HEALTH CARE SERVICES AGENCY

REBECCA GEBHART, Interim Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) FOR HAZARDOUS MATERIALS RELEASES 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

July 18, 2017

Mr. Patrick Kong & Ms. Mona Hsieh Green Oak Builders Inc. 888 Brannan Street, #101 San Francisco, CA 94103

Subject: Case Closure for Fuel Leak Case No. RO0003164 and GeoTracker Global ID T10000006539, Green Oak

Builders, 3101 35th Avenue, Oakland, CA, 94619

Dear Mr. Kong and Ms. Hsieh:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25296.10[g]). The State Water Resources Control Board (SWRCB) adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Department of Environmental Health (ACDEH) is required to use this case closure letter for all UST leak sites.

We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed. This case closure letter and the case closure summary can also be viewed on the SWRCB Geotracker website (http://geotracker.waterboards.ca.gov) and the ACDEH website (http://www.acgov.org/aceh/index.htm).

Due to residual contamination at the site, a site cleanup program (SCP) case (RO0003238) was opened to address residual contamination that is not part of the closure evaluation under the SWRCB Low Threat Underground Storage Tank Case Closure Policy (LTCP). Case information is further described in Additional Information of the attached Case Closure Summary.

If you have any questions, please call Keith Nowell at (510) 567-6764. Thank you.

Sincerely,

Dilan Roe, P.E.

LOP and SCP Program Manager

Enclosures:

- 1. Remedial Action Completion Certification
- 2. Case Closure Summary

Cc w/enc.:

Laurent Meillier, San Francisco Bay Regional Water Quality Control Board, 1515 Clay Street, Suite 1400, Oakland, CA 94612 (Sent via electronic mail to laurent.meillier@waterboards.ca.gov)

Dave Harlan, City of Oakland Planning and Building, 250 Frank H. Ogawa Plaza, Suite 2114, Oakland, CA 94612 (Sent via electronic mail to: dharlan@oaklandnet.com)

Mark Arniola, City of Oakland Public Works, Environmental Services, 250 Frank H. Ogawa Plaza, Suite 4314 Oakland, CA 94612, (Sent via electronic mail to: marniola@oaklandnet.com)

Chandra Johannesson, East Bay Municipal Utility District, P.O. Box 24055, MS 702, Oakland, CA 94623, (Sent via electronic mail to: cjohanne@ebmud.com)

Forrest Cook, Almar Environmental, 407 Almar Avenue, Santa Cruz, CA 95060

(Sent via electronic mail to cook.forrest@gmail.com)

Keith Nowell, ACDEH, (Sent via electronic mail to keith.nowell@acgov.org)

eFile, GeoTracker

ALAMEDA COUNTY **HEALTH CARE SERVICES AGENCY**

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) FOR HAZARDOUS MATERIALS RELEASES 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

REBECCA GEBHART, Interim Director

REMEDIAL ACTION COMPLETION CERTIFICATION

July 18, 2017

Mr. Patrick Kong & Ms. Mona Hsieh Green Oak Builders Inc. 888 Brannan Street, #101 San Francisco, CA 94103

Subject: Case Closure for Fuel Leak Case No. RO0003164 and GeoTracker Global ID T10000006539, Green Oak Builders, 3101 35th Avenue, Oakland, CA, 94619

Dear Mr. Kong and Ms. Hsieh:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Ronald Browder

Director

Agency Information

Date: July 18, 2017

Alameda County Department of Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6764
Case Worker: Keith Nowell	Title: Hazardous Materials Specialist

Case Information

Facility Name: Green Oak Builders								
Facility Address: 3101 35 th Avenue, Oakland CA 94619								
Regional Water Board LUSTIS Case No: NA	er Board LUSTIS Former ACDEH Case No.: NA Current LOP Case No.: RO0003164							
Unauthorized Release Form Filing Date: 2/08/2015	State Water Board GeoTracker Global ID: T10000006539							
Assessor Parcel Number: 28-951-12-1	Current Land Use: Vacant Commercial							
Responsible Party(s):	Address:	Phone:						
Green Oak Builders	888 Brannan Street, #101 San Francisco, CA 94103	(510) 928-7888						

Tank Information

Tank No.	Size (gal)	Contents	Closed in-Place / Removed	Date
	350-gallon	Gasoline	Removed	1/27/2015
all the sine	350-gallon	Gasoline	Removed	1/27/2015
	350-gallon	Waste Oil	Removed	1/27/2015

Site Closure Evaluation Summary

Current Land-use at time of Case Closure

The subject property (APN 28-951-12-1) is located at 3101 35th Avenue, at the northern corner of the intersection of 35th and School Street in the central portion of the City of Oakland. The site consists of approximately 10,240 square feet of land and is currently vacant. At the time of this case closure, the vacant site is slated for redevelopment. Due to non-petroleum contamination identified at the site, additional site characterization and/or cleanup is being overseen by Alameda County as a Site Cleanup Program (SCP) Case No. R00003238, under a Voluntary Remedial Action Agreement. This LUFT case is closed to the current commercial land-use risk scenario, consisting of a commercial vacant parcel at the site. Due to residual contamination, the site was closed with site management requirements that include notifying Alameda County Department of Environmental Health (ACDEH) of a proposed change in land use to any residential or conservative land use, or if any redevelopment or building alteration is proposed that affect or disturb the existing subsurface conditions at the site.

Adjacent Property(ies) Land-use at Time of Case Closure

At the time of this case closure, potential off-site contamination is likely on School Street and may extend onto properties across School Street. However, should off-site redevelopment occur, ACDEH recommends evaluating the redevelopment site(s) for chemicals of concern identified on this site.

Historic Land-use / Site Investigation:

The site has historically operated as a gasoline service station from 1959, and possibly as early as 1929, until the early 1980s. Prior site occupants included a blacksmith, a retail store and a tire and grease shop. In the early 1980's, the site operated as an auto supply store and an auto detail shop. It appears that the underground storage tanks (USTs) associated with a former Texaco Station which operated at the site were previously located in the southern portion of the property. The Texaco underground storage tank (USTs) were removed sometime prior to 1982. As a result of a property transaction, a Phase I report and a geophysical survey was conducted in 2015. Three USTs, two tanks for the storage of gasoline and one waste oil tank, were removed under permit. Contamination was detected in soil samples collected at the site. Later that year, a soil, water, and soil gas investigation was conducted. Additional investigation was conducted in 2016 and it was determined that the petroleum hydrocarbon related contamination was eligible for closure under the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Non-petroleum relating contamination will require further evaluation under a separate case (R00003238).

Potential Exposure to Chemicals of Concern:

USTs and fuel dispenser piping are believed to be the sources of the contamination discovered and cleaned up at the site. The main chemicals of concern (COCs) associated with the gasoline and waste oil USTs and detected at the site were total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and xylenes (BTEX), and naphthalene. Inhalation and ingestion appear to have been the most likely potential routes of exposure to these COCs. The non-petroleum related contaminant tetrachloroethene (PCE) was also detected at the site.

Remediation Activities:

Corrective action consisting of UST removals and excavation of the contaminated soil have been completed in 2015. Confirmation soil sample analytical results indicated residual petroleum hydrocarbons remain in soil. Subsequent investigation indicated residual petroleum hydrocarbons remain in groundwater. Potential off-site contamination is likely on School Street and may extend onto properties across School Street

Case Closure & Future Site Management Requirements:

This fuel leak case has been evaluated for closure consistent with the State Water Resource Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP). The case does not meet the LTCP Vapor Specific Media scenarios as the TPH concentration in bioattenuation zone exceeds 100 mg/kg and the laboratory reporting limit for naphthalene exceeds the threshold concentration for Scenario 4. However, ACDEH has made the determination that there is low potential threat to human health and safety from vapor intrusion to indoor air due to the presence of residual petroleum hydrocarbons. Additionally, vapor intrusion risk to future building occupants from residual chlorinated solvents is being evaluated under SCP Case No. RO0003238.

Due to residual contamination at the site, the site is closed as a commercial site with site management requirements. As there is a proposed change in land use to mixed-use residential, ACDEH has been notified, as required by Government Code Section 65850.2.2, and is in the process of re-evaluating the site relative to the proposed redevelopment under case RO0003238. Excavation or construction activities in areas of residual

RO0003164

contamination	require	planning	and	implementation	of	appropriate	health	and	safety	procedures	by	the
responsible pa	rty prior	to and du	ring e	excavation and co	ons	truction activ	ities.					

Refer to Attachments 1 through 5 for analysis details

Site Management Requirements

Case closure is granted for the current commercial land use.

Due to residual subsurface contamination remaining at the site, if any redevelopment occurs, or if a change in land use to residential, or other conservative land use, Alameda County Department of Environmental Health (ACDEH) must be notified as required by Government Code Section 65850.2.

Excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities

This site is to be entered into the City of Oakland Permit Tracking System due to the residual contamination on site.

Institution	anal C	ontrol	6

Not Applicable			
Engineering Co	ontrols		
Not Applicable		 	

Case Closure Public Notification Information

Agency Type	Agency Name	Contact Information
Regional Water Board	San Francisco Bay	Laurent Meillier 1515 Clay Street, Suite 1400 Oakland, CA 94612
Municipal and County Water Districts	East Bay Municipal Utility District	Chandra Johannesson P.O. Box 24055, MS 702 Oakland, CA 94623
Water Replenishment Districts	Not Applicable	
Groundwater Basin Managers	Not Applicable	
Planning Agency	City of Oakland	Dave Harlan City of Oakland Planning and Building 250 Frank H. Ogawa Plaza, Suite 2114 Oakland, CA 94612
Public Works Agency	City of Oakland	Mark Arniola City of Oakland Public Works Environmental Services 250 Frank H. Ogawa Plaza, Suite 4314 Oakland, CA 94612
Owners and Occupants of Property and Adjacent Parcels	See List in Attachment 7	

Monitoring Wells Status

Monitoring Wells (MW) Onsite: No	MWs Destroyed: NA
No MWs Destroyed:	No. MWs Retained:

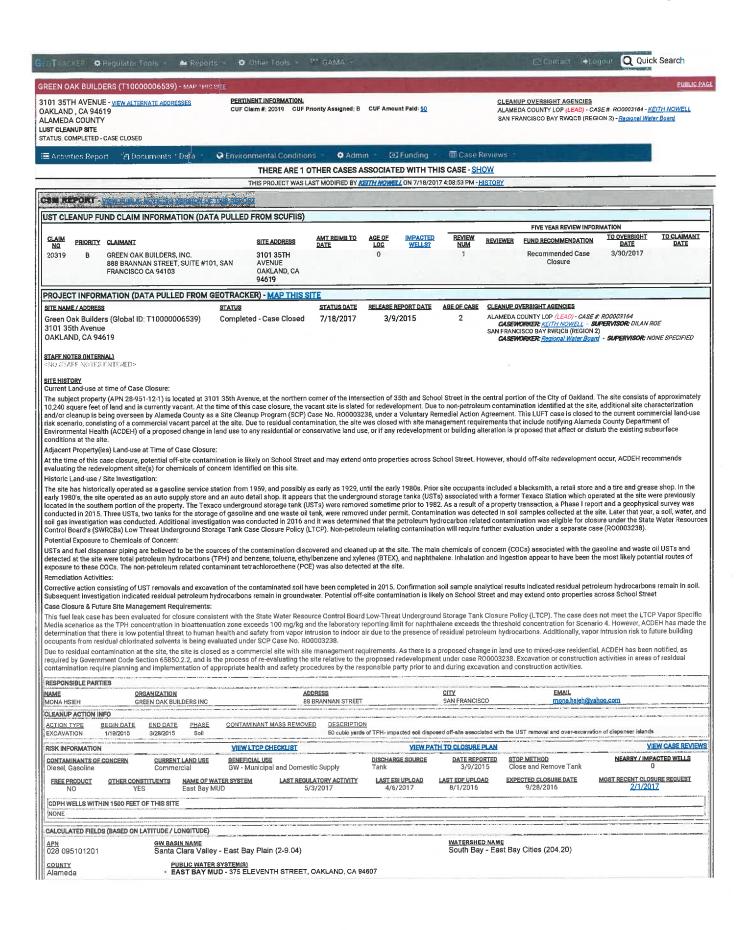
Local Agency Signatures

Keith Nowell	Title: Hazardous Materials Specialist
Signature: Kettl Novell	Date: 7-18-2017
Paresh Khatri	Title: LOP Supervisor
Signature: Multiple	Date: 7/18/2017
Dilan Roe	Title: Chief, Land Water Division
Signature: Dlu Roe	Date: 7-18-2017

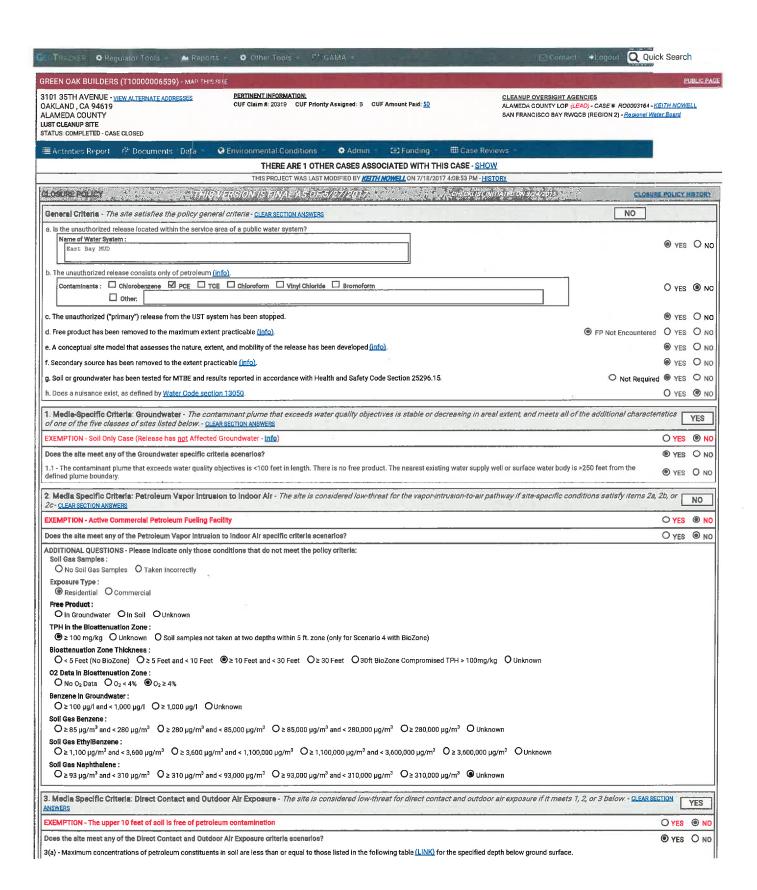
This Case Closure Summary along with the Case Closure Transmittal letter and the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. The Conceptual Site Model may not contain all available data. Additional information on the case can be viewed in the online case file. The entire case file can be viewed over the Internet on the Alameda County Environmental Health (ACDEH) website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Not all historic documents for the fuel leak case may be available on GeoTracker. A more complete historic case file for this site is located on the ACDEH website.

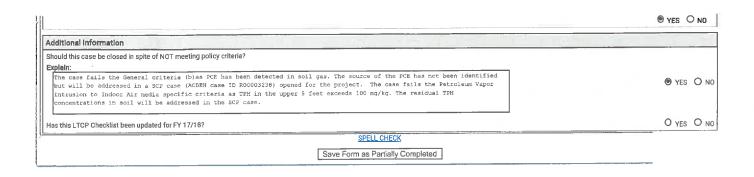
Geotracker Conceptual Site Model (Attachment 1, 2 pages)

Geotracker LTCP Checklist (Attachment 2, 2 pages)


Groundwater Evaluation and Data (Attachment 3, 10 pages)

Vapor Intrusion Evaluation and Data (Attachment 4, 4 pages)


Soil Evaluation and Data (Attachment 5, 8 pages)

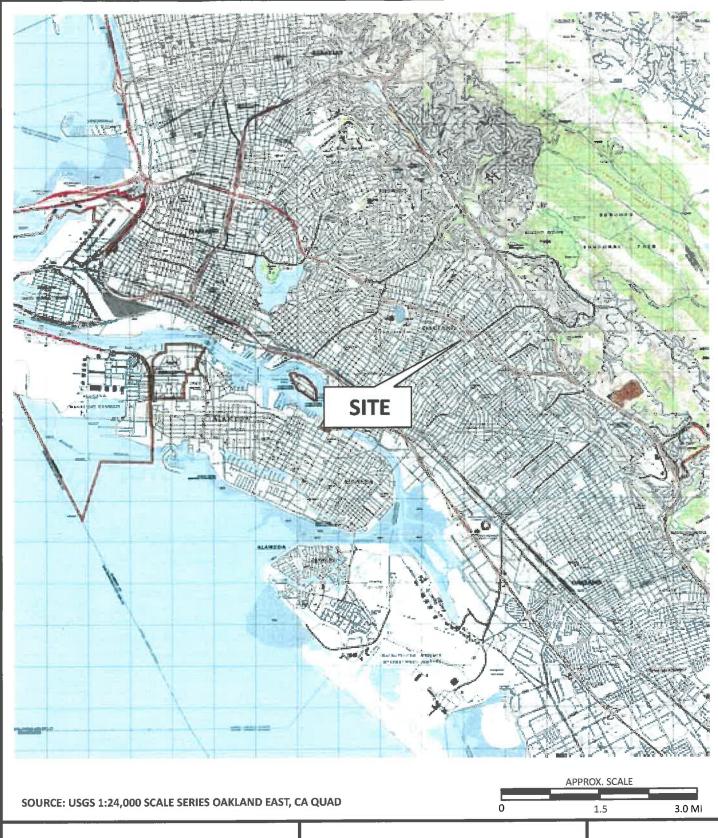

Responsible Party Information (Attachment 6, 6 pages)

Case Closure Public Notification Information (Attachment 7, 2 pages)

MOST RECENT CONCENTRATIO	and the state of t	e participation of the complete of the contract of the state of the contract o	R-HIDE BENZENE	TOLUENE	ETHYL-BENZENE	XYLENES	MTBE	TBA
DP-10 DP-6 DP-8 DP-9	6/1/2016 6/1/2016 6/1/2016 6/1/2016 5/31/2016	19 10 UG/L ND 57 UG/L 330 UG/L	ND ND 3.3 UG/L 3.4 UG/L	ND ND 0.12 UG/L 0.29 UG/L	0.21 UG/L ND 1.9 UG/L 2.5 UG/L	ND ND ND	ND ND ND ND	كفند
	SURLANDOR STORES CONTROL OF THE SEASON OF TH	11 par (Aparteria) - CARLO SUL MARKET - CARLO SUL M						
MOST RECENT CONCENTRATIO	NS OF PETROLEUM CONST	TUENTS IN SOIL - HIDE					VIEW ES	TBA
FIELD PT NAME DISP ADD DISP ADD DISP CDD DISP CD	PATE 4/16/2015 4/16/2015 4/16/2015 4/16/2015 4/16/2015 4/16/2015 4/16/2015 4/16/2015 4/16/2015 1/27/2015 1/27/2015 1/27/2015 1/27/2016 5/31/2016	ND N	NO N	NO N	NO N	0.059 MG/KG ND 0.22 MG/KG 0.16 MG/KG 0.16 MG/KG 0.035 MG/KG ND	393 9393333333333333333333333333333333	29299999999999999999
F1D9 F2D9 WOD7.5 WOSP	1/27/2015 1/27/2015 1/27/2015		ND ND ND	ND ND ND	ND ND ND	ND ND 0.32 MG/KG	ND ND ND	ND ND ND
OST RECENT GEO_WELL DATA	A_HIDE			a complete and the second seco		A STORAGE OF THE STOR	VIEW ES	SUBMITT
O GEO WELL DATA HAS BEEN	The Control of the Paris of the Control of the Cont	Contract to the second section of the second					-	alatachasi vilindi memmen

Attachment 3 - Groundwater Evaluation and Data

LTCP GROUNDWATER SPECIFIC CRITERIA - PETROLEUM Closure Scenario Site has not affected groundwater; X Scenario 1; Scenario 2; Scenario 3; Scenario 4; Scenario 5; __ This case should be closed in spite of not meeting the groundwater specific media criteria Evaluation Criteria: Shading indicates criteria met Scenario 4 Scenario 5 Scenario 1 Scenario 2 Scenario 3 Site Specific Data <1.000 <1.000 < 100 feet <100 feet <250 feet Plume Length feet feet Removed to No free No free No free Free Product No free product maximum product product product extent The site does not practicable meet scenarios 1 Stable or through 4; decreasing Stable or Stable or however, a Plume Stable or Stable or Stable or decreasing for decreasing decreasing determination Decreasing decreasing minimum been made that of 5 years under current and Distance to Nearest > 350 feet reasonably (DWR / ACPWA) >1,000 >1,000 >1,000 Water Supply Well >250 feet expected future feet feet feet (from plume >2,000 scenarios, the boundary) (GAMA) contaminant Downgradient: Distance to Nearest plume poses a 1,000 feet low threat to Surface Water >1,000 Cross Gradient: >1,000 >1.000 human health >250 feet Body feet 600 feet feet feet and safety and to (from plume Up Gradient: the environment boundry) 2,500 feet and water quality Benzene objectives will be Historic Max: <19 <1,000 No criteria <3,000 <1,000 Concentrations achieved within a Current Max: <19 $(\mu g/I)$ reasonable time MTBE frame. Historic Max: <0.5 <1.000 <1,000 <1,000 Concentrations No criteria Current Max: <0.5 $(\mu g/l)$ **Property Owner** Not Willing to Accept a Not Yes Not Not applicable applicable applicable Land Use applicable Restriction

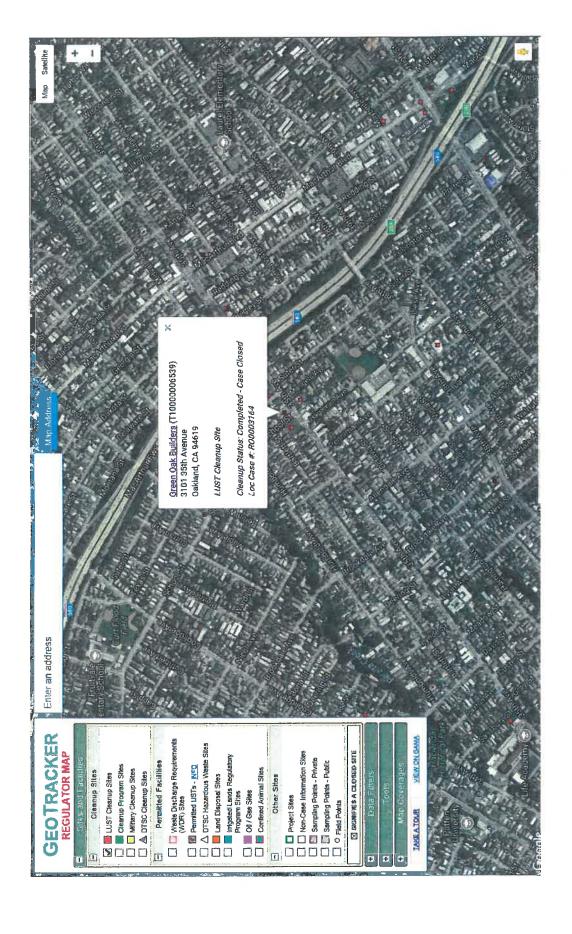

Notes: DWR = Department of Water Resources

ACPWA = Alameda County Public Works Agency

GAMA = Groundwater Ambient Monitoring Assessment (GeoTracker)

Attachment 3 – Groundwater Evaluation and Data

	Analysis
Plume Length	Defined to water quality objectives. (Contaminant plume that exceeds water quality objectives is less than 100 feet.)
Free Product	Not observed at site.
Plume Stability	Plume is stable in aerial extent. (The contaminant mass has expanded to its maximum extent defined as the distance from the release where attenuation exceeds migration.)
Water Supply Wells	An Alameda County Public Works Agency (ACPWA) and the Department of Water Resources (DWR) well surveys conducted for ACDEH case RO0000271, located at 3055 35 th Avenue, indicate no public water supply wells are within 1,500 feet of the site. Two irrigation wells are located within 1,500 feet of the site, the closest being 350 feet in the up-to cross gradient direction. The well survey results from the GeoTracker Groundwater Ambient Monitoring Assessment (GAMA) website indicates there are no public water supply wells, irrigation wells, California Department of Public Health wells, Department of Pesticide Regulation wells located within a 2,000 foot radius of the site.
Surface Water Bodies	The southwesterly flowing Peralta Creek is downgradient to the west at an approximate distance of 1,000 feet, is approximately 600 feet cross gradient to the northwest, and is approximately 2,500 feet up gradient.



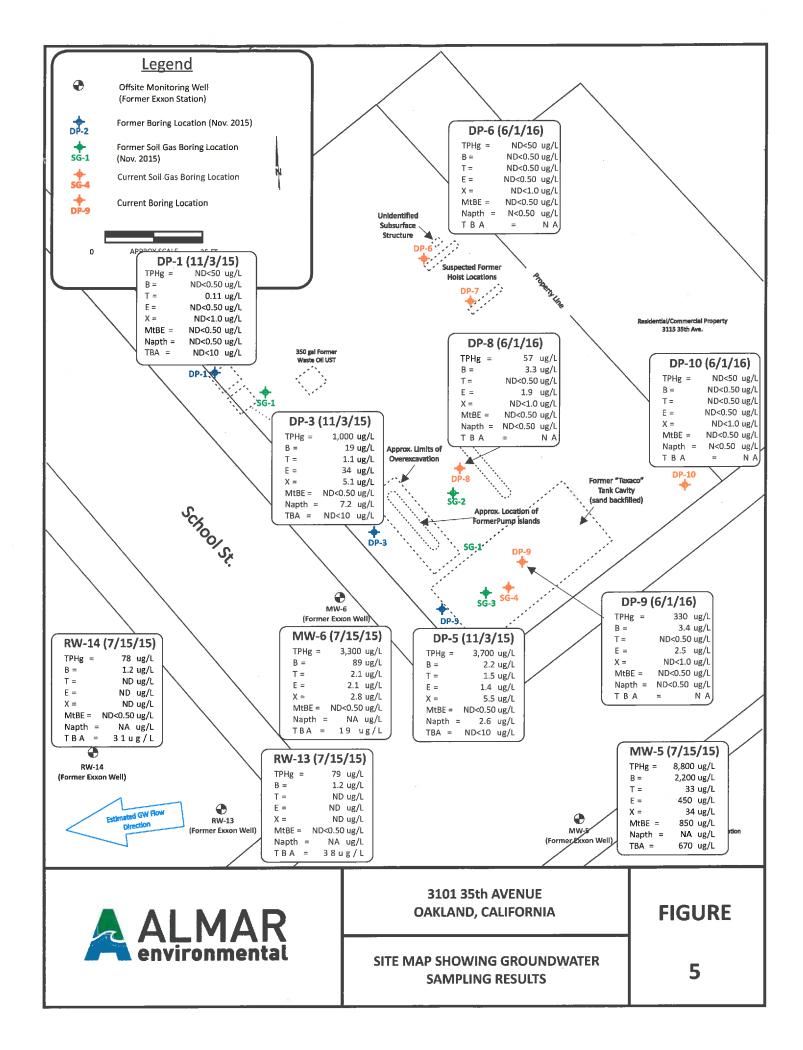
3101 35th AVENUE OAKLAND, CALIFORNIA

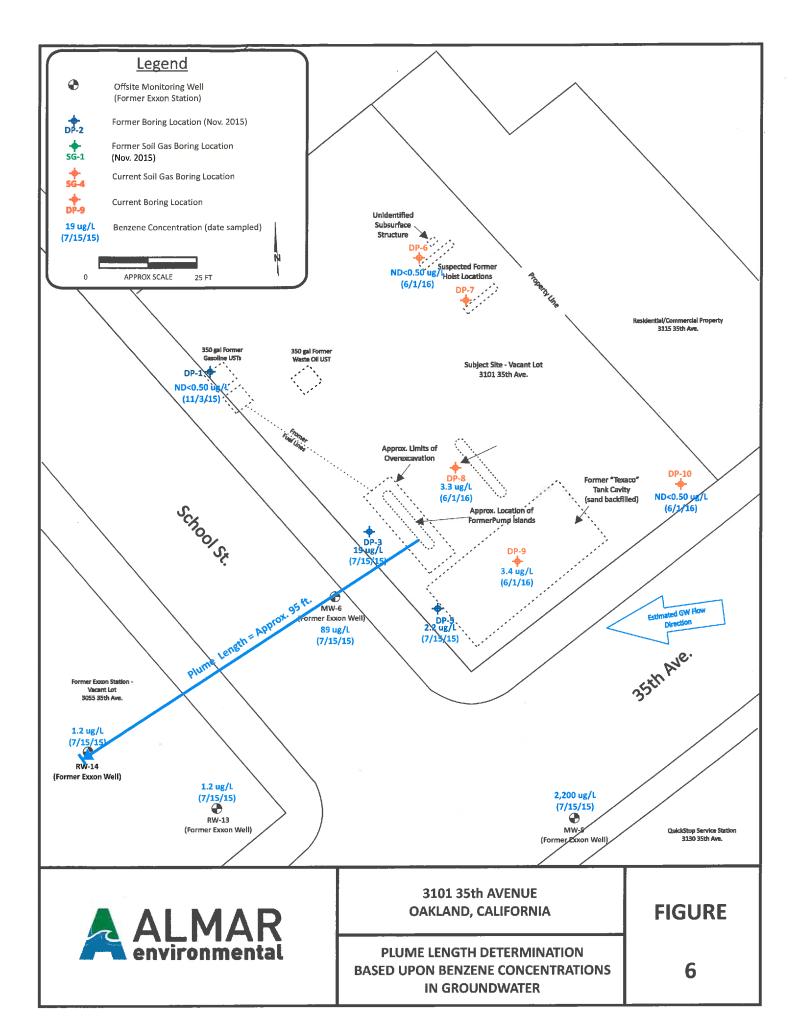
SITE VICINITY TOPO MAP

FIGURE

1

SOURCE: Google Earth, 2015




3101 35th AVENUE OAKLAND, CALIFORNIA

AERIAL PHOTOGRAPH
OF SITE AREA

FIGURE

2

TABLE 2 SUMMARY OF CURRENT AND HISTORICAL GROUNDWATER ANALYTICAL DATA 3101 35th Avenue Oakland, California

Sample ID	Sample	TPHg	TPHd	TPHmo	В	Т	E	Х	MtBE	Naphth.	TBA	PCE	Other VOCs	Metals*
Sample ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
DP-1	11/03/15	ND<50			ND<0.50	0.11	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<10			
DP-3	11/03/15	1,000			19	1.1	34	5.1	ND<0.50	7.2	ND<10			
DP-5	11/03/15	3,700			2.2	1.5	1.4	5.5	ND<0.50	2.6	ND<10			
			Ī											
DP-6	06/01/16	ND<50	ND<200	500	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND	All ND
DP-8	06/01/16	57			3.3	ND<0.50	1.9	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND ¹	
DP-9	06/01/16	330			3.4	ND<0.50	2.5	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND ²	
DP-10	06/01/16	ND<50			ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		ND<0.50	All ND	
Tier 1	ESL	100	100	50,000	1.0	40	13	20	5.0	0.12	12.0	3.0	varies	varies

Notes:

All samples collected as "grab" groundwater samples

--- = Parameter not analyzed

<0.5 / ND = Not present at or above laboratory practical quantitation limit

ug/L = micrograms per Liter = parts per billion = ppb

Tier 1 ESL = RWQCB Environmental Screening Level (February 2016)

LTCP = Low Threat Closure Policy - Table 1: Concentrations of Petroleum Constituents in soil that will have no significant risk of adversly affecting human health

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

TPHmo = Total Petroleum Hydrocarbons as motor oil

B = Benzene

Naphth. = Naphthalene

T = Toluene

MtBE = Methyl-t-butyl ether

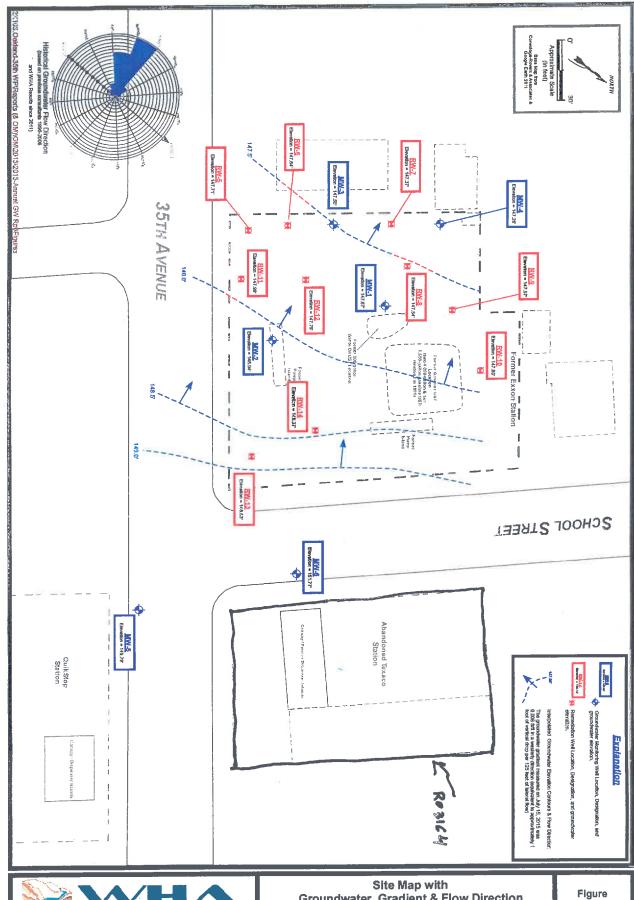
E = Ethylbenzene

TBA = tert Butyl Alcohol

X = Total Xylenes

PCE = tetrachloroethene

1 = Isopropylbenzene @ 0.70 ug/L & n-Propylbenzene @ 1.2 ug/L


2 = n-Butylbenzene & sec-Butylbenzene @ 1.0 ug/L, & Isoprpylbenzene = 2.2 ug/L n-Propylbenzene = 3.4 ug/L & 1.3.5-Trimethylbenzene = 2.0 ug/L

Metals* = Cd, Cr, Pb, Ni, & Zn

Bolded Value =detected concentration

Shaded Value = concentration excedes either ESL or LTCP value

Site Map with
Groundwater Gradient & Flow Direction
July 15, 2015
Former Exxon Station
3055 35th Avenue
Oakland, California

Figure 2 Project 2X103

Table 2: Current & Historic Groundwater Elevation and Analytical Data - Monitoring Wells FORMER EXXON SERVICE STATION 3055 35th AVENUE, OAKLAND, CALIFORNIA

	Al! groundwater res	ulta are mirro	erame ner liter (u	(doe on Yes
•			-	a de proj

	Monitoring Point Information			SPIT		Depth to	Groundwater		Pe	Groleum Hydr	scarton Co	scentiation	Deta			TIN.	P\.			Field Measurements	Oxidat
Well#	Screen Interval	TQC Elevation	Date	(Seed)	Nate	Groundwater (feet, TOC)	feet MSL)	Total Petroin	en Hydrocarb	QNA				Volgatie	Organic C	basogus	3	μľπ.,		Disselved Caypen	Reduc Paten
	(feet)	(feet)			-	Date and a state of the state o		Diesel	Fact Off	Casaline	Веплене	Toluene	Ethyibenzens	Kylenes	VETER	TBA	EDB	I,2-DOR	DAPE, ETRE, FALCE (MAL)	(mg(L)	(mil)
Continued			1/13/2003	Skeen LA		11.75	85.59	15,000°4£2	-	35,600 ^{4-g}	5,100	1,500	516	4,500	< £00	_	~	-	-	0.25	Not ope
MW-4	l I		11/21/2002	-	-	17.55	79.79	2,408-2	-	5,788 ⁴	1,460	290	63	640	550			- 1	-	-	Opera
			9/26/2002	-	\vdash	17.93	79,41	100°	-	21,0004	3,300	1,300	450	2,900	< 500	_	_			0.24	Open
			6/10/2002	_		22.30	75.04	3,400	 -	5,400 ⁴	1,408	50	< 5.0	690	< 200						Oper
			3/11/2002	_	\vdash	14.95	82.3\$	1,608*Ab	-	15,000 ⁴	3,708	500	92	790	< 500	-			-	0.30	Oper
			12/7/2001		\vdash	23.45	73.85	11,683°-tq		32,040 ^{4,E}	4,500	740	310	2,300	< 200	-				0.21	Oper
	H I		8/30/2001	-		15.49	79.34	3,200€	 	43,0661	6,498	639	510	2,608	< 200			<u> </u>		0.32	Open
			3/20/2001	-	\vdash	14,03	81.85 83.31	5,400		75,000	22,000	1,890	1,900	6,400	< 1,200		-			2.22	Not op
			12/5/2000		-	15.55	81.79	_		46,026	13,000	1,000	906	2,800	< 350					0.39	Not op
			9/7/2000	-	\vdash	16.40	80.94	2,688°R 5,900°	-	65,830 ⁴²	16,080	1,300	1,300	3,400	< 200			┝╧┥		0.35	Not op
			3/23/2000		\vdash	10.22	87,12	5,900° 3,100°.f		43,000 ⁴ 49,606 ⁴	10,000	1,100	1,100 910	3,460	< 450		-	├		1.04	<u> </u>
			12/10/1999		1	13.99	83.35	3,100°.f	 	47,000 ⁴	12,000	1,800	1,000	4,400	< 100						
			9/26/1999		-	16.58	83.76	3,260°-Г	 	24,000	7,500	1,200	190	2,208	210	-				0.62	_
			6/29/1999		$\overline{}$	_	-	- 5,500	 	44,000	7,000	-	-	2,290	210			-		14.29 ^a	-
	i i		3/29/1999			9.10	88.24	2,408°-J.k	-	48,000 ^d	15,000	3,000	1,300	5,000	1,300		-	-		1.32	-
	1 1		12/2/1998			13.45	83.89	1,600		27,086	8,900	1,600	736	2,300	< 1,500		-			132	-
	1 1		9/30/1998	_		16.84	80.50	2,100	-	39,000	12,008	2,708	1,600	3,400	516			-		1.1	-
	t I		7/14/1998	-		14.15	83.19	1,900**	-	73,0004	12,001	7,802	1,300	7,300	< 200	_	_			1.0	
	i I		3/18/1998			9,54	17.80	5,500°-f	-	58,0004	14,000	4,700	1,400	5,798	< 1,200	-		-	-	0,8	
	1		12/22/1997	-		9.21	88.13	3,106*	-	43,800°	13,060	3,903	1,160	4,200	< 960	_		-		3.7	
			9/17/1997	_		17.10	80.24	4,400°	-	60,636 ^d	17,060	4,900	1,500	5,790	< 1,500	_		-		1.5	
	1 1		6/25/1997	-		16.15	81.15	5,800 ^b	_	61,000	16,088	6,106	1,500	5,900	789"	_	_	_		1.4	
			3/20/1997			13.75	83.59	3,100	_	47,020	11,085	4,508	1,100	5,200	3,400	. Tra		-	-	8.4	1
MW-5 2-inch	20 - 30	165.74													T			. 1			
	li l		7/15/2015	-	-	15.95	149.79	450***	-	8,800*	1,200	33	458	34.27	850	6,760	<11	<11	<11	Q.37	-
	1		1/9/2014	_		17.12	148.62	1,100*	-	13,900**	1,760	33	740	32.5	640	1,300	<1.4	< 2.4	<2.0 - 3.2	1.21	
	1		9/20/2013			17,31	148.43	540***		4,490±	2,200	47	1,280	50.12	790	296	<1.4	< 2.4	< 2.0 - 3.2	0.50	
			6/25/2013	_		16.21	149.53	760*		5,200*	1,760	41	860	50.2 1	986	7,800	< 1.5	< 2.5	<8.3	3,82	
	1 1		3/13/2013	_		13.89	151.85	1,600+++	-	18,606*	2,290	54	1,200	116,1 J	416	< 34	< 1.5	< 2.5	<8.3	2.09	
			11/9/2012	_		15.11	150,63	340***	 	3080*	1,300	16	340	35.2	390	2,360	< 0.30	< 0.50	< 0.68	1.7	
MW-6 2-inch	20 - 30	164.3						-12							-	2000	10.30	V 0.20	0.06	1./	'
4-1111	1		7/15/2015	-	\vdash	12.53	151,77	310***		3,300+	89	2.1	21	2.00	- 76		-0.65				
			1/9/2014		\vdash	16.18	148.12	190*	-	3,769*	67	< 0.25	3,8	2,85	< 0.5 < 0.72	19	< 0.50	2.2	< 0.50	0.85	
			9/20/2013		\vdash	16.46	147.84	470***	-	1,700+	130	0.661	4,6	< 1.74	<1.4	< 6.5	< 0.28	< 0.47	< 0.40 - 0.64	1.24	-
	H I		6/25/2013		1	14.78	149.52	520^		3,460*	250	2.1 J	6	<1.74 1.9 J		< 13	< 0.57	< 0.95	< 0.80 - 1.3	0.61	-
			3/13/2013		\vdash	13.05	151.25	710***			_	_		$\overline{}$	<15	88	< 0.59	< 0.99	< 3,34	3.39	-
			11/9/2012		\vdash			/10	-	1,866*	236	2.5 J	15	1.67	< 1.5	< 14	< 0.59	< 0.99	< 1,66	6.39	
						14.61	149.69	-	-	- 1				-		-	-				
			11/2/2012 Detection Limit	-	ليا	14.23	150.07	120 ^t		540*	44	0.74	7.5	2.3	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	6.63	6
								10	16	90	- 8.5	6.5	4. 2. m. (1.)	1.5	\$1.00	5	0.5	0.5	20.5	Field Inst	munch /
		Water Quality	Objectives (TVQO:	970	A STATE BY THE	AND RESERVED			.000		1 1	150	390	1,750	5	12	9.05	0.5			\$5.00 L

Д	ttachmen	t 4 – Va	por Int	rusion E	valuatio	n and	Data							
	L	TCP VAPOI	R SPECIFIC	CRITERIA -	PETROLEU	M								
			Closure	Scenario			TT III II							
Exemption	n: Active fuelir	ng station ex	empt from v	apor specific	criteria; A	ctive as of c	late:							
	in gw in soil No LNAPL LNAPL criteria criteria Southern color of the color of t													
		Evaluation	Criteria: S	hading indica	tes criteria m	et.								
Site Speci	fic Data	II .												
Unweathered LNAPL	Exemption: Active fueling station e Scenario 1; Scenario 2; Scen Scenario 4b with bioattenuation zone;			No LNAPL										
Thickness of Bioattenuation Zone Beneath Foundation	≥ 10 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	≥5 feet		≥ 5 feet						
Depth to Shallowest Groundwater	14.90 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	≥ 5 feet	≥ 5 feet	≥ 5 feet						
Total TPHg & TPHd in Soil in Bioattenuation Zone	180 mg/kg													
Maximum Current Benzene Concentration in Groundwater	< 19 μg/L		No criteria	<100 µg/L	≥100 and <1,000 µg/L	<1,000 µg/L	No criteria	No criteria						

> 4%

~ 5 feet

61

61

<91

<91

< 440

< 440

Historic Max:

Current Max:

Historic Max:

Current Max:

Historic Max:

Current Max:

Oxygen Data in

Bioattenuation

Soil Vapor Depth

Zone

Beneath

Benzene

 $(\mu g/m^3)$

 $(\mu g/m^3)$

 $(\mu g/m^3)$

Foundation

Concentrations

Ethylbenzene

Naphthalene

Concentrations

Concentrations

No

oxygen

data or

<4%

No

criteria

No

criteria

No

criteria

No

criteria

≥4%

No

criteria

No

criteria

No

criteria

No

criteria

No oxygen

data or

<4%

No criteria

No criteria

No criteria

No criteria

No

criteria

No

criteria

No

criteria

No

criteria

No

criteria

No

criteria

No

criteria

No

criteria

No

criteria

No

criteria

≥4% at

bottom of

zone

5 feet

Res:

< 85K;

Com:

< 280K

Res:

< 1,100K;

Com:

< 3,600K

Res:

< 93K;

Com:

< 310K

No

criteria

5 feet

Res:

< 85;

Com:

< 280

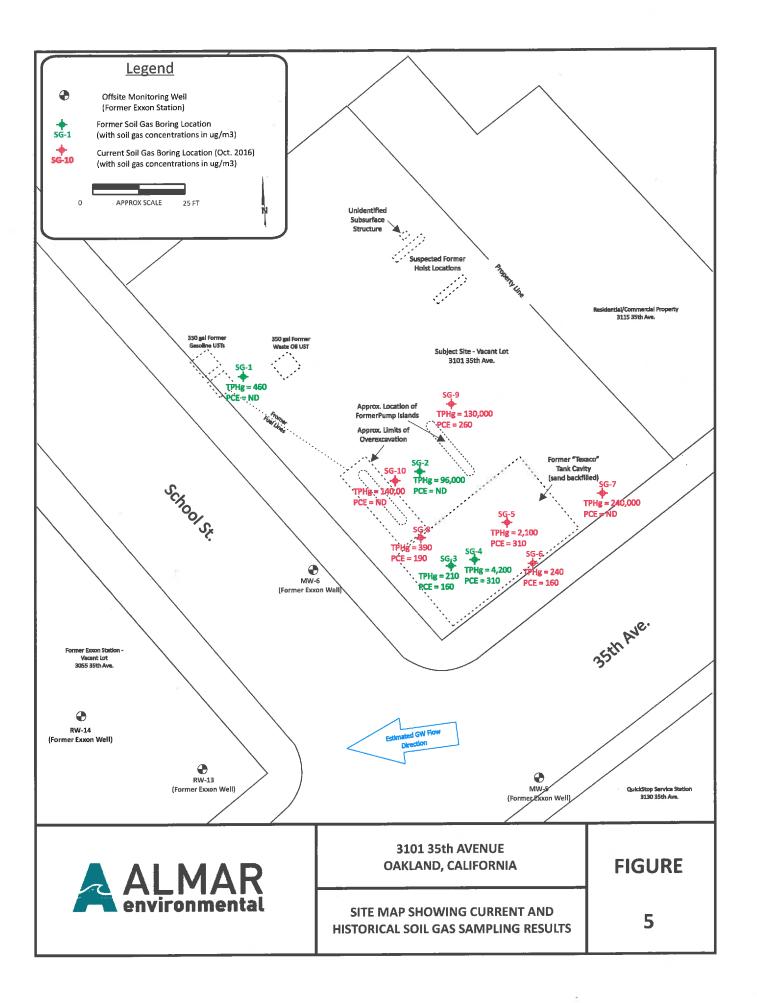
Res:

< 1,100;

Com:

< 3,600

Res:


< 93;

Com:

< 310

Attachment 4 - Vapor Intrusion Evaluation and Data

LTCI	P VAPOR SPECIFIC CRITERIA – PETROLEUM (cont.)
	Vapor Intrusion to Indoor Air Analysis
Onsite	This case does not meet any of the LTCP Vapor Specific Media scenarios as the TPH concentration in bioattenuation zone exceeds 100 mg/kg. Additionally, the laboratory reporting limit for naphthalene exceeds the threshold concentration for Scenario 4. Note that groundwater has been reported at depths of less than 10 feet at the site; however, the soil bore (DP-1) intercepted ponded water in the tank pit and is not reflective of groundwater conditions.

TABLE 3

SUMMARY OF CURRENT AND HISTORICAL SOIL VAPOR ANALYTICAL DATA 3101 35th Ave.

Oakland, California

SAMPLE ID	Sample Depth (ft.)	Sample Date	Oxygen (O ₂)	Helium	(ST) TPHg (C6-C12)	© Tetrahydrofuran	(新文) Carbon Disulfide	n-Hexane	Chloroform	μg/m³)	(hg/m³)	新》 X Ethylbenzene	所 Xylenes (total)	(™/Bd/)	υ (μg/m³)	Naphthalene ("Maghthalene")	(°gm\gama)
SG-1	5.0	11/09/15	2.6	ND<0.47	460	80	47	ND<2.3	16	10	28	ND<2.3	ND<2.3	ND<2.3	ND<2.3	ND<2.3	<mdl< td=""></mdl<>
SG-2	5.0	11/09/15	4.1	ND<0.45	96,000	190	140	70	ND<14	61	91	ND<14	74	ND<14	ND<14	ND<14	<mdl<sup>1</mdl<sup>
SG-3	5.0	11/09/15	15	ND<0.19	210	22	12	ND<0.97	ND<0.97	3.3	7.8	ND<0.97	ND<0.97	ND<0.97	160	ND<3.9	<mdl< td=""></mdl<>
SG-4	5.0	06/01/16	_ 17	ND<0.21	4,200	9.2	ND<3.3	130	ND<5.1	ND<3.4	4.4	ND<4.8	ND<4.6	ND<10	310	ND<22	<mdl<sup>2</mdl<sup>
SG-5	5.0	10/10/16	16	ND<0.20	2,100	20	ND<3.1	24	11	6.8	11	ND<4.3	7.6	ND<9.8	310	ND<21	<mdl<sup>3</mdl<sup>
SG-6	5.0	10/10/16	17	ND<0.19	240	12	ND<3.0	ND<3.5	ND<4.7	ND<3.1	4.1	ND<4.2	ND<8.4	ND<9.4	160	ND<20	<mdl< td=""></mdl<>
\$G-7	5.0	10/10/16	9.8	ND<0.19	240,000	67	91	ND<68	410	ND<62	290	ND<84	120	ND<190	ND<130	ND<410	<mdl< td=""></mdl<>
SG-8 ,	5.0	10/10/16	17	ND<0.18	390	21	ND<2.8	ND<3.2	ND<4.4	ND<2.9	6.9	ND<4.1	ND<7.8	12	190	ND<19	<mdl< td=""></mdl<>
SG-9	5.0	10/10/16	6.5	ND<0.20	130,000	ND<58	ND<61	ND<69	140	ND<63	ND<74	ND<86	ND<172	ND<190	260	ND<410	<mdl< td=""></mdl<>
SG-10	5.0	10/10/16	5.9	ND<0.21	140,000	ND<62	110	ND<74	170	ND<67	ND<79	ND<91	ND<182	ND<210	ND<140	ND<440	<mdl< th=""></mdl<>
	esidential E		NA	NA	300,000	NA	NA	NA	61	48	160,000	560	52,000	NA	240	41	Varies
	omm/Ind E		NA	NA	2,500,000	NA	NA	NA	530	420	1,300,000	4,900	440,000	NA	2,100	360	Varies
	sidential CH		NA	NA	NA	NA	NA	NA	NA	36.2	135,000	NA	319,000	NA	180	31.9	Varies
	mm/Ind CH		NA	NA	NA	NA	NA	NA	NA	122	378,000	NA 4 000 000	887,000	NA	603	106	Varies
	w/Bioatten		NA	NA	NA	NA	NA	NA NA	NA	85,000 85	NA NA	1,000,000	NA NA	NA NA	NA NA	93,000	Varies
LICPV	v/o Bioatter	nuation	NA	NA	NA	NA	NA	NA	NA	85	NA	1,100	NA	NA	NA	. 33	Varies

<MDL¹ = 1,2,4-Trimethylbenzene at 73 ug/m3

<MDL³ = n-heptane at 8.9 ug/m3

<MDL² = Acetone at 73 ug/m3 & Cyclyhexane at 180 ug/m3 & n-heptane at 51 ug/m3

Notes:

--- = Parameter not Sampled

NA = Not analyzed or Not established

< 0.5 / ND = Not present at or above reporting detection limit

ug/m3 = micrograms per cubic meter = ppmv

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table SG-1: Vapor Intrusion: Human Health Risk Levels)

CHHSL = California Human Health Screening Level - January 2005

LTCP = Low Threat Closure Policy (Appendix 4 - Scenerio 4)

Bold = detected concentration

Shaded Value = concentration excedes either ESL or LTCP value

<u>Α</u> ΔΙ ΜΔΡ

Attachment 5 - Direct Contact Evaluation and Data

LTCP DIRECT CONTACT AND OUTDOOR AIR EXPSURE CRITERIA

Closure Scenario

__ Exemption (no petroleum hydrocarbons in upper 10 feet), X Maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1 below, __ Site-specific risk assessment, __ A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health, __ A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health as a result of controlling exposure through the use of mitigation measures or through the use of institutional controls, __ This case should be closed in spite of not meeting the direct contact and outdoor air specific media criteria.

Controls, mi		ciosea in spite i	or not meeting the	direct contact	and outdoor air sp	ecilic media criteria.				
		Evaluation C	riteria: Shading ir	ndicates criteria	met.					
Are maximum o	oncentrations les	s than those in	Table 1 below?	Yes						
		Resi	dential	Commerc	ial/Industrial	Utility Worker				
Cons	tituent	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 10 feet bgs (mg/kg)				
Site Maximum	Benzene	< 0.05	0.0023	< 0.005	0.0023	0.0023				
LTCP Criteria	Benzene	≤1.9	≤2.8	≤8.2	≤12	≤14				
Site Maximum	Ethylbenzene	0.87	< 0.005	0.87	< 0.005	0.87				
LTCP Criteria	Ethylbenzene	≤21	≤32	≤89	≤134	≤314				
Site Maximum	Naphthalene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
LTCP Criteria	Naphthalene	≤9.7	≤9.7	≤45	≤45	≤219				
Site Maximum	PAHs	≤ 0.062	≤ 0.062	≤ 0.062	≤ 0.062	≤ 0.062				
LTCP Criteria	PAHs	≤0.063	NA	≤0.68	NA	≤4.5				
		Direct Co	ntact and Outdo	or Air Analysi	s					
On	site	This site meet this LTCP criterion as the maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1.								
Off	site	The petroleum of this criterion	•	ne that may ex	ctend offsite is belo	ow the 10-foot depth				

TABLE 1A SUMMARY OF CURRENT AND HISTORICAL SOIL ANALYTICAL DATA - Hydrocarbons and VOCs 3101 35th Avenue Oakland, California

Sample ID	Sample	Sample	TPHg	TPHd	TPHmo	В	T	E	Х	MtBE	Napth.	TBA	Other VOC
Sample 10	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
WO d 7.5'	7.5	01/27/15	ND<0.25	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.010		All ND
T1 d 9'	9.0	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
T2 d 9'	9.0	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. SW d 3'	3.0	01/27/15	230			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. NW d 3'	3.0	01/27/15	850			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. SE d 3.5'	3.5	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Disp. NE d 3'	3.0	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
SW TP d 9.5'	9.5	01/27/15	180			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Dispenser SP	stopckpile	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
Main TP SP	Stockpile	01/27/15	ND<0.25			ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005			All ND
WO SP	Stockpile	01/27/15	32	84	360	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.71		All ND
Disp.Ad5'	5.0	04/16/15	46			ND<0.005	ND<0.005	ND<0.005	0.069	ND<0.05			
Disp.Bd4'	4.0	04/16/15	1.1			ND<0.005	ND<0.005	ND<0.005	ND<0.050	ND<0.05			
Disp.Cd5'	5.0	04/16/15	77			ND<0.001	ND<0.001	0.17	0.22	ND<0.10			
Disp.Dd5'	5.0	04/16/15	110			ND<0.05	0.21	0.87	0.16	ND<0.05			
Disp.Ed5'	5.0	04/16/15	21			ND<0.05	0.031	0.012	0.16	ND<0.05			
Disp.Fd5'	5.0	04/16/15	68			ND<0.05	ND<0.005	ND<0.005	0.035	ND<0.05			
Disp.Gd4'	4.0	04/16/15	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.050	ND<0.05			
Disp.Hd4'	4.0	04/16/15	68			ND<0.05	0.34	ND<0.050	0.093	ND<0.05			
ES	L Residential		770	240	11,000	0.250	1,000	5.5	600	44	1.9		varies
	sidential (0' to					1.9		21.0			9.7		varies
LTCP Res	sidential (5' to	10')	***			2.8		32.0			9.7		varies

Continued.

TABLE 1A

SUMMARY OF CURRENT AND HISTORICAL SOIL ANALYTICAL DATA - Hydrocarbons and VOCs 3101 35th Avenue Oakland, California

Comple ID	Sample	Sample	TPHg	TPHd	TPHmo	В	Т	E	Х	MtBE	Napth.	TBA	Other VOCs
Sample ID	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
DP-1d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-1d10.0	10.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-1d15.0	15.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d10.0	10.0	11/02/15	12			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d20.0	20.0	11/02/15	0.73			0.0023	0.013	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-3d30.0	30.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d10.0	10.0	11/02/15	6.1			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d15.0	15.0	11/02/15	0.30			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d20.0	20.0	11/02/15	18			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
DP-5d30.0	30.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
SG-1d5.0	5.0	11/02/15	0.065			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
SG-2d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
SG-3d5.0	5.0	11/02/15	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	
	L Residential		770	240	11,000	0.250	1,000	5.5	600	44	1.9		varies
	esidential (0' to			I - I		1.9		21.0			9.7		varies
LTCP Re	sidential (5' to	10')			*****	2.8		32.0			9.7		varies

Continued.

TABLE 1A

SUMMARY OF CURRENT AND HISTORICAL SOIL ANALYTICAL DATA - Hydrocarbons and VOCs

3101 35th Avenue Oakland, California

	Sample Sample TPHg TPHg B T F X MtBE Napth. TBA Other VOCs												
	Sample	Sample	TPHg	TPHd	TPHmo	В	T	E	Х	MtBE	Napth.	TBA	Other VOCs
Sample ID	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
SG-4d5.0	5.0	05/31/16	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-6d5.0	5.0	05/31/16	ND<0.20	ND<10.0	42	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-6d10.0	10.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-7d5.0	5.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-7d10.0	10.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-8d5.0	5.0	05/31/16	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-8d10.0	10.0	05/31/16	ND<0.20			ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-9d5.0	5.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-9d8.0	8.0	05/31/16	3.2	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND ¹
DP-9d15.0	15.0	05/31/16	1.0	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-10d5.0	5.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
DP-10d10.0	10.0	05/31/16	ND<0.20	ND<10.0	ND<20.0	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005	ND<0.050	All ND
ES	ESL Residential			240	11,000	0.250	1,000	5.5	600	44	1.9		varies
LTCP Re	sidential (0' to	o 5')				1.9		21.0			9.7		varies
LTCP Re	sidential (5' to	10')				2.8		32.0			9.7		varies
				_		-			·				

Notes:

11/25/14 & 4/16/15 samples collected by ERS

--- = Parameter not analyzed

<0.5 / ND = Not present at or above practical laboratory detection limit

mg/Kg = micrograms per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table S-1: Res. Shallow Soil Exposure)

LTCP = Low Threat Closure Policy - Table 1: Concentrations of Petroleum Constituents in soil

that will have no significant risk of adversly affecting human health

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

TPHmo = Total Petroleum Hydrocarbons as motor oil

B = Benzene

MtBE = Methyl-t-butyl ether

Bolded Value =detected concentration

T = Toluene

TBA = tert Butyl Alcohol

Shaded Value = concentration excedes either ESL or LTCP value

1 = n-Butylbenzene @ 0.022 mg/Kg & sec-Butylbenzen @ 0.0096mg/Kg

E = Ethylbenzene

X = Total Xylenes

TABLE 1B SUMMARY OF CURRENT AND HISTORICAL SOIL ANALYTICAL DATA - PAHs 3101 35th Avenue Oakland, California

Sample ID	WO d 7.5'	WO SP	DP-6d5.0	DP-6d10.0	DP-7d5.0	DP-7d10.0	LTCP	LTCP	
Sample Depth	7.5 ft bgs	Stockpile	5.0 ft bgs	10 ft bgs	5.0 ft bgs	10 ft bgs	Res.	Res.	Res.
Sample Date	01/27/15	01/27/15	05/31/16	05/31/16	05/31/16	05/31/16	0 to 5 ft bgs	5 to 10 ft bgs	ESL
Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Acenaphthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	16
Acenaphthylene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	13
Anthracene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	2.8
Benzo[a]anthracene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.7
Benzo[b]fluoranthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.7
Benzo[k]fluoranthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	2.6
Benzo[a]pyrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.07
Benzo[g,h,i]perylene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	2.5
Chrysene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	3.8
Dibenzo[a,h]anthracene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.07
Fluoranthene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	60
Fluorene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	8.9
Indeno[1,2,3-cd]pyrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.7
1-Methylnaphthalene	ND<0.010	0.66	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	NA
2-Methylnaphthalene	ND<0.010	1.2	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	0.25
Napthalene	ND<0.010	0.71	ND<0.10	ND<0.10	ND<0.10	ND<0.10	9.7	9.7	1.2
Phenanthrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	11
Pyrene	ND<0.010	ND<0.010	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.063	NA	85

Notes:

--- = Parameter not analyzed

<0.5 / ND = Not present at or above reporting detection limit

mg/Kg = micrograms per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table S-1: Res. Shallow Soil Exposure)

Bolded Value =detected concentration

Shaded Value = concentration excedes either ESL or LTCP value

PAH = polynuclear aromatic hydrocarbons

TABLE 1C

SUMMARY OF CURRENT AND HISTORICAL SOIL ANALYTICAL DATA - Metals

3101 35th Avenue Oakland, California

									akiailu, C										
Sample	Sample	Sample	Sb	As	Ba	Ве	Cd	Cr	Со	Cu	Pb	Hg	Мо	Ni	Se	Ag	TI	٧	Zn
1D	Depth (ft)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)						
WO d 7.5'	7.5	01/27/15					ND<0.25	46			6.9			100					120
T1 d 9'	9.0	01/27/15									6.5								
T2 d 9'	9.0	01/27/15									9.7							***	
Disp. SW	3.0	01/27/15									25								
Disp. NW	3.0	01/27/15									35		***						
Disp. SE d	3.5	01/27/15									13								
Disp. NE d	3.0	01/27/15									8.3								
SW TP d	9.5	01/27/15					***				18								
Dispenser	stopckpile	01/27/15									170								
Main TP	Stockpile	01/27/15									43								
WO SP	Stockpile	01/27/15					0.32	52			65			80					160
DP-6d5.0	5.0	05/31/16	ND<4.4	5.3	160	0.43	ND<0.44	54	10	78	6.7	0.099	0.52	67	ND<4.4	0.3	ND<4.4	52	92
DP-6d10.0	10.0	05/31/16	ND<5.0	9.1	240	0.45	ND<0.50	51	15	81	8.2	0.19	0.26	72	ND<5.0	0.35	ND<5.0	70	100
DP-7d5.0	5.0	05/31/16	ND<5.0	10	220	0.4	ND<0.50	54	17	67	11	0.082	0.35	91	ND<5.0	0.3	ND<5.0	62	99
DP-7d10.0	10	05/31/16	ND<5.0	7.7	220	0.4	ND<0.50	57	17	83	8.1	0.16	0.35	70	ND<5.0	0.31	ND<5.0	74	110
E	SL Residentia	al	31	0.067	15,000	0.083	0.014	NA	0.23	3100	80	13	390	820	390	6900	0.78	140,000	23,000
	TTLC		500	500	10,000	75	100	500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000

Notes:

Sb = Antimony

Cr = Chromium (total)

Mo = Molybdenum

V = Vanadium

Bolded Value = a detected concentration

Shaded Value = concnetration detected above corresponding TTLC

Z = Zinc

As = Arsenic Ba = Barium Co = Cobalt Cu = Copper Ni = Nickel

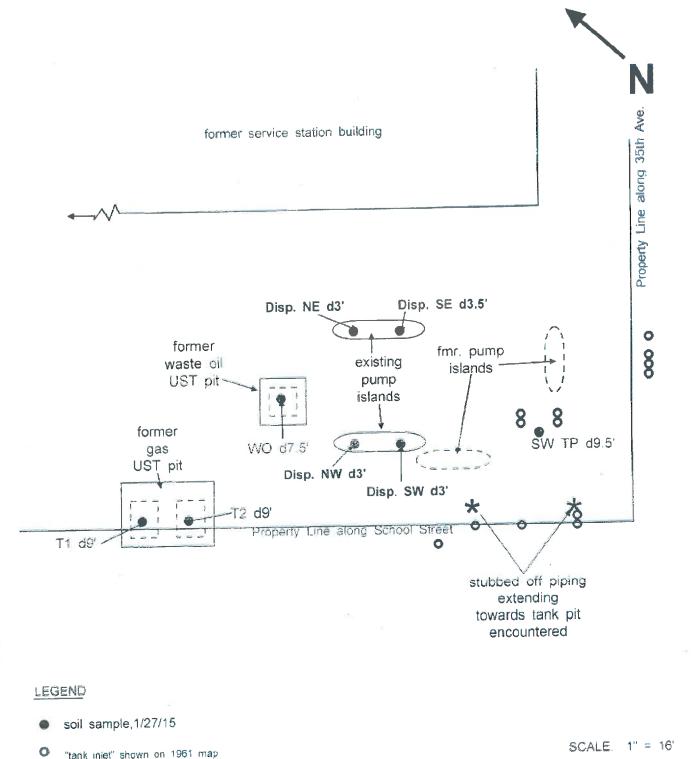
Se = Selenium

Be = Berylium Pb = Lead Ca = Cadmium

Ag = Silver

Hg = Mercury

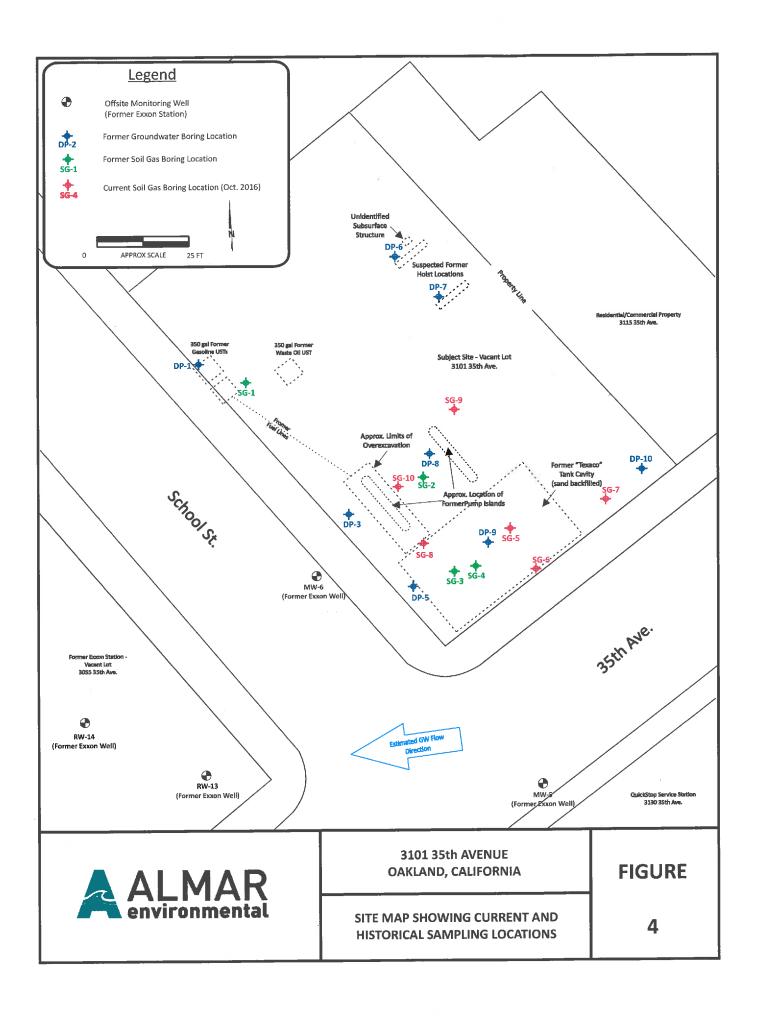
Tl = Thalium


<0.5 / ND = Not present at or above reporting detection limit</p>

mg/Kg = milligrams per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels - Feb. 2016 (Table S-1: Res. Shallow Soil Exposure)

TTLC = Total Threshold Limit Concentration



"tank injet" shown on 1961 map

Figure No: Date: Jan. 28, 2015 Former Service Station 3101 35th Ave. Drawn By: Joel Greger Oakland, California

Site Plan - Sample Locations

ATTACHMENT 6

ALAMEDA COUNTY HEALTH CARE SERVICES

REBECCA GEBHART, Interim Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #: 7011 3500 0003 1934 7620

May 3, 2017

NOTICE OF RESPONSIBILITY

Site Name & Address:

GREEN OAK BUILDERS 3101 35TH AVENUE OAKLAND, CA 94519

Local ID:

RO0003164

Related ID:

NA

RWQCB ID:

NA

Global ID:

T10000006539

Responsible Party:

GREEN OAK BUILDERS INC. 118 ASBY BAY ALAMEDA, CA 94502

Date First Reported:

1/31/2006

Substance:

Gasoline-Automotive (motor gasoline and

additives), leaded & unleaded

Waste Oil/Used Oil

Tetrachloroethylene

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: No

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified GREEN OAK BUILDERS INC. as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker KEITH NOWELL at this office at (510) 567-6764 if you have questions regarding your site.

RONALD BROWDER, Director Contract Project Director

ADD

Reason: ADD

Action:

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

May 3, 2017

Site Name & Address:

GREEN OAK BUILDERS 3101 35TH AVENUE OAKLAND, CA 94619

Local ID:

RO0003154

Related ID: NA

RWQCBID: NA

Global ID:

T10000006539

All Responsible Parties

RP has been named a Primary RP - GREEN OAK BUILDERS INC. ATTN: Patrick Kong & Mona Hsieh 118 ASBY BAY | ALAMEDA, CA 94502 | No Phone Number Listed

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET (Continued)

May 3, 2017

Responsible Party Identification Background

Alameda County Department of Environmental Health (ACDEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- 1. "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET (Continued)

May 3, 2017

Existence of Unauthorized Release

Three 350-gallon underground storage tanks (USTs) (two gasoline and one waste oil) were excavated and removed from the site on January 27, 2015. The waste oil and one gasoline UST were described as having small holes at the time of the removal. Maximum petroleum hydrocarbon concentrations of 850 milligrams per kilogram (mg/Kg) total petroleum hydrocarbons as gasoline (TPH-g) were detected in soil samples collected beneath the dispenser pipe run in conjunction with the tank removal. This concentration indicates an unauthorized release has occurred from the underground storage tank system at this site.

Responsible Party Identification

Green Oak Builders Inc. acquired title of the property in December 2007. Green Oak Builders Inc. meets the definition of a responsible party for the site because it owned or operated underground storage tanks used for the storage of any hazardous substance (Definition 1) and owned the property where an unauthorized release occurred (Definition 3).

Help

New Query

Property Value System

Transfer History | Value Owner: GREEN OAK BUILDERS INC Inactive:N Lien Date: 01/01/2017 Parcel Number: 28-951-12-1 Property Address: 3101 35TH AVE, OAKLAND, CA 94619-1207

Map

Glossary

Current Mailing Address as of 03/17/2017: GREEN OAK BUILDERS INC, c/o MONA HSIEH, PO BOX 1248, ALAMEDA, CA 94501


Mailing Name		Historical Mailing Address		Document Number		Count	
GREEN OAK BUILDERS INC	<u>List</u> Owners	118 ASBY BAY , ALAMEDA, CA 94502-791	12/11/2007 5	'2007- 418172		1	3100
HSIEH MONA & KONG PATRICK	<u>List</u> <u>Owners</u>	118 ASBY BAY , ALAMEDA, CA 94502-7919	12/27/2006 5	2006- 469127	\$800,000	1	3100
CHOI PETER J	<u>List</u> Owners	2002 PELICAN WAY, SAN LEANDRO, CA 94579-198		2002- 472175	\$100,000	1	<u>3300</u>
LEW ROY & ETHEL O TRS	<u>List</u> <u>Owners</u>	18837 SYDNEY CIR , CASTRO VALLEY, CA 94546-2751	09/27/1990	1990- 257640		1	3300
LEW ROY & ETHEL O	<u>List</u> <u>Owners</u>	3101 35TH AVE , OAKLAND, CA 94619-120		1983- 112523	\$80,000	1	<u>3300</u>
TEXACO INC	<u>List</u> <u>Owners</u>	3101 35TH AVE , OAKLAND, CA 94619-120		1982-4707	\$42,500	1	<u>3300</u>
STATEWIDE STATIONS INC	<u>List</u> <u>Owners</u>	3101 35TH AVE , OAKLAND, CA 94619-120	07/15/1977 7	'1977- 140140		1	<u>3300</u>
TEXACO INC	<u>List</u> <u>Owners</u>	3101 35TH AVE , OAKLAND, CA 94619-120		AS- 113334		1	3300

All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the

Assessor's knowledge of each property. Caution is advised for use other than its intended purpose.

The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later. Click here for more information regarding supported browsers.

Copyright © 2001 Alameda County

ATTACHMENT 7

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

6

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

REBECCA GEBHART, Interim Director

March 5, 2017

INVITATION TO COMMENT - POTENTIAL CASE CLOSURE

GREEN OAK BUILDERS 3101 35TH AVENUE, OAKLAND, CA 94619 FUEL LEAK CASE RO00003164 GEOTRACKER GLOBAL ID T10000006539

March 5, 2017

The above referenced site is a fuel leak case that is under the regulatory oversight of the Alameda County Department of Environmental Health (ACDEH) Local Oversight Program for the investigation and cleanup of a release of petroleum hydrocarbons from an underground storage tank system. Site investigation and cleanup activities have been completed and the site has been evaluated in accordance with the State Water Resources Control Board Low-Threat Closure Policy. The site appears to meet all of the criteria in the Low-Threat Closure Policy. Therefore, ACDEH is considering closure of the fuel leak case. Due to the presence of residual contamination not addressed in the Low-Threat Closure Policy, a Site Cleanup Program case has been opened to address this contamination.

The public is invited to review and comment on the potential closure of the fuel leak case. This notice is being sent to the current occupants and landowners of the site and adjacent properties and other known interested parties. The entire case file can be viewed over the Internet on the ACDEH website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Please send written comments to Keith Nowell at the address below; all comments will be forwarded to the responsible parties. Comments received by May 4, 2017 will be considered and responded to prior to a final determination on the proposed case closure.

If you have comments or questions regarding this site, please contact the ACDEH caseworker, Keith Nowell at 510-567-6764 or by email at keith.nowell@acgov.org. Please refer to ACDEH case RO0003164 in any correspondence.

Parcel_APN	Name	StreetAddress	Unit	City	Zip	Zip_4		
_	EMORY FREDERICK D &		*					
32-2030-36	GERALDINE G TRS	257 CLEARVIEW CT		ROSEVILLE CA	95747	8314		
27-890-6-2	GOLDEN EMPIRE PROPERTIES INC	5942 MACARTHUR BLVD	В	OAKLAND CA	94605	1653		
28-951-12-1	GREEN OAK BUILDERS INC	118 ASBY BAY		ALAMEDA CA	94502	7915		
27-890-2	LI QING Z	3459 SCHOOL ST		OAKLAND CA	94602	3632		
28-951-12-2	OCCUPANT	3115 35TH AVE		OAKLAND CA	94619			
28-951-12-1	OCCUPANT	3101 35TH AVE		OAKLAND CA	94619			
27-890-6-2	OCCUPANT	3055 35TH AVE		OAKLAND CA	94619			
32-2030-35	OCCUPANT	3118 35TH AVE		OAKLAND CA	94619			
32-2030-34	OCCUPANT	3112 35TH AVE		OAKLAND CA	94619			
32-2030-36	OCCUPANT	3130 35TH AVE		OAKLAND CA	94619			
28-951-12-2	ONG RUBY & CHAN APRIL S & ONG JEANNETTE K TRS	3303 WASHINGTON CT		ALAMEDA CA	94501	5575		
32-2030-35	YAEP PACK S & KWAN S TRS	990 YUCATAN CT		FREMONT CA	94539	7137		
32-2030-34	YAEP PACK S & KWAN S TRS	990 YUCATAN CT		FREMONT CA	94539	7137		
28-951-13	YU ROGER	3464 SCHOOL ST		OAKLAND CA	94602	3631		
	OAKLAND PUBLIC WORKS	250 FRANK OGAWA PLAZA	SUITE 5301	OAKLAND, CA	94612	ΑT	TTN: MARK AI	RNIOL
	EAST BAY MUNICIPAL UTILITY DISTRICT	P.O. BOX 24055		OAKLAND, CA	94623	1055 AT	TTN: KEN MIN	IN
	EAST BAY MUNICIPAL UTILITY DISTRICT	P.O. BOX 24055	MS 702	OAKLAND CA	94623	1055 AT	TTN: CHANDF	RA JOH
	San Francisco Bay Region- RWQCB	1515 Clay St, Ste 1400		OAKLAND CA	94612	A	TTN: LAUREN	IT MEII