January 31, 2017

Mr. Keith Nowell Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Ste. 250 Alameda, CA 94502-6577 keith.nowell@acgov.org

RECEIVED

By Alameda County Environmental Health 1:32 pm, Feb 03, 2017

Subject:

Request for Low Threat Closure

3101 35th Avenue, Oakland, CA

Fuel Leak Case No. RO0003164; Global ID T10000006539

Dear Mr. Nowell,

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached *Request for Low Threat Closure* are true and correct to the best of my knowledge.

Sincerely,

Ms. Mona Hsieh

Responsible Party Representative

January 31, 2017

Alameda County Health Care Services Agency Environmental Protection Attn: Mr. Keith Nowell 1131 Harbor Bay Parkway, Ste. 250 Alameda, California 94502 keith.nowell@acgov.org

Subject: Request for Low Threat Closure

Green Oak Builders – RO0003164 3101 35th Avenue, Oakland, California

Dear Mr. Nowell,

On January 18, 2017, Almar Environmental (Almar), the Alameda County Environmental Health Department (ACEH), and the Responsible Party (RP), attended a meeting to discuss the possibility of closing the above referenced fuel release case under the State Water Resource Control Board's (SWRCB's) Low Threat Closure Policy (LTCP). In order for the case to qualify for closure, all general and media-specific criteria of the LTCP must be met. As such, in the following sections each criteria of the LTCP is addressed. Additionally, as requested by the ACEH, a map showing a general over view of neighboring LUFT sites (Figure 2) and a plume length map (Figure 3) are included.

LTCP General Criteria

There are eight specific general criteria (identified as a through h) of the LTCP that must be satisfied prior to closure. The following is a list of each of these eight criteria and whether they have been satisfied or not:

- a. The unauthorized release is located within the service area of a public water system.
 - Yes, this criteria has been met.
- b. The unauthorized release consists only of petroleum.
 - Yes, this criteria has been met. The main constituent of concern (COC) appears to be benzene and, to a lesser extent, total petroleum hydrocarbons as gasoline (TPHg). It should be noted, however, that PCE (a chlorinated solvent) has also been detected in soil gas at the site (Table 3).
- c. The unauthorized ("primary") release from the UST system has been stopped.
 - Yes, this criteria has been met. All known USTs and associated pipes and appurtenant structures have been removed.
- d. Free product has been removed to the maximum extent practicable.
 - **Yes**, this criteria appears has been met. No free product was encountered during tank removal activities or during any historical subsurface investigations at the site
- e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed.

Yes, an initial site conceptual model (SCM) was prepared for the site. The SCM was prepared and presented as part of Almar's Data Gap Investigation Workplan and Site Conceptual Model document. A copy of this document can be found on file with the ACHCSA and online within the SWRCB's Geotracker database at the following link:

http://geotracker.waterboards.ca.gov/esi/uploads/geo_report/1214311718/T10000006539.PDF

- f. Secondary source has been removed to the extent practicable.
 - Yes, this criteria appears has been met. "Secondary source" is defined as petroleum-impacted soil or groundwater located at or immediately beneath the point of release from the primary source. Based upon the results of historical soil and water investigations, little or no secondary source remains in the subsurface soils and groundwater at the site (Tables 1 through 3).
- g. Soil and groundwater have been tested for MtBE and results reported in accordance with Health and Safety Code section 25296.15.
 - Yes, this criteria appears has been met. Soil and groundwater samples collected during historical
 investigations were tested for MtBE. MtBE was not detected above laboratory test limits in any
 of the samples submitted for analysis (Tables 1 through 3).
- h. Nuisance as defined by Water Code section 13050 does not exist at the site.
 - Yes, this criteria appears has been met, as no nuisances as defined by the policy are known to exist at the site.

Media-Specific Criteria

To simplify implementation, the LTCP has identified three media-specific criteria which must be addressed and satisfied. The three media-specific criteria are: 1.) Groundwater, 2.) Vapor Intrusion to Indoor Air, and 3.) Direct Contact and Outdoor Air Exposure. Each of these three criteria are addressed below.

1.) Groundwater-Specific Criteria

To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of groundwater sites listed in the LTCP. Which of the five classes the site falls under is determined by plume length, free product status, the location of the nearest water supply well or surface water body, and the dissolved concentrations of benzene and MtBE. Based upon the results of this current investigation the site appears to meet groundwater criteria scenario 1 because:

- A.) The contaminant plume that exceeds water quality objectives appears to be less than 100 feet (as defined by offsite downgradient well RW-14, see Figure 3),
- B.) There in no free product, and
- C.) The nearest existing water supply well or surface water body is greater than 250 feet away.

2.) Petroleum Vapor Intrusion to Indoor Air

Exposure to petroleum vapors migrating from soil or groundwater to indoor air may pose unacceptable human health risks. Because buildings for human occupancy (residential) are reasonably expected to be constructed in the future, the vapor intrusion risks to indoor air must be addressed. These vapor intrusion concerns were addressed as part of this historical soil vapor investigations conducted at the site. Based upon the results, the site appears to meet the criteria of Scenario 4 (Appendix 4) of the LTCP. The site meets this criteria because: 1.) a bioattenuation zone (as defined by the LTCP) is present and 2.) all measured soil gas concentrations are less than the minimum required concentrations for benzene, ethylbenzene, and naphthalene (see Table 4). Therefore, this media-specific criteria has been met.

3.) Direct Contact and Outdoor Air Exposure

The LTCP describes conditions where direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air poses a low threat to human health. Table 1 of the LTCP describes concentrations of constituents (specifically, benzene, ethylbenzene, naphthalene, and PAHs) in soil that will have no significant risk of adversely affecting human health. A total of 15 soil samples from various depths were collected during this current investigation and analyzed for the contaminants of concern. 19 additional historical soil samples were collected during previous investigations at the site. None of the subsurface samples were found to contain concentrations exceeding those described in Table 1 of the LTCP (see tables 1A, 1B, and 2). Therefore, this condition of the LTCP has been satisfied.

Recommendations

Based on the historical data collected and the above conclusions, Almar makes the following recommendations:

- The fuel release case should be reviewed by the local oversight agency for case closure under the RWQCB's Low Threat Closure Policy.
- Although the fuel release case appears to qualify for closure under the LTCP, PCE is known to exist in soil
 gas at the site at concentrations exceeding residential screening levels. Plans are in place to redevelop the
 subject site into a multi tenant commercial/residential property. To further address the PCE soil gas
 contamination, and its potential intrusion into the proposed new development, the responsible party
 should enter the ACEH's Volunteer Remedial Action Program (VRAP).

Closing Statement

To the best of our knowledge, all statements made in this report are true and correct. This report is based on data provided by the client and others and a review of historical reports. No warranty whatsoever is made that this Work Plan Addendum addresses all contamination found on the site.

If you have any further questions or require any further information, please do not hesitate to contact us.

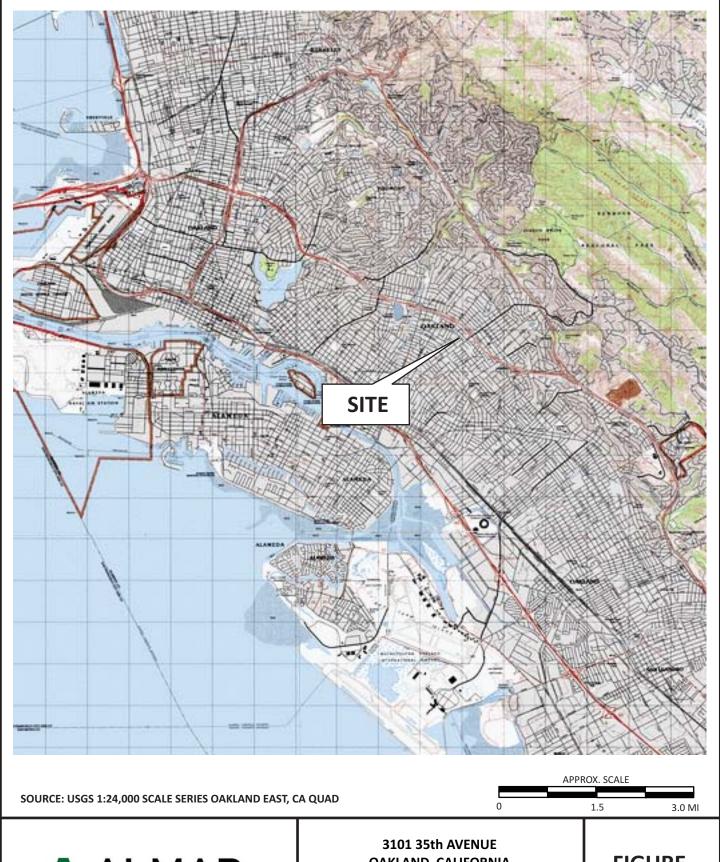
FORREST N

No. 8201

Respectfully submitted,

Forrest N. Cook

Owner/Principal Scientist


Almar Environmental

California Professional Geologist #8201 (exp 9/18)

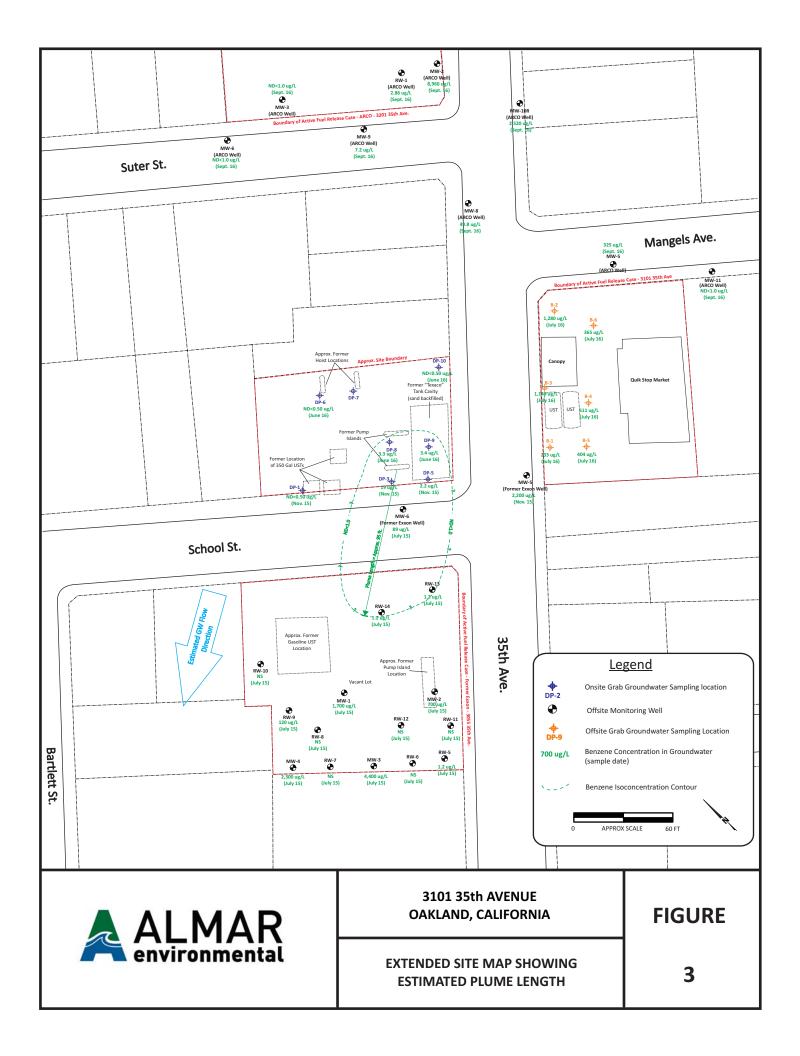
FIGURES

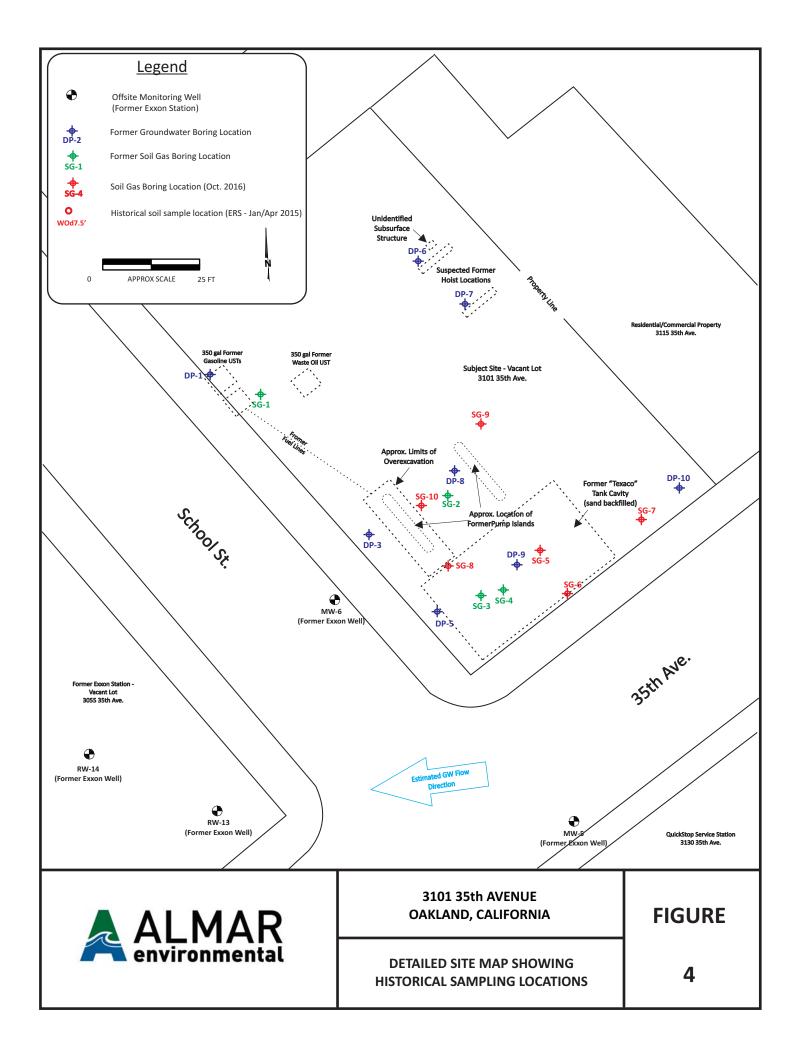
OAKLAND, CALIFORNIA

SITE VICINITY TOPO MAP

FIGURE

1




3101 35TH AVE. OAKLAND, CALIFORNIA

AERIAL PHOTOGRAPH SHOWING
SITE AREA AND NEIGHBORING LUFT SITES

FIGURE

2

TABLES

TABLE 1A SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA - Hydrocarbons and VOCs 3101 35th Avenue Oakland, California

Sample ID	Sample	Sample	TPHg	TPHd	TPHmo	В	T	E	Х	MtBE	Napth.	TBA	Other VOCs
Sample 1D	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
WO d 7.5'	7.5	01/27/15	ND<0.25	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.010		All ND
T1 d 9'	9.0	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
T2 d 9'	9.0	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. SW d 3'	3.0	01/27/15	230			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. NW d 3'	3.0	01/27/15	850			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. SE d 3.5'	3.5	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. NE d 3'	3.0	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
SW TP d 9.5'	9.5	01/27/15	180			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Dispenser SP	stopckpile	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Main TP SP	Stockpile	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
WO SP	Stockpile	01/27/15	32	84	360	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.71		All ND
Disp.Ad5'	5.0	04/16/15	46			ND<0.005	ND<0.005	ND<0.005	0.069	ND<0.05			
Disp.Bd4'	4.0	04/16/15	1.1			ND<0.005	ND<0.005	ND<0.005	ND<0.050	ND<0.05			
Disp.Cd5'	5.0	04/16/15	77			ND<0.001	ND<0.001	0.17	0.22	ND<0.10			
Disp.Dd5'	5.0	04/16/15	110			ND<0.05	0.21	0.87	0.16	ND<0.05			
Disp.Ed5'	5.0	04/16/15	21			ND<0.05	0.031	0.012	0.16	ND<0.05			
Disp.Fd5'	5.0	04/16/15	68			ND<0.05	ND<0.005	ND<0.005	0.035	ND<0.05			
Disp.Gd4'	4.0	04/16/15	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.050	ND<0.05			
Disp.Hd4'	4.0	04/16/15	68			ND<0.05	0.34	ND<0.050	0.093	ND<0.05			
	. Residential		770	240	11,000	0.250	1,000	5.5	600	44	1.9		varies
	sidential (0' to					1.9		21.0			9.7		varies
LTCP Res	idential (5' to	10')				2.8		32.0			9.7		varies

Continued.

Page 1 of 3 Table 1

TABLE 1A SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA - Hydrocarbons and VOCs 3101 35th Avenue Oakland, California

Sample ID	Sample	Sample	TPHg	TPHd	TPHmo	В	T	E	Х	MtBE	Napth.	TBA	Other VOCs
Sample ID	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
DP-1d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-1d10.0	10.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-1d15.0	15.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d10.0	10.0	11/02/15	12			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d20.0	20.0	11/02/15	0.73			0.0023	0.013	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d30.0	30.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d10.0	10.0	11/02/15	6.1			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d15.0	15.0	11/02/15	0.30			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d20.0	20.0	11/02/15	18			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d30.0	30.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
SG-1d5.0	5.0	11/02/15	0.065			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
SG-2d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
SG-3d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
ES	ESL Residential		770	240	11,000	0.250	1,000	5.5	600	44	1.9		varies
	sidential (0' to	•				1.9		21.0			9.7		varies
LTCP Res	LTCP Residential (5' to 10')					2.8		32.0			9.7		varies

Continued.

Page 2 of 3 Table 1

TABLE 1A

SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA - Hydrocarbons and VOCs

3101 35th Avenue Oakland, California

Sample ID	Sample	Sample	TPHg	TPHd	TPHmo	В	Т	E	Х	MtBE	Napth.	TBA	Other VOCs	
Salliple ID	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	
SG-4d5.0	5.0	05/31/16	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-6d5.0	5.0	05/31/16	ND<0.20	ND<10.0	42	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-6d10.0	10.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-7d5.0	5.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-7d10.0	10.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-8d5.0	5.0	05/31/16	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-8d10.0	10.0	05/31/16	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-9d5.0	5.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-9d8.0	8.0	05/31/16	3.2	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND ¹	
DP-9d15.0	15.0	05/31/16	1.0	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-10d5.0	5.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
DP-10d10.0	10.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND	
ESI	ESL Residential		770	240	11,000	0.250	1,000	5.5	600	44	1.9		varies	
	sidential (0' to	•				1.9		21.0			9.7		varies	
LTCP Residential (5' to 10')						2.8		32.0			9.7		varies	

Bolded Value =detected concentration

Notes:

11/25/14 & 4/16/15 samples collected by ERS

--- = Parameter not analyzed

<0.5 / ND = Not present at or above practical laboratory detection limit

mg/Kg = micrograms per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table S-1: Res. Shallow Soil Exposure)

LTCP = Low Threat Closure Policy - Table 1: Concentrations of Petroleum Constituents in soil

that will have no significant risk of adversly affecting human health

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

TPHmo = Total Petroleum Hydrocarbons as motor oil

B = Benzene MtBE = Methyl-t-butyl ether

T = Toluene TBA = tert Butyl Alcohol

TBA = tert Butyl Alcohol Shaded Value = concentration excedes either ESL or LTCP value

E = Ethylbenzene

X = Total Xylenes

1 = n-Butylbenzene @ 0.022 mg/Kg & sec-Butylbenzen @ 0.0096mg/Kg

Page 3 of 3 Table 1

TABLE 1B SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA - PAHs 3101 35th Avenue Oakland, California

Sample ID	WO d 7.5'	WO SP	DP-6d5.0	DP-6d10.0	DP-7d5.0	DP-7d10.0	LTCP	LTCP	
Sample Depth	7.5 ft bgs	Stockpile	5.0 ft bgs	10 ft bgs	5.0 ft bgs	10 ft bgs	Res.	Res.	Res.
Sample Date	01/27/15	01/27/15	05/31/16	05/31/16	05/31/16	05/31/16	0 to 5 ft bgs	5 to 10 ft bgs	ESL
Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Acenaphthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	16
Acenaphthylene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	13
Anthracene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	2.8
Benzo[a]anthracene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.7
Benzo[b]fluoranthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.7
Benzo[k]fluoranthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	2.6
Benzo[a]pyrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.07
Benzo[g,h,i]perylene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	2.5
Chrysene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	3.8
Dibenzo[a,h]anthracene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.07
Fluoranthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	60
Fluorene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	8.9
Indeno[1,2,3-cd]pyrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.7
1-Methylnaphthalene	ND<0.010	0.66	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	NA
2-Methylnaphthalene	ND<0.010	1.2	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.25
Napthalene	ND<0.010	0.71	ND<0.10	ND<0.10	ND<0.10	ND<0.10	9.7	9.7	1.2
Phenanthrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	11
Pyrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	85

Notes:

--- = Parameter not analyzed

<0.5 / ND = Not present at or above reporting detection limit

mg/Kg = micrograms per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table S-1: Res. Shallow Soil Exposure)

Bolded Value =detected concentration

Shaded Value = concentration excedes either ESL or LTCP value

PAH = polynuclear aromatic hydrocarbons

Page 1 of 1 Table 1B

TABLE 1C SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA - Metals 3101 35th Avenue Oakland, California

Sample	Sample	Sample	Sb	As	Ва	Be	Cd	Cr	Со	Cu	Pb	Hg	Mo	Ni	Se	Ag	TI	V	Zn
ID	Depth (ft)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
WO d 7.5'	7.5	01/27/15					ND<0.25	46			6.9			100				-	120
T1 d 9'	9.0	01/27/15									6.5								
T2 d 9'	9.0	01/27/15									9.7								
Disp. SW	3.0	01/27/15									25								
Disp. NW	3.0	01/27/15									35								
Disp. SE d	3.5	01/27/15									13								
Disp. NE d	3.0	01/27/15									8.3								
SW TP d	9.5	01/27/15									18								
Dispenser	stopckpile	01/27/15									170								
Main TP	Stockpile	01/27/15									43								
WO SP	Stockpile	01/27/15					0.32	52			65			80					160
DD 645 0	F 0	05/24/46	ND 44.4		460	0.42	ND -0 44		10	70		0.000	0.53	67	ND 44.4		ND 44.4		
DP-6d5.0	5.0	05/31/16	ND<4.4	5.3	160	0.43	ND<0.44	54	10	78	6.7	0.099	0.52	67	ND<4.4	0.3	ND<4.4	52	92
DP-6d10.0	10.0	05/31/16	ND<5.0	9.1	240	0.45	ND<0.50	51	15	81	8.2	0.19	0.26	72	ND<5.0	0.35	ND<5.0	70	100
DP-7d5.0	5.0	05/31/16	ND<5.0	10	220	0.4	ND<0.50	54	17	67	11	0.082	0.35	91	ND<5.0	0.3	ND<5.0	62	99
DP-7d10.0	10	05/31/16	ND<5.0	7.7	220	0.4	ND<0.50	57	17	83	8.1	0.16	0.35	70	ND<5.0	0.31	ND<5.0	74	110
E	SL Residentia	ıl .	31	0.067	15,000	0.083	0.014	NA	0.23	3100	80	13	390	820	390	6900	0.78	140,000	23,000
	TTLC		500	500	10,000	75	100	500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000

Notes:

As = Arsenic Co = Cobalt Ni = Nickel Z = Zinc Bolded Value = a detected concentration

Ba = Barium Cu = Copper Se = Selenium Shaded Value = concentration detected above corresponding TTLC

Ba = BariumCu = CopperSe = SeleniumBe = BeryliumPb = LeadAg = SilverCa = CadmiumHg = MercuryTl = Thalium

<0.5 / ND = Not present at or above reporting detection limit mg/Kg = milligrams per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table S-1: Res. Shallow Soil Exposure)

TTLC = Total Threshold Limit Concentration

TABLE 2

SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL DATA 3101 35th Avenue

Oakland, California

	Cultural, Cultural														
Sample ID	Sample	TPHg	TPHd	TPHmo	В	T	E	Х	MtBE	Naphth.	TBA	PCE	Other VOCs	Metals*	
Sample 1D	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
DP-1	11/03/15	ND<50			ND<0.50	0.11	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<10				
DP-3	11/03/15	1,000			19	1.1	34	5.1	ND<0.50	7.2	ND<10				
DP-5	11/03/15	3,700			2.2	1.5	1.4	5.5	ND<0.50	2.6	ND<10				
DP-6	06/01/16	ND<50	ND<200	500	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND	All ND	
DP-8	06/01/16	57			3.3	ND<0.50	1.9	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND ¹		
DP-9	06/01/16	330			3.4	ND<0.50	2.5	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND ²		
DP-10	06/01/16	ND<50			ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND		
Tier 1	ESL	100	100	50,000	1.0	40	13	20	5.0	0.12	12.0	3.0	varies	varies	

Notes:

All samples collected as "grab" groundwater samples

--- = Parameter not analyzed

< 0.5 / ND = Not present at or above laboratory practical quantitation limit

ug/L = micrograms per Liter = parts per billion = ppb

Tier 1 ESL = RWQCB Environmental Screening Level (February 2016)

LTCP = Low Threat Closure Policy - Table 1: Concentrations of Petroleum Constituents in soil

that will have no significant risk of adversly affecting human health

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

TPHmo = Total Petroleum Hydrocarbons as motor oil

B = Benzene Naphth. = Naphthalene

T = Toluene MtBE = Methyl-t-butyl ether

E = Ethylbenzene TBA = tert Butyl Alcohol

X = Total Xylenes PCE = tetrachloroethene

1 = Isopropylbenzene @ 0.70 ug/L & n-Propylbenzene @ 1.2 ug/L

2 = n-Butylbenzene & sec-Butylbenzene @ 1.0 ug/L, & Isoprpylbenzene = 2.2 ug/L

n-Propylbenzene = 3.4 ug/L & 1.3.5-Trimethylbenzene = 2.0 ug/L

Metals* = Cd, Cr, Pb, Ni, & Zn

Bolded Value = detected concentration

Shaded Value = concentration excedes either ESL or LTCP value

TABLE 3 SUMMARY OF HISTORICAL SOIL VAPOR ANALYTICAL DATA 3101 35th Ave. Oakland, California

SAMPLE ID	Sample Depth (ft.)	Sample Date	Oxygen (O ₂)	Helium Mol%	(жд) ТРНg (С6-С12)	المالي (پيم) (پيم) (پيم)	ක් ූ ය රූ	n-Hexane	Chloroform (mk/m ₃)	Benzene (µg/m³)	Toluene (Mg/m³)	Ethylbenzene	(m/sm) Xylenes (total)	(mg/m³)	Э. (µg/m³)	Naphthalene ("Mah	Other VOCs
SG-1	5.0	11/09/15	2.6	ND<0.47	460	80	47	ND<2.3	16	10	28	ND<2.3	ND<2.3	ND<2.3	ND<2.3	ND<2.3	<mdl< td=""></mdl<>
SG-2	5.0	11/09/15	4.1	ND<0.45	96,000	190	140	70	ND<14	61	91	ND<14	74	ND<14	ND<14	ND<14	<mdl<sup>1</mdl<sup>
SG-3	5.0	11/09/15	15	ND<0.19	210	22	12	ND<0.97	ND<0.97	3.3	7.8	ND<0.97	ND<0.97	ND<0.97	160	ND<3.9	<mdl< td=""></mdl<>
SG-4	5.0	06/01/16	17	ND<0.21	4,200	9.2	ND<3.3	130	ND<5.1	ND<3.4	4.4	ND<4.8	ND<4.6	ND<10	310	ND<22	<mdl<sup>2</mdl<sup>
SG-5	5.0	10/10/16	16	ND<0.20	2,100	20	ND<3.1	24	11	6.8	11	ND<4.3	7.6	ND<9.8	310	ND<21	<mdl<sup>3</mdl<sup>
SG-6	5.0	10/10/16	17	ND<0.19	240	12	ND<3.0	ND<3.5	ND<4.7	ND<3.1	4.1	ND<4.2	ND<8.4	ND<9.4	160	ND<20	<mdl< td=""></mdl<>
SG-7	5.0	10/10/16	9.8	ND<0.19	240,000	67	91	ND<68	410	ND<62	290	ND<84	120	ND<190	ND<130	ND<410	<mdl< td=""></mdl<>
SG-8	5.0	10/10/16	17	ND<0.18	390	21	ND<2.8	ND<3.2	ND<4.4	ND<2.9	6.9	ND<4.1	ND<7.8	12	190	ND<19	<mdl< td=""></mdl<>
SG-9	5.0	10/10/16	6.5	ND<0.20	130,000	ND<58	ND<61	ND<69	140	ND<63	ND<74	ND<86	ND<172	ND<190	260	ND<410	<mdl< td=""></mdl<>
SG-10	5.0	10/10/16	5.9	ND<0.21	140,000	ND<62	110	ND<74	170	ND<67	ND<79	ND<91	ND<182	ND<210	ND<140	ND<440	<mdl< th=""></mdl<>
	esidential Es		NA	NA	300,000	NA	NA	NA	61	48	160,000	560	52,000	NA	240	41	Varies
	Comm/Ind ESL		NA	NA	2,500,000	NA	NA	NA	530	420	1,300,000	4,900	440,000	NA	2,100	360	Varies
	Residential CHHSL		NA	NA	NA	NA	NA	NA	NA	36.2	135,000	NA	319,000	NA	180	31.9	Varies
	mm/Ind CHI		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	122	378,000 NA	NA 1 000 000	887,000 NA	NA NA	603 NA	106	Varies
	LTCP w/Bioattenuation		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	85,000 85	NA NA	1,000,000	NA NA	NA NA	NA NA	93,000	Varies Varies
LTCP w/o Bioattenuation		IVA	INA	IVA	IVA	IVA	IVA	IVA	65	IVA	1,100	IVA	IVA	IVA	93	varies	

<MDL³ = n-heptane at 8.9 ug/m3

<MDL¹ = 1,2,4-Trimethylbenzene at 73 ug/m3 <MDL² = Acetone at 73 ug/m3 & Cyclyhexane at 180 ug/m3 & n-heptane at 51 ug/m3

Notes:

--- = Parameter not Sampled

NA = Not analyzed or Not established

<0.5 / ND = Not present at or above reporting detection limit

ug/m3 = micrograms per cubic meter = ppmv

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table SG-1: Vapor Intrusion: Human Health Risk Levels)

CHHSL = California Human Health Screening Level - January 2005

LTCP = Low Threat Closure Policy (Appendix 4 - Scenerio 4)

Bold = detected concentration

Shaded Value = concentration excedes either ESL or LTCP value