ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY ALEX BRISCOE, Agency Director ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335 July 25, 2013 Ms. Pennie Barger Apex Refrigeration Corp. and Pellegrini Refrigeration & Restaurant Equipment Co. 1550 Park Avenue Emeryville, CA 94608 (sent via electronic mail to: pelco1969@sbcglobal.net) Subject: Request for Data Gap Investigation Work Plan and Focused SCM; Fuel Leak Case No. RO0003069 and GeoTracker Global ID T1000002519, Pellegrini Refrigeration & Restaurant Equipment Company, 1550 Park Avenue, Emeryville, CA 94608 Dear Ms. Barger: Alameda County Environmental Health (ACEH) has reviewed the case file, including the May 31, 2013 *Soil and Groundwater Investigation Summary Report*, generated by Engineering / Remediation Resources Group, Inc (ERRG). The report was submitted in response to an ACEH letter dated January 24, 2013, with further modifications contained in a January 24, 2013 e-mail. Thank you for submitting the report. The report documented concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline up to 510 mg/kg, 3,100 mg/kg TPH as diesel, and 550 mg/kg TPH as motor oil in soil. Concentrations up to 31,000 µg/l TPH as gasoline, 83,000 µg/l TPH as diesel, and 5,200 µg/l TPH as motor oil were documented in groundwater. Benzene, toluene, ethylbenzene, and total xylenes (BTEX) or methyl tertiary butyl either (MTBE) were not detected in soil or groundwater samples. A number of Polynuclear Aromatic Hydrocarbons (PAHs) were detected in soil; however, were detected below the appropriate May 2013 San Francisco Regional Water Quality Control Board's (RWQCBs) Environmental Screening Levels (ESLs) for soil. A number of PAHs were detected in groundwater; however, only benzo(b)fluoranthene was detected above appropriate groundwater ESLs. The data appears to suggest the presence of Light Non-Aqueous Phase Liquids (LNAPL). The report recommended the installation of three groundwater wells and additional investigation measures. ACEH has evaluated the data and recommendations presented in the above-mentioned reports, in conjunction with the case files, and the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Based on ACEH staff review, we have determined that the site fails to meet the LTCP General Criteria d (Free Product), e (Site Conceptual Model), f (Secondary Source Removal) and the Media-Specific Criteria for Groundwater, and the Media-Specific Criteria for Vapor Intrusion to Indoor Air. Therefore, at this juncture ACEH requests that you prepare a Data Gap Investigation Work Plan that is supported by a focused Site Conceptual Model (SCM) to address the Technical Comments provided below. #### **TECHNICAL COMMENTS** 1. LTCP General Criteria d (Free Product) – The LTCP requires free product to be removed to the extent practicable at release sites where investigations indicate the presence of free product by removing in a manner that minimizes the spread of the unauthorized release into previously uncontaminated zones by using recovery and disposal techniques appropriate to the hydrogeologic conditions at the site, and that properly treats, discharges, or disposes of recovery byproducts in compliance with applicable laws. Additionally, the LTCP requires that abatement of free product migration be used as a minimum objective for the design of any free product removal system. Ms. Pennie Barger RO0003069 July 25, 2013, Page 2 ACEH's review of the case files indicates that insufficient data has been collected to assess the presence of free product at the site. Specifically, TPH as diesel was detected in soil and groundwater in the recent investigation at a concentration up to 3,100 mg/kg and 83,000 µg/l, respectively, indicating the possible presence of LNAPL. The *Technical Justification for Vapor Intrusion Media-Specific Criteria*, generated in support of the Low-Threat Closure Policy (LTCP), states "indirect" evidence for LNAPL are soil concentrations over 10 to 50 mg/kg TPH as diesel and 100 to 200 mg/kg TPH as gas. Please present a strategy in the Data Gap Work Plan (described in Item 6 below) to determine if LNAPL is present at the site. Alternatively, please provide justification of why the site satisfies this General Criteria of the LTCP in the focused SCM described in Item 6 below. 2. LTCP General Criteria e (Site Conceptual Model) – According to the LTCP, the SCM is a fundamental element of a comprehensive site investigation. The SCM establishes the source and attributes of the unauthorized release, describes all affected media (including soil, groundwater, and soil vapor as appropriate), describes local geology, hydrogeology and other physical site characteristics that affect contaminant environmental transport and fate, and identifies all confirmed and potential contaminant receptors (including water supply wells, surface water bodies, structures and their inhabitants). The SCM is relied upon by practitioners as a guide for investigative design and data collection. All relevant site characteristics identified by the SCM shall be assessed and supported by data so that the nature, extent and mobility of the release have been established to determine conformance with applicable criteria in this policy. Our review of the case files indicates that insufficient data and analysis has been collected to assess the nature, extent, and mobility of the release and to support compliance with General Criteria d as discussed in Item 1 above, General Criteria f, and Media Specific Criteria for Groundwater and the Media Specific Criteria for Vapor Intrusion to Indoor Air, as described in Items 3, 4 and 5 below, respectively. In particular the aerial extent of soil and groundwater contamination has not been defined, potential receptors have not been identified (utility conduits or other), and soil vapor has not been evaluated. 3. General Criteria f – Secondary Source Has Been Removed to the Extent Practicable – Removal of the heating oil UST was conducted in February 2010. Tank removal confirmation soil samples detected up to 15 mg/kg TPH as diesel; however, the recent investigation detected up to 3,100 mg/kg TPH as diesel, (as well as other TPH compounds as previously listed above). Consequently, soil and groundwater characterization in the vicinity of the former UST location has begun but is incomplete, and the extent of practicable removal has not been determined. Please present a strategy in the Data Gap Work Plan (described in Item 6 below) to determine if the secondary source has been removed to the extent practicable. Alternatively, please provide justification of why the site satisfies this General Criteria in the focused SCM described in Item 6 below. 4. LTCP Media Specific Criteria for Groundwater – To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in aerial extent, and meet all of the additional characteristics of one of the five classes of sites listed in the policy. Our review of the case files indicates that insufficient data has been collected to support the requisite characteristics of plume stability or plume classification. Please present a strategy in the Data Gap Work Plan (described in Item 6 below) to address the items discussed above. Alternatively, please provide justification of why the site satisfies the Media-Specific Criteria for Groundwater in the focused SCM described in Item 6 below. 5. LTCP Media Specific Criteria for Vapor Intrusion to Indoor Air – The LTCP describes conditions, including bioattenuation zones, which if met will assure that exposure to petroleum vapors in indoor air will not pose unacceptable health risks to human occupants of existing or future site buildings, and adjacent parcels. Appendices 1 through 4 of the LTCP criteria illustrate four potential exposure scenarios and describe characteristics and criteria associated with each scenario. Our review of the case files indicates that insufficient data has been collected to support the requisite characteristics of one of the four scenarios. Please present a strategy in the Data Gap Investigation Work Plan (described in Item 6 below) to address the items discussed above. Alternatively, please provide justification of why the site satisfies Ms. Pennie Barger RO0003069 July 25, 2013, Page 3 the Media-Specific Criteria for Vapor Intrusion to Indoor Air in the focused SCM described in Item 6 below. Please note, that if direct measurement of soil gas is proposed, ensure that your strategy is consistent with the field sampling protocols described in the Department of Toxic Substances Control's Final Vapor Intrusion Guidance (October 2011). Consistent with the guidance, ACEH requires installation of permanent vapor wells to assess temporal and seasonal variations in soil gas concentrations. 6. Data Gap Investigation Work Plan and Focused Site Conceptual Model – Please prepare a Data Gap Investigation Work Plan to address the technical comments listed above. Please support the scope of work in the Data Gap Investigation Work Plan with a focused SCM and Data Quality Objectives (DQOs) that relate the data collection to each LTCP criteria. For example please clarify which scenario within each Media-Specific Criteria a sampling strategy is intended to apply to. In order to expedite review, ACEH requests the focused SCM be presented in a tabular format that highlights the major SCM elements and associated data gaps, which need to be addressed to progress the site to case closure under the LTCP. Please see Attachment A "Site Conceptual Model Requisite Elements". Please sequence activities in the proposed revised data gap investigation scope of work to enable efficient data collection in the fewest mobilizations possible. In the Data Gap Investigation Work Plan ACEH specifically requests the inclusion of further efforts to determine the depths of vicinity utility lines and vault boxes in order to determine the potential for these conduits to transmit soil or groundwater contamination to receptors. - GeoTracker Compliance Thank you for claiming the site in Geotracker, and for uploading the work plan and subsequent report. The uploaded reports are appreciated. However, a review of the case file and the State's Geotracker database indicates that the site is not in compliance with previous directive letters. Compliance is also a State requirement. Pursuant to California Code of Regulations, Title 23, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1, beginning September 1, 2001, all analytical data, including monitoring well samples, submitted in a report to a regulatory agency as part of the UST or LUST program, must be transmitted electronically to the SWRCB GeoTracker system via the internet. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs, including SLIC programs. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites was required in GeoTracker. At present missing data and documents include, but may not be limited to, older reports, all EDF submittals, GEO_MAPS, GEO_WELL data, and all bore logs. Compliance is required by the State and is tied to reimbursement funding by the UST Cleanup Fund. Please see Attachment 1 for limited additional details, and the state GeoTracker website for full details. ACEH requests notification of, and a list of, the documents uploaded to Geotracker. Please upload all submittals to GeoTracker as well as to ACEH's ftp website by the date specified below. - 8. Appropriate Groundwater Classification Please aware that at present all groundwater in Emeryville is currently classified as 'MUN' (potentially suitable for municipal or domestic water supply). According to the RWQCB Water Quality Control Plan (Basin Plan), dated January 18, 2007, for the San Francisco Bay Basin, "the term 'groundwater' includes all subsurface waters, whether or not these waters meet the classic definition of an aquifer or occur within identified groundwater basins.' It is also stated in the Basin Plan that 'all groundwaters are considered suitable, or potentially suitable, for municipal or domestic water supply (MUN)." Therefore, the groundwater beneath the subject site must be considered beneficial for these uses unless shown to be non-beneficial using criteria presented in the Basin Plan. Please adjust your evaluation to reflect this in future reports. (The proposed "Zone B Berkeley / Albany Groundwater Management Zone" contained in the June 1999 East Bay Plain Groundwater Basin Beneficial Use Evaluation Report was ultimately not adopted in the 2007 Basin Plan). However, please also be aware that case closure does not necessarily require cleanup to MUN cleanup goals, only that (if necessary) those goals can be met within a reasonable timeframe, or that alternative goals defined by the recently enacted LTCP be demonstrated. - 9. Appropriate Environmental Screening Levels The RWQCB ESLs have recently been revised several times, the most recent in late May 2013. ACEH recognizes that the referenced Soil and Groundwater Investigation Summary Report was generated prior to the most recent revision. ACEH requests that future reports incorporate updated ESLs. Ms. Pennie Barger RO0003069 July 25, 2013, Page 4 #### **TECHNICAL REPORT REQUEST** Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule: September 30, 2013 – Data Gap Investigation Work Plan and Focused SCM File to be named: RO3069_WP_R_yyyy-mm-dd These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request. Thank you for your cooperation. Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org. Sincerely, Mark Detterman, PG, CEG Senior Hazardous Materials Specialist Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements / Obligations Electronic Report Upload (ftp) Instructions Attachment A – Site Conceptual Model Requisite Elements cc: Erik Brown, Engineering / Remediation Resources Group, Inc, 4585 Pacheco Blvd, Suite 200, Martinez, CA 94553; (sent via electronic mail to Erik.Brown@errg.com) Donna Drogos, (sent via electronic mail to donna.drogos@acgov.org) Dilan Roe, ACEH, (sent via electronic mail to: dilan.roe@acgov.org) Mark Detterman (sent via electronic mail to mark.detterman@acgov.org) Electronic File, GeoTracker ## **ATTACHMENT 1** Responsible Party(ies) Legal Requirements/Obligations & ACEH Electronic Report Upload (ftp) Instructions #### Attachment 1 #### Responsible Party(ies) Legal Requirements/Obligations #### REPORT/DATA REQUESTS These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations). #### **ELECTRONIC SUBMITTAL OF REPORTS** ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website for more information on these requirements. (https://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/) #### **PERJURY STATEMENT** All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case. #### PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement. #### UNDERGROUND STORAGE TANK CLEANUP FUND Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup. #### AGENCY OVERSIGHT If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation. # Alameda County Environmental Cleanup Oversight Programs (LOP and SCP) REVISION DATE: July 25, 2012 ISSUE DATE: July 5, 2005 PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010 **SECTION:** Miscellaneous Administrative Topics & Procedures SUBJECT: Electronic Report Upload (ftp) Instructions The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. #### **REQUIREMENTS** - Please do not submit reports as attachments to electronic mail. - Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection. - It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned. - Signature pages and perjury statements must be included and have either original or electronic signature. - <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. <u>Documents with password protection will not</u> be accepted. - Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor. - Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14) #### **Submission Instructions** - 1) Obtain User Name and Password - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site. - i) Send an e-mail to .loptoxic@acgov.org - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for. - 2) Upload Files to the ftp Site - a) Using Internet Explorer (IE4+), go to ://alcoftp1.acgov.org - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time. - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer. - c) Enter your User Name and Password. (Note: Both are Case Sensitive.) - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site. - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window. - 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs - a) Send email to .loptoxic@acgov.org notify us that you have placed a report on our ftp site. - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org) - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead. - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site. ## **ATTACHMENT A** **Site Conceptual Model Requisite Elements** #### ATTACHMENT A ## Site Conceptual Model The site conceptual model (SCM) is an essential decision-making and communication tool for all interested parties during the site characterization, remediation planning and implementation, and closure process. A SCM is a set of working hypotheses pertaining to all aspects of the contaminant release, including site geology, hydrogeology, release history, residual and dissolved contamination, attenuation mechanisms, pathways to nearby receptors, and likely magnitude of potential impacts to receptors. The SCM is initially used to characterize the site and identify data gaps. As the investigation proceeds and the data gaps are filled, the working hypotheses are modified, and the overall SCM is refined and strengthened until it is said to be "validated". At this point, the focus of the SCM shifts from site characterization towards remedial technology evaluation and selection, and later remedy optimization, and forms the foundation for developing the most cost-effective corrective action plan to protect existing and potential receptors. For ease of review, Alameda County Environmental Health (ACEH) requests utilization of tabular formats to (1) highlight the major SCM elements and their associated data gaps which need to be addressed to progress the site to case closure (see Table 1 of attached example), and (2) highlight the identified data gaps and proposed investigation activities (see Table 2 of the attached example). ACEH requests that the tables presenting the SCM elements, data gaps, and proposed investigation activities be updated as appropriate at each stage of the project and submitted with work plans, feasibility studies, corrective action plans, and requests for closures to support proposed work, conclusions, and/or recommendations. The SCM should incorporate, but is not limited to, the topics listed below. Please support the SCM with the use of large-scaled maps and graphics, tables, and conceptual diagrams to illustrate key points. Please include an extended site map(s) utilizing an aerial photographic base map with sufficient resolution to show the facility, delineation of streets and property boundaries within the adjacent neighborhood, downgradient irrigation wells, and proposed locations of transects, monitoring wells, and soil vapor probes. - a. Regional and local (on-site and off-site) geology and hydrogeology. Include a discussion of the surface geology (e.g., soil types, soil parameters, outcrops, faulting), subsurface geology (e.g., stratigraphy, continuity, and connectivity), and hydrogeology (e.g., water-bearing zones, hydrologic parameters, impermeable strata). Please include a structural contour map (top of unit) and isopach map for the aquitard that is presumed to separate your release from the deeper aquifer(s), cross sections, soil boring and monitoring well logs and locations, and copies of regional geologic maps. - b. Analysis of the hydraulic flow system in the vicinity of the site. Include rose diagrams for depicting groundwater gradients. The rose diagram shall be plotted on groundwater elevation contour maps and updated in all future reports submitted for your site. Please address changes due to seasonal precipitation and groundwater pumping, and evaluate the potential interconnection between shallow and deep aquifers. Please include an analysis of vertical hydraulic gradients, and effects of pumping rates on hydraulic head from nearby water supply wells, if appropriate. Include hydraulic head in the different water bearing zones and hydrographs of all monitoring wells. - c. Release history, including potential source(s) of releases, potential contaminants of concern (COC) associated with each potential release, confirmed source locations, confirmed release locations, and existing delineation of release areas. Address primary leak source(s) (e.g., a tank, sump, pipeline, etc.) and secondary sources (e.g., high- #### ATTACHMENT A ## **Site Conceptual Model (continued)** concentration contaminants in low-permeability lithologic soil units that sustain groundwater or vapor plumes). Include local and regional plan view maps that illustrate the location of sources (former facilities, piping, tanks, etc.). - d. Plume (soil gas and groundwater) development and dynamics including aging of source(s), phase distribution (NAPL, dissolved, vapor, residual), diving plumes, attenuation mechanisms, migration routes, preferential pathways (geologic and anthropogenic), magnitude of chemicals of concern and spatial and temporal changes in concentrations, and contaminant fate and transport. Please include three-dimensional plume maps for groundwater and two-dimensional soil vapor plume plan view maps to provide an accurate depiction of the contaminant distribution of each COC. - e. Summary tables of chemical concentrations in different media (i.e., soil, groundwater, and soil vapor). Please include applicable environmental screening levels on all tables. Include graphs of contaminant concentrations versus time. - f. Current and historic facility structures (e.g., buildings, drain systems, sewer systems, underground utilities, etc.) and physical features including topographical features (e.g., hills, gradients, surface vegetation, or pavement) and surface water features (e.g. routes of drainage ditches, links to water bodies). Please include current and historic site maps. - g. Current and historic site operations/processes (e.g., parts cleaning, chemical storage areas, manufacturing, etc.). - h. Other contaminant release sites in the vicinity of the site. Hydrogeologic and contaminant data from those sites may prove helpful in testing certain hypotheses for the SCM. Include a summary of work and technical findings from nearby release sites, including the two adjacent closed LUFT sites, (i.e., Montgomery Ward site and the Quest Laboratory site). - i. Land uses and exposure scenarios on the facility and adjacent properties. Include beneficial resources (e.g., groundwater classification, wetlands, natural resources, etc.), resource use locations (e.g., water supply wells, surface water intakes), subpopulation types and locations (e.g., schools, hospitals, day care centers, etc.), exposure scenarios (e.g. residential, industrial, recreational, farming), and exposure pathways, and potential threat to sensitive receptors. Include an analysis of the contaminant volatilization from the subsurface to indoor/outdoor air exposure route (i.e., vapor pathway). Please include copies of Sanborn maps and aerial photographs, as appropriate. - j. Identification and listing of specific data gaps that require further investigation during subsequent phases of work. Proposed activities to investigate and fill data gaps identified. TABLE 1 INITIAL SITE CONCEPTUAL MODEL | | 0011.0.1 | | Ī | | |-----------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------| | CSM Element | CSM Sub-
Element | Description | Data Gap | How to Address | | Geology and
Hydrogeology | Regional | The site is in the northwest portion of the Livermore Valley, which consists of a structural trough within the Diablo Range and contains the Livermore Valley Groundwater Basin (referred to as "the Basin") (DWR, 2006). Several faults traverse the Basin, which act as barriers to groundwater flow, as evidenced by large differences in water levels between the upgradient and downgradient sides of these faults (DWR, 2006). The Basin is divided into 12 groundwater basins, which are defined by faults and non-water-bearing geologic units (DWR, 1974). The hydrogeology of the Basin consists of a thick sequence of fresh-water-bearing continental deposits from alluvial fans, outwash plains, and lacustrine environments to up to approximately 5,000 feet bgs (DWR, 2006). Three defined fresh-water bearing geologic units exist within the Basin: Holocene Valley Fill (up to approximately 400 feet bgs in the central portion of the Basin), the Plio-Pleistocene Livermore Formation (generally between approximately 400 and 4,000 feet bgs in the central portion of the Basin), and the Pliocene Tassajara Formation (generally between approximately 250 and 5,000 or more feet bgs) (DWR, 1974). The Valley Fill units in the western portion of the Basin are capped by up to 40 feet of clay (DWR, | | NA | | | Site | Geology: Borings advanced at the site indicate that subsurface materials consist primarily of finer-grained deposits (clay, sandy clay, silt and sandy silt) with interbedded sand lenses to 20 feet below ground surface (bgs), the approximate depth to which these borings were advanced. The documented lithology for one onsite boring that was logged to approximately 45 feet bgs indicates that beyond approximately 20 feet bgs, fine-grained soils are present to approximately 45 feet bgs. A cone penetrometer technology test indicated the presence of sandier lenses from approximately 45 to 58 feet bgs and even coarser materials (interbedded with finer-grained materials) from approximately 58 feet to 75 feet bgs, the total depth drilled. The lithology documented at the site is similar to that reported at other nearby sites, specifically the Montgomery Ward site (7575 Dublin Boulevard), the Quest laboratory site (6511 Golden Gate Drive), the Shell-branded Service Station site (11989 Dublin Boulevard), and the Chevron site (7007 San Ramon Road). | As noted, most borings at the site have been advanced to approximately 20 feet bgs, and one boring has been advanced and logged to 45 feet bgs; CPT data was collected to 75 feet bgs at one location. Lithologic data will be obtained from additional borings that will be advanced on site to further the understanding of the subsurface, especially with respect to deeper lithology. | will be advanced to depth (up to approximately 75 feet bgs) and soil lithology will be logged. See items 4 and 5 on Table 2. | | | | Hydrogeology: Shallow groundwater has been encountered at depths of approximately 9 to 15 feet bgs. The hydraulic gradient and groundwater flow direction have not been specifically evaluated at the site. | The on-site shallow groundwater horizontal gradient has not been confirmed. Additionally, it is not known if there may be a vertical component to the hydraulic gradient. | Shallow and deeper groundwater monitoring wells will be installed to provide information on lateral and vertical gradients. See Items 2 and 5 on Table 2. | | Surface Water
Bodies | | The closest surface water bodies are culverted creeks. Martin Canyon Creek flows from a gully west of the site, enters a culvert north of the site, and then bends to the south, passing approximately 1,000 feet east of the site before flowing into the Alamo Canal. Dublin Creek flows from a gully west of the site, enters a culvert approximately 750 feet south of the site, and then joins Martin Canyon Creek approximately 750 feet southeast of the site. | None | NA | | Nearby Wells | | The State Water Resources Control Board's GeoTracker GAMA website includes information regarding the approximate locations of water supply wells in California. In the vicinity of the site, the closest water supply wells presented on this website are depicted approximately 2 miles southeast of the site; the locations shown are approximate (within 1 mile of actual location for California Department of Public Health supply wells and 0.5 mile for other supply wells). No water-producing wells were identified within 1/4 mile of the site in the well survey conducted for the Quest Laboratory site (6511 Golden Gate Drive; documented in 2009); information documented in a 2005 report for the Chevron site at 7007 San Ramon Road indicates that a water-producing well may exist within 1/2 mile of the site. | A formal well survey is needed to identify water-producing, monitoring, cathodic protection, and dewatering wells. | Obtain data regarding nearby, permitted wells from the California Department of Water Resources and Zone 7 Water Agency (Item 11 on Table 2). | TABLE 2 DATA GAPS AND PROPOSED INVESTIGATION | Item | Data Gap | Proposed Investigation | Rationale | Analysis | |------|---|---|--|---| | 5 | impacts to deeper groundwater. | monitoring wells (aka multi-port wells) to approximately 65 feet bgs in the northern parking lot with ports at three depths (monitoring well locations may be adjusted pending results of shallow grab groundwater samples; we will discuss any potential changes with ACEH before proceeding). Groundwater monitoring frequency to be determined. Soil samples will be collected only if there are field | there are no deeper groundwater impacts from upgradient. Two wells are proposed | Groundwater: VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. | | 6 | the downgradient direction (east). | 8 feet bgs along the eastern property boundary. Based on the results of the sampling, two sets of nested probes will be converted to vapor monitoring wells to allow for evaluation of VOC concentration trends over time. | Available data indicate that PCE and TCE are present in soil vapor in the eastern portion of the northern parking lot. Samples are proposed on approximately 50-foot intervals along the eastern property boundary to provide a transect of concentrations through the vapor plume. The depths of 4 and 8 feet bgs are chosen to provide data closest to the source (i.e., groundwater) while avoiding saturated soil, and also provide shallower data to help evaluate potential attenuation within the soil column. Two sets of nested vapor probes will be converted into vapor monitoring wells (by installing well boxes at ground surface); the locations of the permanent wells will be chosen based on the results of samples from the temporary probes. | Soil vapor: VOCs by EPA Method TO-15. | | 7 | Evaluate potential for off-site migration of impacted groundwater in the downgradient direction (east). | | | Groundwater: VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. | | 8 | north of the highest concentration area. | A for collection of soil and grab groundwater samples. Soil samples will be collected at two depths in the vadose zone. Soil samples will be collected based on field indications of impacts (PID readings, odor, staining) or, in the absence of field indications of impacts, at 5 and 10 feet bgs. | 32, just north of Building A. The nearest available data to the north are approximately 75 feet away. One of the borings will be advanced approximately 20 feet north of NM-B-32 to provide data close to the highest concentration area. A second boring will be advanced approximately halfway between the first boring and former boring NM-B-33 to provide additional spatial data for contouring purposes. These borings will be | | | 9 | Evaluate VOC concentrations in soil vapor in the south parcel of the site. | around boring SV-25, where PCE was detected in soil vapor at a low concentration. | PCE was detected in soil vapor sample SV-25 in the southern parcel, although was not detected in groundwater in that area. Three probes will be installed approximately 30 feet from of boring SV-25 to attempt to delineate the extent of impacts. A fourth probe is proposed west of the original sample, close to the property boundary and the location of mapped utility lines, which may be a potential conduit, to evaluate potential impacts from the west. | Soil vapor: VOCs by EPA Method TO-15. | | 10 | Obtain additional information regarding subsurface structures and utilities to further evaluate migration pathways and sources. | methodologies will be used, as appropriate, to further evaluate the presence of unknown utilities and structures at the site. | Utilities have been identified at the site that include an on-site sewer lateral and drain line, and shallow water, electric, and gas lines. Given the current understanding of the distribution of PCE in groundwater at the site, it is possible that other subsurface utilities, and specifically sewer laterals, exist that may act as a source or migration pathway for distribution of VOCs in the subsurface. | NA |