Chlordane	ND	5.0	"				
alpha-Chlordane	ND	5.0	"				
Endosulfan I	ND	5.0	"				
4,4′-DDE	ND	5.0	"				
Dieldrin	ND	5.0	"				
Endrin	ND	5.0	"				
4,4′-DDD	ND	5.0	"				
Endosulfan II	ND	5.0	"				
4,4′-DDT	ND	5.0	"				
Endrin aldehyde	ND	5.0	"				
Endosulfan sulfate	ND	5.0	"				
Methoxychlor	ND	10	"				
Endrin ketone	ND	5.0	"				
Toxaphene	ND	200	"				
Chlordane (tech)	ND	50	"				
Surrogate: Tetrachloro-meta-xylene	5.63		"	9.97	56.5	35-140	
Surrogate: Decachlorobiphenyl	5.36		"	9.97	53.8	35-140	
LCS (5112345-BS1)				Prepared: 11/25/	/15 Analyzed: 11	1/30/15	
gamma-BHC (Lindane)	24.1	5.0	ug/kg	40.0	60.3	40-120	
Heptachlor	23.8	5.0	"	40.0	59.4	40-120	
Aldrin	23.7	5.0	"	40.0	59.3	40-120	

5.0

5.0

5.0

40.0

40.0

40.0

10.0

10.0

24.6

27.1

23.4

5.63

5.34

SunStar Laboratories, Inc.

Surrogate: Tetrachloro-meta-xylene

Surrogate: Decachlorobiphenyl

Dieldrin

Endrin

4,4'-DDT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

61.6

67.9

58.4

56.3

53.4

40-120

40-120

33-147

35-140

35-140

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

ND

ND

ND

1.00

1.00

1.00

1710 Franklin Street, Suite 200 Project Number: [none] Reported: Oakland CA, 94612 Project Manager: Bob Clark-Riddell 12/09/15 15:21

Reporting

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Spike

Source

		Reporting		Spike	Source		/oKEC		KFD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112345 - EPA 3550 ECD/GCMS										
Matrix Spike (5112345-MS1)	x Spike (5112345-MS1) Source: T152950-03				Prepared: 11/25/15 Analyzed: 11/30/15					
amma-BHC (Lindane)	25.0	5.0	ug/kg	40.0	ND	62.4	30-120			
Heptachlor	23.8	5.0	"	40.0	ND	59.6	30-120			
Aldrin	23.2	5.0	"	40.0	ND	57.9	30-120			
Dieldrin	24.7	5.0	"	40.0	ND	61.7	30-120			
Endrin	26.3	5.0	"	40.0	ND	65.7	30-120			
,4'-DDT	28.7	5.0	"	40.0	ND	71.8	30-120			
Gurrogate: Tetrachloro-meta-xylene	5.08		"	10.0		50.8	35-140			
Surrogate: Decachlorobiphenyl	4.80		"	10.0		48.0	35-140			
Matrix Spike Dup (5112345-MSD1)	Source: T152950-03 P			Prepared: 1	11/25/15 A	nalyzed: 11	/30/15			
amma-BHC (Lindane)	23.4	5.0	ug/kg	39.9	ND	58.5	30-120	6.48	30	
Heptachlor	22.8	5.0	"	39.9	ND	57.1	30-120	4.20	30	
Aldrin	22.4	5.0	"	39.9	ND	56.0	30-120	3.34	30	
Dieldrin	23.7	5.0	"	39.9	ND	59.4	30-120	3.75	30	
Endrin	25.6	5.0	"	39.9	ND	64.1	30-120	2.59	30	
,4′-DDT	27.9	5.0	"	39.9	ND	69.8	30-120	2.92	30	
Gurrogate: Tetrachloro-meta-xylene	4.97		"	9.98		49.8	35-140			
Surrogate: Decachlorobiphenyl	4.68		"	9.98		46.9	35-140			
Batch 5112409 - EPA 3510C GCMS/ECD										
Blank (5112409-BLK1)				Prepared: 1	11/24/15 A	nalyzed: 12	/01/15			
lpha-BHC	ND	1.00	ug/l							
gamma-BHC (Lindane)	ND	1.00	"							
eeta-BHC	ND	1.00	"							
lelta-BHC	ND	1.00	"							
leptachlor	ND	1.00	"							
Aldrin	ND	1.00	"							
Heptachlor epoxide	ND	1.00	"							
	ND	1.00	"							
amma-Chlordane	ND									
amma-Chlordane lpha-Chlordane	ND ND	1.00	"							
		1.00 1.00	"							

SunStar Laboratories, Inc.

Dieldrin

4,4'-DDD

Endrin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katherine Running Crane

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Reporting

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112409 - EPA 3510C GCMS/ECD										
Blank (5112409-BLK1)				Prepared: 1	11/24/15 A	nalyzed: 12	/01/15			
Endosulfan II	ND	1.00	ug/l							
4,4'-DDT	ND	2.00	"							
Endrin aldehyde	ND	1.00	"							
Endosulfan sulfate	ND	1.00	"							
Methoxychlor	ND	5.00	"							
Endrin ketone	ND	1.00	"							
Toxaphene	ND	20.0	"							
Surrogate: Tetrachloro-meta-xylene	ND		"	1.00		57.1	35-140			
Surrogate: Decachlorobiphenyl	0.609		"	1.00		60.9	35-140			
LCS (5112409-BS1)				Prepared: 1	11/24/15 A	nalyzed: 12	/01/15			
gamma-BHC (Lindane)	2.27	1.00	ug/l	4.00		56.9	40-120			
Heptachlor	2.27	1.00	"	4.00		56.8	40-120			
Aldrin	2.11	1.00	"	4.00		52.8	40-120			
Dieldrin	2.38	1.00	"	4.00		59.6	40-120			
Endrin	2.63	1.00	"	4.00		65.8	40-120			
4,4′-DDT	2.89	2.00	"	4.00		72.3	40-120			
Surrogate: Tetrachloro-meta-xylene	0.499		"	1.00		49.9	35-140			
Surrogate: Decachlorobiphenyl	0.682		"	1.00		68.2	35-140			
LCS Dup (5112409-BSD1)				Prepared: 1	11/24/15 A	nalyzed: 12	/01/15			
gamma-BHC (Lindane)	2.40	1.00	ug/l	4.00		60.0	40-120	5.30	20	
Heptachlor	2.19	1.00	"	4.00		54.6	40-120	3.78	20	
Aldrin	2.11	1.00	"	4.00		52.7	40-120	0.151	20	
Dieldrin	2.41	1.00	"	4.00		60.3	40-120	1.11	20	
Endrin	2.63	1.00	"	4.00		65.8	40-120	0.0756	20	
4,4´-DDT	2.91	2.00	"	4.00		72.7	40-120	0.520	20	
Surrogate: Tetrachloro-meta-xylene	0.466		"	1.00		46.6	35-140			
Surrogate: Decachlorobiphenyl	0.529		"	1.00		52.9	35-140			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

$Polychlorinated \ Biphenyls \ by \ EPA \ Method \ 8082 - Quality \ Control$

SunStar Laboratories, Inc.

		Reporting	** .	Spike	Source	N/PPE	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112342 - EPA 3510C GCMS/ECD										
Blank (5112342-BLK1)				Prepared:	11/23/15 A	nalyzed: 12	2/02/15			
PCB-1016	ND	2.00	ug/l							
PCB-1221	ND	2.00	"							
PCB-1232	ND	2.00	"							
PCB-1242	ND	2.00	"							
PCB-1248	ND	2.00	"							
PCB-1254	ND	2.00	"							
PCB-1260	ND	2.00	"							
Surrogate: Tetrachloro-meta-xylene	0.754		"	1.00		75.4	35-140			
Surrogate: Decachlorobiphenyl	0.905		"	1.00		90.5	35-140			
LCS (5112342-BS1)				Prepared:	11/23/15 A	nalyzed: 12	2/02/15			
PCB-1016	9.32	2.00	ug/l	10.0		93.2	40-130			
PCB-1260	8.96	2.00	"	10.0		89.6	40-130			
Surrogate: Tetrachloro-meta-xylene	0.846		"	1.00		84.6	35-140			
Surrogate: Decachlorobiphenyl	1.13		"	1.00		113	35-140			
LCS Dup (5112342-BSD1)		Prepared: 11/23/15 Analyzed: 12/02/15								
PCB-1016	8.47	2.00	ug/l	10.0		84.7	40-130	9.52	30	
PCB-1260	7.81	2.00	"	10.0		78.1	40-130	13.7	30	
Surrogate: Tetrachloro-meta-xylene	0.650		"	1.00		65.0	35-140			
Surrogate: Decachlorobiphenyl	1.08		"	1.00		108	35-140			
Batch 5112343 - EPA 3550 ECD/GCMS										
Blank (5112343-BLK1)				Prepared:	11/23/15 A	nalyzed: 12	2/01/15			
PCB-1016	ND	10	ug/kg	*		<u> </u>				
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	7.48		"	10.0		74.8	35-140			
Surrogate: Decachlorobiphenyl	7.94		"	10.0		79.4	35-140			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

$Polychlorinated \ Biphenyls \ by \ EPA \ Method \ 8082 - Quality \ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112343 - EPA 3550 ECD/GCMS										
LCS (5112343-BS1)				Prepared: 1	1/23/15 A	nalyzed: 12	/01/15			
PCB-1016	93.8	10	ug/kg	99.9		93.9	40-130			
PCB-1260	103	10	"	99.9		104	40-130			
Surrogate: Tetrachloro-meta-xylene	7.80		"	9.99		78.1	35-140			
Surrogate: Decachlorobiphenyl	8.32		"	9.99		83.3	35-140			
Matrix Spike (5112343-MS1)	Source: T152951-01			Prepared: 1	1/23/15 A	nalyzed: 12	/01/15			
PCB-1016	102	10	ug/kg	99.7	ND	103	40-130			
PCB-1260	117	10	"	99.7	ND	117	40-130			
Surrogate: Tetrachloro-meta-xylene	8.31		"	9.97		83.3	35-140			
Surrogate: Decachlorobiphenyl	8.76		"	9.97		87.9	35-140			
Matrix Spike Dup (5112343-MSD1)	Sou	rce: T152951-	01	Prepared: 1	11/23/15 A	nalyzed: 12	/01/15			
PCB-1016	116	10	ug/kg	100	ND	116	40-130	12.8	30	
PCB-1260	130	10	"	100	ND	130	40-130	10.6	30	
Surrogate: Tetrachloro-meta-xylene	8.42		"	10.0		84.2	35-140			
Surrogate: Decachlorobiphenyl	9.97		"	10.0		99.7	35-140			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	5112038	- EPA	5030	CCMS

Blank (5112038-BLK1)				Prepared: 11/20/15 Analyzed: 11/29/15
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200 Project Number: [none] Reported: Oakland CA, 94612 Project Manager: Bob Clark-Riddell 12/09/15 15:21

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

		Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112038 - EPA 5030 GCMS										
Blank (5112038-BLK1)				Prepared:	11/20/15 A	nalyzed: 11	/29/15			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Surrogate: 4-Bromofluorobenzene	8.90		"	8.00		111	83.5-119			
Surrogate: Dibromofluoromethane	7.65		"	8.00		95.6	81-136			
Surrogate: Toluene-d8	7.72		"	8.00		96.5	88.8-117			
LCS (5112038-BS1)				Prepared:	11/20/15 A	nalyzed: 11	/29/15			
Chlorobenzene	23.9	1.0	ug/l	20.0		119	75-125			
1,1-Dichloroethene	24.3	1.0	"	20.0		122	75-125			
Trichloroethene	24.6	1.0	"	20.0		123	75-125			
Benzene	20.9	0.50	"	20.0		105	75-125			
Toluene	22.0	0.50	"	20.0		110	75-125			
Surrogate: 4-Bromofluorobenzene	8.26		"	8.00		103	83.5-119			
Surrogate: Dibromofluoromethane	7.44		"	8.00		93.0	81-136			
Surrogate: Toluene-d8	7.66		"	8.00		95.8	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katherine Running Crane

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

		reporting		Брікс	Bource		/orce		KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112038 - EPA 5030 GCMS										
LCS Dup (5112038-BSD1)				Prepared:	11/20/15 A	nalyzed: 11	1/29/15			
Chlorobenzene	24.5	1.0	ug/l	20.0		122	75-125	2.44	20	
,1-Dichloroethene	24.1	1.0	"	20.0		121	75-125	0.661	20	
Trichloroethene	23.4	1.0	"	20.0		117	75-125	5.08	20	
Benzene	21.2	0.50	"	20.0		106	75-125	1.52	20	
Toluene	21.6	0.50	"	20.0		108	75-125	1.65	20	
Surrogate: 4-Bromofluorobenzene	8.52		"	8.00		106	83.5-119			
Surrogate: Dibromofluoromethane	7.47		"	8.00		93.4	81-136			
Surrogate: Toluene-d8	7.78		"	8.00		97.2	88.8-117			
Batch 5112333 - EPA 5030 GCMS										
Blank (5112333-BLK1)				Prepared:	11/23/15 A	nalyzed: 12	2/03/15			
Bromobenzene	ND	5.0	ug/kg							
Bromochloromethane	ND	5.0	"							
Bromodichloromethane	ND	5.0	"							
Bromoform	ND	5.0	"							
Bromomethane	ND	5.0	"							
n-Butylbenzene	ND	5.0	"							
ec-Butylbenzene	ND	5.0	"							
ert-Butylbenzene	ND	5.0	"							
Carbon tetrachloride	ND	5.0	"							
Chlorobenzene	ND	5.0	"							
Chloroethane	ND	5.0	"							
Chloroform	ND	5.0	"							
Chloromethane	ND	5.0	"							
2-Chlorotoluene	ND	5.0	"							
l-Chlorotoluene	ND	5.0	"							
Dibromochloromethane	ND	5.0	"							
,2-Dibromo-3-chloropropane	ND	10	"							
,2-Dibromoethane (EDB)	ND	5.0	"							
Dibromomethane	ND	5.0	"							
,2-Dichlorobenzene	ND	5.0	"							
,3-Dichlorobenzene	ND	5.0	"							
,4-Dichlorobenzene	ND	5.0	"							
Dichlorodifluoromethane	ND	5.0	"							
,1-Dichloroethane	ND	5.0	"							

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112333 - EPA 5030 GCMS

Blank (5112333-BLK1)				Prepared: 11/23/15 Analyzed: 12/03/15
1,2-Dichloroethane	ND	5.0	ug/kg	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	
p-Isopropyltoluene	ND	5.0	"	
Methylene chloride	ND	5.0	"	
Naphthalene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
Styrene	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1,1-Trichloroethane	ND	5.0	"	
Trichloroethene	ND	5.0	"	
Trichlorofluoromethane	ND	5.0	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
Vinyl chloride	ND	5.0	"	
Benzene	ND	5.0	"	
Toluene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
m,p-Xylene	ND	10	"	
o-Xylene	ND	5.0	"	

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112333 - EPA 5030 GCMS										
Blank (5112333-BLK1)				Prepared:	11/23/15 A	nalyzed: 12	2/03/15			
Surrogate: 4-Bromofluorobenzene	46.3		ug/kg	40.0		116	81.2-123			
Surrogate: Dibromofluoromethane	64.4		"	40.0		161	95.7-135			S-GC
Surrogate: Toluene-d8	38.6		"	40.0		96.4	85.5-116			
LCS (5112333-BS1)				Prepared: 1	11/23/15 A	nalyzed: 12	2/03/15			
Chlorobenzene	120	5.0	ug/kg	100		120	75-125			
1,1-Dichloroethene	122	5.0	"	100		122	75-125			
Trichloroethene	121	5.0	"	100		121	75-125			
Benzene	119	5.0	"	100		119	75-125			
Toluene	119	5.0	"	100		119	75-125			
Surrogate: 4-Bromofluorobenzene	43.7		"	40.0		109	81.2-123			
Surrogate: Dibromofluoromethane	74.1		"	40.0		185	95.7-135			S-GC
Surrogate: Toluene-d8	35.9		"	40.0		89.8	85.5-116			
LCS Dup (5112333-BSD1)				Prepared: 1	11/23/15 A	nalyzed: 12	2/03/15			
Chlorobenzene	124	5.0	ug/kg	100		124	75-125	3.24	20	
1,1-Dichloroethene	124	5.0	"	100		124	75-125	1.46	20	
Trichloroethene	120	5.0	"	100		120	75-125	0.871	20	
Benzene	124	5.0	"	100		124	75-125	4.15	20	
Toluene	117	5.0	"	100		117	75-125	1.10	20	
Surrogate: 4-Bromofluorobenzene	46.2		"	40.0		116	81.2-123			
Surrogate: Dibromofluoromethane	68.6		"	40.0		172	95.7-135			S-GC
Surrogate: Toluene-d8	36.3		"	40.0		90.8	85.5-116			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112332 - EPA 3510C GCMS/ECD

Blank (5112332-BLK1)				Prepared & Analyzed: 11/23/15
Carbazole	ND	10	ug/l	
Aniline	ND	10	"	
Phenol	ND	10	"	
Acenaphthylene	ND	10	"	
2-Chlorophenol	ND	10	"	
1,4-Dichlorobenzene	ND	10	"	
Anthracene	ND	10	"	
N-Nitrosodi-n-propylamine	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
4-Chloro-3-methylphenol	ND	10	"	
2-Methylnaphthalene	ND	20	"	
1-Methylnaphthalene	ND	10	"	
Benzo (a) anthracene	ND	10	"	
Acenaphthene	ND	10	"	
Benzo (b) fluoranthene	ND	10	"	
4-Nitrophenol	ND	10	"	
Benzo (k) fluoranthene	ND	10	"	
2,4-Dinitrotoluene	ND	10	"	
Benzo (g,h,i) perylene	ND	20	"	
Pentachlorophenol	ND	10	"	
Pyrene	ND	10	"	
Benzo (a) pyrene	ND	10	"	
Benzyl alcohol	ND	50	"	
Bis(2-chloroethoxy)methane	ND	10	"	
Bis(2-chloroethyl)ether	ND	5.0	"	
Bis(2-chloroisopropyl)ether	ND	20	"	
Bis(2-ethylhexyl)phthalate	ND	10	"	
4-Bromophenyl phenyl ether	ND	5.0	"	
Butyl benzyl phthalate	ND	10	"	
4-Chloroaniline	ND	20	"	
2-Chloronaphthalene	ND	10	"	
4-Chlorophenyl phenyl ether	ND	20	"	
Chrysene	ND	10	"	
Dibenz (a,h) anthracene	ND	10	"	
Dibenzofuran	ND	20	"	
Di-n-butyl phthalate	ND	5.0	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112332 - EPA 3510C GCMS/ECD

Blank (5112332-BLK1)				Prepared & Analyzed: 11/23/15
1,2-Dichlorobenzene	ND	5.0	ug/l	
1,3-Dichlorobenzene	ND	5.0	"	
2,4-Dichlorophenol	ND	10	"	
Diethyl phthalate	ND	10	"	
2,4-Dimethylphenol	ND	5.0	"	
Dimethyl phthalate	ND	10	"	
4,6-Dinitro-2-methylphenol	ND	5.0	"	
2,4-Dinitrophenol	ND	10	"	
2,6-Dinitrotoluene	ND	20	"	
Di-n-octyl phthalate	ND	10	"	
Fluoranthene	ND	5.0	"	
Fluorene	ND	10	"	
Hexachlorobenzene	ND	20	"	
Hexachlorobutadiene	ND	10	"	
Hexachlorocyclopentadiene	ND	20	"	
Hexachloroethane	ND	5.0	"	
Indeno (1,2,3-cd) pyrene	ND	10	"	
Isophorone	ND	10	"	
2-Methylphenol	ND	10	"	
4-Methylphenol	ND	20	"	
Naphthalene	ND	5.0	"	
2-Nitroaniline	ND	10	"	
3-Nitroaniline	ND	10	"	
4-Nitroaniline	ND	20	"	
Nitrobenzene	ND	20	"	
2-Nitrophenol	ND	10	"	
N-Nitrosodiphenylamine	ND	10	"	
N-Nitrosodimethylamine	ND	25	"	
Phenanthrene	ND	10	"	
2,4,5-Trichlorophenol	ND	20	"	
2,4,6-Trichlorophenol	ND	10	"	
2,3,4,6-Tetrachlorophenol	ND	10	"	
2,3,5,6-Tetrachlorophenol	ND	10	"	
1,4-Dinitrobenzene	ND	10	"	
Pyridine	ND	10	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

RPD

Pangea Environmental Services, Inc. Project: 4901 Broadway

Result

62.3

91.8

10

10

200

200

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Reporting

Limit

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Limits

%REC

Blank (5112332-BLK1)				Prepared & Ana	lyzed: 11/23/15				
Surrogate: 2-Fluorophenol	66.2		ug/l	200	33.1	15-121			
Surrogate: Phenol-d6	46.7		"	200	23.4	24-113			S-GC
Surrogate: Nitrobenzene-d5	103		"	200	51.5	14.7-110			
Surrogate: 2-Fluorobiphenyl	102		"	200	50.9	33.3-110			
Surrogate: 2,4,6-Tribromophenol	146		"	200	73.0	12.9-110			
Surrogate: Terphenyl-dl4	143		"	200	71.3	15.8-136			
LCS (5112332-BS1)				Prepared: 11/23	/15 Analyzed: 1	1/24/15			
Phenol	44.6	10	ug/l	200	22.3	12-89			
2-Chlorophenol	111	10	"	200	55.4	40-120			
1,4-Dichlorobenzene	74.5	10	"	200	37.3	33-94			
N-Nitrosodi-n-propylamine	115	5.0	"	200	57.7	40-120			
1,2,4-Trichlorobenzene	89.3	5.0	"	200	44.7	40-120			
4-Chloro-3-methylphenol	124	10	"	200	61.8	50-130			
Acenaphthene	124	10	"	200	61.8	50-130			
4-Nitrophenol	45.7	10	"	200	22.8	10-80			
2,4-Dinitrotoluene	77.4	10	"	200	38.7	24-96			
Pentachlorophenol	140	10	"	200	70.2	50-130			
Pyrene	124	10	"	200	61.9	26-127			
Surrogate: 2-Fluorophenol	54.7		"	200	27.3	15-121			
Surrogate: Phenol-d6	39.7		"	200	19.8	24-113			S-GC
Surrogate: Nitrobenzene-d5	99.5		"	200	49.8	14.7-110			
Surrogate: 2-Fluorobiphenyl	105		"	200	52.5	33.3-110			
Surrogate: 2,4,6-Tribromophenol	155		"	200	77.6	12.9-110			
Surrogate: Terphenyl-dl4	136		"	200	68.0	15.8-136			
LCS Dup (5112332-BSD1)				Prepared: 11/23	/15 Analyzed: 1	1/24/15			
Phenol	49.7	10	ug/l	200	24.8	12-89	10.7	42	
2-Chlorophenol	124	10	"	200	62.2	40-120	11.6	40	
1,4-Dichlorobenzene	90.3	10	"	200	45.1	33-94	19.1	28	
N-Nitrosodi-n-propylamine	128	5.0	"	200	64.1	40-120	10.5	38	
1,2,4-Trichlorobenzene	103	5.0	"	200	51.7	40-120	14.6	28	
4-Chloro-3-methylphenol	140	10	"	200	70.2	50-130	12.8	42	
Acenaphthene	138	10	"	200	68.9	50-130	10.8	31	

SunStar Laboratories, Inc.

4-Nitrophenol

2,4-Dinitrotoluene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

10-80

30.7

17.0

50

38

31.1

45.9

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200 Project Number: [none] Reported: Oakland CA, 94612 Project Manager: Bob Clark-Riddell 12/09/15 15:21

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112332 - EPA 3510C GCMS/ECD										

LCS Dup (5112332-BSD1)		Prepared: 11/23/15 Analyzed: 11/24/15													
Pentachlorophenol	152	10	ug/l	200	76.2	50-130	8.13	50							
Pyrene	154	10	"	200	77.1	26-127	21.9	31							
Surrogate: 2-Fluorophenol	64.7		"	200	32.4	15-121									
Surrogate: Phenol-d6	45.2		"	200	22.6	24-113			S-GC						
Surrogate: Nitrobenzene-d5	113		"	200	56.6	14.7-110									
Surrogate: 2-Fluorobiphenyl	124		"	200	61.8	33.3-110									
Surrogate: 2,4,6-Tribromophenol	166		"	200	83.2	12.9-110									
Surrogate: Terphenyl-dl4	171		"	200	85.7	15.8-136									

Batch 5112334 - EPA 3550 ECD/GCMS

Blank (5112334-BLK1)				Prepared: 11/23/15 Analyzed: 11/
Carbazole	ND	300	ug/kg	
Phenol	ND	1000	"	
Aniline	ND	300	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112334 - EPA 3550 ECD/GCMS

Blank (5112334-BLK1)				Prepared: 11/23/15 Analyzed: 11/25/15
Bis(2-chloroethyl)ether	ND	300	ug/kg	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	
1,2-Dichlorobenzene	ND	300	"	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

RPD

Limits

Pangea Environmental Services, Inc. Project: 4901 Broadway

Result

1710 Franklin Street, Suite 200 Project Number: [none] Reported: Oakland CA, 94612 Project Manager: Bob Clark-Riddell 12/09/15 15:21

Limit

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control SunStar Laboratories, Inc.

Units

Sunstan East			
Reporting	Spike	Source	%REC

Level

Result

%REC

Blank (5112334-BLK1)				Prepared: 11/23/	15 Analyzed: 1	1/25/15
Nitrobenzene	ND	1000	ug/kg			
2-Nitrophenol	ND	1000	"			
N-Nitrosodimethylamine	ND	300	"			
N-Nitrosodiphenylamine	ND	300	"			
2,3,5,6-Tetrachlorophenol	ND	300	"			
2,3,4,6-Tetrachlorophenol	ND	300	"			
Phenanthrene	ND	300	"			
Azobenzene	ND	300	"			
2,4,5-Trichlorophenol	ND	1000	"			
Pyridine	ND	300	"			
2,4,6-Trichlorophenol	ND	1000	"			
Surrogate: 2-Fluorophenol	1530		"	3330	45.9	15-121
Surrogate: Phenol-d6	1980		"	3330	59.4	24-113
Surrogate: Nitrobenzene-d5	1740		"	3330	52.3	21.3-119
Surrogate: 2-Fluorobiphenyl	1830		"	3330	55.0	32.4-102
Surrogate: 2,4,6-Tribromophenol	2530		"	3330	75.9	18.1-105
Surrogate: Terphenyl-dl4	2290		"	3330	68.7	29.1-130
LCS (5112334-BS1)				Prepared: 11/23/	15 Analyzed: 1	1/25/15
Phenol	1950	1000	ug/kg	3330	58.5	34-114
2-Chlorophenol	1750	1000	"	3330	52.5	34-114
1,4-Dichlorobenzene	1600	300	"	3330	48.0	34-114
N-Nitrosodi-n-propylamine	1940	300	"	3330	58.3	30-110
1,2,4-Trichlorobenzene	1760	300	"	3330	52.7	39-119
4-Chloro-3-methylphenol	2270	1000	"	3330	68.2	50-130
Acenaphthene	2060	300	"	3330	61.9	34-114
4-Nitrophenol	2450	1000	"	3330	73.7	40-120
2,4-Dinitrotoluene	1560	300	"	3330	46.9	35-115
Pentachlorophenol	2880	1000	"	3330	86.5	50-130
Pyrene	2060	300	"	3330	61.8	30-110
Surrogate: 2-Fluorophenol	1300		"	3330	39.0	15-121
Surrogate: Phenol-d6	1640		"	3330	49.1	24-113
Surrogate: Nitrobenzene-d5	1390		"	3330	41.7	21.3-119
Surrogate: 2-Fluorobiphenyl	1530		"	3330	46.0	32.4-102
Surrogate: 2,4,6-Tribromophenol	2190		"	3330	65.8	18.1-105
Surrogate: Terphenyl-dl4	2040		"	3330	61.2	29.1-130

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	esult Limit		Level	Result	%REC	Limits	RPD	Limit	Notes	

Matrix Spike (5112334-MS1)	Source	e: T152950-	01	Prepared: 1	1/23/15 A	nalyzed: 1	1/25/15			
Phenol	2210	1000	ug/kg	3330	ND	66.3	34-114			
2-Chlorophenol	1930	1000	"	3330	ND	57.8	34-114			
1,4-Dichlorobenzene	941	300	"	3330	ND	28.2	34-114			QM-07
N-Nitrosodi-n-propylamine	1980	300	"	3330	ND	59.3	30-110			
1,2,4-Trichlorobenzene	1580	300	"	3330	ND	47.3	39-119			
4-Chloro-3-methylphenol	2500	1000	"	3330	ND	74.9	50-130			
Acenaphthene	2190	300	"	3330	ND	65.8	34-114			
4-Nitrophenol	2500	1000	"	3330	ND	75.0	40-120			
2,4-Dinitrotoluene	1690	300	"	3330	ND	50.7	35-115			
Pentachlorophenol	3310	1000	"	3330	ND	99.2	50-130			
Pyrene	2400	300	"	3330	105	68.9	30-110			
Surrogate: 2-Fluorophenol	1620		"	3330		48.6	15-121			
Surrogate: Phenol-d6	2080		"	3330		62.3	24-113			
Surrogate: Nitrobenzene-d5	1730		"	3330		51.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	1900		"	3330		57.0	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2660		"	3330		79.9	18.1-105			
Surrogate: Terphenyl-dl4	2570		"	3330		77.0	29.1-130			
Matrix Spike Dup (5112334-MSD1)	Sourc	e: T152950-	01	Prepared: 1	1/23/15 A	nalyzed: 1	1/25/15			
Phenol	1990	1000	ug/kg	3330	ND	59.7	34-114	10.4	42	
2-Chlorophenol	1950	1000	"	3330	ND	58.5	34-114	1.17	40	
1,4-Dichlorobenzene	1060	300	"	3330	ND	31.8	34-114	12.0	28	QM-07
N-Nitrosodi-n-propylamine	1970	300	"	3330	ND	59.2	30-110	0.169	38	
1,2,4-Trichlorobenzene	1700	300	"	3330	ND	50.9	39-119	7.41	28	
4-Chloro-3-methylphenol	2480	1000	"	3330	ND	74.5	50-130	0.562	42	
Acenaphthene	2210	300	"	3330	ND	66.3	34-114	0.788	31	
4-Nitrophenol	2410	1000	"	3330	ND	72.2	40-120	3.71	50	
2,4-Dinitrotoluene	1540	300	"	3330	ND	46.3	35-115	9.08	38	
Pentachlorophenol	3380	1000	"	3330	ND	101	50-130	2.05	50	
Pyrene	2460	300	"	3330	105	70.5	30-110	2.25	31	
Surrogate: 2-Fluorophenol	1530		"	3330		45.9	15-121			
Surrogate: Phenol-d6	1830		"	3330		54.9	24-113			
Surrogate: Nitrobenzene-d5	1730		"	3330		52.0	21.3-119			
Surrogate: 2-Fluorobiphenyl	1910		"	3330		57.2	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2740		"	3330		82.3	18.1-105			
Surrogate: Terphenyl-dl4	2520		"	3330		75.6	29.1-130			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112334 - EPA 3550 ECD/GCMS

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kotherine Running Crane

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/09/15 15:21

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.

Chain of Custody Record

county

Providing Quality Analytical Services Nationwide 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client: Pangea Env. SVS. Address: 1710 Franklin St, Oakland								Date	e:	11	. ر	0	1	ζ				Pag	e:Of	2	
Address: 1710 Fra	nklin 5	t, OAK	land					Proj	ject	Nam	ne:	4	90	1	4	36	sad	Wey	,		
Phone: 510-836-31	∞	Fax:																	nt Project #:		
Project Manager: Bot	o Clark	L- Rid	dell							715			_						#:		
briddelle	Day . A.	env.	2 2 2			-					- 1		3	+		1					
	Langer	env. C	Pm							Ö			CAM	Ashest		ابد					
					٠,					MO		- 1	1	18		pest					
										+		aj	8	4,		- 1					
			, i			. 1	only					&	₹.			chlor.	9		·		
	,						Ō			*		e l	<u>4</u>	Tg.		2	J) ers
							λXO			ine		arb	\$	集		2	9	#	· rh		tair
						≿	×		$ _{\times} $	so	ese	12	涯	8		٠,١	ŧ	⊖	·		g
				· .		λXO	втех,		빝	(g)	Ē	ш	8	A	9	Œ	10	tory			g g
	Date		Sample	Container	0	+ 0	0 B	$ $ $_{\circ} $	1 B	2M	2M	2M	0/2	Ħ	2	200	8	ora			#
Sample ID	Sampled	Time	Туре	Type	8260	8260	8260	8270	8021 BTEX	8015M (gasoline) 🗗 🖸	8015M (diesel)	8015M Ext./Carbon Chain	20	8	~	8081A	8083	aboratory ID #	Comments/Preserva	ative	Total # of containers
B2-6'	11.19.15	0955		Sleeve	×		~	Χ̈́	$\tilde{}$	TY!	<u></u>	~	X 6010/7000 Title 22 Motals	χ̈́	\neg	X	¥	~_	Gommonto/ Todal Ve		
B6-18'	1	1045	1	1	×					×	\neg			· `				02			
139-2'		1425								×	\neg	\neg			×			03			\Box
139-4'		1420		1						×	\neg				×	\neg		04			Ш
B10- 2'		1435								5-4	\neg				><	\neg		05			
B10 - 4'		1430		1	Т					%		\neg	$\neg \neg$		\times			06			\Box
B11 - 2'		1255								\times			41.7		×	\neg		07			\Box
12 N-6	· \	1250			X			X		×			X	X		χ	X	OR	-,		\Box
R 13 - 12'		1300		\	\times			X		' ×			2 1			:	X	09			\Box
B 12 - 12	\	1600			\sim				,	X	·							10	HOLD		
1317-1	11.19.15			1												•	3,00	11			
1317-41 1316-1	11.20.15				\times	, j2		X		$ \mathbf{X} $			X	X		X	X	12			
Bi6-1	11.19.15		(\		3			٠,					-			4	13	HOLD		
B18- 41	11.20.15	1000	Sail	Sleeve	\geq			X		X	_		\times	X		X	X	14			Ľ
Dolinardo ad bras (alamatana)	Data (T		D (3)				لِــا	<u></u>											,		Li
Relinquished by: (signature)	Date / Ti		Received by	y. (signature)			Date	e/Ti ∤	me	. 1	7 /4	40	ANTO	otal #	of c	onta	iners		Notes		
150K= 11	.20.15	1235	200	1800			11/	20	15		Cha	in of	Cus	tody	seal	SYD	N/NA	. ,	TD. TAT	1	
Relinquished by: (signature)	Date / Ti	ime	Received b	y: (signature)			Date	e / Ti	me								NA/V	6		.	
			1.	1///							Р.	anni:					/cold	Z .			
Relinquished by: (signature)	21-15 /0:20 Date / Ti	ime	Received h	y: (signature)	11-21	.15	Date	20 a / Ti	ime		L/(ceiv	eu g	ood	CONG	iuon	/cold	9,0	:		
// (Signature)	Date / 11			, (oignature)			Dale	J, 11									7	,	/		
											Turr	n aro	und	tim	e:	$\underline{\mathcal{D}}$	10	4			
Sample disposal Instructions: Di	sposal @ \$2.00 e	each	Return t	o client		Pick	up _											(000 141045		
	· · · · · · · · · · · · · · · · · · ·														· ·				coc 141045		

SunStar Laboratories, Inc.

Chain of Custody Record

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

010 201 00																							
Client: Pan	gea E	nv. Sv	5>	1					Dat	e:	11	2	ල _.	15					Pag	e:2	Of	2	_
Address: \	10 F	ranklin	24,0	AKland					Pro	ject	Nan	ne:_	4	90	1	B	(CO)	du	ây				
Phone: 510	836-3	700	Fax:						Col	lecto	or:	Ë.	L	250	aa	a			Clier	nt Project #:			_
Project Manage	r: <u>Bob</u>	Clark-	Ridde	M		_			Bat	ch#	t:	715	295	7)			EDF	#:			_
																	7						
ρ,	r i ggell (e pangeo	lenv.c	m							0					ĺ	Des.	·					
	A.		١.					>			1+ m		hain	etals		_	ch los						
							>	(, OXY only)	Soline)+∫	sel)	/Carbon C	Title 22 Me	1S Metals	. PCB	,		# QI	· .			ontainers
Sample		Date Sampled	Time	Sample Type	Container Type	8260	8260 + OXY	8260 BTEX	8270	8021 BTEX	8015 (gasoline) + D+ M	8015M (diesel)	8015M,Ext	6010/7000 Title 22 Metals	3020 ICP-N	8082.	1808		aboratory ID	Commen	ts/Prese	ervative	Total # of containers
B12-	W	11.20.15	1215	GW	molt	X			X		X		~			X	X		15				╁╴
				'															,,,				\top
													_										
						-					Ш	_											
			,			_	_						_	_	_	_	_						
			-			-	\vdash					\dashv					\dashv						44
						-		-			$\vdash \vdash$	_	\dashv			\dashv	-						
		-				-		-				-	\dashv	_	\dashv	_	\dashv				-		\perp
						-	\vdash				$\vdash\vdash\vdash$		\dashv		\dashv	-	\dashv						+
11.0						-		-			$\vdash\vdash\vdash$		\dashv		-	\dashv							
			1				\vdash	-+	-	_	$\vdash \dashv$	\dashv	-	\dashv		-	\dashv						
									-	_	\vdash	-	\dashv	-+	\dashv	\dashv	\dashv						+
-											\vdash	\dashv	-+	\neg	\dashv	\dashv	\dashv						+
								\vdash		_		\neg	\dashv	-	\dashv	\dashv	\dashv						+
Relinquished by: (Date / T		1 · V	y: (signature)			Date		4		 23	O	To	tal #	of c	onta	iners	-		Notes	,	
	<u> </u>	1.20.15			~ - Se	<u> </u>			po		- (Cha	in of	Cus	tody	seak	s(Y)	Iners I/NA			er men		
Relinquished by: (Date / T	ime	1 .	y: (signature)			Date	e / Ti	me				Se	als i	ntact	XXA	N/NA		STD.			
Relinquished by: (signature)	21:16 10:20 Date / T	ime	Received by	y: (signature)	21.15	5	<u>/0:2</u> Date		me	\dashv	Re	eœiv	red g	ood	cond	ition	/cold	5.0				1
	· · · ·	·										Turr	n arc	und	tim	e:	5	da	1_				,*
Sample disposal Inc	tructions: Di	enneal @ \$2 00	aach	Poturn t	o client		Diok																

SAMPLE RECEIVING REVIEW SHEET

BATCH #			
Client Name: Paugea Project: Project:	4901 BR	ADWAY	
Received by: Date/Time Re	ceived:	81-21-15	10:20
Delivered by: ☐ Client ☐ SunStar Courier ☑ GSO ☐ FedEx	Other		
Total number of coolers received/ Temp criteria = 6°C	> 0°C (no	frozen cor	ıtainers)
Temperature: cooler #1 _5.2 °C +/- the CF (- 0.2°C) = _5.0 °C correct	cted temperate	ıre	
cooler #2°C +/- the CF (- 0.2°C) =°C correct	cted temperate	ure	
cooler #3°C +/- the CF (- 0.2°C) =°C correc	cted temperate	ure	
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	⊠Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	 	□No*	□N/A
Sample Containers Intact	⊠ Yes	□No*	
Sample labels match COC ID's	Yes	□No*	
Total number of containers received match COC	Yes	□No*	
Proper containers received for analyses requested on COC	Yes	□No*	
Proper preservative indicated on COC/containers for analyses requested	∑Yes	□No*	□N/A
Complete shipment received in good condition with correct temperatures, copreservatives and within method specified holding times. Yes No		abels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Re	eview - Initi	als and date	SL 11.21.15
Comments:) t	- J
	La Juga Wells	Limit	
	2 - 2 - 2 - 2 - 2		

SunStar Laboratories, Inc.

Chain of Custody Record county

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client: Pangea E	Enr. Sv	5.																e: 1 of 2	
Address: 1710 Fra	inklim 5	t, OAK	land) ho			Proje	ect N	ame:	_ 2	190	11	Y.	300	sad	we	1	
Phone: 510-836-37	100	Fax:						Colle	ctor:	6	. L	er	Va	aq			Clier	nt Project #:	
Phone: 50-836-37 Project Manager: 60	b Clark	L- Rid	dell								51			7			EDF		
briddelle	pangea	env. c	om.					I	T	7	Г	Am	Asbest			716			
									13	2		O	100		pest		1		
									1		Ë	2	4		9				
			1				>		1	0	Chain	1			5	0	ul?	4	
	,						o			+	l co	d.	10		chlor.	J		M	containers
							X		9		arb	1	#		-3	9	#		1
						>	χ,		V 3	ese	18	涯	1			t	0	1	l i
- 8						OXY	E			g g		18	A	9	Œ	6	ton		40
	Date		Sample	Container	0	+ 0	0 B	0	1 8	2 W	5M	10	H	-EAD	00	089	aboratory		#
Sample ID	Sampled	Time	Type	Туре	8260	8260 + (8260 BTEX, OXY only	8270	8021 BTEX	8015M (diesel)	8015M Ext./Carbon	6010/7000 Title 22 Metals	6020 TCE-WS-Wetch	2	8081A	90	ab.	Comments/Preservative	Total
B2-6'	11.19.15	0955		Sleeve	×	-	-	Ž	- N	X	1	X	X			X	01		1
B6-18'	1	1045	1	1	×				15				_	X			02	ADD LEHD	1
139-2'		1425							3	<				X			03		17
B9-4'		1440							>	<				X			04		
B10- 2'		1435				1 21			5	<				X			65		-E $)$
B10 - 4'		1430					3.		2	<				×			06		
B11-2'		1255							>	<		450		×			07		,
BN-6		1250	\-		×		4.7	The same	_ >	(2 1/2		\otimes	響	4	08	ADD LEAD. HULD MACK	00
B18-12		1300			\times			1		-	_	200	-	\boxtimes		變	09	APP LAND, 4 4	-11
B 12-12'	\	1600			\sim				- >	<	_			X			10	XMUSINUM ADD LEKO.	
317-1	11.19.15	THE RESERVE THE PERSON NAMED IN PORT OF THE PERSON NAMED I		1	-			-		-	-	1	-		3 -	17	11	HOLD	-11
1317-41	11-20-15		-	1	×	1		X	-12		-	X	X		X	X	12	1.515	-11
1316-1	11.19.15		- 1	1		_		Auch	-	-	-	1986	A.	CA	400	ARMA	13	A-00 LEAD, HOW MALL	140
B18- 41	11. 20.15	1000	Sail	Sleeve					-12		+	W.	200	Ø	200		14	ADD VEND, HOW MAKE	CV
Relinquished by: (signature)	Date / Ti	me	Pachivod I	oy. (signature)			Date	e / Tir	200	12	1016	\						Notes	1.1
- 11 -			I V	by (Signature)						q.	:40				1				
	1.20.15			1000	_		11/	20	D_	CI	hain c							TD. TAT	
(elinquished by: (signature)	Date / Ti	ime	Received	by: (signature)			Date	e / Tir	ne			Se	eals i	ntact	?(Y)	NA/NA	0		
BEO III	21-15 10:20		Jan 1	244	11-21	.15	100	20		123	Recei	ived o	good	cond	lition	/cold	5.0		5 = 1
Relinquished by: (signature)	Date / Ti	ime	Received	by: (signature)			Date	e / Tir	ne								_	/	
			0							T.	ırn ar	our.	4 61-	٥.	5	1			
Sample disposal Instructions: D	00.00 @ leasenside	a a a b	Detun	to client	-		up _		_		iii ai	Juin	M FILL		_		7		

Page 76 of 78

SunStar Laboratories, Inc.

Chain of Custody Record

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client: Pangea E	nv. Sv	5-						Dat	te:	11	. 2	9	15					Pag	e:	2	Of	2		
Address: 1710 Fr	ranklin	St, 0	akland					Pro	ject	Nan	ne:_	4	90	1	B	500	dw	ay						
Phone: 510-836-3	700	Fax:						Col	lect	or:_	B.	L	eri	100	ia				nt Proje	ct #:_				
Project Manager: Bob	Clark-	Ridde	M.					Bat	ch #	t:	71	5295	51		ر			EDF	#:					
briddell	e pangeo	lenv.c	om							0						pest								
	Date	¥.,	Sample	Container	8260	8260 + OXY	8260 BTEX, OXY only	8270	8021 BTEX	8015 (gasoline) + D+ M	15M (diesel)	15M Ext./Carbon Chain	6010/7000 Title 22 Metals	6020 ICP-MS Metals	8082 - PCB	8081A - chlor		aboratory ID #						Total # of containers
Sample ID Bla-W	Sampled 11 · Zo · /5	Time	Type %W	Type	X 82	82	82	(82	80	8 X	80	80	09	09	X			rs rs	C	omme	nts/Pre	servative		٩
10120 .	11 00.79	100.3	100		10													15		7.0				
															1									
				un .																		4		
			And the second		-	-			-		-					+			-				-	\dashv
		Marie 1																						
			-		+				-							-							-	-
																						ally a 1		
Relinquished by: (signature)	Date / T	ima	Doogwood b	y: (signature)		-	Dot	e/T	imo		_					Щ								
1 10	1.20.15		Tecqueu I	~ (signature))		/	no		5 1	2: Ch	3 O ain o	f Cus	otal a	# of c	contai s (V)	ners I/NA				Not		_	
Relinquished by: (signature)	Date / T		Received b	y: (signature)	-21-13	5	Dat /o:	e/T	ime				Se	eals i	intact	7. WA	I/NA cold	5.0	S	D.	TAT			
Relinquished by: (signature)	Date / T	ime	Regelved b	y: (signature)			Dat	e/T	ime								da		-					8
Sample disposal Instructions: Di	isposal @ \$2.00	each	Return	to client		Pick	kup _												COC	: 14	410	47		

Project: **T152951**

EMSL Analytical, Inc

464 McCormick Street, San Leandro, CA 94577 (510) 895-3675 / (510) 895-3680 Phone/Fax:

http://www.EMSL.com sanleandrolab@emsl.com

EMSL Order: 091519859 CustomerID: CustomerPO:

32SUNS45 T152951

ProjectID:

Attn: Katherine RunningCrane Sunstar Laboratories, Inc. 25712 Commercentre Drive Lake Forest, CA 92630

Phone: (949) 297-5020 Fax: (949) 297-5027 Received: 11/24/15 9:00 AM Analysis Date: 12/1/2015

Collected:

Test Report: PLM Analysis of Bulk Samples for Asbestos via EPA 600/R-93/116 Method with CARB 435 Prep (Milling) Level A for 0.25% Target Analytical Sensitivity

				Non	-Asbestos		<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	%	Non-Fibrous	% Type
T152951-01		Brown Non-Fibrous Homogeneous			100.00%	Non-fibrous (other)	None Detected
T152951-08 091519859-0002	SAMPLE ON HOLD						Not Analyzed
T152951-12		Brown Non-Fibrous Homogeneous			100.00%	Non-fibrous (other)	None Detected
T152951-14 091519859-0004	SAMPLE ON HOLD						Not Analyzed

Analyst(s)	
Adam C. Fink (2)	

Chris Dojlidko, Laboratory Manager or other approved signatory

This report relates only to the samples listed above and may not be reproduced except in full, without EMSL's written approval. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. EMSL is not responsible for sample collection activities or method limitations. Some samples may contain asbestos fibers below the resolution limit of PLM. EMSL recommends that samples reported as none detected or less than the limit of detection undergo additional analysis via TEM.Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc San Leandro, CA

Test Report PLMPTC-7.25.0 Printed: 12/1/2015 8:41:45 PM

Initial report from 12/01/2015 20:41:45

03 December 2015

Bob Clark-Riddell Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

RE: 4901 Broadway

Enclosed are the results of analyses for samples received by the laboratory on 11/21/15 10:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine RunningCrane

Katherine Running Crane

Project Manager

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B15-6'	T152954-01	Soil	11/19/15 11:05	11/21/15 10:20

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kotherine Running Crane

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

DETECTIONS SUMMARY

Sample ID: B15-6' Laboratory ID: T152954-01

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katherine Running Crane

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

B15-6' T152954-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	by 8015C								
C6-C12 (GRO)	ND	10	mg/kg	1	5112410	11/24/15	11/26/15	EPA 8015C	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		94.8 %	65-	135	"	"	"	"	
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	5112343	11/23/15	12/01/15	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		94.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		99.8 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	,,	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

B15-6' T152954-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Dibromochloromethane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
1,2-Dibromo-3-chloropropane	ND	10	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	,,	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

B15-6' T152954-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,1,1-Trichloroethane	ND	5.0	ug/kg	1	5112333	11/23/15	12/03/15	EPA 8260B	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Γoluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
n,p-Xylene	ND	10	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		183 %	95.7	-135	"	"	"	"	S-GC
Surrogate: Toluene-d8		88.1 %	85.5	-116	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
l-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
l-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	,,	,,	,,		,,	,,	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

B15-6' T152954-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Acenaphthylene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	,,	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	,,	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	,,	"	"	"	"	
Fluoranthene	ND	300	,,	,,	"	,,	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Reporting

B15-6' T152954-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Fluorene	ND	300	ug/kg	1	5112334	11/23/15	11/25/15	EPA 8270C	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		49.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		63.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		52.0 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		58.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		81.5 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		76.0 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Extractable Petroleum Hydrocarbons by 8015C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112410 - EPA 3550B GC										
Blank (5112410-BLK1)				Prepared: 1	1/24/15 A	nalyzed: 11	/26/15			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	109		"	99.7		109	65-135			
LCS (5112410-BS1)				Prepared: 1	1/24/15 A	nalyzed: 11	/26/15			
C13-C28 (DRO)	570	10	mg/kg	500		113	75-125			
Surrogate: p-Terphenyl	114		"	100		114	65-135			
Matrix Spike (5112410-MS1)	Sour	ce: T152951-	-10	Prepared: 1	11/24/15 A	nalyzed: 11	/26/15			
C13-C28 (DRO)	520	10	mg/kg	498	ND	105	75-125	·		
Surrogate: p-Terphenyl	109		"	99.5		110	65-135			
Matrix Spike Dup (5112410-MSD1)	Sour	ce: T152951-	-10	Prepared: 11/24/15 Analyzed: 11/26/15						
C13-C28 (DRO)	530	10	mg/kg	500	ND	106	75-125	1.16	20	
Surrogate: p-Terphenyl	90.7		"	100		90.7	65-135			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (5112343-BLK1)				Prepared: 1	1/23/15 A	nalyzed: 12	2/01/15				
PCB-1016	ND	10	ug/kg								
PCB-1221	ND	10	"								
PCB-1232	ND	10	"								
PCB-1242	ND	10	"								
PCB-1248	ND	10	"								
PCB-1254	ND	10	"								
PCB-1260	ND	10	"								
Surrogate: Tetrachloro-meta-xylene	7.48		"	10.0		74.8	35-140				
Surrogate: Decachlorobiphenyl	7.94		"	10.0		79.4	35-140				
LCS (5112343-BS1)		Prepared: 11/23/15 Analyzed: 12/01/15									
PCB-1016	93.8	10	ug/kg	99.9		93.9	40-130				
PCB-1260	103	10	"	99.9		104	40-130				
Surrogate: Tetrachloro-meta-xylene	7.80		"	9.99		78.1	35-140				
Surrogate: Decachlorobiphenyl	8.32		"	9.99		83.3	35-140				
Matrix Spike (5112343-MS1)	Source	: T152951-	01	Prepared: 1	1/23/15 A	nalyzed: 12	2/01/15				
PCB-1016	102	10	ug/kg	99.7	ND	103	40-130				
PCB-1260	117	10	"	99.7	ND	117	40-130				
Surrogate: Tetrachloro-meta-xylene	8.31		"	9.97		83.3	35-140				
Surrogate: Decachlorobiphenyl	8.76		"	9.97		87.9	35-140				
Matrix Spike Dup (5112343-MSD1)	Source	Source: T152951-01				nalyzed: 12	2/01/15				
PCB-1016	116	10	ug/kg	100	ND	116	40-130	12.8	30		
PCB-1260	130	10	"	100	ND	130	40-130	10.6	30		
Surrogate: Tetrachloro-meta-xylene	8.42		"	10.0		84.2	35-140				
Surrogate: Decachlorobiphenyl	9.97		"	10.0		99.7	35-140				

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112333 - EPA 5030 GCMS

Blank (5112333-BLK1)				Prepared: 11/23/15 Analyzed: 12/03/15
Bromobenzene	ND	5.0	ug/kg	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	10	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	

SunStar Laboratories, Inc.

RPD

%REC

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

		Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5112333 - EPA 5030 GCMS										
Blank (5112333-BLK1)				Prepared:	11/23/15 A	nalyzed: 12	/03/15			
p-Isopropyltoluene	ND	5.0	ug/kg							
Methylene chloride	ND	5.0	"							
Naphthalene	ND	5.0	"							
n-Propylbenzene	ND	5.0	"							
Styrene	ND	5.0	"							
1,1,2,2-Tetrachloroethane	ND	5.0	"							
1,1,1,2-Tetrachloroethane	ND	5.0	"							
Tetrachloroethene	ND	5.0	"							
1,2,3-Trichlorobenzene	ND	5.0	"							
1,2,4-Trichlorobenzene	ND	5.0	"							
1,1,2-Trichloroethane	ND	5.0	"							
1,1,1-Trichloroethane	ND	5.0	"							
Trichloroethene	ND	5.0	"							
Trichlorofluoromethane	ND	5.0	"							
1,2,3-Trichloropropane	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
Benzene	ND	5.0	"							
Toluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
m,p-Xylene	ND	10	"							
o-Xylene	ND	5.0	"							
Surrogate: 4-Bromofluorobenzene	46.3		"	40.0		116	81.2-123			
Surrogate: Dibromofluoromethane	64.4		"	40.0		161	95.7-135			S-C
Surrogate: Toluene-d8	38.6		"	40.0		96.4	85.5-116			
LCS (5112333-BS1)				Prepared:	11/23/15 A	nalyzed: 12	/03/15			
Chlorobenzene	120	5.0	ug/kg	100		120	75-125			
1,1-Dichloroethene	122	5.0	"	100		122	75-125			
Trichloroethene	121	5.0	"	100		121	75-125			
Benzene	119	5.0	"	100		119	75-125			
Toluene	119	5.0	"	100		119	75-125			
Surrogate: 4-Bromofluorobenzene	43.7		"	40.0		109	81.2-123			
Surrogate: Dibromofluoromethane	74.1		"	40.0		185	95.7-135			S-C
Surrogate: Toluene-d8	35.9		"	40.0		89.8	85.5-116			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5112333 - EPA 5030 GCMS										
LCS Dup (5112333-BSD1)				Prepared: 1	11/23/15 A	nalyzed: 12	2/03/15			
Chlorobenzene	124	5.0	ug/kg	100		124	75-125	3.24	20	
1,1-Dichloroethene	124	5.0	"	100		124	75-125	1.46	20	
Trichloroethene	120	5.0	"	100		120	75-125	0.871	20	
Benzene	124	5.0	"	100		124	75-125	4.15	20	
Toluene	117	5.0	"	100		117	75-125	1.10	20	
Surrogate: 4-Bromofluorobenzene	46.2		"	40.0		116	81.2-123			
Surrogate: Dibromofluoromethane	68.6		"	40.0		172	95.7-135			S-GO
Surrogate: Toluene-d8	36.3		"	40.0		90.8	85.5-116			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112334 - EPA 3550 ECD/GCMS

Blank (5112334-BLK1)				Prepared: 11/23/15 Analyzed: 11/25/15
Carbazole	ND	300	ug/kg	
Aniline	ND	300	"	
Phenol	ND	1000	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5112334 - EPA 3550 ECD/GCMS

Blank (5112334-BLK1)				Prepared: 11/23/15 Analyzed: 11/25/15
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
Pyridine	ND	300	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

RPD

Pangea Environmental Services, Inc. Project: 4901 Broadway

Result

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Reporting

Limit

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

Blank (5112334-BLK1)				Prepared: 1	1/23/15 A	nalyzed: 1	1/25/15	
Surrogate: 2-Fluorophenol	1530		ug/kg	3330		45.9	15-121	
Surrogate: Phenol-d6	1980		"	3330		59.4	24-113	
Surrogate: Nitrobenzene-d5	1740		"	3330		52.3	21.3-119	
Surrogate: 2-Fluorobiphenyl	1830		"	3330		55.0	32.4-102	
Surrogate: 2,4,6-Tribromophenol	2530		"	3330		75.9	18.1-105	
Surrogate: Terphenyl-dl4	2290		"	3330		68.7	29.1-130	
LCS (5112334-BS1)				Prepared: 1	1/23/15 A	nalyzed: 1	1/25/15	
Phenol	1950	1000	ug/kg	3330		58.5	34-114	
2-Chlorophenol	1750	1000	"	3330		52.5	34-114	
1,4-Dichlorobenzene	1600	300	"	3330		48.0	34-114	
N-Nitrosodi-n-propylamine	1940	300	"	3330		58.3	30-110	
1,2,4-Trichlorobenzene	1760	300	"	3330		52.7	39-119	
4-Chloro-3-methylphenol	2270	1000	"	3330		68.2	50-130	
Acenaphthene	2060	300	"	3330		61.9	34-114	
4-Nitrophenol	2450	1000	"	3330		73.7	40-120	
2,4-Dinitrotoluene	1560	300	"	3330		46.9	35-115	
Pentachlorophenol	2880	1000	"	3330		86.5	50-130	
Pyrene	2060	300	"	3330		61.8	30-110	
Surrogate: 2-Fluorophenol	1300		"	3330		39.0	15-121	
Surrogate: Phenol-d6	1640		"	3330		49.1	24-113	
Surrogate: Nitrobenzene-d5	1390		"	3330		41.7	21.3-119	
Surrogate: 2-Fluorobiphenyl	1530		"	3330		46.0	32.4-102	
Surrogate: 2,4,6-Tribromophenol	2190		"	3330		65.8	18.1-105	
Surrogate: Terphenyl-dl4	2040		"	3330		61.2	29.1-130	
Matrix Spike (5112334-MS1)	Sourc	e: T152950-	01					
Phenol	2210	1000	ug/kg	3330	ND	66.3	34-114	
2-Chlorophenol	1930	1000	"	3330	ND	57.8	34-114	
1,4-Dichlorobenzene	941	300	"	3330	ND	28.2	34-114	QM-07
N-Nitrosodi-n-propylamine	1980	300	"	3330	ND	59.3	30-110	
1,2,4-Trichlorobenzene	1580	300	"	3330	ND	47.3	39-119	
4-Chloro-3-methylphenol	2500	1000	"	3330	ND	74.9	50-130	
Acenaphthene	2190	300	"	3330	ND	65.8	34-114	
4-Nitrophenol	2500	1000	"	3330	ND	75.0	40-120	
2,4-Dinitrotoluene	1690	300	"	3330	ND	50.7	35-115	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

RPD

Pangea Environmental Services, Inc. Project: 4901 Broadway

Result

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Reporting

Limit

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

Matrix Spike (5112334-MS1)	Source	Prepared: 1	1/23/15 A	nalyzed: 1	1/25/15					
Pentachlorophenol	3310	1000	ug/kg	3330	ND	99.2	50-130			
Pyrene	2400	300	"	3330	105	68.9	30-110			
Surrogate: 2-Fluorophenol	1620		"	3330		48.6	15-121			
Surrogate: Phenol-d6	2080		"	3330		62.3	24-113			
Surrogate: Nitrobenzene-d5	1730		"	3330		51.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	1900		"	3330		57.0	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2660		"	3330		79.9	18.1-105			
Surrogate: Terphenyl-dl4	2570		"	3330		77.0	29.1-130			
Matrix Spike Dup (5112334-MSD1)	Sourc	Source: T152950-01			Prepared: 11/23/15 Analyzed: 11/25/15					
Phenol	1990	1000	ug/kg	3330	ND	59.7	34-114	10.4	42	
2-Chlorophenol	1950	1000	"	3330	ND	58.5	34-114	1.17	40	
1,4-Dichlorobenzene	1060	300	"	3330	ND	31.8	34-114	12.0	28	QM-0'
N-Nitrosodi-n-propylamine	1970	300	"	3330	ND	59.2	30-110	0.169	38	
1,2,4-Trichlorobenzene	1700	300	"	3330	ND	50.9	39-119	7.41	28	
4-Chloro-3-methylphenol	2480	1000	"	3330	ND	74.5	50-130	0.562	42	
Acenaphthene	2210	300	"	3330	ND	66.3	34-114	0.788	31	
4-Nitrophenol	2410	1000	"	3330	ND	72.2	40-120	3.71	50	
2,4-Dinitrotoluene	1540	300	"	3330	ND	46.3	35-115	9.08	38	
Pentachlorophenol	3380	1000	"	3330	ND	101	50-130	2.05	50	
Pyrene	2460	300	"	3330	105	70.5	30-110	2.25	31	
Surrogate: 2-Fluorophenol	1530		"	3330		45.9	15-121			
Surrogate: Phenol-d6	1830		"	3330		54.9	24-113			
Surrogate: Nitrobenzene-d5	1730		"	3330		52.0	21.3-119			
Surrogate: 2-Fluorobiphenyl	1910		"	3330		57.2	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2740		"	3330		82.3	18.1-105			
Surrogate: Terphenyl-dl4	2520		"	3330		75.6	29.1-130			

SunStar Laboratories, Inc.

Pangea Environmental Services, Inc. Project: 4901 Broadway

1710 Franklin Street, Suite 200Project Number: [none]Reported:Oakland CA, 94612Project Manager: Bob Clark-Riddell12/03/15 22:12

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.

Chain of Custody Record

Providing Quality Analytical Services Nationwide
25712 Commercentre Drive, Lake Forest, CA 92630
949-297-5020

Client: Pangea E	nv. Sv	<u>چ</u>						Date	e:		11	۶ .	20	0/5	<u> </u>			Pag	e: <i>Ì</i>		_ Of _			. Ľ
Address: 1710 Fra	nklins S	St. OAK	Land					Proj	ect	Nam	ne:_	2	190	1	2	bro		val						_
Phone: 510 - 836 - 3	3700	Fax:																	t Project a	#:				_
Project Manager: 636	Clark	- Rid	dell		-			Bate	ch #	:			7	715	295	4		EDF	#:					-
pr 1226	10 panga	ea env.	com						Т	٦			3	30		4								\Box
i garage	1									FD+ MC			CAN	6820 ICP MS Motals A slogskos		best								
				İ						+		ے	4	3			, æ							
	·						≥					Shai	क्	4		Ö								
							OXY only	1				o lo	8	tals		ch lor.	PC							lers
·							8			line	<u></u>	arb	1	#		٦	,	#						ıtair
						ķ	X		×	Jaso	liese	χŢ	#F	*		4	4	y ID						00
						+	BTI		BTI	(<u>§</u>	<u>S</u>	M	7-06	4		$\widetilde{\infty}$	80	atol						#
Comple ID	Date Sampled	Time	Sample	Container Type	8260	260	8260 BTEX, C	8270	8021 BTEX	8015 (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/ 7989 Title 32 Metals.	8		\$081A	% 0	-aboratory	0		to/D			Total # of containers
Sample ID	11.19.75	1105	Type	Sleeve	×	80	8	X	-	X	œ l		X	X		$\frac{x}{x}$	Y	٥١	Con	ımen	ts/Pres	ervative		1
013-6	1. (1.73	11.05	1	Steere						$^{\prime}$	\dashv		^		+	$\stackrel{\frown}{}$		0(+
																			-					
		1		1	<u> </u>					_	_	_	-		_	_								_
					-			\vdash	\dashv		-	\dashv	_	\dashv	\dashv	\dashv								\vdash
			<u> </u>		\vdash					\dashv	\dashv			_	_	\dashv								\vdash
		2 - 1			_						_				_	\Box							-	
				`,	-				-	\dashv		\dashv		-	+	-+								\vdash
				- \	\vdash	Н		_		-	\dashv	_			\dashv	\dashv		-						\vdash
				\ .																				
·,					_						\neg				1									
Relinquished by: (signature)	Date / Ti	ime	Received h	y: (signature)	}	1	Date	2 / Ti	ime				لِنا	-1-1-11							Nata			Щ
(Signature)	11.20.15		1 ~ V	X	/ Fa	15	امد	ر ر ا	170	1/2	5.1	2	<u>`</u> ```	otal # stody :	of cc	ontai	ners		(F2 T)	g=g	Note TA	s T r		7
Relinquished by: (signature)	Date / Ti			y: (signature)			Date	e / Ti	ime	7	∠ na	un o		eals in					3	<u></u> .	g Page	1		
			l .	010							D,	oooi.						<u></u>				Ł		_
Relinquished by: (signature)	### Date / Ti	ime		y: (signature)	11.21.	15	Date	e / Ti	ime	\dashv	170	cceiv	veu (good (Jondi	ILION/	cold	5.1	-					
											Ture	ı arı	allne	l time	. T	3 /	1,	,						
Sample disposal Instructions: Di	sposal @ \$2.00 e	each	Return t	to client		Pick	up _				iuii	· ar	Juil		, <u>.</u>	<u> </u>	(1 /	10	1 C	<u>.</u>	

SAMPLE RECEIVING REVIEW SHEET

BATCH#					
Client Name: PANGEA EMV.	Project: 49	OI BROAD	-WAY		
Received by: Sunny	Date/Time Rec	eived:	11.21.15	10:20	
Delivered by: Client SunStar Courier GSO	FedEx	Other			- 134
Total number of coolers received Temp of	eriteria = 6°C >	0°C (no	frozen cor	ntainers)	
Temperature: cooler #1 $\underline{5.3}$ °C +/- the CF (-0.2°C) =	5.1 °C correct	ed temperatu	ire		-28
cooler #2°C +/- the CF (- 0.2°C) =	°C correct	ed temperati	ıre		
cooler #3°C +/- the CF (- 0.2°C) =	°C correct	ed temperatu	ıre		
Samples outside temp. but received on ice, w/in 6 hours of fir	al sampling.	Yes	□No*	□N/A	
Custody Seals Intact on Cooler/Sample		⊠Yes	□No*	□N/A	
Sample Containers Intact		 Yes 	□No*		N.
Sample labels match COC ID's		Yes	□No*		
Total number of containers received match COC		⊠Yes	□No*		
Proper containers received for analyses requested on COC	* 2	⊠Yes	□No*		
Proper preservative indicated on COC/containers for analyses	requested	□Yes	□No*	⊠N/A	.59
Complete shipment received in good condition with correct te preservatives and within method specified holding times.			bels, volu	mes	
* Complete Non-Conformance Receiving Sheet if checked C	ooler/Sample Rev	/iew - Initia	ls and date	86 11.21·1	5
Comments:					
	. * *		14	25 :	

WORK ORDER

T152954

Client: Pangea Environmental Services, Inc. Project Manager: Katherine RunningCrane

Project: 4901 Broadway Project Number: [none]

Report To:

Pangea Environmental Services, Inc.

Bob Clark-Riddell

1710 Franklin Street, Suite 200

Oakland, CA 94612

Date Due: 12/02/15 15:00 (5 day TAT)

Received By: Sunny Lounethone Date Received: 11/21/15 10:20
Logged In By: Sunny Lounethone Date Logged In: 11/21/15 12:06

Samples Received at: 5.1°C

Custody Seals Yes Received On Ice Yes

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confir No

Analysis	Due TAT Expires		Comments	
T152954-01 B15-6' [Soil	l] Sampled 11/19/15 11:0	5 (GMT-08	8:00) Pacific Time	
6010 Title 22	12/02/15 15:00	5	05/17/16 11:05	
8015 Carbon Chain	12/02/15 15:00	5	12/03/15 11:05	
8081 Pesticides	12/02/15 15:00	5	12/03/15 11:05	
8082 PCB	12/02/15 15:00	5	12/03/15 11:05	
8260	12/02/15 15:00	5	12/03/15 11:05	
8270C	12/02/15 15:00	5	12/03/15 11:05	

EMSL -- San Leandro

T152954-01 B15-6' [Soil] Sampled 11/19/15 11:05 (GMT-08:00) Pacific Time (US &

(CD G

Asbestos 12/04/15 15:00 7 12/17/15 11:05 PLM CARB 435, Level A (0.25%)

Analysis groups included in this work order

6010 Title 22

subgroup 6010B T22 7470/71 Hg

\mathbf{r}		-
ĸ	eviewed	HX7
1/	cvicwca	D y

Date	
------	--

APPENDIX F

Laboratory Analytical Results: County Assessment, January 2016

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1601A40

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact:

Bob Clark-Riddell

Project P.O.:

Project Name: 4901 Broadway

Project Received: 01/27/2016

Analytical Report reviewed & approved for release on 01/29/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 4901 Broadway

WorkOrder: 1601A40

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

d7 strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

e7 oil range compounds are significant e8 kerosene/kerosene range/jet fuel range

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 4901 Broadway

WorkOrder: 1601A40

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

PB-1-7	Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
Bromobenzene ND 0.0050 1 0.1/28/2016 15:34 Bromochloromethane ND 0.0050 1 0.1/28/2016 15:34 Bromochloromethane ND 0.0050 1 0.1/28/2016 15:34 Bromodichi comethane ND 0.0050 1 0.1/28/2016 15:34 Bromomethane ND 0.0050 1 0.1/28/2016 15:34 Carbon Tetrachloride ND 0.0050 1 0.1/28/2016 15:34 Chlorobenzene ND 0.0050 1 0.1/28/2016 15:34 Chlorodentane ND 0.0050 1 0.1/28/2016 15:34 Chloromethane ND 0.0050 1 0.1/28/2016 15:34 Dibromochloromethane ND 0.0050	PB-1-7'	1601A40-001A	Soil	01/27/20	16 15:30 GC16	115915
Bromochloromethane ND 0.0050 1 01/28/2016 15:34 Bromodichloromethane ND 0.0050 1 01/28/2016 15:34 Bromoform ND 0.0050 1 01/28/2016 15:34 Bromomethane ND 0.0050 1 01/28/2016 15:34 Carbon Tetrachloride ND 0.0050 1 01/28/2016 15:34 Chloroethane ND 0.0050 1 01/28/2016 15:34 Chloroethane ND 0.0050 1 01/28/2016 15:34 Chloroform ND 0.0050 1 01/28/2016 15:34 Chloroform ND 0.0050 1 01/28/2016 15:34 Chloroformethane ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 1/2-Dibromothane ND 0.0050 1 01/28/2016 15:34 1/2-Dibromothane ND 0.0040 1 <td< th=""><th><u>Analytes</u></th><th>Result</th><th></th><th><u>RL</u></th><th><u>DF</u></th><th>Date Analyzed</th></td<>	<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromodichloromethane ND 0.0050 1 01/28/2016 15:34 Bromoform ND 0.0050 1 01/28/2016 15:34 Bromomethane ND 0.0050 1 01/28/2016 15:34 Carbon Tetrachloride ND 0.0050 1 01/28/2016 15:34 Chlorobenzene ND 0.0050 1 01/28/2016 15:34 Chlorodethane ND 0.0050 1 01/28/2016 15:34 Chloromethane ND 0.0050 1 01/28/2016 15:34 Chloromethane ND 0.0050 1 01/28/2016 15:34 Chlorotoluene ND 0.0050 1 01/28/2016 15:34 Chlorotoluene ND 0.0050 1 01/28/2016 15:34 Chlorotoluene ND 0.0050 1 01/28/2016 15:34 Dibromochloromethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-3-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibrhomo-4-thane (EDB) ND 0.0040	Bromobenzene	ND		0.0050	1	01/28/2016 15:34
Bromoform ND 0.0050 1 01/28/2016 15:34 Bromomethane ND 0.0050 1 01/28/2016 15:34 Carbon Tetrachloride ND 0.0050 1 01/28/2016 15:34 Chlorobenzene ND 0.0050 1 01/28/2016 15:34 Chlorobenzene ND 0.0050 1 01/28/2016 15:34 Chlorodhane ND 0.0050 1 01/28/2016 15:34 Chlorodhane ND 0.0050 1 01/28/2016 15:34 Chlorodhane ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 1,2-Dibromoethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0040 1	Bromochloromethane	ND		0.0050	1	01/28/2016 15:34
Bromomethane ND 0.0050 1 01/28/2016 15:34 Carbon Tetrachloride ND 0.0050 1 01/28/2016 15:34 Chloroebracene ND 0.0050 1 01/28/2016 15:34 Chloroethane ND 0.0050 1 01/28/2016 15:34 Chloroform ND 0.0050 1 01/28/2016 15:34 Chloromethane ND 0.0050 1 01/28/2016 15:34 Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 1,2-Dibriomedhane ND 0.0050 1 01/28/2016 15:34 1,2-Dibriorobenzene ND 0.0050 1	Bromodichloromethane	ND		0.0050	1	01/28/2016 15:34
Carbon Tetrachloride ND 0.0050 1 01/28/2016 15:34 Chlorobenzene ND 0.0050 1 01/28/2016 15:34 Chlorotethane ND 0.0050 1 01/28/2016 15:34 Chloroform ND 0.0050 1 01/28/2016 15:34 Chloromethane ND 0.0050 1 01/28/2016 15:34 Chlorotoluene ND 0.0050 1 01/28/2016 15:34 Chlorotoluene ND 0.0050 1 01/28/2016 15:34 Dibromochloromethane ND 0.0050 1 01/28/2016 15:34 Dibromochloromethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0040 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0040 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 <td>Bromoform</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td>01/28/2016 15:34</td>	Bromoform	ND		0.0050	1	01/28/2016 15:34
Chlorobenzene ND 0.0050 1 01/28/2016 15:34 Chloroethane ND 0.0050 1 01/28/2016 15:34 Chloroform ND 0.0050 1 01/28/2016 15:34 Chloromethane ND 0.0050 1 01/28/2016 15:34 2-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chloromothoromethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-3-chloropropane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-4-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0040 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND	Bromomethane	ND		0.0050	1	01/28/2016 15:34
Chloroethane ND 0.0050 1 01/28/2016 15:34 Chloroform ND 0.0050 1 01/28/2016 15:34 Chloromethane ND 0.0050 1 01/28/2016 15:34 2-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-schloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromo-schloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,1-Dichlorobenzene ND 0.005	Carbon Tetrachloride	ND		0.0050	1	01/28/2016 15:34
Chloroform ND 0.0050 1 01/28/2016 15:34 Chloromethane ND 0.0050 1 01/28/2016 15:34 2-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 Dibromochloromethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromos-3-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0040 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorotehrane ND 0.0050 1 01/28/2016 15:34 1,1-Dichlorotehrane ND 0.0050 1 01/28/2016 15:34 1,1-Dichlorotehrane ND 0.0050 1 01/28/2016 15:34 1,1-Dichlorotehrane ND <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td>01/28/2016 15:34</td>	Chlorobenzene	ND		0.0050	1	01/28/2016 15:34
Chloromethane ND 0.0050 1 01/28/2016 15:34 2-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluromethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-3-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromo-shane (EDB) ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane (1,2-DCA) ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane (1,2-DCA) ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorop	Chloroethane	ND		0.0050	1	01/28/2016 15:34
2-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-3-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromo-thane (EDB) ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0050 1 01/28/2016 15:34 1,2-Dibromoethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane <td< td=""><td>Chloroform</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td>01/28/2016 15:34</td></td<>	Chloroform	ND		0.0050	1	01/28/2016 15:34
4-Chlorotoluene ND 0.0050 1 01/28/2016 15:34 Dibromochloromethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-3-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroprop	Chloromethane	ND		0.0050	1	01/28/2016 15:34
Dibromochloromethane ND 0.0050 1 01/28/2016 15:34 1,2-Dibromo-3-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0040 1 01/28/2016 15:34 Dibromomethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 trans-1,3	2-Chlorotoluene	ND		0.0050	1	01/28/2016 15:34
1,2-Dibromo-3-chloropropane ND 0.0040 1 01/28/2016 15:34 1,2-Dibromoethane (EDB) ND 0.0040 1 01/28/2016 15:34 Dibromomethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,2-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloropropa	4-Chlorotoluene	ND		0.0050	1	01/28/2016 15:34
1,2-Dibromoethane (EDB) ND 0.0040 1 01/28/2016 15:34 Dibromomethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropane	Dibromochloromethane	ND		0.0050	1	01/28/2016 15:34
Dibromomethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 4,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 4 (sis-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 4 (sis-1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane </td <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> <td></td> <td>0.0040</td> <td>1</td> <td>01/28/2016 15:34</td>	1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/28/2016 15:34
1,2-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 Dichlorodifluoromethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,3-Dichloropropane	1,2-Dibromoethane (EDB)	ND		0.0040	1	01/28/2016 15:34
1,3-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 Dichlorodifluoromethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichlorop	Dibromomethane	ND		0.0050	1	01/28/2016 15:34
1,4-Dichlorobenzene ND 0.0050 1 01/28/2016 15:34 Dichlorodifluoromethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 cis-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene	1,2-Dichlorobenzene	ND		0.0050	1	01/28/2016 15:34
Dichlorodifluoromethane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 cis-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachloroeth	1,3-Dichlorobenzene	ND		0.0050	1	01/28/2016 15:34
1,1-Dichloroethane ND 0.0050 1 01/28/2016 15:34 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 cis-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td>01/28/2016 15:34</td>	1,4-Dichlorobenzene	ND		0.0050	1	01/28/2016 15:34
1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 01/28/2016 15:34 1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 cis-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroet	Dichlorodifluoromethane	ND		0.0050	1	01/28/2016 15:34
1,1-Dichloroethene ND 0.0050 1 01/28/2016 15:34 cis-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane	1,1-Dichloroethane	ND		0.0050	1	01/28/2016 15:34
cis-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/28/2016 15:34
trans-1,2-Dichloroethene ND 0.0050 1 01/28/2016 15:34 1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	1,1-Dichloroethene	ND		0.0050	1	01/28/2016 15:34
1,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	cis-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 15:34
1,3-Dichloropropane ND 0.0050 1 01/28/2016 15:34 2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	trans-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 15:34
2,2-Dichloropropane ND 0.0050 1 01/28/2016 15:34 1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	1,2-Dichloropropane	ND		0.0050	1	01/28/2016 15:34
1,1-Dichloropropene ND 0.0050 1 01/28/2016 15:34 cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	1,3-Dichloropropane	ND		0.0050	1	01/28/2016 15:34
cis-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	2,2-Dichloropropane	ND		0.0050	1	01/28/2016 15:34
trans-1,3-Dichloropropene ND 0.0050 1 01/28/2016 15:34 Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	1,1-Dichloropropene	ND		0.0050	1	01/28/2016 15:34
Freon 113 ND 0.0050 1 01/28/2016 15:34 Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	cis-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 15:34
Hexachlorobutadiene ND 0.0050 1 01/28/2016 15:34 Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	trans-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 15:34
Hexachloroethane ND 0.0050 1 01/28/2016 15:34 Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	Freon 113	ND		0.0050	1	01/28/2016 15:34
Methylene chloride ND 0.0050 1 01/28/2016 15:34 1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	Hexachlorobutadiene	ND		0.0050	1	01/28/2016 15:34
1,1,1,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	Hexachloroethane	ND		0.0050	1	01/28/2016 15:34
	Methylene chloride	ND		0.0050	1	01/28/2016 15:34
1,1,2,2-Tetrachloroethane ND 0.0050 1 01/28/2016 15:34	1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 15:34
	1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 15:34

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-1-7'	1601A40-001A	Soil	01/27/201	6 15:30 GC16	115915
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/28/2016 15:34
1,2,3-Trichlorobenzene	ND		0.0050	1	01/28/2016 15:34
1,2,4-Trichlorobenzene	ND		0.0050	1	01/28/2016 15:34
1,1,1-Trichloroethane	ND		0.0050	1	01/28/2016 15:34
1,1,2-Trichloroethane	ND		0.0050	1	01/28/2016 15:34
Trichloroethene	ND		0.0050	1	01/28/2016 15:34
Trichlorofluoromethane	ND		0.0050	1	01/28/2016 15:34
1,2,3-Trichloropropane	ND		0.0050	1	01/28/2016 15:34
Vinyl Chloride	ND		0.0050	1	01/28/2016 15:34
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	88		70-130		01/28/2016 15:34
Toluene-d8	92		70-130		01/28/2016 15:34
4-BFB	93		70-130		01/28/2016 15:34
Benzene-d6	90		60-140		01/28/2016 15:34
Ethylbenzene-d10	96		60-140		01/28/2016 15:34
1,2-DCB-d4	72		60-140		01/28/2016 15:34
Analyst(s): AK					

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Collected Instrument		Batch ID
PB-2-7'	1601A40-002A	Soil	01/27/201	6 14:55 GC16	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/28/2016 16:15
Bromochloromethane	ND		0.0050	1	01/28/2016 16:15
Bromodichloromethane	ND		0.0050	1	01/28/2016 16:15
Bromoform	ND		0.0050	1	01/28/2016 16:15
Bromomethane	ND		0.0050	1	01/28/2016 16:15
Carbon Tetrachloride	ND		0.0050	1	01/28/2016 16:15
Chlorobenzene	ND		0.0050	1	01/28/2016 16:15
Chloroethane	ND		0.0050	1	01/28/2016 16:15
Chloroform	ND		0.0050	1	01/28/2016 16:15
Chloromethane	ND		0.0050	1	01/28/2016 16:15
2-Chlorotoluene	ND		0.0050	1	01/28/2016 16:15
4-Chlorotoluene	ND		0.0050	1	01/28/2016 16:15
Dibromochloromethane	ND		0.0050	1	01/28/2016 16:15
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/28/2016 16:15
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/28/2016 16:15
Dibromomethane	ND		0.0050	1	01/28/2016 16:15
1,2-Dichlorobenzene	ND		0.0050	1	01/28/2016 16:15
1,3-Dichlorobenzene	ND		0.0050	1	01/28/2016 16:15
1,4-Dichlorobenzene	ND		0.0050	1	01/28/2016 16:15
Dichlorodifluoromethane	ND		0.0050	1	01/28/2016 16:15
1,1-Dichloroethane	ND		0.0050	1	01/28/2016 16:15
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/28/2016 16:15
1,1-Dichloroethene	ND		0.0050	1	01/28/2016 16:15
cis-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 16:15
trans-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 16:15
1,2-Dichloropropane	ND		0.0050	1	01/28/2016 16:15
1,3-Dichloropropane	ND		0.0050	1	01/28/2016 16:15
2,2-Dichloropropane	ND		0.0050	1	01/28/2016 16:15
1,1-Dichloropropene	ND		0.0050	1	01/28/2016 16:15
cis-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 16:15
trans-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 16:15
Freon 113	ND		0.0050	1	01/28/2016 16:15
Hexachlorobutadiene	ND		0.0050	1	01/28/2016 16:15
Hexachloroethane	ND		0.0050	1	01/28/2016 16:15
Methylene chloride	ND		0.0050	1	01/28/2016 16:15
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 16:15
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 16:15

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-2-7'	1601A40-002A	Soil	01/27/201	6 14:55 GC16	115915
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/28/2016 16:15
1,2,3-Trichlorobenzene	ND		0.0050	1	01/28/2016 16:15
1,2,4-Trichlorobenzene	ND		0.0050	1	01/28/2016 16:15
1,1,1-Trichloroethane	ND		0.0050	1	01/28/2016 16:15
1,1,2-Trichloroethane	ND		0.0050	1	01/28/2016 16:15
Trichloroethene	ND		0.0050	1	01/28/2016 16:15
Trichlorofluoromethane	ND		0.0050	1	01/28/2016 16:15
1,2,3-Trichloropropane	ND		0.0050	1	01/28/2016 16:15
Vinyl Chloride	ND		0.0050	1	01/28/2016 16:15
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	87		70-130		01/28/2016 16:15
Toluene-d8	90		70-130		01/28/2016 16:15
4-BFB	89		70-130		01/28/2016 16:15
Benzene-d6	89		60-140		01/28/2016 16:15
Ethylbenzene-d10	94		60-140		01/28/2016 16:15
1,2-DCB-d4	69		60-140		01/28/2016 16:15
Analyst(s): AK					

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-3-8'	1601A40-003A	Soil	01/27/201	16 13:50 GC16	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/28/2016 16:56
Bromochloromethane	ND		0.0050	1	01/28/2016 16:56
Bromodichloromethane	ND		0.0050	1	01/28/2016 16:56
Bromoform	ND		0.0050	1	01/28/2016 16:56
Bromomethane	ND		0.0050	1	01/28/2016 16:56
Carbon Tetrachloride	ND		0.0050	1	01/28/2016 16:56
Chlorobenzene	ND		0.0050	1	01/28/2016 16:56
Chloroethane	ND		0.0050	1	01/28/2016 16:56
Chloroform	ND		0.0050	1	01/28/2016 16:56
Chloromethane	ND		0.0050	1	01/28/2016 16:56
2-Chlorotoluene	ND		0.0050	1	01/28/2016 16:56
4-Chlorotoluene	ND		0.0050	1	01/28/2016 16:56
Dibromochloromethane	ND		0.0050	1	01/28/2016 16:56
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/28/2016 16:56
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/28/2016 16:56
Dibromomethane	ND		0.0050	1	01/28/2016 16:56
1,2-Dichlorobenzene	ND		0.0050	1	01/28/2016 16:56
1,3-Dichlorobenzene	ND		0.0050	1	01/28/2016 16:56
1,4-Dichlorobenzene	ND		0.0050	1	01/28/2016 16:56
Dichlorodifluoromethane	ND		0.0050	1	01/28/2016 16:56
1,1-Dichloroethane	ND		0.0050	1	01/28/2016 16:56
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/28/2016 16:56
1,1-Dichloroethene	ND		0.0050	1	01/28/2016 16:56
cis-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 16:56
trans-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 16:56
1,2-Dichloropropane	ND		0.0050	1	01/28/2016 16:56
1,3-Dichloropropane	ND		0.0050	1	01/28/2016 16:56
2,2-Dichloropropane	ND		0.0050	1	01/28/2016 16:56
1,1-Dichloropropene	ND		0.0050	1	01/28/2016 16:56
cis-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 16:56
trans-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 16:56
Freon 113	ND		0.0050	1	01/28/2016 16:56
Hexachlorobutadiene	ND		0.0050	1	01/28/2016 16:56
Hexachloroethane	ND		0.0050	1	01/28/2016 16:56
Methylene chloride	ND		0.0050	1	01/28/2016 16:56
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 16:56
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 16:56

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-3-8'	1601A40-003A	Soil	01/27/201	16 13:50 GC16	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/28/2016 16:56
1,2,3-Trichlorobenzene	ND		0.0050	1	01/28/2016 16:56
1,2,4-Trichlorobenzene	ND		0.0050	1	01/28/2016 16:56
1,1,1-Trichloroethane	ND		0.0050	1	01/28/2016 16:56
1,1,2-Trichloroethane	ND		0.0050	1	01/28/2016 16:56
Trichloroethene	ND		0.0050	1	01/28/2016 16:56
Trichlorofluoromethane	ND		0.0050	1	01/28/2016 16:56
1,2,3-Trichloropropane	ND		0.0050	1	01/28/2016 16:56
Vinyl Chloride	ND		0.0050	1	01/28/2016 16:56
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	88		70-130		01/28/2016 16:56
Toluene-d8	93		70-130		01/28/2016 16:56
4-BFB	88		70-130		01/28/2016 16:56
Benzene-d6	98		60-140		01/28/2016 16:56
Ethylbenzene-d10	99		60-140		01/28/2016 16:56
1,2-DCB-d4	76		60-140		01/28/2016 16:56

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Col	lected Instrument	Batch ID
PB-4-7'	1601A40-004A	Soil	01/27/2010	6 13:15 GC16	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/28/2016 17:37
Bromochloromethane	ND		0.0050	1	01/28/2016 17:37
Bromodichloromethane	ND		0.0050	1	01/28/2016 17:37
Bromoform	ND		0.0050	1	01/28/2016 17:37
Bromomethane	ND		0.0050	1	01/28/2016 17:37
Carbon Tetrachloride	ND		0.0050	1	01/28/2016 17:37
Chlorobenzene	ND		0.0050	1	01/28/2016 17:37
Chloroethane	ND		0.0050	1	01/28/2016 17:37
Chloroform	ND		0.0050	1	01/28/2016 17:37
Chloromethane	ND		0.0050	1	01/28/2016 17:37
2-Chlorotoluene	ND		0.0050	1	01/28/2016 17:37
4-Chlorotoluene	ND		0.0050	1	01/28/2016 17:37
Dibromochloromethane	ND		0.0050	1	01/28/2016 17:37
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/28/2016 17:37
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/28/2016 17:37
Dibromomethane	ND		0.0050	1	01/28/2016 17:37
1,2-Dichlorobenzene	ND		0.0050	1	01/28/2016 17:37
1,3-Dichlorobenzene	ND		0.0050	1	01/28/2016 17:37
1,4-Dichlorobenzene	ND		0.0050	1	01/28/2016 17:37
Dichlorodifluoromethane	ND		0.0050	1	01/28/2016 17:37
1,1-Dichloroethane	ND		0.0050	1	01/28/2016 17:37
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/28/2016 17:37
1,1-Dichloroethene	ND		0.0050	1	01/28/2016 17:37
cis-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 17:37
trans-1,2-Dichloroethene	ND		0.0050	1	01/28/2016 17:37
1,2-Dichloropropane	ND		0.0050	1	01/28/2016 17:37
1,3-Dichloropropane	ND		0.0050	1	01/28/2016 17:37
2,2-Dichloropropane	ND		0.0050	1	01/28/2016 17:37
1,1-Dichloropropene	ND		0.0050	1	01/28/2016 17:37
cis-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 17:37
trans-1,3-Dichloropropene	ND		0.0050	1	01/28/2016 17:37
Freon 113	ND		0.0050	1	01/28/2016 17:37
Hexachlorobutadiene	ND		0.0050	1	01/28/2016 17:37
Hexachloroethane	ND		0.0050	1	01/28/2016 17:37
Methylene chloride	ND		0.0050	1	01/28/2016 17:37
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 17:37
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/28/2016 17:37

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-4-7'	1601A40-004A Soil	01/27/2016 13:15 GC16	115915
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Tetrachloroethene	ND	0.0050 1	01/28/2016 17:37
1,2,3-Trichlorobenzene	ND	0.0050 1	01/28/2016 17:37
1,2,4-Trichlorobenzene	ND	0.0050 1	01/28/2016 17:37
1,1,1-Trichloroethane	ND	0.0050 1	01/28/2016 17:37
1,1,2-Trichloroethane	ND	0.0050 1	01/28/2016 17:37
Trichloroethene	ND	0.0050 1	01/28/2016 17:37
Trichlorofluoromethane	ND	0.0050 1	01/28/2016 17:37
1,2,3-Trichloropropane	ND	0.0050 1	01/28/2016 17:37
Vinyl Chloride	ND	0.0050 1	01/28/2016 17:37
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	88	70-130	01/28/2016 17:37
Toluene-d8	89	70-130	01/28/2016 17:37
4-BFB	95	70-130	01/28/2016 17:37
Benzene-d6	98	60-140	01/28/2016 17:37
Ethylbenzene-d10	102	60-140	01/28/2016 17:37
1,2-DCB-d4	76	60-140	01/28/2016 17:37

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW5030B

Date Prepared: 1/27/16 **Analytical Method:** SW8021B/8015Bm

Project: 4901 Broadway Unit: mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-1-7'	1601A40-001A Soil	01/27/2016 15:30 GC7	115921
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/27/2016 23:07
MTBE		0.050 1	01/27/2016 23:07
Benzene		0.0050 1	01/27/2016 23:07
Toluene		0.0050 1	01/27/2016 23:07
Ethylbenzene		0.0050 1	01/27/2016 23:07
Xylenes		0.015 1	01/27/2016 23:07
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>	
2-Fluorotoluene	91	70-130	01/27/2016 23:07
Analyst(s): IA			

Analyst(s): IA

Client ID	Lab ID Matri	ix Date Collected Instrument	Batch ID
PB-2-7'	1601A40-002A Soil	01/27/2016 14:55 GC7	115921
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/27/2016 23:37
MTBE		0.050 1	01/27/2016 23:37
Benzene		0.0050 1	01/27/2016 23:37
Toluene		0.0050 1	01/27/2016 23:37
Ethylbenzene		0.0050 1	01/27/2016 23:37
Xylenes		0.015 1	01/27/2016 23:37
Surrogates	REC (%)	<u>Limits</u>	
2-Fluorotoluene	90	70-130	01/27/2016 23:37
Analyst(s): IA			

Analytical Report

Client: Pangea Environmental Svcs., Inc. WorkOrder: 1601A40

Date Received: 1/27/16 19:59 Extraction Method: SW5030B

Date Prepared: 1/27/16 **Analytical Method:** SW8021B/8015Bm

Project: 4901 Broadway **Unit:** mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Mat	rix Date Collected Instrument	Batch ID
PB-3-8'	1601A40-003A Soil	01/27/2016 13:50 GC7	115921
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/28/2016 00:07
MTBE		0.050 1	01/28/2016 00:07
Benzene		0.0050 1	01/28/2016 00:07
Toluene		0.0050 1	01/28/2016 00:07
Ethylbenzene		0.0050 1	01/28/2016 00:07
Xylenes		0.015 1	01/28/2016 00:07
<u>Surrogates</u>	REC (%)	<u>Limits</u>	
2-Fluorotoluene	97	70-130	01/28/2016 00:07
Analyst(s): IA			

Client ID Lab ID Matrix **Date Collected Instrument Batch ID** PB-4-7' 1601A40-004A 01/27/2016 13:15 GC7 115921 Soil **Analytes** Result <u>RL</u> <u>DF</u> **Date Analyzed** 1.0 TPH(g) 20 1 01/28/2016 13:49 MTBE 0.050 01/28/2016 13:49 1 01/28/2016 13:49

Benzene 0.0050 1 0.0050 Toluene 1 01/28/2016 13:49 0.0050 1 01/28/2016 13:49 Ethylbenzene **Xylenes** 0.015 1 01/28/2016 13:49 ---

2-Fluorotoluene 89 70-130 01/28/2016 13:49

Limits

Analyst(s): IA Analystical Comments: d7

REC (%)

Surrogates

1601A40

Analytical Report

Client: WorkOrder: Pangea Environmental Svcs., Inc. **Extraction Method: SW3550B Date Received:** 1/27/16 19:59

Date Prepared: 1/27/16 **Analytical Method:** SW8015B Unit: **Project:** 4901 Broadway mg/Kg

Total Extractable P	Petroleum Hydrocarbons	w/out SG Clean-Un
I Utal Extractable 1	cii dicuiii 11 y ui dcai bolis	m/out by Cican-op

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-1-7'	1601A40-001A	Soil	01/27/20	16 15:30 GC11B	115920
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	01/28/2016 01:58
TPH-Motor Oil (C18-C36)	11		5.0	1	01/28/2016 01:58
Surrogates	REC (%)		<u>Limits</u>		
C9	104		70-130		01/28/2016 01:58
* 1 · · · · · · · · · · · · · · · · · ·					

Analyst(s): TK Analytical Comments: e7

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-2-7'	1601A40-002A \$	Soil	01/27/20	016 14:55 GC6A	115920
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	01/28/2016 11:37
TPH-Motor Oil (C18-C36)	ND		5.0	1	01/28/2016 11:37
Surrogates	REC (%)		<u>Limits</u>		
C9	94		70-130		01/28/2016 11:37
Analyst(s): TK					

Client ID Lab ID Matrix **Date Collected Instrument Batch ID** PB-3-8' 1601A40-003A Soil 01/27/2016 13:50 GC6A 115920 <u>RL</u> DF **Analytes** Result **Date Analyzed** TPH-Diesel (C10-C23) ND 01/28/2016 14:01 1.0 1

TPH-Motor Oil (C18-C36) ND 01/28/2016 14:01 5.0 **REC (%)** Surrogates **Limits** C9 94 70-130 01/28/2016 14:01 Analyst(s): TK

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Received:1/27/16 19:59Extraction Method:SW3550BDate Prepared:1/27/16Analytical Method:SW8015BProject:4901 BroadwayUnit:mg/Kg

	Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up											
Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID							
PB-4-7'	1601A40-004A	Soil	01/27/20	016 13:15 GC2B	115920							
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed							
TPH-Diesel (C10-C23)	35		1.0	1	01/28/2016 02:22							
TPH-Motor Oil (C18-C36)	160		5.0	1	01/28/2016 02:22							
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>									
C9	96		70-130		01/28/2016 02:22							
Analyst(s): TK			Analytical Com	ments: e7,e8								

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Prepared:1/27/16BatchID:115915Date Analyzed:1/28/16Extraction Method:SW5030BInstrument:GC10Analytical Method:SW8260B

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-115915

1601A31-003BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0456	0.0050	0.050	-	91	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0399	0.0040	0.050	-	80	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0410	0.0040	0.050	-	82	58-135
1,1-Dichloroethene	ND	0.0417	0.0050	0.050	-	83	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
Methylene chloride	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND		0.0050	_	_	_	_

Quality Control Report

Client: Pangea Environmental Svcs., Inc. WorkOrder: 1601A40 **Date Prepared:** 1/27/16 **BatchID:** 115915 Date Analyzed: 1/28/16 **Extraction Method: SW5030B Instrument:** GC10 Analytical Method: SW8260B **Matrix:** Soil Unit:

Project: 4901 Broadway Sample ID: MB/LCS-115915

1601A31-003BMS/MSD

mg/Kg

QC Summary Report for SW8260B Analyte MB LCS RL **SPK** MB SS **LCS** LCS %REC %REC Result Result Val Limits ND 0.0050 1,1,2,2-Tetrachloroethane Tetrachloroethene ND 0.0050 1,2,3-Trichlorobenzene ND 0.0050 _ -1,2,4-Trichlorobenzene ND 0.0050 1,1,1-Trichloroethane ND 0.0050 1.1.2-Trichloroethane ND 0.0050 Trichloroethene ND 0.0470 0.0050 0.050 _ 94 72-132 Trichlorofluoromethane ND 0.0050 1,2,3-Trichloropropane ND 0.0050 Vinyl Chloride ND 0.0050 **Surrogate Recovery** Dibromofluoromethane 0.124 0.131 0.12 99 105 70-130 Toluene-d8 0.135 0.12 108 70-130 0.133 106 4-BFB 0.0144 0.0154 0.012 115 124 70-130 Benzene-d6 0.0980 0.110 0.10 98 110 60-140 Ethylbenzene-d10 0.110 0.121 0.10 110 121 60-140 1,2-DCB-d4 0.0956 0.0981 0.10 98 96 60-140

4901 Broadway

Project:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Prepared:1/27/16BatchID:115915Date Analyzed:1/28/16Extraction Method:SW5030BInstrument:GC10Analytical Method:SW8260B

Matrix: Soil Unit: mg/Kg

Sample ID: MB/LCS-115915

1601A31-003BMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Chlorobenzene	0.0390	0.0416	0.050	ND	78	83	70-130	6.26	20
1,2-Dibromoethane (EDB)	0.0347	0.0378	0.050	ND	69,F1	76	70-130	8.57	20
1,2-Dichloroethane (1,2-DCA)	0.0359	0.0381	0.050	ND	72	76	70-130	5.84	20
1,1-Dichloroethene	0.0467	0.0408	0.050	ND	93	82	70-130	13.5	20
Trichloroethene	0.0774	0.0796	0.050	ND	155,F1	159,F1	70-130	2.79	20
Surrogate Recovery									
Dibromofluoromethane	0.132	0.132	0.12		105	106	70-130	0.323	20
Toluene-d8	0.130	0.131	0.12		104	104	70-130	0	20
4-BFB	0.0154	0.0156	0.012		123	124	70-130	0.966	20
Benzene-d6	0.0978	0.0998	0.10		98	100	60-140	2.01	20
Ethylbenzene-d10	0.106	0.108	0.10		106	108	60-140	1.59	20
1,2-DCB-d4	0.0891	0.0905	0.10		89	90	60-140	1.57	20

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Prepared:1/27/16BatchID:115921Date Analyzed:1/28/16Extraction Method:SW5030B

Instrument: GC19 Analytical Method: SW8021B/8015Bm

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-115921

1601A41-003AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result			MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.580	0.40	0.60	-	97	70-130
MTBE	ND	0.0782	0.050	0.10	-	78	70-130
Benzene	ND	0.0961	0.0050	0.10	-	96	70-130
Toluene	ND	0.104	0.0050	0.10	-	104	70-130
Ethylbenzene	ND	0.110	0.0050	0.10	-	110	70-130
Xylenes	ND	0.346	0.015	0.30	-	115	70-130

Surrogate Recovery

2-Fluorotoluene 0.115 0.122 0.10 115 122 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.511	0.531	0.60	ND	85	89	70-130	3.80	20
MTBE	0.0745	0.0717	0.10	ND	75	72	70-130	3.92	20
Benzene	0.0879	0.0808	0.10	ND	88	81	70-130	8.45	20
Toluene	0.0955	0.0887	0.10	ND	95	89	70-130	7.32	20
Ethylbenzene	0.102	0.0947	0.10	ND	102	95	70-130	7.83	20
Xylenes	0.323	0.298	0.30	ND	108	99	70-130	7.98	20
Surrogate Recovery									
2-Fluorotoluene	0.112	0.101	0.10		112	101	70-130	10.3	20

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A40Date Prepared:1/27/16BatchID:115920Date Analyzed:1/28/16Extraction Method:SW3550BInstrument:GC2BAnalytical Method:SW8015B

Matrix: Soil Unit: mg/Kg

24.2

24.0

Project: 4901 Broadway **Sample ID:** MB/LCS-115920

1601A41-010AMS/MSD

QC Report for SW8015B w/out SG Clean-Up Analyte MB LCS RL **SPK** MB SS LCS **LCS** Val %REC %REC Result Result Limits TPH-Diesel (C10-C23) ND 44.9 1.0 40 112 70-130 TPH-Motor Oil (C18-C36) ND 5.0 **Surrogate Recovery** C9 24.1 24.3 25 96 97 70-130 MS MSD **SPK SPKRef** MS MSD MS/MSD **RPD RPD** Analyte Result %REC %REC Result Val Val Limits Limit TPH-Diesel (C10-C23) 47.1 45.8 40 ND 70-130 2.71 30 116 112

25

97

96

70-130

1.09

30

Surrogate Recovery

C9

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 1601A40 ClientCode: PEO

	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bill	to:		Red	quested TAT:	3 days;
Bob Clark-Riddell Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-3709	cc/3rd Party: PO: ProjectNo:	BRiddell@pangea	aenv.com	!	Bob Clark-Ridd Pangea Enviror 1710 Franklin S Oakland, CA 94	nmental Svcs., Street, Ste. 200	Da	te Received: te Logged:	01/27/2016 01/27/2016

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1601A40-001	PB-1-7'	Soil	1/27/2016 15:30		Α	Α	А									
1601A40-002	PB-2-7'	Soil	1/27/2016 14:55		Α	Α	Α									
1601A40-003	PB-3-8'	Soil	1/27/2016 13:50		Α	Α	Α									
1601A40-004	PB-4-7'	Soil	1/27/2016 13:15		Α	Α	Α									

Test Legend:

5 7 0	
9 10 11 12	

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Briana Cutino

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PANGEA ENVIRONMENTAL SVCS., INC.	QC Level: LEVEL 2	Work Order: 1601A40
Project:	4901 Broadway	Client Contact: Bob Clark-Riddell	Date Logged: 1/27/2016

Comments: Contact's Email: BRiddell@pangeaenv.com

		WaterTrax	WriteOn	EDF	Excel	FaxEmail	HardC	opyThirdPar	у	J-flag
Lab ID	Client ID	Matrix	Test Name		Containers /Composites		De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1601A40-001A	PB-1-7'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 15:30	3 days	
			SW8260B (HV	OCs List)					3 days	
1601A40-002A	PB-2-7'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 14:55	3 days	
			SW8260B (HV	OCs List)					3 days	
1601A40-003A	PB-3-8'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 13:50	3 days	
			SW8260B (HV	OCs List)					3 days	
1601A40-004A	PB-4-7'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 13:15	3 days	
			SW8260B (HV	OCs List)					3 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Macamphell Analytical Inc

CHAIN	OE	CIICT	NO	DEC	OPD
CHAIN	\cup	CU31	ODI	KLC	

	MCC	am	ppe	115	A	nc	VIK	TIC	C	11,	In	C	١,	M	W				<u> </u>	• •		_		_	-	. –					<u> </u>				- 1
	1534 Wi	llow Pa	· Iss Rd /	Pitt	shur	a C	a 9	456	5-17	701	١	10	101	1,	1	TU	RN	ARC	UN	DT	IME	e RU	JSH]	I DA	Y 🔲	2	DAY		3 D/	Y	1	5 DA	Υ	ם
	www.mcc	campb	ell.com	/ r	nain	@m	cca	mp	bell	.cor	n \	W	,				7 6		CA											ouIS [10000	10 DA		
	Telepho	one: (87	77) 252-	926	2 / F	ax:	925	25	2-92	269					L			SERVICE SERVIC	-																-
																Eff	luent	t Sam	ple I	Requ	iring	"J"	flag		UST	Clea	n Up	Fun	d Pi	roject	Ц;	Clair	n#		-
Report To: 800						l To:	Po	ina	Pa										ā					Anal	lysis	Req	uest	i v							
Company: 80	ingen	Env	. 51	15.																															
Tele: (510) 8	231. 24	-0	-		IF !	Mail.	. h.		1.1	10			- A			3E		20			ener									s					
Project #:	30-37	00			Pro	oiect	Nan	ie:	66	11 60	Car	36	at	r\v.	Co	MIZ		4/55	8.1)		Cong		des)			(\$1)				meta					29
Project Location	: 4901	Broa	Lucy				se O		#							8015)		(166	ıs (41	ides)	ors/	(s	rbici		(s)	/ PN/	水水水	*		lved					
Sampler Signatu		1	3											V		(8021/8		rease	rbor	estic	rock	icide	л Не	OCs	voc	AHS	(070)	020)*		Oisso			-		
		SAME	PLING				M	ATI	RIX					SER'		ıs (80	(Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM/8310 (PAHs/PNAs)	CAM 17 Metals (200.8 / 6020)***	LUFT 5 Metals (200.8 / 6020)***)***	Lab to Filter sample for Dissolved metals analysis					
	I asation/			S	L		-e							5		as Gas	(8015	n Oil	n Hy	8081	PCE	1 (NF	1 (Ac	4 / 82	5 / 82	1/83	s (20)	(200	6020	mple	SCan		N)		
SAMPLE ID	Location/ Field Point			Containers	Ground Water	ater	Drinking Water	ь		a =						ТРН	TPH as Diesel (8015)	oleur	oleur	/ 809	8082	814	815	7 62	/ 62	SIN	[etal	Ietals	/8.0	ter sa	SC	0			
	Name	Date	Time	onta	lnd \	Waste Water	king	Sea Water			ag	۱.		3	L.	જ	as D	Petr	Petr	505/	/ 809	507	515/	524.2	525.2	8270	117	T 5 N	ls (20	to Fil	H.O.	801	20		
)#	Grou	Was	Drin	Sea	Soil	Air	Sludge	Other	НСІ	HNO,	Other	BTEX	TPH	Tota E/B8	Tota	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAN	LUF	Metals (200.8 / 6020)***	Lab to F analysis	1	600		- 1	
PR-1-7'	1	127/16	1530	1			\dashv	-	V			Н			\vdash																×	X	\dashv	\dashv	\vdash
PB-1-7' PB-2-7' PB-3-8' PB-4-7'	1		1455	1					X		-1100	H											-		-						X	X		7	
PB-3-81	1	127116		1			\neg		x			H								-											X	×		\neg	
PB-4-71	jı		1315	t					V			П																			×	×			
•		119										П			10									-		-									
																								20											
		-									4																								
													Trace)																		_				
												11				,, -	132										LA.			-					
																						=	T A				1	Ų,			This				
**MAI clients MUST disc handling by MAI staff. I																															glove	d, op	en air,	samp	ple
*** If metals are reques	ted for water s	samples an	nd the wate	r type	ls not	speci	fled or	n the	chain	of cu	stody,	the	n MAI	will c	lefaul	t to m	etals	by E20	0.8.	17%													9	F	
Relinquished By:	1 1 1 1	Date:	090100100900	- 1	Rece	ived I	Зуе)						CE/t°		NDIT	TION	61				95			(COM	MEN'	TS:			(8	<u>0</u>		
by	1/0	7//6	1930	_					2				>	H	IEAL	SPA	CE A	ABSE		_	_												i		
Relinquished By:		l Date:	Time:	i	Rece	ived	sv:							į A	PPR	OPR	IATE	TED I	TAI		s														
														P	RES	ERV	ED II	N LAI	3	_															
Relinquished By:		Date:	Time:		Rece	ived I	By:							,	DEC	EDV	ATIC		AS	0&0			LS	OT	HER	I	IAZA	RDC	US:						
														1	KES	ERV	X 1 1 C)N			p	H<2_													3

Sample Receipt Checklist

Client Name:	Pangea Environmental Svcs., Inc.			Date and Time Received:	1/27/2016 19:30
Project Name: WorkOrder №:	4901 Broadway 1601A40 Matrix: <u>Soil</u>			Date Logged: Received by:	1/27/2016 Jena Alfaro
Carrier:	Client Drop-In			Logged by:	Briana Cutino
	Chain of C	ustody	<u>/ (COC) I</u>	nformation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	<u>Sampl</u>	e Rece	eipt Infor	mation	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗸
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Tir	me (HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp:		NA 🗸
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗆	NA 🗸
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗆	NA 🗸
Samples Receive	ed on Ice?	Yes		No 🗹	
UCMR3 Samples	:				
	tested and acceptable upon receipt for EPA 522?	Yes		No 🗆	NA 🗸
Free Chlorine t 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗆	NA 🗹
* NOTE: If the "N	lo" box is checked, see comments below.				
Comments:					

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

Amended: 02/03/2016 WorkOrder: 1601A41

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Bob Clark-Riddell **Project Contact:**

Project P.O.:

Project Name: 4901 Broadway

Project Received: 01/27/2016

Analytical Report reviewed & approved for release on 02/01/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 4901 Broadway

WorkOrder: 1601A41

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

d7 strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

e2 diesel range compounds are significant; no recognizable pattern

e7 oil range compounds are significant e8 kerosene/kerosene range/jet fuel range

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 4901 Broadway

WorkOrder: 1601A41

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-1-1'	1601A41-001A	Soil	01/27/201	16 10:40 GC18	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/29/2016 14:14
Bromochloromethane	ND		0.0050	1	01/29/2016 14:14
Bromodichloromethane	ND		0.0050	1	01/29/2016 14:14
Bromoform	ND		0.0050	1	01/29/2016 14:14
Bromomethane	ND		0.0050	1	01/29/2016 14:14
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 14:14
Chlorobenzene	ND		0.0050	1	01/29/2016 14:14
Chloroethane	ND		0.0050	1	01/29/2016 14:14
Chloroform	ND		0.0050	1	01/29/2016 14:14
Chloromethane	ND		0.0050	1	01/29/2016 14:14
2-Chlorotoluene	ND		0.0050	1	01/29/2016 14:14
4-Chlorotoluene	ND		0.0050	1	01/29/2016 14:14
Dibromochloromethane	ND		0.0050	1	01/29/2016 14:14
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 14:14
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 14:14
Dibromomethane	ND		0.0050	1	01/29/2016 14:14
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 14:14
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 14:14
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 14:14
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 14:14
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 14:14
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 14:14
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 14:14
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 14:14
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 14:14
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 14:14
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 14:14
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 14:14
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 14:14
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 14:14
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 14:14
Freon 113	ND		0.0050	1	01/29/2016 14:14
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 14:14
Hexachloroethane	ND		0.0050	1	01/29/2016 14:14
Methylene chloride	ND		0.0050	1	01/29/2016 14:14
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 14:14
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 14:14

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-1-1'	1601A41-001A	Soil	01/27/201	6 10:40 GC18	115915
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/29/2016 14:14
1,2,3-Trichlorobenzene	ND		0.0050	1	01/29/2016 14:14
1,2,4-Trichlorobenzene	ND		0.0050	1	01/29/2016 14:14
1,1,1-Trichloroethane	ND		0.0050	1	01/29/2016 14:14
1,1,2-Trichloroethane	ND		0.0050	1	01/29/2016 14:14
Trichloroethene	ND		0.0050	1	01/29/2016 14:14
Trichlorofluoromethane	ND		0.0050	1	01/29/2016 14:14
1,2,3-Trichloropropane	ND		0.0050	1	01/29/2016 14:14
Vinyl Chloride	ND		0.0050	1	01/29/2016 14:14
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	120		70-130		01/29/2016 14:14
Toluene-d8	119		70-130		01/29/2016 14:14
4-BFB	89		70-130		01/29/2016 14:14
Benzene-d6	122		60-140		01/29/2016 14:14
Ethylbenzene-d10	110		60-140		01/29/2016 14:14
1,2-DCB-d4	106		60-140		01/29/2016 14:14
Analyst(s): AK					

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-1-3'	1601A41-002A	Soil	01/27/201	16 10:45 GC18	116033
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/30/2016 13:39
Bromochloromethane	ND		0.0050	1	01/30/2016 13:39
Bromodichloromethane	ND		0.0050	1	01/30/2016 13:39
Bromoform	ND		0.0050	1	01/30/2016 13:39
Bromomethane	ND		0.0050	1	01/30/2016 13:39
Carbon Tetrachloride	ND		0.0050	1	01/30/2016 13:39
Chlorobenzene	ND		0.0050	1	01/30/2016 13:39
Chloroethane	ND		0.0050	1	01/30/2016 13:39
Chloroform	ND		0.0050	1	01/30/2016 13:39
Chloromethane	ND		0.0050	1	01/30/2016 13:39
2-Chlorotoluene	ND		0.0050	1	01/30/2016 13:39
4-Chlorotoluene	ND		0.0050	1	01/30/2016 13:39
Dibromochloromethane	ND		0.0050	1	01/30/2016 13:39
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/30/2016 13:39
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/30/2016 13:39
Dibromomethane	ND		0.0050	1	01/30/2016 13:39
1,2-Dichlorobenzene	ND		0.0050	1	01/30/2016 13:39
1,3-Dichlorobenzene	ND		0.0050	1	01/30/2016 13:39
1,4-Dichlorobenzene	ND		0.0050	1	01/30/2016 13:39
Dichlorodifluoromethane	ND		0.0050	1	01/30/2016 13:39
1,1-Dichloroethane	ND		0.0050	1	01/30/2016 13:39
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/30/2016 13:39
1,1-Dichloroethene	ND		0.0050	1	01/30/2016 13:39
cis-1,2-Dichloroethene	ND		0.0050	1	01/30/2016 13:39
trans-1,2-Dichloroethene	ND		0.0050	1	01/30/2016 13:39
1,2-Dichloropropane	ND		0.0050	1	01/30/2016 13:39
1,3-Dichloropropane	ND		0.0050	1	01/30/2016 13:39
2,2-Dichloropropane	ND		0.0050	1	01/30/2016 13:39
1,1-Dichloropropene	ND		0.0050	1	01/30/2016 13:39
cis-1,3-Dichloropropene	ND		0.0050	1	01/30/2016 13:39
trans-1,3-Dichloropropene	ND		0.0050	1	01/30/2016 13:39
Freon 113	ND		0.0050	1	01/30/2016 13:39
Hexachlorobutadiene	ND		0.0050	1	01/30/2016 13:39
Hexachloroethane	ND		0.0050	1	01/30/2016 13:39
Methylene chloride	ND		0.0050	1	01/30/2016 13:39
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/30/2016 13:39
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/30/2016 13:39

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-1-3'	1601A41-002A	Soil	01/27/201	16 10:45 GC18	116033
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/30/2016 13:39
1,2,3-Trichlorobenzene	ND		0.0050	1	01/30/2016 13:39
1,2,4-Trichlorobenzene	ND		0.0050	1	01/30/2016 13:39
1,1,1-Trichloroethane	ND		0.0050	1	01/30/2016 13:39
1,1,2-Trichloroethane	ND		0.0050	1	01/30/2016 13:39
Trichloroethene	ND		0.0050	1	01/30/2016 13:39
Trichlorofluoromethane	ND		0.0050	1	01/30/2016 13:39
1,2,3-Trichloropropane	ND		0.0050	1	01/30/2016 13:39
Vinyl Chloride	ND		0.0050	1	01/30/2016 13:39
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	116		70-130		01/30/2016 13:39
Toluene-d8	117		70-130		01/30/2016 13:39
4-BFB	87		70-130		01/30/2016 13:39
Benzene-d6	116		60-140		01/30/2016 13:39
Ethylbenzene-d10	109		60-140		01/30/2016 13:39
1,2-DCB-d4	109		60-140		01/30/2016 13:39
1,2-DCB-d4 Analyst(s): KF	109		60-140		01/30/2016 1

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-1-5;	1601A41-003A	Soil	01/27/201	16 15:15 GC18	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/29/2016 15:31
Bromochloromethane	ND		0.0050	1	01/29/2016 15:31
Bromodichloromethane	ND		0.0050	1	01/29/2016 15:31
Bromoform	ND		0.0050	1	01/29/2016 15:31
Bromomethane	ND		0.0050	1	01/29/2016 15:31
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 15:31
Chlorobenzene	ND		0.0050	1	01/29/2016 15:31
Chloroethane	ND		0.0050	1	01/29/2016 15:31
Chloroform	ND		0.0050	1	01/29/2016 15:31
Chloromethane	ND		0.0050	1	01/29/2016 15:31
2-Chlorotoluene	ND		0.0050	1	01/29/2016 15:31
4-Chlorotoluene	ND		0.0050	1	01/29/2016 15:31
Dibromochloromethane	ND		0.0050	1	01/29/2016 15:31
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 15:31
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 15:31
Dibromomethane	ND		0.0050	1	01/29/2016 15:31
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:31
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:31
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:31
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 15:31
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 15:31
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 15:31
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 15:31
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 15:31
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 15:31
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 15:31
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 15:31
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 15:31
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 15:31
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 15:31
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 15:31
Freon 113	ND		0.0050	1	01/29/2016 15:31
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 15:31
Hexachloroethane	ND		0.0050	1	01/29/2016 15:31
Methylene chloride	ND		0.0050	1	01/29/2016 15:31
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 15:31
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 15:31

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway **Unit:** mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-1-5;	1601A41-003A	Soil	01/27/201	16 15:15 GC18	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/29/2016 15:31
1,2,3-Trichlorobenzene	ND		0.0050	1	01/29/2016 15:31
1,2,4-Trichlorobenzene	ND		0.0050	1	01/29/2016 15:31
1,1,1-Trichloroethane	ND		0.0050	1	01/29/2016 15:31
1,1,2-Trichloroethane	ND		0.0050	1	01/29/2016 15:31
Trichloroethene	ND		0.0050	1	01/29/2016 15:31
Trichlorofluoromethane	ND		0.0050	1	01/29/2016 15:31
1,2,3-Trichloropropane	ND		0.0050	1	01/29/2016 15:31
Vinyl Chloride	ND		0.0050	1	01/29/2016 15:31
Surrogates	REC (%)		<u>Limits</u>		
Dibromofluoromethane	120		70-130		01/29/2016 15:31
Toluene-d8	117		70-130		01/29/2016 15:31
4-BFB	89		70-130		01/29/2016 15:31
Benzene-d6	107		60-140		01/29/2016 15:31
Ethylbenzene-d10	100		60-140		01/29/2016 15:31
1,2-DCB-d4	102		60-140		01/29/2016 15:31
Analyst(s): AK					

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-2-1'	1601A41-004A	Soil	01/27/201	6 11:15 GC18	115915
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/29/2016 16:09
Bromochloromethane	ND		0.0050	1	01/29/2016 16:09
Bromodichloromethane	ND		0.0050	1	01/29/2016 16:09
Bromoform	ND		0.0050	1	01/29/2016 16:09
Bromomethane	ND		0.0050	1	01/29/2016 16:09
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 16:09
Chlorobenzene	ND		0.0050	1	01/29/2016 16:09
Chloroethane	ND		0.0050	1	01/29/2016 16:09
Chloroform	ND		0.0050	1	01/29/2016 16:09
Chloromethane	ND		0.0050	1	01/29/2016 16:09
2-Chlorotoluene	ND		0.0050	1	01/29/2016 16:09
4-Chlorotoluene	ND		0.0050	1	01/29/2016 16:09
Dibromochloromethane	ND		0.0050	1	01/29/2016 16:09
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 16:09
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 16:09
Dibromomethane	ND		0.0050	1	01/29/2016 16:09
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 16:09
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 16:09
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 16:09
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 16:09
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 16:09
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 16:09
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 16:09
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 16:09
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 16:09
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 16:09
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 16:09
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 16:09
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 16:09
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 16:09
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 16:09
Freon 113	ND		0.0050	1	01/29/2016 16:09
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 16:09
Hexachloroethane	ND		0.0050	1	01/29/2016 16:09
Methylene chloride	ND		0.0050	1	01/29/2016 16:09
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 16:09
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 16:09
·					

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-2-1'	1601A41-004A	Soil	01/27/201	16 11:15 GC18	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/29/2016 16:09
1,2,3-Trichlorobenzene	ND		0.0050	1	01/29/2016 16:09
1,2,4-Trichlorobenzene	ND		0.0050	1	01/29/2016 16:09
1,1,1-Trichloroethane	ND		0.0050	1	01/29/2016 16:09
1,1,2-Trichloroethane	ND		0.0050	1	01/29/2016 16:09
Trichloroethene	ND		0.0050	1	01/29/2016 16:09
Trichlorofluoromethane	ND		0.0050	1	01/29/2016 16:09
1,2,3-Trichloropropane	ND		0.0050	1	01/29/2016 16:09
Vinyl Chloride	ND		0.0050	1	01/29/2016 16:09
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Dibromofluoromethane	119		70-130		01/29/2016 16:09
Toluene-d8	117		70-130		01/29/2016 16:09
4-BFB	88		70-130		01/29/2016 16:09
Benzene-d6	115		60-140		01/29/2016 16:09
Ethylbenzene-d10	104		60-140		01/29/2016 16:09
1,2-DCB-d4	104		60-140		01/29/2016 16:09

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	llected Inst	rument	Batch ID
PB-2-3'	1601A41-005A	Soil	01/27/201	6 11:20 GC1	8	115915
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND		0.0050	1		01/30/2016 11:43
Bromochloromethane	ND		0.0050	1		01/30/2016 11:43
Bromodichloromethane	ND		0.0050	1		01/30/2016 11:43
Bromoform	ND		0.0050	1		01/30/2016 11:43
Bromomethane	ND		0.0050	1		01/30/2016 11:43
Carbon Tetrachloride	ND		0.0050	1		01/30/2016 11:43
Chlorobenzene	ND		0.0050	1		01/30/2016 11:43
Chloroethane	ND		0.0050	1		01/30/2016 11:43
Chloroform	ND		0.0050	1		01/30/2016 11:43
Chloromethane	ND		0.0050	1		01/30/2016 11:43
2-Chlorotoluene	ND		0.0050	1		01/30/2016 11:43
4-Chlorotoluene	ND		0.0050	1		01/30/2016 11:43
Dibromochloromethane	ND		0.0050	1		01/30/2016 11:43
1,2-Dibromo-3-chloropropane	ND		0.0040	1		01/30/2016 11:43
1,2-Dibromoethane (EDB)	ND		0.0040	1		01/30/2016 11:43
Dibromomethane	ND		0.0050	1		01/30/2016 11:43
1,2-Dichlorobenzene	ND		0.0050	1		01/30/2016 11:43
1,3-Dichlorobenzene	ND		0.0050	1		01/30/2016 11:43
1,4-Dichlorobenzene	ND		0.0050	1		01/30/2016 11:43
Dichlorodifluoromethane	ND		0.0050	1		01/30/2016 11:43
1,1-Dichloroethane	ND		0.0050	1		01/30/2016 11:43
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		01/30/2016 11:43
1,1-Dichloroethene	ND		0.0050	1		01/30/2016 11:43
cis-1,2-Dichloroethene	ND		0.0050	1		01/30/2016 11:43
trans-1,2-Dichloroethene	ND		0.0050	1		01/30/2016 11:43
1,2-Dichloropropane	ND		0.0050	1		01/30/2016 11:43
1,3-Dichloropropane	ND		0.0050	1		01/30/2016 11:43
2,2-Dichloropropane	ND		0.0050	1		01/30/2016 11:43
1,1-Dichloropropene	ND		0.0050	1		01/30/2016 11:43
cis-1,3-Dichloropropene	ND		0.0050	1		01/30/2016 11:43
trans-1,3-Dichloropropene	ND		0.0050	1		01/30/2016 11:43
Freon 113	ND		0.0050	1		01/30/2016 11:43
Hexachlorobutadiene	ND		0.0050	1		01/30/2016 11:43
Hexachloroethane	ND		0.0050	1		01/30/2016 11:43
Methylene chloride	ND		0.0050	1		01/30/2016 11:43
1,1,1,2-Tetrachloroethane	ND		0.0050	1		01/30/2016 11:43
1,1,2,2-Tetrachloroethane	ND		0.0050	1		01/30/2016 11:43

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Client ID	Lab ID 1601A41-005A	Matrix Soil	Date Collected Instrument 01/27/2016 11:20 GC18		Batch ID 115915
PB-2-3'					
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/30/2016 11:43
1,2,3-Trichlorobenzene	ND		0.0050	1	01/30/2016 11:43
1,2,4-Trichlorobenzene	ND		0.0050	1	01/30/2016 11:43
1,1,1-Trichloroethane	ND		0.0050	1	01/30/2016 11:43
1,1,2-Trichloroethane	ND		0.0050	1	01/30/2016 11:43
Trichloroethene	ND		0.0050	1	01/30/2016 11:43
Trichlorofluoromethane	ND		0.0050	1	01/30/2016 11:43
1,2,3-Trichloropropane	ND		0.0050	1	01/30/2016 11:43
Vinyl Chloride	ND		0.0050	1	01/30/2016 11:43
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Dibromofluoromethane	117		70-130		01/30/2016 11:43
Toluene-d8	114		70-130		01/30/2016 11:43
4-BFB	89		70-130		01/30/2016 11:43
Benzene-d6	117		60-140		01/30/2016 11:43
Ethylbenzene-d10	108		60-140		01/30/2016 11:43
1,2-DCB-d4	112		60-140		01/30/2016 11:43

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix Date Collected Instrument		Batch ID	
PB-2-5'	1601A41-006A	Soil	01/27/201	16 14:35 GC18	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/30/2016 12:22
Bromochloromethane	ND		0.0050	1	01/30/2016 12:22
Bromodichloromethane	ND		0.0050	1	01/30/2016 12:22
Bromoform	ND		0.0050	1	01/30/2016 12:22
Bromomethane	ND		0.0050	1	01/30/2016 12:22
Carbon Tetrachloride	ND		0.0050	1	01/30/2016 12:22
Chlorobenzene	ND		0.0050	1	01/30/2016 12:22
Chloroethane	ND		0.0050	1	01/30/2016 12:22
Chloroform	ND		0.0050	1	01/30/2016 12:22
Chloromethane	ND		0.0050	1	01/30/2016 12:22
2-Chlorotoluene	ND		0.0050	1	01/30/2016 12:22
4-Chlorotoluene	ND		0.0050	1	01/30/2016 12:22
Dibromochloromethane	ND		0.0050	1	01/30/2016 12:22
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/30/2016 12:22
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/30/2016 12:22
Dibromomethane	ND		0.0050	1	01/30/2016 12:22
1,2-Dichlorobenzene	ND		0.0050	1	01/30/2016 12:22
1,3-Dichlorobenzene	ND		0.0050	1	01/30/2016 12:22
1,4-Dichlorobenzene	ND		0.0050	1	01/30/2016 12:22
Dichlorodifluoromethane	ND		0.0050	1	01/30/2016 12:22
1,1-Dichloroethane	ND		0.0050	1	01/30/2016 12:22
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/30/2016 12:22
1,1-Dichloroethene	ND		0.0050	1	01/30/2016 12:22
cis-1,2-Dichloroethene	ND		0.0050	1	01/30/2016 12:22
trans-1,2-Dichloroethene	ND		0.0050	1	01/30/2016 12:22
1,2-Dichloropropane	ND		0.0050	1	01/30/2016 12:22
1,3-Dichloropropane	ND		0.0050	1	01/30/2016 12:22
2,2-Dichloropropane	ND		0.0050	1	01/30/2016 12:22
1,1-Dichloropropene	ND		0.0050	1	01/30/2016 12:22
cis-1,3-Dichloropropene	ND		0.0050	1	01/30/2016 12:22
trans-1,3-Dichloropropene	ND		0.0050	1	01/30/2016 12:22
Freon 113	ND		0.0050	1	01/30/2016 12:22
Hexachlorobutadiene	ND		0.0050	1	01/30/2016 12:22
Hexachloroethane	ND		0.0050	1	01/30/2016 12:22
Methylene chloride	ND		0.0050	1	01/30/2016 12:22
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/30/2016 12:22
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/30/2016 12:22

(Cont.)

4901 Broadway

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Unit:

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-2-5'	1601A41-006A	Soil	01/27/201	l6 14:35 GC18	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/30/2016 12:22
1,2,3-Trichlorobenzene	ND		0.0050	1	01/30/2016 12:22
1,2,4-Trichlorobenzene	ND		0.0050	1	01/30/2016 12:22
1,1,1-Trichloroethane	ND		0.0050	1	01/30/2016 12:22
1,1,2-Trichloroethane	ND		0.0050	1	01/30/2016 12:22
Trichloroethene	ND		0.0050	1	01/30/2016 12:22
Trichlorofluoromethane	ND		0.0050	1	01/30/2016 12:22
1,2,3-Trichloropropane	ND		0.0050	1	01/30/2016 12:22
Vinyl Chloride	ND		0.0050	1	01/30/2016 12:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	117		70-130		01/30/2016 12:22
Toluene-d8	116		70-130		01/30/2016 12:22
4-BFB	88		70-130		01/30/2016 12:22
Benzene-d6	117		60-140		01/30/2016 12:22
Ethylbenzene-d10	109		60-140		01/30/2016 12:22
1,2-DCB-d4	109		60-140		01/30/2016 12:22
Analyst(s): KF					

Project:

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Lab ID Matrix		ollected Instrument	Batch ID
PB-3-1'	1601A41-007A	Soil	01/27/201	16 13:00 GC18	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/30/2016 13:01
Bromochloromethane	ND		0.0050	1	01/30/2016 13:01
Bromodichloromethane	ND		0.0050	1	01/30/2016 13:01
Bromoform	ND		0.0050	1	01/30/2016 13:01
Bromomethane	ND		0.0050	1	01/30/2016 13:01
Carbon Tetrachloride	ND		0.0050	1	01/30/2016 13:01
Chlorobenzene	ND		0.0050	1	01/30/2016 13:01
Chloroethane	ND		0.0050	1	01/30/2016 13:01
Chloroform	ND		0.0050	1	01/30/2016 13:01
Chloromethane	ND		0.0050	1	01/30/2016 13:01
2-Chlorotoluene	ND		0.0050	1	01/30/2016 13:01
4-Chlorotoluene	ND		0.0050	1	01/30/2016 13:01
Dibromochloromethane	ND		0.0050	1	01/30/2016 13:01
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/30/2016 13:01
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/30/2016 13:01
Dibromomethane	ND		0.0050	1	01/30/2016 13:01
1,2-Dichlorobenzene	ND		0.0050	1	01/30/2016 13:01
1,3-Dichlorobenzene	ND		0.0050	1	01/30/2016 13:01
1,4-Dichlorobenzene	ND		0.0050	1	01/30/2016 13:01
Dichlorodifluoromethane	ND		0.0050	1	01/30/2016 13:01
1,1-Dichloroethane	ND		0.0050	1	01/30/2016 13:01
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/30/2016 13:01
1,1-Dichloroethene	ND		0.0050	1	01/30/2016 13:01
cis-1,2-Dichloroethene	ND		0.0050	1	01/30/2016 13:01
trans-1,2-Dichloroethene	ND		0.0050	1	01/30/2016 13:01
1,2-Dichloropropane	ND		0.0050	1	01/30/2016 13:01
1,3-Dichloropropane	ND		0.0050	1	01/30/2016 13:01
2,2-Dichloropropane	ND		0.0050	1	01/30/2016 13:01
1,1-Dichloropropene	ND		0.0050	1	01/30/2016 13:01
cis-1,3-Dichloropropene	ND		0.0050	1	01/30/2016 13:01
trans-1,3-Dichloropropene	ND		0.0050	1	01/30/2016 13:01
Freon 113	ND		0.0050	1	01/30/2016 13:01
Hexachlorobutadiene	ND		0.0050	1	01/30/2016 13:01
Hexachloroethane	ND		0.0050	1	01/30/2016 13:01
Methylene chloride	ND		0.0050	1	01/30/2016 13:01
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/30/2016 13:01
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/30/2016 13:01

(Cont.)

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

				Batch ID
1601A41-007A	Soil	01/27/201	16 13:00 GC18	115915
Result		<u>RL</u>	<u>DF</u>	Date Analyzed
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
ND		0.0050	1	01/30/2016 13:01
REC (%)		<u>Limits</u>		
118		70-130		01/30/2016 13:01
114		70-130		01/30/2016 13:01
87		70-130		01/30/2016 13:01
123		60-140		01/30/2016 13:01
112		60-140		01/30/2016 13:01
117		60-140		01/30/2016 13:01
	ND 118 114 87 123 112	ND 118 114 87 123 112	ND 0.0050 REC (%) Limits 118 70-130 114 70-130 87 70-130 123 60-140 112 60-140	ND 0.0050 1 REC (%) Limits 118 70-130 114 70-130 87 70-130 123 60-140 112 60-140

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID Matrix		Date Co	llected Instrument	Batch ID
PB-3-3'	1601A41-008A	Soil	01/27/201	16 13:10 GC16	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/29/2016 15:16
Bromochloromethane	ND		0.0050	1	01/29/2016 15:16
Bromodichloromethane	ND		0.0050	1	01/29/2016 15:16
Bromoform	ND		0.0050	1	01/29/2016 15:16
Bromomethane	ND		0.0050	1	01/29/2016 15:16
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 15:16
Chlorobenzene	ND		0.0050	1	01/29/2016 15:16
Chloroethane	ND		0.0050	1	01/29/2016 15:16
Chloroform	ND		0.0050	1	01/29/2016 15:16
Chloromethane	ND		0.0050	1	01/29/2016 15:16
2-Chlorotoluene	ND		0.0050	1	01/29/2016 15:16
4-Chlorotoluene	ND		0.0050	1	01/29/2016 15:16
Dibromochloromethane	ND		0.0050	1	01/29/2016 15:16
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 15:16
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 15:16
Dibromomethane	ND		0.0050	1	01/29/2016 15:16
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:16
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:16
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:16
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 15:16
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 15:16
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 15:16
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 15:16
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 15:16
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 15:16
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 15:16
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 15:16
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 15:16
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 15:16
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 15:16
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 15:16
Freon 113	ND		0.0050	1	01/29/2016 15:16
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 15:16
Hexachloroethane	ND		0.0050	1	01/29/2016 15:16
Methylene chloride	ND		0.0050	1	01/29/2016 15:16
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 15:16
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 15:16

(Cont.)

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Coll	lected Instrument	Batch ID
PB-3-3'	1601A41-008A	Soil	01/27/2016	13:10 GC16	115915
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/29/2016 15:16
1,2,3-Trichlorobenzene	ND		0.0050	1	01/29/2016 15:16
1,2,4-Trichlorobenzene	ND		0.0050	1	01/29/2016 15:16
1,1,1-Trichloroethane	ND		0.0050	1	01/29/2016 15:16
1,1,2-Trichloroethane	ND		0.0050	1	01/29/2016 15:16
Trichloroethene	ND		0.0050	1	01/29/2016 15:16
Trichlorofluoromethane	ND		0.0050	1	01/29/2016 15:16
1,2,3-Trichloropropane	ND		0.0050	1	01/29/2016 15:16
Vinyl Chloride	ND		0.0050	1	01/29/2016 15:16
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	90		70-130		01/29/2016 15:16
Toluene-d8	93		70-130		01/29/2016 15:16
4-BFB	78		70-130		01/29/2016 15:16
Benzene-d6	98		60-140		01/29/2016 15:16
Ethylbenzene-d10	101		60-140		01/29/2016 15:16
1,2-DCB-d4	77		60-140		01/29/2016 15:16
Analyst(s): AK					

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Lab ID Matrix		Date Collected Instrument		
PB-3-5'	1601A41-009A	Soil	01/27/201	6 13:30 GC16	115915	
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
Bromobenzene	ND		0.0050	1	01/29/2016 15:56	
Bromochloromethane	ND		0.0050	1	01/29/2016 15:56	
Bromodichloromethane	ND		0.0050	1	01/29/2016 15:56	
Bromoform	ND		0.0050	1	01/29/2016 15:56	
Bromomethane	ND		0.0050	1	01/29/2016 15:56	
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 15:56	
Chlorobenzene	ND		0.0050	1	01/29/2016 15:56	
Chloroethane	ND		0.0050	1	01/29/2016 15:56	
Chloroform	ND		0.0050	1	01/29/2016 15:56	
Chloromethane	ND		0.0050	1	01/29/2016 15:56	
2-Chlorotoluene	ND		0.0050	1	01/29/2016 15:56	
4-Chlorotoluene	ND		0.0050	1	01/29/2016 15:56	
Dibromochloromethane	ND		0.0050	1	01/29/2016 15:56	
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 15:56	
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 15:56	
Dibromomethane	ND		0.0050	1	01/29/2016 15:56	
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:56	
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:56	
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 15:56	
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 15:56	
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 15:56	
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 15:56	
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 15:56	
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 15:56	
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 15:56	
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 15:56	
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 15:56	
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 15:56	
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 15:56	
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 15:56	
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 15:56	
Freon 113	ND		0.0050	1	01/29/2016 15:56	
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 15:56	
Hexachloroethane	ND		0.0050	1	01/29/2016 15:56	
Methylene chloride	ND		0.0050	1	01/29/2016 15:56	
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 15:56	
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 15:56	

(Cont.)

Angela Rydelius, Lab Manager

4901 Broadway

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/kg

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Unit:

Client ID	Lab ID	Matrix	Date Collecte	ed Instrument	Batch ID
PB-3-5'	1601A41-009A	Soil	01/27/2016 13:	30 GC16	115915
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Tetrachloroethene	ND		0.0050 1		01/29/2016 15:56
1,2,3-Trichlorobenzene	ND		0.0050 1		01/29/2016 15:56
1,2,4-Trichlorobenzene	ND		0.0050 1		01/29/2016 15:56
1,1,1-Trichloroethane	ND		0.0050 1		01/29/2016 15:56
1,1,2-Trichloroethane	ND		0.0050 1		01/29/2016 15:56
Trichloroethene	ND		0.0050 1		01/29/2016 15:56
Trichlorofluoromethane	ND		0.0050 1		01/29/2016 15:56
1,2,3-Trichloropropane	ND		0.0050 1		01/29/2016 15:56
Vinyl Chloride	ND		0.0050 1		01/29/2016 15:56
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	89		70-130		01/29/2016 15:56
Toluene-d8	94		70-130		01/29/2016 15:56
4-BFB	75		70-130		01/29/2016 15:56
Benzene-d6	99		60-140		01/29/2016 15:56
Ethylbenzene-d10	101		60-140		01/29/2016 15:56
1,2-DCB-d4	79		60-140		01/29/2016 15:56
Analyst(s): AK					

Project:

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Col	llected Instrument	Batch ID
PB-4-1'	1601A41-010A	Soil	01/27/201	6 12:15 GC16	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.0050	1	01/29/2016 16:35
Bromochloromethane	ND		0.0050	1	01/29/2016 16:35
Bromodichloromethane	ND		0.0050	1	01/29/2016 16:35
Bromoform	ND		0.0050	1	01/29/2016 16:35
Bromomethane	ND		0.0050	1	01/29/2016 16:35
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 16:35
Chlorobenzene	ND		0.0050	1	01/29/2016 16:35
Chloroethane	ND		0.0050	1	01/29/2016 16:35
Chloroform	ND		0.0050	1	01/29/2016 16:35
Chloromethane	ND		0.0050	1	01/29/2016 16:35
2-Chlorotoluene	ND		0.0050	1	01/29/2016 16:35
4-Chlorotoluene	ND		0.0050	1	01/29/2016 16:35
Dibromochloromethane	ND		0.0050	1	01/29/2016 16:35
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 16:35
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 16:35
Dibromomethane	ND		0.0050	1	01/29/2016 16:35
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 16:35
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 16:35
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 16:35
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 16:35
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 16:35
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 16:35
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 16:35
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 16:35
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 16:35
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 16:35
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 16:35
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 16:35
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 16:35
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 16:35
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 16:35
Freon 113	ND		0.0050	1	01/29/2016 16:35
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 16:35
Hexachloroethane	ND		0.0050	1	01/29/2016 16:35
Methylene chloride	ND		0.0050	1	01/29/2016 16:35
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 16:35
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 16:35

(Cont.)

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-4-1'	1601A41-010A	Soil	01/27/201	16 12:15 GC16	115915
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.0050	1	01/29/2016 16:35
1,2,3-Trichlorobenzene	ND		0.0050	1	01/29/2016 16:35
1,2,4-Trichlorobenzene	ND		0.0050	1	01/29/2016 16:35
1,1,1-Trichloroethane	ND		0.0050	1	01/29/2016 16:35
1,1,2-Trichloroethane	ND		0.0050	1	01/29/2016 16:35
Trichloroethene	ND		0.0050	1	01/29/2016 16:35
Trichlorofluoromethane	ND		0.0050	1	01/29/2016 16:35
1,2,3-Trichloropropane	ND		0.0050	1	01/29/2016 16:35
Vinyl Chloride	ND		0.0050	1	01/29/2016 16:35
Surrogates	REC (%)		<u>Limits</u>		
Dibromofluoromethane	89		70-130		01/29/2016 16:35
Toluene-d8	94		70-130		01/29/2016 16:35
4-BFB	78		70-130		01/29/2016 16:35
Benzene-d6	99		60-140		01/29/2016 16:35
Ethylbenzene-d10	103		60-140		01/29/2016 16:35
1,2-DCB-d4	80		60-140		01/29/2016 16:35
Analyst(s): AK					

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Lab ID Matrix		Date Collected Instrument		
PB-4-3'	1601A41-011A	Soil	01/27/201	6 12:25 GC16	115915	
Analytes	Result		<u>RL</u>	DF	Date Analyzed	
Bromobenzene	ND		0.0050	1	01/29/2016 17:15	
Bromochloromethane	ND		0.0050	1	01/29/2016 17:15	
Bromodichloromethane	ND		0.0050	1	01/29/2016 17:15	
Bromoform	ND		0.0050	1	01/29/2016 17:15	
Bromomethane	ND		0.0050	1	01/29/2016 17:15	
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 17:15	
Chlorobenzene	ND		0.0050	1	01/29/2016 17:15	
Chloroethane	ND		0.0050	1	01/29/2016 17:15	
Chloroform	ND		0.0050	1	01/29/2016 17:15	
Chloromethane	ND		0.0050	1	01/29/2016 17:15	
2-Chlorotoluene	ND		0.0050	1	01/29/2016 17:15	
4-Chlorotoluene	ND		0.0050	1	01/29/2016 17:15	
Dibromochloromethane	ND		0.0050	1	01/29/2016 17:15	
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 17:15	
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 17:15	
Dibromomethane	ND		0.0050	1	01/29/2016 17:15	
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 17:15	
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 17:15	
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 17:15	
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 17:15	
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 17:15	
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 17:15	
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 17:15	
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 17:15	
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 17:15	
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 17:15	
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 17:15	
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 17:15	
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 17:15	
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 17:15	
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 17:15	
Freon 113	ND		0.0050	1	01/29/2016 17:15	
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 17:15	
Hexachloroethane	ND		0.0050	1	01/29/2016 17:15	
Methylene chloride	ND		0.0050	1	01/29/2016 17:15	
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 17:15	
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 17:15	

(Cont.)

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16-1/30/16Analytical Method:SW8260BProject:4901 BroadwayUnit:mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-4-3'	1601A41-011A Soil	01/27/2016 12:25 GC16	115915
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Tetrachloroethene	ND	0.0050 1	01/29/2016 17:15
1,2,3-Trichlorobenzene	ND	0.0050 1	01/29/2016 17:15
1,2,4-Trichlorobenzene	ND	0.0050 1	01/29/2016 17:15
1,1,1-Trichloroethane	ND	0.0050 1	01/29/2016 17:15
1,1,2-Trichloroethane	ND	0.0050 1	01/29/2016 17:15
Trichloroethene	ND	0.0050 1	01/29/2016 17:15
Trichlorofluoromethane	ND	0.0050 1	01/29/2016 17:15
1,2,3-Trichloropropane	ND	0.0050 1	01/29/2016 17:15
Vinyl Chloride	ND	0.0050 1	01/29/2016 17:15
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	89	70-130	01/29/2016 17:15
Toluene-d8	95	70-130	01/29/2016 17:15
4-BFB	75	70-130	01/29/2016 17:15
Benzene-d6	95	60-140	01/29/2016 17:15
Ethylbenzene-d10	98	60-140	01/29/2016 17:15
1,2-DCB-d4	79	60-140	01/29/2016 17:15
Analyst(s): AK			

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID Matrix		Date Collected Instrument		Batch ID
PB-4-5'	1601A41-012A	Soil	01/27/201	6 12:55 GC16	115915
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	ND		0.10	1	01/29/2016 17:55
tert-Amyl methyl ether (TAME)	ND		0.0050	1	01/29/2016 17:55
Benzene	ND		0.0050	1	01/29/2016 17:55
Bromobenzene	ND		0.0050	1	01/29/2016 17:55
Bromochloromethane	ND		0.0050	1	01/29/2016 17:55
Bromodichloromethane	ND		0.0050	1	01/29/2016 17:55
Bromoform	ND		0.0050	1	01/29/2016 17:55
Bromomethane	ND		0.0050	1	01/29/2016 17:55
2-Butanone (MEK)	ND		0.020	1	01/29/2016 17:55
t-Butyl alcohol (TBA)	ND		0.050	1	01/29/2016 17:55
n-Butyl benzene	ND		0.0050	1	01/29/2016 17:55
sec-Butyl benzene	ND		0.0050	1	01/29/2016 17:55
tert-Butyl benzene	ND		0.0050	1	01/29/2016 17:55
Carbon Disulfide	ND		0.0050	1	01/29/2016 17:55
Carbon Tetrachloride	ND		0.0050	1	01/29/2016 17:55
Chlorobenzene	ND		0.0050	1	01/29/2016 17:55
Chloroethane	ND		0.0050	1	01/29/2016 17:55
Chloroform	ND		0.0050	1	01/29/2016 17:55
Chloromethane	ND		0.0050	1	01/29/2016 17:55
2-Chlorotoluene	ND		0.0050	1	01/29/2016 17:55
4-Chlorotoluene	ND		0.0050	1	01/29/2016 17:55
Dibromochloromethane	ND		0.0050	1	01/29/2016 17:55
1,2-Dibromo-3-chloropropane	ND		0.0040	1	01/29/2016 17:55
1,2-Dibromoethane (EDB)	ND		0.0040	1	01/29/2016 17:55
Dibromomethane	ND		0.0050	1	01/29/2016 17:55
1,2-Dichlorobenzene	ND		0.0050	1	01/29/2016 17:55
1,3-Dichlorobenzene	ND		0.0050	1	01/29/2016 17:55
1,4-Dichlorobenzene	ND		0.0050	1	01/29/2016 17:55
Dichlorodifluoromethane	ND		0.0050	1	01/29/2016 17:55
1,1-Dichloroethane	ND		0.0050	1	01/29/2016 17:55
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	01/29/2016 17:55
1,1-Dichloroethene	ND		0.0050	1	01/29/2016 17:55
cis-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 17:55
trans-1,2-Dichloroethene	ND		0.0050	1	01/29/2016 17:55
1,2-Dichloropropane	ND		0.0050	1	01/29/2016 17:55
1,3-Dichloropropane	ND		0.0050	1	01/29/2016 17:55
2,2-Dichloropropane	ND		0.0050	1	01/29/2016 17:55

(Cont.)

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Collec	cted Instrument	Batch ID
PB-4-5'	1601A41-012A	Soil	01/27/2016 1	2:55 GC16	115915
<u>Analytes</u>	Result		<u>RL</u> <u>C</u>) <u>F</u>	Date Analyzed
1,1-Dichloropropene	ND		0.0050	1	01/29/2016 17:55
cis-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 17:55
trans-1,3-Dichloropropene	ND		0.0050	1	01/29/2016 17:55
Diisopropyl ether (DIPE)	ND		0.0050	1	01/29/2016 17:55
Ethylbenzene	ND		0.0050	1	01/29/2016 17:55
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	01/29/2016 17:55
Freon 113	ND		0.0050	1	01/29/2016 17:55
Hexachlorobutadiene	ND		0.0050	1	01/29/2016 17:55
Hexachloroethane	ND		0.0050	1	01/29/2016 17:55
2-Hexanone	ND		0.0050	1	01/29/2016 17:55
Isopropylbenzene	ND		0.0050	1	01/29/2016 17:55
4-Isopropyl toluene	ND		0.0050	1	01/29/2016 17:55
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	01/29/2016 17:55
Methylene chloride	ND		0.0050	1	01/29/2016 17:55
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	01/29/2016 17:55
Naphthalene	ND		0.0050	1	01/29/2016 17:55
n-Propyl benzene	ND		0.0050	1	01/29/2016 17:55
Styrene	ND		0.0050	1	01/29/2016 17:55
1,1,1,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 17:55
1,1,2,2-Tetrachloroethane	ND		0.0050	1	01/29/2016 17:55
Tetrachloroethene	ND		0.0050	1	01/29/2016 17:55
Toluene	ND		0.0050	1	01/29/2016 17:55
1,2,3-Trichlorobenzene	ND		0.0050	1	01/29/2016 17:55
1,2,4-Trichlorobenzene	ND		0.0050	1	01/29/2016 17:55
1,1,1-Trichloroethane	ND		0.0050	1	01/29/2016 17:55
1,1,2-Trichloroethane	ND		0.0050	1	01/29/2016 17:55
Trichloroethene	ND		0.0050	1	01/29/2016 17:55
Trichlorofluoromethane	ND		0.0050	1	01/29/2016 17:55
1,2,3-Trichloropropane	ND		0.0050	1	01/29/2016 17:55
1,2,4-Trimethylbenzene	ND		0.0050	1	01/29/2016 17:55
1,3,5-Trimethylbenzene	ND		0.0050	1	01/29/2016 17:55
Vinyl Chloride	ND		0.0050	1	01/29/2016 17:55
Xylenes, Total	ND		0.0050	1	01/29/2016 17:55

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030BDate Prepared:1/27/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-4-5'	1601A41-012A Soil	01/27/2016 12:55 GC16	115915
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	89	70-130	01/29/2016 17:55
Toluene-d8	93	70-130	01/29/2016 17:55
4-BFB	83	70-130	01/29/2016 17:55
Benzene-d6	100	60-140	01/29/2016 17:55
Ethylbenzene-d10	102	60-140	01/29/2016 17:55
1,2-DCB-d4	80	60-140	01/29/2016 17:55

Analytical Report

Client: WorkOrder: Pangea Environmental Svcs., Inc. 1601A41 **Date Received:** 1/27/16 19:52 **Extraction Method: SW5030B**

Date Prepared: 1/27/16-1/29/16 **Analytical Method:** SW8021B/8015Bm

Project: 4901 Broadway Unit: mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-1-1'	1601A41-001A Soil	01/27/2016 10:40 GC7	115911
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/28/2016 14:19
MTBE		0.050 1	01/28/2016 14:19
Benzene		0.0050 1	01/28/2016 14:19
Toluene		0.0050 1	01/28/2016 14:19
Ethylbenzene		0.0050 1	01/28/2016 14:19
Xylenes		0.015 1	01/28/2016 14:19
<u>Surrogates</u>	REC (%)	<u>Limits</u>	
2-Fluorotoluene	91	70-130	01/28/2016 14:19
Analyst(s): IA			

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-1-3'	1601A41-002A	Soil	01/27/201	l6 10:45 GC7	115911
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	01/28/2016 14:49
MTBE			0.050	1	01/28/2016 14:49
Benzene			0.0050	1	01/28/2016 14:49
Toluene			0.0050	1	01/28/2016 14:49
Ethylbenzene			0.0050	1	01/28/2016 14:49
Xylenes			0.015	1	01/28/2016 14:49
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	93		70-130		01/28/2016 14:49
Analyst(s): IA					

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030B

Date Prepared: 1/27/16-1/29/16 **Analytical Method:** SW8021B/8015Bm

Project: 4901 Broadway **Unit:** mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID N	Matrix	Date Co	ollected Instrument	Batch ID
PB-1-5;	1601A41-003A S	Soil	01/27/20	16 15:15 GC7	115921
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	01/28/2016 01:06
MTBE			0.050	1	01/28/2016 01:06
Benzene			0.0050	1	01/28/2016 01:06
Toluene			0.0050	1	01/28/2016 01:06
Ethylbenzene			0.0050	1	01/28/2016 01:06
Xylenes			0.015	1	01/28/2016 01:06
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	95		70-130		01/28/2016 01:06
Analyst(s): IA					

Client ID Lab ID Matrix Date Collected Instrument Batch ID

1601A41-004A Soil	01/27/2016 11:15 GC19	115921	
Result	<u>RL</u> <u>DF</u>	Date Analyzed	
ND	1.0 1	01/28/2016 18:50	
	0.050 1	01/28/2016 18:50	
	0.0050 1	01/28/2016 18:50	
	0.0050 1	01/28/2016 18:50	
	0.0050 1	01/28/2016 18:50	
	0.015 1	01/28/2016 18:50	
<u>REC (%)</u>	<u>Limits</u>		
104	70-130	01/28/2016 18:50	
	Result ND REC (%)	Result RL DF ND 1.0 1 0.050 1 0.0050 1 0.0050 1 0.0050 1 0.015 1 REC (%) Limits	

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030B

Date Prepared: 1/27/16-1/29/16 Analytical Method: SW8021B/8015Bm

Project: 4901 Broadway Unit: mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Mai	trix Date Co	ollected Instrument	Batch ID
PB-2-3'	1601A41-005A Soil	01/27/20	16 11:20 GC7	115921
Analytes	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND	1.0	1	01/28/2016 15:20
MTBE		0.050	1	01/28/2016 15:20
Benzene		0.0050	1	01/28/2016 15:20
Toluene		0.0050	1	01/28/2016 15:20
Ethylbenzene		0.0050	1	01/28/2016 15:20
Xylenes		0.015	1	01/28/2016 15:20
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>		
2-Fluorotoluene	84	70-130		01/28/2016 15:20
Analyst(s): IA				

Client ID	Lab ID Mati	rix Date Collected Instrument	Batch ID
PB-2-5'	1601A41-006A Soil	01/27/2016 14:35 GC19	115921
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/28/2016 17:19
MTBE		0.050 1	01/28/2016 17:19
Benzene		0.0050 1	01/28/2016 17:19
Toluene		0.0050 1	01/28/2016 17:19
Ethylbenzene		0.0050 1	01/28/2016 17:19
Xylenes		0.015 1	01/28/2016 17:19
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>	
2-Fluorotoluene	103	70-130	01/28/2016 17:19
Analyst(s): SS			

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030B

Date Prepared: 1/27/16-1/29/16 Analytical Method: SW8021B/8015Bm

Project: 4901 Broadway Unit: mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID N	Matrix	Date Co	ollected Instrument	Batch ID
PB-3-1'	1601A41-007A S	Soil	01/27/20	16 13:00 GC7	116021
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	01/30/2016 02:20
MTBE			0.050	1	01/30/2016 02:20
Benzene			0.0050	1	01/30/2016 02:20
Toluene			0.0050	1	01/30/2016 02:20
Ethylbenzene			0.0050	1	01/30/2016 02:20
Xylenes			0.015	1	01/30/2016 02:20
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	99		70-130		01/30/2016 02:20
Analyst(s): TD					

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
PB-3-3'	1601A41-008A S	Soil	01/27/201	16 13:10 GC7	116021
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	01/30/2016 03:21
MTBE			0.050	1	01/30/2016 03:21
Benzene			0.0050	1	01/30/2016 03:21
Toluene			0.0050	1	01/30/2016 03:21
Ethylbenzene			0.0050	1	01/30/2016 03:21
Xylenes			0.015	1	01/30/2016 03:21
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	98		70-130		01/30/2016 03:21
Analyst(s): TD					

Analytical Report

Client: Pangea Environmental Svcs., Inc. WorkOrder: 1601A41 **Extraction Method: SW5030B Date Received:** 1/27/16 19:52

Date Prepared: 1/27/16-1/29/16 **Analytical Method:** SW8021B/8015Bm

Project: Unit: 4901 Broadway mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-3-5'	1601A41-009A Soil	01/27/2016 13:30 GC19	115921
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/28/2016 20:52
MTBE		0.050 1	01/28/2016 20:52
Benzene		0.0050 1	01/28/2016 20:52
Toluene		0.0050 1	01/28/2016 20:52
Ethylbenzene		0.0050 1	01/28/2016 20:52
Xylenes		0.015 1	01/28/2016 20:52
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>	
2-Fluorotoluene	113	70-130	01/28/2016 20:52
Analyst(s): SS			

Client ID Lab ID Matrix **Date Collected Instrument Batch ID** PB-4-1' 1601A41-010A 01/27/2016 12:15 GC19 115921 Soil

<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/28/2016 21:22
MTBE		0.050 1	01/28/2016 21:22
Benzene		0.0050 1	01/28/2016 21:22
Toluene		0.0050 1	01/28/2016 21:22
Ethylbenzene		0.0050 1	01/28/2016 21:22
Xylenes		0.015 1	01/28/2016 21:22
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>	
2-Fluorotoluene	110	70-130	01/28/2016 21:22

Analyst(s):

(Cont.)

SS

Page 33 of 54

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Received:1/27/16 19:52Extraction Method:SW5030B

Date Prepared: 1/27/16-1/29/16 **Analytical Method:** SW8021B/8015Bm

Project: 4901 Broadway Unit: mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-4-3'	1601A41-011A Soil	01/27/2016 12:25 GC19	115921
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	01/28/2016 22:23
MTBE		0.050 1	01/28/2016 22:23
Benzene		0.0050 1	01/28/2016 22:23
Toluene		0.0050 1	01/28/2016 22:23
Ethylbenzene		0.0050 1	01/28/2016 22:23
Xylenes		0.015 1	01/28/2016 22:23
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
2-Fluorotoluene	107	70-130	01/28/2016 22:23
Analyst(s): SS			

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID	
PB-4-5'	1601A41-012A	Soil	01/27/2016 12:55 GC19		115921	
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed	
TPH(g)	20		1.0	1	01/28/2016 23:23	
MTBE			0.050	1	01/28/2016 23:23	
Benzene			0.0050	1	01/28/2016 23:23	
Toluene			0.0050	1	01/28/2016 23:23	
Ethylbenzene			0.0050	1	01/28/2016 23:23	
Xylenes			0.015	1	01/28/2016 23:23	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
2-Fluorotoluene	105		70-130		01/28/2016 23:23	
Analyst(s): SS			Analytical Comn	nents: d7		

Client: Pangea Environmental Svcs., Inc.

Date Received: 1/27/16 19:52

Date Prepared: 1/27/16

Project: 4901 Broadway

WorkOrder: 1601A41

Extraction Method: SW3550B

Analytical Method: SW8015B

Unit: mg/Kg

	Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up			
Client ID	Lab ID	Matrix	Date Collected Instrument	
PR-1-1'	1601 \(\lambda \) 1 - 001 \(\lambda \)	Soil	01/27/2016 10:40 GC11A	

 PB-1-1'
 1601A41-001A
 Soil
 01/27/2016 10:40
 GC11A
 115861

 Analytes
 Result
 RL
 DF
 Date Analyzed

 TPH-Diesel (C10-C23)
 4.2
 1.0
 1
 01/28/2016 03:07

 TPH-Motor Oil (C18-C36)
 62
 5.0
 1
 01/28/2016 03:07

Surrogates REC (%) Limits

C9 87 70-130 01/28/2016 03:07

Analyst(s): TK Analytical Comments: e7,e2

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
PB-1-3'	1601A41-002A	Soil	01/27/2016 10:45 GC6B	115861

 Analytes
 Result
 RL
 DF
 Date Analyzed

 TPH-Diesel (C10-C23)
 3.2
 1.0
 1
 01/28/2016 06:51

 TPH-Motor Oil (C18-C36)
 79
 5.0
 1
 01/28/2016 06:51

Surrogates REC (%) Limits

C9 95 70-130 01/28/2016 06:51

Analyst(s): TK Analytical Comments: e7,e2

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-1-5;	1601A41-003A	Soil	01/27/20	016 15:15 GC6B	115861
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	2.0		1.0	1	01/28/2016 04:29
TPH-Motor Oil (C18-C36)	28		5.0	1	01/28/2016 04:29
Surrogates	REC (%)		<u>Limits</u>		
C9	97		70-130		01/28/2016 04:29
Analyst(s): TK	Analytical Comments: e7,e2				

Batch ID

1601A41

Analytical Report

Client: Pangea Environmental Svcs., Inc. WorkOrder:

Date Received: 1/27/16 19:52 Extraction M

Date Received:1/27/16 19:52Extraction Method:SW3550BDate Prepared:1/27/16Analytical Method:SW8015BProject:4901 BroadwayUnit:mg/Kg

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up						
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID	
PB-2-1'	1601A41-004A	Soil	01/27/2016 11:15	GC6A	115861	
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>		Date Analyzed	
TPH-Diesel (C10-C23)	3.6		2.0 2		01/28/2016 05:40	
TPH-Motor Oil (C18-C36)	61		10 2		01/28/2016 05:40	
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	91		70-130		01/28/2016 05:40	
Analyst(s): TK			Analytical Comments: e	7,e2		
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID	
PB-2-3'	1601A41-005A	Soil	01/27/2016 11:20	GC39A	115861	
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed	
TPH-Diesel (C10-C23)	ND		1.0 1		01/28/2016 13:59	
TPH-Motor Oil (C18-C36)	5.9		5.0 1		01/28/2016 13:59	
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	98		70-130		01/28/2016 13:59	
Analyst(s): TK			Analytical Comments: e	7		
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID	
PB-2-5'	1601A41-006A	Soil	01/27/2016 14:35	GC39A	115861	
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed	
TPH-Diesel (C10-C23)	ND		1.0 1		01/28/2016 12:02	
TPH-Motor Oil (C18-C36)	ND		5.0 1		01/28/2016 12:02	
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	99		70-130		01/28/2016 12:02	

Analyst(s): TK

Client: Pangea Environmental Svcs., Inc.

1601A41

Date Received: 1/27/16 19:52

Extraction Method: SW3550B

WorkOrder:

Date Prepared: 1/27/16

Analytical Method: SW8015B

Project: 4901 Broadway Unit: mg/Kg

	Total Extractable P	etroleum Hydrocarbons	w/out SG Clean-Up
--	---------------------	-----------------------	-------------------

Client ID	Lab ID	Matrix	Date C	collected Instrument	Batch ID
PB-3-1'	1601A41-007A	Soil	01/27/20	016 13:00 GC39A	115861
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	01/28/2016 12:41
TPH-Motor Oil (C18-C36)	ND		5.0	1	01/28/2016 12:41
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	99		70-130		01/28/2016 12:41

Analyst(s): TK

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-3-3'	1601A41-008A	Soil	01/27/20	016 13:10 GC39A	115861
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	01/28/2016 13:20
TPH-Motor Oil (C18-C36)	ND		5.0	1	01/28/2016 13:20
Surrogates	REC (%)		<u>Limits</u>		

C9 99

70-130 01/28/2016 13:20

Analyst(s): TK

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-3-5'	1601A41-009A	Soil	01/27/20	16 13:30 GC11A	115861
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	1.0		1.0	1	01/28/2016 07:41
TPH-Motor Oil (C18-C36)	13		5.0	1	01/28/2016 07:41
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
C9	87		70-130		01/28/2016 07:41
Analyst(s): TK			Analytical Com	ments: e7,e2	

Client: Pangea Environmental Svcs., Inc.

Extraction Method: SW3550B

WorkOrder:

1601A41

Date Received: 1/27/16 19:52

Date Prepared: 1/27/16

Analytical Method: SW8015B

Project: 4901 Broadway Unit: mg/Kg

Total Extractable Petroleum Hydrocarbons w/out SG	Clean-Up

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-4-1'	1601A41-010A	Soil	01/27/20	016 12:15 GC11A	115920
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	01/28/2016 08:50
TPH-Motor Oil (C18-C36)	9.5		5.0	1	01/28/2016 08:50
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	87		70-130		01/28/2016 08:50
				_	

Analytical Comments: e7 Analyst(s): TK

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
PB-4-3'	1601A41-011A	Soil	01/27/20	016 12:25 GC39B	115920
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	01/28/2016 13:20
TPH-Motor Oil (C18-C36)	ND		5.0	1	01/28/2016 13:20
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		

C9 100 70-130

01/28/2016 13:20

Analyst(s): TK

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-4-5'	1601A41-012A	Soil	01/27/20	016 12:55 GC39B	115920
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	110		20	20	01/28/2016 13:59
TPH-Motor Oil (C18-C36)	490		100	20	01/28/2016 13:59
Surrogates	REC (%)		<u>Limits</u>		
C9	100		70-130		01/28/2016 13:59
Analyst(s): TK			Analytical Com	ments: e7,e8	

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/27/16BatchID:115915Date Analyzed:1/28/16Extraction Method:SW5030BInstrument:GC10Analytical Method:SW8260B

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-115915

1601A31-003BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0456	0.0050	0.050	-	91	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0399	0.0040	0.050	-	80	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0410	0.0040	0.050	-	82	58-135
1,1-Dichloroethene	ND	0.0417	0.0050	0.050	-	83	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
Methylene chloride	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND		0.0050	_	_	_	_

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/27/16BatchID:115915Date Analyzed:1/28/16Extraction Method:SW5030BInstrument:GC10Analytical Method:SW8260B

 Matrix:
 Soil
 Unit:
 mg/Kg

 Project:
 4901 Broadway
 Sample ID:
 MB/LCS-115915

1601A31-003BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	
Tetrachloroethene	ND	-	0.0050	-	-	-	-
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0470	0.0050	0.050	-	94	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	0.124	0.131		0.12	99	105	70-130
Toluene-d8	0.135	0.133		0.12	108	106	70-130
4-BFB	0.0144	0.0154		0.012	115	124	70-130
Benzene-d6	0.0980	0.110		0.10	98	110	60-140
Ethylbenzene-d10	0.110	0.121		0.10	110	121	60-140
1,2-DCB-d4	0.0956	0.0981		0.10	96	98	60-140

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/27/16BatchID:115915Date Analyzed:1/28/16Extraction Method:SW5030BInstrument:GC10Analytical Method:SW8260B

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-115915

1601A31-003BMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Chlorobenzene	0.0390	0.0416	0.050	ND	78	83	70-130	6.26	20
1,2-Dibromoethane (EDB)	0.0347	0.0378	0.050	ND	69,F1	76	70-130	8.57	20
1,2-Dichloroethane (1,2-DCA)	0.0359	0.0381	0.050	ND	72	76	70-130	5.84	20
1,1-Dichloroethene	0.0467	0.0408	0.050	ND	93	82	70-130	13.5	20
Trichloroethene	0.0774	0.0796	0.050	ND	155,F1	159,F1	70-130	2.79	20
Surrogate Recovery									
Dibromofluoromethane	0.132	0.132	0.12		105	106	70-130	0.323	20
Toluene-d8	0.130	0.131	0.12		104	104	70-130	0	20
4-BFB	0.0154	0.0156	0.012		123	124	70-130	0.966	20
Benzene-d6	0.0978	0.0998	0.10		98	100	60-140	2.01	20
Ethylbenzene-d10	0.106	0.108	0.10		106	108	60-140	1.59	20
1,2-DCB-d4	0.0891	0.0905	0.10		89	90	60-140	1.57	20

mg/Kg

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/29/16BatchID:116033Date Analyzed:1/30/16Extraction Method:SW5030BInstrument:GC16Analytical Method:SW8260B

Project: 4901 Broadway Sample ID: MB/LCS-116033

QC Summary Report for SW8260B

Unit:

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0510	0.0050	0.050	-	102	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0485	0.0040	0.050	-	97	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0478	0.0040	0.050	-	96	58-135
1,1-Dichloroethene	ND	0.0443	0.0050	0.050	-	89	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
Methylene chloride	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-

Matrix:

Soil

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/29/16BatchID:116033Date Analyzed:1/30/16Extraction Method:SW5030BInstrument:GC16Analytical Method:SW8260B

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-116033

	QC Sumr	nary Report f	or SW8260B				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0558	0.0050	0.050	-	112	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	0.110	0.109		0.12	88	87	70-130
Toluene-d8	0.118	0.117		0.12	95	94	70-130
4-BFB	0.0119	0.0124		0.012	96	99	70-130
Benzene-d6	0.102	0.110		0.10	102	110	60-140
Ethylbenzene-d10	0.109	0.121		0.10	109	121	60-140
1,2-DCB-d4	0.0769	0.0900		0.10	77	90	60-140

Quality Control Report

Client: Pangea Environmental Svcs., Inc.

Date Prepared: 1/26/16

Date Analyzed: 1/26/16 - 1/27/16 **Instrument:** GC11A, GC39A

Matrix: Soil

Project: 4901 Broadway

WorkOrder: 1601A41

BatchID: 115861

Extraction Method: SW3550B **Analytical Method:** SW8015B

Unit: mg/Kg

Sample ID: MB/LCS-115861

1601985-001AMS/MSD

QC	Report	for SV	V8015B	w/out SG	Clean-Up
----	--------	--------	--------	----------	----------

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	36.9	1.0	40	-	92	70-130
TPH-Motor Oil (C18-C36)	ND	-	5.0	-	-	-	-
Surrogate Recovery							
C9	25.2	22.6		25	101	90	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	40.1	41.6	40	2.116	95	99	70-130	3.83	30
Surrogate Recovery C9	22.8	22.9	25		91	92	70-130	0.644	30

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/27/16BatchID:115911Date Analyzed:1/27/16Extraction Method:SW5030B

Instrument: GC7 **Analytical Method:** SW8021B/8015Bm

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-115911

1601A13-010AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.518	0.40	0.60	-	86	70-130
MTBE	ND	0.0717	0.050	0.10	-	72	70-130
Benzene	ND	0.0875	0.0050	0.10	-	88	70-130
Toluene	ND	0.0906	0.0050	0.10	-	91	70-130
Ethylbenzene	ND	0.0950	0.0050	0.10	-	95	70-130
Xylenes	ND	0.302	0.015	0.30	-	101	70-130

Surrogate Recovery

2-Fluorotoluene 0.106 0.113 0.10 106 113 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.544	0.534	0.60	ND	91	89	70-130	1.84	20
MTBE	0.0764	0.0776	0.10	ND	76	78	70-130	1.53	20
Benzene	0.0916	0.0910	0.10	ND	92	91	70-130	0.653	20
Toluene	0.0938	0.0928	0.10	ND	94	93	70-130	1.07	20
Ethylbenzene	0.0963	0.0959	0.10	ND	96	96	70-130	0	20
Xylenes	0.303	0.304	0.30	ND	101	101	70-130	0	20
Surrogate Recovery									
2-Fluorotoluene	0.108	0.107	0.10		108	107	70-130	0.684	20

Quality Control Report

WorkOrder: **Client:** Pangea Environmental Svcs., Inc. 1601A41 **Date Prepared:** 1/27/16 **BatchID:** 115920 **Date Analyzed:** 1/28/16 **Extraction Method:** SW3550B **Instrument:** GC2B **Analytical Method:** SW8015B **Matrix:** Soil Unit: mg/Kg

Project: 4901 Broadway **Sample ID:** MB/LCS-115920

1601A41-010AMS/MSD

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	44.9	1.0	40	-	112	70-130
TPH-Motor Oil (C18-C36)	ND	-	5.0	-	-	-	-
Surrogate Recovery							
C9	24.1	24.3		25	96	97	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	47.1	45.8	40	ND	116	112	70-130	2.71	30
Surrogate Recovery C9	24.2	24.0	25		97	96	70-130	1.09	30

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/27/16BatchID:115921Date Analyzed:1/28/16Extraction Method:SW5030B

Instrument: GC19 Analytical Method: SW8021B/8015Bm

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-115921

1601A41-003AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB LCS Result Result		RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.580	0.40	0.60	-	97	70-130
MTBE	ND	0.0782	0.050	0.10	-	78	70-130
Benzene	ND	0.0961	0.0050	0.10	-	96	70-130
Toluene	ND	0.104	0.0050	0.10	-	104	70-130
Ethylbenzene	ND	0.110	0.0050	0.10	-	110	70-130
Xylenes	ND	0.346	0.015	0.30	-	115	70-130

Surrogate Recovery

2-Fluorotoluene 0.115 0.122 0.10 115 122 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.511	0.531	0.60	ND	85	89	70-130	3.80	20
MTBE	0.0745	0.0717	0.10	ND	75	72	70-130	3.92	20
Benzene	0.0879	0.0808	0.10	ND	88	81	70-130	8.45	20
Toluene	0.0955	0.0887	0.10	ND	95	89	70-130	7.32	20
Ethylbenzene	0.102	0.0947	0.10	ND	102	95	70-130	7.83	20
Xylenes	0.323	0.298	0.30	ND	108	99	70-130	7.98	20
Surrogate Recovery									
2-Fluorotoluene	0.112	0.101	0.10		112	101	70-130	10.3	20

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A41Date Prepared:1/29/16BatchID:116021Date Analyzed:1/30/16Extraction Method:SW5030B

Instrument: GC3 Analytical Method: SW8021B/8015Bm

Matrix: Soil Unit: mg/Kg

Project: 4901 Broadway Sample ID: MB/LCS-116021

1601B53-010AMS/MSD

QC Summary Report for SW8021B/8015Bm Analyte MB **LCS** RL **SPK** MB SS LCS **LCS** Result Val %REC %REC Limits Result 70-130 TPH(btex) ND 0.605 0.40 0.60 101 **MTBE** ND 0.0915 0.050 0.10 91 70-130 ND 0.0968 0.0050 0.10 97 70-130 Benzene Toluene ND 0.100 0.0050 0.10 100 70-130 Ethylbenzene ND 0.0050 100 0.0998 0.10 70-130 Xylenes ND 0.305 0.015 0.30 102 70-130 **Surrogate Recovery** 2-Fluorotoluene 0.104 0.102 0.10 104 102 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.579	0.563	0.60	ND	96	94	70-130	2.77	20
MTBE	0.0698	0.0731	0.10	ND	70	73	70-130	4.65	20
Benzene	0.0877	0.0899	0.10	ND	88	90	70-130	2.51	20
Toluene	0.0908	0.0927	0.10	ND	91	93	70-130	2.09	20
Ethylbenzene	0.0914	0.0927	0.10	ND	91	93	70-130	1.35	20
Xylenes	0.275	0.281	0.30	ND	92	94	70-130	2.29	20
Surrogate Recovery									
2-Fluorotoluene	0.0932	0.0951	0.10		93	95	70-130	2.03	20

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 1601A41 ClientCode: PEO

	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bill	to:		Red	quested TAT:	3 days;
Bob Clark-Riddell	Email: BRid	ddell@pangea	aenv.com	E	Bob Clark-Ridd	ell			-
Pangea Environmental Svcs., Inc.	cc/3rd Party:			F	Pangea Enviro	nmental Svcs., Ir	nc.		
1710 Franklin Street, Ste. 200	PO:			1	1710 Franklin S	Street, Ste. 200	Da	te Received:	01/27/2016
Oakland, CA 94612	ProjectNo: 490	1 Broadway		(Dakland, CA 94	1612	Da	te Logged:	01/27/2016
(510) 836-3700 FAX: (510) 836-370	9								

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1601A41-001	PB-1-1'	Soil	1/27/2016 10:40		Α		А	Α								
1601A41-002	PB-1-3'	Soil	1/27/2016 10:45		Α		А	Α								
1601A41-003	PB-1-5;	Soil	1/27/2016 15:15		Α		А	Α								
1601A41-004	PB-2-1'	Soil	1/27/2016 11:15		Α		А	Α								
1601A41-005	PB-2-3'	Soil	1/27/2016 11:20		Α		А	Α								
1601A41-006	PB-2-5'	Soil	1/27/2016 14:35		Α		А	Α								
1601A41-007	PB-3-1'	Soil	1/27/2016 13:00		Α		А	Α								
1601A41-008	PB-3-3'	Soil	1/27/2016 13:10		Α		А	Α								
1601A41-009	PB-3-5'	Soil	1/27/2016 13:30		Α		Α	Α								
1601A41-010	PB-4-1'	Soil	1/27/2016 12:15		Α		Α	Α								
1601A41-011	PB-4-3'	Soil	1/27/2016 12:25		Α		А	Α								
1601A41-012	PB-4-5'	Soil	1/27/2016 12:55			Α	Α	Α								

Test Legend:

1	8010BMS_S	2	8260B_S	3	G-MBTEX_S	4	TPH(DMO)_S
5		6		7		8	
9		10		11		12	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Briana Cutino

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PANGEA ENVIRONMENTAL SVCS., INC.	QC Level: LEVEL 2	Work Order: 1601A41
Project:	4901 Broadway	Client Contact: Bob Clark-Riddell	Date Logged: 1/27/2016

Comments: Contact's Email: BRiddell@pangeaenv.com

		WaterTrax	WriteOn	EDF	Excel	Fax Email	HardC	opyThirdPar	ty 🗀 🔾	I-flag
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1601A41-001A	PB-1-1'	Soil	Multi-Range	ΓΡΗ(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 10:40	3 days	
			SW8260B (H	VOCs List)					3 days	
1601A41-002A	PB-1-3'	Soil	Multi-Range	ΓΡΗ(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 10:45	3 days	
			SW8260B (H	VOCs List)					3 days	
1601A41-003A	PB-1-5;	Soil	Multi-Range	ΓPH(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 15:15	3 days	
			SW8260B (H	VOCs List)					3 days	
1601A41-004A	PB-2-1'	Soil	Multi-Range	ΓPH(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 11:15	3 days	
			SW8260B (H	VOCs List)					3 days	
1601A41-005A	PB-2-3'	Soil	Multi-Range	ΓΡΗ(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 11:20	3 days	
			SW8260B (H	VOCs List)					3 days	
1601A41-006A	PB-2-5'	Soil	Multi-Range	ΓΡΗ(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 14:35	3 days	
			SW8260B (H	VOCs List)					3 days	
1601A41-007A	PB-3-1'	Soil	Multi-Range	ΓΡΗ(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 13:00	3 days	
			SW8260B (H	VOCs List)					3 days	
1601A41-008A	PB-3-3'	Soil	Multi-Range	ΓΡΗ(g,d,mo)	1	Stainless Steel tube 2"x6"		1/27/2016 13:10	3 days	
			SW8260B (H	VOCs List)					3 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PANGEA ENVIRONMENTAL SVCS., INC.	QC Level: LEVEL 2	Work Order: 1601A41
Project:	4901 Broadway	Client Contact: Bob Clark-Riddell	Date Logged: 1/27/2016

Comments: Contact's Email: BRiddell@pangeaenv.com

		WaterTrax	WriteOn	EDF	Excel	Fax Fmail	HardC	opy ThirdPart	у	J-flag
Lab ID	Client ID	Matrix	Test Name		Containers /Composite		e De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1601A41-009A	PB-3-5'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6	5"	1/27/2016 13:30	3 days	
			SW8260B (HV	OCs List)					3 days	
1601A41-010A	PB-4-1'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6	5"	1/27/2016 12:15	3 days	
			SW8260B (HV	OCs List)					3 days	
1601A41-011A	PB-4-3'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6	5"	1/27/2016 12:25	3 days	
			SW8260B (HV	OCs List)					3 days	
1601A41-012A	PB-4-5'	Soil	Multi-Range TI	PH(g,d,mo)	1	Stainless Steel tube 2"x6	5"	1/27/2016 12:55	3 days	
			SW8260B (VO	Cs)					3 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	AWA.	
1	185)
1		
		1

CHAIN OF CUSTODY RECORD

	1534 Wil	low Pa	ı ıss Rd. /	Pitt	sbur	g, C	; a. 9	456	5-17	01	١.	ľ	11-	K	H	TU	RN.	ARC	UN	D T	IME	: RU	JSH [l DA	Υ□	2	DAY		3 DA	Y	3 :	5 DA	Υ	ן נ
V	ww.mcc Telepho	ampb	ell.com	/ r	mair	@m	cca	mpl	oell.	cor	n	Ø	"	()	1 }	Geo	Trac	ker E	DF []	PDF		EDD		Write	On	(DW		EQ	uIS []	À	10 DA	Υ	ן נ
	relepho	ne. (6/	7 232-	720	Z / F	ux.	723	1 23.	2-72	.07						Eff	luent	Sam	ple I	Requ	iring	"J"	flag		UST	Clea	n Up	Fun	d Pr	oject	□ ;	Clair	n #	_	_]
Report To: Bab	Clark-	2 N 6	Lell		Bil	l To:	F	and	neo	L		-							6					Ana	lysis	Req	uest							Ö.	
	cangea								J				W		1						100										77	T	*- 5 U		
Tele: (500)83	56-370	3			E-1	Mail	b	ر ا ط	le	ne	po	no	es	en	v. c	8015) MTBE	1	/ 5520	.1)		ongener		es)			(s				ietals					
Project #: Project Location:	1100)	Ban	1		Pro	oject	Nan	ne: rder					_			15)		1664	(418	des)	rs/C		bicid)	PNA	*	*		ed m				3	
Sampler Signatu		1	way		1 11	CHA	3C O	iuci								1/80		ease (pons-	stici	roclo	ides)	Her)Cs)	OCs	Hs/	*(02)	20)**		issolv					
		SAMI	PLING				M	ATF	RIX					THO		as (802	(6	& Gr	drocar	(CI P	3's; A	Pestion P	idic C	V) 09	VS) 07:	10 (PA	0.8 / 60	09 / 80)***	e for D	-			. [
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	нсг	HNO3	Other	BTEX & TPH as Gas (8021/	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)***	LUFT 5 Metals (200.8 / 6020)***	Metals (200.8 / 6020)***	Lab to Filter sample for Dissolved metals analysis	TPHScan	8010	The state of the s		
PB-1-1'		1-27.16	1040	1	4				X	-				4		111	11	- 1	S									=			×	×	Com	-	
B-1-31		1	1045)					Ø		Het					1				£.,.					£			J.			X	X			
PB-1-5'			1515	1					0												2							2			χ	X			
PB-1-5'		1115	M	1					X							+					16										χ	X			
B-2-3'		1	1120	1	4.4				X				15.2												2						X	X			
B-2-3'			1435	1	- 47				X													16						2			χ	X			
B-3-11			1300	1	- 0.				X																						X	X			
B-3-3			1310	1	-		-		X	11-11	1											ķ-						V-1			X	X			
B-3-5		4	1330	-1		1 9			X			П																	-14		X	X			
B-4-1'			1215	1		1.0			X			П	-					_ a ^c													X	X			-10
PB-4-3'	11	DD -/6	1235	1					X							P											-0				X	Y			
*MAI clients MUST disc																															glove	d, ope	en air,	samp	le
** If metals are reques	ted for water s	amples ar	nd the wate	er type	e is no	spec	ified o	n the o	hain	of cu	stody	ther	n MAI	will c	lefaul	t to m	etals	by E20	00.8.																
Relinguished By:	1/2	Date: 27//6	Time			eived		>		100	fi.			I I C	CE/t ^o GOOI IEAI	O CO SPA	NDIT	TION BSE	NT_	_	_		7			. (COM	MEN	TS:			X.			
Relinquished By:	100	Date:	Time	:]	Reç	ived	By:							įΑ	PPR	OPR	RINA' IATE ED IN	CON	TAI		ŝ	_													
Relinquished By:		Date:	Time	:	Reco	eived	Ву:		2					P	RES	ERV	ATIC				G ! p	META H<2_	ALS	от	HER		HAZ	ARDC	US:		2				1

CHAIN OF COSTODE RECORD	CHAIN	OF CUSTODY	RECORD
-------------------------	-------	------------	--------

	VICC	am	PDE	اات	\wedge	IIC	ai y	110	_(и,	11 1	C	•																		4	^			- 1
	1534 Wi															TU	RN	ARC	UN	D T	IME	: RI	JSH		I DA	Y 🔲	2	DAY		3 D/	AY		5 DA	Y 🔲	
<u> </u>	vww.mcc Telepho										n					Geo	Trac	ker E	DF []	PDF		EDD		Write	e On	(DW		EQ	uIS [⊐		10 DA	Y□	
	relepric	nie. (67	7 252-	-720	2/1	ux.	(723	0) 20	12-72	207				•		Eff	luen	t Sam	ple I	Requ	iring	"J"	flag[UST	Clea	n Up	Fun	ıd Pı	oject	□;	Clair	n#		_
							79						-							Ŀ													1		
Report To: 60	b Cla	rk-R	1 2 dell		Bil	l To:	Y	an	900	5					- 1	_		_	-		_	** 		Ana	lysis	Reg	uest	_		_		_		_	-
Company: P	angea	En	v. 5	V5.					_												ş			a 1				=						. *	
Tele: (510) 8	21 24	42	111111111111		F_	Mail	·h	-12	20	11 0	21	\ ma	100	A 10 1		BE		520			gener	to the second								ls			1		
Project #:	30-51				Pro	Mail oject	Nan	ne:	الما	11 60	Pi	ini	Jan	en	v .C	MT		5/5	8.1)		Cong		des)			4s)				meta					
Project Location	4901	Broa	dway			rcha			·#							8015)		(166	s (41	ides)	ors/		rbici		s)	PN.	*	水水		ved			- 1		- 1
Sampler Signatur			(1/ 8(-	ease	rbon	estic	rock	cides	l He	OCs)	70C	Hs/	020)	(07)		issol			-1		- 1
		SAMI	PLING				M	[AT]	RIX					ETHO SERV		Gas (8021/	(Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515/8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)***	LUFT 5 Metals (200.8 / 6020)***	***(Lab to Filter sample for Dissolved metals analysis	an	77			
	.			s.	L		er				2.0	П			× .	as G	8015	n Oi	n Hy	8081	PCI	I (N	1 (Ac	1 / 82	5 / 82	[/ 83	s (20	(200	6020	mpl	50	0	- 1		- 1
SAMPLE ID	Location/ Field Point			Containers	/ate	ter	Wat	ě.				П				ЪН	esel (oleur	oleur	/ 809	8082	814	815	/ 62	/ 62	SIN	Ietal	etals	0.8	er sa	V	~	1		
	Name	Date	Time	nta	A pu	e W	ing	Vate			e,					(%)	as Di	Petr F)	Petr	/505/	/ 809	/ 105	15/	524.2	525.2	8270	17 N	. 5 M	s (20	Filts	PH	0			-1
					Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO3	Other	BTEX	TPH as Diesel (8015)	otal //B&	otal	PA :	PA (PA :	PA :	PA :	PA :	PA	AM	UFT.	Metals (200.8 / 6020)***	Lab to analysi	1	00			
2 - 1 -	-		N 000	#		-	_	S	S	7	S	\dashv	_	I		-	_	T H		H	н	-		Η	-	1	_	1	_	Пв	10	24	\dashv	-	4
PB-4-5	1	127/16	1255	1					X			Н	0																		X	X		_	_
							- 1	V.				Ц			87																			0 =	
												Ц		25								_													
													- 5																						
																			X		71														
																									×					The protection of		VI .			
									-				- 13		0.00							-			=1									1500	E 140°
Å .										1		П	-														iv	100			T.				
						11	1.1					П													=				7.5		7		4		
						l de	.1					П					J.					18							- 7						
**MAI clients MUST disc handling by MAI staff. I	lose any dang	gerous che	micals kno	own to	be pr	esent	in thei	r subr	nitted	samp	les in	con	centr	ations	that	may o	ause	imme	diate	harm	or se	ious f	uture i	ealth	endo	ingerr	nent o	is a re	sult o	f brief,	glove	d, op	en air,	sampl	e
										27										101 70	,01 011	acisia	numg	unu i	or unc	, mig	03 10	WOIK .	Juiciy	111					
*** If metals are reques Relinquished By:	led for water s	Date:	Time			ived I		n me	Chain	01 00	slouy	inei	IMA	$\overline{}$	CE/t		eiuis	Dy EZC	0.6.							(COM	MEN	TS:						\neg
fold -	_ 1/.	27/12	193	30	1)_		_		73					D CO SPA		TION_ ABSE	NT	_															
Relinquished By:		Date:	Time	:	Rece	ived l	ξų:	•							ECH	ILOR	RINA	TED	IN LA																
			8	ĺ														CON N LAI		NEK	>	-													
Relinquished By:		Date:	Time	:	Rece	ived l	By:						-	\dashv				VO	AS	0.8.	G N	иет	LS	ОТ	нгр	1	HAZ	ARDO)IIS.						
							311							P	RES	ERV	ATIC		AS	Oce		H<2_		OII	LIER		TAL.	KDC	,03.						
		And the second second		-			- V			كالستارات	CITIES.												_							73.5+0+5777V					

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №: Carrier:	Pangea Environmental Svcs., Inc. 4901 Broadway 1601A41 Matrix: Soil Client Drop-In			Date and Time Received: Date Logged: Received by: Logged by:	1/27/2016 19:30 1/27/2016 Jena Alfaro Briana Cutino	
	Chain of C	ustody	/ (COC) I	nformation		
Chain of custody	present?	Yes	✓	No 🗌		
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌		
Date and Time o	f collection noted by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?	Yes	✓	No 🗆		
	Sampl	e Rece	eipt Infor	<u>mation</u>		
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗸	
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗆		
Samples in prope	er containers/bottles?	Yes	✓	No 🗆		
Sample containe	ers intact?	Yes	✓	No 🗌		
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗌		
	Sample Preservation	on and	Hold Tir	me (HT) Information		
All samples rece	ived within holding time?	Yes	✓	No 🗌		
Sample/Temp BI	ank temperature		Temp:		NA 🗹	
Water - VOA vial	ls have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹	
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌		
pH acceptable up	pon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹	
Samples Receive	ed on Ice?	Yes		No 🗸		
	tested and acceptable upon receipt for EPA 522?	Yes		No 🗆	NA ☑	
Free Chlorine t 300.1, 537, 539	tested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌	NA 🗹	
* NOTE: If the "N	lo" box is checked, see comments below.					
Comments:	=========			======	=======	

"When Quality Counts"

Analytical Report

WorkOrder: 1601A90 **Amended:** 02/03/2016

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact: Bob Clark-Riddell

Project P.O.:

Project Name: 4901 Broadway

Project Received: 01/28/2016

Analytical Report reviewed & approved for release on 02/01/2016 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 4901 Broadway

WorkOrder: 1601A90

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

d7 strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

e2 diesel range compounds are significant; no recognizable pattern

e7 oil range compounds are significant e8 kerosene/kerosene range/jet fuel range

1601A90

Analytical Report

Client: Pangea Environmental Svcs., Inc. WorkOrder:

Date Received: 1/28/16 19:55 Extraction M

Date Received:1/28/16 19:55Extraction Method:SW5030BDate Prepared:1/29/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: μg/L

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
PB-1-W	1601A90-001B	Water	01/28/20)16 10:45	GC16	115990
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND		0.50	1		01/29/2016 01:22
Bromochloromethane	ND		0.50	1		01/29/2016 01:22
Bromodichloromethane	ND		0.50	1		01/29/2016 01:22
Bromoform	ND		0.50	1		01/29/2016 01:22
Bromomethane	ND		0.50	1		01/29/2016 01:22
Carbon Tetrachloride	ND		0.50	1		01/29/2016 01:22
Chlorobenzene	ND		0.50	1		01/29/2016 01:22
Chloroethane	ND		0.50	1		01/29/2016 01:22
Chloroform	ND		0.50	1		01/29/2016 01:22
Chloromethane	ND		0.50	1		01/29/2016 01:22
2-Chlorotoluene	ND		0.50	1		01/29/2016 01:22
4-Chlorotoluene	ND		0.50	1		01/29/2016 01:22
Dibromochloromethane	ND		0.50	1		01/29/2016 01:22
1,2-Dibromo-3-chloropropane	ND		0.20	1		01/29/2016 01:22
1,2-Dibromoethane (EDB)	ND		0.50	1		01/29/2016 01:22
Dibromomethane	ND		0.50	1		01/29/2016 01:22
1,2-Dichlorobenzene	ND		0.50	1		01/29/2016 01:22
1,3-Dichlorobenzene	ND		0.50	1		01/29/2016 01:22
1,4-Dichlorobenzene	ND		0.50	1		01/29/2016 01:22
Dichlorodifluoromethane	ND		0.50	1		01/29/2016 01:22
1,1-Dichloroethane	ND		0.50	1		01/29/2016 01:22
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		01/29/2016 01:22
1,1-Dichloroethene	ND		0.50	1		01/29/2016 01:22
cis-1,2-Dichloroethene	ND		0.50	1		01/29/2016 01:22
trans-1,2-Dichloroethene	ND		0.50	1		01/29/2016 01:22
1,2-Dichloropropane	ND		0.50	1		01/29/2016 01:22
1,3-Dichloropropane	ND		0.50	1		01/29/2016 01:22
2,2-Dichloropropane	ND		0.50	1		01/29/2016 01:22
1,1-Dichloropropene	ND		0.50	1		01/29/2016 01:22
cis-1,3-Dichloropropene	ND		0.50	1		01/29/2016 01:22
trans-1,3-Dichloropropene	ND		0.50	1		01/29/2016 01:22
Freon 113	ND		0.50	1		01/29/2016 01:22
Hexachlorobutadiene	ND		0.50	1		01/29/2016 01:22
Hexachloroethane	ND		0.50	1		01/29/2016 01:22
Methylene chloride	ND		0.50	1		01/29/2016 01:22
1,1,1,2-Tetrachloroethane	ND		0.50	1		01/29/2016 01:22
1,1,2,2-Tetrachloroethane	ND		0.50	1		01/29/2016 01:22

(Cont.)

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030BDate Prepared:1/29/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: $\mu g/L$

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID Ma	atrix Date Co	ollected Instrument	Batch ID
PB-1-W	1601A90-001B Wa	ter 01/28/20	16 10:45 GC16	115990
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND	0.50	1	01/29/2016 01:22
1,2,3-Trichlorobenzene	ND	0.50	1	01/29/2016 01:22
1,2,4-Trichlorobenzene	ND	0.50	1	01/29/2016 01:22
1,1,1-Trichloroethane	ND	0.50	1	01/29/2016 01:22
1,1,2-Trichloroethane	ND	0.50	1	01/29/2016 01:22
Trichloroethene	ND	0.50	1	01/29/2016 01:22
Trichlorofluoromethane	ND	0.50	1	01/29/2016 01:22
1,2,3-Trichloropropane	ND	0.50	1	01/29/2016 01:22
Vinyl Chloride	ND	0.50	1	01/29/2016 01:22
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>		
Dibromofluoromethane	93	70-130		01/29/2016 01:22
Toluene-d8	83	70-130		01/29/2016 01:22
4-BFB	82	70-130		01/29/2016 01:22
Analyst(s): AK				

 $\mu g/L$

4901 Broadway

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030B

Date Prepared: 1/29/16 Analytical Method: SW8260B

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Unit:

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-2-W	1601A90-002B	Water	01/28/20	16 11:15 GC16	115990
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.50	1	01/29/2016 02:01
Bromochloromethane	ND		0.50	1	01/29/2016 02:01
Bromodichloromethane	ND		0.50	1	01/29/2016 02:01
Bromoform	ND		0.50	1	01/29/2016 02:01
Bromomethane	ND		0.50	1	01/29/2016 02:01
Carbon Tetrachloride	ND		0.50	1	01/29/2016 02:01
Chlorobenzene	ND		0.50	1	01/29/2016 02:01
Chloroethane	ND		0.50	1	01/29/2016 02:01
Chloroform	ND		0.50	1	01/29/2016 02:01
Chloromethane	ND		0.50	1	01/29/2016 02:01
2-Chlorotoluene	ND		0.50	1	01/29/2016 02:01
4-Chlorotoluene	ND		0.50	1	01/29/2016 02:01
Dibromochloromethane	ND		0.50	1	01/29/2016 02:01
1,2-Dibromo-3-chloropropane	ND		0.20	1	01/29/2016 02:01
1,2-Dibromoethane (EDB)	ND		0.50	1	01/29/2016 02:01
Dibromomethane	ND		0.50	1	01/29/2016 02:01
1,2-Dichlorobenzene	ND		0.50	1	01/29/2016 02:01
1,3-Dichlorobenzene	ND		0.50	1	01/29/2016 02:01
1,4-Dichlorobenzene	ND		0.50	1	01/29/2016 02:01
Dichlorodifluoromethane	ND		0.50	1	01/29/2016 02:01
1,1-Dichloroethane	ND		0.50	1	01/29/2016 02:01
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1	01/29/2016 02:01
1,1-Dichloroethene	ND		0.50	1	01/29/2016 02:01
cis-1,2-Dichloroethene	ND		0.50	1	01/29/2016 02:01
trans-1,2-Dichloroethene	ND		0.50	1	01/29/2016 02:01
1,2-Dichloropropane	ND		0.50	1	01/29/2016 02:01
1,3-Dichloropropane	ND		0.50	1	01/29/2016 02:01
2,2-Dichloropropane	ND		0.50	1	01/29/2016 02:01
1,1-Dichloropropene	ND		0.50	1	01/29/2016 02:01
cis-1,3-Dichloropropene	ND		0.50	1	01/29/2016 02:01
trans-1,3-Dichloropropene	ND		0.50	1	01/29/2016 02:01
Freon 113	ND		0.50	1	01/29/2016 02:01
Hexachlorobutadiene	ND		0.50	1	01/29/2016 02:01
Hexachloroethane	ND		0.50	1	01/29/2016 02:01
Methylene chloride	ND		0.50	1	01/29/2016 02:01
1,1,1,2-Tetrachloroethane	ND		0.50	1	01/29/2016 02:01
1,1,2,2-Tetrachloroethane	ND		0.50	1	01/29/2016 02:01

(Cont.)

Project:

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030BDate Prepared:1/29/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: $\mu g/L$

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-2-W	1601A90-002B	Water	01/28/20	16 11:15 GC16	115990
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND		0.50	1	01/29/2016 02:01
1,2,3-Trichlorobenzene	ND		0.50	1	01/29/2016 02:01
1,2,4-Trichlorobenzene	ND		0.50	1	01/29/2016 02:01
1,1,1-Trichloroethane	ND		0.50	1	01/29/2016 02:01
1,1,2-Trichloroethane	ND		0.50	1	01/29/2016 02:01
Trichloroethene	ND		0.50	1	01/29/2016 02:01
Trichlorofluoromethane	ND		0.50	1	01/29/2016 02:01
1,2,3-Trichloropropane	ND		0.50	1	01/29/2016 02:01
Vinyl Chloride	ND		0.50	1	01/29/2016 02:01
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	91		70-130		01/29/2016 02:01
Toluene-d8	83		70-130		01/29/2016 02:01
4-BFB	83		70-130		01/29/2016 02:01
Analyst(s): AK					

Analytical Report

Client: Pangea Environmental Svcs., Inc. WorkOrder:

1601A90

Date Received: 1/28/16 19:55

Extraction Method: SW5030B

Date Prepared: 1/29/16

Analytical Method: SW8260B

Project: 4901 Broadway **Unit:** $\mu g/L$

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-3-W	1601A90-003B	Water	01/28/20	016 11:00 GC16	115990
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND		0.50	1	01/29/2016 02:41
Bromochloromethane	ND		0.50	1	01/29/2016 02:41
Bromodichloromethane	ND		0.50	1	01/29/2016 02:41
Bromoform	ND		0.50	1	01/29/2016 02:41
Bromomethane	ND		0.50	1	01/29/2016 02:41
Carbon Tetrachloride	ND		0.50	1	01/29/2016 02:41
Chlorobenzene	ND		0.50	1	01/29/2016 02:41
Chloroethane	ND		0.50	1	01/29/2016 02:41
Chloroform	ND		0.50	1	01/29/2016 02:41
Chloromethane	ND		0.50	1	01/29/2016 02:41
2-Chlorotoluene	ND		0.50	1	01/29/2016 02:41
4-Chlorotoluene	ND		0.50	1	01/29/2016 02:41
Dibromochloromethane	ND		0.50	1	01/29/2016 02:41
1,2-Dibromo-3-chloropropane	ND		0.20	1	01/29/2016 02:41
1,2-Dibromoethane (EDB)	ND		0.50	1	01/29/2016 02:41
Dibromomethane	ND		0.50	1	01/29/2016 02:41
1,2-Dichlorobenzene	ND		0.50	1	01/29/2016 02:41
1,3-Dichlorobenzene	ND		0.50	1	01/29/2016 02:41
1,4-Dichlorobenzene	ND		0.50	1	01/29/2016 02:41
Dichlorodifluoromethane	ND		0.50	1	01/29/2016 02:41
1,1-Dichloroethane	ND		0.50	1	01/29/2016 02:41
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1	01/29/2016 02:41
1,1-Dichloroethene	ND		0.50	1	01/29/2016 02:41
cis-1,2-Dichloroethene	ND		0.50	1	01/29/2016 02:41
trans-1,2-Dichloroethene	ND		0.50	1	01/29/2016 02:41
1,2-Dichloropropane	ND		0.50	1	01/29/2016 02:41
1,3-Dichloropropane	ND		0.50	1	01/29/2016 02:41
2,2-Dichloropropane	ND		0.50	1	01/29/2016 02:41
1,1-Dichloropropene	ND		0.50	1	01/29/2016 02:41
cis-1,3-Dichloropropene	ND		0.50	1	01/29/2016 02:41
trans-1,3-Dichloropropene	ND		0.50	1	01/29/2016 02:41
Freon 113	ND		0.50	1	01/29/2016 02:41
Hexachlorobutadiene	ND		0.50	1	01/29/2016 02:41
Hexachloroethane	ND		0.50	1	01/29/2016 02:41
Methylene chloride	ND		0.50	1	01/29/2016 02:41
1,1,1,2-Tetrachloroethane	ND		0.50	1	01/29/2016 02:41
1,1,2,2-Tetrachloroethane	ND		0.50	1	01/29/2016 02:41

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030BDate Prepared:1/29/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: $\mu g/L$

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID	
PB-3-W	1601A90-003B Water		01/28/20	16 11:00 GC16	115990	
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
Tetrachloroethene	ND		0.50	1	01/29/2016 02:41	
1,2,3-Trichlorobenzene	ND		0.50	1	01/29/2016 02:41	
1,2,4-Trichlorobenzene	ND		0.50	1	01/29/2016 02:41	
1,1,1-Trichloroethane	ND		0.50	1	01/29/2016 02:41	
1,1,2-Trichloroethane	ND		0.50	1	01/29/2016 02:41	
Trichloroethene	ND		0.50	1	01/29/2016 02:41	
Trichlorofluoromethane	ND		0.50	1	01/29/2016 02:41	
1,2,3-Trichloropropane	ND		0.50	1	01/29/2016 02:41	
Vinyl Chloride	ND		0.50	1	01/29/2016 02:41	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	91		70-130		01/29/2016 02:41	
Toluene-d8	85		70-130		01/29/2016 02:41	
4-BFB	78		70-130		01/29/2016 02:41	

Analytical Method: SW8260B

1601A90

Date Prepared: 1/29/16

Analytical Report

WorkOrder:

Client: Pangea Environmental Svcs., Inc.

Date Received: 1/28/16 19:55 **Extraction Method:** SW5030B

Project: 4901 Broadway Unit: μg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID Ma	trix Date Collected Instrument	Batch ID
PB-4-W	1601A90-004B Wat	er 01/28/2016 10:30 GC16	115990
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Acetone	13	10 1	01/29/2016 03:21
tert-Amyl methyl ether (TAME)	ND	0.50 1	01/29/2016 03:21
Benzene	ND	0.50 1	01/29/2016 03:21
Bromobenzene	ND	0.50 1	01/29/2016 03:21
Bromochloromethane	ND	0.50 1	01/29/2016 03:21
Bromodichloromethane	ND	0.50 1	01/29/2016 03:21
Bromoform	ND	0.50 1	01/29/2016 03:21
Bromomethane	ND	0.50 1	01/29/2016 03:21
2-Butanone (MEK)	ND	2.0 1	01/29/2016 03:21
t-Butyl alcohol (TBA)	5.0	2.0 1	01/29/2016 03:21
n-Butyl benzene	ND	0.50 1	01/29/2016 03:21
sec-Butyl benzene	ND	0.50 1	01/29/2016 03:21
tert-Butyl benzene	ND	0.50 1	01/29/2016 03:21
Carbon Disulfide	ND	0.50 1	01/29/2016 03:21
Carbon Tetrachloride	ND	0.50 1	01/29/2016 03:21
Chlorobenzene	ND	0.50 1	01/29/2016 03:21
Chloroethane	ND	0.50 1	01/29/2016 03:21
Chloroform	ND	0.50 1	01/29/2016 03:21
Chloromethane	ND	0.50 1	01/29/2016 03:21
2-Chlorotoluene	ND	0.50 1	01/29/2016 03:21
4-Chlorotoluene	ND	0.50 1	01/29/2016 03:21
Dibromochloromethane	ND	0.50 1	01/29/2016 03:21
1,2-Dibromo-3-chloropropane	ND	0.20 1	01/29/2016 03:21
1,2-Dibromoethane (EDB)	ND	0.50 1	01/29/2016 03:21
Dibromomethane	ND	0.50 1	01/29/2016 03:21
1,2-Dichlorobenzene	ND	0.50 1	01/29/2016 03:21
1,3-Dichlorobenzene	ND	0.50 1	01/29/2016 03:21
1,4-Dichlorobenzene	ND	0.50 1	01/29/2016 03:21
Dichlorodifluoromethane	ND	0.50 1	01/29/2016 03:21
1,1-Dichloroethane	ND	0.50 1	01/29/2016 03:21
1,2-Dichloroethane (1,2-DCA)	ND	0.50 1	01/29/2016 03:21
1,1-Dichloroethene	ND	0.50 1	01/29/2016 03:21
cis-1,2-Dichloroethene	ND	0.50 1	01/29/2016 03:21
trans-1,2-Dichloroethene	ND	0.50 1	01/29/2016 03:21
1,2-Dichloropropane	ND	0.50 1	01/29/2016 03:21
1,3-Dichloropropane	ND	0.50 1	01/29/2016 03:21
2,2-Dichloropropane	ND	0.50 1	01/29/2016 03:21

(Cont.)

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030BDate Prepared:1/29/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: μg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
PB-4-W	1601A90-004B	Water	01/28/20	016 10:30 GC16	115990
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.50	1	01/29/2016 03:21
cis-1,3-Dichloropropene	ND		0.50	1	01/29/2016 03:21
trans-1,3-Dichloropropene	ND		0.50	1	01/29/2016 03:21
Diisopropyl ether (DIPE)	ND		0.50	1	01/29/2016 03:21
Ethylbenzene	ND		0.50	1	01/29/2016 03:21
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	01/29/2016 03:21
Freon 113	ND		0.50	1	01/29/2016 03:21
Hexachlorobutadiene	ND		0.50	1	01/29/2016 03:21
Hexachloroethane	ND		0.50	1	01/29/2016 03:21
2-Hexanone	ND		0.50	1	01/29/2016 03:21
Isopropylbenzene	ND		0.50	1	01/29/2016 03:21
4-Isopropyl toluene	ND		0.50	1	01/29/2016 03:21
Methyl-t-butyl ether (MTBE)	ND		0.50	1	01/29/2016 03:21
Methylene chloride	ND		0.50	1	01/29/2016 03:21
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	01/29/2016 03:21
Naphthalene	ND		0.50	1	01/29/2016 03:21
n-Propyl benzene	ND		0.50	1	01/29/2016 03:21
Styrene	ND		0.50	1	01/29/2016 03:21
1,1,1,2-Tetrachloroethane	ND		0.50	1	01/29/2016 03:21
1,1,2,2-Tetrachloroethane	ND		0.50	1	01/29/2016 03:21
Tetrachloroethene	ND		0.50	1	01/29/2016 03:21
Toluene	ND		0.50	1	01/29/2016 03:21
1,2,3-Trichlorobenzene	ND		0.50	1	01/29/2016 03:21
1,2,4-Trichlorobenzene	ND		0.50	1	01/29/2016 03:21
1,1,1-Trichloroethane	ND		0.50	1	01/29/2016 03:21
1,1,2-Trichloroethane	ND		0.50	1	01/29/2016 03:21
Trichloroethene	ND		0.50	1	01/29/2016 03:21
Trichlorofluoromethane	ND		0.50	1	01/29/2016 03:21
1,2,3-Trichloropropane	ND		0.50	1	01/29/2016 03:21
1,2,4-Trimethylbenzene	ND		0.50	1	01/29/2016 03:21
1,3,5-Trimethylbenzene	ND		0.50	1	01/29/2016 03:21
Vinyl Chloride	ND		0.50	1	01/29/2016 03:21
Xylenes, Total	ND		0.50	1	01/29/2016 03:21

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030BDate Prepared:1/29/16Analytical Method:SW8260B

Project: 4901 Broadway Unit: μg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID Matri	ix Date Collected Instrument	Batch ID
PB-4-W	1601A90-004B Water	01/28/2016 10:30 GC16	115990
<u>Analytes</u>	<u>Result</u>	<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)	<u>Limits</u>	
Dibromofluoromethane	91	70-130	01/29/2016 03:21
Toluene-d8	85	70-130	01/29/2016 03:21
4-BFB	81	70-130	01/29/2016 03:21

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030B

Date Prepared: 1/29/16 Analytical Method: SW8021B/8015Bm

Project: 4901 Broadway **Unit:** μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-1-W	1601A90-001A Water	01/28/2016 10:45 GC3	115943
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	50 1	01/29/2016 03:42
MTBE	ND	5.0 1	01/29/2016 03:42
Benzene	ND	0.50 1	01/29/2016 03:42
Toluene	ND	0.50 1	01/29/2016 03:42
Ethylbenzene	ND	0.50 1	01/29/2016 03:42
Xylenes	ND	1.5 1	01/29/2016 03:42
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
aaa-TFT	102	70-130	01/29/2016 03:42
Analyst(s): SS			

Client ID Lab ID Matrix **Date Collected Instrument Batch ID** PB-2-W 1601A90-002A 01/28/2016 11:15 GC3 115943 Water **Analytes** Result <u>RL</u> <u>DF</u> **Date Analyzed** ND 50 1

TPH(g) 01/29/2016 04:12 MTBE ND 5.0 01/29/2016 04:12 1 Benzene ND 0.50 1 01/29/2016 04:12 Toluene ND 0.50 1 01/29/2016 04:12 ND 0.50 1 01/29/2016 04:12 Ethylbenzene **Xylenes** ND 1.5 1 01/29/2016 04:12

 Surrogates
 REC (%)
 Limits

 aaa-TFT
 107
 70-130
 01/29/2016 04:12

Analyst(s): SS

Angela Rydelius, Lab Manager

Analytical Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Received:1/28/16 19:55Extraction Method:SW5030B

Date Prepared: 1/29/16 Analytical Method: SW8021B/8015Bm

Project: 4901 Broadway **Unit:** μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
PB-3-W	1601A90-003A Water	01/28/2016 11:00 GC3	115943
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	50 1	01/29/2016 05:41
MTBE	ND	5.0 1	01/29/2016 05:41
Benzene	ND	0.50 1	01/29/2016 05:41
Toluene	ND	0.50 1	01/29/2016 05:41
Ethylbenzene	ND	0.50 1	01/29/2016 05:41
Xylenes	ND	1.5 1	01/29/2016 05:41
<u>Surrogates</u>	REC (%)	<u>Limits</u>	
aaa-TFT	98	70-130	01/29/2016 05:41
Analyst(s): SS			

Client ID Lab ID Matrix **Date Collected Instrument Batch ID** PB-4-W 1601A90-004A 01/28/2016 10:30 GC3 115943 Water **Analytes** Result <u>RL</u> <u>DF</u> **Date Analyzed** TPH(g) 54 50 1 01/29/2016 14:30 MTBE ND 5.0 01/29/2016 14:30 1 Benzene 0.50 1 01/29/2016 14:30 Toluene ND 0.50 1 01/29/2016 14:30 ND 0.50 1 01/29/2016 14:30 Ethylbenzene **Xylenes** ND 1.5 1 01/29/2016 14:30 Surrogates **REC (%) Limits** aaa-TFT 94 70-130 01/29/2016 14:30 Analyst(s): HD Analytical Comments: d7

Analytical Report

Client: Pangea Environmental Svcs., Inc.

WorkOrder:

1601A90

Date Received: 1/28/16 19:55

Extraction Method: SW3510C

Date Prepared: 1/28/16

Analytical Method: SW8015B

Project: 4901 Broadway

Unit: $\mu g/L$

Tota	l Extractable Petro	leum Hyd	lrocarbons w/out SG Clean-Up	
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
PB-1-W	1601A90-001A	Water	01/28/2016 10:45 GC2A	115975
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	160		50 1	01/29/2016 12:29
TPH-Motor Oil (C18-C36)	ND		250 1	01/29/2016 12:29
Surrogates	<u>REC (%)</u>		<u>Limits</u>	
C9	90		70-130	01/29/2016 12:29
Analyst(s): TK			Analytical Comments: e2	
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
PB-2-W	1601A90-002A	Water	01/28/2016 11:15 GC2A	115975
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	190		50 1	01/29/2016 13:46
TPH-Motor Oil (C18-C36)	290		250 1	01/29/2016 13:46
Surrogates	<u>REC (%)</u>		<u>Limits</u>	
C9	91		70-130	01/29/2016 13:46
Analyst(s): TK			Analytical Comments: e7,e2	
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
PB-3-W	1601A90-003A	Water	01/28/2016 11:00 GC2A	115975
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	180		50 1	01/29/2016 16:33

250

Limits

70-130

Analytical Comments: e2

TPH-Motor Oil (C18-C36)

Surrogates

Analyst(s): TK

C9

ND

92

REC (%)

01/29/2016 16:33

01/29/2016 16:33

1601A90

Analytical Report

Client: WorkOrder: Pangea Environmental Svcs., Inc. **Date Received:** 1/28/16 19:55 **Extraction Method:** SW3510C

Date Prepared: 1/28/16 **Analytical Method:** SW8015B **Project:** 4901 Broadway Unit: $\mu g/L$

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
PB-4-W	1601A90-004A	Water	01/28/20	16 10:30 GC6B	115975
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	5200		1000	20	02/01/2016 10:50
TPH-Motor Oil (C18-C36)	27,000		5000	20	02/01/2016 10:50
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	126		70-130		02/01/2016 10:50
Analyst(s): TK			Analytical Com	ments: e7,e8	

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Prepared:1/28/16BatchID:115990Date Analyzed:1/28/16Extraction Method:SW5030BInstrument:GC16Analytical Method:SW8260B

Matrix: Water Unit: $\mu g/L$

Project: 4901 Broadway Sample ID: MB/LCS-115990

1601A72-001AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	8.88	0.50	10	-	89	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	8.63	0.50	10	-	86	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	8.61	0.50	10	-	86	66-125
1,1-Dichloroethene	ND	8.47	0.50	10	-	85	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
Methylene chloride	ND	-	0.50	-	-	-	=
Naphthalene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Prepared:1/28/16BatchID:115990Date Analyzed:1/28/16Extraction Method:SW5030BInstrument:GC16Analytical Method:SW8260B

Matrix: Water Unit: $\mu g/L$

Project: 4901 Broadway **Sample ID:** MB/LCS-115990

1601A72-001AMS/MSD

QC Summary Report for SW8260B

	• •					
MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
ND	-	0.50	-	-	-	-
ND	-	0.50	-	-	-	-
ND	-	0.50	-	-	-	-
ND	-	0.50	-	-	-	-
ND	-	0.50	-	-	-	-
ND	-	0.50	-	-	-	-
ND	9.10	0.50	10	-	91	43-157
ND	-	0.50	-	-	-	-
ND	-	0.50	-	-	-	-
ND	-	0.50	-	-	-	-
22.8	23.2		25	91	93	70-130
21.6	21.3		25	86	85	70-130
2.09	2.34		2.5	84	93	70-130
	ND N	Result Result	Result Result ND - 0.50 22.8 23.2 21.6 21.3	Result Result Val ND - 0.50 - ND 9.10 0.50 10 ND - 0.50 - ND - 0.50 - ND - 0.50 - ND - 0.50 - 22.8 23.2 25 21.6 21.3 25	Result Result Val %REC ND - 0.50 - - ND 9.10 0.50 10 - ND - 0.50 - - 22.8 23.2 25 91 21.6 21.3 25 86	Result Result Val %REC %REC ND - 0.50 - - - ND 9.10 0.50 10 - 91 ND - 0.50 - - - 22.8 23.2 25 91 93 21.6 21.3 25 86 85

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Chlorobenzene	10.7	10.5	10	ND	107	105	77-120	2.00	20
1,2-Dibromoethane (EDB)	10.8	10.7	10	ND	108	107	76-135	0.751	20
1,2-Dichloroethane (1,2-DCA)	10.8	10.6	10	ND	108	106	73-139	2.35	20
1,1-Dichloroethene	10.1	9.79	10	ND	101	98	59-140	3.41	20
Trichloroethene	11.2	10.7	10	ND	112	107	64-132	4.78	20
Surrogate Recovery									
Dibromofluoromethane	23.2	23.2	25		93	93	73-131	0	20
Toluene-d8	20.9	20.7	25		84	83	72-117	0.848	20
4-BFB	2.39	2.46	2.5		96	98	74-116	2.70	20

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Prepared:1/27/16BatchID:115943Date Analyzed:1/27/16Extraction Method:SW5030B

Instrument: GC3 **Analytical Method:** SW8021B/8015Bm

Matrix: Water Unit: $\mu g/L$

Project: 4901 Broadway Sample ID: MB/LCS-115943

1601A23-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	57.7	40	60	-	96	70-130
MTBE	ND	8.94	5.0	10	-	89	70-130
Benzene	ND	9.43	0.50	10	-	94	70-130
Toluene	ND	9.57	0.50	10	-	96	70-130
Ethylbenzene	ND	9.68	0.50	10	-	97	70-130
Xylenes	ND	29.2	1.5	30	-	97	70-130

Surrogate Recovery

aaa-TFT 9.67 9.38 10 97 94 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	62.3	59.5	60	ND	104	99	70-130	4.65	20
MTBE	7.93	8.17	10	ND	79	82	70-130	2.97	20
Benzene	9.57	9.41	10	ND	96	94	70-130	1.69	20
Toluene	9.71	9.61	10	ND	97	96	70-130	1.04	20
Ethylbenzene	9.95	9.89	10	ND	99	99	70-130	0	20
Xylenes	29.8	29.9	30	ND	99	100	70-130	0.478	20
Surrogate Recovery									
aaa-TFT	9.53	9.30	10		95	93	70-130	2.46	20

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1601A90Date Prepared:1/28/16BatchID:115975Date Analyzed:1/29/16Extraction Method:SW3510CInstrument:GC11A, GC39AAnalytical Method:SW8015B

 $\begin{tabular}{lll} \textbf{Matrix:} & Water & \textbf{Unit:} & \mu g/L \\ \end{tabular}$

Project: 4901 Broadway Sample ID: MB/LCS-115975

QC Report for SW8015B w/out SG Clean-Up										
MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits				
ND	1010	50	1000	-	101	61-157				
ND	-	250	-	-	-	-				
611	567		625	98	91	65-122				
	MB Result ND ND	MB LCS Result Result ND 1010 ND -	MB Result LCS Result RL ND 1010 50 ND - 250	MB Result LCS Result RL Val SPK Val ND 1010 50 1000 ND - 250 -	MB Result LCS Result RL Val SPK Val MB SS WREC ND 1010 50 1000 - ND - 250 - -	MB Result LCS Result RL Val SPK Val MB SS WREC LCS WREC ND 1010 50 1000 - 101 ND - 250 - - -				

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

1 of 1

01/28/2016

Date Received:

Prepared by: Jena Alfaro

WorkOrder: 1601A90 ClientCode: PEO

□WaterTrax ☐ WriteOn □ EDF Excel **EQuIS** ✓ Email HardCopy ☐ ThirdParty

Report to: Bill to: Requested TAT: 2 days;

Bob Clark-Riddell Email: BRiddell@pangeaenv.com Bob Clark-Riddell

cc/3rd Party: Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200

01/28/2016

Oakland, CA 94612 ProjectNo: 4901 Broadway Oakland, CA 94612 Date Logged: (510) 836-3700 FAX: (510) 836-3709

								Re	quested	Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1601A90-001	PB-1-W	Water	1/28/2016 10:45		В	А	А									
1601A90-002	PB-2-W	Water	1/28/2016 11:15		В	Α	Α									
1601A90-003	PB-3-W	Water	1/28/2016 11:00		В	A	Α									
1601A90-004	PB-4-W	Water	1/28/2016 10:30		В	Α	Α									

Test Legend:

5 6 7 8 9 10 11 12	1 8010BMS_W	2 G-MBTEX_W	3 TPH(DMO)_W	4
9 10 11 12	5	6	7	8
	9	10	11	12

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PANGEA ENVIRONMENTAL SVCS., INC. QC Level: LEVEL 2 Work Order: 1601A90

Project: 4901 Broadway Client Contact: Bob Clark-Riddell Date Logged: 1/28/2016

Comments: Contact's Email: BRiddell@pangeaenv.com

		☐ WaterTrax	WriteOn EDF	Excel	Fax Fmail	HardC	opyThirdPart	у 🗀	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1601A90-001A	PB-1-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		1/28/2016 10:45	2 days	Present	
1601A90-001B	PB-1-W	Water	SW8260B (HVOCs List)	2	VOA w/ HCl		1/28/2016 10:45	2 days	Present	
1601A90-002A	PB-2-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		1/28/2016 11:15	2 days	Present	
1601A90-002B	PB-2-W	Water	SW8260B (HVOCs List)	2	VOA w/ HCl		1/28/2016 11:15	2 days	Present	
1601A90-003A	PB-3-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		1/28/2016 11:00	2 days	Present	
1601A90-003B	PB-3-W	Water	SW8260B (HVOCs List)	2	VOA w/ HCl		1/28/2016 11:00	2 days	Present	
1601A90-004A	PB-4-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		1/28/2016 10:30	2 days	Present	
1601A90-004B	PB-4-W	Water	SW8260B (HVOCs List)	2	VOA w/ HCl		1/28/2016 10:30	2 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1601A90

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 Willow Pass Road **TURN AROUND TIME** Pittsburg, CA 94565 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com EDF Required? Yes No Write On (DW) No Telephone: (925) 252-9262 Fax: (925) 252-9269 Report To: Bob Clark-Riddell Bill To: Pangea Other **Analysis Request** Comments Company: Pangea Environmental Services, Inc. Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 TPH as Diesel (8015) w/ Silica Gel Cleanup Total Petroleum Oil & Grease (5520 E&F/B&F) Five fuel oxygenates by EPA Method 8260 Samples PAH's / PNA's by EPA 625 / 8270 / 8310 E-Mail: briddell@pangeaenv.com Total Petroleum Hydrocarbons (418.1) for Metals Tele: (510) 836-3702 Fax: (510) 836-3709 analysis: Project Name: 4901 Broadway Project #: BTEX ONLY (EPA 602 / 8020) Yes / No EPA 608 / 8082 PCB's ONLY CAM-17 Metals (6010 / 6020) Project Location: 4901 Broadway, Oakland Lead (200.8 / 200.9 / 6010) Sampler Signature: EPA 524.2 / 624 / 8260 METHOD EPA 525 / 625 / 8270 SAMPLING MATRIX Type Containers PRESERVED Scan # Containers EPA 8140 / 8141 EPA 8150 / 8151 EPA 608 / 8081 LOCATION BTEX & TPH SAMPLE ID (Field Point Sludge Water Time HNO3 Other Name) Date TPH Other HCL ICE Soil PB-1-W 1.28.16 1045 NOA X PB-2-W 1115 X PB- 3-W 1100 XX PB-4-W X 1.28.16 1030 ACV ICE/t° COMMENTS: Relinquished By: Date: Time: Received By: GOOD CONDITION 20 1900 HEAD SPACE ABSENT Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION nH<2

Sample Receipt Checklist

Client Name:	Pangea Environmental Svcs., Inc.			Date and Time Received:	1/28/2016 19:00
Project Name:	4901 Broadway			Date Logged:	1/28/2016
WorkOrder №: Carrier:	1601A90 Matrix: Water Client Drop-In			Received by: Logged by:	Jena Alfaro Jena Alfaro
Carner.	Cheft brop-in			Logged by.	Jena Allaio
	Chain of C	Custod	<u>y (COC) I</u>	nformation	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time o	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
	Samp	le Rece	eipt Infor	<u>mation</u>	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	ers intact?	Yes	✓	No 🗌	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservati	on and	Hold Tir	me (HT) Information	
All samples rece	ived within holding time?	Yes	✓	No 🗌	
Sample/Temp Bl	lank temperature		Temp:	3°C	NA 🗌
Water - VOA via	ls have zero headspace / no bubbles?	Yes	✓	No 🗆	NA 🗌
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	pon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗆	NA 🗹
Samples Receive	ed on Ice?	Yes	✓	No 🗆	
	(Ice Typ	e: WE	TICE)	
UCMR3 Samples	s: tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
300.1, 537, 53	tested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌	NA 🗹
* NOTE: If the "N	No" box is checked, see comments below.				
=====				=======	
Comments:					