

Brittany Frost Project Manager Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-6103 Fax (510) 359-0261 Bfrost@chevron.com

Ms. Karel Detterman Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RECEIVED

By Alameda County Environmental Health 10:06 am, Sep 29, 2010

Re: Former Tidewater Service Station 373378

7600 MacArthur Boulevard

Oakland, California

I have reviewed the attached Third Quarter Groundwater Monitoring and Sampling Report.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by GHD Services, Inc., upon who assistance and advice I have relied.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Brittany Frost Project Manager

Attachment: Third Quarter Groundwater Monitoring and Sampling Report

September 28, 2016

Reference No. 062164

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Oakland, California 94502

Re: Third Quarter 2016 Monitoring and Sampling Report Former Tidewater Service Station Phillip 66 Site 5677/Chevron Site 373378 7600 MacArthur Boulevard Oakland, California ACEH Fuel Leak Case No. RO3087

Dear Ms. Detterman:

GHD Services Inc. (GHD) is submitting this *Third Quarter 2016 Monitoring and Sampling Report* for the site referenced above on behalf of Chevron Environmental Management Company (Chevron) and Phillips 66 Company (Phillips 66). This report was prepared in accordance with the Alameda County Department of Environmental Health's (ACEH) Technical Report Request Letter dated July 19, 2016 (Attachment A). Site background information, current quarter monitoring results, and anticipated future activities are discussed below.

1. Site Background

Site Description

The site is located at 7600 MacArthur Boulevard in Oakland, California (Figure 1), and is currently a vacant lot. Based on information provided by the ACEH, Phillips Petroleum Company owned the property from 1966 through 1973. Since then, the site has had several owners, but has not undergone any major redevelopment. Former site features included at least one 1,000-gallon underground storage tank (UST), one 300-gallon UST, a dispenser island, and a station building with two hydraulic lifts. Approximate locations of the former service station building and USTs are shown on Figure 2. The site is bordered by private residences to the northeast and southeast. Commercial businesses are located southwest beyond MacArthur Boulevard and a vacant lot is located northwest across 76th Avenue.

Site Geology and Hydrogeology

The site is relatively flat lying, slightly sloping to the west southwest toward San Francisco Bay at an approximate elevation of 92 feet above mean sea level. Based on the San Francisco San Jose Quadrangle geologic map from the California Department of Conservation, the site is underlain by

sand and quaternary alluvium, which is further underlain by marine sandstone, greenstone, shale, conglomerate, and chert of the Mesozoic Franciscan Complex.

Soil encountered beneath the site during investigation consists primarily of clay with varying percentages of sand and gravel. Groundwater was encountered at approximately 33 to 34 feet below grade (fbg). The regional groundwater flow in the vicinity of the site is assumed to be towards the west southwest, in the direction of the San Francisco Bay, and generally following the natural topographic relief of the area (Figure 1).

The site is located in the East Bay Plain groundwater basin according to the San Francisco Bay Regional Water Quality Control Board's Basin Plan. Groundwater in this basin is designated beneficial for municipal and domestic water supply and industrial process, service water, and agricultural water supply. The nearest surface water body is Arroyo Viejo Creek, which flows generally southwest to the Oakland Inner Harbor and is located approximately 0.4-mile southwest of the site.

Previous Environmental Work

In January 2007, one 1,000-gallon UST located onsite and one 300-gallon UST located beneath the sidewalk adjacent to MacArthur Boulevard were removed. Both tanks had been previously abandoned and filled with concrete during the 1970s. During removal of the USTs, soil samples P1, P2, and ST1 were collected beneath the former USTs. In September 2007, Golden Gate Tank Removal oversaw the advancement of soil borings B-1 through B-4 to depths ranging from 9 to 13 fbg.

Total petroleum hydrocarbons as gasoline (TPHg) was detected in soil only from boring B-4 at concentrations up to 500 milligrams per kilogram (mg/kg) beneath the former 300-gallon UST, but the chromatogram pattern was atypical for TPHg. TPH as diesel (TPHd) was detected in soil samples from P2, B-3, and B-4, but the chromatogram pattern did not resemble TPHd. TPH as motor oil (TPHmo) was detected in B-3 at concentrations up to 4,500 mg/kg, and total oil and grease (TOG) was detected in samples P1, P2, and ST1 collected beneath the USTs at concentrations between 55 to 300 mg/kg. No other hydrocarbon constituents were detected.

Between September 30, 2014 and October 8, 2014, GHD (formerly CRA) installed monitoring wells MW-1 through MW-3 and advanced soil borings BH-1 through BH-7 across the site to evaluate petroleum hydrocarbons in soil and groundwater, and advanced seven hand augered soil borings to evaluate conductive anomalies identified during a geophysical survey conducted in April 2014.

No TPHd, TPHg, VOCs, PAHs, fuel oxygenates, lead scavengers, or metals were detected in soil exceeding State Water Resources Control Board Low-Threat Closure Policy (SWRCB LTCP) levels or San Francisco Bay Regional Water Quality Control Board Environmental Screening levels (RWQCB ESLs) with the exception of the following:

 Benzo(a)pyrene in MW-3 at 5 fbg at a concentration of 0.039 mg/kg slightly exceeding the RWQCB ESL of 0.038 mg/kg, but was below the SWRCB LTCP of 0.063 mg/kg.

 Vanadium detected in BH-5 at 20 fbg at a concentration of 782 mg/kg, which is twice the screening level of 390 mg/kg. Concentrations of vanadium in soil above and below 20 fbg in BH-5 were below the screening level.

No TPHd, TPHg, VOCs, PAHs, fuel oxygenates, lead scavengers, or metals were detected in groundwater exceeding RWQCB ESLs with the exception of the following:

- TPHd in borings BH-4 and MW-1 at 620 and 290 μg/L, respectively.
- TPHg in boring MW-1 at 480 μg/L.
- Carbon Tetrachloride in boring BH-1 at 1 μg/L.

Advancement of seven hand auger borings where magnetic anomalies were noted confirmed no additional USTs are present at the property.

2. Results of Third Quarter 2016 Monitoring Event

On July 28, 2016, Gettler-Ryan Inc. (G-R) of Dublin, California, developed the three monitoring wells onsite. On August 5, 2016, G-R monitored and sampled site wells MW-1 through MW-3. Well development and sampling were completed pursuant to the ACEH directive letter dated July 19, 2016.

During the third quarter 2016 event, depth to groundwater in site wells ranged from approximately 22 to 24 feet below the top of the well casings. The groundwater flow direction was west-northwest at a gradient of 0.03 (Figure 2). Current and historical groundwater flow direction and gradient data are presented in Table 1. G-R's *Well Development*, and *Groundwater Monitoring and Sampling Data Packages* are included as Attachment B. Current and historic groundwater monitoring and sampling data are presented in Tables 1 through 3. Eurofins Lancaster Laboratory Environmental, LLCs' *Analytical Results* report is included as Attachment C.

Groundwater samples were analyzed for the site's constituents of concern (COCs). TPHd, TPHg, benzene, toluene, ethylbenzene, total xylenes (BTEX), and methyl tertiary butyl ether (MTBE) results are summarized below in Table A.

Table A: Groundwater Analytical Data Summary

Well ID ESLs	TPHd μg/L 100	TPHg μg/L 100	Benzene μg/L 1	Toluene μg/L 40	Ethylbenzene μg/L 13	Total Xylenes μg/L 20	MTBE μg/L <i>5</i>
MW-1	260	<100	<1	<1	<1	<1	<1
MW-2	<100	<100	<1	<1	<1	<1	<1
MW-3	<100	<100	<1	<1	<1	<1	<1

μg/L Micrograms per liter

Indicates constituent was not detected at or above laboratory reporting limit

NA Not analyzed J Estimated value

Data in **bold** represent concentrations that exceed applicable ESL (Environmental Screening Levels).

Results of the initial groundwater sampling this quarter indicate the following:

 Only TPHd was detected in groundwater above ESLs in well MW-1. No other wells contained detections of petroleum hydrocarbon constituents above the laboratory quantitation limits.

TPHd, TPHg, and BTEX analytical data are presented on Figure 2. Groundwater concentration and elevation graphs are presented in Attachment D.

Initial groundwater analytical results indicate minimal petroleum impact. Continued quarterly monitoring will determine whether a trend is present and if a hydrocarbon plume is present in groundwater.

3. Investigation Derived Waste

Purge water generated during well development and sampling activities was stored in a DOT approved tote and then transported by G-R to their facility in Dublin, CA for temporary storage. The purge water will be transported to a Chevron-approved facility for disposal. Documentation of disposal activities will be provided in the fourth quarter groundwater monitoring report.

4. Anticipated Future Activities

The following activities are anticipated at the site during fourth quarter 2016:

The ACEH has requested quarterly monitoring for four continuous quarters to determine groundwater conditions at the Site. The next sampling event will occur during the fourth quarter 2016 and includes sampling of wells MW-1 through MW-3.

We appreciate the opportunity to work with you on this project. Should you have any questions on the above, please do not hesitate to contact Matthew Davis at (253) 573-1218.

Greg Barclay PG 6260

GREG BARCLA

Sincerely,

GHD

Matthew Davis

MD/cw/5 Encl.

Figure 1 Vicinity Map

Figure 2 Groundwater Elevation Contour and Hydrocarbon Map

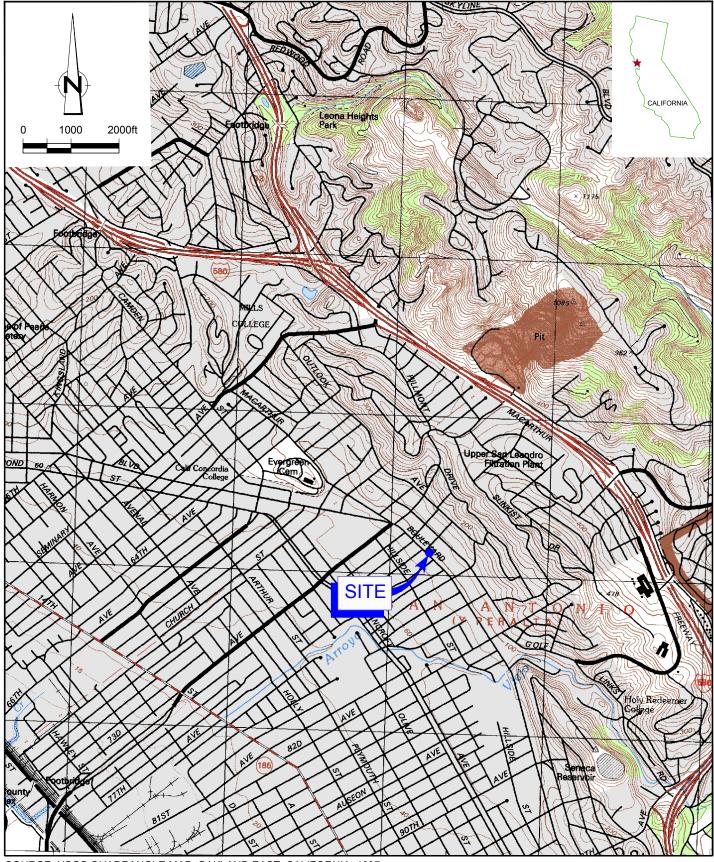
Table 1 Cumulative Groundwater Elevation and Analytical Data

Table 2 Historical PAH Data
Table 3 Historical Metals Data

Attachment A Agency Correspondence

Attachment B G-R Well Development and Monitoring Data Sheets

Attachment C Lancaster Analytical Reports

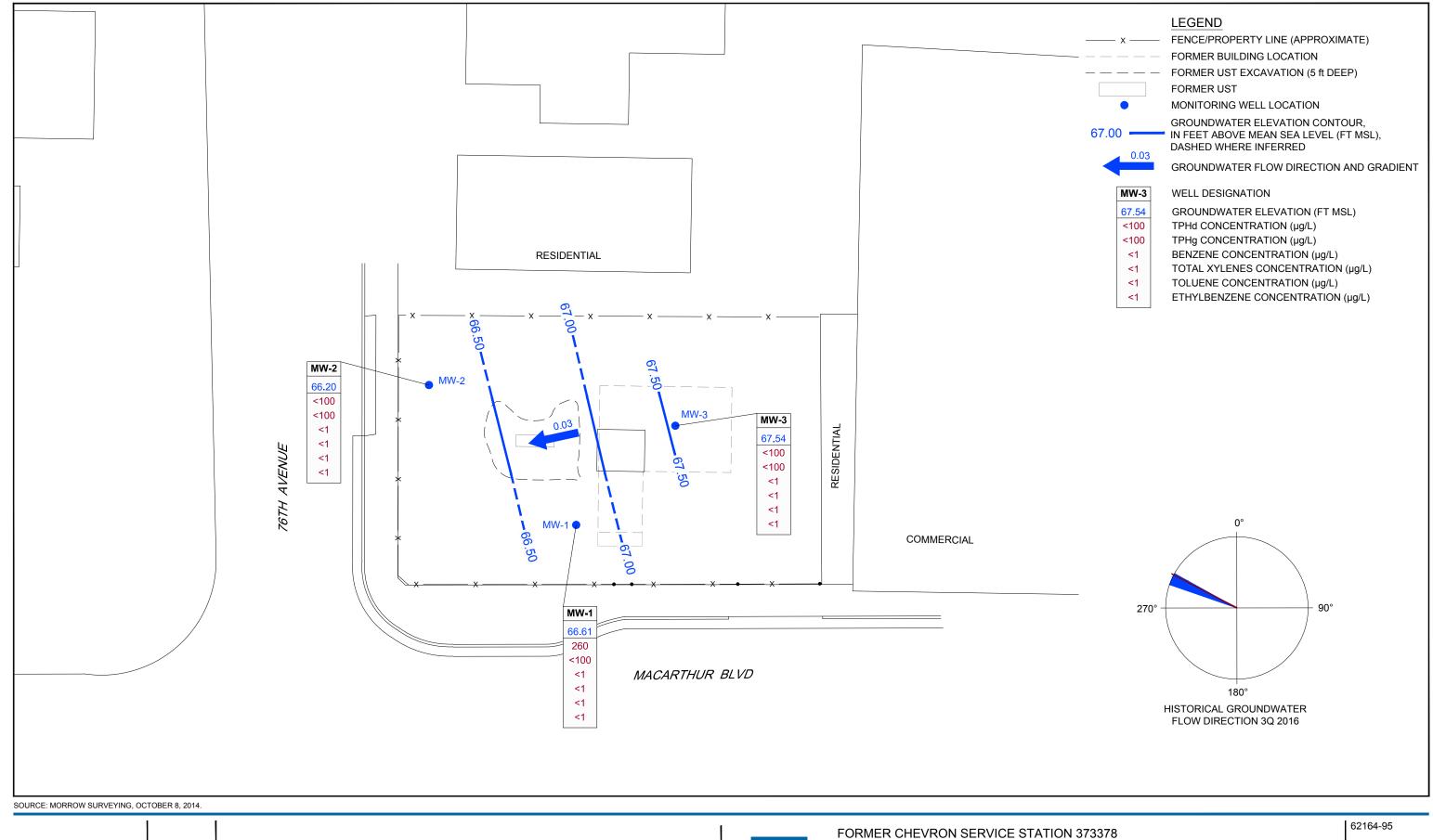

Attachment D Groundwater Elevation and Concentration Graphs

cc: Ms. Brittany Frost, Chevron (*electronic copy*)

Mr. Ed Ralston, Phillips 66 (electronic copy)

Ms. Hong Gardner, Hong Gardner Trust (electronic copy)

Figures


SOURCE: USGS QUADRANGLE MAP; OAKLAND EAST, CALIFORNIA, 1997.

FORMER CHEVRON SERVICE STATION 373378 7600 MACARTHUR BLVD OAKLAND, CALIFORNIA 62164-95 Sep 6, 2016

VICINITY MAP

FIGURE 1

7600 MACARTHUR BLVD OAKLAND, CALIFORNIA

GROUNDWATER ELEVATION CONTOUR AND HYDROCARBON CONCENTRATION MAP - AUGUST 5, 2016

Sep 19, 2016

FIGURE 2

Tables

Table 1

Cumulative Groundwater Elevation and Analytical Data Former Tidewater Service Station Phillips 66 Site 5677 Chevron Site 373378 7600 MacArthur Blvd. Oakland, California

Sample ID	Date Sampled	Well Elevation (ft-amsl)	Depth to Water (ft)	Groundwater Elevation (ft-amsl)	Depth to LPH (ft)	Product Thickness (feet)	TPH (μg/L)	DRO (μg/L)	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MtBE (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	TBA (μg/L)
MW-1 MW-1	7/28/2016 ¹ 8/5/2016	89.45 89.45	22.62 22.84	66.83 66.61			 <5,000	 260	 <100	 <1	 <1	 <1	 <1	 <1	 <1	 <1	 <1	 <20
MW-2	7/28/2016 ¹	90.35	23.06	67.29			_	_	_	-	_			-	-		-	_
MW-2 MW-3	8/5/2016 7/28/2016 ¹	90.35 90.45	24.15 22.40	66.20 68.05			<5,000	<100	<100	<1 	<1	<1 	<1 	<1	<1	<1	<1	<20
MW-3	8/5/2016	90.45	22.91	67.54			1,500 J	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<20
QA-T	8/5/2016								<100	<1	<1	<1	<1	<1				

Abbreviations and Notes

amsl = above mean sea level

bgs = below ground surface

DIPE = Diisopropyl alcohol

ETBE = Ethyl tert-butyl ether

ID = Identification

LPH = Liquid phase hydrocarbons

MtBE = Methyl tertiary butyl ether

MRL = Method reporting limit

QA-T = Trip blank

RPD = Relative percent difference

TAME = Tert amylmethyl ether

TBA = Tert-butanol

TPH-DRO = Total Petroleum Hydrocarbons as Diesel Range Organics

TPH-GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics

TPH-MRO = Total Petroleum Hydrocarbons as Motor Oil Range Organics

μg/L = micrograms per liter

< = Less than MRL

'-- = Not applicable

j = Laboratory estimated value

1 = Well development performed

Table 2

SVOCs and PAH Data Former Tidewater Service Station Phillips 66 Site 5677 Chevron Site 373378 7600 MacArthur Blvd. Oakland, California

		Addi	tional SV	OC's								PAH's								
Sample ID	Date Sampled	a 1,2-Dichlorobenzene (o- நீ Dichlorobenzene)	සි 1,3-Dichlorobenzene	ਜ਼ ਜ਼ ਜ਼ ਜ਼	க் Acenaphthene උ	் த இ Acenaphthylene	π ் (၂၄) Anthracene	යි Benzo(a)anthracene උ	ਜੁ ੁੱਤੇ Benzo(a)pyrene	க் த் Benzo(b)fluoranthene	ਛੇ ਉ Benzo(g,h,i)perylene	க் த் Benzo(k)fluoranthene	(¬/od) Chrysene	ති ල් ල්	π jc (၂၁ (၂၁	ර් (උ Fluorene	ନ୍ଦି Indeno(1,2,3-cd)Pyrene	க் Naphthalene	କ୍ରି Phenanthrene	(ha/T)
MW-1	7/28/2016 ¹																			
MW-1	8/5/2016	 <5	 <5	 <5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2	7/28/2016 ¹																			
MW-2	8/5/2016	<5	<5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4																			
MW-3	7/28/2016 ¹																			
MW-3	8/5/2016	<5	<5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
QA-T	8/5/2016																			

Abbreviations and Notes

ID = Identification

MRL = Method reporting limit

PAH = Polycyclic Aromatic Hydrocarbons

SVOC = Semi-Volatile Organic Compounds

μg/L = micrograms per liter

< = Less than MRL

-- = Not applicable

1 = Well development performed

Table 3

Metals Data Former Tidewater Service Station Phillips 66 Site 5677 Chevron Site 373378 7600 MacArthur Blvd. Oakland, California

Sample ID	Date Sampled	(µg/L)	Barinm (µg/L)	Boron	Cadmium	Calcinm (µg/L)	(hg/r)	Copper	uo <u>l</u>	Pead (μg/L)	Magnesium	π) Manganese	Molybdenum	Nickel	Phosphorus	Silicon	Silver	Sodium	ng/L)	i <u>T</u>	Titanium	Vanadium	Zinc
Sample ID	Date Sampled	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	08/05/16	133 J	44.5	1,140	<5.0	52,300	2.4 J	<10.0	130 J	<15.0	22,300	151	3.7 J	3.2 J	37.8 J	15,300	<5.0	93,200	11,300	<20.0	8.4 J	22.4	<20.0
MW-2	08/05/16	1,700	53.4	400	<5.0	52,100	7.1 J	11.3	1,740	<15.0	22,400	42	1.7 J	4.0 J	66.2 J	19,400	<5.0	100,000	15,500	<20.0	50.0	39.4	7.1 J
MW-3	8/5/2016	<200	37.9	1,040	<5.0	58,900	2.8 J	<10.0	<200	<15.0	24,400	4.1 J	1.9 J	<10.0	54.0 J	13,900	<5.0	72,200	15,300	<20.0	6.9 J	22.7	<20.0
QA-T	8/5/2016																						

Abbreviations and Notes

ID = Identification

MRL = Method reporting limit

μg/L = micrograms per liter

< = Less than MRL

-- = Not applicable

Attachment A Agency Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

REBECCA GEBHART, Acting Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-657

July 19, 2016

Ms. Jillian Holloway
Chevron Environmental Management Company
6101 Bollinger Canyon Road
San Ramon, CA 94583
(Sent via E-mail to: JillianHolloway@chevron.com)

Ms. Hong Gardner
632 Via Rialto Road
Oakland, CA 94619
(Sent via E-mail to: honggardner@gmail.com)

Mr. Ed Ralston - Program Manager Phillips 66 Company 76 Broadway Sacramento, CA 95818

Sent via e-mail to: Ed.C.Ralston@p66.com

Subject:

Technical Report Request for Fuel Leak Case RO0003087 and GeoTracker Global ID T10000003434, Hong Gardner Property, 7600 MacArthur Boulevard, Oakland, CA 94605-

2944

Ladies and Gentlemen:

Alameda County Department Environmental Health's (ACDEH) has reviewed the case file in addition to the *Site Investigation Report and Closure Request* (Report) dated December 1, 2014 and the *Geophysical Survey, Sanborn Map Review, and Addendum to Work Plan for Site Investigation* (Work Plan) dated April 29, 2014. The reports were prepared and submitted on your behalf by Conestoga-Rovers & Associates, now renamed GHD, in reference to the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Based on ACDEH staff review, we have determined that the site does not meet the LTCP General Criteria f (Secondary Source Removal), Media-Specific Criteria for Groundwater, or Media-Specific Criteria for Vapor Intrusion to Indoor Air.

ACDEH requests preparation of a Data Gap Work Plan that is supported by an updated Site Conceptual Model (SCM) to address the following data gaps.

TECHNICAL COMMENTS

1. General Criteria f – Secondary Source Has Been Removed to the Extent Practicable – "Secondary source" is defined as petroleum-impacted soil or groundwater located at or immediately beneath the point of release from the primary source. Unless site attributes prevent secondary source removal (e.g. physical or infrastructural constraints exist whose removal or relocation would be technically or economically infeasible), petroleum-release sites are required to undergo secondary source removal to the extent practicable as described in the policy. "To the extent practicable" means implementing a cost-effective corrective action which removes or destroys-in-place the most readily recoverable fraction of source-area mass. It is expected that most secondary mass removal efforts will be completed in one year or less. Following removal or destruction of the secondary source, additional removal or active remedial actions shall not be required by regulatory agencies unless (1) necessary to abate a demonstrated threat to human health or (2) the groundwater plume does not meet the definition of low threat as described in this policy.

ACDEH's review of the case files indicates that insufficient data and analysis has been presented to assess compliance with General Criteria f. The Geophysical Report included as Attachment C in the Work Plan describes finding six "High Strength Conductive Pulse Anomalies with Magnetic Gradiometer signature response" including "two relatively large projection anomalies along the back or northeast of the former building area that are found end to end in symmetry". One of the Work Plan's goals was to identify the buried conductive anomalies by hand augering borings in the areas of the anomalies to approximately 5-6 feet below ground surface. The Report, however, does not include the boring logs of the seven hand augered soil borings, or resolve the origin of the buried anomalies. Consequently, it has not been determined if secondary source remains at the site. Please present a strategy in the Updated Site Conceptual Model (SCM) and Data Gap Work Plan (described in Technical Comment 4 below) to address these Technical Comments and in an appendix include the boring logs of the seven hand augered soil borings. Alternatively, please provide justification of why the site satisfies this general criterion in the focused SCM described in Technical Comment 4 below.

2. LTCP Media Specific Criteria for Groundwater – To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites listed in the policy.

Our review of the case files indicate that the three groundwater monitoring wells, MW-1 through MW-3, were installed in September and October 2014 and according to the Work Plan, were to be sampled on a quarterly basis for the first year. Grab groundwater samples were obtained from each well during installation, but the wells were not developed or sampled. Therefore, insufficient data and analysis has been presented to support the requisite characteristics of groundwater gradient direction, plume stability, and length. Please present a strategy in the Updated SCM and Data Gap Work Plan discussed in Technical Comment 4 to determine groundwater plume stability and length.

- a. Monitoring Well Development and Quarterly Sampling and Rose Diagram: Please develop the three wells and sample for a minimum of four quarters to establish groundwater gradient direction, existence of a plume, plume stability, and length; Please prepare a rose diagram using data from each sampling event to confirm the groundwater gradient consistency and please provide an updated rose diagram with every quarterly sampling event:
- **b.** Groundwater Concentration and Elevation Graphs: Please provide graphs indicating groundwater concentrations and groundwater elevations together with each sampling event;
- c. Baseline Analytical: To establish a baseline, on a one-time basis and in the future, on an as needed basis, please analyze all groundwater samples for the full suite of Volatile Organic Compounds (VOCs) and please ensure detection limits are below proposed cleanup levels;
- d. LTCP Plume Lengths: To present another line of evidence supporting plume lengths, please prepare a figure indicating the average, 90th percentile, and maximum plume lengths for TPHg, benzene, and MTBE by referencing Table 1: Plume Characteristics, in the LTCP's Technical Justification for Groundwater Media-Specific Criteria. As shown in Attachment 2, Sample Figures of Adjacent Buildings with Basements, LTCP Plume Lengths, and Well Survey, please include the locations of the six water production wells identified in the one mile well survey included in the Report.
- **e.** Investigation-Derived Waste: Please submit the disposal documentation for the soil cuttings, rinsate water, and forth-coming well development and quarterly sampling events to ACDEH and to Geotracker, as described below.

3. LTCP Media Specific Criteria for Vapor Intrusion to Indoor Air – The LTCP describes conditions, including bioattenuation (unsaturated) zones, which if met will assure that exposure to petroleum vapors in indoor air will not pose unacceptable health risks to human occupants of existing or future site buildings, and adjacent parcels. Appendices 1 through 4 of the LTCP criteria illustrate four potential exposure scenarios and describe characteristics and criteria associated with each scenario.

Our review of the case files indicates that the risk of vapor intrusion cannot be assessed due to the uncertainty that the secondary source(s) were removed. Therefore, ACDEH requests an evaluation of the media-specific criteria in the updated SCM and Data Gap Work Plan. Please assess potential vapor intrusion to indoor air to the adjacent residences.

If soil vapor wells are proposed, please ensure that your sampling strategy is consistent with the field sampling protocols described in the Department of Toxic Substances Control's Final Vapor Intrusion Guidance (October 2011) and the updated February 22, 2016 San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Version 3. Consistent with the guidance, ACDEH requires installation of permanent vapor wells to assess temporal and seasonal variations in soil gas concentrations. Please include the soil vapor investigation with the Updated SCM and Data Gap Work Plan requested below.

4. Data Gap Investigation Work Plan and Site Conceptual Model — Please prepare a Data Gap Investigation Work Plan to address the technical comments listed above. Please support the scope of work in the Data Gap Investigation Work Plan with a focused SCM and Data Quality Objectives (DQOs) that relate the data collection to each LTCP criteria.

As a part of updating the SCM, please include a rose diagram and locations of houses and buildings that have basements in the immediate downgradient direction of the site similar to the example provided in Attachment 2, Sample Figures of Adjacent Buildings with Basements, LTCP Plume Lengths, and Well Survey.

- 5. Request for information The ACDEH case file for the subject site contains only the electronic files listed on our web site at http://www.acgov.org/ACDEH/lop/ust.htm. You are requested to submit electronic copies of all other reports including Phase I Reports, data, correspondence, etc. related to environmental investigations for this property not currently contained in our case file by the date specified in the Technical Report Request Section below. ACDEH requests e-mail notification of, and a list of the documents uploaded to Geotracker by the date listed below.
- 6. Electronic Submittal of Information (ESI) Compliance Site data and documents are maintained in two separate electronic databases ACDEH's ftp site and the SWRCB's GeoTracker database. Both databases act as repositories for regulatory directives and reports; however, only GeoTracker has the functionality to store electronic compliance data including analytical laboratory data for soil, vapor and water samples, monitoring well depth-to-water measurements, and surveyed location and elevation data for permanent sampling locations. Although the SWRCB is responsible for the overall operation and maintenance of the GeoTracker System, ACDEH, as lead regulatory agency, is responsible to ensure the GeoTracker database is complete and accurate for sites regulated under ACDEH's Environmental Cleanup Oversight Programs (SWRCB March 2011 document entitled Electronic Reporting Roles and Responsibilities).

A review of the case file and the State's GeoTracker database indicates that the site is not in compliance with California Code of Regulations, Title 23, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1, stating that beginning September 1, 2001, all analytical data, including monitoring well samples, submitted in a report to a regulatory agency as part of the UST or LUST program, must be transmitted electronically to the SWRCB GeoTracker system via the internet. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all

Ladies and Gentlemen RO0003087 July 19, 2016, Page 4

> groundwater cleanup programs, including the Site Cleanup Program (SCP) cases. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites was required in GeoTracker. At present missing data and documents include, but may not be limited to, EDF submittals, depth to groundwater data (GEO_WELL files), well data (GEO_XY, and GEO_Z files), work plans, and older reports (GEO REPORT files). Please upload requisite documents and data to GeoTracker. See Attachment 1 and the State's GeoTracker website for further details.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACDEH ftp site (Attention: Karel Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention and schedule:

- September 20, 2016 3rd Quarterly Groundwater Monitoring and Sampling Report, Well Development, and Waste Disposal File to be named: RO3087_GWM_R_yyyy-mm-dd
- September 20, 2016 Updated Site Conceptual Model and Data Gap Work Plan File to be named: RO3087 SCM WP yyyy-mm-dd
- January 20, 2017 4th Quarterly Monitoring and Sampling Report and Waste Disposal File to be named: RO3087 GWM R yyyy-mm-dd
- May 20, 2017 1st Quarterly Monitoring and Sampling Report and Waste Disposal File to be named: RO3087 GWM R yyyy-mm-dd
- September 20, 2017 -2nd Quarterly Monitoring and Sampling Report and Waste Disposal File to be named: RO3087 GWM R yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please send me an e-mail message at karel.detterman@acgov.org or call me at (510) 567-6708.

Sincerely,

Digitally signed by Karel Detterman DN: cn=Karel Detterman, o, ou,

email=karel.detterman@acgov.org, c=US

Date: 2016.07.19 16:16:17 -07'00'

Karel Detterman, PG

Hazardous Materials Specialist

Enclosures:

Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations and Electronic

Report Upload (ftp) Instructions

Attachment 2, Sample Figures of Adjacent Buildings with Basements, LTCP Plume Lengths, and Well Survey

Ladies and Gentlemen RO0003087 July 19, 2016, Page 5

cc: Matthew Davis, LG, 732 Broadway Suite 301, Tacoma, WA 98402 (Sent via E-mail to: matthew.davis@ghd.com)

Donald Schwartz, Esq., 7960-B Soquel Drive, No. 291, Aptos, CA 95003 (Sent via E-mail to: donald@lawofficedonaldschwartz.com)

Dilan Roe, ACDEH (Sent via E-mail to: dilan.roe@acgov.org)

Karel Detterman, ACDEH (Sent via E-mail to: karel.detterman@acgov.org)

Electronic File, GeoTracker

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the **SWRCB** website for more information these requirements (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010,

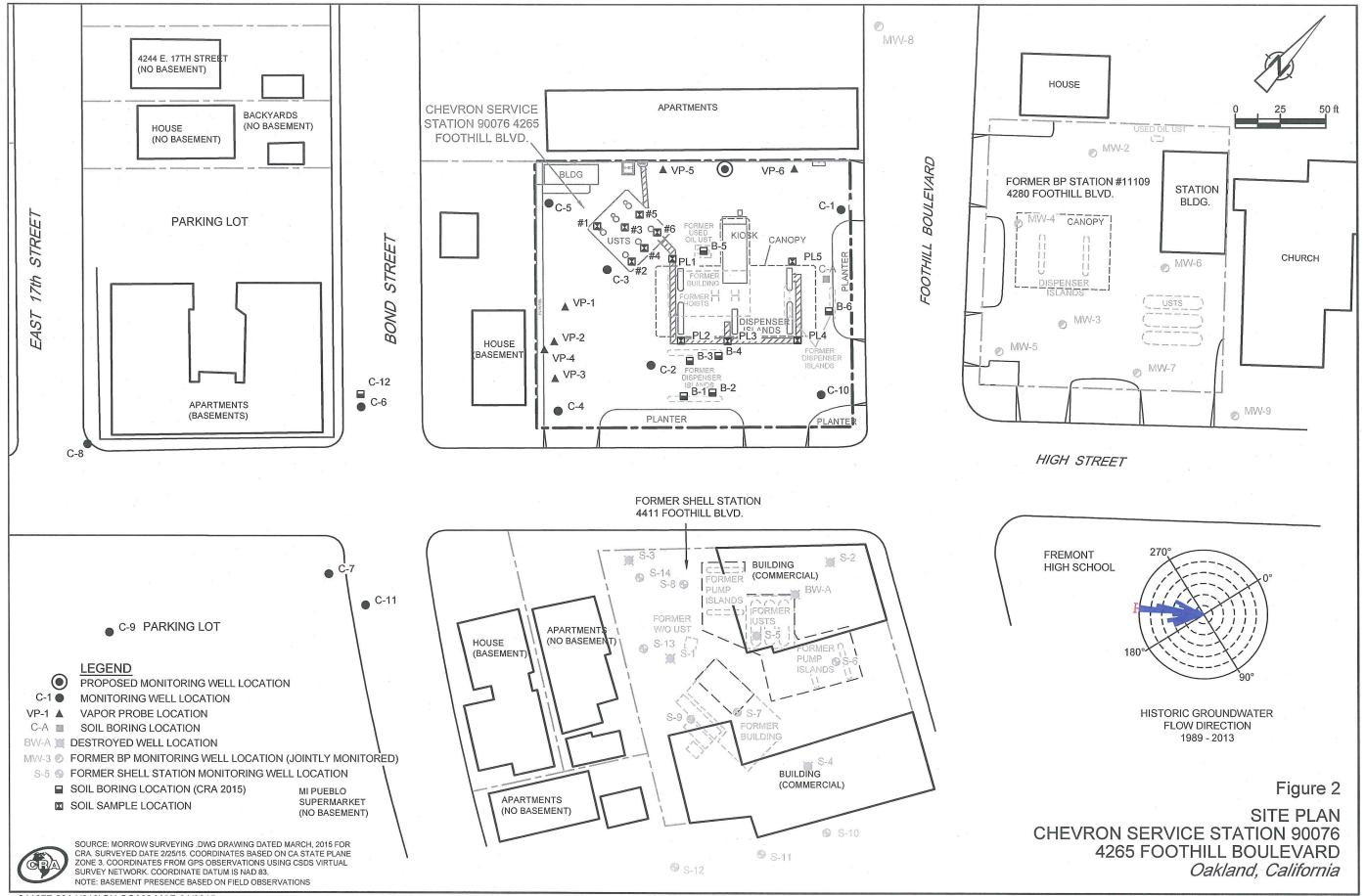
July 25, 2010

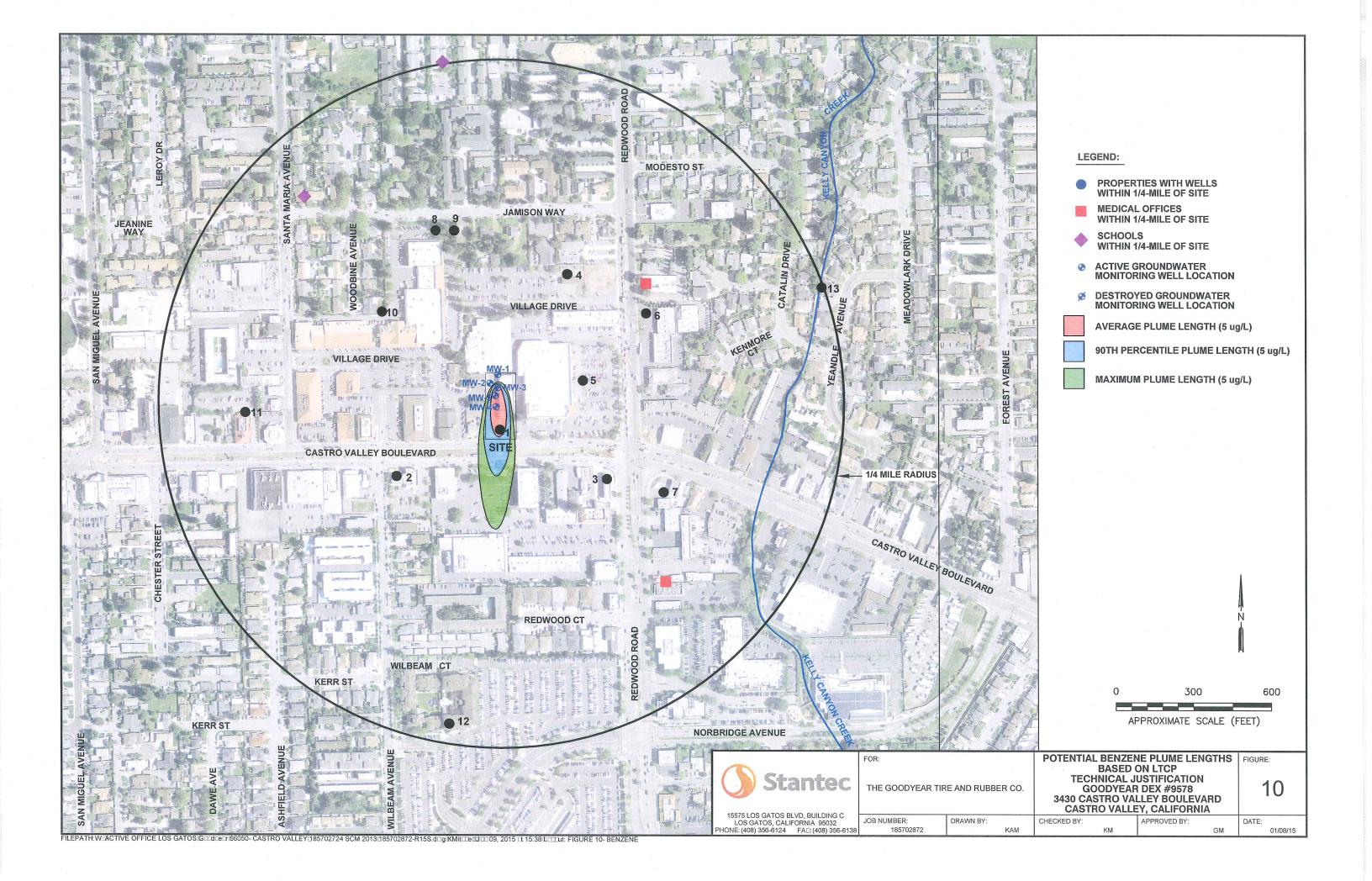
SECTION: Miscellaneous Administrative Topics & Procedures

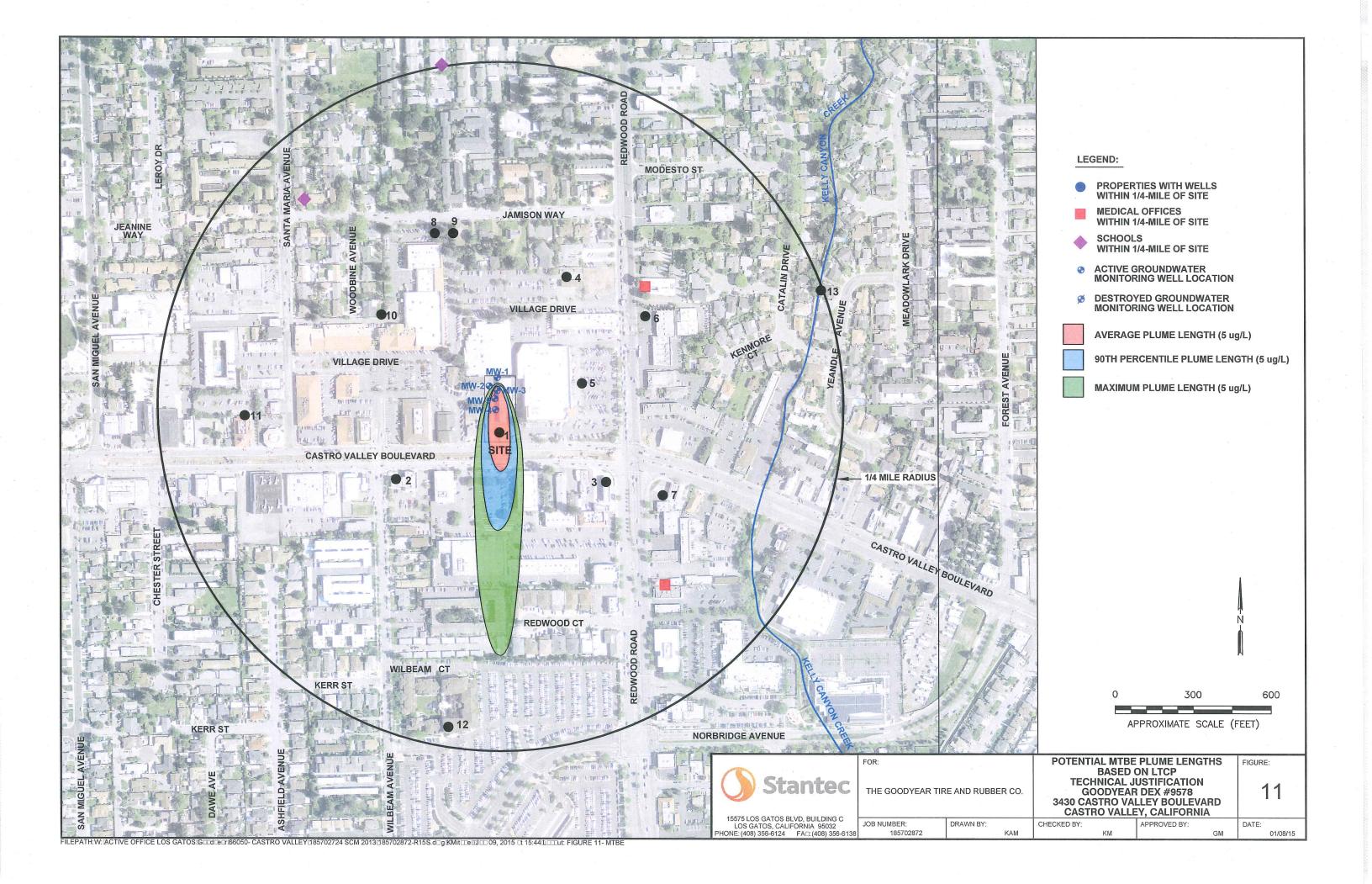
SUBJECT: Electronic Report Upload (ftp) Instructions

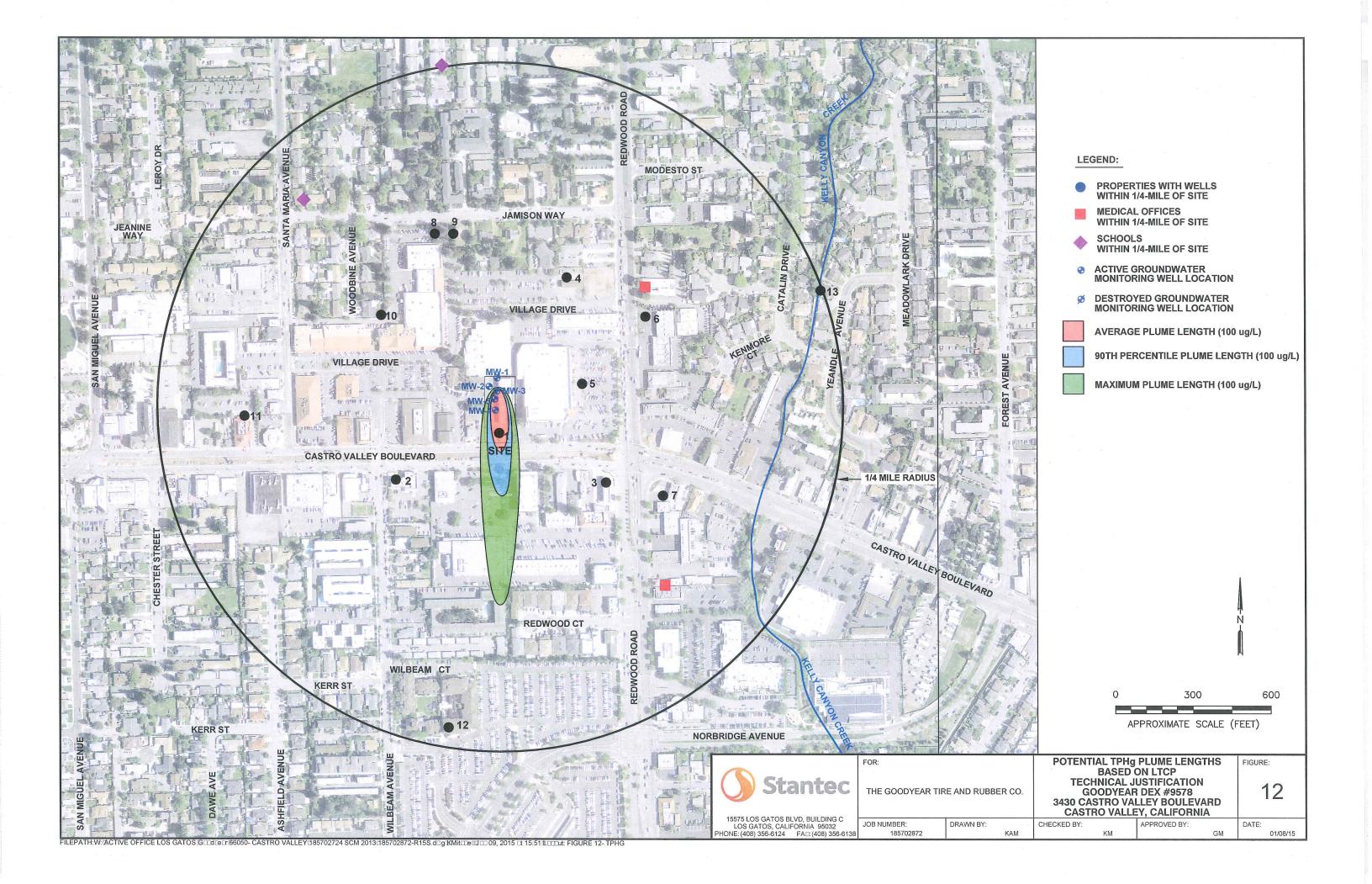
The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

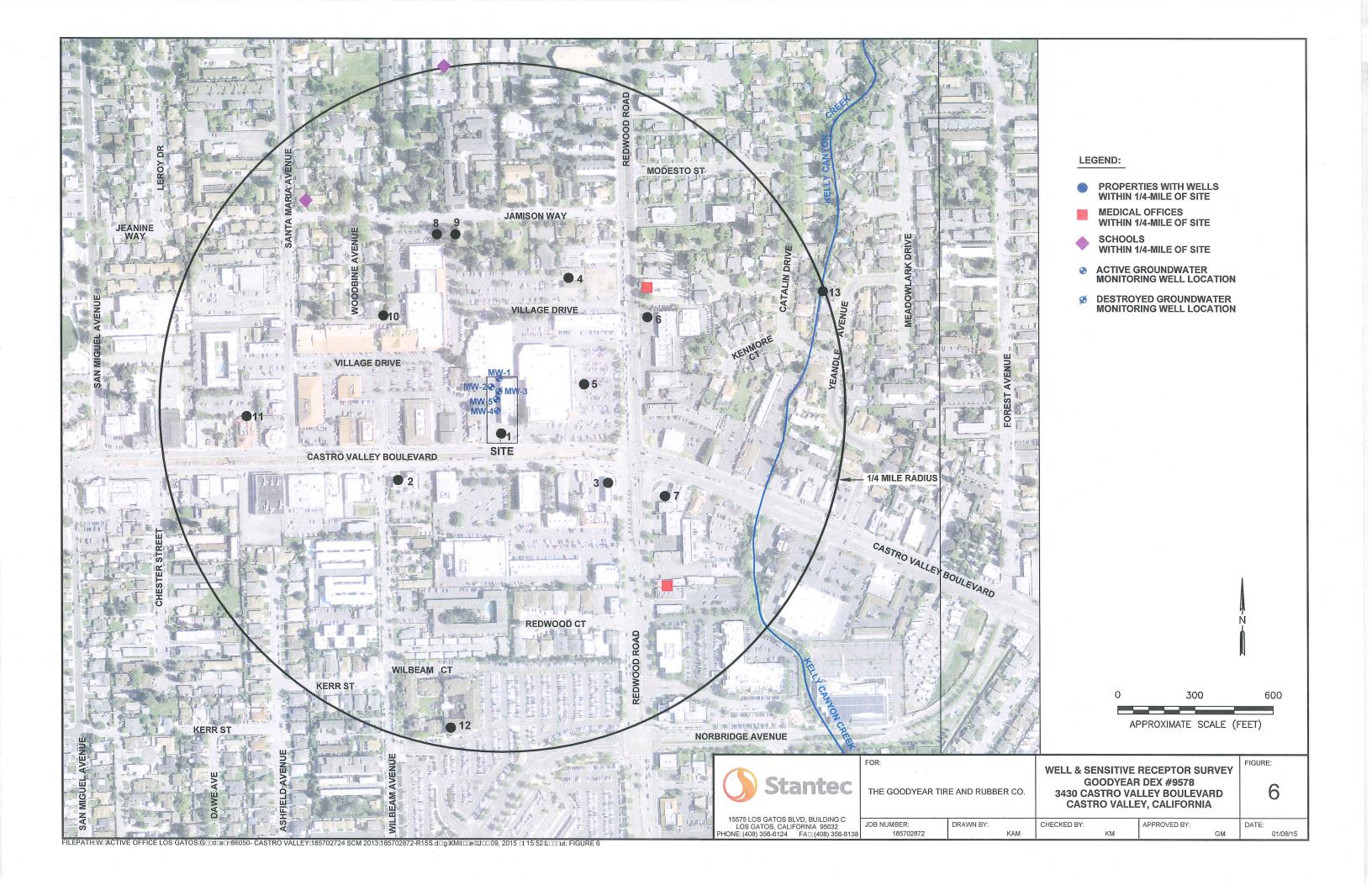
REQUIREMENTS


- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:


RO# Report Name_Year-Month-Date (e.g., RO#5555 WorkPlan 2005-06-14)


Submission Instructions


- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.


ATTACHMENT 2

APPENDIX C Wells Survey Results Former Goodyear Tire Store

3430 Castro Valley Boulevard Castro Valley, CA

	Owner/Site Name	Well Type	Drill Date	Total Depth	Address	Approximate Distance/Direction From Site
1	Merritt Tire Sale	Monitoring Wells	Sept 94, Dec 96, Aug 12	16-20	3430 Castro Valley Blvd.	0
2	CHEVRON #9-4930 / VALLEY CAR WASH	Monitoring Well	Oct-93	20	3369 Castro Valley Blvd.	460 SW
3	Ted Simas (XTRA OIL DBA SHELL STATION)	Monitoring Wells	Feb 90 & Aug 97	18-20	3495 Castro Valley Blvd.	510 SE
4	R. T. Nahas Company (UNOCAL)	Monitoring Wells	Dec 89	25-30	20405 Redwood Rd.	520 NE
5	R. T. Nahas Company	Monitoring Wells	Apr 92	29-37	20629 Redwood Rd	310 E
6	Exxon Oil	Unknown	ş	ş	20450 Redwood Rd.	650 NE
7	BP #11105 / SHELL 17-1445	Monitoring Well	Sept 92, July 95, Aug 09,	15-30	3519 Castro Valley Blvd.	700 SE
8	R. T. Nahas Company	Domestic/Destroyed	Dec 75	56	3559 JAMISON WAY	700 NNW
9	R. T. Nahas Company	Destroyed	ŝ	20 & 25	3533 JAMISON WAY	725 NNW
10	Horseshoe Drilling	Destroyed	Apr 96	20	20342 Woodbine Ave	600 NW
11	Mitzi Stockel	BOR/MON	Apr-90	8-23	3234 Castro Valley Blvd	1000 W
12	BART	Monitoring Well	Feb 93	16	21000 Wilbeam Ave.	1225 SSW
13	Robert D Rousey	Irrigation	May-77	28	20283 Yeandle Ave.	1325 ENE

Attachment B Monitoring Data Package

August 12, 2016 G-R #385905

TO:

Mr. Matt Davis

GHD

732 Broadway, Suite 301 Tacoma, WA 98402

FROM: Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6805 Sierra Court, Suite G Dublin, California 94568

RE:

Former Tidewater Service Station

Chevron #373378 7600 MacArthur Blvd. Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Report Well Development and Third Quarter Events of July 28 & August 5, 2016

COMMENTS:

Pursuant to your request, we are providing you with a copy of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

Trans 373378

Chevron#373378 Event of July 28, 2016

WELL CONDITION STATUS SHEET

Client/									1 1		
Facility #:	Chevror	n #373378					Job #:	385905			
Site Address:	7600 Ma	carthur Bl	vd.			_	Event Date:			7/2014	
City:	Oakland	I, CA				_	Sampler:	***************************************		7/28/16 38	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N		Pictures Taken Y/N
MW-1	Ulc							4	7 2"	8" MERIES.	N
MM-5	olc									1	
Mr-J	ok							+	+ 1		17
Comments											

STANDARD OPERATING PROCEDURE – WELL DEVELOPMENT GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to well development, each well is monitored for the presence of free-phase hydrocarbons and the depth to water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/Facility#:	Chevron #3	73378		Job Number:	385905	
Site Address:	7600 Macar	hur Blvd	•	Event Date:	7/28/16	(inclusive)
City:	Oakland, CA	4	***************************************	Sampler:	KC	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				•		
Well ID	MW-)			Date Monitored:	7/28/16	
Well Diameter	***************************************	<u>n.</u>			10000	
Initial Total Dept		_		Volume : Factor (VF)		2"= 0.17
Final Total Depti						3 = 1.30 12 = 3.00
Depth to Water	22.62 f			nn is less then 0.50		111 E 7
Donth to Motor	<u> </u>	_xVF/	= 2.99	_ x10 case volume	= Estimated Purge Volume	e: <u>24-17</u> gal.
Depth to Water v	w/ 80% Recharge	₹ [(Height of W	ater Column x 0.20)	+ DTW]:	Time Started:	(2400 hrs)
Purge Equipment:		Sa	ampling Equipment	:	Time Completed:	
Disposable Bailer			sposable Bailer	,	12	ft
Stainless Steel Baile	r <u>X</u>	Pr	essure Bailer		Depth to Water:	
Stack Pump			etal Filters		Hydrocarbon Thickne Visual Confirmation/D	
Peristaltic Pump QED Bladder Pump			eristaltic Pump ED Bladder Pump			
Other:			her:		Skimmer / Absorbant	
				/	ii ii	kimmer: Itr /ell: Itr
					Water Removed:	
Start Time (purge			Weather Co	onditions:	Cleen	
Sample Time/Da	te: /		Water Colo	r: <u>Clean</u>	_Odor: Y / 🕸	
Approx. Flow Ra		_gpm.	Sediment D	·	None	
Did well de-water	r? <u>4es</u> 1	f yes, Time:	<u>0727</u> Volu	ıme: 5 g	gal. DTW @ Samplin	g:
Time	Volume	nU	Conductivity	Temperature	D.O.	ORP
(2400 hr.)	(gal.)	pH 	(AS / mS unabos/cm)	(() / F)	(mg/L)	(mV)
0725	2.5	7.10	<u> 755 </u>	19.9		
0727	<u>5.0</u> 7.5	7.12	<u>751</u> 747	20-1	/	
6733	10.0	7.07	742	20-4		
0736	12.5	\$.02	740	20.6		
0755	15.0	7.01	733	20.6		
0759 0803	17.5 20.10	6.58	730	20.7		<u>/</u>
- 0830	22.5	6.95	<u>726</u> 721	<u> 20.6</u> <u> 20.5</u>	-/	
0835	25.00	6.88	718	20.5	///	****
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATORY II PRESERV. TYPE		AMAI	YSES
				2.3010410141	AIAAL	
COMMENTS:	INITIAL CGI I	READING	: O pon	Well	Dewatare	twice more
DEVELOP ONLY					736 A 050	
-						
Add/Replaced Gas	sket:	Add/Replaced	f Bolt:	Add/Replaced Lock	k: Add/Rep	olaced Plug: X 2 Y

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/Facility#:	Chevron #37:	3378		Job Number:	385905	
Site Address:	7600 Macarth	ur Blvd.		Event Date:	7/28/16	(inclusive)
City:	Oakland, CA			Sampler:	311	` ′
Well ID Well Diameter Initial Total Dept Final Total Dept Depth to Water	MW- 2 2 in. 36.66 ft. 36.11 ft. 23.06 ft. 13.00 w/ 80% Recharge [XVF	neck if water colum	Volume Factor (VF) in is less then 0.50 x10 case volume	7/28/IL 3/4"= 0.02	gal. (2400 hrs)
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1035 1042 1044 1046 1050 1110	Volume (gal.) 2 4 10 10 12 16 18 20	7.57 7.57 7.52 7.50 7.46 7.44 7.51 7.43 7.41	Sediment De	clem escription:	Clean	
	22	ī	ABORATORY IN	IEODMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES	
COMMENTS: DEVELOP ONL)	INITIAL CGI R	EADING	: 6			
Add/Replaced Ga	sket: A	.dd/Replaced	Bolt:	Add/Replaced Loc	k: Add/Replaced F	Plug: 🔀 Zu

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/Facility#:	Chevron #37	3378		Job Number:	385905	
Site Address:	7600 Macarth	ur Blvd.		Event Date:	7/28/16	(inclusive)
City:	Oakland, CA			Sampler:	HL	
Well ID	MW- 3			Date Monitored:	7/28/16	
Well Diameter	2 in.					
Initial Total Dep		•		Volume 3 Factor (VF)	3/4"= 0.02 1"= 0.04 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50	ſ
Final Total Dept		ī		Tactor (VI)	4 - 0.00 3 - 1.02 6 - 1.50	7 12 - 5.80
Depth to Water				mn is less then 0.50		
					= Estimated Purge Volume: 25	_ 6/ gal.
Depth to Water	w/ 80% Recharge	(Height of W	ater Column x 0.20)	+ DTW]: 25.41	Time Started:	(2400 hrs)
Purge Equipment:		9.	malina Equipment		Time Completed:	
Disposable Bailer			mpling Equipment sposable Bailer	•	Depth to Product:	
Stainless Steel Baile	er 🗡		essure Bailer		Depth to Water:	ft
Stack Pump	X	Ме	tal Filters		Hydrocarbon Thickness:	
Peristaltic Pump			ristaltic Pump		Visual Confirmation/Descripti	oń:
QED Bladder Pump Other:			ED Bladder Pump ner:	<i></i>	Skimmer / Absorbant Sock (c	circle one)
Othor.		Ou	iei		Amt Removed from Skimmer	
					Amt Removed from Well: Water Removed:	
					vvater ivernoved	IU
Start Time (purge	e): 0916		Weather Co	onditions.	Clean	
Sample Time/Da				r: Clear	Odor: Y / (N)	
Approx. Flow Ra		gpm.	Sediment D		lune	
Did well de-wate		yes, Time:			gal. DTW @ Sampling:	
Time	Volume		Conductivity			
(2400 hr.)	(gal.)	рН	(µS)/ mS	Temperature (C) / F)	D.O. ORP (mg/L) (mV)	
0920	2-5	7.70	umnos/cm) 70 l	21-1) '	
0924	5.0	7.68	710	21.2		
6128	<u>7-5</u>	7.65	7/3	21.3		
0930	12.5	7.60	720	21-2	//	-
655	15	7.58	725	21.2		
6957	17.5	7.57	731	21-3		
1000	20	7.54	736	21.4		·
1006	<u> 22.5</u>	7.56	740	<u>21-2</u>	<u>L</u>	
		7.70	732	213		
		L	ABORATORY I	NFORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES	
	1		OK MIA			
COMMENTS:	INITIAL CGI R	EADING	10 Apr	(
DEVELOP ONLY	Υ					
						₹ 24
Add/Replaced Ga	nsket: /	\dd/Replaced	Bolt:	Add/Replaced Loci	k: Add/Replaced I	Plug: X

Chevron#373378 Event of August 5, 2016

WELL CONDITION STATUS SHEFT

Client/ Facility #:	Chevror	n #373378					Job#:	385905	S Barrie Roman S		
Site Address:	7600 Ma	carthur Bl	vd.			.	Event Date:			8/5/16	
City:	Oakland	I, CA				-	Sampler:			VE	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y/N
MW-2 MW-3	OK							N	N	8" MERRISOL	
MW-2	ol							1	١		1
Mm-2	٥٤							H	1		4
									V		
					-						
Comments											
Comments						······································					

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	CHEVIOH #3/	2010		Job Numbe	er: 303905		********
Site Address:	7600 Macarth	ur Blvd	=	Event Date	: <u>815</u>	116	(inclusive)
City:	Oakland, CA			Sampler:	3		
Well ID	MW-			Date Monitore	ed: 8/3	rlıc	
Well Diameter	2 in.		[\sqrt{\sq}}}}}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Volume 3/4	"= 0.02 1"= 0.04	2"= 0.17 3"= 0).38
Total Depth	37-31 ft.			actor (VF) 4	"= 0.66 5"= 1.02	6"= 1.50 12"= 5	5.80
Depth to Water	22.84 ft.		Check if water col	umn is less then 0).50 ft.	_	
					ne = Estimated Purge	Volume: 7-37	gal.
Depth to Water v	v/ 80% Recharge [(Height of V	Vater Column x 0.2	0) + DTW]: 🌌	<u>⇒</u> ಬ.≀} —		
					Time Sta		
Purge Equipment:		S	ampling Equipme	nt:		npleted:	
Disposable Bailer		D	isposable Bailer			Product: Water:	
Stainless Steel Bailer	<u> </u>		ressure Bailer		ii ii	bon Thickness:	
Stack Pump			letal Filters		# ·	onfirmation/Descript	
Peristaltic Pump			eristaltic Pump				
QED Bladder Pump Other:	***************************************		ED Bladder Pump		15	/ Absorbant Sock (
Other.			other:		11	oved from Skimme	
					l l	oved from Well: moved:	
					vvaler Re	moved	ltr
Ctt Ti /	\. A = k am		101		<u> </u>	1	
Start Time (purge		T-I		Conditions:	Clau		***************************************
	te: <u>0850 / 8</u>			lor: <u>Clem</u>			
Approx. Flow Rat		gpm.		Description:	No		
Did well de-water	?	If yes, Tir	me:	Volume:	gal. DTW @	🕽 Sampling:	25.40
Time			Conductivity	Temperature	D.O.	ORP	
(2400 hr.)	Volume (gal.)	pН	(µS/mS	(6 / F)		(mV)	
0820	2.5	7.61	μιπίοs/cm)	18.8			
0826	5.0	7.66	714	19.1	/		_
0832	7.5	7.30	710	19,4	/	/	_
		1-20			- /	- /	-
						m	
0.44D. E.D.	/// 22			/ INFORMATIO			
SAMPLE ID MW-		REFRIG. YES	PRESERV. TY	PE LABORATO		ANALYSES	
	x voa vial x 500ml ambers	YES	NP NP	LANCASTE LANCASTE)/FULL LIST VOC's	·
	2 x 1 liter WM glass	YES	HCL	LANCASTE	·······		
	2 x 250ml ambers	YES	NP NP	LANCASTE			
	2 x 250ml ambers	YES	NP	LANCASTE		(8270)	
	x 250ml poly	YES	HNO3	LANCASTE	R DISSOLVED WE	EAR METALS(6010)
			<u> </u>				
		won.w.					
COMMENTS:							
Add/Replaced Gas	sket A	.dd/Renlace	d Bolt	Add/Replaced	l nck:	Add/Replaced Plu	a.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#: Site Address: City:	Chevron #375 7600 Macarth Oakland, CA			Job Number: Event Date: Sampler:	385905 8/5/16 Jh	(inclusive)			
Well Diameter 2 in. Volume 3/4"= 0.02 1"= 0.04 2"= 0.17 3"= 0.38 Factor (VF) 4"= 0.66 5"= 1.02 6"= 1.50 12"= 5.80									
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.)	te: 0940 / 8	gpm.	Water Color: Sediment De	Clark escription:		25.70			
		L	ABORATORY IN	IFORMATION					
SAMPLE ID MW- 2	(#) CONTAINER x voa vial x 500ml ambers x 1 liter WM glass x 250ml ambers x 250ml ambers x 250ml poly	REFRIG. YES YES YES YES YES YES YES YES	PRESERV. TYPE HCL NP HCL NP NP NP HNO3	LABORATORY LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER	TPH-GRO(8015)/FULL LIST VOO TPH-DRO(8015) TOG(1664A) PAH's(8270) NAPHTHALENE(8270) DISSOLVED WEAR METALS(60	C's(8260)			
COMMENTS: Add/Replaced Ga	sket:/	Add/Replaced	d Bolt:	Add/Replaced Loc	:k:Add/Replaced F	Ylug;			

WELL MONITORING/SAMPLING FIELD DATA SHEET

7000 88 41 - 51 - 1	
Site Address: 7600 Macarthur Blvd. Ever	Date: 8/5/16 (inclusive)
City: Oakland, CA Sam	
Well ID Well Diameter Total Depth Depth to Water 14. 56 Total Depth to Water w/ 80% Recharge [(Height of Water Column x 0.20) + DTW]: Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other: Disposable Bailer QED Bladder Pump Other: Disposable Bailer Check if water column is less with the factor (VF) Volume Factor	3/4"= 0.02 1"= 0.04 2"= 0.17 3"= 0.38 4"= 0.66 5"= 1.02 6"= 1.50 12"= 5.80 then 0.50 ft. volume = Estimated Purge Volume: 7. 42 gal.
Approx. Flow Rate:	C C C C C C C C C C
I ADODATORY INCODE	Y /
LABORATORY INFORM SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY	RATION ANALYSES ANALYSES
	ASTER TPH-GRO(8015)/FULL LIST VOC's(8260)
	ASTER TPH-DRO(8015)
	ASTER TOG(1664A)
	ASTER PAH's(8270)
	ASTER NAPHTHALENE(8270)
x 250ml poly YES HNO3 LAN	ASTER DISSOLVED WEAR METALS(6010)
COMMENTS: Add/Replaced Gasket: Add/Replaced Bolt:	placed Lock: Add/Replaced Plug:

Chevron California Region Analysis Request/Chain of Custody

28 28	eurofins Lancast Laborate	rei	12+25.	C Ac	cct. # _				(Group	p#				Sa	oratorie ample # nd with ci	#						~		
1	Client Ir	nformatio	managar) managarahan ngancan kirin 1979 di kacama				4	Ma	atrix			(5)			ΙA	nalys	ses	Req	uest	ed				SGR #:	
Facilit	95#373378-OML G-R#3859	/05 Glob?	aWBS#T1/	0000003	434																				
Site 🛊	19999MACARTHUR BLVD.,	OAKLANI	D, CA	***************************************										⊠ dr		N		W199	6010		70)			Results in Dry Weigh	
	ronPM GHDMD		Lead Const			***************************************	Sediment	Ground	Surface		JrS	8260	8260	Gel Cleanup	Gel Cleanup	3) .5		991	29 912		128)			Must meet lowest de	
	setter-Ryan Inc., 6805 Sierra			Dublin, (JA 94	4568	Š		(1)		Containers	čo	ã	Silica Ge		Voc) po	~-p.	70)	92			compounds 8021 MTBE Confirm	1
Consu	ultant Project Mgr Deanna L. Harding, deanna(@grinc.cr	5m			,					Con	8021	15	out Sil	with Silica			(پراوندید Method _	Method	23	Û			Confirm highest hit b	
	onsultant Phone # (925) 551-7444 x180						Potable	NPDES	Air	οţ		8015	8015 without	15 with	m C にか	Oxygenates) J 1	3)	ンドエ			Run oxy's or	n highest hit	
Samp	ier	3 m			3	Composite					Total Number	+ MTBE	OH		RO 8015	8260 Full Scan	ő	Total Lieuwel ${\mathbb C}$. I ${\mathbb A}$	Dissolved fead	SHV	1				
2	Sample Identification	Soil Depth	<u></u>	lected Time	Grab	l mo	Soil		Water	Jiō	otal	BTEX.	TPH-GRO	TPH-DRO	TPH-DRO	260 F		otal	issolv	2	2			(6) Remarks	e
		Debar	160807		×	1	CO		And the Property of the Proper		1	<u>R</u>	×	<u> </u>		66								WEAR METAL	
	mw-I			0850	1,200000						15		1	X		X		×	×	×	×			REPORT ARE:	
	MM-2			0940	Day Carlo						1			1		Sales Sa		***************************************	1	İ	1			B, Cd, Ca, Cr, C	
	mu-3			0745	-			<u> </u>	- Parent		- April 1		sounge of	Section 2		A		- Special Contract of the Cont	77		4			Pb, Mg, Mo, Ni, F Na, S, Sn, Ti, V	
		-				\vdash		₩		-						H	-				 				
						H		 								\Box									
					<u> </u>		<u> </u>	<u> </u>		<u> </u>					\parallel										
						+-								$\left \right $	\vdash	\vdash		\vdash				\vdash			
								<u> </u>		<u> </u>															
7	Turnaround Time Requested (Standard 5 day	(TAT) (pleas	ase circle) 4 day		Reling	quished	yd E		- Salar Sala	2		Date と/	/5 h	ı	Time //G	155	, 1	Receiv	•	St.	2/1	d de	<i>J</i>	Date Ti	me 9
	72 hour 48 hour	•	•)F/EDD	Relino	quishec	yd E					Date			Time	<u> </u>		Recei			0	- V			me
8	Data Package (circle if required)			nquish	ied by	y Com	ımerci	ial Ca	rrier:	<u></u>			L	***************************************		Receiv	ved by	7		,		Date Tir	me		
Data Pathago (ellele il regalies)			UPS FedEx Other																						
	Type VI (Raw Data)	Othr	er:			Τŧ	empe	eratı	ure U	Jpon	Rec	eipt			0	°C	1	Cı	ustoc	dy Se	∍als	Intac	rt?	Yes	No

Attachment C Laboratory Analytical Report

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 GHD 10969 Trade Center Drive Suite 107 Rancho Cordova CA 95670

Report Date: August 20, 2016

Project: 373378 Tidewater Oakland

Submittal Date: 08/06/2016 Group Number: 1692738 PO Number: 4072862 State of Sample Origin: CA

 Client Sample Description
 (LL) #

 QA-T-160805 NA Water
 8516304

 MW-1-W-160805 Grab Groundwater
 8516305

 MW-2-W-160805 Grab Groundwater
 8516306

 MW-3-W-160805 Grab Groundwater
 8516307

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

Electronic Copy To Gettler-Ryan, Inc. Attn: Gettler Ryan
Electronic Copy To GHD Attn: Matt Davis
Electronic Copy To Chevron Attn: Report Contact
Electronic Copy To GHD Attn: Miriam Smith

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-160805 NA Water

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516304

LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBOQA

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles :	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Buty	l Ether	1634-04-4	N.D.	0.5	1	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water (C6-C12	n.a.	N.D.	50	100	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Record
------------	--------	----------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	Z162243AA	08/11/2016	20:05	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z162243AA	08/11/2016	20:05	Hu Yang	1
01728	TPH-GRO N. CA water	SW-846 8015B	1	16224A53A	08/12/2016	21:01	Marie D	1
	C6-C12						Beamenderfer	
01146	GC VOA Water Prep	SW-846 5030B	1	16224A53A	08/12/2016	21:01	Marie D Beamenderfer	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516305

LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 08:50 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO01

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 82	260B	ug/l	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	20	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
10335	Benzene	71-43-2	N.D.	0.5	1	1
10335	Bromobenzene	108-86-1	N.D.	1	5	1
10335	Bromochloromethane	74-97-5	N.D.	1	5	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	1
10335	Bromoform	75-25-2	N.D.	0.5	4	1
10335	Bromomethane	74-83-9	N.D.	0.5	1	1
10335	2-Butanone	78-93-3	N.D.	3	10	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	20	1
10335	n-Butylbenzene	104-51-8	N.D.	1	5	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	5	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	5	1
10335	Carbon Disulfide	75-15-0	N.D.	1	5	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	1
10335	Chloroethane	75-00-3	N.D.	0.5	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	10	1
	2-Chloroethyl vinyl ether may no preserve this sample.	ot be recovered	l if acid was used to			
10335	Chloroform	67-66-3	N.D.	0.5	1	1
10335	Chloromethane	74-87-3	N.D.	0.5	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	5	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	5	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	5	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	5	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	5	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	5	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	1
10335	Ethanol	64-17-5	N.D.	50	250	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10335	Freon 113	76-13-1	N.D.	2	10	1
10335 10335	Hexachlorobutadiene 2-Hexanone	87-68-3	N.D.	2 3	5 10	1 1
10335		591-78-6 108-20-3	N.D. N.D.	0.5	10	1
10335	di-Isopropyl ether	108-20-3	и	0.5	1	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516305 LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 08:50 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO01

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	N.D.	1	5	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	5	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	10	1
10335	Methylene Chloride	75-09-2	N.D.	2	4	1
10335	Naphthalene	91-20-3	N.D.	1	5	1
10335	n-Propylbenzene	103-65-1	N.D.	1	5	1
10335	Styrene	100-42-5	N.D.	1	5	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1	1
10335	Toluene	108-88-3	N.D.	0.5	1	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	5	1
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	5	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1	1
10335	Trichloroethene	79-01-6	N.D.	0.5	1	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1	1
	1,2,3-Trichloropropane	96-18-4	N.D.	1	5	1
	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	5	1
10335	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	5	1
10335	Vinyl Chloride	75-01-4	N.D.	0.5	1	1
10335	m+p-Xylene	179601-23-1	N.D.	0.5	1	1
10335	o-Xylene	95-47-6	N.D.	0.5	1	1
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	0.5	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	0.5	1
07805	Anthracene	120-12-7	N.D.	0.1	0.5	1
07805	Benzo(a)anthracene	56-55-3	N.D.	0.1	0.5	1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1	0.5	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	0.5	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	0.5	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	0.5	1
07805	Chrysene	218-01-9	N.D.	0.1	0.5	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	0.5	1
07805	Fluoranthene	206-44-0	N.D.	0.1	0.5	1
07805	Fluorene	86-73-7	N.D.	0.1	0.5	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	0.5	1
07805	Naphthalene	91-20-3	N.D.	0.1	0.5	1
07805	Phenanthrene	85-01-8	N.D.	0.1	0.5	1
07805	Pyrene	129-00-0	N.D.	0.1	0.5	1
The :	recovery for a target analyte(s) in the Laborato	ory Control			

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. The following corrective action was taken:

The sample was re-extracted outside the method required holding time and the QC is compliant. All results are reported from the first trial. Similar results were obtained in both trials.

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516305

LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 08:50 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO01

CAT No.	Analysis Name		CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l		ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.		50	100	1
	troleum carbons	SW-846	8015B	ug/l		ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	260		50	100	1
Metals	5	SW-846	6010B	mg/l		mg/l	mg/l	
07058	Manganese		7439-96-5	0.151		0.0018	0.0050	1
		SW-846	6010B	ug/l		ug/l	ug/l	
01743	Aluminum		7429-90-5	133	J	86.8	200	1
07046	Barium		7440-39-3	44.5		1.1	5.0	1
08014	Boron		7440-42-8	1,140		8.3	50.0	1
07049	Cadmium		7440-43-9	N.D.		0.49	5.0	1
01750	Calcium		7440-70-2	52,300		38.2	200	1
07051	Chromium		7440-47-3	2.4	J	1.8	15.0	1
07053	Copper		7440-50-8	N.D.		4.1	10.0	1
01754	Iron		7439-89-6	130	J	74.7	200	1
07055	Lead		7439-92-1	N.D.		6.2	15.0	1
01757	Magnesium		7439-95-4	22,300		19.0	100	1
07060	Molybdenum		7439-98-7	3.7	J	1.7	10.0	1
07061	Nickel		7440-02-0	3.2	J	2.8	10.0	1
10143	Phosphorus		7723-14-0	37.8	J	10.0	100	1
01765	Silicon		7440-21-3	15,300		19.2	50.0	1
07066	Silver		7440-22-4	N.D.		1.9	5.0	1
01767	Sodium		7440-23-5	93,200		173	1,000	1
12004	Sulfur		7704-34-9	11,300		83.3	500	1
07069	Tin		7440-31-5	N.D.		7.1	20.0	1
07070	Titanium		7440-32-6	8.4	J	1.3	10.0	1
07071	Vanadium		7440-62-2	22.4		1.6	5.0	1
07072	Zinc		7440-66-6	N.D.		5.4	20.0	1
Wet Cl	hemistry	EPA 166	54A	mg/l		mg/l	mg/l	
00612	SGT-HEM (TPH)		n.a.	N.D.		1.4	5.0	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		La	aboratory Sample Analys	sis Record		
CAT No.	Analysis Name	Method	Trial# Batch#	Analysis Date and Time	Analyst	Dilution Factor

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Group # 1692738 Account # 13534

LL Sample # WW 8516305

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 08:50 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO01

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	lme	Analyst	Dilution Factor	
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	Y162251AA	08/12/2016	17:49	Brett W Kenyon	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y162251AA	08/12/2016	17:49	Brett W Kenyon	1	
07805	PAHs 8270C Water	SW-846 8270C	1	16223WAM026	08/12/2016	05:08	Anthony P Bauer	1	
07807	BNA Water Extraction	SW-846 3510C	1	16223WAM026	08/11/2016	08:30	Kayla Yuditsky	1	
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16224A53A	08/13/2016	01:37	Marie D Beamenderfer	1	
01146	GC VOA Water Prep	SW-846 5030B	1	16224A53A	08/13/2016	01:37	Marie D Beamenderfer	1	
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	162230010A	08/11/2016	17:16	Amy Lehr	1	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	162230010A	08/10/2016	17:00	Ryan J Dowdy	1	
01743	Aluminum	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07046	Barium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
08014	Boron	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07049	Cadmium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
01750	Calcium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07051	Chromium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07053	Copper	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
01754	Iron	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07055	Lead	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
01757	Magnesium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07058	Manganese	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07060	Molybdenum	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07061	Nickel	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
10143	Phosphorus	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
01765	Silicon	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07066	Silver	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
01767	Sodium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
12004	Sulfur	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07069	Tin	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07070	Titanium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07071	Vanadium	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
07072	Zinc	SW-846 6010B	1	162241848003	08/12/2016	21:52	Suzanne M Will	1	
01848	ICP-WW, 3005A (tot rec) - U3	- SW-846 3005A	1	162241848003	08/12/2016	07:15	Lisa J Cooke	1	
00612	SGT-HEM (TPH)	EPA 1664A	1	16231807801A	08/18/2016	17:07	Michelle L Lalli	1	

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516306

LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 09:40 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO02

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	20	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
10335	Benzene	71-43-2	N.D.	0.5	1	1
10335	Bromobenzene	108-86-1	N.D.	1	5	1
10335	Bromochloromethane	74-97-5	N.D.	1	5	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	1
10335	Bromoform	75-25-2	N.D.	0.5	4	1
10335	Bromomethane	74-83-9	N.D.	0.5	1	1
10335	2-Butanone	78-93-3	N.D.	3	10	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	20	1
10335	n-Butylbenzene	104-51-8	N.D.	1	5	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	5	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	5	1
10335	Carbon Disulfide	75-15-0	N.D.	1	5	1
10335	Carbon Tetrachloride	56-23-5	2	0.5	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	1
10335	Chloroethane	75-00-3	N.D.	0.5	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	10	1
	2-Chloroethyl vinyl ether may preserve this sample.	y not be recovered	if acid was used to			
10335	Chloroform	67-66-3	N.D.	0.5	1	1
10335	Chloromethane	74-87-3	N.D.	0.5	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	5	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	5	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	5	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	5	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	5	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	5	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	1
10335	Ethanol	64-17-5	N.D.	50	250	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10335	Freon 113	76-13-1	N.D.	2	10	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	5	1
10335	2-Hexanone	591-78-6	N.D.	3	10	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516306 LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 09:40 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO02

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	N.D.	1	5	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	5	1
10335	Methyl Tertiary Butyl Ethe	r 1634-04-4	N.D.	0.5	1	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	10	1
10335	Methylene Chloride	75-09-2	N.D.	2	4	1
10335	Naphthalene	91-20-3	N.D.	1	5	1
10335	n-Propylbenzene	103-65-1	N.D.	1	5	1
10335	Styrene	100-42-5	N.D.	1	5	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1	1
10335	Toluene	108-88-3	N.D.	0.5	1	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	5	1
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	5	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1	1
10335	Trichloroethene	79-01-6	N.D.	0.5	1	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1	1
	1,2,3-Trichloropropane	96-18-4	N.D.	1	5	1
	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	5	1
10335	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	5	1
	Vinyl Chloride	75-01-4	N.D.	0.5	1	1
10335	m+p-Xylene	179601-23-1	N.D.	0.5	1	1
10335	o-Xylene	95-47-6	N.D.	0.5	1	1
GC/MS	Semivolatiles SW-84	6 8270C	ug/l	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	0.5	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	0.5	1
07805	Anthracene	120-12-7	N.D.	0.1	0.5	1
07805	Benzo(a)anthracene	56-55-3	N.D.	0.1	0.5	1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1	0.5	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	0.5	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	0.5	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	0.5	1
07805	Chrysene	218-01-9	N.D.	0.1	0.5	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	0.5	1
07805	Fluoranthene	206-44-0	N.D.	0.1	0.5	1
07805	Fluorene	86-73-7	N.D.	0.1	0.5	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	0.5	1
07805	Naphthalene	91-20-3	N.D.	0.1	0.5	1
07805	Phenanthrene	85-01-8	N.D.	0.1	0.5	1
07805	Pyrene	129-00-0	N.D.	0.1	0.5	1
The :	recovery for a target analyt	te(s) in the Laborate	ory Control			

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. The following corrective action was taken:

The sample was re-extracted outside the method required holding time and the QC is compliant. All results are reported from the first trial. Similar results were obtained in both trials.

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516306

LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 09:40 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO02

CAT No.	Analysis Name		CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC Vol	latiles	SW-846	8015B	ug/l		ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.		50	100	1
	croleum carbons	SW-846	8015B	ug/l		ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	N.D.		50	100	1
Metals	5	SW-846	6010B	mg/l		mg/l	mg/l	
07058	Manganese		7439-96-5	0.0420		0.0018	0.0050	1
		SW-846	6010B	ug/l		ug/l	ug/l	
01743	Aluminum		7429-90-5	1,700		86.8	200	1
07046	Barium		7440-39-3	53.4		1.1	5.0	1
08014	Boron		7440-42-8	400		8.3	50.0	1
07049	Cadmium		7440-43-9	N.D.		0.49	5.0	1
01750	Calcium		7440-70-2	52,100		38.2	200	1
07051	Chromium		7440-47-3	7.1 J	Л	1.8	15.0	1
07053	Copper		7440-50-8	11.3		4.1	10.0	1
01754	Iron		7439-89-6	1,740		74.7	200	1
07055	Lead		7439-92-1	N.D.		6.2	15.0	1
01757	Magnesium		7439-95-4	22,400		19.0	100	1
07060	Molybdenum		7439-98-7	1.7 J	Л	1.7	10.0	1
07061	Nickel		7440-02-0	4.0 J	Л	2.8	10.0	1
10143	Phosphorus		7723-14-0	66.2 J	Л	10.0	100	1
01765	Silicon		7440-21-3	19,400		19.2	50.0	1
07066	Silver		7440-22-4	N.D.		1.9	5.0	1
01767	Sodium		7440-23-5	100,000		173	1,000	1
12004	Sulfur		7704-34-9	15,500		83.3	500	1
07069	Tin		7440-31-5	N.D.		7.1	20.0	1
07070	Titanium		7440-32-6	50.0		1.3	10.0	1
07071	Vanadium		7440-62-2	39.4		1.6	5.0	1
07072	Zinc		7440-66-6	7.1 J	Ţ	5.4	20.0	1
Wet Cl	nemistry	EPA 166	54A	mg/l		mg/l	mg/l	
00612	SGT-HEM (TPH)		n.a.	N.D.		1.4	5.0	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		L	aboratory Sample Analys	sis Record		
CAT No.	Analysis Name	Method	Trial# Batch#	Analysis Date and Time	Analyst	Dilution Factor

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Group # 1692738 Account # 13534

LL Sample # WW 8516306

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 09:40 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO02

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	Y162251AA	08/12/2016	18:11	Brett W Kenyon	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y162251AA	08/12/2016	18:11	Brett W Kenyon	1	
07805	PAHs 8270C Water	SW-846 8270C	1	16223WAM026	08/12/2016	05:37	Anthony P Bauer	1	
07807	BNA Water Extraction	SW-846 3510C	1	16223WAM026	08/11/2016	08:30	Kayla Yuditsky	1	
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16224A53A	08/13/2016	02:04	Marie D Beamenderfer	1	
01146	GC VOA Water Prep	SW-846 5030B	1	16224A53A	08/13/2016	02:04	Marie D Beamenderfer	1	
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	162230010A	08/11/2016	16:54	Amy Lehr	1	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	162230010A	08/10/2016	17:00	Ryan J Dowdy	1	
01743	Aluminum	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07046	Barium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
08014	Boron	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07049	Cadmium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
01750	Calcium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07051	Chromium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07053	Copper	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
01754	Iron	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07055	Lead	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
01757	Magnesium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07058	Manganese	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07060	Molybdenum	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07061		SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
10143	Phosphorus	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
	Silicon	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07066	Silver	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
01767	Sodium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
12004	Sulfur	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07069	Tin	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07070	Titanium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07071	Vanadium	SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
07072		SW-846 6010B	1	162241848003	08/12/2016	22:15	Suzanne M Will	1	
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	162241848003	08/12/2016	07:15	Lisa J Cooke	1	
00612	SGT-HEM (TPH)	EPA 1664A	1	16231807801A	08/18/2016	17:07	Michelle L Lalli	1	

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516307 LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 07:45 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	20	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
10335	Benzene	71-43-2	N.D.	0.5	1	1
10335	Bromobenzene	108-86-1	N.D.	1	5	1
10335	Bromochloromethane	74-97-5	N.D.	1	5	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	1
10335	Bromoform	75-25-2	N.D.	0.5	4	1
10335	Bromomethane	74-83-9	N.D.	0.5	1	1
10335	2-Butanone	78-93-3	N.D.	3	10	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	20	1
10335	n-Butylbenzene	104-51-8	N.D.	1	5	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	5	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	5	1
10335	Carbon Disulfide	75-15-0	N.D.	1	5	1
10335	Carbon Tetrachloride	56-23-5	4	0.5	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	1
10335	Chloroethane	75-00-3	N.D.	0.5	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	10	1
	2-Chloroethyl vinyl ether may preserve this sample.	not be recovered	if acid was used to			
10335	Chloroform	67-66-3	0.7 J	0.5	1	1
10335	Chloromethane	74-87-3	N.D.	0.5	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	5	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	5	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	5	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	5	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	5	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	5	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	1
10335	Ethanol	64-17-5	N.D.	50	250	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10335	Freon 113	76-13-1	N.D.	2	10	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	5	1
10335	2-Hexanone	591-78-6	N.D.	3	10	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516307 LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 07:45 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	N.D.	1	5	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	5	1
10335	Methyl Tertiary Butyl Ethe	r 1634-04-4	N.D.	0.5	1	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	10	1
10335	Methylene Chloride	75-09-2	N.D.	2	4	1
10335	Naphthalene	91-20-3	N.D.	1	5	1
10335	n-Propylbenzene	103-65-1	N.D.	1	5	1
10335	Styrene	100-42-5	N.D.	1	5	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1	1
10335	Toluene	108-88-3	N.D.	0.5	1	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	5	1
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	5	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1	1
10335	Trichloroethene	79-01-6	N.D.	0.5	1	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1	1
	1,2,3-Trichloropropane	96-18-4	N.D.	1	5	1
	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	5	1
10335	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	5	1
	Vinyl Chloride	75-01-4	N.D.	0.5	1	1
10335	m+p-Xylene	179601-23-1	N.D.	0.5	1	1
10335	o-Xylene	95-47-6	N.D.	0.5	1	1
GC/MS	Semivolatiles SW-84	6 8270C	ug/l	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	0.5	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	0.5	1
07805	Anthracene	120-12-7	N.D.	0.1	0.5	1
07805	Benzo(a)anthracene	56-55-3	N.D.	0.1	0.5	1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1	0.5	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	0.5	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	0.5	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	0.5	1
07805	Chrysene	218-01-9	N.D.	0.1	0.5	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	0.5	1
07805	Fluoranthene	206-44-0	N.D.	0.1	0.5	1
07805	Fluorene	86-73-7	N.D.	0.1	0.5	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	0.5	1
07805	Naphthalene	91-20-3	N.D.	0.1	0.5	1
07805	Phenanthrene	85-01-8	N.D.	0.1	0.5	1
07805	Pyrene	129-00-0	N.D.	0.1	0.5	1
The :	recovery for a target analyt	te(s) in the Laborate	ory Control			

The recovery for a target analyte(s) in the Laboratory Control Spike(s) is outside the QC acceptance limits as noted on the QC Summary. The following corrective action was taken:

The sample was re-extracted outside the method required holding time and the QC is compliant. All results are reported from the first trial. Similar results were obtained in both trials.

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516307

LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 07:45 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO03

CAT No.	Analysis Name		CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l		ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.		50	100	1
GC Pet	troleum	SW-846	8015B	ug/l		ug/l	ug/l	
Hydro	carbons							
06609	TPH-DRO CA C10-C28		n.a.	N.D.		50	100	1
				/-		/2	/3	
Metal		SW-846		mg/l		mg/l	mg/l	
07058	Manganese		7439-96-5	0.0041	J	0.0018	0.0050	1
		SW-846	6010B	ug/l		ug/l	ug/l	
01743	Aluminum		7429-90-5	N.D.		86.8	200	1
07046	Barium		7440-39-3	37.9		1.1	5.0	1
08014	Boron		7440-42-8	1,040		8.3	50.0	1
07049	Cadmium		7440-43-9	N.D.		0.49	5.0	1
01750	Calcium		7440-70-2	58,900		38.2	200	1
07051	Chromium		7440-47-3	2.8	J	1.8	15.0	1
07053	Copper		7440-50-8	N.D.		4.1	10.0	1
01754	Iron		7439-89-6	N.D.		74.7	200	1
07055	Lead		7439-92-1	N.D.		6.2	15.0	1
01757	Magnesium		7439-95-4	24,400		19.0	100	1
07060	Molybdenum		7439-98-7	1.9	J	1.7	10.0	1
07061	Nickel		7440-02-0	N.D.		2.8	10.0	1
10143	Phosphorus		7723-14-0	54.0	J	10.0	100	1
01765	Silicon		7440-21-3	13,900		19.2	50.0	1
07066	Silver		7440-22-4	N.D.		1.9	5.0	1
01767	Sodium		7440-23-5	72,200		173	1,000	1
12004	Sulfur		7704-34-9	15,300		83.3	500	1
07069	Tin		7440-31-5	N.D.		7.1	20.0	1
07070	Titanium		7440-32-6	6.9	J	1.3	10.0	1
07071	Vanadium		7440-62-2	22.7		1.6	5.0	1
07072	Zinc		7440-66-6	N.D.		5.4	20.0	1
Wet C	nemistry	EPA 166	5 4 A	mg/l		mg/l	mg/l	
00612	SGT-HEM (TPH)	HEN TO		1.5	J	1.4	5.0	1
00612	SGI-HEM (TPH)		n.a.	1.5	U	1.4	5.0	1

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

			Laboratory Sa	mple Anal	lysis Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-160805 Grab Groundwater

Facility# 373378 CRAW

7600 MacArthur Blv-Oakland T10000003434

LL Sample # WW 8516307 LL Group # 1692738 Account # 13534

Project Name: 373378 Tidewater Oakland

Submitted: 08/06/2016 09:45

Reported: 08/20/2016 16:47

Collected: 08/05/2016 07:45 by JH GHD

10969 Trade Center Drive

Suite 107

Rancho Cordova CA 95670

MBO03

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor		
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	Y162251AA	08/12/2016	18:33	Brett W Kenyon	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Y162251AA	08/12/2016	18:33	Brett W Kenyon	1		
07805	PAHs 8270C Water	SW-846 8270C	1	16223WAM026	08/12/2016	06:06	Anthony P Bauer	1		
07807	BNA Water Extraction	SW-846 3510C	1	16223WAM026	08/11/2016	08:30	Kayla Yuditsky	1		
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16224A53A	08/13/2016	02:32	Marie D Beamenderfer	1		
01146	GC VOA Water Prep	SW-846 5030B	1	16224A53A	08/13/2016	02:32	Marie D Beamenderfer	1		
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	162230010A	08/11/2016	15:48	Amy Lehr	1		
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	162230010A	08/10/2016	17:00	Ryan J Dowdy	1		
01743	Aluminum	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07046	Barium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
08014	Boron	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07049	Cadmium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
01750	Calcium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07051	Chromium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07053	Copper	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
01754	Iron	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07055	Lead	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
01757	Magnesium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07058	Manganese	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07060	Molybdenum	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07061		SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
10143	Phosphorus	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
01765	Silicon	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07066	Silver	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
01767	Sodium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
12004	Sulfur	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07069	Tin	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07070	Titanium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07071	Vanadium	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
07072	Zinc	SW-846 6010B	1	162241848003	08/12/2016	22:24	Suzanne M Will	1		
01848	ICP-WW, 3005A (tot rec) - U3	SW-846 3005A	1	162241848003	08/12/2016	07:15	Lisa J Cooke	1		
00612	SGT-HEM (TPH)	EPA 1664A	1	16231807801A	08/18/2016	17:07	Michelle L Lalli	1		

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Group Number: 1692738

Reported: 08/20/2016 16:47

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	ug/l	ug/l	ug/l
Batch number: Y162251AA	Sample number	(s): 851630	5-8516307
Acetone	N.D.	6	20
t-Amyl methyl ether	N.D.	0.5	1
Benzene	N.D.	0.5	1
Bromobenzene	N.D.	1	5
Bromochloromethane	N.D.	1	5
Bromodichloromethane	N.D.	0.5	1
Bromoform	N.D.	0.5	4
Bromomethane	N.D.	0.5	1
2-Butanone	N.D.	3	10
t-Butyl alcohol	N.D.	5	20
n-Butylbenzene	N.D.	1	5
sec-Butylbenzene	N.D.	1	5
tert-Butylbenzene	N.D.	1	5
Carbon Disulfide	N.D.	1	5
Carbon Tetrachloride	N.D.	0.5	1
Chlorobenzene	N.D.	0.5	1
Chloroethane	N.D.	0.5	1
2-Chloroethyl Vinyl Ether	N.D.	2	10
Chloroform	N.D.	0.5	1
Chloromethane	N.D.	0.5	1
2-Chlorotoluene	N.D.	1	5
4-Chlorotoluene	N.D.	1	5
1,2-Dibromo-3-chloropropane	N.D.	2	5
Dibromochloromethane	N.D.	0.5	1
1,2-Dibromoethane	N.D.	0.5	1
Dibromomethane	N.D.	0.5	1
1,2-Dichlorobenzene	N.D.	1	5
1,3-Dichlorobenzene	N.D.	1	5
1,4-Dichlorobenzene	N.D.	1	5
Dichlorodifluoromethane	N.D.	0.5	1
1,1-Dichloroethane	N.D.	0.5	1
1,2-Dichloroethane	N.D.	0.5	1
1,1-Dichloroethene	N.D.	0.5	1
cis-1,2-Dichloroethene	N.D.	0.5	1
trans-1,2-Dichloroethene	N.D.	0.5	1
1,2-Dichloropropane	N.D.	0.5	1
1,3-Dichloropropane	N.D.	0.5	1
2,2-Dichloropropane	N.D.	0.5	1
1,1-Dichloropropene	N.D.	1	5
cis-1,3-Dichloropropene	N.D.	0.5	1
trans-1,3-Dichloropropene	N.D.	0.5	1
Ethanol	N.D.	50	250
Ethyl t-butyl ether	N.D.	0.5	1

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Group Number: 1692738

Reported: 08/20/2016 16:47

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	ug/l	ug/l	ug/l
Ethylbenzene	N.D.	0.5	1
Freon 113	N.D.	2	10
Hexachlorobutadiene	N.D.	2	5
2-Hexanone	N.D.	3	10
di-Isopropyl ether	N.D.	0.5	1
Isopropylbenzene	N.D.	1	5
p-Isopropyltoluene	N.D.	1	5
Methyl Tertiary Butyl Ether	N.D.	0.5	1
4-Methyl-2-pentanone	N.D.	3	10
Methylene Chloride	N.D.	2	4
Naphthalene	N.D.	1	5
n-Propylbenzene	N.D.	1	5
Styrene	N.D.	1	5
1,1,1,2-Tetrachloroethane	N.D.	0.5	1
1,1,2,2-Tetrachloroethane	N.D.	0.5	1
Tetrachloroethene	N.D.	0.5	1
Toluene	N.D.	0.5	1
1,2,3-Trichlorobenzene	N.D.	1	5
1,2,4-Trichlorobenzene	N.D.	1	5
1,1,1-Trichloroethane	N.D.	0.5	1
1,1,2-Trichloroethane	N.D.	0.5	1
Trichloroethene	N.D.	0.5	1
Trichlorofluoromethane	N.D.	0.5	1
1,2,3-Trichloropropane	N.D.	1	5
1,2,4-Trimethylbenzene	N.D.	1	5
1,3,5-Trimethylbenzene	N.D.	1	5
Vinyl Chloride	N.D.	0.5	1
m+p-Xylene	N.D.	0.5	1
o-Xylene	N.D.	0.5	1
Batch number: Z162243AA	Sample number	r(s): 85163	04
Benzene	N.D.	0.5	1
Ethylbenzene	N.D.	0.5	1
Methyl Tertiary Butyl Ether	N.D.	0.5	1
Toluene	N.D.	0.5	1
Xylene (Total)	N.D.	0.5	1
Batch number: 16223WAM026	Sample number	r(s): 85163	05-8516307
Acenaphthene	N.D.	0.1	0.5
Acenaphthylene	N.D.	0.1	0.5
Anthracene	N.D.	0.1	0.5
Benzo(a) anthracene	N.D.	0.1	0.5
Benzo(a)pyrene	N.D.	0.1	0.5
Benzo(b)fluoranthene	N.D.	0.1	0.5
Benzo(g,h,i)perylene	N.D.	0.1	0.5
Benzo(k)fluoranthene	N.D.	0.1	0.5
Chrysene	N.D.	0.1	0.5
Dibenz(a,h)anthracene	N.D.	0.1	0.5
Fluoranthene	N.D.	0.1	0.5
Fluorene	N.D.	0.1	0.5
Indeno(1,2,3-cd)pyrene	N.D.	0.1	0.5
Naphthalene	N.D.	0.1	0.5

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Group Number: 1692738

Reported: 08/20/2016 16:47

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	ug/l	ug/l	ug/l
Phenanthrene Pyrene	N.D. N.D.	0.1 0.1	0.5 0.5
Batch number: 16224A53A TPH-GRO N. CA water C6-C12	Sample number N.D.	(s): 85163 50	04-8516307 100
Batch number: 162230010A TPH-DRO CA C10-C28	Sample number N.D.	(s): 85163 50	05-8516307 100
	mg/l	mg/l	mg/l
Batch number: 162241848003 Manganese	Sample number N.D. ug/l	(s): 85163 0.0018 ug/l	05-8516307 0.0050 ug/1
Aluminum	N.D.	86.8	200
Barium	N.D.	1.1	5.0
Boron	9.0 J	8.3	50.0
Cadmium	N.D.	0.49	5.0
Calcium	89.0 J	38.2	200
Chromium	N.D.	1.8 4.1	15.0
Copper Iron	N.D. N.D.	4.1 74.7	10.0
Iron Lead	N.D.	6.2	200 15.0
Magnesium	N.D.	19.0	100
Molybdenum	N.D.	1.7	10.0
Nickel	N.D.	2.8	10.0
Phosphorus	N.D.	10.0	100
Silicon	N.D.	19.2	50.0
Silver	N.D.	1.9	5.0
Sodium	N.D.	173	1,000
Sulfur	N.D.	83.3	500
Tin	N.D.	7.1	20.0
Titanium	N.D.	1.3	10.0
Vanadium	N.D.	1.6	5.0
Zinc	N.D.	5.4	20.0
	mg/l	mg/l	mg/l
Batch number: 16231807801A SGT-HEM (TPH)	Sample number N.D.	(s): 85163 1.4	05-8516307 5.0

LCS/LCSD

Analysis Name	LCS Spike Added ug/1	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: Y162251AA	Sample numbe	r(s): 85163	305-8516307						
Acetone	150	151.12	150	145.48	101	97	58-138	4	30
t-Amyl methyl ether	20	18.17	20	18.59	91	93	75-120	2	30
Benzene	20	19.26	20	19.82	96	99	78-120	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Group Number: 1692738

Reported: 08/20/2016 16:47

LCS/LCSD (continued)

ug/1 ug/1 ug/1 ug/1 Bromobenzene 20 19.34 20 19.94 97 100 80-120 3 30 Bromochloromethane 20 21.14 20 21.3 106 106 80-125 1 30 Bromodichloromethane 20 19.34 20 19.29 97 96 80-120 0 30 Bromoform 20 17.59 20 17.31 88 87 67-120 2 30 Bromomethane 20 17.58 20 17.77 88 89 53-130 1 30 2-Butanone 150 143.24 150 143.4 95 96 62-131 0 30 t-Butyl alcohol 200 200.79 200 199.31 100 100 78-121 1 30 n-Butylbenzene 20 19.42 20 19.83 96 99 68-120 3 30	
Bromochloromethane 20 21.14 20 21.3 106 106 80-125 1 30 Bromodichloromethane 20 19.34 20 19.29 97 96 80-120 0 30 Bromoform 20 17.59 20 17.31 88 87 67-120 2 30 Bromomethane 20 17.58 20 17.77 88 89 53-130 1 30 2-Butanone 150 143.24 150 143.4 95 96 62-131 0 30 t-Butyl alcohol 200 200.79 200 199.31 100 100 78-121 1 30 n-Butylbenzene 20 19.24 20 19.83 96 99 68-120 3 30 sec-Butylbenzene 20 19.42 20 19.79 97 99 68-120 30 tert-Butylbenzene 20 19.39 20 20.55	
Bromodichloromethane 20 19.34 20 19.29 97 96 80-120 0 30 Bromoform 20 17.59 20 17.31 88 87 67-120 2 30 Bromomethane 20 17.58 20 17.77 88 89 53-130 1 30 2-Butanone 150 143.24 150 143.4 95 96 62-131 0 30 t-Butyl alcohol 200 200.79 200 199.31 100 100 78-121 1 30 n-Butylbenzene 20 19.24 20 19.83 96 99 68-120 3 30 sec-Butylbenzene 20 19.42 20 19.79 97 99 68-124 2 30 tert-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20	
Bromoform 20 17.59 20 17.31 88 87 67-120 2 30 Bromomethane 20 17.58 20 17.77 88 89 53-130 1 30 2-Butanone 150 143.24 150 143.4 95 96 62-131 0 30 t-Butyl alcohol 200 200.79 200 199.31 100 100 78-121 1 30 n-Butylbenzene 20 19.24 20 19.83 96 99 68-120 3 30 sec-Butylbenzene 20 19.42 20 19.79 97 99 68-124 2 30 tert-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20	
Bromomethane 20 17.58 20 17.77 88 89 53-130 1 30 2-Butanone 150 143.24 150 143.4 95 96 62-131 0 30 t-Butyl alcohol 200 200.79 200 199.31 100 100 78-121 1 30 n-Butylbenzene 20 19.24 20 19.83 96 99 68-120 3 30 sec-Butylbenzene 20 19.42 20 19.79 97 99 68-124 2 30 tetr-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
2-Butanone 150 143.24 150 143.4 95 96 62-131 0 30 t-Butyl alcohol 200 200.79 200 199.31 100 100 78-121 1 30 n-Butylbenzene 20 19.24 20 19.83 96 99 68-120 3 30 sec-Butylbenzene 20 19.42 20 19.79 97 99 68-124 2 30 tetr-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
t-Butyl alcohol 200 200.79 200 199.31 100 100 78-121 1 30 n-Butylbenzene 20 19.44 20 19.83 96 99 68-120 3 30 sec-Butylbenzene 20 19.42 20 19.79 97 99 68-124 2 30 tert-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
n-Butylbenzene 20 19.24 20 19.83 96 99 68-120 3 30 sec-Butylbenzene 20 19.42 20 19.79 97 99 68-124 2 30 tert-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
sec-Butylbenzene 20 19.42 20 19.79 97 99 68-124 2 30 tert-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
tert-Butylbenzene 20 19.39 20 20.55 97 103 74-121 6 30 Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
Carbon Disulfide 20 16.18 20 16.31 81 82 58-120 1 30 Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
Carbon Tetrachloride 20 21.06 20 21.42 105 107 74-130 2 30	
Chlorobenzene 20 20.54 20 20.73 103 104 80-120 1 20	
Chloroethane 20 18.22 20 18.41 91 92 56-120 1 30	
2-Chloroethyl Vinyl Ether 20 17.18 20 17.41 86 87 65-120 1 30	
Chloroform 20 19.89 20 20.27 99 101 80-120 2 30	
Chloromethane 20 19.72 20 20.11 99 101 65-129 2 30	
2-Chlorotoluene 20 19.4 20 19.9 97 99 80-120 3 30	
4-Chlorotoluene 20 19.63 20 19.9 98 100 78-120 1 30	
1,2-Dibromo-3-chloropropane 20 17.03 20 17.39 85 87 59-120 2 30	
Dibromochloromethane 20 18.39 20 18.41 92 92 78-120 0 30	
1,2-Dibromoethane 20 19.88 20 19.66 99 98 80-120 1 30	
Dibromomethane 20 20.82 20 20.53 104 103 80-120 1 30	
1,2-Dichlorobenzene 20 19.66 20 19.86 98 99 80-120 1 30	
1,3-Dichlorobenzene 20 19.42 20 19.7 97 99 80-120 1 30	
1,4-Dichlorobenzene 20 19.67 20 19.83 98 99 80-120 1 30	
Dichlorodifluoromethane 20 20.95 20 21.48 105 107 49-127 2 30	
1,1-Dichloroethane 20 20.18 20 20.51 101 103 80-120 2 30	
1,2-Dichloroethane 20 21.76 20 21.94 109 110 72-127 1 30	
1,1-Dichloroethene 20 19.14 20 19.47 96 97 76-124 2 30	
cis-1,2-Dichloroethene 20 20.06 20 20.26 100 101 80-120 1 30	
trans-1,2-Dichloroethene 20 20.11 20 20.54 101 103 80-120 2 30	
1,2-Dichloropropane 20 20.72 20 21.14 104 106 80-120 2 30	
1,3-Dichloropropane 20 19.74 20 19.84 99 99 80-120 1 30	
2,2-Dichloropropane 20 21.01 20 21.4 105 107 48-159 2 30	
1,1-Dichloropropene 20 19.42 20 19.8 97 99 80-126 2 30	
cis-1,3-Dichloropropene 20 19.45 20 19.92 97 100 80-120 2 30	
trans-1,3-Dichloropropene 20 19.54 20 19.85 98 99 76-120 2 30	
Ethanol 500 530.96 500 483.35 106 97 47-155 9 30	
Ethyl t-butyl ether 20 17.92 20 18.37 90 92 69-120 2 30	
Ethylbenzene 20 19.26 20 19.49 96 97 78-120 1 30	
Freon 113 20 19.68 20 20.13 98 101 64-136 2 30	
Hexachlorobutadiene 20 20.97 20 21.65 105 108 61-127 3 30	
2-Hexanone 100 85.96 100 86.95 86 87 35-138 1 30	
di-Isopropyl ether 20 18.62 20 19.13 93 96 70-124 3 30	
Isopropylbenzene 20 19.72 20 20.03 99 100 80-120 2 30	
p-Isopropyltoluene 20 19.49 20 19.95 97 100 76-120 2 30	
Methyl Tertiary Butyl Ether 20 19.32 20 19.51 97 98 75-120 1 30	
4-Methyl-2-pentanone 100 97.26 100 97.26 97 97 47-133 0 30	
Methylene Chloride 20 20.27 20 20.02 101 100 77-121 1 30	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Group Number: 1692738

Reported: 08/20/2016 16:47

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Naphthalene	20	18.57	20	19.01	93	95	59-120	2	30
n-Propylbenzene	20	19.13	20	19.64	96	98	75-130	3	30
Styrene	20	19.41	20	19.88	97	99	80-120	2	30
1,1,1,2-Tetrachloroethane	20	20.12	20	20.1	101	101	80-120	0	30
1,1,2,2-Tetrachloroethane	20	17.72	20	17.78	89	89	72-120	0	30
Tetrachloroethene	20	21.18	20	22.78	106	114	80-129	7	30
Toluene	20	19.34	20	19.59	97	98	80-120	1	30
1,2,3-Trichlorobenzene	20	19.7	20	20.01	98	100	69-120	2	30
1,2,4-Trichlorobenzene	20	19.17	20	19.57	96	98	66-120	2	30
1,1,1-Trichloroethane	20	17.75	20	18.26	89	91	66-126	3	30
1,1,2-Trichloroethane	20	18.97	20	19.69	95	98	80-120	4	30
Trichloroethene	20	19.99	20	20.62	100	103	80-120	3	30
Trichlorofluoromethane	20	22.92	20	23.54	115	118	67-129	3	30
1,2,3-Trichloropropane	20	18.82	20	18.83	94	94	76-120	0	30
1,2,4-Trimethylbenzene	20	19.08	20	19.43	95	97	75-120	2	30
1,3,5-Trimethylbenzene	20	18.93	20	19.57	95	98	75-120	3	30
Vinyl Chloride	20	20.5	20	20.87	103	104	69-120	2	30
m+p-Xylene	40	40.07	40	40.9	100	102	80-120	2	30
o-Xylene	20	19.09	20	19.45	95	97	80-120	2	30
Batch number: Z162243AA	Sample numbe		04						
Benzene	20	18.55			93		78-120		
Ethylbenzene	20	18.6			93		78-120		
Methyl Tertiary Butyl Ether	20	22.03			110		75-120		
Toluene	20	18.91			95		80-120		
Xylene (Total)	60	56.78			95		80-120		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 16223WAM026	Sample numbe	er(s): 85163	05-8516307						
Acenaphthene	50	47.22	50	46.8	94	94	74-120	1	30
Acenaphthylene	50	46.01	50	49.53	92	99	73-125	7	30
Anthracene	50	45.06	50	46.77	90	94	75-121	4	30
Benzo(a)anthracene	50	54.11	50	50.78	108	102	77-125	6	30
Benzo(a)pyrene	50	79.48	50	47.09	159*	94	74-119	51*	30
Benzo(b)fluoranthene	50	130.99	50	50.74	262*	101	74-122	88*	30
Benzo(g,h,i)perylene	50	99.68	50	46.99	199*	94	70-130	72*	30
Benzo(k)fluoranthene	50	128.09	50	49.74	256*	99	75-121	88*	30
Chrysene	50	56.22	50	52.38	112	105	79-126	7	30
Dibenz(a,h)anthracene	50	118.13	50	48.3	236*	97	72-132	84*	30
Fluoranthene	50	48.48	50	48.91	97	98	78-121	1	30
Fluorene	50	47.94	50	46.6	96	93	74-119	3	30
Indeno(1,2,3-cd)pyrene	50	103.44	50	46.49	207*	93	69-126	76*	30
Naphthalene	50	46.42	50	45.22	93	90	68-116	3	30
Phenanthrene	50	45.73	50	45.73	91	91	73-117	0	30
Pyrene	50	29.09	50	46.08	58*	92	68-118	45*	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: 16224A53A	Sample numbe	er(s): 85163	04-8516307						
TPH-GRO N. CA water C6-C12	1100	1125.06	1100	1130.16	102	103	77-120	0	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Group Number: 1692738

Reported: 08/20/2016 16:47

LCS/LCSD (continued)

		•	•	•					
Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 162230010A	Sample numbe	r(s): 85163	305-8516307						
TPH-DRO CA C10-C28	1600	1041.12	1600	1108.04	65	69	53-115	6	20
	mg/l	mg/l	mg/l	mg/l					
Batch number: 162241848003	Sample numbe	r(s): 85163	305-8516307						
Manganese	0.500	0.476			95		80-120		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 162241848003	Sample numbe	r(s): 85163	305-8516307						
Aluminum	2000	1938.89			97		80-120		
Barium	2000	1879.68			94		80-120		
Boron	2000	1726.47			86		80-120		
Cadmium	50	47.75			96		80-120		
Calcium	4000	3791.56			95		80-120		
Chromium	200	182.55			91		80-120		
Copper	250	241.38			97		80-120		
Iron	1000	939.39			94		80-120		
Lead	150	136.8			91		80-120		
Magnesium	2000	1879.03			94		80-120		
Molybdenum	2000	1853.89			93		80-120		
Nickel	500	476.79			95		80-120		
Phosphorus	1000	921.73			92		80-120		
Silicon	1000	1015.77			102		80-120		
Silver	50	46.96			94		80-120		
Sodium	10000	9163.01			92		80-120		
Sulfur	1000	914.35			91		80-120		
Tin	4000	3634.5			91		80-120		
Titanium	1000	959.83			96		80-120		
Vanadium	500	473.38			95		80-120		
Zinc	500	460.51			92		80-120		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 16231807801A	Sample numbe	r(s): 85163	305-8516307						
SGT-HEM (TPH)	20	16.6	20	15.7	83	79	64-132	6	18

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: Z162243AA	Sample numb	er(s): 8516	304 UNSI	PK: P513561						
Benzene	0.757	20	20.73	20	23.33	100	113	78-120	12	30
Ethylbenzene	N.D.	20	19.61	20	21.08	98	105	78-120	7	30
Methyl Tertiary Butyl Ether	9.37	20	28.35	20	32.04	95	113	75-120	12	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Group Number: 1692738

Reported: 08/20/2016 16:47

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Toluene Xylene (Total)	N.D. N.D.	20 60	19.92 60.28	20 60	20.83 63.4	100 100	104 106	80-120 80-120	4 5	30 30
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 162241848003	Sample numb	er(g). 951	16205-05162	07 IMCDV.	9516305					
Manganese	0.151	0.500	0.617	0.500	0.579	93	86	75-125	6	20
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 162241848003	Sample numb	er(s): 851	16305-85163	07 UNSPK:	8516305					
Aluminum	133.09	2000	2052.98	2000	1938.94	96	90	75-125	6	20
Barium	44.48	2000	1825.91	2000	1712.97	89	83	75-125	6	20
Boron	1143.54	2000	2911.24	2000	2763.38	88	81	75-125	5	20
Cadmium	N.D.	50	46.84	50	42.74	94	85	75-125	9	20
Calcium	52310.46	4000	58109.52	4000	57231.61	145 (2)	123 (2)	75-125	2	20
Chromium	2.43	200	180.45	200	167.8	89	83	75-125	7	20
Copper	N.D.	250	237.22	250	218.21	95	87	75-125	8	20
Iron	130	1000	1068.36	1000	1017.7	94	89	75-125	5	20
Lead	N.D.	150	131.39	150	121.76	88	81	75-125	8	20
Magnesium	22306.1	2000	25110.18	2000	24661.87	140 (2)	118 (2)	75-125	2	20
Molybdenum	3.74	2000	1760.04	2000	1780.23	88	89	75-125	1	20
Nickel	3.15	500	460.56	500	424.32	91	84	75-125	8	20
Phosphorus	37.77	1000	986.74	1000	909.28	95	87	75-125	8	20
Silicon	15286.95	1000	16921.78	1000	16828.65	163 (2)	154 (2)	75-125	1	20
Silver	N.D.	50	43.88	50	43.96	88	88	75-125	0	20
Sodium	93177.31	10000	105895.77	10000	104180.13	127 (2)	110 (2)	75-125	2	20
Sulfur	11274.91	1000	12417.05	1000	12088.92	114 (2)	81 (2)	75-125	3	20
Tin	N.D.	4000	3406.77	4000	3447.11	85	86	75-125	1	20
Titanium	8.40	1000	902.22	1000	921.86	89	91	75-125	2	20
Vanadium	22.38	500	501.09	500	464.46	96	88	75-125	8	20
Zinc	N.D.	500	463.33	500	430.09	93	86	75-125	7	20
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 16231807801A	Sample numb	er(s): 851	16305-85163	07 UNSPK:	8516307					
SGT-HEM (TPH)	1.46	20.8	11.88			50*		64-132		

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	mg/l	mg/l		
Batch number: 162241848003	Sample number(s):	8516305-8516307 BKG:	8516305	
Manganese	0.151	0.154	2	20

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Group Number: 1692738 Client Name: GHD

Reported: 08/20/2016 16:47

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/l	DUP Conc mg/l	DUP RPD	DUP RPD Max
	ug/l	ug/l		
Batch number: 162241848003	Sample number(s):	8516305-8516307	BKG: 8516305	
Aluminum	133.09	117.57	12 (1)	20
Barium	44.48	45.05	1	20
Boron	1143.54	1160.25	1	20
Cadmium	N.D.	N.D.	0 (1)	20
Calcium	52310.46	53318.49	2	20
Chromium	2.43	N.D.	200* (1)	20
Copper	N.D.	N.D.	0 (1)	20
Iron	130	94.21	32* (1)	20
Lead	N.D.	N.D.	0 (1)	20
Magnesium	22306.1	22810.29	2	20
Molybdenum	3.74	N.D.	200* (1)	20
Nickel	3.15	3.35	6 (1)	20
Phosphorus	37.77	35.94	5 (1)	20
Silicon	15286.95	15465.05	1	20
Silver	N.D.	N.D.	0 (1)	20
Sodium	93177.31	94875.88	2	20
Sulfur	11274.91	11186.92	1	20
Tin	N.D.	N.D.	0 (1)	20
Titanium	8.40	7.03	18 (1)	20
Vanadium	22.38	23.12	3 (1)	20
Zinc	N.D.	N.D.	0 (1)	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 8260 Full List w/ Sep. Xylenes

Batch number: Y162251AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8516305	111	108	99	91
8516306	113	108	98	90
8516307	113	109	99	91
Blank	108	106	100	92
LCS	103	104	102	99
LCSD	103	102	102	100
Limits:	80-116	77-113	80-113	78-113

Analysis Name: BTEX/MTBE Batch number: Z162243AA

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Group Number: 1692738 Client Name: GHD

Reported: 08/20/2016 16:47

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed $% \left(1\right) =\left(1\right) \left(1$ unless attributed to dilution or otherwise noted on the Analysis Report.

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8516304	98	97	97	95
Blank	97	98	100	96
LCS	104	110	98	99
MS	96	96	98	99
MSD	104	109	98	99
Limits:	80-116	77-113	80-113	78-113

Analysis Name: PAHs 8270C Water

Batch number: 16223WAM026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
8516305	71	72	74	
8516306	67	66	63	
8516307	76	75	81	
Blank	79	78	84	
LCS	85	85	70	
LCSD	84	84	89	
Limits:	46-128	61-112	41-125	

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 16224A53A

	Trifluorotoluene-F
8516304	110
8516305	108
8516306	96
8516307	101
Blank	106
LCS	112
LCSD	111

Limits: 63-135

Analysis Name: TPH-DRO CA C10-C28

Batch number: 162230010A

	Orthoterphenyl	
8516305	92	
8516306	98	
8516307	95	
Blank	98	
LCS	98	
LCSD	96	

Limits: 50-124

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

eurofins	Lancaste Laborato	er	とせんら,	L A	cct.#	13	52	<u>}- </u>		F Group In	For Eu	urofine ons on re	Lanc everse	caster 3 side cor	Sabo Sa respond	ratorie mple # d with cir	s use tcled nu	only mbers	6	3C)Y.	0	1									
(1)	Client In		n			energen system	(4)	Ma	trix		ĺ	(5)			Ar	nalys	es F	lear	ıest	ed	wężenie (łos		^70000 styrens									
Facily \$#373378-OML G-R#385905 Global #15#T10000003434							Ì			wir ienwecco	ong about 1000								***************************************					SCR #:								
Site 7600 MACARTHUR BLVD., OAKLAND, CA								[2]						 		(0)?		2	6010		276)			☐ Results in Dry Weight ☐ J value reporting needed								
Che wna PM GH	IDMD		Lead Consi	ultant			Sediment	Ground	Surface		(0	[] 00		Gel Cleanup	Cleanup	3)		16644			22S)			Must meet lowest detection limits possible for 8260								
Consultan/Office	6805 Sierra	Court, S	Suite G,	Dublin, (CA 9	4566	Sec	ਹੋਂ	SL		ainer	8260	8260		sel Cle	Vocs		ر ا	كاسه	3	•			compounds 8021 MTBE Confirmation								
Consultant Project Mgr Deanna L. Hardir	ng, deanna@	grinc.co)m	3.10.6663.81111114.43413.2003.2003.2003						П	Containers		2	ut Silic	Silica ((0)	Method	<i>Lear m</i> Method	8270	alen			Confirm highest hit by 8260								
Consultant Phone # (925) 551-7444 x'	180						A STATE OF THE STA	Potable	NPDES	Air	ο̈	8021	801	8015 without Silica	5 with (4127	jat .	er	3	Ü				Run oxy's on all hits	hit							
Sampler		Jim	HERIZ	o1.J	3	osite					Number	MTBE	၂ ၀ွ	30 801	30 801.	Full Sea	Oxyg	ó	pe pe	? <u>-</u>	4911TH			3,7 5 5.7 GM MINO								
② Sample Identif	ication	Soil Depth	igospicariosistici (kariopadry) arkitoso	ected Time	Grab	Composite	Soil	1000	vale	Oil	Total I	BTEX +	TPH-GRO	TPH-DRO	TPH-DRO 8015 with Silica Gel	E Fu		Total 🚗	Dissolved	エく	5			(6) Remarks								
	QA		160805		×			>	<		5	×	X											WEAR METALS TO								
	MW-1			0850	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	ļ		1			15			X	onenessasser:	X		X	×	×	×			REPORT ARE: AI, Ba								
	MW-2 MW-3			0940									_	H		\dashv		+	\rightarrow	-	\dashv			B, Cd, Ca, Cr, Cu, Fe Pb, Mg, Mo, NI, P, SI, A								
	11/20-5			0745	1 3			-	<u> </u>		-		4	4		- 4		- 8	A	_,	+			Na, S, Sn, Ti, V and Z	n							
					1																											
					1																											
																		7	***************************************													
	AN																								and a second							
					-																											
Turnaround Time	Doguantad (T	'AT\ /place	a circle)		Reling	nuished	l by	-				Date	4800025/T/A		Time			Receiv	ed by			Sangara ar e		Date Time								
7 Turnaround Time Requested (TAT) (please circle) Standard 5 day 4 day							•		81	5/1			No.		a	٠	H	les	1 U		XAU616 (16											
72 hour	48 hour		24 hogg	F/EDD	Relinquished by				Relinquished b			Relinquished b			Lu	(lul)	~	- 0	Date SSA	υ6l		Time	5		Receiv	ed by	F		CONTROL OF THE OWNER, WHEN		Date Time	attualing bases of
8 Data Package (circle if required) EDD (circle if required) Relinquished					ed by	Com	mercia	al Cai	rrier:	//			11-12-	2	F	Receiv	ed by			- 15 <u>-15-15-15-15-15-15-15-15-15-15-15-15-15-</u>		Date / / Time										
Type I - Full EDFFLAT (default) UPS					UPS FedEx Other husto					de	0-1	bo	10 816/16 094	<u></u>																		
Type VI (Raw Data) Other: Ten					Temperature Upon Receipt°C					t?	/ (Yes) No	I I																				

Sample Administration Receipt Documentation Log

Doc Log ID:

157174

Group Number(s): 1692738

Client: CA

373378

Delivery and Receipt Information

Delivery Method:

BASC

Arrival Timestamp:

08/06/2016 9:45

Number of Packages:

4

Number of Projects:

<u>3</u>

State/Province of Origin:

<u>CA</u>

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

Yes

Sample Date/Times match COC:

Yes

Custody Seal Intact:

Yes

VOA Vial Headspace ≥ 6mm:

No

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes

Trip Blank Type:

HCL

Samples Intact:

Missing Samples: Extra Samples:

Yes

No

No No

Discrepancy in Container Qty on COC:

No

Air Quality Samples Present:

No

Unpacked by Krista Abel (3058) at 11:01 on 08/06/2016

Samples Chilled Details: 373378

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler#	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT146	0.8	DT	Wet	Υ	Bagged	N
2	DT146	0.4	DT	Wet	Υ	Bagged	N
3	DT146	0.7	DT	Wet	Υ	Bagged	N
4	DT146	1.1	DT	Wet	Υ	Bagged	N

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	Ě	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

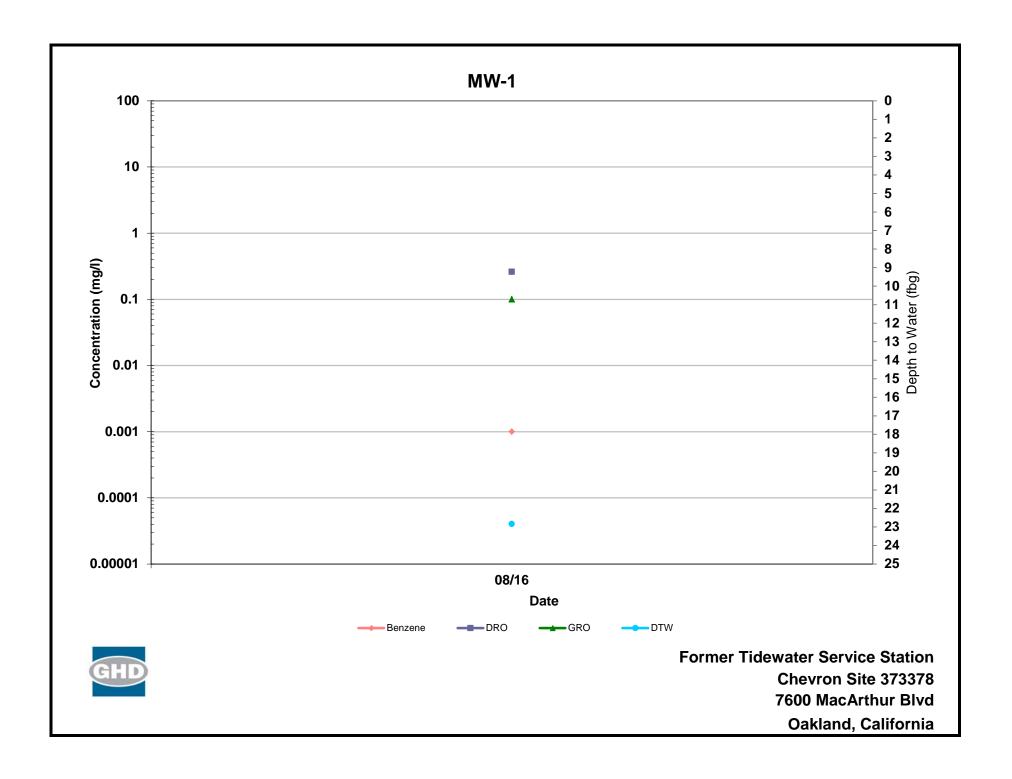
U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

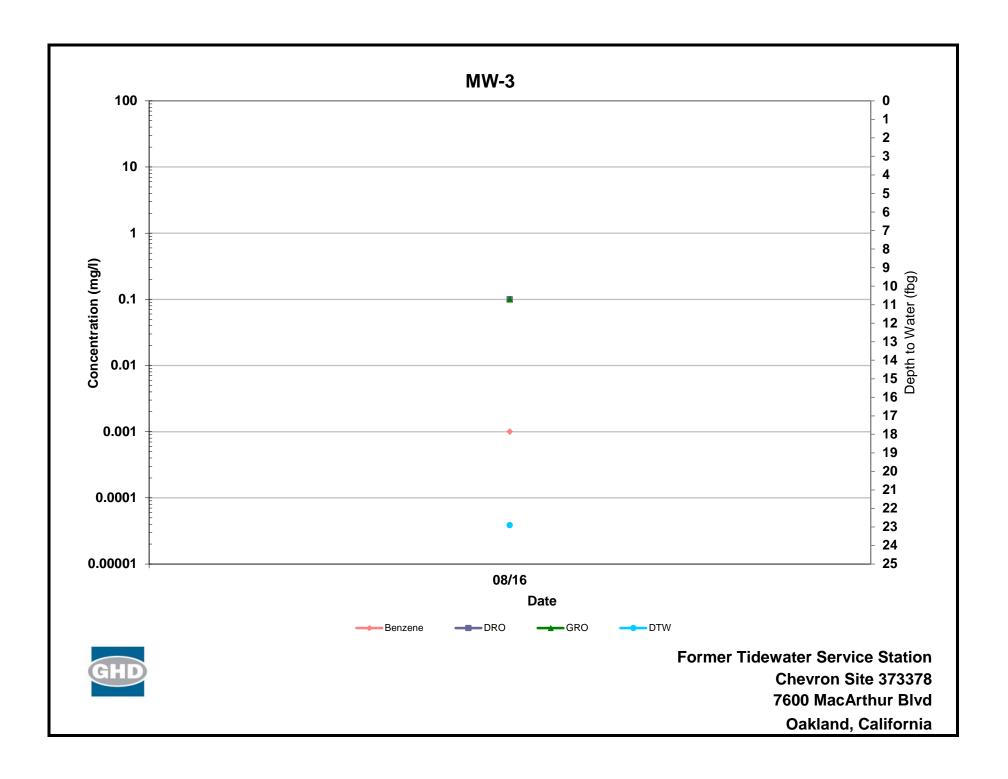
Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.


Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.


This report shall not be reproduced except in full, without the written approval of the laboratory.


Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Attachment D Groundwater Elevation and Concentration Graphs

