

By Alameda County Environmental Health 10:23 am, Jun 12, 2015

June 11, 2015

Ms. Dilan Roe Site Cleanup Program Manager Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94501-6577

Subject: Vapor Mitigation and Permeable Reactive Barrier Basis of Design

Report

Former Crown Chevrolet North Parcel

7544 Dublin Boulevard Dublin, California

Site Cleanup Program Case No. RO0003014

Dear Ms. Roe:

Enclosed please find a document entitled *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* for the Former Crown Chevrolet North Parcel site at 7544 Dublin Boulevard, in Dublin, California (Site Cleanup Program Case No. RO0003014, GeoTracker Global ID T10000001616). This report was prepared by Amec Foster Wheeler Environment & Infrastructure, Inc., on behalf of BWD Dublin LLC.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please contact me at (408) 680-4938 or Avery Whitmarsh of Amec Foster Wheeler at (510) 663-4154 if you have any questions regarding this report.

Sincerely yours,

Pete Beritzhoff BWD Dublin LLC

Attachment: Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report

Cc: Colleen Winey, Zone 7 Water Agency (electronic copy only)
Gregory Shreeve, City of Dublin (electronic copy only)

Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared for:

BWD Dublin, LLC Dublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

June 2015

Project No. OD14170800

VAPOR MITIGATION AND PERMEABLE REACTIVE BARRIER BASIS OF DESIGN REPORT

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California Site Cleanup Program Case No. RO0003014

June 11, 2015 Project OD14170800

This report was prepared by the staff of Amec Foster Wheeler under the supervision of the Engineer and/or Geologist whose signature appears hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

AVERY WHITMARSH No. 8541

Avery Whitmarsh, PG #8541

Associate Geologist Amec Foster Wheeler

Environment & Infrastructure, Inc.

PROFESSIONAL S C. BABILLE PROPERTY OF CALIFORNIA

Doug Bablitch, PE #C64096

Principal Engineer

Amec Foster Wheeler

Environment & Infrastructure, Inc.

			Page
1.0	INTRODU	UCTION	1
2.0	2.1 St	ROUNDummary of Previous InvestigationsLanned Redevelopment and Corrective Actions	2
3.0	3.1 Pi 3.	T FRAMEWORK ROJECT GOALS AND OBJECTIVES	5 5
	3.2 Pi 3. 3.	ROJECT REGULATORY REQUIREMENTS 2.1 ACDEH 2.2 City of Dublin 2.3 Zone 7 Water Agency	6 6
	3. 3. 3.	ITIGATION OBJECTIVES	
4.0	4.1 So 4.	E-DESIGN INVESTIGATION OIL AND GROUNDWATER INVESTIGATION 1.1 Electrical Conductivity Probe Borings and Soil Interpretation 4.1.1.1 EC Data Interpretation 4.1.1.2 Soil Interpretation 1.2 Grab-Groundwater Sampling 1.3 Piezometer Installation and Gauging	9 10 11
	4.2 G 4. 4. 4.	ROUNDWATER VELOCITY MEASUREMENTS	13 13 13
	4.	VI COLUMN STUDY	15
5.0	5.1 G 5.2 N	NCEPTUAL MODEL UPDATE EOLOGY AND HYDROGEOLOGY ATURE AND EXTENT OF VOCS IN SOIL VAPOR ATURE AND EXTENT OF VOCS IN GROUNDWATER	18 19
6.0	6.1 Ki 6.2 V/ 6.	MITIGATION SYSTEM DESIGN EY DESIGN PARAMETERS APOR MITIGATION MEMBRANE DESIGN 2.1 Vapor Mitigation Membrane Selection 2.2 Vapor Mitigation Membrane Extents	22 23 23
	6.3 St 6. 6.	UB-SLAB VENTING SYSTEM DESIGN	24 24 26

(Continued)

		6.3.5 Wind-Driven Turbine Fans	
		6.3.7 SSV System Layout	
	6.4	VMS IMPLEMENTATION CONSIDERATIONS	
	0.4	6.4.1 VMS Membrane and Sub-Slab Piping Installation	
		6.4.2 Project Phasing	
7.0	PRB [DESIGN	31
	7.1	KEY DESIGN PARAMETERS	
		7.1.1 Alignment	
		7.1.2 Vertical Extents	
		7.1.3 PRB Thickness and Treatment Media Mix	33
	7.2	IMPLEMENTATION CONSIDERATIONS	35
		7.2.1 Project Phasing	35
8.0		IMPLEMENTATION	
	8.1	PRECONSTRUCTION ACTIVITIES	
		8.1.1 Health, Safety and the Environment	
		8.1.2 Regulatory Approvals, Permitting, and Notifications	36
	8.2	VMS Installation	
		8.2.1 Mobilization and Site Preparation	
		8.2.2 Environmental Controls for Stormwater and Dust	
		8.2.3 SSV Subsurface Piping Installation	
		8.2.4 Vapor Mitigation Membrane Installation	37
		8.2.5 SSV Riser Vent Piping Installation	
		8.2.6 Waste Management	
		8.2.7 Site Restoration, Project Closeout, and Demobilization	
		8.2.8 Survey	
9.0		IMPLEMENTATION	
	9.1	PRECONSTRUCTION ACTIVITIES	
		9.1.1 Health Safety and the Environment	
		9.1.2 Permitting	
	9.2	PRB Installation	
		9.2.1 Mobilization and Site Preparation	
		9.2.2 Environmental Controls for Stormwater and Dust	
		9.2.3 ZVI/Sand Treatment Media Preparation	40
		9.2.4 PRB Excavation and Backfill	
		9.2.5 Waste management	
		9.2.6 Site Restoration, Surveying, and Demobilization	
		9.2.7 Project Close-out	
10.0	QUAL	LITY ASSURANCE/QUALITY CONTROL	
	10.1	CONSTRUCTION QUALITY ASSURANCE COORDINATION	
	10.2	QUALITY CONTROL FOR VMS INSTALLATION	
		10.2.1 VMS Materials Quality Control	43
		10.2.2 VMS Construction Quality Control	
	10.3	QUALITY CONTROL FOR PRB INSTALLATION	
		10.3.1 PRB Backfill Materials Quality Control	
		10.3.2 PRB installation Quality Control	43
		10.3.2.1 Alignment	44

(Continued)

		10.3.2.2 10.3.2.3 10.3.2.4	Depth Thickness ZVI/Sand Treatment Media	44
11.0	PERF(11.1	VMS PERFORM 11.1.1 Vent R	ONITORING, OPERATIONS, AND MAINTENANCE	46 46
	11.2	11.2.1 Perform	MANCE MONITORINGmance Monitoring and On-site Well Networkmance Monitoring and Analysis	47
12.0	SCHEI 12.1 12.2	DOCUMENTATI	EPORTING	48
13.0	REFE	RENCES		50
			TABLES	
Table Table Table	2	Volatile Organ	stribution Analysis for Soil Samples nic Compounds in Grab-Groundwater Samples Calculated Groundwater Velocities	
			FIGURES	
Figure Figure Figure Figure Figure	2 3 4 5	Site Plan with Groundwater S Geologic Cross	Former Buildings and Features Planned New Construction Sampling Results near Proposed PRB SS Sections Y-Y' and Z-Z' – Electrical Conductivity Data SS Sections Y-Y' and Z-Z' – Groundwater Data and	
Figure Figure Figure Figure Figure Figure Figure	8 9 10 11 11 12	Potentiometric Potentiometric PCE, TCE, an PCE and TCE Selected VOC Water-Bearing Soil Vapor Mit Sub-slab Vent	c Surface in the First Water-Bearing Zone – October 2014 c Surface in the First Water-Bearing Zone – December 201 nd Vinyl Chloride in Soil Vapor E in Shallow Grab Groundwater Samples (2009-2012) C Concentration and Groundwater Elevation Trends in the I g Zone tigation Membrane and Soil Vapor Concentrations	

(Continued)

APPENDICES

Appendix A	Soil and Groundwater Investigation Field and Laboratory Methods
Appendix B	Borehole Dilution Test Methods
Appendix C	ZVI Column Test Report
Appendix D	Electrical Conductivity Probe Logs
Appendix E	VMS Design Drawings and Technical Specifications
Appendix F	VMS Design Calculations
Appendix G	PRB Design Drawings and Technical Specifications
Appendix H	PRB Thickness Design Calculations
Appendix I	Construction Quality Assurance Plans, Vapor Mitigation System and Permeable
	Reactive Barrier
Appendix J	VMS Operations, Maintenance, and Monitoring Plan
Appendix K	PRB Operations, Maintenance, and Monitoring Plan
Appendix L	Work Plan for Monitoring Well Installation

VAPOR MITIGATION AND PERMEABLE REACTIVE BARRIER BASIS OF DESIGN REPORT

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin California

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler"; formerly AMEC Environment & Infrastructure, Inc.), has prepared this *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* ("Design Report") on behalf of BWD Dublin, LLC for the former Crown Chevrolet North Parcel located at 7544 Dublin Boulevard, Dublin, California (the "site"; Figure 1). This Design Report has been prepared in response to an August 16, 2013, letter from Alameda County Department of Environmental Health (ACDEH) to the Betty J. Woolverton Trust and Crown Chevrolet Cadillac Isuzu ("Crown Chevrolet"), the previous owners of the property and facility (ACDEH, 2013). The purpose of the Design Report is to describe and document the final design of the proposed corrective actions at the site: (1) a vapor mitigation system (VMS) to be installed beneath future occupied buildings in the northern portion of the site, and (2) a permeable reactive barrier (PRB) to be installed along the western edge of the property. Specifically, this Design Report describes existing site conditions, recent site characterization activities, design objectives, design assumptions, and the final design of the corrective actions.

The conceptual designs of the VMS and PRB were proposed in the *Revised Draft Feasibility Study and Corrective Action Plan,* which was submitted to ACDEH on March 25, 2013 (AMEC, 2013b), and acknowledged by ACDEH in the August 16, 2013, letter to Crown Chevrolet (ACDEH, 2013). The *Final Feasibility Study and Corrective Action Plan* (FS/CAP) was submitted to ACDEH on May 1, 2014 (AMEC, 2014a).

The VMS will generally consist of a spray-applied composite membrane installed beneath future building slabs in the vicinity of previously identified volatile organic compounds (VOCs) that are present at elevated concentrations in soil vapor. In addition, perforated vapor collection pipes will be installed in the permeable aggregate below the membrane and connected to risers that will passively vent accumulating vapors to outdoor air. The PRB will use zero-valent iron (ZVI) as the reactive media within a permeable treatment zone to facilitate reductive dechlorination of VOC-impacted groundwater. After the PRB is installed,

Amec Foster Wheeler

¹ AMEC Environment & Infrastructure, Inc. (AMEC), became Amec Foster Wheeler Environment & Infrastructure, Inc., effective January 1, 2015.

concentrations of VOCs at the downgradient side of the wall are expected to attenuate with time.

2.0 BACKGROUND

The site was developed in 1968 as Crown Chevrolet, a car dealership with auto body shops, on land that appears to have been previously used for agricultural purposes. Operations as a car dealership and auto body shop continued from 1968 through 2013. The property was sold to BWD Dublin in the fall of 2014, and the site buildings were demolished in December 2014 in preparation for redevelopment.

2.1 SUMMARY OF PREVIOUS INVESTIGATIONS

Multiple environmental investigations have been conducted at the site, primarily between 2009 and 2012, to address regulatory concerns and to support transactional and potential redevelopment activities. The results of the investigations performed through 2012 are summarized in the *Soil, Groundwater, and Soil Vapor Investigation Report*, dated October 19, 2012 (AMEC, 2012). Quarterly groundwater monitoring was conducted at the site from 2012 through 2014 (the site monitoring wells were destroyed in December 2014 before the buildings were demolished), and will resume after the site has been redeveloped. Quarterly groundwater monitoring activities are summarized in the *Third and Fourth Quarter 2014 Groundwater Monitoring Report*, dated April 21, 2015 (Amec Foster Wheeler, 2015). The results of the investigations, remediation, and quarterly groundwater monitoring are briefly summarized below. The investigations indicated the presence of VOCs, primarily tetrachloroethene (PCE) and trichloroethene (TCE), in groundwater and soil vapor throughout the northern portion of the site. In addition, the investigations identified limited areas of impacts to soil beneath site buildings.

Groundwater is first encountered at the site between approximately 9 and 15 feet below ground surface and generally flows from the west to the east. The investigations conducted through 2012 indicated the presence of PCE and TCE in shallow groundwater and soil vapor throughout the northern portion of the site at concentrations above their respective Environmental Screening Levels (ESLs, California Regional Water Quality Control Board, San Francisco Bay Region ["Regional Water Board"]; December 2013) for residential land use, where groundwater is a potential drinking water resource. Daughter products of PCE and TCE degradation (e.g., cis-1,2-dichloroethene) were also present in groundwater and soil vapor, but at concentrations lower than those for PCE and TCE and below their respective ESLs, except for vinyl chloride, which was detected in some soil vapor samples at concentrations greater than the ESL.

The results of investigations conducted at the site in 2012 (AMEC, 2012; ENGEO, 2013) indicate that the source of PCE (and hence its degradation products) in groundwater is off site

and hydraulically upgradient. During an investigation conducted by ENGEO Incorporated in October 2012, samples were collected west of the sanitary sewer within Golden Gate Drive, which is west and hydraulically upgradient of the site, to help identify whether the sanitary sewer was the source of PCE in groundwater (ENGEO, 2013). PCE and TCE were detected at concentrations similar to those at the western site boundary, thereby confirming that the source is upgradient of the site, but not providing clarity confirming whether or not the source is the sewer line was a/the source of PCE in groundwater. Quarterly groundwater monitoring was conducted at monitoring wells in the northern portion of the site from 2012 through 2014 and has indicated that concentrations of VOCs in groundwater are generally stable or declining (Amec Foster Wheeler, 2015).

The investigations also indicated that chlorobenzenes and related constituents had been released to the subsurface at a former sump and former front-end alignment pit within former Building B (Figure 2). These areas were excavated in 2011 (AMEC, 2011), but, as discussed in more detail in the FS/CAP, some impacted soil was inaccessible and remained beneath the building walls. After the site buildings were demolished in December 2014, more soil was removed from these areas in February 2015; the soil removal activities will be documented in a forthcoming *Post-Demolition Investigation and Remediation Report*, which will be submitted to ACDEH in June 2015.

During the demolition of the site buildings in December 2014, as subsurface features were removed, six other areas of soil impacts were identified by Amec Foster Wheeler:

- Beneath four hydraulic lifts within former Building B (HL-1, HL-3, HL-6, and HL-8).
- Beneath piping that was previously connected to a waste oil tank that was previously removed (WOTP).
- Beneath a sump within former Building C (BCFS).

The approximate locations of these features are shown on Figure 2. The soil impacts at each of the areas were related to total petroleum hydrocarbons (TPH) quantified in the diesel and motor oil ranges, polychlorinated biphenyls (PCBs), PCE, toluene, lead, and/or 2-methylnapthalene. Impacted soil at concentrations above residential ESLs was excavated from these six areas in February 2015 and the removal activities will be documented in the *Post-Demolition Investigation and Remediation Report*. No additional impacts were found during demolition of the site hardscape in March 2015.

2.2 PLANNED REDEVELOPMENT AND CORRECTIVE ACTIONS

Site redevelopment is scheduled to begin in summer 2015. The redevelopment will include mixed residential/commercial buildings at the site, comprising 313 apartments (a total of approximately 323,000 gross square feet in multi-unit structures) and 17,000 square feet of retail space at ground level along Dublin Boulevard; some of the apartments will be located

above the retail space. An approximately 230,000-square-foot parking garage is planned for the eastern central portion of the site. The planned site layout following redevelopment is shown on Figure 3.

The absolute and functional corrective action objectives (CAOs) for the site were established in the approved FS/CAP for the protection of human health and the environment and are listed below (functional CAOs as hollow bullets beneath each absolute CAO):

- Mitigate potential vapor intrusion risks to future site occupants.
 - Confirm via 1 year of indoor air sampling that concentrations of constituents of concern (COCs) are below applicable indoor air screening levels (e.g., ESLs).
 - Obtain temporal shallow groundwater and vent riser (equivalent to sub-slab) data for 5 years (1 year of performance monitoring followed by 4 years of operations and maintenance [O&M] phase monitoring).
 - Comply with institutional controls (ICs) regarding property use, mitigation measures, and monitoring.
- Mitigate potential exposure to future construction and maintenance workers to VOC-impacted soil vapor, and groundwater.
 - Comply with a site management plan, which will provide guidance for worker protection and safety measures to be employed during site construction and maintenance.
- Remediate identified residual source material in the vicinity of the former sump and front-end alignment pit.
 - Remove residual impacted soil to the extent that COC concentrations in confirmation samples collected from the sidewalls of the excavation are below ESLs for shallow soil in a residential land use scenario, where groundwater is considered a potential drinking water resource.
 - Conduct additional removal of impacted soil that may be encountered during site demolition and development, as necessary.

To address the first CAO and mitigate the risk to future site residents from potential vapor intrusion of VOCs in soil vapor to indoor air, the FS/CAP recommended the installation of a VMS beneath occupied site buildings in the northern portion of the site to reduce the potential for soil vapor to affect indoor air quality and the installation of a PRB to treat impacted groundwater migrating onto the site. The FS/CAP further recommended soil excavation at selected locations to address residual soil contamination to address the third CAO. Additionally, groundwater sampling, long-term site management, and ICs are recommended. Collectively, the soil excavation, ICs, groundwater sampling, long-term site management, VMS, and PRB comprise the approved corrective action.

The soil excavation and ICs are being addressed separately and are not part of the scope of this document. The soil excavation (to remove residual impacted soil and additional impacted soil identified during site demolition) was performed in February 2015 in accordance with the

August 2014 Revised Additional Investigation and Soil Removal Work Plan (AMEC, 2014c). The work will be documented in the Post-Demolition Investigation and Remediation Report, which will be submitted to ACDEH in June 2015. The ICs will be implemented prior to building occupancy and will provide legal and administrative controls and methods for dissemination of information to minimize risk during property development, future below-ground construction and maintenance, and long-term site use. Key components of the ICs include the following:

- Land use covenants (LUCs) and activity use limitations (AULs), and codes, covenants, and restrictions (CCRs), which set forth requirements for notifications of work potentially impacting the VMS and PRB, prohibitions on activities that could encounter/breach the PRB and VMS without the express knowledge of ACDEH and other regulatory agencies.
- Right of access agreements.
- Language to specify in lease documents for site tenants.
- A Site Management Plan (SMP), which provides for communication primarily with contractors who will be performing future construction and maintenance activities at the site. The SMP will provide details regarding the location and construction of the remedies, precautions for working on site, and notifications procedures.

A draft of an Institutional Controls Plan that includes the LUCs and SMP will be provided to ACDEH under separate cover.

3.0 PROJECT FRAMEWORK

This section presents a summary of the design criteria and regulatory requirements that collectively form the project requirements framework for the VMS and PRB design and installation.

3.1 PROJECT GOALS AND OBJECTIVES

The overall goal for this project is to meet the first CAO ("mitigate potential vapor intrusion risks to future site occupants") and provide robust and long-lasting mitigation of the potential risk to future site occupants from intrusion of soil vapor from beneath building floor slabs to indoor air. In accordance with the FS/CAP, this risk will be mitigated by installing a VMS beneath the future building slabs in areas where elevated VOC concentrations have been measured in soil vapor and installing a permeable reactive barrier (PRB) at the upgradient site boundary. The objectives of each of these elements are discussed in more detail in the following sections.

3.1.1 VMS Objectives

The objectives of the VMS are as follows:

 Mitigate the potential for soil vapor beneath future building slabs to contribute to unacceptable risk in indoor air by installing a robust vapor membrane beneath the new foundations, and installing vapor collection piping below the membrane to passively vent sub-slab vapors above the roofline.

- Maintain vapor concentrations within the buildings below long-term indoor air quality objectives for PCE and its breakdown products and short-term screening levels for TCE.
- Provide a mitigation system that is passive and requires minimal operations and maintenance.
- Design the system such that it could be converted from a passive system to an active system, if needed.

3.1.2 PRB Objectives

The objectives of the PRB are as follows:

- Provide supplemental protection to human health beyond the VMS.
- Treat the highest concentrations of PCE in the groundwater plume to reduce concentrations of PCE and its degradation products entering the site to below levels that could contribute to a vapor intrusion concern.
- Reduce the mass flux of PCE entering the site so that VOC concentrations in groundwater within the site can decline.
- Provide long-term treatment efficacy with a passive system that has minimal operational requirements and little generation of waste during its operational lifetime.

3.2 PROJECT REGULATORY REQUIREMENTS

The design and installation of the VMS and PRB will be completed within the regulatory framework discussed in the following sections.

3.2.1 ACDEH

The site was previously part of Fuel Leak Case No. RO0003014 and consisted of two parcels, one north of St. Patrick Way, and one south of St. Patrick Way. The south parcel was transferred to a separate case in the Site Cleanup Program, which was closed on August 4, 2014, and is not addressed in this document. The north parcel was transferred from the Fuel Leak Program to the Site Cleanup Program in 2013 under the oversight of ACDEH.

ACDEH reviews and approves all documents related to environmental conditions at the site. The framework for the corrective actions for the site is presented in the August 16, 2013, letter from ACDEH to Crown Chevrolet.

3.2.2 City of Dublin

The construction of the VMS and PRB, as well as the overall mixed used development project, is within the purview and jurisdiction of the City of Dublin (City). The City is considered a stakeholder for this report and other key documentation related to environmental conditions at the site. Additionally, the City will review and approve construction plans for the VMS and PRB.

3.2.3 Zone 7 Water Agency

Although the shallow groundwater beneath the site currently is not considered a drinking water source, groundwater within this basin is within the purview of the Zone 7 Water Agency (Zone 7). As such, Zone 7 is considered a stakeholder for this report and other key documentation. Additionally, Zone 7 will review and approve permits for the installation of future monitoring wells and the PRB.

3.3 MITIGATION OBJECTIVES

In order to accomplish the project goals, the corrective actions will be designed and implemented to meet site-specific mitigation objectives for indoor air and groundwater. The mitigation objectives are based on the ESLs for each media (Regional Water Board, 2013), for residential land use where groundwater is a current or potential drinking water resource, and on short-term screening levels for TCE (U.S. EPA, 2014). As described by the Regional Water Board, ESLs are conservative screening levels that correspond to an acceptable risk level; concentrations of constituents below their respective ESLs can be considered to pose no significant risk, within noted limits. Concentrations of constituents above their respective ESLs do not necessarily indicate a risk is present, but rather suggest that additional evaluation is warranted.

The applicable mitigation objectives are discussed in the following sections.

3.3.1 Indoor Air

The objective of the VMS is to maintain concentrations of PCE, TCE, their degradation products, and other VOCs potentially present in soil vapor, at concentrations below their respective indoor air ESLs in indoor air within the future site buildings (Table E-3, Ambient and Indoor Air Screening Levels; Regional Water Board, 2013) and below short-term screening levels for TCE (U.S. EPA, 2014).

The specific treatment objectives for the main COCs in indoor air are as follows, based on the lowest residential endpoint in Table E-3, taking into considering the short-term screening levels for TCE:

- PCE 0.41 micrograms per cubic meter [μg/m³].
- TCE $0.59 \,\mu g/m^3$.
- cis-1,2-Dichloroethene (cis-1,2-DCE) 7.3 μ g/m³.
- trans-1,2-Dichlorothene (trans-1,2-DCE) 63 μg/m³.
- 1,1-Dichloroethene 210 μg/m³.
- Vinyl chloride 0.031 μg/m³.
- Benzene 0.084 μg/m³.
- Chlorobenzene 1,000 μg/m³.

- 1,2-Dichlorobenzene 210 μg/m³.
- 1,4-Dichlorobenzene 0.22 μg/m³.

Should the indoor air ESLs be updated, the effectiveness of the corrective action will be assessed relative to whatever ESLs are current at the time.

3.3.2 Groundwater

Drinking water in the vicinity of the site is municipally supplied and groundwater at the site is not a drinking water resource. Therefore, the objective of the PRB is to reduce concentrations of PCE and its degradation products in groundwater entering the site from the west to below their respective groundwater ESLs for potential vapor intrusion (Table E-1, Groundwater Screening Levels for Potential Vapor Intrusion; Regional Water Board, 2013).²

The specific treatment objectives for the main COCs in groundwater are as follows, based on a mix of fine and coarse soil in a residential land use scenario (see Sections 4 and 5 for additional detail regarding site geology):

- PCE 63 micrograms per liter [µg/L]; the maximum concentration of PCE detected at the site is 210 µg/L.
- TCE 130 μg/L; the maximum concentration of TCE detected at the site is 78 μg/L.
- cis-1,2-DCE 3,100 μg/L; the maximum concentration of cis-1,2-DCE detected at the site is 85 μg/L (however, this concentration is in the second water-bearing zone at the site).
- *trans-1,2-*DCE 14,000 μg/L; the maximum concentration of trans-1,2-DCE detected at the site is 1.9 μg/L.
- *Vinyl chloride* 1.8 μg/L; vinyl chloride has not been detected in groundwater at the site.

Groundwater treatment objectives for benzene, chlorobenzene, and 1,2-dichlorobenzene are not provided because these constituents have not been detected in groundwater in the vicinity of the proposed PRB.

3.3.3 Soil

Several areas of primarily VOC and/or TPH impacts to soil have been identified at the site. Soil remediation is being addressed in accordance with the *Revised Additional Investigation and Soil Removal Work Plan*, dated August 27, 2014 (AMEC, 2014c).

² The ESLs are based on a depth to groundwater of at least 10 feet below ground surface (bgs) and a fine-coarse mix of soils with a significant proportion of fines, typical of Bay Area sites. Depths to groundwater in one former monitoring well at the site (MW-02) have been measured as shallow as approximately 9.5 feet bgs. However, the area of detectable VOC concentrations in groundwater (Figures 4 and 10) extends only as far south as the southern edge of future Building D, while the proposed vapor barrier extends approximately 75 feet farther south.

The corrective actions outlined in this document do not address impacts to soil. However, all of the identified areas of soil impacts are in the northern portion of the site, beneath the footprint of the planned VMS (with the exception of the former sump in Building C, where the COCs were lead and one semivolatile organic compound).

3.3.4 Soil Vapor

The corrective actions outlined in this document do not specifically address impacts to soil vapor; therefore, there are no specific treatment objectives for soil vapor discussed in this document. However, as discussed further in Section 6.2.2, the limits of the PCE and TCE plumes in soil vapor were used to determine the limits of the VMS.

4.0 PRB PRE-DESIGN INVESTIGATION

To further characterize the site hydrogeology and support the design of the proposed PRB, Amec Foster Wheeler conducted a pre-design investigation from August 18 through October 31, 2014, that included three primary components:

- A field investigation involving advancing borings and soil electrical conductivity (EC) probes and installing piezometers.
- A borehole dilution test.
- A column study of two ZVI products.

This work was conducted in general accordance with the August 14, 2014, *Permeable Reactive Barrier Pre-Design Investigation Work Plan* (AMEC, 2014b; the "Work Plan").

The following sections describe the work performed and results of the investigation. Appendix A details the field investigation methods and notes deviations from the Work Plan, Appendix B describes the borehole dilution testing procedures, and Appendix C includes a copy of the third-party report documenting the ZVI column study.

4.1 SOIL AND GROUNDWATER INVESTIGATION

Amec Foster Wheeler conducted the field portion of the pre-design investigation between August 18 and August 26, 2014. The field investigation included advancing 13 soil EC probe borings for the collection of high-resolution soil type data, advancing one dual-tube direct-push boring for confirmation soil logging, collecting 13 depth-discrete grab-groundwater samples from HydroPunch™-type borings, and installing three piezometers. The EC probes, direct-push boring, HydroPunch-type borings, and borings for the installation of piezometers were advanced by National Exploration, Wells & Pumps (National), of Richmond, California, a California C57-licensed contractor, under the supervision of Amec Foster Wheeler field personnel.

A detailed description of the field investigation methods, including deviations from the Work Plan, is presented in Appendix A. Figure 4 presents the drilling and sampling locations, the

groundwater sample results for PCE and TCE, the piezometer locations, and the alignment of two cross sections (Y-Y' parallel to Dublin Boulevard and Z-Z' parallel to Golden Gate Drive).

A brief discussion of each of the investigation activities and their results is presented in the following sections.

4.1.1 Electrical Conductivity Probe Borings and Soil Interpretation

Thirteen EC probe borings were installed along the PRB alignment presented in the FS/CAP (the currently proposed PRB [Figure 4] is configured slightly differently than the one proposed in the FS/CAP, as discussed further in this document). Figure 5 illustrates the EC data from each EC probe boring along cross sections Y-Y' and Z-Z', and copies of the EC probe logs are included in Appendix D.

Each EC probe was advanced to a total depth between 35 and 50 feet below ground surface (bgs) using direct-push drilling technology to provide a profile of electrical conductivity relative to depth below ground surface at each probe location. The resulting EC data were used to evaluate soil types in the vicinity of the proposed PRB. As described in the Work Plan, higher relative EC values are associated with higher clay content and correlate with finer-grained sediments. Conversely, lower EC values correlate with a higher fraction of coarse-grained materials (McCall, et al., 2006).

4.1.1.1 EC Data Interpretation

To interpret soil types, Amec Foster Wheeler assigned EC values as breakpoints between soil types. Based on previous experience by Amec Foster Wheeler using EC probes for site investigation in and around the San Francisco Bay area, EC values less than approximately 50 millisiemens per meter (mS/m) normally correspond to poorly graded sands and other similar coarse-grained soil types. EC values between 50 to 75 mS/m normally correspond to silty sands and similar borderline soil types. EC values greater than 75 mS/m normally correspond to fine-grained soils. Similar breakpoints have been used in soil type interpretations made in several references (McCall, et al., 2006; Schulmeister, 2003; Butler, 2002).

The EC probe is a screening tool that should be relied on primarily for relative differences and not exact numerical interpretation. In order to provide a conservative relative interpretation of soil types at the site (i.e., erring on the side of interpreting soils as coarser grained than they may actually be), Amec Foster Wheeler carefully evaluated the variations present in the EC logs generated during this investigation for natural breakpoints indicating sharp contacts between soil types, compared the EC data with observations made on boring logs from this and other investigations at the site, and evaluated the results of several samples for grain size analysis that were collected adjacent to the EC probe borings during this investigation.

Seven soil samples were collected for grain size analysis to assist with correlation of the EC logs to soil types, as shown on the cross section on Figure 5 and detailed in Appendix A. Amec Foster Wheeler field staff obtained samples that represented a range of the fine-grained soils encountered (with EC readings from approximately 120 to 200 mS/m). A copy of the laboratory report with the grain size distribution data is included in Appendix A and a summary of the percentages of sand-, silt-, and clay-sized grains is included in Table 1. As indicated in Table 1, the results of the grain size analysis indicate that all seven of the samples are identified as clays, and coarse-grained content is very low (4.4 to 20.5% sand).

Based on the evaluation described above, and considering previous experience and common interpretation, Amec Foster Wheeler has conservatively assigned EC breakpoints for the site-specific soil type interpretation as follows:

- ≤100 mS/m = coarse-grained units (e.g., sands)
- 100 mS/m and ≤150 mS/m = fine-grained units (e.g., silts and sandy silts)
- >150 mS/m = fine-grained units (e.g., clays and silts)

The above approach is considered conservative because the breakpoint between coarse- and fine-grained units may actually be closer to 50 or 75 mS/m. Some of the EC results from the site may therefore be interpreted to represented coarse-grained soils when they may actually be fine grained. For example, some of the thin sand lenses interpreted using the EC probe data were described by a field geologist as silty sand and sandy silt (copies of the soil boring logs for borings PRB-04, PZ-01, PZ-02, and PZ-03 advanced during this investigation are included in Appendix A).

4.1.1.2 Soil Interpretation

The EC log data presented on Figure 5 is color coded to reflect the selected breakpoints between soil types. The EC data have also been used to interpret soil types between the EC probes along the proposed PRB alignment.

As shown on Figure 5, the EC data indicate fine-grained soil is present along the proposed PRB alignment (cross sections Y-Y' and Z-Z') to a depth of approximately 28 feet bgs. Slightly coarser-grained soil (e.g., silts and sandy silts) is present at thicknesses of up to 6 feet along section Z-Z' in the central portion of the proposed alignment. A laterally continuous fine-grained layer is present from approximately 28 to 30 feet bgs along the proposed PRB alignment. From approximately 30 to 43 feet bgs, the interpreted soil type is interbedded silts and sands with some clays. Two sand intervals were encountered from approximately 43 to 50 feet bgs in the two EC probes advanced to that depth.

4.1.2 Grab-Groundwater Sampling

Following the completion of the EC probe borings, Amec Foster Wheeler collected 13 grabgroundwater samples in order to better understand the distribution of VOCs in groundwater in Amec Foster Wheeler the vicinity of the proposed PRB alignment. The samples were collected using a direct-push drill rig equipped with a HydroPunch tool for depth-discrete groundwater sampling, as described in Appendix A, and analyzed for VOCs and total petroleum hydrocarbons quantified in the gasoline range. Copies of the laboratory analytical reports for the grab-groundwater sampling are also included in Appendix A.

Table 2 presents a summary of the analytical results for VOCs in the grab-groundwater samples. The results for PCE and TCE from this investigation and from prior investigations are presented in plan view on Figure 4 and in cross section on Figure 6. The table and figures also present the groundwater ESLs for potential vapor intrusion, which are the mitigation objectives for groundwater at the site.

In cross-sectional view, concentrations of PCE and TCE exceeding groundwater ESLs for potential vapor intrusion occur in a relatively narrow zone near former multi-port monitoring well MP-01, between borings PRB-02 and PRB-04 (Figure 6), approximately 100 feet long and approximately 28 feet deep. Concentrations of PCE detected in grab-groundwater samples collected along the PRB alignment in August 2014 are similar to those detected at nearby locations in previous investigations (Figure 4 also shows contours of PCE concentrations in the first groundwater zone based on the 2012 data).

The highest concentration of PCE detected in groundwater during this investigation was 110 μ g/L, collected from approximately 26 to 28 feet bgs at boring PRB-03HP. The next highest concentration of PCE in groundwater was collected from approximately 26 to 28 feet bgs at boring PRB-04HP. Both of these samples were taken in a zone of silts and sandy silts, below which a laterally continuous clay layer is present. PCE concentrations in the groundwater samples collected from beneath the clay layer were significantly lower and below the groundwater ESL for potential vapor intrusion for PCE of 63 μ g/L.

The detected concentrations of TCE are also presented on Figures 4 and 6. TCE was detected at a maximum concentration of 3.0 μ g/L during the investigation, well below the groundwater ESL for potential vapor intrusion for TCE of 130 μ g/L. During the final groundwater monitoring event in October 2014, TCE was detected in the groundwater sample from monitoring well MP-01-1 at a historical maximum concentration of 17 μ g/L, also below the groundwater ESL for potential vapor intrusion. No other VOCs have been detected in groundwater at the site at concentrations greater than their respective groundwater ESLs for potential vapor intrusion.

4.1.3 Piezometer Installation and Gauging

To supplement water level data from the other six shallow groundwater monitoring wells at the site, Amec Foster Wheeler installed three piezometers along the proposed PRB alignment (PZ-01 through PZ-03; Figure 4). Each piezometer was installed using a hollow-stem auger

drill rig and developed using a combination of surging and bailing in order to improve the hydraulic connection with the surrounding formation. The drilling, installation, and development methods are described in Appendix A.

The three piezometers were included in the October and December 2014 groundwater elevation gauging events and the gauging methods and depths to water are documented in the *Third and Fourth Quarter 2014 Groundwater Monitoring Report* (Amec Foster Wheeler, 2015). An interpretation of the October 2014 potentiometric surface is shown on Figure 7 and an interpretation of the December 2014 potentiometric surface is shown on Figure 8. As shown on Figures 7 and 8, the potentiometric surface indicates groundwater flow is generally to the east. While the aggregate flow in the first water-bearing zone is toward the east, there are both northerly and southerly components to the gradient, indicating that groundwater flow from north and south of the proposed PRB alignment converges in the vicinity of the proposed PRB alignment and to the east of it.

4.2 GROUNDWATER VELOCITY MEASUREMENTS

Following installation of the piezometers, Amec Foster Wheeler conducted a borehole dilution test in PZ-01 to evaluate horizontal groundwater seepage flow velocities in the vicinity of the proposed PRB alignment.

4.2.1 Piezometer Selection

The borehole dilution test was performed in PZ-01 because, although it is not in the proposed PRB alignment (see Figure 7), it is screened in sediments that are most representative of soil conditions along the western portion of the PRB alignment.

4.2.2 Field Methods

A detailed description of the field methods used to perform the borehole dilution test is presented in Appendix B.

In summary, the borehole dilution test was performed using a recirculation pumping system, which included an above-ground pump connected to extraction tubing positioned in the piezometer at the bottom of the test interval (approximately 15 feet bgs) and injection tubing positioned at the top of the test interval (approximately 20 feet bgs). The test consisted of recirculating water in the piezometer by extracting and injecting water in a closed loop system, while maintaining the same water elevation in the piezometer, then adding sodium bromide (NaBr) salt solution into the recirculating water to effectively mix the NaBr into the water. The initial maximum concentration of bromide ion (Br⁻) in the recirculating waster was approximately 170 milligrams per liter (mg/L), and this concentration reduced as groundwater flowed through the piezometer. An ion-specific electrode placed in the middle of the test interval within the piezometer was used to collect real time bromide concentrations, which were calibrated against analytical results from groundwater samples collected at regular time

intervals. These data were used to calculate the rate of dilution of bromide tracer during the test, which was in turn used to calculate the ambient groundwater flow velocity through the piezometer in the test interval. The ambient flow through the piezometer was in turn used to infer the steady-state groundwater seepage velocity and Darcy velocity through the water-bearing formation surrounding the piezometer screen (Hall, 1993; Halevy et al., 1967).

4.2.3 Results

The steady-state groundwater seepage velocity was estimated to be 0.76 foot per day (ft/day) based on the probe measurements and 0.78 ft/day based on the laboratory analytical results. The corresponding calculated Darcy velocity at PZ-01 was 0.15 ft/day based on probe measurements and 0.16 ft/day based on laboratory sample results. Table 3 summarizes the results of the calculated seepage velocity and calculated Darcy velocity.

As noted in Appendix B, the groundwater velocities calculated using the field probe and laboratory analytical results are similar to each other and relatively high for the type of sediments encountered in PZ-01 and the horizontal hydraulic gradient in the vicinity of the piezometer. Because PZ-01 is screened in the coarsest-grained soil encountered by the three piezometers, with similar EC readings to the borings within the PRB alignment, the groundwater velocity estimated by this test is an appropriate representation of the groundwater velocity that will enter the PRB in the coarser-grained, and therefore higher velocity, zones.

4.3 ZVI COLUMN STUDY

Amec Foster Wheeler retained SiREM Laboratory (SiREM), of Guelph, Ontario, Canada, to perform laboratory column tests to evaluate the treatment efficacy and potential longevity of two available ZVI products for treatment of the site groundwater. The bench-scale column testing was conducted using impacted groundwater collected from the site. The results were used to estimate degradation rates (i.e. half-life) of PCE and its degradation products using different ZVI products and evaluate the effects of inorganic groundwater chemistry (such as mineral precipitation). The column testing was completed in accordance with the Work Plan and was also based on the guidance for the procedure by Interstate Technology Regulatory Council (ITRC; 2011).

Two commercially available ZVI products from separate manufacturers, Peerless Metal Powders & Abrasive ("Peerless"), of Detroit, Michigan, and Connelly-GPM, Inc., of Chicago, Illinois, were tested in order to compare the performance of the ZVI products and to evaluate if each would satisfy the design goals of the PRB. The general procedures and methods used, along with a summary of evaluation results, are provided below. A copy of SiREM's *Treatability Study Report* is included in Appendix C and provides additional details and discussion regarding the column testing.

4.3.1 ZVI Column Testing Procedure

The testing apparatus consisted of a Plexiglas™ cylinder 1.64 feet in length, with an internal diameter of approximately 1.5 inch, and seven sampling ports positioned along the length of the cylinder. The ends were closed except for an inlet port at one end and an outlet port at the other end. Two columns were packed with 100% ZVI, one from each ZVI manufacturer. The ZVI was compacted into the columns by placing multiple lifts of ZVI and compacting each one with a Teflon rod. In addition to the two ZVI columns, a reference column containing 100% uniform, clean (no fines) sand was prepared to offer additional quality assurance/quality control. The control column of sand was only sampled from the influent and effluent.

The water used for the bench-scale testing was collected from the site monitoring well MW-01 during August 2014 when the concentrations of PCE and TCE in groundwater were 150 micrograms per liter (μ g/L) and 1.9 μ g/L, respectively. Approximately 17 gallons of water was collected from MW-01 following purging, using the same methodology used to collect groundwater samples during quarterly sampling (AMEC, 2015). The groundwater was collected into one-gallon containers, labeled, packaged in coolers, and shipped to SiREM under Amec Foster Wheeler Chain of Custody procedures. SiREM stored the groundwater at 4 degrees Celsius [$^{\circ}$ C] until ready for use. Prior to and during the column test, the extracted groundwater was spiked a total of three times with additional PCE to achieve a concentration of approximately 2,000 μ g/L, a 10-fold increase in the concentration, so that changes in chemistry during testing could more easily be detected. Spiked groundwater was pumped through each ZVI-filled cylinder in an up-flow configuration (i.e., the water would enter the vertical cylinder at the bottom and exit at the top) and at a constant rate to achieve the target flow velocity for each test. The test concluded after 64 pore volumes had been pumped through the columns.

Two quality control considerations were evaluated when reviewing the applicability of the SiREM *Treatability Study Report*. First, as noted in the method description in Appendix C, TCE was inadvertently included along with PCE in the third groundwater spike. Although the spike resulted in an increased TCE concentration at the endpoint sampling, the validity of the PCE half-life determination was not affected. The calculations of PCE half-life including and excluding the endpoint data values (shown in Table 7 of SiREM's *Treatability Study Report*) both resulted in an identical half-life of 2.7 hours, with similar coefficients of determination (r²) for both calculations. Second, VOC concentrations measured by SiREM and a third-party laboratory analyzing confirmatory samples varied in their reported concentrations, with SiREM's results ranging from 13% to 40% higher than the third-party laboratory's results. SiREM reported that they have commonly found that samples sent to third-party laboratories experience losses of volatile during shipping and handling; therefore, the differing laboratory confirmation results do not affect the validity of the analyses performed by SiREM during the treatability study.

The sampling and analysis differed slightly from that proposed in the Work Plan, based on recommendations made by SiREM. These recommendations were based on extensive previous experience with ZVI column testing with a particular focus on sample volumes.

The modified sampling plan (shown on Table 2 of SiREM's *Treatability Study Report*) was as follows:

- Samples were collected and analyzed for selected VOCs (PCE, TCE, cis-1,2-DCE, and vinyl chloride), dissolved hydrocarbon gases (DHGs; ethene, ethane, and methane), oxidation-reduction potential (ORP), and pH analyses from the influent, each sampling port, and the effluent of each column. The samples were collected after approximately 6, 18, 31, 48, 57, and 64 pore volumes had passed through each column.
- Samples were collected and analyzed for major anions (chloride, nitrate-nitrogen, nitrite-nitrogen, phosphate and sulfate) were collected from the influent, each sampling port, and effluent of each column. The samples were collected after approximately 6, 48, and 64 pore volumes had passed through each column.
- Samples were collected and analyzed for cations (calcium, iron, magnesium, manganese, potassium, silicon, sodium, and strontium), anions, alkalinity, total and dissolved organic carbon (DOC/TOC), and total dissolved solids (TDS) from the influent at the beginning of testing and from the influent and effluent after approximately 64 pore volumes had passed through each column.

A description of the analytical methods used by SiREM and an external laboratory (ALS Environmental, of Waterloo, Ontario, Canada) for the above analyses is presented in the *Treatability Study Report* (Appendix C).

Because the pore volume of the entire column is approximately 250 milliliters (mL), collection of a 120 mL sample for analysis of VOCs by U.S. Environmental Protection Agency (U.S. EPA) Method 8260B, would adversely disturb the water in the column if collected rapidly, and collection of this sample volume at each sample port would significantly disrupt the column equilibrium. Therefore, the samples were collected from each port along the column, and from the effluent port using a glass syringe to remove approximately 4 mL of water from the column. Only one influent sample was collected from the influent reservoir at each round of sampling, because it is representative of influent to both columns.

Up to 1 mL of each sample was immediately transferred to a vial for GC/FID analysis of VOCs and DHGs. When major anions were also analyzed, 0.5 mL was transferred to an Eppendorf tube, which was frozen until analysis. The remaining volume of each sample was used to measure pH and ORP. Samples collected from the influent and effluent for analysis of cations, anions, alkalinity, DOC/TOC, and TDS (submitted to ALS Environmental) were collected into various containers with appropriate preservation methods. Samples were additionally collected from the influent and effluent after approximately 57 and 64 pore volumes and submitted to

ALS Environmental for VOC analysis by EPA Method 8260B. Table 6 of SiREM's *Treatability Study Report* presents a comparison of the GC/FID and EPA Method 8260B results for VOCs.

4.3.2 Column Test Results and ZVI Selection

The degradation rates for the target chemicals are reported in half-lives (a half-life is the time required for the concentration of the chemical to decrease by one-half). The half-life is incorporated into the design of the PRB so that the chemical in question remains within the PRB for a sufficiently long time to achieve the desired reduction in chemical concentrations. Based on the results of the ZVI column testing, the half-life for PCE in the ZVI from Connelly-GPM is 2.7 hours. The half-life for PCE in the ZVI from peerless is 3.9 hours. Based on these results, the ZVI from Connelly-GPM would require a shorter residence time in order to reduce PCE concentrations in groundwater.

The results from the column tests also provide information on the production of degradation products and, similarly, their calculated half-lives. Evaluation of the production of degradation products can be used to confirm that the PRB design is sufficient to treat the degradation products in addition to PCE. In general, there were little to no daughter products generated in either ZVI column. Importantly, there were no detections of vinyl chloride in the effluent from either ZVI column, with the exception of one isolated detection after 48 pore volumes had passed through the column of Peerless ZVI. No vinyl chloride was detected in any samples analyzed by ALS Environmental.

Analysis of inorganic groundwater chemistry provides important information about the type and magnitude of mineral precipitation. Based on the differences in inorganic water quality between the inlet and outlet of the testing apparatus, SiREM reported losses in dissolved concentrations of calcium, alkalinity, sulfate, silica and DOC/TOC, indicating that precipitation or adsorption of these minerals likely occurred. The SiREM report (Appendix C) concludes that these mineral losses will not substantially reduce the reactivity of the ZVI. Precipitation of carbonates, as well as silica and organic carbon films, was also identified by SiREM, and could negatively affect the long-term performance of the PRB. As a result, SiREM recommended an engineering factor of safety of 2 to 3 be applied, which is typical for PRB design.

5.0 SITE CONCEPTUAL MODEL UPDATE

The most recently updated site conceptual model (SCM) was presented in tabular format in the FS/CAP (AMEC, 2014a). The overall understanding of the site geology, hydrogeology, and contaminant distribution has not changed; however, the data from the PRB pre-design investigation were used to refine the SCM in the vicinity of the proposed PRB. The following sections present the SCM as it pertains to the corrective actions at the site.

5.1 GEOLOGY AND HYDROGEOLOGY

The understanding of the site geology has changed slightly based on the results of the PRB pre-design investigation. The subsurface materials were previously understood to consist primarily of finer-grained deposits (clays, sandy clays, silts, and sandy silts) with interbedded sand lenses from ground surface to approximately 20 feet bgs. These units were understood to be underlain by approximately 15 to 20 feet of lean clay (with varying amounts of sand, but with no documented coarse lenses). The results of the PRB pre-design investigation indicated that in the alignment of the proposed PRB (Figures 4 and 5), the interval of lean clay occurs deeper than previously expected and is only laterally extensive from approximately 28 to 30 feet bgs, but few, if any, sand lenses were noted. In contrast, north of the PRB, along the northern property boundary, the soil is primarily clay from the ground surface to approximately 30 feet bgs, and to the south of the PRB the soil is primarily clay from 20 to 30 feet bgs. The results from the PRB pre-design investigation confirm that beneath the layer of clay is an interval of clays interbedded with sand and/or gravel lenses (no significant coarse-grained units were encountered in the vicinity of the PRB shallower than approximately 30 feet bgs).

Groundwater at the site was previously understood to occur within discontinuous sand and/or gravel lenses that are a few inches to several feet thick, and also within the sandy clays that are present at similar depths. Based on the results of the PRB pre-design investigation, groundwater in the first water-bearing zone in the vicinity of proposed PRB occurs primarily in fine-grained units of silts and sandy silts; no significant sand or gravel lenses were noted in this area. Due to the fine-grained nature of the soil, no free water was observed in the first water-bearing zone in most borings in the vicinity of the PRB.

In summary, the investigation confirmed that groundwater (and chemical) movement primarily occurs in channel-like deposits of varying widths and thicknesses in a complex alluvial system, but these channel-like deposits are not generally coarse-grained in the first water-bearing zone. Review of publically available documents for nearby sites indicates that regional groundwater flow is to the southeast, but, as shown on the potentiometric surface maps (Figures 7 and 8) and as discussed above, in Section 4.1.3, groundwater flow through the site is generally to the east. There are also northerly and southerly components to the site groundwater flow, indicating that groundwater flow from north and south of the proposed PRB alignment converges in the vicinity of the proposed PRB alignment and to the east of it. Based on the potentiometric surface, it appears that the groundwater flow through the site in the first water-bearing zone is locally constrained to relatively coarser-grained silt and sandy silt channels that traverse the site.

Based on borehole dilution test data, the groundwater seepage velocity is approximately 0.78 ft/day in the area that the PRB is proposed. This groundwater seepage velocity is on the upper end of what would be expected based on the soil types encountered in the saturated

zone at the site, and is considered a conservative value to be used in residence time calculations for groundwater passing through the proposed PRB. Therefore, the groundwater seepage velocity to be used in the PRB design will be conservatively based on 0.8 ft/day to represent the upper bound of the velocity that may be encountered along the PRB alignment.

5.2 NATURE AND EXTENT OF VOCS IN SOIL VAPOR

The understanding of the nature and extent of VOCs in soil vapor has not changed from that presented in the FS/CAP (AMEC, 2014a); our understanding of the contaminant distribution in this media is based on results from 2012 and prior.

As noted in the FS/CAP, soil vapor is impacted by PCE, TCE, and vinyl chloride at concentrations above their respective ESLs in the northern portion of the site (Table E-2, Soil Gas Screening Levels for Evaluation for Potential Vapor Intrusion; Regional Water Board, 2013), extending approximately 200 to 240 feet south from the northern property boundary (Figure 9). Additionally, benzene was detected in soil vapor at concentrations above the ESL in this portion of the site, likely related to fuel drippage from cars when the facility was a car dealership; and chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene have been detected in soil vapor in the vicinity of the former sump within former Building B (excavation of impacted soil was conducted in the vicinity of this sump in 2011, following soil vapor sample collection in 2010).

In the northwest corner of the site, elevated PCE concentrations in soil vapor are generally collocated with higher concentrations of PCE in groundwater (Figure 10), but this correlation does not hold in the northeast corner of the site. Instead, the spatial distribution of PCE in soil vapor appears to reflect the layout of the subsurface utilities at the site, indicating that higher permeability utility backfill and bedding may have provided a conduit for vapor transmission around the site. Additionally, the results for samples collected from the nested soil vapor probes at 4 and 8 feet bgs in the eastern portion of the site (i.e. SG-13, SG-14, SG-15 and SG-16, Figure 9) indicate significant attenuation between the 8-foot and 4-foot samples (up to an order of magnitude for PCE and two orders of magnitude for TCE). Although these results confirm that volatilization from groundwater is a contributor to the VOC concentrations in soil vapor at the site, the lower VOC concentrations in soil vapor detected in the deeper samples from the east side of the site, as compared with the shallower samples from the west side the of the site, indicate that soil vapor concentrations at the west side of the site likely are primarily due to vapor migration through utilities corridors rather than volatilization from groundwater at greater depths. These lines of evidence indicate that shallow soil vapor transport may be largely via on-site subsurface utilities and that the utility lines within the nearby streets may provide a conduit for some of the vapors to enter the subsurface at the site.

The spatial distributions of PCE and TCE in shallow soil vapor (i.e., 1 to 4 feet bgs) are similar to each other (Figure 9), with the exception that only minimal TCE is present north and west of

former Building A (Figure 2). In the vicinity of the on-site sewer line and along the eastern property boundary, TCE is present at elevated concentrations relative to PCE (and some vinyl chloride is present), suggesting that natural degradation of PCE is occurring in the unsaturated zone.

As noted in the FS/CAP, PCE was also detected in soil vapor along the floor drain lateral to the sewer line within Building B and in a vapor sample collected from within the former frontend alignment pit in Building B (this pit has since been removed), indicating that PCE may have been used within Building B and that minor releases may have contributed, in part, to the PCE detected in soil vapor beneath Building B. PCE was also detected at low concentrations in several soil samples collected from beneath Building B during the demolition oversight sampling in December 2014 and confirmation samples collected in February 2015 (Figure 2); the results will be documented in the *Post-Demolition Investigation and Remediation Report*. However, PCE is present at non-detectable to very low concentrations in groundwater in this area, suggesting that vapor transport along site utilities likely is a primary contributor to PCE in soil vapor beneath Building B.

Based on the interpretation provided above and the stable to declining VOC concentrations in groundwater, the footprint and concentrations of the soil vapor plume are not expected to increase. Instead, soil vapor concentrations are expected to decrease and plume footprint is expected to reduce following removal of the existing utilities (occurring in March 2015) and installation of protected new utilities, in accordance with the FS/CAP.

5.3 NATURE AND EXTENT OF VOCS IN GROUNDWATER

The understanding of the nature and extent of VOCs in groundwater has not changed significantly from that presented in the FS/CAP (AMEC, 2014a), but the results of the PRB pre-design evaluation have allowed for some refinement of the SCM.

Groundwater is impacted by PCE, TCE, and some degradation products at concentrations above ESLs in the northern portion of the site. Detectable concentrations of these VOCs extend approximately 260 feet south of the northern property boundary. The results of the PRB pre-design investigation indicate that the core of the plume at the western property boundary is similar to previous interpretations, with a narrow area of higher concentrations in plan view. Concentrations of PCE attenuate over a relatively short distance to the north and south of the plume core (Figures 4 and 10).

As indicated by the isoconcentration contours presented on Figure 10, the core of the plume is migrating to the east under the site. The plume distribution in plan view reflects the SCM for the site hydrogeology. Groundwater flow appears to be primarily in channel-like deposits of coarser-grained sediments of varying widths and thicknesses. The highest VOC concentrations in groundwater are in the vicinity of the bend in the potentiometric surface lines

(Figures 7 and 8), indicating that most of the contaminant mass flux is occurring in the area of coarser-grained sediments.

PCE impacts in groundwater were previously thought to extend vertically from approximately 10 to 20 feet bgs, based on the depth to groundwater and the presence of lean clay encountered at approximately 20 feet bgs in many site borings. Based on the results of the PRB pre-design investigation, the plume extends deeper than anticipated in the vicinity of the proposed PRB alignment, with elevated concentrations extending to near the top of a laterally continuous clay layer at approximately 28 feet. Consistent with the previous understanding, PCE and other VOC concentrations in groundwater attenuate rapidly beneath this clay layer, with no concentrations detected above groundwater ESLs for vapor intrusion concerns.

Concentration trend graphs including the recent groundwater monitoring data (Amec Foster Wheeler, 2015) are shown on Figure 11, and also include water level elevation trends at each well. The trend graphs confirm that concentrations of PCE are stable to decreasing in all monitoring wells, with the decreasing PCE concentrations generally correlating with decreasing water level elevations. While the trend graphs show some variability in VOC concentrations over time, VOC concentrations are not anticipated to significantly exceed the maximum observed concentration of 210 μ g/L (of PCE).³ Indications of biodegradation of PCE were originally observed at monitoring well MW-02 in the northeastern portion of the site; the concentration trend graphs also show increased degradation from PCE to TCE and other breakdown products in the vicinity of the proposed PRB and at other site monitoring wells.

Several VOCs (e.g., benzene, chlorobenzene, and 1,2-dichlorobenzene) have also been identified in groundwater in the vicinity of the former sump (Figure 2); however, these VOCs have not been detected at concentrations greater than their respective groundwater ESLs for vapor intrusion concerns (AMEC, 2012; Amec Foster Wheeler, 2015). Soil remediation was conducted in this area in October 2011 (AMEC, 2011) and in February 2015 (to be documented in a forthcoming report).

6.0 VAPOR MITIGATION SYSTEM DESIGN

Consistent with the conceptual design presented in the FS/CAP, the vapor mitigation system (VMS) consists of a vapor membrane and a passive sub-slab venting system that will be installed during construction of the foundations for the proposed new development, Dublin Apartments. The VMS will be installed beneath the two proposed retail/apartment buildings located near the northern portion of the property along Dublin Boulevard, and partially beneath the apartments surrounding the recreational courtyard (see Figure 3). The vapor membrane provides the primary mitigation measure for the VMS by creating a physical barrier that has an

Amec Foster Wheeler

³ Concentrations of PCE at 210 μg/L have been detected at temporary boring SB-34 on August 27, 2012, and at former monitoring well MW-01 on July 30, 2013.

extremely low permeability to soil vapor. Correct installation of a properly design vapor membrane would be sufficient to mitigate the risks of vapor intrusion to indoor air. As an added mitigation measure, the sub-slab air will be passively vented to limit the accumulation of soil vapors beneath the slab, reducing the concentration gradient across the vapor membrane and therefore further reducing the risk to indoor air. Performance monitoring also will be performed to verify that the VMS is functioning as designed (Section 11). The VMS is designed such that it could be converted to an active sub slab venting system in the future, with the addition of powered ventilators, if performance monitoring results indicate that the passive VMS is not performing as intended.

The VMS design consists of the following main elements:

- Approximately 45,000 square feet of a composite vapor mitigation membrane, consisting of a minimum 60 mil-thick, spray-applied membrane installed between two high density polyethylene layers, below the two retail buildings and part of the residential apartment building.
- Sub-slab vapor collection piping within a permeable base layer beneath the membrane, which will be passively vented through a total of 15 wind turbineequipped vents located above the corresponding rooflines.

The general extents and layout of the VMS system are shown on Figures 12 and 13. Detailed design drawings to support the VMS construction are included in Appendix E. Development of the VMS system design is discussed in the following sections.

6.1 KEY DESIGN PARAMETERS

The following key parameters were used for the design of the vapor mitigation membrane and the vapor collection system:

- Types of soil vapor contaminants and concentrations.
- Commercially available vapor mitigation systems (membranes and/or venting) and their expected performance.
- Current extent of groundwater and soil vapor plumes.
- Proposed building foundation design.
- Building footprint area.
- Collection piping head losses.
- Wind-turbine fan manufacturer specifications.
- Regulatory permitting.
- Regulatory advisories; the VMS will be installed in general accordance with the recommendations outlined in the *Vapor Intrusion Mitigation Advisory* published by the California Department of Toxic Substances Control (DTSC, 2011a).

6.2 VAPOR MITIGATION MEMBRANE DESIGN

The following sections describe the selection of the vapor membrane and determination of the extent of the membrane installation on proposed buildings.

6.2.1 Vapor Mitigation Membrane Selection

As described in Section 5, VOCs, primarily PCE and TCE, have been detected in groundwater and soil vapor in the northern portion of the north parcel. Available commercial systems to mitigate VOC vapor intrusion range from high-density polyethylene (HDPE) sheeting, sprayapplied asphaltic emulsions, to multi-layered systems (HDPE sheeting and asphaltic emulsion). All systems are designed for installation between the building floor slab and the supporting sand or gravel layer, and are installed as part of foundation construction.

Two commercially available VOC vapor mitigation membrane systems were evaluated as part of the FS/CAP (AMEC, 2014a): Liquid Boot®, manufactured by CETCO, and Geo-Seal®, manufactured by Land Science Technologies (LST), including an evaluation of the systems' VOC vapor intrusion efficacy and cost. The evaluation concluded that both systems offer adequate protection against vapor intrusion from vapor concentrations that are up to four orders of magnitude greater than those that have been detected in soil vapor at the site. The Geo-Seal system was recommended as the selected remedial alternative due to its use of HDPE for the base and protection layers, and overall equivalent cost compared to Liquid Boot. The selected Geo-Seal vapor mitigation membrane will be applied to a nominal dry thickness of 60 mils, which is the typical installation thickness for vapor intrusion applications and provides damage (i.e. puncture) resistance during installation and subsequent foundation installation (ITRC, 2007).

6.2.2 Vapor Mitigation Membrane Extents

The lateral extent of the vapor mitigation membrane installation was determined based on the footprint of the proposed buildings, distribution of soil vapor concentrations, extent of the PCE and TCE in groundwater, and building foundation construction.

The proposed vapor mitigation membrane will be installed under structures designated for retail and/or residential occupancy where historical soil vapor concentrations were greater than their respective ESLs (Table E-2, Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion; Regional Water Board, 2013). The vapor mitigation membrane will extend at least 100 feet beyond the area where detected soil vapor concentrations were greater than ESLs, to encompass the buffer zone recommended in the *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (DTSC, 2011b). Vapor mitigation membranes will not be installed under open space areas (parking or recreational) or parking garage structures.

As shown on Figure 12, the vapor mitigation membrane will be installed beneath the two proposed buildings located at the north end of the site, designated as Building Retail 1 and Building Retail 2, as well as beneath Building D and beneath parts of Buildings A and C. The vapor mitigation membrane will extend south of Building C (and beneath Buildings A and C) to the foundation closing strips (i.e., tendon anchor foundation for post-tension slab). Because the closing strips will be poured separately from the rest of the foundation, they represent a distinct and identifiable termination for the soil vapor membrane installation. In addition, the location of the closing strips is outside the 100-foot lateral buffer zone (DTSC, 2011b). The areas where soil vapor concentrations exceed their respective ESLs and the extents of the vapor mitigation membrane are shown on Figure 12.

6.3 SUB-SLAB VENTING SYSTEM DESIGN

A passive sub-slab venting (SSV) system will be installed beneath the vapor mitigation membrane. In accordance with the objectives for the VMS, the SSV system is intended to be passive and long lasting, and to require minimal operations and maintenance activities. The SSV system consists of a layer of permeable material, a series of horizontal vapor collection pipes installed within the permeable material layer, vent risers attached to the vapor collection pipes that run to the roof, and wind-driven turbine fans installed at the top of the vent risers.

The purpose of the SSV is to supplement the protection provided by the vapor mitigation membrane by extracting soil vapor that may accumulate in the permeable material layer installed beneath the vapor mitigation membrane. The SSV system passively extracts accumulated soil vapors and vents the extracted soil vapors to atmosphere. A description of the selected flow rate for the SSV system and a description of each component are presented below.

6.3.1 Maximum Allowable Design Flow Rate

SSV systems generally do not require abatement for the vapors being vented to the atmosphere due the relatively low concentrations and flow rates and, therefore, low mass loading. Furthermore, passive venting systems often operate at very low pressures such that addition of abatement equipment can have a significant effect on the system's venting performance. Regulatory requirements set forth by the Bay Area Air Quality Management District (BAAQMD) exempt passive soil vapor extraction operations with operations with total emission of less than 1 pound per day of benzene, vinyl chloride, PCE, methylene chloride, and/or TCE per BAAQMD Regulation 8, Rule,47, Section 8-47-113 (BAAQMD, 2005). Therefore, to maintain the intent of the VMS objectives of a passive system that requires minimal maintenance, the VMS will be designed to operate below the threshold requiring abatement. The methodology used to estimate the maximum allowable design flow rate is described below.

The maximum allowable design flow rate for the SSV system was determined based on the historical soil vapor concentrations from samples collected within the footprints of the future buildings. The following soil vapor samples (AMEC, 2012) and their average detected concentrations of VOCs were used to calculate the maximum allowable flow rate per vent to meet BAAQMD 8-47-113 exemption:

Area	Selected Soil Vapor Samples Within Building Footprint	Average ^{1,2} Concentration of Detected VOC (µg/m³)	
Building Retail 1/ Building E	SV-23 and SV-24	5,950—PCE 4,755—TCE 258—VC	
Building Retail 2/ Building F	SV-13 and SV-14	4,045—PCE 10,150—TCE 500—VC	
Residential (Building D, Building A [Partial], Building C [Partial])	SG-04 through SG-06, SG-07, SV-08, SV-10, and SV-21	385—PCE 836—TCE 22—VC	

Notes

- 1. The arithmetic average, which is the sum of detected concentrations divided by the number of samples.
- 2. Average concentration calculations are presented in Appendix F.

Abbreviations

μg/m³ = micrograms per cubic meter

PCE - tetrachloroethene

TCE - trichloroethene

VC = vinyl chloride

Based on these soil vapor concentrations, the maximum allowable flow rate calculated for each vent is 82 cubic feet per minute (ft³/min) or a total of 1,230 ft³/min through all 15 vents to remain under the 1 pound per day emission limit per BAAQMD Regulation 8, Rule 47, Section 8-47-11. The maximum allowable vent flow rate calculation is presented in Appendix F.

The use of average soil vapor concentrations for each area, as opposed to the maximum detected soil vapor concentrations to estimate the maximum flow rate through the vents is representative of expected sub slab soil vapor concentrations and is conservative based on the following: 1) contaminant concentrations are expected to attenuate as soil vapor travels from subgrade soils to the sub-slab soil vapor collection system; 2) soil vapor concentrations are expected to diminish due to mixing with cleaner air during extraction by the sub-slab soil vapor collection system; 3) concentrations of the COCs in groundwater are stable and are expected to decline following installation of the PRB; and 4) future in-place soil vapor concentrations are expected to be lower following the recently completed remedial excavations, recent removal of utility trenches that could create preferential pathways, and as future grading operations during site redevelopment disturb shallow subgrade soils. In addition, potential ingress of soil vapors from outside the building footprints through utility corridors will be mitigated by incorporating impermeable collars around utilities where they

meet future building foundations, in accordance with DTSC guidance for new construction (DTSC, 2011a).

6.3.2 Permeable Base

The permeable base layer will consist of a minimum of 4 inches of gravel or crushed rock placed continuously beneath each foundation included in the VMS. The base layer will meet the following specifications for gradation:

Sieve Size	Percentage Passing Sieve
1 inch	90–100
3/4 inch	30–100
1/2 inch	5–25
3/8 inch	0–6

The selected minimum thickness and material specifications for the permeable layer are in accordance with the recommendations made by Rockridge Geotechnical, the geotechnical engineer for the site redevelopment, for a capillary moisture break beneath the building foundations (Rockridge Geotechnical, 2014). The permeable base layer will be placed beneath building foundation slabs and the vapor mitigation membrane. The permeable base will provide a continuous, highly permeable zone that allows advective flow of soil vapor to the collection piping.

6.3.3 Vapor Collection Piping

The vapor collection piping will be Vapor-Vent™ HD by LST. The Vapor-Vent HD piping consists of highly perforated, oblong, low-profile HDPE piping wrapped with a nonwoven fabric. The Vapor-Vent HD was selected for the following reasons:

- The piping is part of the integrated VMS manufactured by LST.
- The material quality control is increased when the membrane and collection piping are sourced from a single vendor.
- The construction quality assurance and quality control are improved, as the installation of the piping and membrane will be performed by a single certified LST installer.
- The low profile (1 inch) of the Vapor-Vent HD allows for installation within the 4 inches of permeable base layer with sufficient granular material cover above and below the pipe and without the need for additional trenching.
- The low- and flat-profile pipe provides a greater opening area per lineal foot of piping when compared to traditional, perforated/slotted round piping. Per manufacturer-provided product data, Vapor-Vent HD is capable of a flow rate of approximately three times that of slotted, 4-inch schedule (SCH) 40 polyvinyl chloride (PVC) pipe, with 0.125-inch slot openings (LST, 2015b; Johnson Screens, 2005).

The layout for the vapor collection piping was designed to maximize coverage and maintain spacing between vent piping runs well below the LST-recommended maximum spacing of 50 feet for a passive system (LST, 2015c). The maximum designed spacing between each of the vent pipes is 36 feet. The layout of the vapor collection piping is presented on Figure 13 and the spacing is presented on Drawing VMS-1A in Appendix E.

6.3.4 Vapor Collection Risers

The horizontal vapor collection piping will be connected to vertical vent risers. The oblong piping is designed to connect to round, 4-inch SCH 80 PVC using manufacturer-provided transition fittings. The vertical vent risers will penetrate the vapor mitigation membrane and foundation slab, and penetration through the membrane will be sealed in accordance with the manufacturers recommendations, as shown on the Construction Drawings. The 4-inch SCH 80 PVC pipe transitions to SCH 40 black steel pipe above the slab penetration which continues to the building roof. The exposed vent piping above the roof is galvanized steel.

The vent riser foundation penetration locations are adjacent to vertical structural columns for the retail buildings, and coincide with demising walls for the residential buildings. The vent risers in the retail buildings travel up the podium columns and are routed to the nearest demising wall in the second floor. All riser vent pipes travel up to the roof inside demising walls. The vents continue past the roof and terminate approximately 1 foot above the building parapet elevation. The vents are located and terminated with minimum clearances specified in Section 906.2 of the 2013 California Plumbing Code.

The selected 4-inch vent piping is capable of conveying in excess of 350 ft³/min of air with minimal pressure drop (CRANE, 1980) and has more than sufficient capacity to convey the maximum allowable design flow rate for each vent of 82 ft³/min. The use of steel for the main vertical stack follows material specifications from the City of Los Angeles, Department of Building and Safety, for the installation of methane mitigation vent risers in buildings (residential and commercial) greater than two stories (LADBS, 2006).

A single 4-inch vent is capable of servicing a vapor mitigation membrane that covers an area ranging from 4,000 square feet (ft²) (NAVFAC, 2011, and Hatton, 2010) to 10,000 ft² (LST, 2012). Using the conservative 4,000 ft² recommended service area, the number of vents per area with a vapor mitigation membrane was determined as follows:

Area	Square Footage ¹ (ft ²)	Service Area for a 4-inch Vent (ft ²)	Calculated Number of Vents	Selected Number of Vents
Building Retail 1/ Building E	6,648 ²	4,000	2	3
Building Retail 2/ Building F	11,244 ²	4,000	3	4
Residential (Building D, Building A [Partial], Building C [Partial])	27,000	4,000	7	8

Notes

- 1. Square footage of area with vapor mitigation membrane.
- 2. Footage per DBE Architecture, Drawing A0.3 for Allowable Area/Opening Calculations.

The advective air flow due to the stack pressure within the vent riser is calculated from the stack pressure (*Ps*) and the effective aerodynamic area of the ventilator fan (*F*) in the following equation (AS/NZS, 2000):

$$Qs = F X \left(\frac{2Ps}{\rho}\right)^{1/2}$$

where:

 $Qs = \text{stack volume flow rate } (m^3/s)$

F = effective aerodynamic area of ventilator fan (m^2)

Ps = stack pressure (Pa)

 ρ = air density at ambient temperature (kg/m³)

The average minimum ambient temperature at the site was estimated from USA.com (<u>USA.com</u>, 2015) to be 50 degrees Fahrenheit (°F) (10 °C). Using this value, a sub-slab temperature of 55 °F, a maximum stack height of 66 feet (the tallest building parapet elevation) and minimal wind, the average stack pressure–induced air flow is 51 ft³/min (70.6 m³/hr), less than the maximum allowable flow rate of 82 ft³/min per vent. Under average ambient conditions of 59 °F (<u>USA.com</u>, 2015), less pressure-induced flow will be generated because the temperature differential between the sub-slab and external ambient air is negative (the outdoor air is warmer than the sub-slab air). The majority of the vent flow will result from the siphoning effect of the wind-driven turbine fan installed at the top of the vent.

6.3.5 Wind-Driven Turbine Fans

A wind-driven turbine fan will be installed at the top of each riser vent to provide wind siphoning flow from the vent. The selected wind-driven turbine fan is a 13-inch (fan diameter),

all aluminum, Hurricane Model H150 manufactured by Edmonds/CSR. The fan requires no power to operate.

The wind-siphoning flow rate is calculated by first determining the wind-siphoning pressure (Pw) and the effective aerodynamic area of the ventilator fan (F) then calculating the flow rate using the following equation (AS/NZS, 2000):

$$Qw = F X \left(\frac{2Pw}{\rho}\right)^{1/2}$$

where:

 $Qw = \text{wind volume flow rate } (\text{m}^3/\text{s})$

F = effective aerodynamic area of ventilator fan (m^2)

Pw = wind siphoning pressure (Pa)

 ρ = air density at ambient temperature (kg/m³)

Based on average wind speeds of 16 miles per hour for the area (<u>USA.com</u>, 2015), the selected ventilator fan will pull 45 ft³/min, below the maximum allowable flow rate of 82ft³/min per vent.

The wind-siphoning flow rate is specific to the selected ventilator fan and calculated using manufacturer provided data for the throat area, flow coefficient (*Cf*) and discharge coefficient (*Cd*) for the selected fan. Only alternate ventilator fans with equivalent calculated performance are allowed as a substitution for the selected ventilator fan.

6.3.6 Vent Combined Effect Flow Rate and Emissions

During favorable conditions the flow rate out of the vent risers will be influenced by both stack pressure-induced flow and wind-siphoning. The combined effect of stack and wind siphoning pressure induced flow is calculated as follows (AS/NZS, 2000):

$$Qc = F X \left(\frac{2\sum Pc}{\rho}\right)^{1/2}$$

where:

Qc= combined volume flow rate (m³/s)

F= effective aerodynamic area of ventilator fan (m²)

 $\sum Pc = Pw + Ps$ (Pa)

 ρ = air density at ambient temperature (kg/m³)

Under the average minimum ambient temperature of 50 °F (USA.com, 2015) and average wind speeds of 16 miles per hour for the area (USA.com, 2015), the combined flow rate is 68 ft³/min, below the maximum allowable flow rate of 82 ft³/min per vent. Under low and

average ambient temperature and wind speed conditions, the calculated flow rate from each stack will range from 45 to 68 ft³/min.

Based on the average VOC concentrations presented in Section 6.3.1 and the calculated flow rates, the total daily emissions are expected to vary from 0.54 lbs/day at 45 ft³/min to 0.82 lbs/day at 68 ft³/min. These flow rates, calculated under conservative conditions, indicate the total VOC emissions are expected to be less than the 1 pound per day and no abatement will be required. However, because the total calculated yearly emissions for vinyl chloride and TCE exceed their respective chronic trigger levels listed in BAAQMD Regulation 2, Rule 5, Section 2-5-110 (BAAQMD, 2005), the construction of the SSV system will require an Authority to Construct and subsequent Permit to Operate from the BAAQMD. The Permit to Operate will require a yearly renewal. If actual flow rates or concentrations are less than anticipated and result in calculated yearly emissions are below chronic trigger levels, BAAQMD may be petitioned to rescind the Permit to Operate requirement for the site. The vent flow rate and emission calculations for these combined conditions are presented in detail in Appendix F.

6.3.7 SSV System Layout

The layout of the soil vapor collection system maintains the maximum manufacturer-recommended spacing between piping of less than 50 feet and the maximum treatment area for each 4-inch vent of 4,000 ft². The layout is adapted to the foundation construction elements (e.g., footings, grade beams, etc.), the locations of demising walls, and the locations of proposed heating and ventilation equipment on the roof. The proposed system piping layout and the vent locations are presented on Figure 13 and the spacing is presented on Drawing VMS-01 in Appendix E.

The final locations of the roof vents may be modified during installation to maintain the minimum clearances and setback distances required by the 2013 California Plumbing Code between roof vents and other heating and ventilation equipment installed on the roof.

6.4 VMS IMPLEMENTATION CONSIDERATIONS

The VMS system will be installed as part of the construction of the buildings and in coordination with other building construction trades as necessary. As designed, the VMS system does not extend outside the building footprints; therefore, no private or public infrastructure improvements will be affected by the VMS system implementation.

6.4.1 VMS Membrane and Sub-Slab Piping Installation

The Geo-Seal membrane and sub-slab Vapor-Vent piping will be installed by a LST certified installer. Installation of the membrane and piping will follow LST-recommended installation and quality control procedures, the design drawings, and the construction specifications. In

addition to the LST certification, the installer shall be licensed by the California Contractors State License Board as a general contractor.

The above-ground vent piping will be installed by a contractor licensed by the California Contractors State License Board (CA CSLB).

6.4.2 Project Phasing

The installation of the VMS will be coordinated with the overall site development activities and will be subject to regulatory and permit approvals as well as procurement lead times. Installation of the at-grade SSV system and vapor mitigation membrane will take place after final site grading activities have been conducted and coordinated with structural foundation work and completed prior to slab-on-grade installation. Completion of the above-ground vent risers will take place during vertical construction of the buildings and conducted in a manner similar to other plumbing piping installations for the buildings.

7.0 PRB DESIGN

Consistent with the conceptual design presented in the FS/CAP, the PRB will consist of a trench installed along the upgradient site boundary that will be backfilled with a mixture of granular ZVI and sand. Natural hydraulic gradients adjacent to and beneath the site will cause PCE-affected groundwater to flow through the PRB, where the relatively rapid abiotic reduction of chlorinated VOCs on the surface of ZVI particles is expected to reduce VOC concentrations to the mitigation objectives before groundwater exits the PRB. Performance monitoring wells will be installed within and upgradient of the PRB to verify hydraulic and treatment efficacy.

The PRB design consists of the following elements:

- A 2-foot-wide, 146-foot-long continuous trench that is backfilled with ZVI/sand treatment media located near the upgradient site boundary along Golden Gate Drive.
- The PRB will be installed to approximately 29 feet bgs, including a 1-foot key into an existing clay layer observed from approximately 28 to 30 feet bgs.
- The treatment media will be prepared in a 55%/45% ZVI/sand ratio by volume, creating an equivalent 1.1-foot-thick treatment zone of 100% ZVI.

The general layout of the PRB and associated monitoring network is shown on Figure 14.

Detailed design drawings to support the PRB construction are included in Appendix G.

Discussion of the development of these PRB components is provided in the following sections.

7.1 KEY DESIGN PARAMETERS

Primary design parameters analyzed in the development of the PRB design include alignment (location, length, and orientation), depth, wall thickness, and treatment media (type and composition). The criteria used to evaluate each of these parameters, along with the selected design for each element, are summarized in the following sections.

7.1.1 Alignment

The proposed alignment is depicted on Figure 14. In general, the PRB alignment is dictated by three factors: the location the highest PCE concentrations in groundwater near the western edge of the site; the predominant groundwater flow direction(s); and by stakeholder requirements regarding the PRB's location relative to the planned improvements near the PRB.

The primary objective of the PRB is to reduce concentrations of PCE and its degradation products entering the site to below levels that may contribute to a vapor intrusion concern. The PRB is conservatively designed to capture the currently mapped extents of PCE above 50 μ g/L, which is below the mitigation objective of 63 μ g/L (i.e., the ESL for groundwater for evaluation of potential vapor intrusion).

Figure 14 depicts the approximate lateral extents of PCE in groundwater, determined from the previous investigations, and the proposed 146-foot-long PRB alignment, which would capture the 50 μ g/L isopleth. Figure 6 also illustrates that core of the plume is located within coarser-grained soils under the site. As discussed in Section 5, plume migration appears to be controlled by the presence of these coarser-grained soils.

The PRB will be installed generally perpendicular to the average groundwater flow direction to minimize the overall length required to capture the horizontal extents of the plume, and to conform to site constraints. Slight variations in groundwater flow direction will not affect the performance of the wall, as the flow path, and therefore the residence time, is increased as the flow angle moves beyond perpendicular.

The City requested that the PRB be installed within the future Golden Gate Drive right-of-way, aligned under the edge paved turn lane and concrete gutter to minimize potential conflicts with future utilities as well as to allow for access to the PRB if maintenance or repairs are required in the future. This requirement was used to determine the PRB location in the east-west direction.

7.1.2 Vertical Extents

The depth of the PRB was selected based on the vertical extents of the PCE plume and the depth of the underlying, lower-permeability clay layer that was identified from approximately 28 to 30 feet bgs. The installation depth must be sufficient to capture the plume extent and reduce the potential for underflow beneath the PRB by keying into lower-permeability soil.

Existing site characterization data indicates the vertical extent of the PCE plume extends to approximately 28 feet bgs (Figure 6), which generally coincides with the highest recently measured PCE concentrations and the presence of coarser-grained soils. To reduce the potential for underflow, the PRB will be keyed approximately 1 foot into the underlying clay layer; the total depth of the PRB will be approximately 29 feet bgs, with an average base Amec Foster Wheeler

elevation of approximately 312 feet relative to the National Geodetic Vertical Datum of 1929 (NGVD29).⁴ The planned depth of the PRB relative to site soils is shown conceptually on Figure 6; refer to the Figure 14 and design drawings in Appendix G for additional layout and design details.

The top of the treatment media will extend approximately 2 feet above the historical high groundwater level of 329 feet to an elevation of 331 feet NGVD29.

The remainder of the trench section above the treatment media will be backfilled with controlled density fill (CDF)⁵ material consisting of a single-sack cement/sand slurry. A geotextile filter fabric will be installed over the top of the treatment media to provide separation from treatment media while the CDF is placed.

7.1.3 PRB Thickness and Treatment Media Mix

Major design considerations used in determining the thickness of the PRB include the following:

- The mixture of chlorinated VOCs to be treated and their anticipated influent concentrations.
- Anticipated ZVI-mediated degradation rates (i.e., half-lives) for influent VOCs (corrected for site-specific groundwater temperature).
- Residence time of groundwater within the PRB (based on anticipated ambient groundwater velocities and porosity of the backfill).
- Constructability.
- The ability to monitor the effectiveness of the PRB.

The results of the ZVI column study (Section 4.3) and estimates of groundwater seepage velocity from the borehole dilution test (Section 4.2) were used in conjunction with the current site conceptual model (Section 5) to develop site-specific design parameters for the PRB. Of the VOCs detected in site groundwater, PCE is the primary driver for the PRB thickness design as it is generally found at higher concentrations than its degradation products (TCE, cis-1,2-DCE, and vinyl chloride), has a lower mitigation objective (PRB effluent concentration goal), and the slowest degradation rate in the presence of iron.

The theoretical PRB thickness was calculated based on the residence time required to reduce the concentration at the PRB effluent to the PCE mitigation objective, and the estimated groundwater seepage velocity within the PRB (ITRC, 2011). The required residence time, T was calculated using the pseudo first-order rate constant determined from column tests and the following equation from the ITRC *PRB: Technology Update* (ITRC, 2011):

⁵ CDF is also known as controlled low-strength material (CLSM) or single-sack cement/sand slurry.

Amec Foster Wheeler

Cross sections included in this report were developed based on survey data from site borings and monitoring wells, referenced to the North American Vertical Datum of 1988 (NAVD88). Elevations referenced to NAVD88 in the vicinity of the site are 2.7 feet higher than those referenced to NGVD29.

$$T = \frac{1}{k_1} \ln \left(\frac{C_{Inf}}{C_{Eff}} \right)$$

where $C_{\rm Inf}$ is the influent concentration, C_{Eff} is the desired effluent concentration and k_1 is the adjusted PCE first-order degradation rate constant derived from the laboratory column study. The adjustment to the laboratory-determined first-order decay rate constant addresses the differences in degradation rates at the laboratory room temperature of 22 °C and at the expected minimum field groundwater temperature of 16 °C. This reduction to address lower expected ambient temperatures results in a 50% reduction from the laboratory-derived degradation rate, which in turn results in a 100% increase (i.e., doubling) of both the half-life and the required residence time. A conservative PCE concentration of 250 μ g/L was used for C_{Inf} , as the maximum PCE concentration detected at the site was 210 μ g/L (at SB-34 on August 27, 2012) along the western site boundary (AMEC, 2012b). 6 C_{Eff} is the treatment objective of 63 μ g/L as established in Section 3.3. The adjusted rate constant k_1 was determined as 3.08 day $^{-1}$ (equivalent to a half-life of 5.4 hours), leading to a required field residence time T within the PRB of approximately 10.7 hours (approximately 0.45 days).

The theoretical PRB thickness was calculated using the groundwater seepage velocity estimate and the theoretical required residence time using the following equation from ITRC (2011)

$$L = V \cdot T$$

where *L* is the theoretical required thickness of PRB in feet, and *V* is the estimated groundwater seepage velocity in feet/day (Section 4.2). Based on the average groundwater seepage velocity of 0.77 feet/day calculated in Appendix B, a slightly more conservative value of 0.8 feet/day was selected for use in subsequent calculations. A comparison of the site-specific velocity with typical velocities for the type of sediment, and a discussion affirming its appropriateness for the PRB design, is also presented in Appendix B. The calculated required thickness is approximately 0.36 feet (approximately 4.3 inches). A factor of safety between 2 and 3 times the calculated thickness is typically applied to account for uncertainties in the groundwater flow and contaminant transport characteristics and to account for passivation of the ZVI over the life span of the PRB (ITRC, 2011). SiREM notes that the observed levels of carbonate alkalinity, carbonate mineral precipitation, and possible formation of silica or carbon solid phases over time, will together determine PRB longevity, with their impact proportional to groundwater velocity. The selected design thickness of a 1.1-foot-thick pure (100%) ZVI barrier represents a design safety factor of 3. This safety factor takes into account anticipated PCE concentrations, groundwater flow velocity, and passivation resulting from the formation of

34

 $^{^6}$ PCE was also detected at 210 $\mu g/L$ in a sample from former monitoring well MW-01 on July 30, 2013. Amec Foster Wheeler

non-conducting precipitates on ZVI grains. Appendix H includes thickness design calculations for site VOCs.

Constructability of a PRB to approximately 29 feet bgs requires a minimum trench width of 2 feet to facilitate equipment access to the total design depth. Therefore, a 2-foot-thick PRB is proposed with a ZVI-to-sand ratio of 55%/45% by volume (equivalent to a 1.1-foot-thick barrier of pure ZVI). The addition of sand to complete the trench backfill has the benefit of increasing the total flow-through volume of the PRB, which may reduce the potential for permeability reduction due to precipitation of minerals over the life of the PRB. The 2-foot minimum thickness also allows for installation of wells directly within the PRB to monitor the performance, rather than downgradient, where VOC concentrations likely will be impacted by back diffusion of VOCs in site soils.

7.2 IMPLEMENTATION CONSIDERATIONS

While the PRB is part of the overall corrective action, the PRB may be constructed independently of the installation of the VMS system or of the apartment construction project. However, coordination with other building construction activities will be required.

7.2.1 Project Phasing

The installation of the PRB will be coordinated with the overall site development activities and will be subject to regulatory and permit approvals as well as procurement lead times.

Assuming a reasonable timeline for regulatory and permit approvals, the PRB installation would ideally occur before earthwork for the building construction and public improvements along Golden Gate Drive begins.

8.0 VMS IMPLEMENTATION

The following sections describe the activities associated with the construction of the VMS, including preconstruction activities and installation.

8.1 Preconstruction activities

No specific preconstruction activities are required for the installation of the VMS. Installation of the VMS will be conducted as part of the construction of the Dublin Apartments and coordinated with all construction trades accordingly.

8.1.1 Health, Safety and the Environment

No hazardous waste operation or other specialized safety training is required. Installation of the VMS will be conducted as part of the Dublin Apartments construction and performed under general construction health and safety procedures. The installation of the VMS will be conducted under the existing Stormwater Pollution Prevention Plan (SWPPP) for the development project (CB&G, 2014). No additional environmental control procedures are required for the installation of the VMS.

8.1.2 Regulatory Approvals, Permitting, and Notifications

The following approvals and permits are required for the installation of the VMS:

- ACDEH approval of this Design Report.
- City of Dublin grading and building permits issued as part of the construction of the Dublin Apartments.
- BAAQMD Authority to Construct and Subsequent Permit to Operate for the VMS.

Site grading and non-building construction activities may take place prior to final approval of the VMS by ACDEH and/or BAAQMD. However, installation of the SSV system will not proceed until approval from BAAQMD is obtained.

8.2 VMS INSTALLATION

The following sections describe the major activities required for the installation of the VMS.

8.2.1 Mobilization and Site Preparation

The selected certified installer for the Geo-Seal membrane and Vapor-Vent subsurface piping will mobilize to the site upon completion of grading activities and delineation of building foundations elements by others. Site preparation will include identification of appropriate locations for the final riser vent stub ups and developing a layout of the horizontal piping that is coordinated with other sub slab utility and foundation works. The final location of the vent riser slab penetrations shall coincide with the location of building demising walls and will be determined in coordination with the other relevant project disciplines, including the project architect and structural engineer.

8.2.2 Environmental Controls for Stormwater and Dust

The installation of the VMS will be conducted under general stormwater controls in the SWPPP prepared for the development project (CB&G, 2014). Minimal visible dust generation is expected during installation and grading of the permeable base layer. As necessary, general construction dust controls, including spraying/misting with water during grading, minimizing material drop height during placement, and protection of material stockpiles, will be implemented during installation of the VMS. No dust is expected to be generated during installation of the membrane and above-ground piping for the vent risers.

8.2.3 SSV Subsurface Piping Installation

Installation of the SSV subsurface piping will consist of placement of the permeable base layer, Vapor-Vent horizontal piping, and riser vent transitions and stub ups at proposed foundation slab penetration locations. The permeable base layer will be placed once the subgrade has been completed and the foundation extents have been established. A minimum 4-inch permeable base layer will be placed (in accordance with the structural design requirements) beneath the slab areas designated for membrane installation. The permeable

material will be placed within the footprint of the future foundation, but will not extend beneath the any thickened slab edge or column foundation footing. Shallow trenches will be hand dug within the permeable base layer along the final Vapor-Vent horizontal piping layout. The horizontal collection piping will then be installed within the permeable base layer and covered with base material removed from the trenches with a minimum 1.5-inch-thick layer beneath and on top of the Vapor-Vent piping. Vapor-Vent horizontal piping lengths and spacing shall be as shown in the design drawings. The Vapor-Vent piping will transition to round piping prior to stubbing out at the selected foundation slab penetration. The round pipe will transition to vertical and will be terminated at a minimum elevation of 12 inches above the top of foundation slab. The stub out will be capped and remain so until vertical pipe installation can take place.

8.2.4 Vapor Mitigation Membrane Installation

The vapor mitigation membrane will be installed following installation of the SSV subsurface piping and prior to foundation slab construction. The Geo-Seal vapor mitigation membrane installation will consist of the installation of the separate base, core, and bond layers. The base layer will be installed on top of the permeable base layer. The base layer's minimum overlap between adjacent sheets and seam sealing of sheets will be per manufacturer recommendations. As necessary, the base layer will be cut to allow placement around utility penetrations, foundation reinforcement, and foundation perimeters and walls. Tears and/or punctures in the base layer shall be repaired prior to application of the core layer.

The core layer will be applied to the base layer using LST-recommended equipment and techniques for the installation of the spray-applied core layer. The core layer will be applied to a minimum dry thickness of 60 mils. The layer will be applied with smooth and consistent motion and with the layers sprayed such that they are overlapping. The core layer will require a curing period of 24 to 48 hours. Installation of the bond layer will not take place until all quality control testing and repairs to the core layer have been completed.

Upon completion of quality control testing (Section 10) of the core layer, the bond layer will be installed in the same manner as the base layer with similar overlaps and seam sealing procedures. Upon curing of the seam seals, foundation work can proceed.

Minor damage can be sustained by the bond layer without compromising the effectiveness of vapor mitigation membrane. However, any damage that penetrates the core layer will require repairs by a LST-certified installer.

8.2.5 SSV Riser Vent Piping Installation

The riser vent piping will be installed in conjunction with the vertical construction of the buildings. Installation of the vent risers will follow similar construction as other plumbing and mechanical installations for the buildings.

8.2.6 Waste Management

Waste material generated during the installation of the VMS system will be disposed as nonhazardous waste or recycled with other general construction debris.

8.2.7 Site Restoration, Project Closeout, and Demobilization

There are no specific site restoration activities associated with the VMS installation other than those required for the general construction of the buildings. The membrane and SSV piping contractor(s) will demobilize from the site after receiving approval by the owner and project engineer of the installed work. The aboveground SSV piping contractor will demobilize from the site upon completion of the vertical vent risers, which is expected to closely coincide with the completion of the vertical development of the buildings. As necessary, contractors may be required to return to the site to address deficiencies identified at startup/commissioning of the VMS.

General project closeout procedures will include owner and project engineer inspections and approvals of the installations. Closeout documents will include as-built markups of design drawings, documentation of installed materials and equipment, available operation and maintenance manuals, and written warranties (as applicable) for work and installed products.

8.2.8 Survey

As-built alignments of installed Vapor-Vent horizontal piping and locations of the vent riser slab penetrations shall be clearly marked on the design drawings or surveyed upon completion of their installation and prior to building foundation construction. Surveys will be conducted by a State of California–licensed surveyor in using the City of Dublin basis of survey benchmarks and NGVD29.

9.0 PRB IMPLEMENTATION

The following sections describe the activities associated with the construction of the PRB, including preconstruction activities and installation.

9.1 PRECONSTRUCTION ACTIVITIES

Preconstruction activities conducted prior to mobilization for PRB installation include Contractor selection of a qualified, experienced PRB subcontractor capable of performing the work.

The selected PRB subcontractor will complete and submit a work plan including the following for review by the owner and project engineer:

- A detailed description of the proposed approach and the means and methods to be used (including ZVI/sand treatment media preparation).
- Implementation schedule.

- Detailed staging layout and vehicle access plan describing the use of the site portion allotted for the PRB installation subcontractor.
- Material sources and specifications for all construction materials to be installed.
- Plans for construction quality assurance plan implementation and testing.
- A Health and Safety Plan.
- HAZWOPER and medical clearance documentation for all on-site staff.

9.1.1 Health Safety and the Environment

The PRB subcontractor will develop and implement a Health and Safety Plan (HASP) in accordance with the PRB specifications (Appendix G-2) specifically addressing all activities included within the PRB construction scope of work. The PRB subcontractor HASP will supplement the Contractor's Site Specific HASP. The PRB subcontractor will appoint an onsite health and safety representative responsible for both supervising and enforcing the HASP during PRB construction and coordinating with the Contractor. All personnel within the PRB work zone will be required to have current OSHA HAZWOPER training and medical clearance documentation.

9.1.2 Permitting

The PRB installation contractor must comply with all applicable federal, state, and local laws and regulations. The PRB contractor will be responsible for obtaining required permits from the agencies with jurisdiction over the PRB installation. Permits required for PRB construction include the following; other permits may be identified as being required during the permit application review:

- Building permit, City of Dublin.
- Encroachment and/or traffic control permits, City of Dublin.
- Well drilling permits, Zone 7 Water Agency.

The PRB contractor will coordinate with the Contractor to ensure that the permits obtained for the PRB installation scope of work are consistent with all other permits obtained for the site. The PRB contractor will be responsible for complying with all conditions required by their permits, including but not limited to construction noise ordinances, inspection scheduling, and maintaining on-site records and documentation.

9.2 PRB INSTALLATION

The following sections describe the major activities required for the installation of the PRB.

9.2.1 Mobilization and Site Preparation

The PRB subcontractor will coordinate closely with the Contractor to evaluate the progress made in the site demolition and rough grading tasks, and their impact on PRB installation. The

PRB subcontractor will confirm approval of all submittals prior to mobilization, including the staging layout plan, or receive Contractor approval to mobilize while approval is pending.

The PRB subcontractor will contact Underground Services Alert (USA) North (811; 800-227-2600) at least 2 business days prior to beginning work. The USA notification will be kept current throughout PRB installation activities.

9.2.2 Environmental Controls for Stormwater and Dust

Environmental controls required for the PRB installation will be implemented in part by the Contractor and in part by the PRB subcontractor. Environmental controls applicable to the entire site are described in the SWPPP. Contractor-implemented, site-wide environmental controls are shown on the Erosion Controls Plan within the Rough Grading Plan drawing set (CB&G, 2014) and shown by reference on the PRB Design Drawings (Appendix G-1). The PRB subcontractor will review applicable Contractor-implemented environmental controls within the limits of work and confirm their proper implementation.

The PRB subcontractor will be responsible for determining the alignment of the perimeter fence bordering the limits of work, relocating the fence, and installing a silt fence along its base. The PRB subcontractor will be responsible for any additional permit-required environmental controls.

9.2.3 ZVI/Sand Treatment Media Preparation

The ZVI used in the PRB construction will be product ETI CC-1004 (-8 +50 mesh size) manufactured by Connelly GPM Inc. of Chicago, Illinois. Virgin sand with a particle size distribution similar to the ZVI, free of fines, deleterious materials, recycled materials and contamination will be sourced from a quarry. The ZVI and sand media (PRB Media) will be mixed on site in a 55% ZVI / 45% sand ratio by volume. Mixing of the ZVI and sand aggregates will be completed using a volumetric mixer or a pug mill. The PRB subcontractor will propose a method for mixing that is most applicable to their proposed installation approach.

9.2.4 PRB Excavation and Backfill

The owner and project engineer will determine the PRB installation and backfill method by evaluating the contractor-proposed approaches and cost estimates provided during the bidding process. Acceptable methods include bio-polymer slurry trench construction and single-pass trenching. The bio-polymer slurry approach is a common approach for PRB installation. While cost effective, this approach is slower and requires greater efforts to maintain site housekeeping. Single-pass trenching offers speed and cleanliness at a typically higher cost.

The PRB will be installed to 1 foot below the top of clay layer encountered at approximately 28 feet bgs. Backfill above the PRB to grade will consist of CDF. Three 8-inch-diameter cylindrical concrete forms (e.g., Sonotube™) will be installed by the PRB contractor along the centerline of the PRB to provide a conductor casing through the CDF, facilitating future well installations within the PRB. The Sonotube forms will be installed to a depth of approximately 10 feet bgs, corresponding with the interface between the CDF and the PRB treatment media.

Monitoring wells will be installed within the PRB utilizing these casings, as well as upgradient monitoring wells, by a California-licensed well installation subcontractor after site development activities, including the public works improvements (expansion and paving of Golden Gate Drive), have been completed. Refer to Section 11.2 for additional details regarding the performance monitoring well network.

9.2.5 Waste management

Wastes generated during the PRB construction will be primarily excavation spoils. The soil removed from the excavation will be placed on plastic sheeting prior to being transferred to a suitable on-site storage area. Stockpiles, if utilized, will be constructed on plastic sheeting and covered with plastic sheeting at the end of each work day. Alternatively, the soil may be placed into lined roll-off bins for temporary on-site storage, pending waste characterization and approval, or loaded directly onto trucks for transport to the approved disposal facility. If any excavated soils are saturated, they will be collected within lined roll-off bins.

Other waste generated during the construction of the PRB will include groundwater or contact water generated during trenching or collected from stockpiles. The water will be collected within totes, tanks, or other approved containers, characterized, and disposed of off-site at an approved disposal facility.

9.2.6 Site Restoration, Surveying, and Demobilization

The site will remain an active construction site after PRB installation completion. The PRB subcontractor will backfill the trench with CDF to match existing grade at time of PRB installation, or as otherwise directed by the Construction Manager. Each monitoring well conductor casing will be covered with a 3-foot-diameter, traffic-rated steel plate pending future well installation.

The PRB subcontractor is responsible for obtaining final permit approvals following construction. Prior to demobilization, the subcontractor will retain a licensed surveyor to document the boundaries of the PRB, locations of the monitoring wells conductor casings, and ground surface and top-of-casing elevations.

9.2.7 Project Close-out

The PRB subcontractor will submit a complete record of documentation to the Engineer that will include the following items:

- Permit and permit drawings indicating final approval/sign-off.
- As-built reports/drawings.
- The total volume of ZVI, sand, and CDF installed.
- Copies of all waste disposal records, including bills of lading or manifests.

10.0 QUALITY ASSURANCE/QUALITY CONTROL

Specific quality assurance and quality control (QA/QC) measures for the installation of the VMS and PRB are included in the installation-specific Construction Quality Assurance (CQA) Plans presented in Appendix I. For both the VMS and PRB construction, the respective subcontractors will be required to submit a Construction Quality Control (CQC) Plan that will specify how they intend to meet the quality control requirements of the project as required by the relevant CQA Plan and the project specifications. Collectively, the CQA Plans and CQC Plans comprise the overall construction quality management program. The following subsections provide a general overview of the QA/QC requirements for both the VMS and PRB installations.

10.1 CONSTRUCTION QUALITY ASSURANCE COORDINATION

The CQA Plans provide definitions of the roles and responsibilities for the team, materials and procedures to be used during construction and assures the applicable regulatory agencies that construction materials will be tested, installed and monitored as specified by the Drawings and Specifications, accepted civil engineering practices, and applicable CQA requirements. A designated CQA Manager will oversee the tasks detailed in the CQA Plans. The roles and responsibilities for various parties are defined in each CQA Plan and an organizational chart depicting the various roles is included as part of each CQA Plan.

At a minimum, the CQA coordination will include a preconstruction meeting between the owner, project engineer, construction quality manager (CQM), and selected subcontractors for the installation of the VMS and PRB. Equipment or material suppliers may also attend the preconstruction meeting. These preconstruction meetings will serve to introduce all parties and establish the chain of command and lines of communications for the project.

During the construction of the VMS and PRB, additional meetings will be held at regular intervals to assess construction progress, address variances to the design, and discuss any identified QA/QC issues and resolutions.

10.2 QUALITY CONTROL FOR VMS INSTALLATION

General quality control requirements for the VMS installation are described below.

10.2.1 VMS Materials Quality Control

The selected contractor will provide material data specifications to the owner and project engineer for approval prior to delivery to the site. All materials will be inspected initially upon arrival at the site and prior to installation. Any materials found to be deviating from the approved specifications will be replaced and damaged materials will be repaired or replaced as necessary. The Geo-Seal and Vapor-Vent materials will be sourced solely from the manufacturer, LST.

10.2.2 VMS Construction Quality Control

Construction of the subsurface Vapor-Vent piping and Geo-Seal membrane will be a certified LST installer. The installer shall provide current certification document(s) issued by LST indicating that the installer meets and complies with the manufacturer's QA requirements for the installation of its products. In addition, the contractor shall possess a current contractor license issued by the CA CSLB.

Construction quality control for the Geo-Seal membrane will include at a minimum smoke testing to demonstrate integrity of the applied membrane and selected coupon testing of installed membrane samples to verify applied membrane thickness.

Regularly scheduled inspections will be performed by the CQM during construction of the VMS to verify conformance with design drawings and specifications. The locations of foundation penetrations will be coordinated with the architect and structural engineer. Prior to completion of the vent risers at roof levels, the vent setback and clearance will be verified for conformance with the California Plumbing Code requirements for roof vents and adjusted as necessary.

10.3 QUALITY CONTROL FOR PRB INSTALLATION

General quality control requirements for the PRB installation are described below.

10.3.1 PRB Backfill Materials Quality Control

Only the specific ZVI product specified (ETICC-1004 manufactured by Connelly GPM Inc. of Chicago, Illinois) will be accepted.

The selected PRB subcontractor will provide material data specifications for the ZVI, sand, and controlled density fill to the Construction Manager and CQA manager for approval prior to delivery to the site. All materials will be inspected initially upon arrival at the site and prior to installation. Any materials found to be deviating from the approved specifications will be replaced and non-specification materials will be repaired or replaced as necessary.

10.3.2 PRB installation Quality Control

The installation of the PRB will be performed by a qualified contractor with experience in PRB installation. The contractor shall possess a current contractor license issued by the CA CSLB.

The key PRB parameters that will be monitored during installation are the alignment, depth, and thickness.

10.3.2.1 Alignment

The PRB subcontractor will be required to survey the PRB alignment prior to installation, and the location will be maintained using offset survey markers. The PRB alignment will be marked off at 10-foot station intervals so that the CQA Manager can verify that the PRB installation is within the design alignment tolerance. The subcontractor shall stop PRB installation activities immediately if the CQA Manager observes a deviation of +/- 0.5 feet from the design alignment and respond as described in the CQA Plan.

10.3.2.2 Depth

The QC approach for determining installation depth during construction will depend on the installation method used by the selected contractor.

If a bio-polymer slurry is used, a string and weight will be used to verify the installation depth. If a single-pass trencher is used, the PRB installation depth will be verified by monitoring the excavator boom height relative to a fixed survey benchmark or the ground surface. The CQA Manager will verify and document that the PRB installation at each 10-foot station is consistent with the design depth. The PRB subcontractor shall stop the installation activities immediately if the CQA Manager observes a deviation of +0.5/-0.1 feet from the design depth and respond as described in the CQA Plan.

10.3.2.3 Thickness

The actual width of the ZVI/sand mix installed within the PRB can only be measured directly at the surface. Indirect measures will be implemented to confirm that the minimum design thickness was successfully installed within the PRB trench. These measurements generally consist of tracking the volume of ZVI/sand mix installed over a given length of PRB at a given depth. The rate of ZVI/sand installed per design unit volume will be monitored continually during the PRB installation. The CQA Manager will monitor and record the weight of ZVI/sand mix that is used to backfill each 10-foot section of PRB trench. Each 10-foot section shall correlate with the stations established above. The CQA Manager will compare the estimated design tonnage of ZVI/sand mix for each 10-foot section to the actual ZVI/sand volume installed and calculate the estimated installed PRB width. The PRB subcontractor will be required to stop PRB installation activities immediately if the CQA Manager observes a deviation of +0.5/-0.0 feet from the design width and respond as described in the CQA Plan.

10.3.2.4 ZVI/Sand Treatment Media

Conformance to ZVI and sand product specifications will assure that the material shipped to and received at the site for installation in the PRB will perform as designed. The ZVI/sand mix proportion will be monitored by determining the volume of each used in the mix and calculating Amec Foster Wheeler

the actual ratio. If the mix ratio is determined on a weight basis, the moisture content of the sand also will be tested and considered in determining the actual ZVI/sand ratio. Moisture content will serve as a volume control method because the product will be procured on a weight basis. This testing will ensure that the quantity of sand procured and delivered is sufficient to adequately fill the PRB as per design specifications. Further details are presented in the CQA Plan.

11.0 PERFORMANCE MONITORING, OPERATIONS, AND MAINTENANCE

Operations, maintenance, and monitoring (OMM) activities will support the objectives of the VMS and PRB design. The VMS and PRB constitute a long-term, passive approach to remediating and mitigating risks to indoor air. Routine operations and maintenance activities are generally not required. Non-routine maintenance activities may be required if unexpected maintenance needs are observed during routine performance monitoring. Monitoring of both the VMS and PRB will be conducted to verify that each is functioning as intended.

A Performance Monitoring phase will occur during the first year following implementation to verify that each mitigation measure is functioning as intended. After the Performance Monitoring phase, the VMS and PRB will each progress to a routine Operations and Monitoring (O&M) phase for years two through five. However, the performance monitoring period is subject to ACDEH approval and the transition to the O&M phase may occur later in the initial five year monitoring period.

Following installation of the VMS and PRB, the owner will retain the services of one or more subcontractors to perform the performance monitoring, operations, and maintenance. Multiple personnel will be involved in the OMM of the PRB and VMS; their functional roles are listed within Section 1.2 of the respective OMM Plans, included in Appendix J and Appendix K. The names of assigned individuals, companies, and contact information will be kept updated within each OMM Plan to ensure that personnel are easily reachable when needed.

The Primary Operator (i.e., current entity responsible for operations of the VMS and/or PRB) will be responsible for performing site inspection, sampling, and data evaluation under the supervision of the OMM Manager. The PRB Primary Operator will recommend if the transition to the O&M phase is appropriate based upon the performance data collected, and seek approval from ACDEH.

Specific procedures for the monitoring and collection of samples to assess the performance of the VMS and PRB are presented in the respective OMM Plans included as Appendix J and Appendix K, respectively. The following sections summarize the general performance monitoring associated with the VMS and PRB.

11.1 VMS PERFORMANCE MONITORING

Performance monitoring will be conducted to confirm the efficacy of the installed VMS to mitigate intrusion of soil vapor into indoor air and demonstrate that VOC concentrations are below established ESLs for indoor air (Regional Water Board, 2013). The performance of the VMS will be evaluated by conducting vent riser and indoor air sampling as proposed in the FS/CAP (AMEC, 2014a). The Primary Operator will monitor the integrity of the vapor membrane by inspecting for and requesting notification regarding any building foundation modifications. Specific procedures for the monitoring and collection of samples are presented in the OMM Plan included as Appendix J.

11.1.1 Vent Riser Sampling

Vent riser performance monitoring will consist of collection of flow rate data and collection of samples of vented soil vapor from each installed riser. The flow rate data and vapor samples will be collected from pre-installed ports at roof level in each vent riser and concentrations may also be screened for total VOCs using a PID. The collected vented soil vapor sample will be sent for laboratory analysis for the presence of VOCs. Flow rate and vented soil vapor VOC concentrations will be used to calculate the emissions from each vent riser. Adjustments to the vent riser flow rate will be performed as necessary to maintain total combined emissions (aggregate of all vents) to less than 1 pound per day as required by BAAQMD regulations for unabated sources (BAAQMD, 2005).

The vent monitoring and sampling is currently scheduled to be conducted for a proposed 5 years at the following frequency:

- Performance Monitoring Phase Monthly for year 1.
- O&M Phase Quarterly for years 2 through 5.

The monitoring frequency may be revised in order to comply with monitoring requirements (if any) in the BAAQMD-issued permit to operate the SSV system. The owner will notify ACDEH of any proposed changes to the monitoring or sampling schedule. With ACDEH concurrence, monitoring during the O&M phase may be simplified to rely on PID readings rather than laboratory analyses if the results demonstrate steady or decreasing concentrations over time.

11.1.2 Indoor Air Sampling

Indoor air sampling will be conducted twice prior to building occupancy. The indoor air sampling will be conducted during two seasons; late summer/early autumn (as allowed by the construction schedule) and late winter/early spring. The air samples will be collected from typical vapor intrusion pathways, such as bathrooms, kitchens, and other identifiable potential points of entry. The integrated indoor air samples will be collected over a 24-hour period using laboratory-provided sampling equipment and analyzed for selected VOCs using U.S. EPA Method TO-15 (or the currently approved method at the time of sampling).

11.2 PRB PERFORMANCE MONITORING

Performance monitoring of the PRB will be conducted to confirm that the PRB is operating as designed (in terms of hydraulic and treatment performance), and to ensure that the PRB and associated monitoring wells remain undamaged. The performance monitoring will rely on above-ground observations and on a performance monitoring well network. Specifically, the performance of the PRB will be evaluated by monitoring and comparing groundwater quality and elevations in upgradient and in-barrier monitoring wells. Specific procedures for the monitoring and collection of samples are presented in the OMM Plan included as Appendix K.

11.2.1 Performance Monitoring and On-site Well Network

Following the installation of the PRB, six performance monitoring wells will be installed to create a performance monitoring network in accordance the OMM Plan (Appendix K). The performance monitoring well network will consist of new groundwater monitoring wells installed both within and upgradient of the PRB. Three in-barrier monitoring wells and three upgradient wells will be installed adjacent to each other to act as upgradient and in-barrier pairs. The proposed locations of the performance monitoring wells are shown on Figure 14.

As noted in the August 27, 2014 *Revised Additional Investigation and Soil Removal Work Plan* (Revised Work Plan; AMEC, 2014c), five replacement groundwater monitoring wells will be installed on site (i.e., downgradient of the PRB) to replace monitoring wells that were destroyed in December 2014 and resume groundwater monitoring following completion of site redevelopment. However, these wells, located downgradient from the PRB, will not be considered PRB performance monitoring wells. The network of on-site monitoring wells will provide data regarding concentration trends within the plume core and site-wide groundwater elevations. The monitoring wells will be installed in the first water-bearing zone throughout the northern portion of the site in the area of the groundwater plume. The locations of the proposed groundwater monitoring wells are also shown on Figure 14.

Appendix L presents a work plan for installation of the performance monitoring and on-site wells.

11.2.2 Performance Monitoring and Analysis

The treatment performance monitoring activities will consist of sampling and analysis for VOCs and PRB performance related parameters. Passive, no purge sampling equipment and methods will be used to complete the PRB performance monitoring. The performance monitoring samples will be analyzed as follows:

 VOC sampling and analysis – Groundwater samples will be collected and analyzed for VOCs using U.S. EPA Method 8260B (or the currently approved method at the time of sampling). Other PRB performance-related sampling – Groundwater samples will also be collected and analyzed for alkalinity using U.S. EPA Method 310.2, sulfate using U.S. EPA Method 300.0, and ethane/ethene using U.S. EPA Method RSK 175.

The PRB's treatment performance will be evaluated by comparing upgradient monitoring well concentrations to the in-barrier monitoring well concentrations. The treatment objectives are considered met if the in-barrier concentrations are notably less than upgradient concentrations. While the in-barrier monitoring wells will be located approximately halfway through the 2-foot width of the PRB, treatment will not occur linearly within the PRB because the reductive dechlorination reaction is a first-order (i.e., non-linear) reaction. However, expected PCE reductions at the in-barrier well locations are estimated to range from one-half to as low as one-tenth of the influent concentration (e.g., approximately 125 µg/L to 25 µg/L to assuming an influent concentration of 250 µg/L. The effluent concentration at the full flow-through thickness of can be calculated based on the influent and mid-barrier concentrations. Concentration trends over time will be evaluated using Mann-Kendall methodology (or other analysis methodology, as agreed upon with ACDEH), a non-parametric statistical evaluation that uses the relative magnitudes of the data to evaluate the probability that a concentration trend (positive or negative) exists.

Hydraulic performance monitoring will consist of depth-to-groundwater (groundwater level) measurements collected using a water level meter during each sampling event to allow for calculation of groundwater elevations. Groundwater elevations will be calculated to compare upgradient and in-barrier elevations to verify that groundwater is continuing to flow through the PRB.

The PRB performance monitoring is currently scheduled to be conducted for a proposed 5 year period with the following frequency:

- Performance Monitoring Phase Quarterly for years 1 and 2.
- O&M Phase Annually for years 3 through 5.

Appendix K presents an OMM Plan with detailed descriptions of PRB performance monitoring tasks.

12.0 SCHEDULE AND REPORTING

A description of the documentation and reporting of the PRB and VMS installations and a preliminary schedule are provided in the following sections.

12.1 DOCUMENTATION AND REPORTING

Following installation of the VMS and PRB, the Contractor will prepare and submit a construction completion report to Amec Foster Wheeler for review and approval. Upon Amec Foster Wheeler concurrence with the completion report findings and observations made during construction, the CQA manager and Design Engineer will prepare a certification that the

completed project conforms to the Construction Documents, including the Design Drawings, Specifications, and CQA Plans.

Following certification, performance monitoring activities will commence for the PRB and VMS. Monitoring and inspection activities will be documented on the VMS and PRB Inspection Forms located in their respective OMM Plans; Appendix J and Appendix K). The VMS and PRB Inspection Forms will be retained by the Primary Operator. The Primary Operator will provide copies of maintenance and monitoring records to be maintained on site by the Property Owner's Site Manager. Discussion of specific roles related to the VMS and PRB OMM are described in the OMM Plan.

Following completion of each site inspection and monitoring event, including the initial performance monitoring, the Primary Operator will provide ACDEH with a monitoring report. The monitoring report will document site inspections, address corrective actions, and provide evaluations and recommendations as needed. Copies of the site inspection forms and laboratory reports will be attached to the monitoring report. The CQA manager and Primary Operator will prepare a certification that all IC objectives have been maintained during the reporting period. The submittals for the VMS and PRB may be coordinated and submitted together to simplify reporting. The initial data and subsequent data collected during the initial baseline monitoring period will be evaluated by the Primary Operator and discussed with ACDEH to finalize reporting requirements for the site's OMM Phase.

Additional reporting requirements beyond routine reporting will apply when any site conditions out of compliance with IC restrictions are identified. Upon determining lack of compliance with IC restrictions, the Primary Operator will notify ACDEH with a written explanation that describes the nature of the specific, inconsistent action, and the efforts or measures that have been or will be taken to correct the action. The associated time frame to correct the inconsistent action will also be provided.

12.2 PRELIMINARY SCHEDULE

The anticipated schedule for the activities described in this Design Report is presented below. This schedule is approximate, and the actual dates will depend on the timing and acquisition of applicable permits, subcontractor availability, and field conditions.

- June 2015
 - Design Report provided to ACDEH.
 - ACDEH approval of Design Report.
- July 2015
 - Site grading and utilities.
 - Begin PRB installation.
- August 2015

- o Complete PRB installation.
- August/September 2015
 - VMS installation during building foundation work.
- Approximately 3 months after final completion of the PRB and VMS
 - o PRB and VMS Construction Completion Report and Certification.

Performance monitoring activities for the PRB will commence upon installation of the PRB and in-barrier monitoring wells. Performance monitoring activities for the VMS, including indoor air sampling, will commence once the building envelope has been constructed. A schedule for these activities will be provided to ACDEH prior to implementation.

13.0 REFERENCES

- Alameda County Health Care Services Agency, 2013. Fuel Leak Case No. RO0003014 and GeoTracker Global ID T00000001616, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, 94568, August 16.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2012. Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 19.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2013. Revised Draft Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, March 25.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2014a. Final Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, May 1.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2014b. Permeable Reactive Barrier Pre-Design Investigation Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard, Dublin, California, Site Cleanup Program Case No. RO003014, August 14.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2014c. Revised Additional Investigation and Soil Removal Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard, Dublin, California, Site Cleanup Program Case No. RO003014, August 27.
- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2015. Third and Fourth Quarter 2014 Groundwater Monitoring Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard, Dublin, California, Site Cleanup Program Case No. RO003014, April 21.
- AMEC Geomatrix, Inc. (AMEC), 2011. Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, December 21.
- Australian/New Zealand Standard (AS/NZS), 2000. Australian/New Zealand Standard AS/NZS 4740:2000, Natural Ventilators Classification and Performance. March 30.
- Bay Area Air Quality Management District (BAAQMD), 2005. Regulation 8, Organic Compounds, Rule 47, Air Stripping and Soil Vapor Extraction Operations (Adopted December 20, 1969). June 15.

- Butler, J.J., Jr., Whittemore, D.O., Healey, J.M., and Schulmeister, M.K., 2002. Stream-aquifer interaction investigations on the Solomon River: Construction, geochemical sampling, and slug testing of groundwater observation wells in Rooks County, Kansas and geologic logging of existing wells in Rooks, Smith and Osborne County, Kansas: Kansas Geological Survey Open-file Report 2002-60, December.
- California Department of Toxic Substances Control (DTSC), 2008. An Assessment of Zero Valence Iron, Permeable Reactive Barrier Projects in California, April.
- DTSC, 2011a. Vapor Intrusion Mitigation Advisory, Final, Revision 1. October.
- DTSC, 2011b, Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, October.
- California Regional Water Quality Control Board, San Francisco Region (Regional Water Board), 2013. Environmental Screening Level Workbook, December, http://www.waterboards.ca.gov/rwqcb2/water issues/programs/esl.shtml.
- Carlson, Barbee & Gibson, Inc. (CB&G), 2014. Stormwater Pollution Prevention Plan for Crown Chevrolet Bay West Development. September 3.
- City of Los Angeles Department of Building and Safety (LADBS), 2006. Standard Plan: Methane Hazard Mitigation, Sheet 8 of 8. December 12.
- CRANE, Co. 1980. Flow of Fluids Through Valves, Fittings, and Pipe.
- ENGEO Incorporated, 2013. Groundwater Investigation, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive Fuel Leak Case No. RO0003014, Dublin, California, January 4.
- Hatton, Thomas E. President Clean Vapor, LLC., 2010. Designing Efficient Sub Slab Venting and Vapor Barrier Systems for Schools and Large Buildings, 2010 International Radon Symposium, Columbus, OH. Retrieved from http://www.cleanvapor.com/publications.html
- Interstate Technology and Regulatory Council (ITRC) 2007. Vapor Intrusion Pathway: A Practical Guide. January.
- ITRC, 2011. Permeable Reactive Barrier: Technology Update, June, http://www.itrcweb.org/GuidanceDocuments/PRB-5-1.pdf.
- Johnson Screens, 2005. Johnson Screens, A Weatherford Company, Johnson PVC Products: The Right Solution Catalog. Retrieved from http://johnsonscreens.com.
- McCall, W., Nielsen, D.M., Farrington, S.P., and Christy, T.M., 2006. Use of Direct-Push Technologies in Environmental Site Characterization and Ground-Water Monitoring: in Nielsen, D.M. (ed.), Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring, 2nd Edition, CRC Press, Boca Raton, Fla., Chap. 6, pp. 345-471.
- Land Science Technologies (LST), 2012. Vapor Intrusion Mitigation Technologies, Webinar #2. April 5. Retrieved from http://www.landsciencetech.com.
- LST, 2015a. Email from Kelly Ameli Smith, National Sales Manager. January 28.
- LST, 2015b. Vapor-Vent™ Product Data Sheet. Retrieved from htpp://www.landsciencetech.com.

- LST, 2015c. LST Vent Guidelines. Email from Kelly Ameli Smith, National Sales Manager. January 6.
- Los Angeles Department of Building and Safety, 2006. Standard Plan: Methane Hazard Mitigation, Sheet 8 of 8, Detail 8, Vent Riser. December 12.
- Naval Facilities Engineering Command (NAVFAC), 2011. Vapor Intrusion Mitigation in Construction of New Buildings Fact Sheet. August. Retrieved from http://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_services/ev/erb/vi.html
- Rockridge Geotechnical, 2014. Draft Geotechnical Investigation, Proposed Residential Development, 7544 Dublin Boulevard, Dublin, California. August 28.
- Schulmeister, M.K., Butler, J.J., Jr., Haeley, J.M., Zheng, L., Wysocki, D.A., and McCall, G.W., 2003. Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization, Ground Water Monitoring & Remediation, vol. 23, no. 3, pp. 52-62.
- USA.com, 2015. Dublin, CA Weather, accessed February 2015, http://www.usa.com/dublin-ca-weather.htm.
- U.S. Environmental Protection Agency (U.S. EPA), 2014. Memorandum entitled "EPA Region 9 Response Action Levels and Recommendations to Address Near-Term Inhalation Exposures to TCE in Air from Subsurface Vapor Intrusion," July 9.

TABLES

TABLE 1

GRAIN SIZE DISTRIBUTION ANALYSIS FOR SOIL SAMPLES¹

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Location	Sample ID	% Sand	% Silt	% Clay	Soil Description
PRB-04	PRB-04-18.5	14.7	54.0	31.3	Dark Olive CLAY
	PRB-04-20.0	7.5	55.5	37.0	Dark Olive Gray CLAY
	PRB-04-25.0	9.1	54.4	36.5	Dark Olive Gray CLAY
	PRB-04-27.5	10.1	55.5	34.4	Dark Olive CLAY
	PZ-02-16.0 6.6 58.8 34.6 Dark Olive C	Dark Olive CLAY			
PZ-02	PZ-02-18.0	20.5	51.2	28.3	Dark Olive Brown CLAY with Sand
	PZ-02-19.5	4.4	58.6	37.0	Dark Olive Brown CLAY

Note

1. Samples collected by Amec Foster Wheeler between August 18 and August 22, 2014, and analyzed by Cooper Testing Laboraory of Palo Alto, California, by ASTM Method D 422 (Sieve and Hydrometer).

Abbreviation

ASTM = American Society for Testing and Materials

TABLE 2

VOLATILE ORGANIC COMPOUNDS IN GRAB GROUNDWATER SAMPLES¹

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Concentrations reported in micrograms per liter (µg/L)

Location	Sample ID	Sample Type	Date	Acetone	PCE	TCE	TPHg	All Other VOCs ²
PRB-01HP	PRB-01HP-19.0	Primary	8/25/2014	<50	<0.50	<0.50	<50	ND
PRB-02HP	PRB-02HP-18.5	Primary	8/19/2014	<50	39 ³	<0.50	<50	ND
	PRB-02HP-23.0	Primary	8/19/2014	<50	59	<0.50	60 R	ND
	PRB-02HP-27.5	Primary	8/21/2014	<50	58	2.8	61 R	ND
	PRB-02HP-33.0	Primary	8/25/2014	<50	2.3	<0.50	<50	ND
PRB-03HP	PRB-03HP-18.0	Primary	8/19/2014	<50	45	<0.50	<50	ND
	PRB-03HP-24.0	Primary	8/19/2014	74	3.3	<0.50	<50	ND
	PRB-03HP-28.0	Primary	8/20/2014	<50	110 ⁴	2.3	110 R	ND
	PRB-03HP-34.0	Primary	8/25/2014	<50	11	1.3	<50	ND
	PRB-03HP-340.0	Duplicate	8/25/2014	<50	12	1.3	<50	ND
PRB-04HP	PRB-04HP-28.0	Primary	8/26/2014	<50	91	2.1	92 R	ND
PRD-04FP	HP PRB-04HP-28.0 Primary 8/26/2014 <50 PRB-04HP-280.0 Duplicate 8/26/2014 <50	<50	74	1.9	82 R	ND		
P-01HP	P-01HP-19.0	Primary	8/20/2014	<50	2.1	<0.50	<50	ND
P-02HP	P-02HP-18.0	Primary	8/21/2014	70	12	3.0	<50	ND
1 -02111	P-02HP-27.5	Primary	8/21/2014	<50	40	1.9	<50	ND
Environmental Screening Level (groundwater screening levels for potential vapor intrusion) ⁵			130,000,000	63	130	No value		

Notes

- Samples were collected by Amec Foster Wheeler between August 19 and August 26, 2014, and analyzed for VOCs by TestAmerica Laboratories, Inc., of Pleasanton, California, using U.S. EPA Method 8260B.
- 2. Laboratory results for all other VOCs were reviewed for quality control purposes and were determined to be less than the method reporting limits, with all compound reporting limits below their respective screening levels.
- 3. Results shown in **bold** indicate a detection.
- 4. Results shown in **bold** and in a shaded cell exceed their respective Environmental Screening Levels.
- 5. California Regional Water Quality Control Board, San Francisco Region, 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table E-1, Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion, December. The selected screening value is for residential land use with a mix of fine and coarse materials in the subsurface.

Abbreviations

< = not detected at or above the laboratory reporting limit shown

μg/L = micrograms per liter

PCE = tetrachloroethene

R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria; the presence or absence of the analyte cannot be verified

TCE = trichloroethene

U.S. EPA = United States Environmental Protection Agency

VOCs = volatile organic compounds

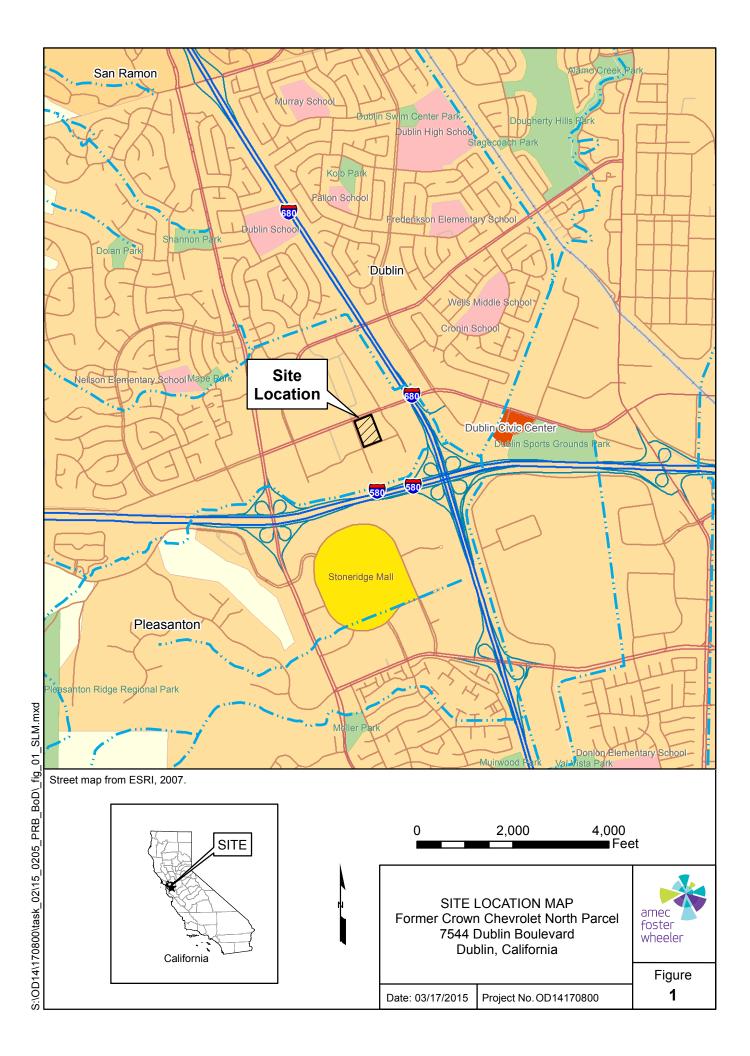
TABLE 3

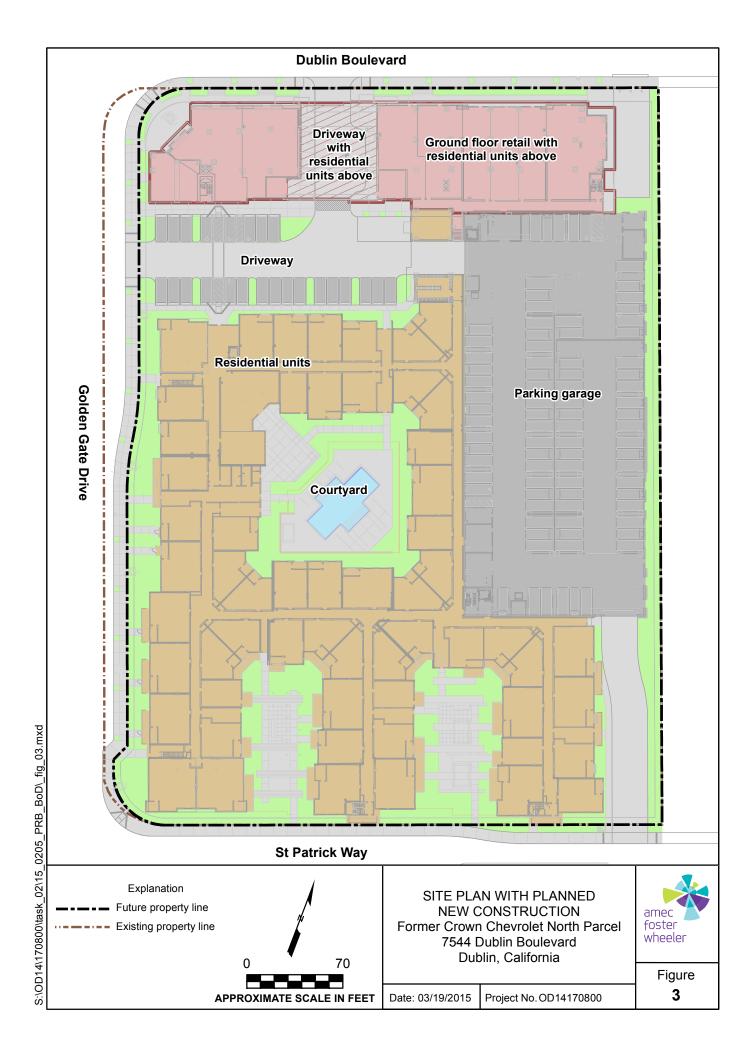
SUMMARY OF CALCULATED GROUNDWATER VELOCITIES

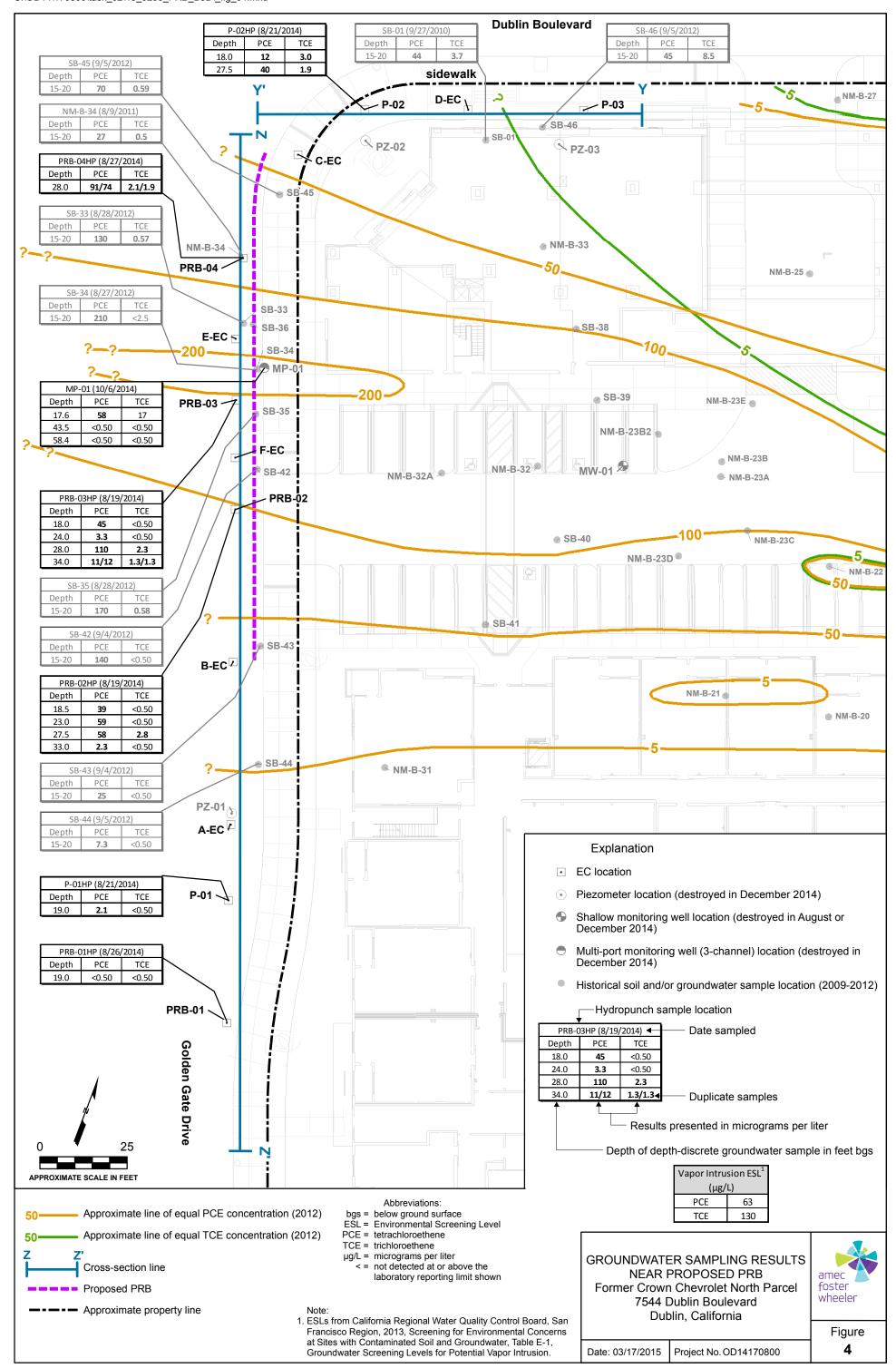
Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

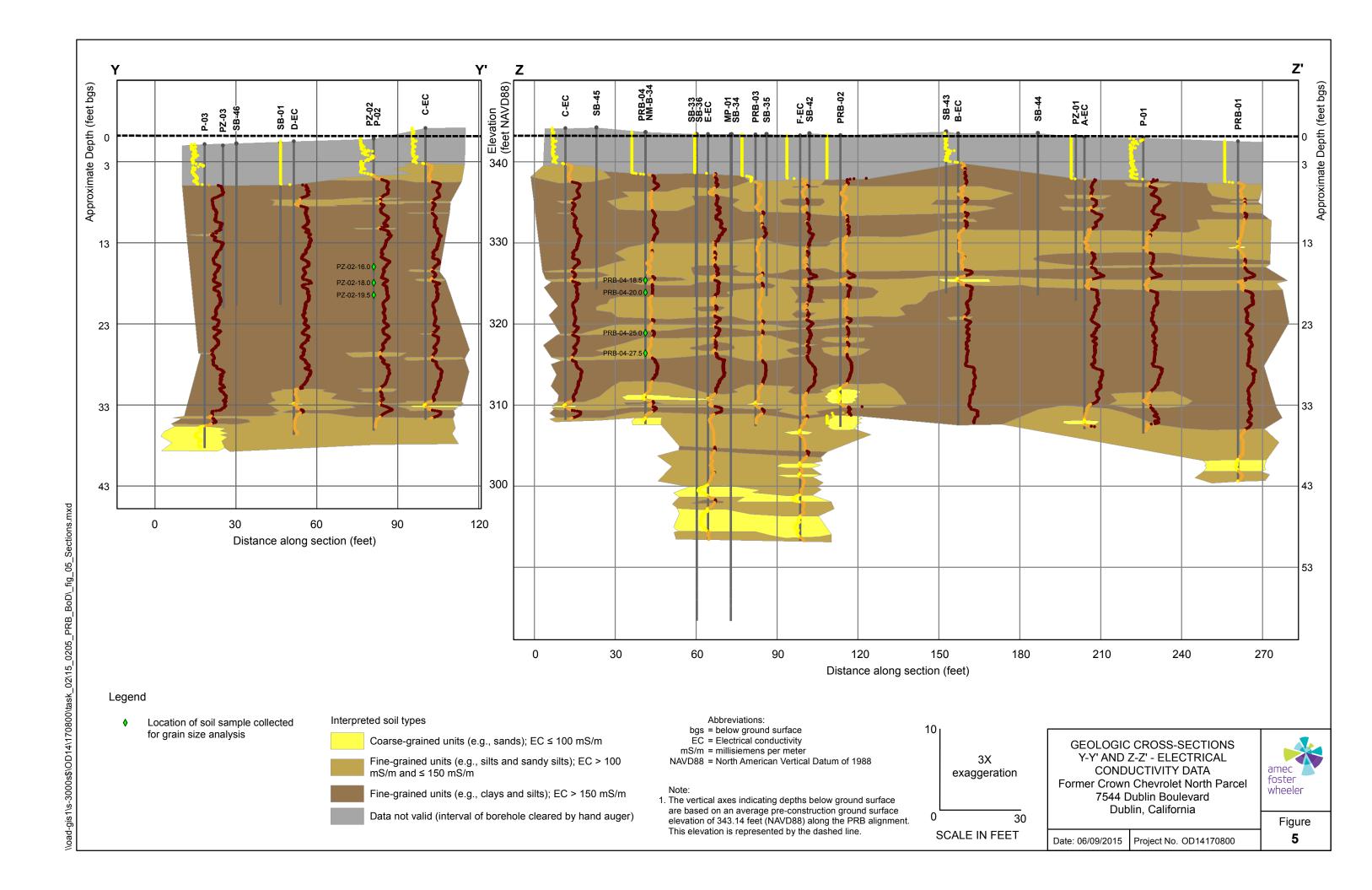
	Screened	Seepage Velocity (feet/day)			Darcy Velocity (feet/day)			
Interval Location (feet bgs)		Field Probe	Laboratory	Average	Field Probe	Laboratory	Average	
PZ-01	15.3 to 19.7	0.76	0.78	0.77	0.15	0.16	0.16	

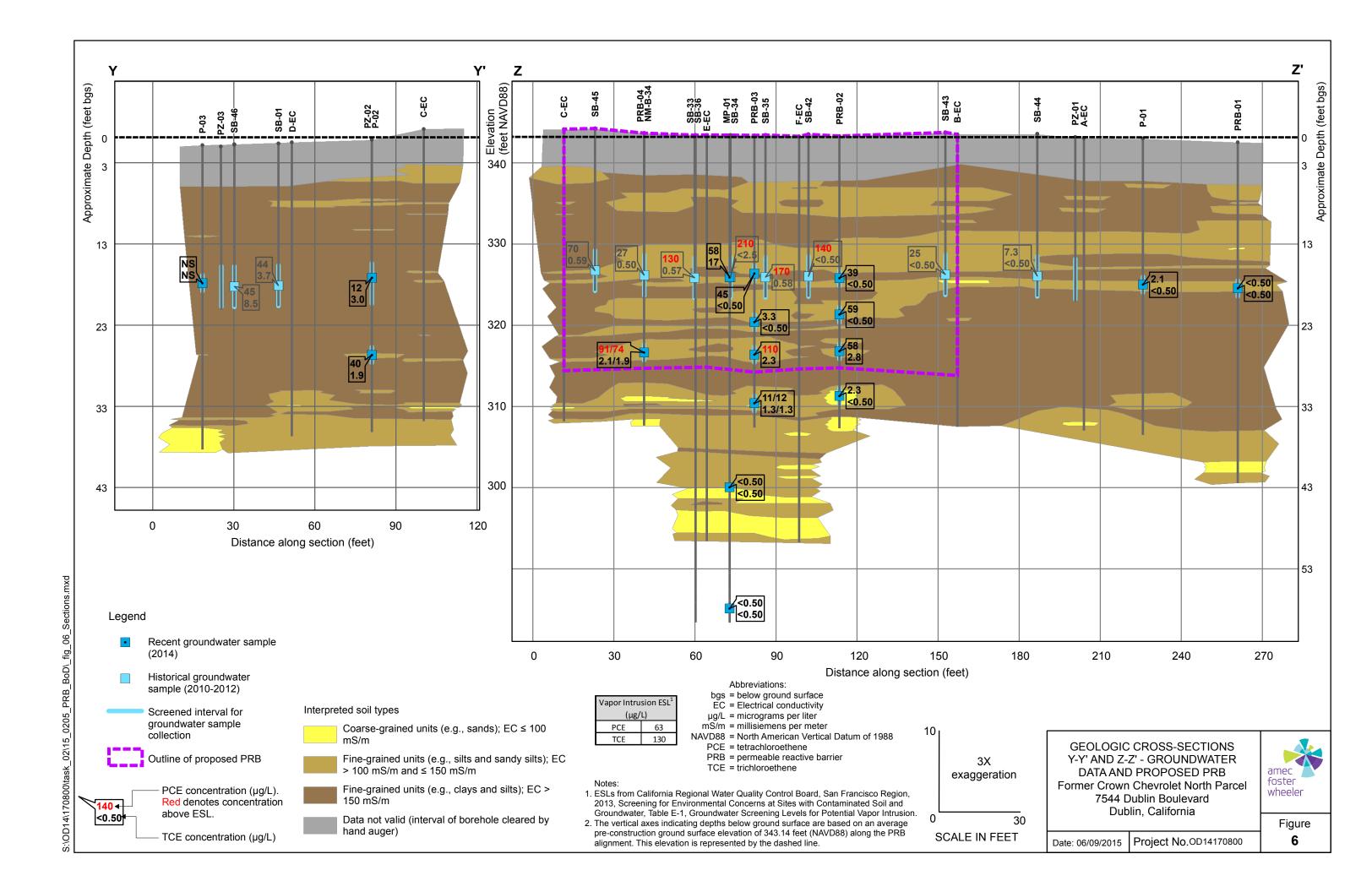
Note

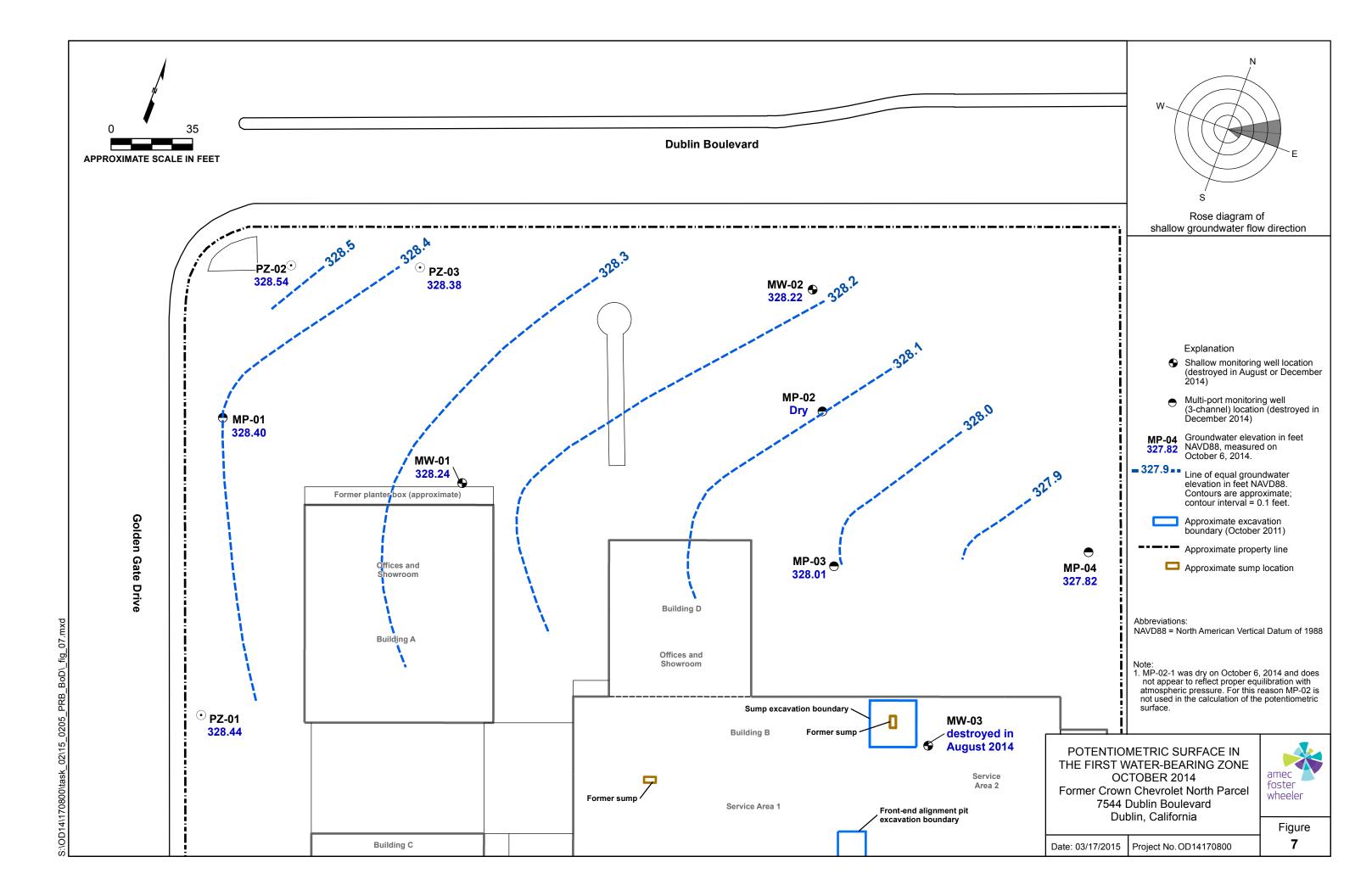

1. The velocity values are based on calculations performed following a single-point borehole dilution test performed by Amec Foster Wheeler on October 31, 2014.

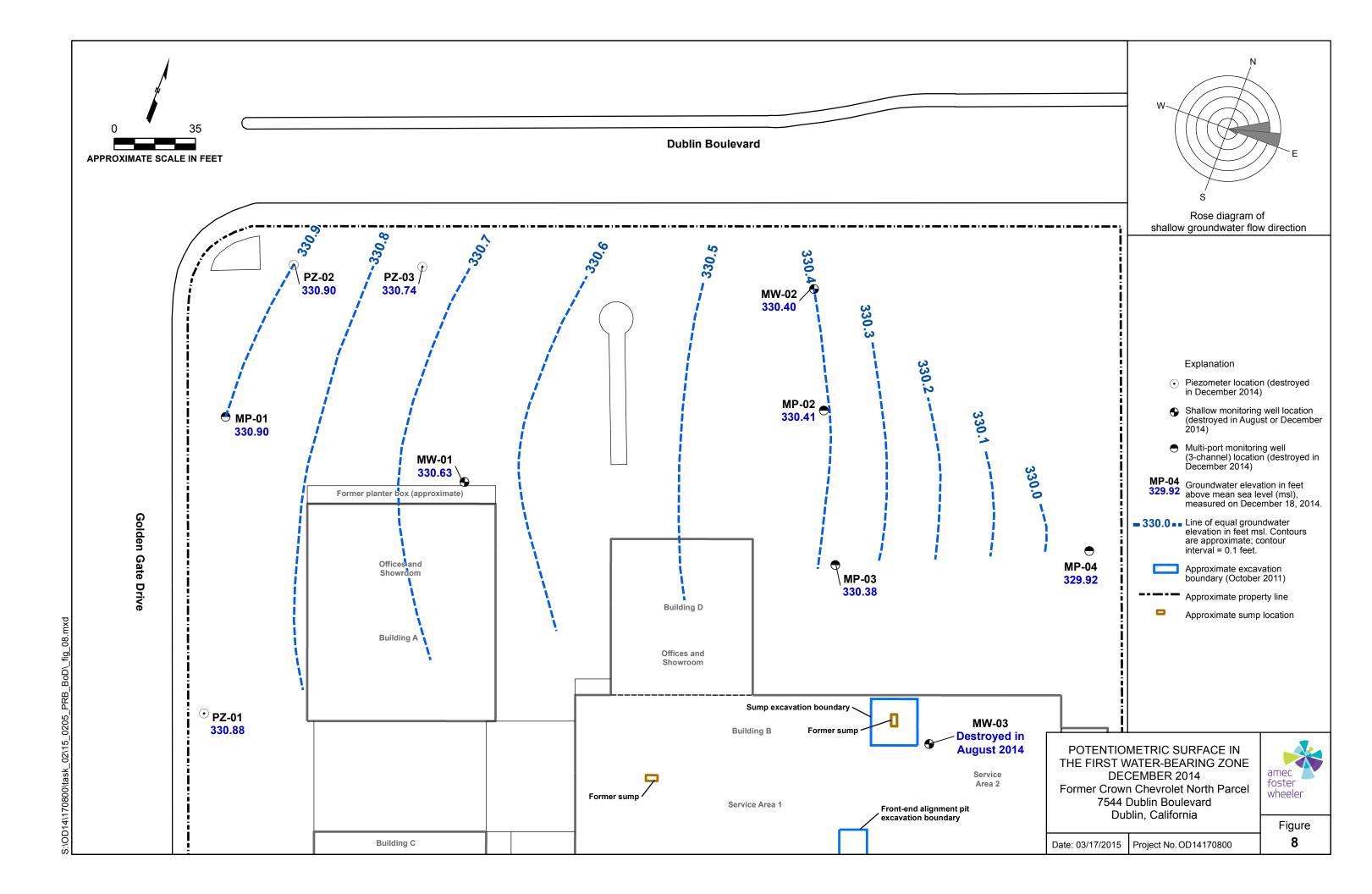

Abbreviation

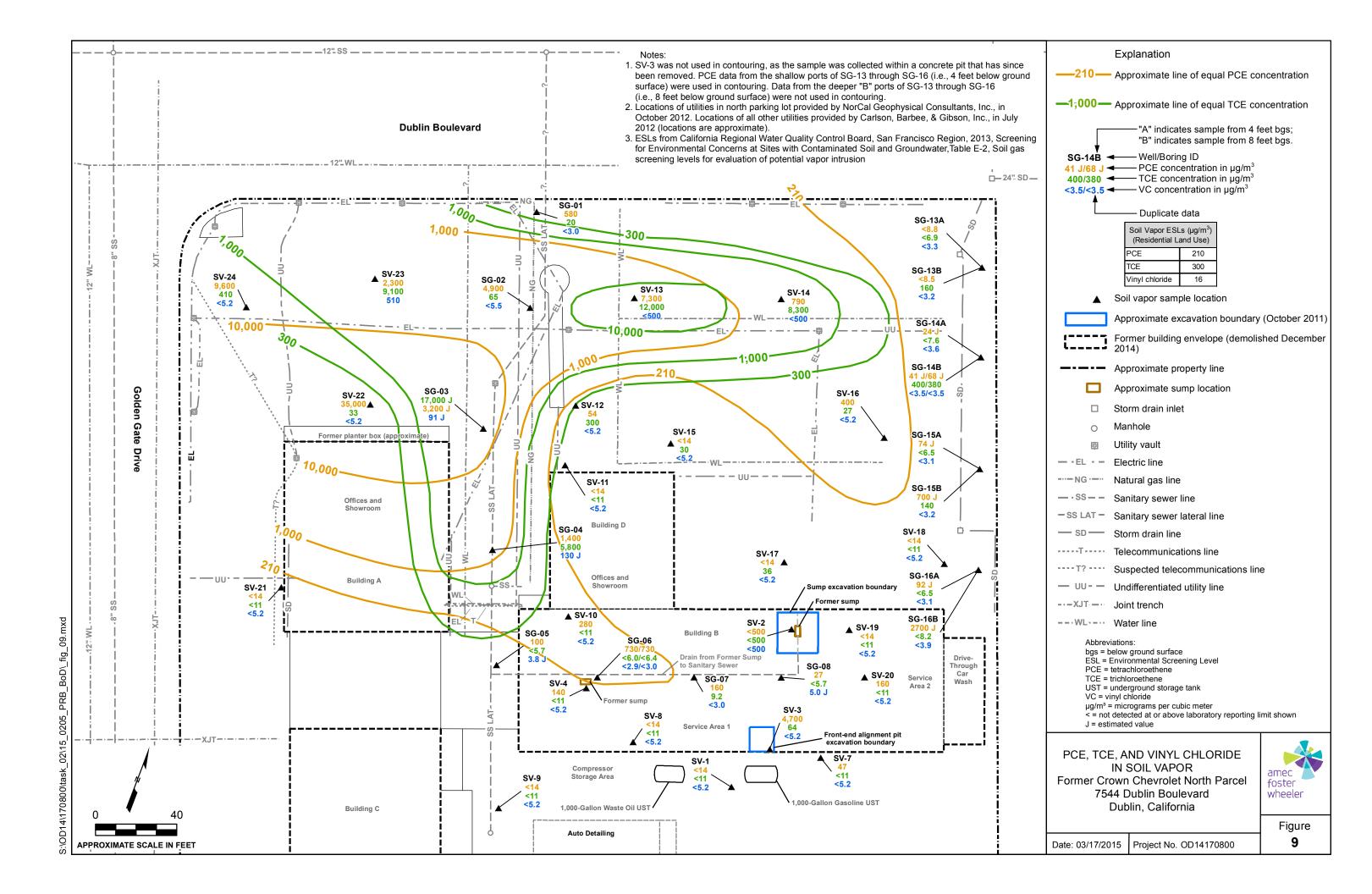

bgs = below ground surface

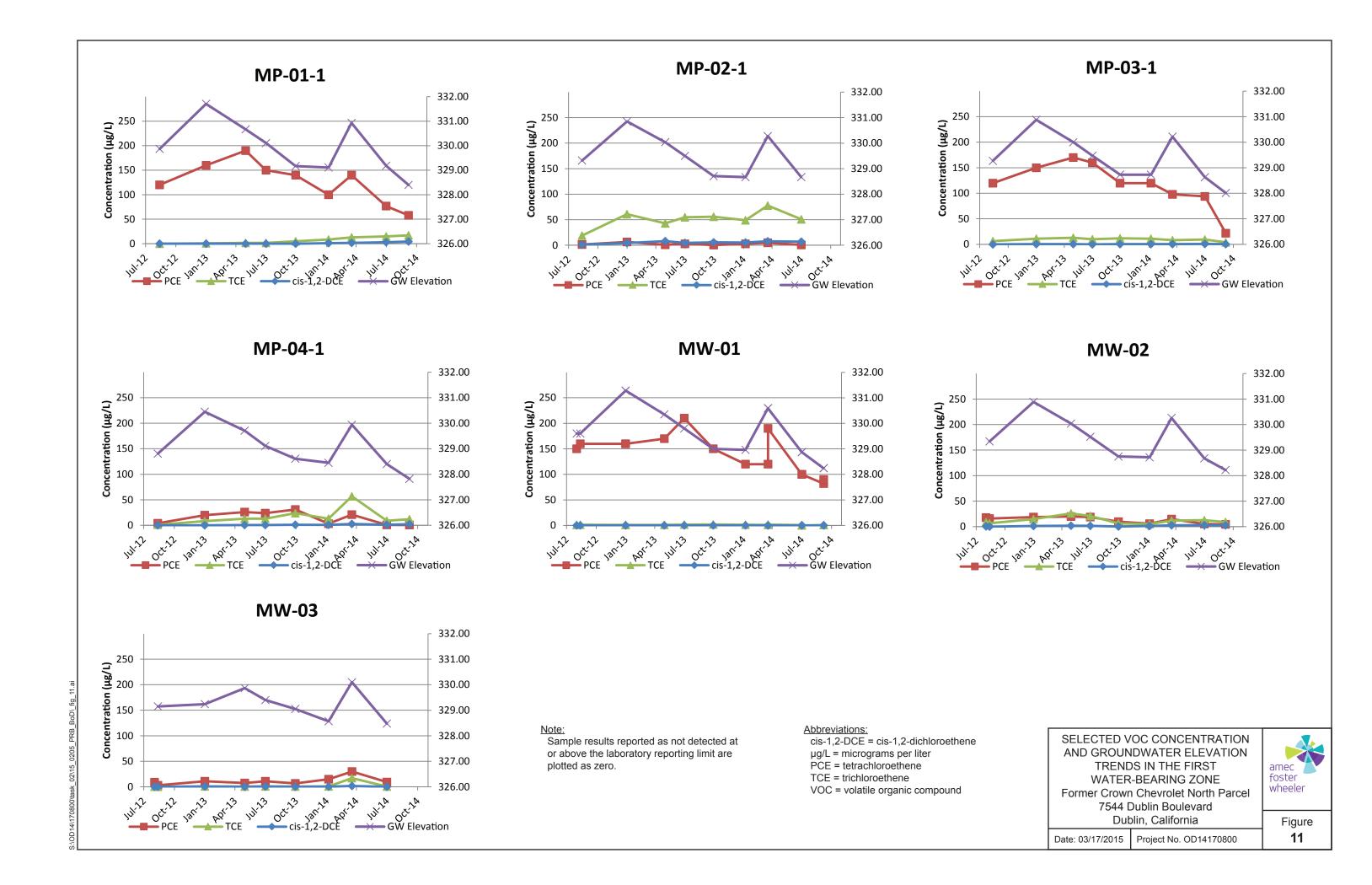


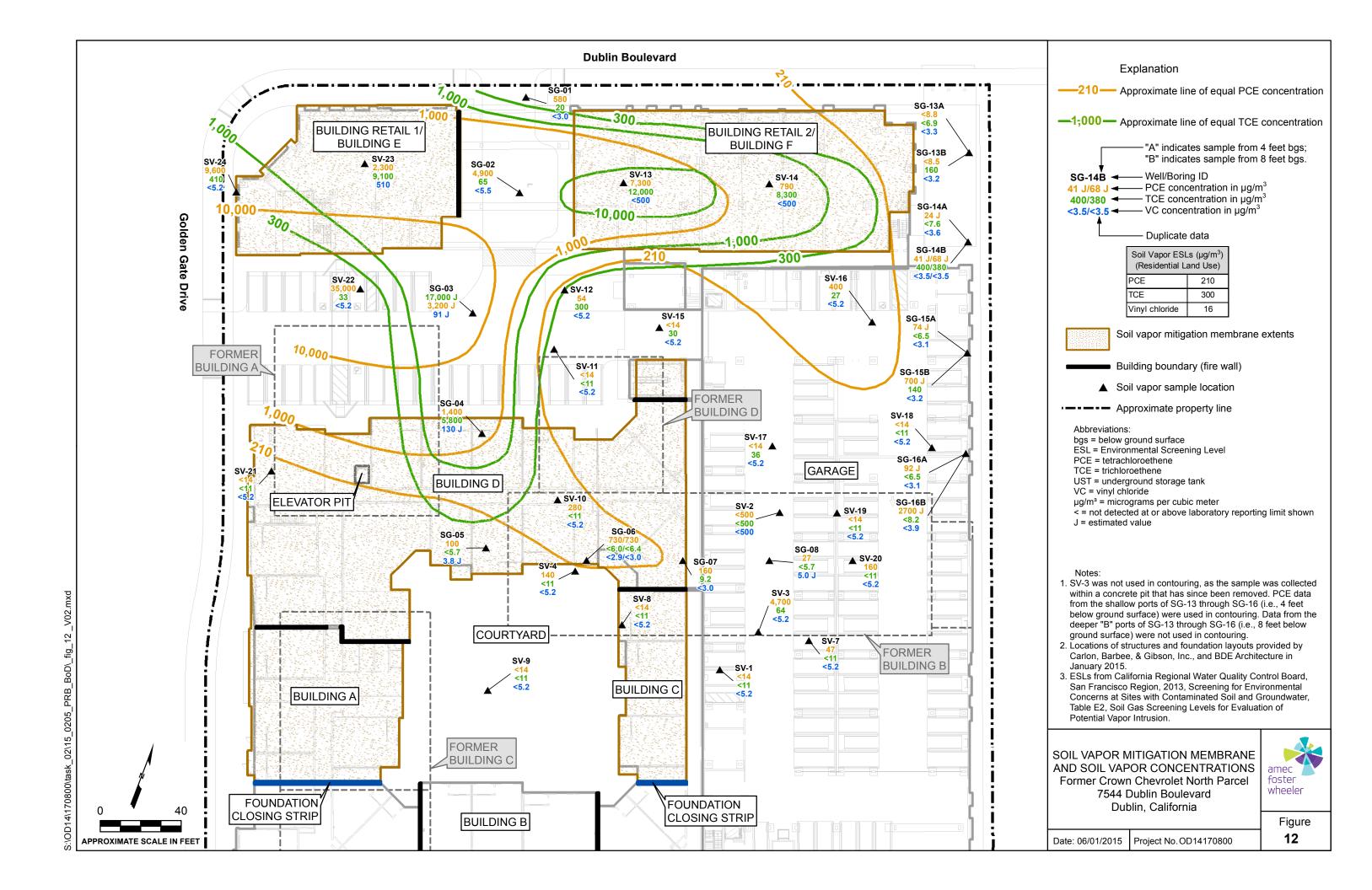

FIGURES

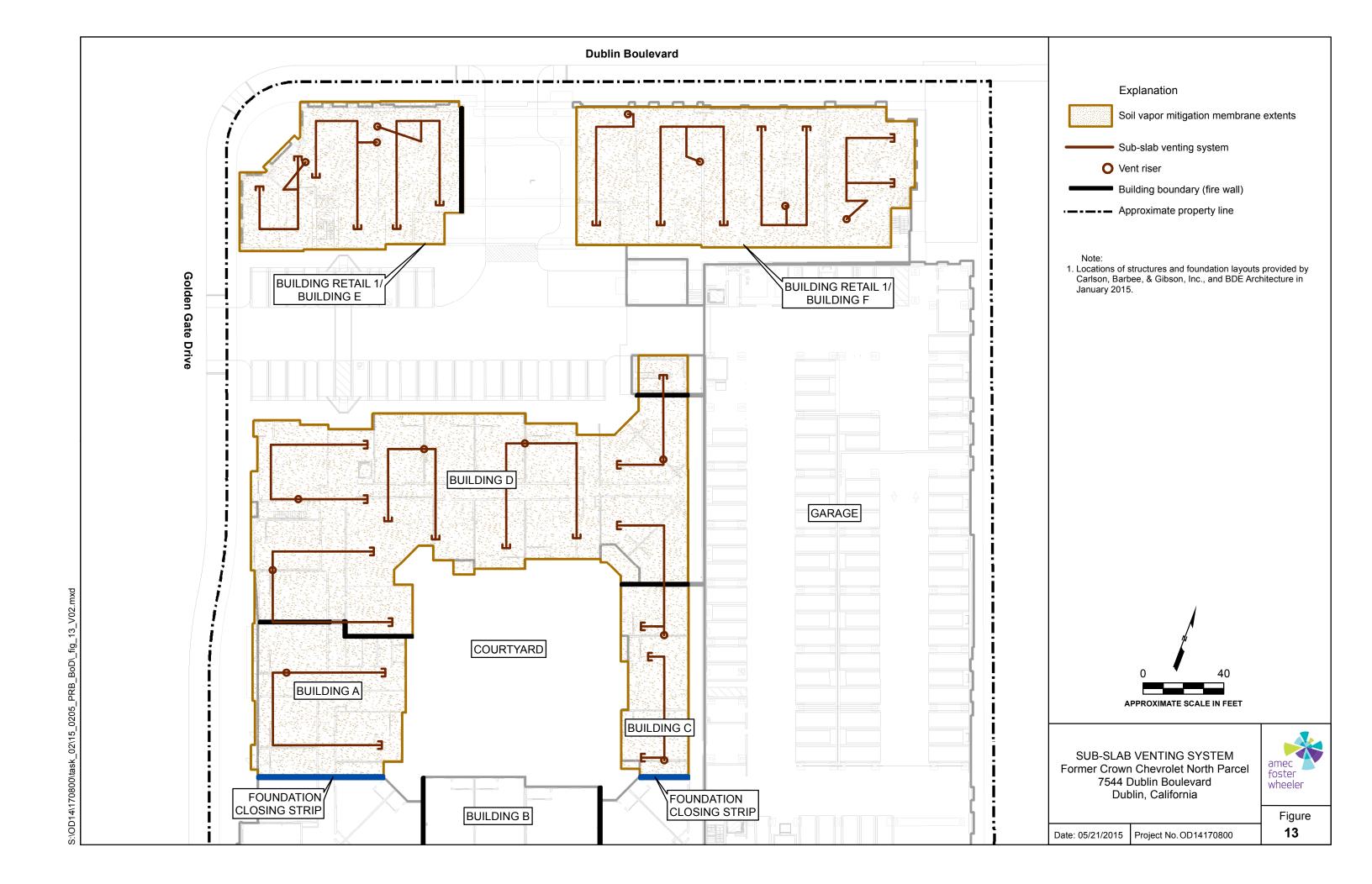


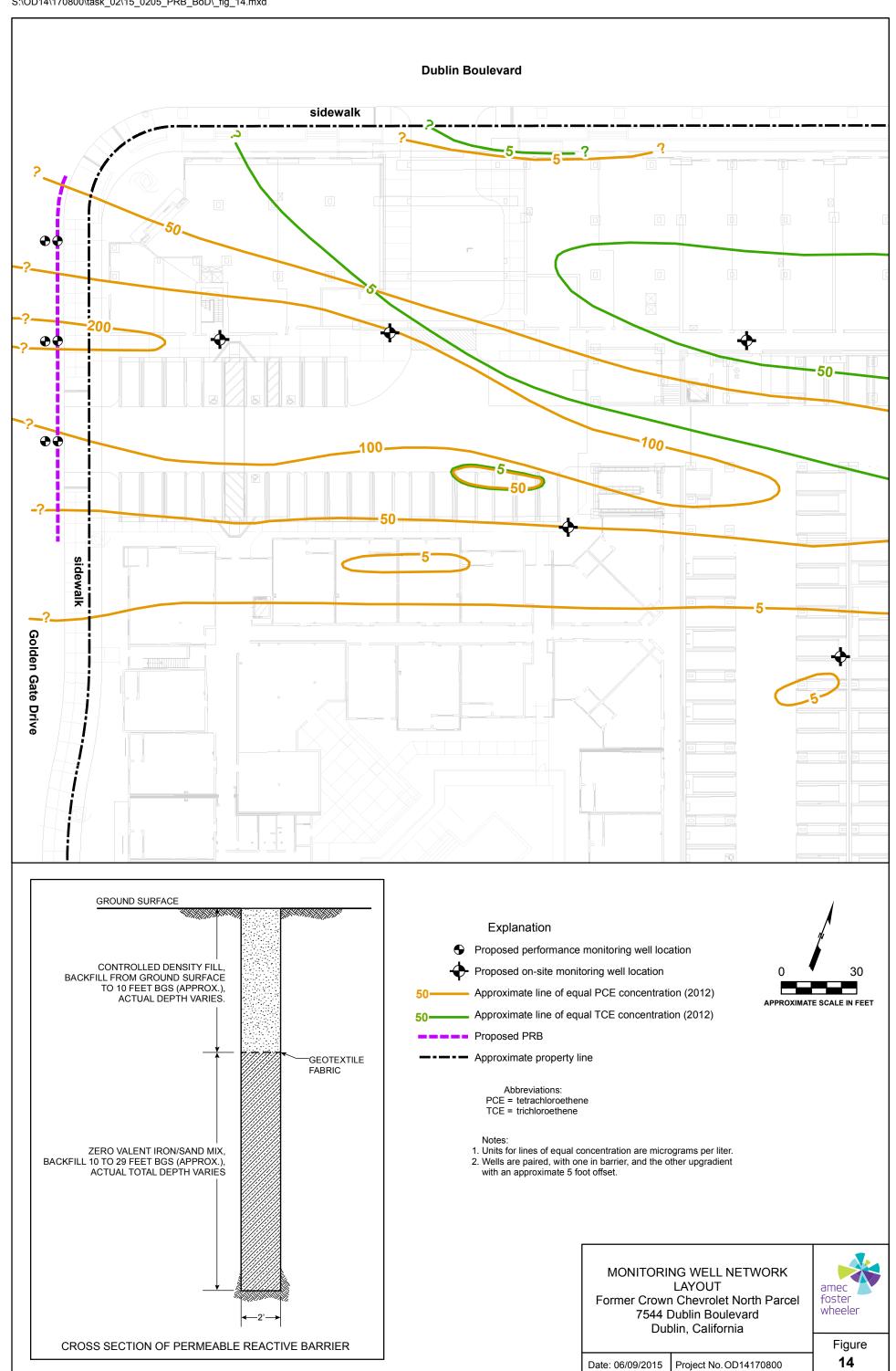












APPENDIX A

Soil and Groundwater Investigation Field and Laboratory Methods

Soil and Groundwater Investigation Field and Laboratory Methods

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared for:

BWD Dublin, LLC Dublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

R } ^ Æ 2015

Project No. OD14170800

TABLE OF CONTENTS

			Page
A1.0	DEVIA	TIONS FROM THE WORK PLAN	A-1
A2.0	A2.1 A2.2 A2.3 A2.4 A2.5 A2.6 A2.7 A2.8	METHODS	A-2A-3A-4A-5A-5A-5A-6A-6
A3.0 A4.0	A3.1 A3.2	SURVEY OF INVESTIGATION POINTS AND PIEZOMETERS RATORY ANALYTICAL METHODS AND QUALITY ASSURANCE LABORATORY ANALYTICAL METHODS DATA QUALITY REVIEW RENCES	A-6 A-7 A-7
		TABLE	
Table <i>i</i>		Investigation Borings and Samples Piezometer Construction Details	
		ATTACHMENTS	
Attach Attach Attach Attach Attach Attach	ment A- ment A- ment A- ment A- ment A- ment A- ment A-	Boring and Piezometer Logs Well Development Records Waste Disposal Manifests Survey Data Laboratory Analytical Reports Grain-Size Analysis Reports	

APPENDIX A

SOIL AND GROUNDWATER INVESTIGATION FIELD AND LABORATORY METHODS

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler") conducted a soil and groundwater investigation at the former Crown Chevrolet site (the site) from August 18 through 26, 2014. The investigation was designed to further characterize the site geology and groundwater chemistry and support the design of the permeable reactive barrier (PRB) planned for the site. The field investigation included advancing 13 soil electrical conductivity (EC) probe borings for the collection of high-resolution soil type data, advancing 1 dual-tube direct push boring for confirmation soil logging, collecting 13 depth-discrete grab-groundwater samples from HydroPunch™-type borings, and installing 3 piezometers.

A sampling matrix is presented as Table A-1 that summarizes sample collection and analyses performed during this investigation and prior investigations conducted at the site. Table A-2 includes construction details for piezometers installed at the site.

A1.0 DEVIATIONS FROM THE WORK PLAN

The primary deviations to the work plan are discussed in this section. Other minor deviations (including minor variations in total depths of borings), are discussed throughout this appendix.

The work plan indicated that EC borings would be advanced at up to 11 locations. Based on the results of the EC borings, it was determined that additional EC borings were warranted to more clearly define the subsurface lithology, for a total of 13 borings.

The work plan indicated that nine depth-discrete groundwater samples would be collected from six locations. Based on the analytical results from the groundwater samples collected early in the investigation, several additional samples were collected to more clearly define the horizontal and vertical extents of the groundwater plume, for a total of 13 samples from 11 locations.

A2.0 FIELD METHODS

The EC probes, direct push boring, HydroPunch-type borings, and borings for the installation of piezometers were advanced by National Exploration, Wells & Pumps ("National"), of Richmond, California, a California C57-licensed contractor, under the supervision of Amec Foster Wheeler field personnel. Prior to conducting the field work, Amec Foster Wheeler

Amec Foster Wheeler

obtained well installation and boring permit from the Zone 7 Water Agency; a copy of the well permit is included in Attachment A-1 to this appendix.

At least two business days prior to sampling, the anticipated boundaries of the areas to be sampled were marked with white paint and Underground Service Alert (USA) was contacted, in accordance with state law, to identify public utilities that may be in the vicinity of the proposed borings. Additionally, Amec Foster Wheeler contracted with a private utility locator to clear boring locations for underground utilities.

The borings were advanced under the direction of an Amec Foster Wheeler field geologist under the supervision of an Amec Foster Wheeler California Professional Geologist. Additionally, the first 5 feet of each boring was advanced using a hand auger as a precautionary measure to avoid unknown underground utilities. The hand auger was cleaned between use at each boring location by washing with a Liquinox[®] and potable water solution, and rinsing with potable water.

A2.1 ELECTRIC CONDUCTIVITY PROBE BORINGS

EC probe borings were advanced at 13 locations (see Table A-1 of this appendix and Figure 4 of the main portion of this report). The locations and total depths of the EC borings were determined based on the lithology encountered in the borings as the investigation progressed.

At each location, National advanced an EC probe, with a 1.75-inch outside diameter, to a total depth between 35 and 50 feet below ground surface (bgs) using direct-push drilling technology. The EC probe continuously measures electrical conductivity, which is a physical property of the soil matrix and is primarily controlled by the clay mineral content. Soil with relatively high clay mineral content is generally more electrically conductive than soil with low clay mineral content (for example, a sand or gravel with less than 5 percent fines would have a low electrical conductivity). Because the EC probe electrodes are in direct contact with soil as the tool is advanced through the subsurface, the resulting log aids in identification of coarsegrained and fine-grained sediments at a higher resolution than can be readily discerned during visual logging of soil extracted from the borehole. The EC logs were used to identify thin, coarse-grained layers that could be targeted for grab-groundwater sampling and to interpret the subsurface geology in the vicinity of the proposed PRB.

A2.2 DUAL-TUBE SOIL BORINGS

One soil boring was advanced by National to 35 feet bgs using a track-mounted GeoProbe[®] 7730DT drill rig with a DT32 dual-tube sampling system with an outside diameter of 3.25 inches. The soil boring was advanced in order to collect a continuous core of soil for comparison to the EC logs. The dual-tube boring was advanced adjacent to boring PRB-04, in an area where logs prepared by different consultants for historical borings located close to

each other have indicated significant variation (see Figure 4 of the main portion of this report and Table A-1).

The recovered soil was described by an Amec Foster Wheeler field geologist under the supervision of an Amec Foster Wheeler California-licensed Professional Geologist, using the visual-manual procedures of the ASTM International Standard D2488 for guidance, which is based on the Unified Soil Classification System (USCS). The recovered soils were screened for the presence of volatile organic compounds (VOCs) using a photoionization detector ("PID"). The PID readings were recorded on the soil boring log, a copy of which is included in Attachment A-2.

A2.3 DEPTH-DISCRETE GRAB-GROUNDWATER SAMPLING

Following completion of the EC probe borings, National advanced 10 HydroPunch-type borings using direct-push drilling technology with a 2.25-inch outside diameter rods, from which 13 grab-groundwater samples were collected (Table A-1). The borings were located in close proximity to, and upgradient (i.e., west) of, six of the EC probe borings, as shown on Figure 4 of the main portion of this report. The grab-groundwater samples were collected to provide an assessment of expected concentrations of VOCs within and beneath the PRB. The results are discussed and presented on Table 2 in the main portion of this report.

HydroPunch technology allows for collection of up to two depth-discrete grab-groundwater samples from the same borehole. At locations where a third or fourth depth-discrete sample was desired, an additional borehole was advanced a few feet away. Using the HydroPunch tool, one grab-groundwater sample was collected from three of the locations (PRB-01, PRB-04, and P-01), two samples were collected from P-02, and four samples were collected from PRB-02 and PRB-03 (from three borings at each location). Additionally, Amec Foster Wheeler attempted to collect a grab-groundwater sample from location P-03; but no sample was collected due to lack of water in the borehole. The grab-groundwater sampling depths were determined in the field based on data from the adjacent EC probe borings in order to collect groundwater samples from the first water-bearing zone (within the vertical range of the proposed PRB), from the fine-grained soils at or near the base of the proposed PRB, and from beneath the proposed PRB (see Figure 5 of the main portion of this report). Table A-1 provides a summary of the EC borings and groundwater sampling program.

Beginning with the shallowest planned groundwater sample interval, the HydroPunch sampling system was advanced to the bottom of the target interval where a grab-groundwater sample was to be collected. Once the target depth was reached, the outer casing of the HydroPunch was retracted to expose the target interval (between 6 inches and 2 feet) to the HydroPunch screen and the surrounding formation. At locations where a second groundwater sample was planned to be collected from the next water-bearing zone, the HydroPunch sampler was

removed from the borehole, decontaminated, and reinserted into the same borehole in order to advance to the next target interval. This methodology is acceptable because the HydroPunch casing seals off the first water-bearing zone during the collection of the second sample (i.e., there is no opportunity for cross-contamination).

Prior to the collection of the groundwater sample at each target interval, the HydroPunch casing was purged to decrease turbidity in the sample (at locations where there was insufficient groundwater flow, a sample was collected without purging). The purging was performed using a peristaltic pump with new polyethylene tubing. Following purging, a grab-groundwater sample was collected using the peristaltic pump and placed directly into laboratory-provided containers equipped with preservatives appropriate for the desired analyses. Each sample was immediately labeled with a unique identifier and the sample collection time, and stored in an ice-chilled cooler pending transport to TestAmerica Laboratories, Inc., of Pleasanton, California, a California Department of Public Health-certified analytical laboratory, under Amec Foster Wheeler chain-of-custody procedures.

A2.4 PIEZOMETER INSTALLATION, DEVELOPMENT AND GAUGING

Three piezometers were installed, developed, and gauged in order to refine our understanding of the groundwater gradient in the northwest corner of the site near the proposed PRB alignment. The locations of the piezometers (identified as PZ-01, PZ-02 and PZ-03) are shown on Figure 4 of the main portion of this report. The following sections describe the piezometer installation, development and gauging.

A2.4.1 Piezometer Installation

The piezometers were constructed in accordance with the appropriate state (California Department of Water Resources, 1991) and Zone 7 Water Agency requirements. The piezometers were installed within an 8.25-inch-diameter borehole that was advanced by National using hollow-stem auger drilling technology.

The piezometers were constructed using 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC) blank casing and 5 feet of slotted (0.010-inch slots) screen, and were screened from approximately 15 to 20 feet bgs (Table A-2). The annular space between the piezometer screen and surrounding formation was backfilled with Cemex brand #2/12 sized filter pack sand. The filter pack sand in each piezometer was placed such that the top of the filter pack sand extends approximately 1 foot above the screened interval. Approximately 2 feet of bentonite chips were then placed above the filter pack sand and allowed to hydrate in place. The remaining annular space above the hydrated bentonite chips was sealed using neat cement grout. All of the annular materials were placed into the well as the hollow-stem auger drill rods were retracted. Each piezometer was completed at the surface using a flush-

mounted, traffic-rated box set into concrete. A locking, watertight plug was placed in the top of the casing at each piezometer.

The piezometer construction details are included in Table A-2. Copies of the piezometer logs are included in Attachment A-2.

A2.4.2 Piezometer Development

At least 48 hours after installation, the piezometers were developed using a combination of bailing, surging, and purging until field parameters (turbidity, temperature, pH, and specific conductance) were relatively stable. These parameters were monitored during piezometer development and recorded on piezometer development records, copies of which are included in Attachment A-3.

A2.4.3 Piezometer Gauging

The three piezometers were included in the October 2014 and December 2014 groundwater elevation gauging events, and the gauging methods and depths-to-water are documented in the Third and Fourth Quarter 2014 Groundwater Monitoring Report (Amec Foster Wheeler, 2015).

An interpretation of the October 2014 potentiometric surface is shown on Figure 7 of the main portion of this report and an interpretation of the December 2014 potentiometric surface is shown on Figure 8 of the main portion of this report.

A2.4.4 Piezometer Destruction

The three piezometers were destroyed in December 2014, prior to site redevelopment. The piezometer destruction work will be documented in a forthcoming *Post-Demolition Investigation and Remediation Report*, which will be submitted to the Alameda County Department of Environmental Health in June 2015.

A2.5 SOIL SAMPLING FOR PHYSICAL PROPERTIES

In order to provide additional information regarding the soil types that will be adjacent to the proposed PRB, Amec Foster Wheeler collected seven bulk soil samples for grain-size analysis by ASTM D422. Samples targeting both finer- and coarser-grained soils encountered were collected from hollow-stem-auger boring PZ-02 (3 samples) and dual-tube boring PRB-04 (4 samples). See Table A-1 for a summary of samples collected.

Each soil sample was placed into a plastic bag and immediately labeled with a unique identifier and the sample collection time. The samples were sent to Cooper Testing Laboratory, of Palo Alto, California, under Amec Foster Wheeler chain-of-custody procedures. Copies of the laboratory results are included in Appendix G of the main portion of this report.

A2.6 DECONTAMINATION

All reusable sampling equipment was decontaminated prior to sampling and between use at each boring using a steam cleaner and/or Liquinox rinse followed by a final rinse using potable water.

A2.7 Boring Destruction

Following completion of the sampling activities, each direct-push boring (i.e., the EC, dual-tube, and HydroPunch borings) was backfilled with Type I/II neat cement grout using a tremie pipe, so that the boring was sealed from total depth to ground surface. The grab-groundwater samples were collected on a different day than the adjacent EC borings were installed in order to avoid possible impacts from the cement grout before it cured.

A2.8 INVESTIGATION-DERIVED WASTE

The investigation-derived waste (IDW), including drill cuttings, purge water, and equipment wash water, was stored at the site in appropriately-labeled 55-gallon drums pending disposal by Crown Chevrolet. To assist in the disposal, Amec Foster Wheeler collected one sample from each drum of soil cuttings, purge water, or equipment wash water generated during the investigation. Each IDW sample was submitted for analysis as described below in Section A3.0.

Following completion of the sampling, the waste was profiled and transported off-site for disposal at Potrero Hills Landfill, in Suisun, California. Copies of the waste disposal manifests are included in Attachment A-4.

A2.9 Survey of Investigation Points and Piezometers

Following completion of field investigation activities, Kister, Savio & Rei, Inc., of Pinole, California, a California Licensed Land Surveyor, recorded the location of each direct push boring and piezometer. The measuring point at each boring or piezometer was surveyed to a vertical accuracy of 0.01 foot and a horizontal accuracy of 0.1 foot.

A copy of the survey report is included in Attachment A-5.

A3.0 LABORATORY ANALYTICAL METHODS AND QUALITY ASSURANCE

Two blind field duplicate grab-groundwater samples were collected from the HydroPunch borings during the sampling event (samples PRB-03HP-340.0 and PRB-04HP-280.0; Table A-1). The blind field duplicate samples were analyzed for the same suite of constituents as the primary samples. Additionally, one equipment blank and two trip blank samples were submitted for analysis. The equipment blank was collected by decanting laboratory-provided deionized water through the decontaminated HydroPunch sampler and into laboratory-provided sample containers. The laboratory provided trip blank samples, which were included in coolers used to transport samples to the laboratory and analyzed following receipt. Amec Foster Wheeler

A3.1 LABORATORY ANALYTICAL METHODS

The grab-groundwater samples, trip and equipment blank samples, and IDW characterization samples were submitted under chain-of-custody procedures to TestAmerica Laboratories, Inc., of Pleasanton, California, a California Department of Public Health-certified analytical laboratory. The grab-groundwater samples were analyzed for the presence of VOCs and total petroleum hydrocarbons quantified in the gasoline range (TPHg) using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B. The IDW characterization samples were analyzed by TestAmerica as follows:

- Each sample from a drum containing purge water or equipment wash water was analyzed for pH by U.S. EPA Method 9040B; and
- A composite of all purge water and equipment wash water samples was analyzed for VOCs using U.S. EPA Method 8260B, and for Title 22 (CAM 17) Metals by U.S. EPA Methods 6020B and 7470/7471.
- One composite sample of soil from each soil drum was analyzed for VOCs using U.S. EPA Method 8260B, and for Title 22 (CAM 17) Metals by U.S. EPA Methods 6020B and 7470/7471.

The soil samples for physical properties analysis were submitted to Cooper Testing Laboratory, of Palo Alto, California, for grain size analysis by ASTM D422, including hydrometer analysis for differentiation of the fine sediments.

Copies of the laboratory analytical reports for the groundwater and waste characterization samples are included in Attachment A-6. Copies of the grain size analysis reports are included in Attachment A-7.

A3.2 DATA QUALITY REVIEW

Amec Foster Wheeler evaluated the grab-groundwater analytical data using guidelines set forth in the U.S. EPA's *USEPA National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, 2014). The complete data quality review, which was reviewed and acknowledged by an Amec Foster Wheeler quality assurance/quality control (QA/QC) senior technical reviewer, is included in Attachment A-8, and is summarized below.

Quality assurance procedures for groundwater samples collected during the quarterly groundwater monitoring program include the collection and analysis of one blind field duplicate sample and one MS/MSD sample per event; laboratory analysis of method blank samples, surrogate spikes, and LCS/LCSDs; and evaluation of the analytical results. Data accuracy was assessed by the analysis of laboratory control spike/laboratory control spike duplicate (LCS/LCSD) samples, matrix spike/matrix spike duplicate (MS/MSD) samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

Data precision is evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD, MS/MSD, and field duplicate sample pairs (as available) were evaluated to assess the precision of the analytical methods for the water sample data.

All detectable concentrations of TPHg (reported by the analytical laboratory as gasoline range organics) were identified by the laboratory to be the result of discrete peaks caused by the presence of PCE. Therefore, these TPHg results were qualified with "R" to indicate that they are rejected.

No other data quality deficiencies were identified during the data quality review. With the exception of the rejected data, all laboratory results are valid and usable.

A4.0 REFERENCES

- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2015. Third and Fourth Quarter 2014 Groundwater Monitoring Report and Annual Summary, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard, Dublin, California, April 21.
- California Department of Water Resources, 1991. California Well Standards, Bulletin 74-90, June.
- U.S. Environmental Protection Agency (U.S. EPA), 2014. USEPA National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, August.

TABLES

TABLE A-1

SOIL AND GROUNDWATER INVESTIGATION BORINGS AND SAMPLES

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Location	Boring or Boring Cluster ID	Date	Boring Type/ Drilling Method	Purpose	Sample ID	Sample Interval or Total Depth	Comments
PRB-01			EC	EC	Sample ID	41.9	Comments
PKD-UI	PRB-01EC PRB-01HP	8/20/2014	HP	_	 DDD 0411D 40 0	17.0 - 19.0	
DDD 00	-	8/25/2014		GGW	PRB-01HP-19.0		
PRB-02	PRB-02EC	8/18/2014	EC	EC GGW	PRB-02HP-18.5	35.5	
		8/19/2014	HP	GGW	PRB-02HP-18.5 PRB-02HP-23.0	16.5 - 18.5 21.0 - 23.0	
	PRB-02HP	8/21/2014	HP	GGW	PRB-02HP-23.0	25.5 - 27.5	
		8/25/2014	HP	GGW	PRB-02HP-33.0	31.0 - 33.0	
PRB-03	PRB-03EC	8/18/2014	EC	EC		36.6	
T IND-03	T ND-03E0			GGW	PRB-03HP-18.0	16.0 - 18.0	
		8/19/2014	HP	GGW	PRB-03HP-24.0	22.0 - 24.0	
	PRB-03HP	8/20/2014	HP	GGW	PRB-03HP-28.0	26.0 - 28.0	
	1112 00111		• • • • • • • • • • • • • • • • • • • •	GGW	PRB-03HP-34.0	32.0 - 34.0	
		8/25/2014	HP	GGW	PRB-03HP-340.0	32.0 - 34.0	Duplicate of PRB03-HP-34.0
PRB-04	PRB-04EC	8/18/2014	EC	EC		35.5	
111201				GGW	PRB-04HP-28.0	26.0 - 28.0	
	PRB-04HP	8/26/2014	HP	GGW	PRB-04HP-280.0	26.0 - 28.0	Duplicate of PRB-04HP-28.0
				Grain Size	PRB-04-18.5	18.0 - 18.5	
		,,,_,		Grain Size	PRB-04-20.0	19.5 - 20.0	
	PRB-04	8/18/2014	Dual-tube	Grain Size	PRB-04-25.0	24.5 - 25.0	
				Grain Size	PRB-04-27.5	27.0 - 27.5	
P-01	P-01EC	8/20/2014	EC	EC		36.2	
	P-01HP	8/20/2014	HP	GGW	P-01HP-19.0	17.0 - 19.0	
P-02	P-02EC	8/20/2014	EC	EC		35.6	
	D 00LID	0/04/0044	ш	GGW	P-02HP-18.0	16.0 - 18.0	
	P-02HP	8/21/2014	HP	GGW	P-02HP-27.5	25.5 - 27.5	
P-03	P-03EC	8/20/2014	EC	EC		37.35	
	P-03HP		HP	GGW	No water present	16.0 - 18.0	
PZ-01	PZ-01	8/25/2015	HSA	Piezometer		15.3 - 19.7	
PZ-02				Piezometer		15.5 - 19.9	
	D7.00	0/00/0044	1104	Grain Size	PZ-02-16.0	15.5 - 16.0	
	PZ-02	8/22/2014	HSA	Grain Size	PZ-02-18.0	17.5 - 18.0	
				Grain Size	PZ-02-19.5	19.0 - 19.5	
PZ-03	PZ-03	8/22/2014	HSA	Piezometer		15.1 - 19.6	
Boring A	A-EC	8/20/2014	EC	EC		35.7	
Boring B	B-EC	8/20/2014	EC	EC		35.7	
Boring C	C-EC	8/20/2014	EC	EC		35.8	
Boring D	D-EC	8/26/2014	EC	EC		36.1	
Boring E	E-EC	8/26/2014	EC	EC		50.0	
Boring F	F-EC	8/26/2014	EC	EC		50.0	

<u>Abbreviations</u>

-- = not applicable
EC = electrical conductivity probe boring

HP = HydroPunch-type boring HSA = hollow-stem auger

GGW = grab groundwater sample

TABLE A-2

PIEZOMETER CONSTRUCTION DETAILS

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

				Surv	ey Data ²		Construction Information					
Piezometer	Date	Date	Ground Surface Elevation	Top of Casing Elevation			Top of Screen	Bottom of Screen	Well Depth	Casing Diameter	Well Screen Slot Size	
ID	Installed	Destroyed 1	(feet)	(feet)	Northing	Easting	(feet bgs)	(feet bgs)	(feet bgs)	(inches)	(inches)	Filter Pack
PZ-01	8/21/2014	12/18/2014	343.18	328.44	2081792.36	6148269.44	15.3	19.7	20.3	2.00	0.010	#20/40 and 2/12 sand
PZ-02	8/22/2014	12/18/2014	342.93	328.54	2081986.53	6148237.08	15.5	19.9	20.4	2.00	0.010	#20/40 and 2/12 sand
PZ-03	8/22/2014	12/18/2014	342.10	328.38	2082005.33	6148289.18	15.1	19.6	20.2	2.00	0.010	#20/40 and 2/12 sand

<u>Notes</u>

- 1. The piezometer destruction will be documenting in a separate report to be provided by Amec Foster Wheeler.
- 2. The piezometers were surveyed by Kister, Savio, and Rei, Inc., of Pinole, California, relative to the NAD 83 horizontal datum and NAVD88 vertical datum.

Abbreviations

feet bgs = below ground surface
NAD = North American Datum
NAVD = North American Vertical Datum

ATTACHMENT A-1

Boring and Well Permit

ATTACH SITE PLAN OR SKETCH

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VO!CE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
Cheurolet Catillac IFUEN TS 44 Dublin blud, Dublin CA	PERMIT NUMBER <u>2014117</u> WELL NUMBER <u>3S/1W-1E28 to 1E30 (P-01 to P-</u> 03) APN <u>941~1500-015-09</u>
Coordinates Sourceft. Accuracy∀ft. LAT: 37.70768	PERMIT CONDITIONS (Circled Permit Requirements Apply)
CLIENT Name Terri Costello Address 12 Meadowlark Ct. Phone 925-984-1426 City Danville, CA Zip 94526 APPLICANT Name AMEC EST (Alex Rosenthal) Email alex, Rosenthal@amec.com Fax 510-663-4141 Address 180 Grand Ave, Suite 1100 Phone 510-663-4152	 A. GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller.</u> Permit is void if project not begun within 90 days of approval date. Notify Zone 7 at least 24 hours before the start of work.
City Oskland, Ca Zip 94612 TYPE OF PROJECT: Well Construction	 WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the
Industrial Groundwater Monitoring Dewatering Other DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Cable Tool Direct Push Other DRILLING COMPANY National Exploration, LIEUS and Pumps DRILLER'S LICENSE NO. C557 953646	wellhead. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS: Drill Hole Diameter 8.25 in. Maximum Casing Diameter 1. in. Depth 2.0 ft. Surface Seal Depth 1.2 ft. Number 3.	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings Maximum Hole Diameter 3.25 in. Depth 35 ft.	 E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE 8/18/14	 F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S SIGNATURE Date 8/1/14	Approved Wyman Hong Date 8/15/14

Revised: January 4, 2010

= proposed boring location

= proposed piezometer location

PERMIT 2014/17 APN 941-1500-015-09

ATTACHMENT A-2

Boring and Piezometer Logs

PROJE	ECT:			N CHEVI	ROLET d., Dublin, CA	Log of Bo	orir	ng No. Pl	RB-04
BORIN	IG LO				2910, 6148216.0051	ELEVATION AND DATU 343.65' (NAVD 88)	UM:		
DRILLI	NG C	ONT	ΓRAC	TOR: Natio	onal Exploration Wells and Pumps	DATE STARTED: 8/18/14		DATE FINIS 8/18/14	SHED:
DRILLI	NG M	IETH	HOD:	Direct	push	TOTAL DEPTH (ft.): 35.0		MEASURIN Ground St	
DRILLI	NG E	QUI	PMEN	NT: Geopre	obe 7730DT	DEPTH TO WATER (ft.)		FIRST 17.5	COMPL. NA
SAMPI	_ING I	MET	HOD			'			
HAMM	ER W	'EIG	HT:	ESSI	ONAL:	REG. NO. PG 8541			
DEPTH (feet)	Sample No.	MPL ed	Blows/ Si Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. do cementation, react. w/HCl, geo. in	ensity, structure, ter.		RE	MARKS
	San	San	용공	REV (F	Surface Elevation: 343.				
					ASPHALTIC CONCRETE (8 inches)				
_				0	AGGREGATE BASE (5 inches)		-		
1-					LEAN CLAY with SAND (CL): very dark gray (10YR 3/1), moist,	-		
_				0	80% low palsticity fines, 20% fine sand, hard				
2-				0				Hand augere	ed to 5 feet bgs
3-				0					
3-				U	— SANDY LEAN CLAY (CL)				
_				0	CLAYEY SAND (SC): dark brown (10YR 3/3),	moist, 60% fine to			
4-				U	medium sand, 40% low plasticity fines				
5-				0					
5-				U	SANDY LEAN CLAY (CL): dark brown (10YR	3/3), moist, 60% low			RAE 2000 PID
6-				0	plasticity fines, 40% fine sand, firm			calibrated wi isobutylene	
0-				U					
7-				0					
_				O					
8-				0					
_				o l	60% fines, 40% fine to medium sand				
9-				0					
10-				0			_		
"-									
11-				0					
''_									
12-				0			_		
					_		_		
13-				0	70% fines, 30% fine to medium sand, hard		_		
_									
14-				0					
'-									
15-									
10				.		Project No. OD	1010		KBOREV (REV. 8/2011)
		ć	me			Project No. OD	1016	J0070 I	Page 1 of 3

PROJECT: CROWN CHEVROLET

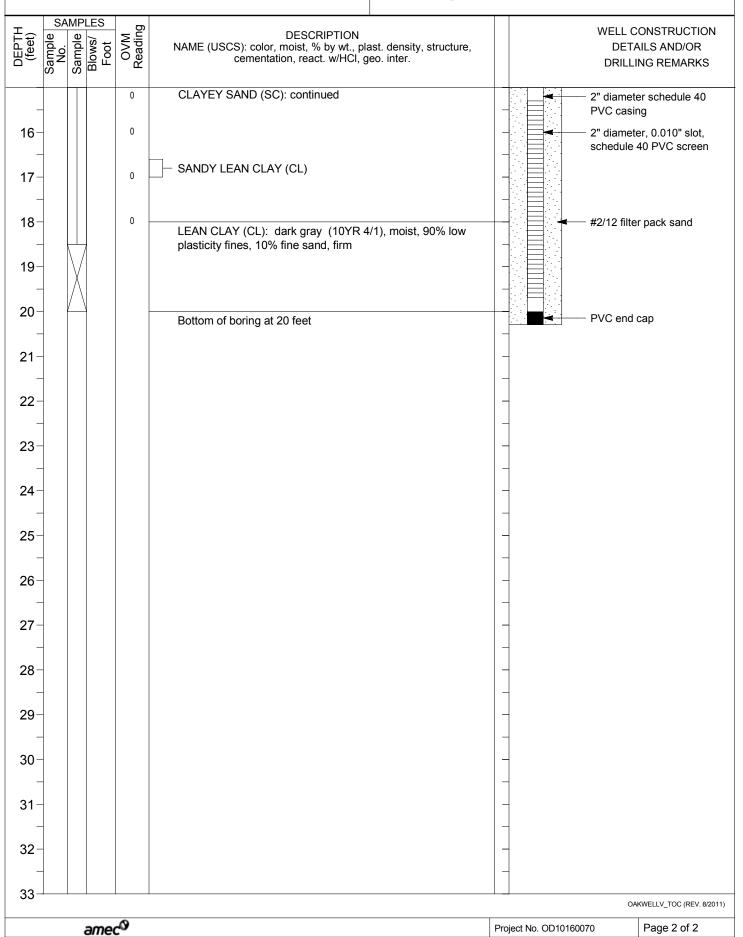
7544 Dublin Blvd., Dublin, CA

Log of Boring No. PRB-04 (cont'd)

				T			
DEPTH (feet)	Sample No.		Blows/ ST Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure,		REMARKS
	San	San	음		cémentation, réact. w/HCl, geo. inter.		
-				0	CLAYEY SAND (SC): dark brown (10YR 3/3), moist, 60% fine to medium sand, 40% low plasticity fines	_	
16 -				0		_	
17-				0		_	
18-	PRB-04-18.5			0	wet, 80% fine to medium sand, 20% fines	<u>-</u>	
-	PRB-0			_	60% fine to medium sand, 40% fines		
19 <i>-</i> -	4-20.0			0	SANDY LEAN CLAY (CL): very dark grayish brown (10YR 3/2), moist, 60% low plasticity fines, 40% fine sand, hard	_	
20 –	PRB-04-20.0			0		_	
21-				0	CLAYEY SAND (SC): dark brown (10YR 3/3), wet, 60% fine to medium sand, 40% low plasticity fines	_	
- 22-				0		_	
-							
23-				0		_	
24 –				0		_	
25 –				0		- -	
_						_	
26 – –				0		_	
27 –				0		_	
28-				0		_	
29-				0	LEAN OLAY with CAND (CL), were deal, receicle because (40VD 2/0)		
-				_	LEAN CLAY with SAND (CL): very dark grayish brown (10YR 3/2) moist, 80% low plasticity fines, 20% fine sand, firm	_	
30 –				0	LEAN CLAY (CL): very dark grayish brown (10YR 3/2), moist, 90% low plasticity fines, 10% fine sand, hard	%	
31-				0		_	
32-				0	LEAN CLAY with SAND (CL): brown (10YR 5/3), moist, 80% low plasticity fines, 20% fine sand, firm		
33					SANDY LEAN CLAY (CL): brown (10YR 5/3), moist, 60% low plasticity fines, 40% fine sand, firm		
					<u> </u>		OAKBOREV (REV. 8/2011)
		ć	me	c _O	Project I	No. OD10160070	Page 2 of 3

PROJECT: CROWN CHEVROLET

7544 Dublin Blvd., Dublin, CA

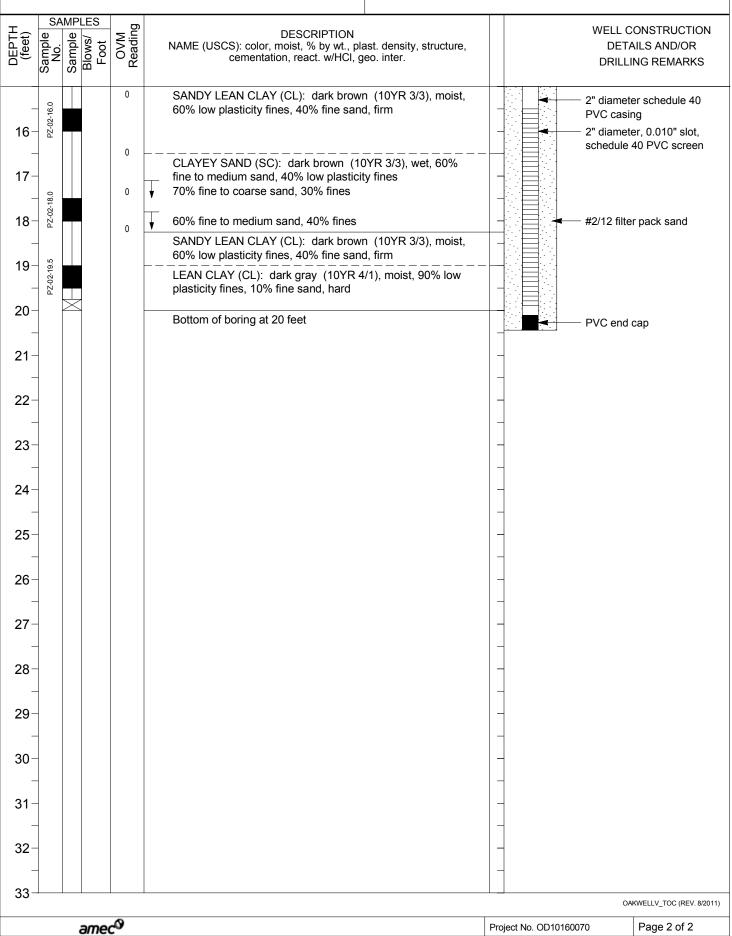

Log of Boring No. PRB-04 (cont'd)

	SAN	ЛРL	ES	ŋ			
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.		REMARKS
-	-			0	SANDY LEAN CLAY (CL): continued	_	Borehole destroyed using type II/V neat cement grout placed from total depth to
34 –				0	CLAYEY SAND (SC): brown (10YR 5/3), wet, 70% fine to medium sand, 30% low plasticity fines	_	ground surface with a tremie pipe
35 – –	-				Bottom of boring at 35 feet		
36 – –	-					_	
37 -	_					_	
38 –						_	
39-	-					_	
40 –						_	
- 41 -	-					_	
42-	-					_	
43-	_					_	
44 –	-					_	
- 45 -	-					_	
- 46	-					_	
_	-					_	
47 – –	-					_	
48 – –	-					_	
49 – –	-					_	
50 – –	-					_	
51-							OAKBOREV (REV. 8/2011)
		а	me	co	Project No. C	DD101	60070 Page 3 of 3

PROJECT: CROWN CH 7544 Dublin	HEVROLET Blvd., Dublin, CA	Log of Well No. PZ-01
	tude: 37.703537492; Longitude: -121.929015074	TOP OF CASING ELEVATION AND DATUM: 343.18' (NAVD 88)
DRILLING CONTRACTOR:	National Exploration Wells and Pumps	DATE STARTED: DATE FINISHED: 8/21/14
DRILLING METHOD: Direct	ct push/Hollow Stem Auger	TOTAL DEPTH (ft.): SCREEN INTERVAL (ft.): 20.3 15.3-19.7
DRILLING EQUIPMENT: (Geoprobe 7730DT	DEPTH TO FIRST COMPL. CASING: WATER (ft.): 12.5 12.01 2" Sch. 40 PVC
SAMPLING METHOD: Geo	oprobe DT22 dual-tube sampling system [5' x 1.125"]	LOGGED BY: A. Rosenthal
HAMMER WEIGHT: NA	DROP: NA	RESPONSIBLE PROFESSIONAL: REG. NO. PG 8541
DEPTH (feet) Sample No. Sample Blows/ Foot OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, strucementation, react. w/HCl, geo. inter.	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
Sar	Surface Elevation: 343.18	
	ASPHALTIC CONCRETE (4 inches)	Traffic Rated Well Box
	AGGREGATE BASE (5 inches)	concrete
1- 0	LEAN CLAY with SAND (CL): very dark gray (10YF moist, 80% low palsticity fines, 20% fine sand, hard	
		Note 1. Hand augered to 5 feet bgs
3- 0	SANDY LEAN CLAY (CL)	2. Boring location coordinates are based
4-	CLAYEY SAND (SC): dark brown (10YR 3/3), mois fine to medium sand, 40% low plasticity fines	on North American Datum of 1983 3. OVM = MiniRAE 2000 PID calibrated with
5 0		100 ppm isobutylene standard
6- 0	SANDY LEAN CLAY (CL): dark brown (10YR 3/3), 60% low plasticity fines, 40% fine sand, firm	moist, neat cement grout
7- 0	70% fines, 30% fine to medium sand	- 8.25" diameter borehole
8- 0	70% lines, 50% line to medium sand	2" diameter schedule 40 PVC casing
9- 0		
10-		
11- 0		
12- 0		
13-	CLAYEY SAND (SC): dark yellowish brown (10YR wet, 30% fines, 70% fine to medium sand	4/4), medium bentonite chips
14-		#2/12 filter pack sand
15	1	OAKWELLV_TOC (REV. 8/2011)
amec [©]		Project No. OD10160070 Page 1 of 2

PROJECT: CROWN CHEVROLET 7544 Dublin Blvd., Dublin, CA

Log of Well No. PZ-01 (cont'd)

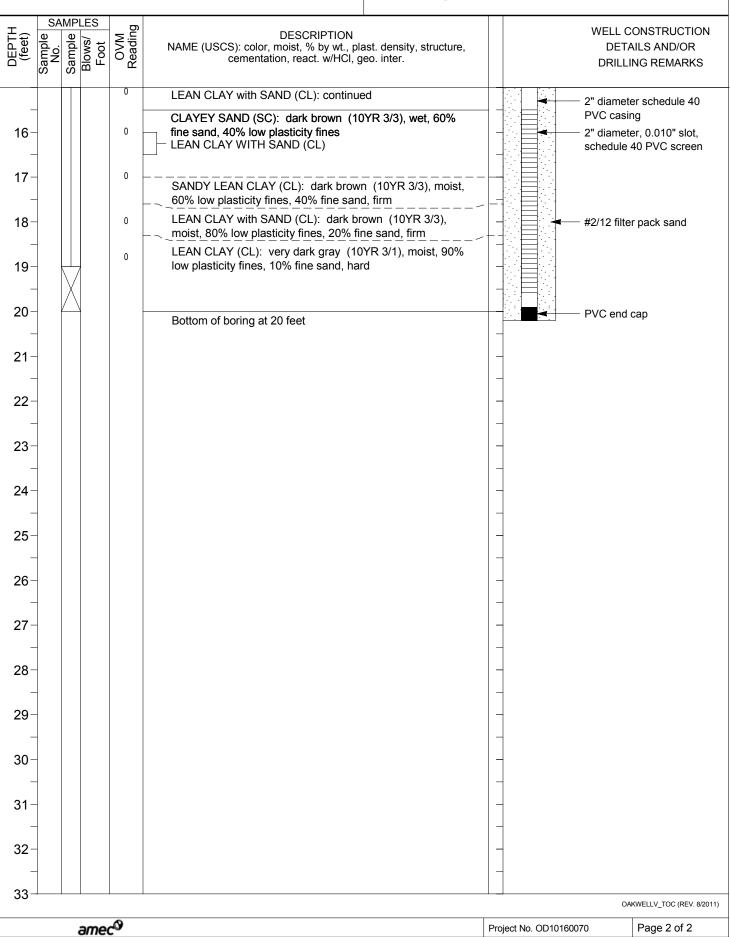

PROJI	ECT:				EVROLET Blvd., Dublin, CA		Log of V	Vell N	lo. PZ-02
BORIN	NG LC	CA	TION:	Latitu	ude: 37.704069339; Longitude: -121.929137149		CASING ELEVA (NAVD 88)	1A NOITA	ND DATUM:
DRILL	ING (CON	ITRAC	TOR: 1	National Exploration Wells and Pumps	DATE ST. 8/22/14	ARTED:	8	ATE FINISHED: /22/14
DRILL	ING N	ИΕТ	HOD:	Direct	push/Hollow Stem Auger	20.4	EPTH (ft.):	1	CREEN INTERVAL (ft.): 5.5-19.9
ORILL	ING E	QU	IPMEN	NT: Ge	eoprobe 7730DT	DEPTH TO WATER (f	^{t.):} 14.2 11		ASING: " Sch. 40 PVC
SAMP	LING	ME	THOD	Geop	robe DT22 dual-tube sampling system [5' x 1.125"]	A. Rose	enthal		
IAMN			SHT: N	IA	DROP: NA	A. White	SIBLE PROFES marsh	SSIONAL	.: REG. NO. PG 8541
DEPTH (feet)	Sample No.		Blows/ ST	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, str cementation, react. w/HCl, geo. inter.	ucture,			ONSTRUCTION DETAILS R DRILLING REMARKS
5=	Sar	Sar	용단	Se l	Surface Elevation: 342.93		-		
					ASPHALTIC CONCRETE (8 inches)		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	— Traffic	Rated Well Box
1-					AGGREGATE BASE (5 inches)		444 444	con	crete
-				0	LEAN CLAY with SAND (CL): very dark gray (10Yl moist, 80% low plasticity fines, 20% fine sand, hard	R 3/1),			
2-				0	,,,,,			Not	<u>e</u> Hand augered to 5
3-				0	SANDY LEAN CLAY (CL): dark brown (10YR 3/3), 60% low plasticity fines, 40% fine to medium sand, 1			fo 2. l	eet bgs Boring location coordinates are based on North American
4-				0				3. (F	Oatum of 1983 OVM = MiniRAE 2000 PID calibrated with 00 ppm isobutylene
5- - 6-				0 0					tandard
7-				0	− CLAYEY SAND (SC)			⋖─ 8.2	5" diameter borehole
8-				0	CLATET SAIND (SC)				liameter schedule 40 C casing
9-			7	0					
10- -		X	`	0	LEAN CLAY with SAND (CL): dark brown (10YR 3 moist, 80% low plasticity fines, 20% fine sand, firm	/3),			
11- -				0					
12- -				0					
13- -				0				← — me	dium bentonite chips
14-	-			0	SANDY LEAN CLAY (CL): dark brown (10YR 3/3), 60% low plasticity fines, 40% fine to medium sand, to	irm			
15					CLAYEY SAND (SC): dark gray (5Y 4/1), wet, 60% medium sand, 40% low plasticity fines	fine to		#2/	12 filter pack sand
15-			•				· - r		OAKWELLV_TOC (REV. 8/2011
			ame	-0			Project No. OD10	160070	Page 1 of 2

PROJECT: CROWN CHEVROLET 7544 Dublin Blvd., Dublin, CA

Log of Well No. PZ-02 (cont'd)

Project No. OD10160070

Page 2 of 2


PROJE	ECT:				EVROLET Blvd., Dublin, CA		Log of Well No. PZ-03				
BORIN	IG LC	CA ⁻	TION:	Latit	ude: 37.704123140; Longitude: -121.928958058		CASING ELEVATION AND DATUM: O' (NAVD 88)				
DRILLI	ING C	CON	TRAC	TOR:	National Exploration Wells and Pumps	DATE ST 8/22/14					
DRILLI	ING N	/IET	HOD:	Direct	t push/Hollow Stem Auger	20.2	DEPTH (ft.): SCREEN INTERVAL (ft. 15.1-19.6				
DRILLI	ING E	QU	IPMEN	NT: G	eoprobe 7730DT	WATER (f	TO FIRST COMPL. CASING: (ft.): 15.5 11.04 2" Sch. 40 PVC				
SAMP	LING	ME	THOD	Geor	probe DT22 dual-tube sampling system [5' x 1.125"]	A. Rose	enthal				
HAMM			SHT: N	IA	DROP: NA	A. Whit	NSIBLE PROFESSIONAL: REG. NO. rtmarsh PG 8541				
DEPTH (feet)	Sample No.		Blows/ F	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, str cementation, react. w/HCl, geo. inter.	ructure,	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS				
	San	San	Blo	Se S	Surface Elevation: 342.10						
					ASPHALTIC CONCRETE (8 inches)		Traffic Rated Well Box				
1-				0	AGGREGATE BASE (5 inches)		Concrete				
_				-	LEAN CLAY with SAND (CL): very dark gray (10Y moist, 80% low plasticity fines, 20% fine sand, hard		T-				
2-				0			Note 1. Hand augered to 5				
3-				0	SANDY LEAN CLAY (CL): dark brown (10YR 3/3) 60% low plasticity fines, 40% fine to medium sand,		feet bgs 2. Boring location coordinates are based on North American				
4-				0			Datum of 1983 3. OVM = MiniRAE 2000 PID calibrated with				
5- -				0			100 ppm isobutylene standard				
6-				0	CLAYEY SAND (SC)		neat cement grout				
7-				0			8.25" diameter borehole				
8-				U			2" diameter schedule 40 PVC casing				
9- - 10-		\bigwedge		0	LEAN CLAY with SAND (CL): dark brown (10YR 3 moist, 80% low plasticity fines, 20% fine sand, hard						
- 11-				0							
12-				0	▼ dark gray (10YR 4/1)						
13-				0			medium bentonite chips				
14-				0	SANDY LEAN CLAY (CL): dark gray (10YR 4/1), r 60% low plasticity fines, 40% fine to medium sand, LEAN CLAY with SAND (CL): dark gray (10YR 4/1)	firm	#2/12 filter pack sand				
15-					80% low plasticity fines, 20% fine sand, firm						
			amed	•			OAKWELLV_TOC (REV. 8/20 Project No. OD10160070 Page 1 of 2				

PROJECT: CROWN CHEVROLET 7544 Dublin Blvd., Dublin, CA

Log of Well No. PZ-03 (cont'd)

Project No. OD10160070

Page 2 of 2

ATTACHMENT A-3

Well Development Records

Job Number:

0010160070.00012.A

WELL DEVELOPMENT FORM

Project:		Com	Che	y		Deve	elopment M	ethod	Swac/	mup	Well No. TESO
Personnel:		AI	Oser	tha	1	Total Depth:	20	9.0			Well No
Time	Depth to water ft.	Gallons Removed	Turbidity (Ntu)	рН	Temp C	Electrical Conductivity	D.O. mg/liter	Redox Mv	Recovery Rate Inches/min.	Recovery Rate gpm	
1540	2/4										Surge for 15 Min
1604	14.30	4	>1000	6.82	25.6	1433					Bail ~ 4 gallors
1607	14.30	8	>100	6.79	22-3	1377					
1609	14.30	9	1000		21.8	1358					
1614	14.30	14	>100	6.83	23.0	1373					
1616	14-30	15			22.0	1355					
	14.30		71000		21.8	1326					
1621	14.30		244	6,70	21.1	1332					
1625	14.30	25	757	679	21,5	1335					Section
1627	14/.30	27	150	6.75	21.5	1326					
1629			47	6.27	21.3	1329					
1631	14.30	31	23	6,76	21,3	1324					

Subtotal Gallons Removed:	new -
Total Gallons Removed:	

Subtotal Gallons Removed:

Total Gallons Removed:

WELL DEVELOPMENT FORM

bb Number: (40) (600+0.0012. F				F7-07								
Project: Personnel:	RICC	AX	- Che Osen	fal I	2	Deve	elopment M	ethod	Suge/fl	imp		
Time	Depth to water ft.	Gallons Removed	Turbidity (Ntu)	рН	Temp C	Electrical Conductivity	D.O. mg/liter	Redox Mv	Recovery Rate Inches/min.	Recovery Rate gpm		
1300	13.81	0		Tr.							Junge For 15 MM	
320	13.94	0	_	,							Surge for 15 min Begin bailing.	
336	13.81	4	>100	6.88	21.9	1340					/	
1347	13.86	7	> 1000	6.92	24,3	1321						
1400	13,90	8	>1200		22.9	1227	7					
1403	13.89	9	594		22.5	1258				2	N. Carlotte	
1406	13,93	16		6.98		1251						
426	14.01	12	346		24.2	1215						
1430		13	183	6.64	228	1208						
1431	14.25	14	198	6.82	22.4	1200						
1433	13.91	1	47	6.83	22.7	1218						

Reviewed by _____

WELL DEVELOPMENT FORM

						VVE	LL DE	VELUP	INICIAIL	OKIVI	
Job Number:		ODIO	160070	0.0017	2. A				, ,		01 22
Project:		Cro	un c	hery		Deve	elopment M	ethod	Surge/ +	Purep	Well No. PE-03
Personnel:		AI	Zosen	the	ĺ	Total Depth:	20	2.0			Well No. PZ-03 Date: 8/25/14
Time	Depth to water ft.	Gallons Removed	Turbidity (Ntu)	рН	Temp C	Electrical Conductivity	D.O. mg/liter	Redox Mv	Recovery Rate Inches/min.	Recovery Rate gpm	
2145	13.20	-								_	Surge block for 15 Min
1515	14.34	4	>1000	7.04	23.6	1293	_				Surge block for 15 Min bail 3 gal, begin pumping.
1520	13.15	6	732	709	23.2	1245					
1522	13.32	7	356	7,23	23.3	1244					
1524	13.32	_	>1000	7.21	23.1	1291					
1527	13,33	10	886	7.22	23.0	1312					
1529	13.10	11	>1000	7.24	22.7	1346					
Subtotal	Gallons R	emoved:						•			
Total G	allons Rer	moved:									

Reviewed by _

ATTACHMENT A-4

Waste Disposal Manifests


1	NON-HAZARDOUS WASTE MANIFEST		QUIRED		3. Emergency Response		4. Waste Trac	_	²¹⁴⁶⁶⁸				
	5. Generator's Name and Mailir	•			Generator's Site Address	(if different ti	nan mailing addres	ss)					
	Crown Chavro												
		itvd., Dublin CA (925) 828-65(nn	Ī					·				
	Generator's Phone 6. Transporter 1 Company Nam	10		<u> </u>			U.S. EPA ID N	lumber					
	American Inte	egrated Services, Inc.				U.S. EPA ID Number CAR000148338							
	7. Transporter 2 Company Nam	19					U.S. EPA ID N	iumber					
	·												
	8. Designated Facility Name an						U.S. EPA ID N	lumber					
	Potrero Hills												
	3675 Potrero	· ·					ı	NOT	REQUIRED				
	Facility's Phone:	Suisun, CA 945	85		10, Conta	inore		l					
	9a. 9b. U.S. DOT Description	n (including Proper Shipping Name)			No.	Type	11. Total Quantity	12. Unit Wt./Vol.					
1	1.				.10.	1,900	,		Fac. 8885 (A. 144)				
GENERATOR	Non-Haz	zardous Waste Solid, (Soil)		ØLØ	DM	SOOD	P					
ENE	2.												
<u>σ</u>			•										
$\ \ $			<u> </u>	<u></u>									
	3.								Constitution in the Constitution of the Consti				
	1												
	4.			ı									
	1 4.		ı	j									
	}												
	13. Special Handling Instruction	ns and Additional Information						<u> </u>	1000000000000000000000000000000000000				
	. •				Dr	ofile#:	PHLF110	NEO	*. *				
	Managara I	DDC while bendling 1	Africanto es col		I am a second and a								
		PPE while handling.	_			ject#:	74026-17	7-7					
	approximate.	. 24 hour emergency i	number (000)	425-0000	'		Tr.		1				
	<u> </u>												
	14. GENERATOR'S CERTIFIC Generator's/Offeror's Printed/Ti	CATION: I certify the materials describe				reporting prop	per disposal of Ha	zardous Wa					
	Generator Stonerors Printed/ly	yped Name 5E 55 COST	ELLO	Sig I	nature / // //	7,47	CA 10T	(Month Day Year				
<u>,</u>	15. International Shipments	<u> </u>			WW C	NU	un		Indian whom the				
INT	Transporter Signature (for expo	Import to U.S.	L	Export from (J.S. Port of en Date leav								
-	16. Transporter Acknowledgem				Date leav	ing O.O.							
'nTE	Transporter 1 Printed/Typed Na	ame		Sig	nature	1,	7		Month Day Year				
SPO		beco martin	V6 2	·	Morco	Mã	W.						
TRANSPORTER	Transporter 2 Printed/Typed Na	ame		Sig	nature				Month Day Year				
E	42 BY												
A	17. Discrepancy 17a Discrepancy Indication Sp	2000	P	·,									
П	17a Discrepancy indication op	Quantity	∟ Туре		Residue		Partial Rej	ection	Full Rejection				
					Manifest Det	M.,							
	17b. Alternate Facility (or Gene	erator)	····	Manifest Reference Number: U.S, EPA ID Number									
Ē	7 (O.S. ETA ID MULIDOI									
FACILITY	Facility's Phone:												
ÜF	17c. Signature of Alternate Fac	cility (or Generator)	<u>-</u>	<u> </u>					Month Day Year				
S													
DESIGNED								4.4					
]													
	10 Designation Facility Owner as Occurrent Confidential of materials at materials a												
	18. Designated Facility Owner or Operator; Certification of receipt of materials covered by the manifest except as noted in Item 17a												
V	Printed/Typed Name	0		Sig I	mature				Mofilin) Day "Year				
16	9-BLC-O 5 11977 (Re	2/00/			-/-	·····	DECIONAT		CILITY TO GENERATOR				
10	nerono a man (ue.	t. 0/00)			/		PESIGNAL	LD PAL	ALITE TO GENERALUM				

			` `				-					
Å		ON-HAZARDOUS	1. Generator ID Number	A CALLER THE PARTY OF THE		ergency Response		4. Waste Tra	cking Num	^{ber} 214	676)
		ASTE MANIFEST nerator's Name and Mailir		NOT REQUIRED	Gener	ator's Site Address	24-9300		200	frace artis and	<u>U (c</u>	£
Ш	J. GBI	CROWN CHEVE	=		Gener	ators one Address	i (ii Gillelelii ii	ian mainiy addie	:55)			
				AFCA								
			ivi., Dubin CA 9 2008	*****)828-6500	,* 1							
		ator's Phone Isporter 1 Company Nam		lore onno	<u> </u>			U.S. EPA ID I	Number			
		• •	syrated Service	ia len				0.0. EFA 10 1		CAR00014	SCHOOL SECTION	Ĥ
	7 Tran	sporter 2 Company Nam	<u>-</u>					U.S. EPA ID I		CALCULATION EN	NUV	<u> </u>
		ŽVITOVIV	putal 1	archer. Line						17513		
	8. Des	signated Facility Name an	d Site Address	-GIMENO C				U.S. EPA ID I		<u>-1 (7)))</u>		
		ignated Facility Name an Crosby & Ov	erion, inc.					0.0. 2.1110	Tallibol			
.		1630 W. 16th	Street						(CAD02840	9019	
	Facility	y's Phone:	Long Be	ach, CA. 90813 8	62-432-5445			1				
						10, Conta	ainers	11. Total	12. Unit		 :	
H	9a.	9b. U.S. DOT Description	n (including Proper Shipping	g Name)		No.	Туре	Quantity	Wt./Vol.			
<u> </u>		1.		· · · · · · · · · · · · · · · · · · ·								
5		NON-HA	ZARDOUS WA	STE LIQUID (WATE	R)	1 0 - 0	DM		G			
ž						COS		275	1			12/1
GENERATOR		2.						4		1、茅:外	THE SE	
١		ļ						**				
		ç			,	1				操作。		對於便
		3.					ا با			erjangska i V jan	•	
			. •			.*		, ©				
H		-							<u> </u>		4/	
Ш		4.						-			7/4	
		į									fyg.	
	12 Cr	ocial Handling Instruction	on and Additional Information	7	. r'	1	1		<u>L</u>) iš
ř	13. Special Handling Instructions and Additional Information											
و الله	Profile#: 27578											
*	ver projective equipment whise narking, spissin proposion.											
		-		roximate. 24 hour o	emeniency	ļ	r collecti	.w. i~ea	President and	•		
		number (888) 423-6060	· · · · · · · · · · · · · · · · · · ·								
	14. G	ENERATOR'S CERTIFIC	ATION: I certify the materia	als described above on this manife	est are not subject to fede	eral regulations for	reporting prop	per disposal of Ha	azardous W	aste.	,	مين
	Gene	rator's/Offeror's Printed/T	yped Name	- ()	Signature	1	11. 17	+ MM		Month	Day	Year
٧			JE8" (9	DI ELLO		LNV (Lall	MI		14	12	14
INT	15. ln	ternational Shipments	Import to U.S.		Export from U.S.	Port of e	ntry/exit:					14.7
		porter Signature (for expo	orts only):			Date leav				,		
TRANSPORTER		ansporter Acknowledgem porter 1 Printed/Typed Na	ent of Receipt of Materials	,	Olanak			<u>.</u>		\$4	D	V
8	भव्याङ			RTONGS	Signature 		_ /	1.1		Month	Day	Year 14
호	Trans	porter 2 Printed/Typed Na	ame.	RTDU63	/Signature	- Jane	<u> </u>	12:5°C		Month	سکست Dav	Year
Æ		ISL M	Christer	100	/ [(h	Hu	-		112	1041	14
H	17. D	iscrepancy	<u> </u>		<u>, </u>	The second secon	<u> </u>				<u> </u>	11-7
1	17a C	Discrepancy Indication Sp	ace Quantity	Туре		Residue		Partial Re	de etion	<u> </u>	Full Reject	llan
			Coamity	□ туре		I I Lesione		La Falual Ne	yeolioi i	 -	ruit nejec	uon
					N	lanifest Reference	Number:					
Ļ	17b. /	Alternate Facility (or Gene	erator)					U.S. EPA ID	Number			ļ
FACILITY												
¥		ty's Phone:	No. 1									
	17c. 9	Signature of Alternate Fac	ciity (or Generator)		ı					· Month	Day	Year
DESIGNED		· · · · · · · · · · · · · · · · · · ·				,				<u> </u>	<u> </u>	<u> </u>
S						1		* (
ا												
	18 D	esignated Facility Owner	or Operator: Certification o	of receipt of materials covered by the	ne manifest except as no	ted in Item 179					:	
		ed/Typed Name	c. opolition definition (. resorbt of materials covered by the	Signature					Month	Day	Year
V												.54.
											J	

ATTACHMENT A-5

Survey Data

ATTACHMENT A-6

Laboratory Analytical Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59372-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Akanef Sal

Authorized for release by: 8/20/2014 2:20:45 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receint Checklists	22

5

4

0

R

9

11

15

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Toxicity Equivalent Quotient (Dioxin)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Job ID: 720-59372-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59372-1

Comments

No additional comments.

Receipt

The samples were received on 8/19/2014 4:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

9

4

5

6

_/

ŏ

4 4

12

Detection Summary

 ${\bf Client: AMEC\ Environment\ \&\ Infrastructure,\ Inc.}$

Client Sample ID: PRB-03HP-18.0

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Lab Sample ID: 720-59372-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	45		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
								MS	

	MS
Client Sample ID: PRB-02HP-18.5	Lab Sample ID: 720-59372-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	39	0.50	ug/L		8260B/CA_LUFT	Total/NA
					MS	

This Detection Summary does not include radiochemical test results.

9

4

7

9

11

13

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Project/Site: Crown Chevrolet

Client Sample ID: PRB-03HP-18.0

TestAmerica Job ID: 720-59372-1

Lab Sample ID: 720-59372-1

Matrix: Water

Date Collected: 08/19/14 12:15				Li	ab Sample ID: 720 Motri	-59372-1 x: Water
Date Received: 08/19/14 16:50					Watri	x. water
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND Qualifier	0.50	ug/L		08/20/14 02:37	1
Acetone	ND	50	ug/L		08/20/14 02:37	1
Benzene	ND	0.50	ug/L		08/20/14 02:37	1
Dichlorobromomethane	ND	0.50	ug/L		08/20/14 02:37	1
Bromobenzene	ND	1.0	ug/L		08/20/14 02:37	1
Chlorobromomethane	ND	1.0	ug/L		08/20/14 02:37	1
Bromoform	ND	1.0	ug/L ug/L		08/20/14 02:37	1
Bromomethane	ND	1.0	ug/L		08/20/14 02:37	1
	ND	50			08/20/14 02:37	
2-Butanone (MEK)			ug/L			1
n-Butylbenzene	ND	1.0	ug/L		08/20/14 02:37	1
sec-Butylbenzene	ND	1.0	ug/L		08/20/14 02:37	1
tert-Butylbenzene	ND	1.0	ug/L		08/20/14 02:37	1
Carbon disulfide	ND	5.0	ug/L		08/20/14 02:37	1
Carbon tetrachloride	ND	0.50	ug/L		08/20/14 02:37	1
Chlorobenzene	ND	0.50	ug/L		08/20/14 02:37	1
Chloroethane	ND	1.0	ug/L		08/20/14 02:37	1
Chloroform	ND	1.0	ug/L		08/20/14 02:37	1
Chloromethane	ND	1.0	ug/L		08/20/14 02:37	1
2-Chlorotoluene	ND	0.50	ug/L		08/20/14 02:37	1
4-Chlorotoluene	ND	0.50	ug/L		08/20/14 02:37	1
Chlorodibromomethane	ND	0.50	ug/L		08/20/14 02:37	1
1,2-Dichlorobenzene	ND	0.50	ug/L		08/20/14 02:37	1
1,3-Dichlorobenzene	ND	0.50	ug/L		08/20/14 02:37	1
1,4-Dichlorobenzene	ND	0.50	ug/L		08/20/14 02:37	1
1,3-Dichloropropane	ND	1.0	ug/L		08/20/14 02:37	1
1,1-Dichloropropene	ND	0.50	ug/L		08/20/14 02:37	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/20/14 02:37	1
Ethylene Dibromide	ND	0.50	ug/L		08/20/14 02:37	1
Dibromomethane	ND	0.50	ug/L		08/20/14 02:37	1
Dichlorodifluoromethane	ND	0.50	ug/L		08/20/14 02:37	1
1,1-Dichloroethane	ND	0.50	ug/L		08/20/14 02:37	1
1,2-Dichloroethane	ND	0.50	ug/L		08/20/14 02:37	1
1,1-Dichloroethene	ND	0.50	ug/L		08/20/14 02:37	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/20/14 02:37	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/20/14 02:37	1
1,2-Dichloropropane	ND	0.50	ug/L		08/20/14 02:37	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/20/14 02:37	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/20/14 02:37	1
Ethylbenzene	ND	0.50	ug/L		08/20/14 02:37	1
Hexachlorobutadiene	ND	1.0	ug/L		08/20/14 02:37	1
2-Hexanone	ND	50	ug/L		08/20/14 02:37	1
Isopropylbenzene	ND	0.50	ug/L		08/20/14 02:37	1
4-Isopropyltoluene	ND	1.0	ug/L		08/20/14 02:37	1
Methylene Chloride	ND	5.0	ug/L		08/20/14 02:37	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/20/14 02:37	1
Naphthalene	ND	1.0	ug/L		08/20/14 02:37	1
N-Propylbenzene	ND	1.0	ug/L		08/20/14 02:37	1
Styrene	ND	0.50	ug/L		08/20/14 02:37	1
1,1,1,2-Tetrachloroethane		0.50			08/20/14 02:37	1
1, 1, 1,4-161140110106114116	ND	0.50	ug/L		00/20/14 02.3/	1

TestAmerica Pleasanton

8/20/2014

Page 6 of 22

Project/Site: Crown Chevrolet

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: PRB-03HP-18.		Lab Sample ID: 720-59372-1					
Date Collected: 08/19/14 12:15						Matrix	c: Water
Date Received: 08/19/14 16:50							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			08/20/14 02:37	1
Tetrachloroethene	45	0.50	ug/L			08/20/14 02:37	1
Toluene	ND	0.50	ug/L			08/20/14 02:37	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			08/20/14 02:37	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			08/20/14 02:37	1
1,1,1-Trichloroethane	ND	0.50	ug/L			08/20/14 02:37	1
1,1,2-Trichloroethane	ND	0.50	ug/L			08/20/14 02:37	1
Trichloroethene	ND	0.50	ug/L			08/20/14 02:37	1
Trichlorofluoromethane	ND	1.0	ug/L			08/20/14 02:37	1
1,2,3-Trichloropropane	ND	0.50	ug/L			08/20/14 02:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			08/20/14 02:37	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			08/20/14 02:37	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			08/20/14 02:37	1
Vinyl acetate	ND	10	ug/L			08/20/14 02:37	1
Vinyl chloride	ND	0.50	ug/L			08/20/14 02:37	1
Xylenes, Total	ND	1.0	ug/L			08/20/14 02:37	1
2,2-Dichloropropane	ND	0.50	ug/L			08/20/14 02:37	1
Gasoline Range Organics (GRO)	ND	50	ug/L			08/20/14 02:37	1
-C5-C12							
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100	67 - 130		_		08/20/14 02:37	1

Client Sample ID: PRB-02HP-18.5	Lab Sample ID: 720-59372-2
Date Collected: 08/19/14 14:50	Matrix: Water
Date Received: 08/19/14 16:50	

72 - 130

70 - 130

93

96

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L		•	08/20/14 03:05	1
Acetone	ND		50		ug/L			08/20/14 03:05	1
Benzene	ND		0.50		ug/L			08/20/14 03:05	1
Dichlorobromomethane	ND		0.50		ug/L			08/20/14 03:05	1
Bromobenzene	ND		1.0		ug/L			08/20/14 03:05	1
Chlorobromomethane	ND		1.0		ug/L			08/20/14 03:05	1
Bromoform	ND		1.0		ug/L			08/20/14 03:05	1
Bromomethane	ND		1.0		ug/L			08/20/14 03:05	1
2-Butanone (MEK)	ND		50		ug/L			08/20/14 03:05	1
n-Butylbenzene	ND		1.0		ug/L			08/20/14 03:05	1
sec-Butylbenzene	ND		1.0		ug/L			08/20/14 03:05	1
tert-Butylbenzene	ND		1.0		ug/L			08/20/14 03:05	1
Carbon disulfide	ND		5.0		ug/L			08/20/14 03:05	1
Carbon tetrachloride	ND		0.50		ug/L			08/20/14 03:05	1
Chlorobenzene	ND		0.50		ug/L			08/20/14 03:05	1
Chloroethane	ND		1.0		ug/L			08/20/14 03:05	1
Chloroform	ND		1.0		ug/L			08/20/14 03:05	1
Chloromethane	ND		1.0		ug/L			08/20/14 03:05	1
2-Chlorotoluene	ND		0.50		ug/L			08/20/14 03:05	1
4-Chlorotoluene	ND		0.50		ug/L			08/20/14 03:05	1
Chlorodibromomethane	ND		0.50		ug/L			08/20/14 03:05	1

TestAmerica Pleasanton

08/20/14 02:37

08/20/14 02:37

Page 7 of 22 8/20/2014

_

3

4

10

12

13

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: PRB-02HP-18.5

TestAmerica Job ID: 720-59372-1

Lab Sample ID: 720-59372-2

Date Received: 08/19/14 16:50	.	01161			1!4	_	B	A.z.	D.: -
Analyte		Qualifier	RL	MDL U		D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.50		ug/L			08/20/14 03:05	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/20/14 03:05	•
1,4-Dichlorobenzene	ND		0.50		ug/L			08/20/14 03:05	
1,3-Dichloropropane	ND		1.0		ug/L			08/20/14 03:05	1
1,1-Dichloropropene	ND		0.50		ug/L			08/20/14 03:05	•
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/20/14 03:05	1
Ethylene Dibromide	ND		0.50		ug/L			08/20/14 03:05	1
Dibromomethane	ND		0.50		ug/L			08/20/14 03:05	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/20/14 03:05	1
1,1-Dichloroethane	ND		0.50	ι	ug/L			08/20/14 03:05	1
1,2-Dichloroethane	ND		0.50	ι	ug/L			08/20/14 03:05	1
1,1-Dichloroethene	ND		0.50	ι	ug/L			08/20/14 03:05	1
cis-1,2-Dichloroethene	ND		0.50	ι	ug/L			08/20/14 03:05	1
trans-1,2-Dichloroethene	ND		0.50	ι	ug/L			08/20/14 03:05	1
1,2-Dichloropropane	ND		0.50	ι	ug/L			08/20/14 03:05	1
cis-1,3-Dichloropropene	ND		0.50	ι	ug/L			08/20/14 03:05	1
trans-1,3-Dichloropropene	ND		0.50	ι	ug/L			08/20/14 03:05	1
Ethylbenzene	ND		0.50	ι	ug/L			08/20/14 03:05	1
Hexachlorobutadiene	ND		1.0	ι	ug/L			08/20/14 03:05	1
2-Hexanone	ND		50	ι	ug/L			08/20/14 03:05	1
Isopropylbenzene	ND		0.50	ι	ug/L			08/20/14 03:05	1
4-Isopropyltoluene	ND		1.0	· · · · · · · · · · · · · · · · · · ·	ug/L			08/20/14 03:05	1
Methylene Chloride	ND		5.0		ug/L			08/20/14 03:05	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/20/14 03:05	1
Naphthalene	ND		1.0		ug/L			08/20/14 03:05	1
N-Propylbenzene	ND		1.0		ug/L			08/20/14 03:05	1
Styrene	ND		0.50		ug/L			08/20/14 03:05	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 03:05	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 03:05	1
Tetrachloroethene	39		0.50		ug/L			08/20/14 03:05	1
Toluene	ND		0.50		ug/L			08/20/14 03:05	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/20/14 03:05	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/20/14 03:05	1
1,1,1-Trichloroethane	ND		0.50		ıg/L			08/20/14 03:05	· · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	ND		0.50		ug/L			08/20/14 03:05	1
Trichloroethene	ND		0.50		ug/L			08/20/14 03:05	1
Trichlorofluoromethane	ND		1.0		ug/L ug/L			08/20/14 03:05	
	ND		0.50						
1,2,3-Trichloropropane					ug/L			08/20/14 03:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/20/14 03:05	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/20/14 03:05	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/20/14 03:05	1
Vinyl acetate	ND		10		ug/L			08/20/14 03:05	1
Vinyl chloride	ND		0.50		ug/L			08/20/14 03:05	1
Xylenes, Total	ND		1.0		ug/L			08/20/14 03:05	1
2,2-Dichloropropane	ND		0.50		ug/L			08/20/14 03:05	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ι	ıg/L			08/20/14 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130			-		08/20/14 03:05	1

TestAmerica Pleasanton

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: PRB-02HP-18.5

Date Collected: 08/19/14 14:50 Date Received: 08/19/14 16:50 Lab Sample ID: 720-59372-2

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	72 - 130		08/20/14 03:05	1
Toluene-d8 (Surr)	96	70 - 130		08/20/14 03:05	1

F

O

8

10

111

13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165258/4

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL (Jnit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50	ι	ıg/L			08/19/14 19:57	
Acetone	ND		50	ι	ug/L			08/19/14 19:57	
Benzene	ND		0.50	ι	ug/L			08/19/14 19:57	
Dichlorobromomethane	ND		0.50	ί	ıg/L			08/19/14 19:57	
Bromobenzene	ND		1.0	ι	ug/L			08/19/14 19:57	
Chlorobromomethane	ND		1.0	ι	ug/L			08/19/14 19:57	
Bromoform	ND		1.0	ι	ıg/L			08/19/14 19:57	
Bromomethane	ND		1.0	ι	ug/L			08/19/14 19:57	
2-Butanone (MEK)	ND		50	ι	ug/L			08/19/14 19:57	
n-Butylbenzene	ND		1.0	ι	ug/L			08/19/14 19:57	
sec-Butylbenzene	ND		1.0		ug/L			08/19/14 19:57	
tert-Butylbenzene	ND		1.0	ι	ug/L			08/19/14 19:57	
Carbon disulfide	ND		5.0		ig/L			08/19/14 19:57	
Carbon tetrachloride	ND		0.50		ug/L			08/19/14 19:57	
Chlorobenzene	ND		0.50		ug/L			08/19/14 19:57	
Chloroethane	ND		1.0		ug/L			08/19/14 19:57	
Chloroform	ND		1.0		ug/L			08/19/14 19:57	
Chloromethane	ND		1.0		ug/L			08/19/14 19:57	
2-Chlorotoluene	ND		0.50		ug/L			08/19/14 19:57	
4-Chlorotoluene	ND		0.50		ug/L			08/19/14 19:57	
Chlorodibromomethane	ND		0.50		ug/L			08/19/14 19:57	
1,2-Dichlorobenzene	ND		0.50		ug/L			08/19/14 19:57	
1,3-Dichlorobenzene	ND		0.50		ug/L			08/19/14 19:57	
1,4-Dichlorobenzene	ND		0.50		ug/L			08/19/14 19:57	
1,3-Dichloropropane	ND		1.0		ug/L			08/19/14 19:57	
1,1-Dichloropropene	ND		0.50		ug/L			08/19/14 19:57	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/19/14 19:57	
Ethylene Dibromide	ND		0.50		ug/L			08/19/14 19:57	
Dibromomethane	ND		0.50		ug/L			08/19/14 19:57	
Dichlorodifluoromethane	ND		0.50		_			08/19/14 19:57	
1,1-Dichloroethane	ND		0.50		ug/L			08/19/14 19:57	
1,2-Dichloroethane	ND ND		0.50		ug/L			08/19/14 19:57	
1,1-Dichloroethene	ND ND		0.50		ug/L			08/19/14 19:57	
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/19/14 19:57	
•	ND ND		0.50		ug/L ug/L			08/19/14 19:57	
trans-1,2-Dichloroethene	ND ND		0.50		-			08/19/14 19:57	
1,2-Dichloropropane					ug/L				
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/19/14 19:57	
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/19/14 19:57	
Ethylbenzene	ND		0.50		ug/L			08/19/14 19:57	
Hexachlorobutadiene	ND		1.0		ug/L			08/19/14 19:57	
2-Hexanone	ND		50		ug/L			08/19/14 19:57	
Isopropylbenzene	ND		0.50		ug/L			08/19/14 19:57	
4-Isopropyltoluene	ND		1.0		ug/L			08/19/14 19:57	
Methylene Chloride	ND		5.0		ug/L			08/19/14 19:57	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/19/14 19:57	
Naphthalene	ND		1.0		ug/L			08/19/14 19:57	
N-Propylbenzene	ND		1.0	ι	ug/L			08/19/14 19:57	

TestAmerica Pleasanton

8/20/2014

Page 10 of 22

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-165258/4

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/19/14 19:57	•
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/19/14 19:57	
Tetrachloroethene	ND		0.50		ug/L			08/19/14 19:57	
Toluene	ND		0.50		ug/L			08/19/14 19:57	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/19/14 19:57	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/19/14 19:57	•
1,1,1-Trichloroethane	ND		0.50		ug/L			08/19/14 19:57	
1,1,2-Trichloroethane	ND		0.50		ug/L			08/19/14 19:57	
Trichloroethene	ND		0.50		ug/L			08/19/14 19:57	•
Trichlorofluoromethane	ND		1.0		ug/L			08/19/14 19:57	•
1,2,3-Trichloropropane	ND		0.50		ug/L			08/19/14 19:57	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/19/14 19:57	
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/19/14 19:57	
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/19/14 19:57	•
Vinyl acetate	ND		10		ug/L			08/19/14 19:57	
Vinyl chloride	ND		0.50		ug/L			08/19/14 19:57	
Xylenes, Total	ND		1.0		ug/L			08/19/14 19:57	
2,2-Dichloropropane	ND		0.50		ug/L			08/19/14 19:57	
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			08/19/14 19:57	,

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		67 - 130	-		08/19/14 19:57	1
1,2-Dichloroethane-d4 (Surr)	94		72 - 130			08/19/14 19:57	1
Toluene-d8 (Surr)	95		70 - 130			08/19/14 19:57	1

Lab Sample ID: LCS 720-165258/5

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Datch. 100200								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	25.5		ug/L		102	62 - 130	
Acetone	125	119		ug/L		95	26 - 180	
Benzene	25.0	25.3		ug/L		101	79 - 130	
Dichlorobromomethane	25.0	25.3		ug/L		101	70 - 130	
Bromobenzene	25.0	25.5		ug/L		102	70 - 130	
Chlorobromomethane	25.0	24.0		ug/L		96	70 - 130	
Bromoform	25.0	25.8		ug/L		103	68 - 136	
Bromomethane	25.0	20.8		ug/L		83	43 _ 151	
2-Butanone (MEK)	125	120		ug/L		96	54 - 130	
n-Butylbenzene	25.0	24.9		ug/L		99	70 - 142	
sec-Butylbenzene	25.0	25.2		ug/L		101	70 - 134	
tert-Butylbenzene	25.0	25.6		ug/L		102	70 _ 135	
Carbon disulfide	25.0	22.9		ug/L		92	58 - 130	
Carbon tetrachloride	25.0	24.3		ug/L		97	70 - 146	
Chlorobenzene	25.0	24.2		ug/L		97	70 - 130	
Chloroethane	25.0	21.5		ug/L		86	62 - 138	
Chloroform	25.0	24.6		ug/L		98	70 - 130	
				-				

TestAmerica Pleasanton

Page 11 of 22

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165258/5

Matrix: Water

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 165258	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	25.0	21.8		ug/L		87	52 - 175
2-Chlorotoluene	25.0	26.1		ug/L		105	70 - 130
4-Chlorotoluene	25.0	26.1		ug/L		104	70 - 130
Chlorodibromomethane	25.0	25.7		ug/L		103	70 - 145
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130
1,3-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130
1,4-Dichlorobenzene	25.0	24.6		ug/L		99	70 - 130
1,3-Dichloropropane	25.0	24.7		ug/L		99	70 - 130
1,1-Dichloropropene	25.0	25.9		ug/L		104	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.5		ug/L		102	70 - 136
Ethylene Dibromide	25.0	25.0		ug/L		100	70 - 130
Dibromomethane	25.0	24.4		ug/L		98	70 - 130
Dichlorodifluoromethane	25.0	18.4		ug/L		73	34 - 132
1,1-Dichloroethane	25.0	25.0		ug/L		100	70 - 130
1,2-Dichloroethane	25.0	23.9		ug/L ug/L		96	61 - 132
1,1-Dichloroethene	25.0	21.6		ug/L		86	64 - 128
cis-1,2-Dichloroethene	25.0	24.6		ug/L ug/L		98	70 - 130
trans-1,2-Dichloroethene	25.0	23.6		ug/L ug/L		95	68 ₋ 130
1,2-Dichloropropane	25.0	25.6		ug/L		102	70 - 130
cis-1,3-Dichloropropene	25.0	27.0				102	70 - 130
	25.0			ug/L			
trans-1,3-Dichloropropene	25.0	29.3		ug/L		117 96	70 - 140
Ethylbenzene		24.1		ug/L			80 - 120
Hexachlorobutadiene	25.0	25.1		ug/L		100	70 ₋ 130
2-Hexanone	125	121		ug/L		97	60 ₋ 164
Isopropylbenzene	25.0	24.8		ug/L		99	70 - 130
4-Isopropyltoluene	25.0	24.6		ug/L		99	70 - 130
Methylene Chloride	25.0	24.8		ug/L		99	70 - 147
4-Methyl-2-pentanone (MIBK)	125	128		ug/L		103	58 _ 130
Naphthalene	25.0	26.9		ug/L		108	70 - 130
N-Propylbenzene	25.0	26.0		ug/L		104	70 ₋ 130
Styrene	25.0	26.8		ug/L		107	70 - 130
1,1,1,2-Tetrachloroethane	25.0	25.8		ug/L		103	70 - 130
1,1,2,2-Tetrachloroethane	25.0	25.0		ug/L		100	70 - 130
Tetrachloroethene	25.0	23.4		ug/L		94	70 - 130
Toluene	25.0	24.6		ug/L		99	78 - 120
1,2,3-Trichlorobenzene	25.0	25.0		ug/L		100	70 - 130
1,2,4-Trichlorobenzene	25.0	25.3		ug/L		101	70 - 130
1,1,1-Trichloroethane	25.0	24.2		ug/L		97	70 - 130
1,1,2-Trichloroethane	25.0	25.5		ug/L		102	70 _ 130
Trichloroethene	25.0	24.4		ug/L		97	70 _ 130
Trichlorofluoromethane	25.0	24.4		ug/L		97	66 - 132
1,2,3-Trichloropropane	25.0	26.0		ug/L		104	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.8		ug/L		83	42 - 162
ne							
1,2,4-Trimethylbenzene	25.0	25.3		ug/L		101	70 ₋ 132
1,3,5-Trimethylbenzene	25.0	26.0		ug/L		104	70 - 130
Vinyl acetate	25.0	19.6		ug/L		78	43 - 163
Vinyl chloride	25.0	19.1		ug/L		76	54 - 135

TestAmerica Pleasanton

-

0

9

11

12

. .

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165258/5

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Water

Analysis Batch: 165258

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	24.0		ug/L		96	70 - 142	
o-Xylene	25.0	24.9		ug/L		100	70 - 130	
2,2-Dichloropropane	25.0	26.3		ug/L		105	70 - 140	

	LCS LCS	
Surrogate	%Recovery Qualified	r Limits
4-Bromofluorobenzene	98	67 - 130
1,2-Dichloroethane-d4 (Surr)	90	72 - 130
Toluene-d8 (Surr)	97	70 - 130

Lab Sample ID: LCS 720-165258/7

Matrix: Water

Analysis Batch: 165258

 Spike
 LCS
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result Gasoline Range Organics (GRO)
 Maded
 Result Result For the sult of the sult of

-C5-C12

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	94		72 - 130
Toluene-d8 (Surr)	96		70 - 130

Lab Sample ID: LCSD 720-165258/6

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Lab	Control Sample Dup
	Pren Type: Total/NA

Prep Type: Total/NA

%Rec. RPD

Analyte Added Result Qualifier Unit D %Rec Limits	RPD	Limit
Methyl tert-butyl ether 25.0 24.9 ug/L 100 62 - 130	2	20
Acetone 125 114 ug/L 91 26 - 180	5	30
Benzene 25.0 25.3 ug/L 101 79 - 130	0	20
Dichlorobromomethane 25.0 25.1 ug/L 101 70 - 130	1	20
Bromobenzene 25.0 25.6 ug/L 102 70 - 130	0	20
Chlorobromomethane 25.0 23.9 ug/L 96 70 - 130	0	20
Bromoform 25.0 24.9 ug/L 100 68 - 136	3	20
Bromomethane 25.0 20.8 ug/L 83 43 - 151	0	20
2-Butanone (MEK) 125 111 ug/L 89 54 - 130	7	20
n-Butylbenzene 25.0 25.1 ug/L 100 70 - 142	1	20
sec-Butylbenzene 25.0 25.2 ug/L 101 70 - 134	0	20
tert-Butylbenzene 25.0 25.7 ug/L 103 70 - 135	1	20
Carbon disulfide 25.0 22.9 ug/L 92 58 - 130	0	20
Carbon tetrachloride 25.0 24.4 ug/L 98 70 - 146	1	20
Chlorobenzene 25.0 24.1 ug/L 96 70 - 130	0	20
Chloroethane 25.0 21.5 ug/L 86 62 - 138	0	20
Chloroform 25.0 24.6 ug/L 98 70 - 130	0	20
Chloromethane 25.0 21.4 ug/L 86 52 - 175	1	20
2-Chlorotoluene 25.0 26.3 ug/L 105 70 - 130	1	20
4-Chlorotoluene 25.0 26.3 ug/L 105 70 - 130	1	20
Chlorodibromomethane 25.0 25.4 ug/L 101 70 - 145	1	20

TestAmerica Pleasanton

Page 13 of 22

8/20/2014

3

4

6

0

9

1 4

12

13

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165258/6

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 165258	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added		Qualifier Ur	nit D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	24.9	ug		100	70 - 130		20
1,3-Dichlorobenzene	25.0	24.8	ug		99	70 - 130	0	20
1,4-Dichlorobenzene	25.0	24.8	ug		99	70 - 130	0	20
1,3-Dichloropropane	25.0	24.4	ug		97	70 - 130	1	20
1,1-Dichloropropene	25.0	26.0	ug		104	70 - 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	24.0	ug		96	70 - 136	6	20
Ethylene Dibromide	25.0	24.6	ug		98	70 - 130	2	20
Dibromomethane	25.0	23.9	ug		96	70 ₋ 130	2	20
Dichlorodifluoromethane	25.0	18.3	ug		73	34 - 132	0	20
1,1-Dichloroethane	25.0	25.1	ug		101	70 - 130	1	20
1,2-Dichloroethane	25.0	23.7	ug		95	61 - 132	1	20
1,1-Dichloroethene	25.0	21.8	ug		87	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	24.6	ug		98	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	23.8	ug		95	68 ₋ 130	1	20
1,2-Dichloropropane	25.0	25.6	ug		102	70 - 130	0	20
cis-1,3-Dichloropropene	25.0	26.9	ug		107	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	28.5	ug		114	70 - 140	3	20
Ethylbenzene	25.0	24.2	ug		97	80 - 120	0	20
Hexachlorobutadiene	25.0	25.1	ug		101	70 _ 130	0	20
2-Hexanone	125	114	ug		92	60 - 164	6	20
Isopropylbenzene	25.0	25.0	ug		100	70 - 130	1	20
4-Isopropyltoluene	25.0	24.8	ug		99	70 - 130	i. 1	20
Methylene Chloride	25.0	24.8	ug		99	70 - 147	0	20
4-Methyl-2-pentanone (MIBK)	125	122	ug		97	58 - 130	5	20
Naphthalene	25.0	26.1	ug		105	70 - 130	3	20
N-Propylbenzene	25.0	26.1	ug		104	70 - 130	0	20
Styrene	25.0	26.8	ug		107	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	25.8	ug		103	70 - 130	0	20
1,1,2,2-Tetrachloroethane	25.0	24.1	ug		96	70 - 130	4	20
Tetrachloroethene	25.0	23.6	ug		94	70 - 130	1	20
Toluene	25.0	24.6	ug		99	78 - 120	0	20
1,2,3-Trichlorobenzene	25.0	24.9	ug		100	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	25.1	ug		101	70 - 130	0	20
1,1,1-Trichloroethane	25.0	24.1	ug		96	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.2	ug		101	70 - 130	1	20
Trichloroethene	25.0	24.5	ug		98	70 - 130	1	20
Trichlorofluoromethane	25.0	24.2	ug		97	66 - 132	0	20
1,2,3-Trichloropropane	25.0	25.1	ug		101	70 _ 130	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.4	ug		82	42 - 162	2	20
ne 1,2,4-Trimethylbenzene	25.0	25.6	ug		103	70 _ 132	1	20
1,3,5-Trimethylbenzene	25.0	26.2	ug		105	70 - 132 70 - 130	1	20
Vinyl acetate	25.0	17.9	ug		72	43 - 163	9	20
Vinyl chloride	25.0	19.4	ug		77	54 ₋ 135		20
m-Xylene & p-Xylene	25.0 25.0	24.3	ug		97	70 ₋ 142	1	20
o-Xylene	25.0 25.0	24.3 25.0	_			70 - 142 70 - 130	0	
2,2-Dichloropropane	25.0	25.0	ug ug		100	70 - 130 70 - 140		20

TestAmerica Pleasanton

9

_

9

10

12

13

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165258/6

Lab Sample ID: LCSD 720-165258/8

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Lab	Control Sampl	e Dup
	Prep Type: To	tal/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 165258

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	553		ug/L	 _	111	62 - 120	0	20

-C5-C12

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130
Toluene-d8 (Surr)	96		70 - 130

TestAmerica Pleasanton

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

GC/MS VOA

Analysis Batch: 165258

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59372-1	PRB-03HP-18.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59372-2	PRB-02HP-18.5	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165258/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165258/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165258/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165258/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165258/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

6

0

0

4.6

4 4

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PRB-03HP-18.0

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Lab Sample ID: 720-59372-1

Matrix: Water

Date Collected: 08/19/14 12:15 Date Received: 08/19/14 16:50

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number Type Run or Analyzed Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 165258 08/20/14 02:37 ASC TAL PLS

Client Sample ID: PRB-02HP-18.5 Lab Sample ID: 720-59372-2

Date Collected: 08/19/14 14:50 Matrix: Water

Date Received: 08/19/14 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	165258	08/20/14 03:05	ASC	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

5

9

3

10

1/

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority Program			EPA Region	Certification ID	Expiration Date	
California	State Progr	ram	9	2496	01-31-16	
Analysis Method	Prep Method	Matrix	Analyt	e		

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

5

7

8

10

11

13

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59372-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59372-1	PRB-03HP-18.0	Water	08/19/14 12:15	08/19/14 16:50
720-59372-2	PRB-02HP-18.5	Water	08/19/14 14:50	08/19/14 16:50

3

4

5

7

0

10

11

13

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59372-1

Login Number: 59372 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Creator. Gorizales, Justinii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

4

၁ —

9

11

1/

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59373-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Akanaf Sal

Authorized for release by: 8/25/2014 12:38:18 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Job ID: 720-59373-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59373-1

Comments

No additional comments.

Receipt

The sample was received on 8/19/2014 4:50 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

6

6

_

9

IU

12

13

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: EB-1

TestAmerica Job ID: 720-59373-1

Lab Sample ID: 720-59373-1

No Detections.

5

7

_

10

12

13

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: EB-1

TestAmerica Job ID: 720-59373-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: 720-59373-1

Date Received: 08/19/14 16:50						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		08/21/14 00:36	
Acetone	ND	50	ug/L		08/21/14 00:36	•
Benzene	ND	0.50	ug/L		08/21/14 00:36	•
Dichlorobromomethane	ND	0.50	ug/L		08/21/14 00:36	
Bromobenzene	ND	1.0	ug/L		08/21/14 00:36	•
Chlorobromomethane	ND	1.0	ug/L		08/21/14 00:36	
Bromoform	ND	1.0	ug/L		08/21/14 00:36	
Bromomethane	ND	1.0	ug/L		08/21/14 00:36	
2-Butanone (MEK)	ND	50	ug/L		08/21/14 00:36	
n-Butylbenzene	ND	1.0	ug/L		08/21/14 00:36	• • • • • • • • • • • • • • • • • • • •
sec-Butylbenzene	ND	1.0	ug/L		08/21/14 00:36	
tert-Butylbenzene	ND	1.0	ug/L		08/21/14 00:36	
Carbon disulfide	ND	5.0	ug/L		08/21/14 00:36	,
Carbon tetrachloride	ND	0.50	ug/L		08/21/14 00:36	
Chlorobenzene	ND	0.50	ug/L		08/21/14 00:36	
Chloroethane	ND	1.0	ug/L		08/21/14 00:36	
Chloroform	ND	1.0	ug/L		08/21/14 00:36	
Chloromethane	ND	1.0	ug/L		08/21/14 00:36	
2-Chlorotoluene	ND	0.50	ug/L		08/21/14 00:36	
4-Chlorotoluene	ND	0.50	ug/L		08/21/14 00:36	
Chlorodibromomethane	ND	0.50	ug/L		08/21/14 00:36	
1,2-Dichlorobenzene	ND	0.50	ug/L		08/21/14 00:36	
1,3-Dichlorobenzene	ND	0.50	ug/L		08/21/14 00:36	
1,4-Dichlorobenzene	ND	0.50	ug/L		08/21/14 00:36	
1,3-Dichloropropane	ND	1.0	ug/L		08/21/14 00:36	,
1,1-Dichloropropene	ND	0.50	ug/L		08/21/14 00:36	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/21/14 00:36	
Ethylene Dibromide	ND	0.50	ug/L ug/L		08/21/14 00:36	,
Dibromomethane	ND	0.50	ug/L		08/21/14 00:36	,
Dichlorodifluoromethane	ND ND	0.50	_		08/21/14 00:36	
1,1-Dichloroethane	ND	0.50	ug/L		08/21/14 00:36	
	ND ND	0.50	ug/L		08/21/14 00:36	•
1,2-Dichloroethane			ug/L			,
1,1-Dichloroethene	ND	0.50	ug/L		08/21/14 00:36	
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/21/14 00:36	,
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/21/14 00:36	,
1,2-Dichloropropane	ND	0.50	ug/L		08/21/14 00:36	
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/21/14 00:36	
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/21/14 00:36	
Ethylbenzene	ND	0.50	ug/L		08/21/14 00:36	
Hexachlorobutadiene	ND	1.0	ug/L		08/21/14 00:36	
2-Hexanone	ND	50	ug/L		08/21/14 00:36	
Isopropylbenzene	ND	0.50	ug/L		08/21/14 00:36	
4-Isopropyltoluene	ND	1.0	ug/L		08/21/14 00:36	•
Methylene Chloride	ND	5.0	ug/L		08/21/14 00:36	•
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/21/14 00:36	
Naphthalene	ND	1.0	ug/L		08/21/14 00:36	•
N-Propylbenzene	ND	1.0	ug/L		08/21/14 00:36	•
Styrene	ND	0.50	ug/L		08/21/14 00:36 08/21/14 00:36	•

TestAmerica Pleasanton

Page 6 of 20

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

Client Sample ID: EB-1

Date Collected: 08/19/14 15:15

TestAmerica Job ID: 720-59373-1

Lab Sample ID: 720-59373-1

Matrix: Water

alyzed	Dil Fac	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	
/14 00:36	1	

Date Received: 08/19/14 16:50	Dooult	Qualifier	DI	MDI	l lmi4		Duamanad	Amahamad	Dil Faa
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/21/14 00:36	1
Tetrachloroethene	ND		0.50		ug/L			08/21/14 00:36	1
Toluene	ND		0.50		ug/L			08/21/14 00:36	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/21/14 00:36	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/21/14 00:36	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/21/14 00:36	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/21/14 00:36	1
Trichloroethene	ND		0.50		ug/L			08/21/14 00:36	1
Trichlorofluoromethane	ND		1.0		ug/L			08/21/14 00:36	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/21/14 00:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/21/14 00:36	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/21/14 00:36	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/21/14 00:36	1
Vinyl acetate	ND		10		ug/L			08/21/14 00:36	1
Vinyl chloride	ND		0.50		ug/L			08/21/14 00:36	1
Xylenes, Total	ND		1.0		ug/L			08/21/14 00:36	1
2,2-Dichloropropane	ND		0.50		ug/L			08/21/14 00:36	1
Gasoline Range Organics (GRO)	ND		50		ug/L			08/21/14 00:36	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130			_		08/21/14 00:36	1
1,2-Dichloroethane-d4 (Surr)	95		72 - 130					08/21/14 00:36	1
Toluene-d8 (Surr)	97		70 - 130					08/21/14 00:36	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165333/4

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

		5
alyzed	Dil Fac	
14 15:32	1	
14 15:32	1	
14 15:32	1	
14 15:32	1	
14 15:32	1	{
14 15:32	1	
14 15:32	1	6
14 15:32	1	
14 15:32	1	

	MB								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/20/14 15:32	1
Acetone	ND		50		ug/L			08/20/14 15:32	1
Benzene	ND		0.50		ug/L			08/20/14 15:32	1
Dichlorobromomethane	ND		0.50		ug/L			08/20/14 15:32	1
Bromobenzene	ND		1.0		ug/L			08/20/14 15:32	1
Chlorobromomethane	ND		1.0		ug/L			08/20/14 15:32	1
Bromoform	ND		1.0		ug/L			08/20/14 15:32	1
Bromomethane	ND		1.0		ug/L			08/20/14 15:32	1
2-Butanone (MEK)	ND		50		ug/L			08/20/14 15:32	1
n-Butylbenzene	ND		1.0		ug/L			08/20/14 15:32	1
sec-Butylbenzene	ND		1.0		ug/L			08/20/14 15:32	1
tert-Butylbenzene	ND		1.0		ug/L			08/20/14 15:32	1
Carbon disulfide	ND		5.0		ug/L			08/20/14 15:32	1
Carbon tetrachloride	ND		0.50		ug/L			08/20/14 15:32	1
Chlorobenzene	ND		0.50		ug/L			08/20/14 15:32	1
Chloroethane	ND		1.0		ug/L			08/20/14 15:32	1
Chloroform	ND		1.0		ug/L			08/20/14 15:32	1
Chloromethane	ND		1.0		ug/L			08/20/14 15:32	1
2-Chlorotoluene	ND		0.50		ug/L			08/20/14 15:32	1
4-Chlorotoluene	ND		0.50		ug/L			08/20/14 15:32	1
Chlorodibromomethane	ND		0.50		ug/L			08/20/14 15:32	1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/20/14 15:32	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/20/14 15:32	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/20/14 15:32	1
1,3-Dichloropropane	ND		1.0		ug/L			08/20/14 15:32	1
1,1-Dichloropropene	ND		0.50		ug/L			08/20/14 15:32	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/20/14 15:32	1
Ethylene Dibromide	ND		0.50		ug/L			08/20/14 15:32	1
Dibromomethane	ND		0.50		ug/L			08/20/14 15:32	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/20/14 15:32	1
1,1-Dichloroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,2-Dichloroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,1-Dichloroethene	ND		0.50		ug/L			08/20/14 15:32	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/20/14 15:32	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/20/14 15:32	1
1,2-Dichloropropane	ND		0.50		ug/L			08/20/14 15:32	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/20/14 15:32	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/20/14 15:32	1
Ethylbenzene	ND		0.50		ug/L			08/20/14 15:32	1
Hexachlorobutadiene	ND		1.0		ug/L			08/20/14 15:32	1
2-Hexanone	ND		50		ug/L			08/20/14 15:32	1
Isopropylbenzene	ND		0.50		ug/L			08/20/14 15:32	1
4-Isopropyltoluene	ND		1.0		ug/L			08/20/14 15:32	1
Methylene Chloride	ND		5.0		ug/L			08/20/14 15:32	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/20/14 15:32	1
Naphthalene	ND		1.0		ug/L ug/L			08/20/14 15:32	
N-Propylbenzene	ND		1.0		ug/L			08/20/14 15:32	1
Styrene	ND		0.50		ug/L ug/L			08/20/14 15:32	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

MB MB

Lab Sample ID: MB 720-165333/4

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 15:32	1
Tetrachloroethene	ND		0.50		ug/L			08/20/14 15:32	1
Toluene	ND		0.50		ug/L			08/20/14 15:32	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/20/14 15:32	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/20/14 15:32	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/20/14 15:32	1
Trichloroethene	ND		0.50		ug/L			08/20/14 15:32	1
Trichlorofluoromethane	ND		1.0		ug/L			08/20/14 15:32	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/20/14 15:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/20/14 15:32	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/20/14 15:32	1
Vinyl acetate	ND		10		ug/L			08/20/14 15:32	1
Vinyl chloride	ND		0.50		ug/L			08/20/14 15:32	1
Xylenes, Total	ND		1.0		ug/L			08/20/14 15:32	1
2,2-Dichloropropane	ND		0.50		ug/L			08/20/14 15:32	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			08/20/14 15:32	1

MB MB

%Recovery Qualifier Limits Surrogate 67 - 130 4-Bromofluorobenzene 99 1,2-Dichloroethane-d4 (Surr) 72 - 130 94 Toluene-d8 (Surr) 70 - 130 95

08/20/14 15:32 08/20/14 15:32 Client Sample ID: Lab Control Sample

Analyzed

08/20/14 15:32

Prep Type: Total/NA

Prepared

Lab Sample ID: LCS 720-165333/5 **Matrix: Water**

Analysis Batch: 165333

, ,	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	26.2		ug/L		105	62 _ 130
Acetone	125	127		ug/L		102	26 _ 180
Benzene	25.0	25.8		ug/L		103	79 ₋ 130
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130
Bromobenzene	25.0	25.3		ug/L		101	70 _ 130
Chlorobromomethane	25.0	24.5		ug/L		98	70 - 130
Bromoform	25.0	26.3		ug/L		105	68 _ 136
Bromomethane	25.0	20.7		ug/L		83	43 _ 151
2-Butanone (MEK)	125	125		ug/L		100	54 - 130
n-Butylbenzene	25.0	26.4		ug/L		106	70 _ 142
sec-Butylbenzene	25.0	25.7		ug/L		103	70 _ 134
ert-Butylbenzene	25.0	25.5		ug/L		102	70 ₋ 135
Carbon disulfide	25.0	23.7		ug/L		95	58 _ 130
Carbon tetrachloride	25.0	25.1		ug/L		100	70 - 146
Chlorobenzene	25.0	24.7		ug/L		99	70 ₋ 130
Chloroethane	25.0	21.6		ug/L		86	62 _ 138
Chloroform	25.0	24.9		ug/L		100	70 - 130

TestAmerica Pleasanton

Page 9 of 20

Dil Fac

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165333/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 165333	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	25.0	21.6		ug/L		86	52 - 175
2-Chlorotoluene	25.0	26.5		ug/L		106	70 - 130
4-Chlorotoluene	25.0	26.5		ug/L		106	70 - 130
Chlorodibromomethane	25.0	26.0		ug/L		104	70 - 145
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130
1,3-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130
1,4-Dichlorobenzene	25.0	25.1		ug/L		100	70 ₋ 130
1,3-Dichloropropane	25.0	25.3		ug/L		101	70 ₋ 130
1,1-Dichloropropene	25.0	27.0		ug/L		108	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.8		ug/L		103	70 - 136
Ethylene Dibromide	25.0	25.4		ug/L		101	70 - 130
Dibromomethane	25.0	24.8		ug/L		99	70 - 130
Dichlorodifluoromethane	25.0	17.5		ug/L		70	34 - 132
1,1-Dichloroethane	25.0	25.6		ug/L		102	70 - 130
1,2-Dichloroethane	25.0	24.4		ug/L ug/L		98	61 ₋ 132
1.1-Dichloroethene	25.0	22.0		ug/L ug/L		88	64 - 128
cis-1,2-Dichloroethene	25.0	25.2		ug/L ug/L		101	70 - 130
trans-1,2-Dichloroethene	25.0	24.3		ug/L ug/L		97	68 ₋ 130
1,2-Dichloropropane	25.0	26.0		ug/L ug/L		104	70 - 130
cis-1,3-Dichloropropene	25.0	27.6				1104	70 - 130
	25.0	29.7		ug/L		119	70 - 130 70 - 140
trans-1,3-Dichloropropene	25.0			ug/L			
Ethylbenzene		24.8		ug/L		99	80 - 120
Hexachlorobutadiene	25.0	25.5		ug/L		102	70 - 130
2-Hexanone	125	129		ug/L		103	60 - 164
Isopropylbenzene	25.0	25.6		ug/L		102	70 - 130
4-Isopropyltoluene	25.0	25.4		ug/L		102	70 - 130
Methylene Chloride	25.0	26.2		ug/L		105	70 - 147
4-Methyl-2-pentanone (MIBK)	125	134		ug/L		107	58 - 130
Naphthalene	25.0	27.5		ug/L		110	70 - 130
N-Propylbenzene	25.0	26.6		ug/L		106	70 - 130
Styrene	25.0	27.5		ug/L		110	70 - 130
1,1,1,2-Tetrachloroethane	25.0	26.2		ug/L		105	70 - 130
1,1,2,2-Tetrachloroethane	25.0	25.4		ug/L		101	70 - 130
Tetrachloroethene	25.0	24.1		ug/L		96	70 - 130
Toluene	25.0	25.0		ug/L		100	78 - 120
1,2,3-Trichlorobenzene	25.0	25.4		ug/L		102	70 - 130
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	70 - 130
1,1,1-Trichloroethane	25.0	24.6		ug/L		98	70 - 130
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	70 - 130
Trichloroethene	25.0	24.5		ug/L		98	70 - 130
Trichlorofluoromethane	25.0	25.3		ug/L		101	66 - 132
1,2,3-Trichloropropane	25.0	26.6		ug/L		106	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.4		ug/L		85	42 - 162
ne							
1,2,4-Trimethylbenzene	25.0	26.0		ug/L		104	70 - 132
1,3,5-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 130
Vinyl acetate	25.0	21.3		ug/L		85	43 - 163
Vinyl chloride	25.0	18.8		ug/L		75	54 - 135

TestAmerica Pleasanton

Page 10 of 20

Project/Site: Crown Chevrolet

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165333/5

Matrix: Water

Analysis Batch: 165333

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	24.8		ug/L		99	70 - 142	
o-Xylene	25.0	25.4		ug/L		102	70 - 130	
2,2-Dichloropropane	25.0	26.2		ug/L		105	70 - 140	

	LCS LCS	5
Surrogate	%Recovery Qua	alifier Limits
4-Bromofluorobenzene	100	67 - 130
1,2-Dichloroethane-d4 (Surr)	91	72 - 130
Toluene-d8 (Surr)	97	70 - 130

Lab Sample ID: LCS 720-165333/7

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS LCS				%Rec.	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	563	ug/L		113	62 - 120	
05.040							

-C5-C12

	LCS		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-165333/6

Matrix: Water

Client Sample ID: Lab	Control Sample Dup
	Pren Type: Total/NA

Analysis Batch: 165333 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Methyl tert-butyl ether 25.0 25.5 102 62 - 130 3 20 ug/L 125 Acetone 114 ug/L 91 26 - 180 11 30 Benzene 25.0 26.0 ug/L 104 79 - 130 20 Dichlorobromomethane 25.0 25.4 70 - 130 ug/L 102 0 20 Bromobenzene 25.0 25.7 ug/L 103 70 - 130 20 Chlorobromomethane 25.0 24.2 ug/L 97 70 - 130 20 Bromoform 25.0 25.6 ug/L 102 68 - 136 20 25.0 Bromomethane 20.7 83 43 - 151 20 ug/L 2-Butanone (MEK) 125 116 ug/L 92 54 - 130 20 25.0 26.9 108 70 - 142 2 20 n-Butylbenzene ug/L sec-Butylbenzene 25.0 26.3 ug/L 105 70 - 134 20 tert-Butylbenzene 25.0 26.3 ug/L 105 70 - 135 20 Carbon disulfide 25.0 23.9 ug/L 96 58 - 130 20 Carbon tetrachloride 25.0 25.5 ug/L 102 70 - 146 20 Chlorobenzene 25.0 24.8 ug/L 99 70 - 130 20 Chloroethane 25.0 21.6 ug/L 86 62 - 138 20 Chloroform 25.0 25.1 100 70 - 130 20 ug/L Chloromethane 25.0 21.5 ug/L 86 52 - 175 20 27.2 2-Chlorotoluene 25.0 ug/L 109 70 - 130 20 4-Chlorotoluene 25.0 27.4 ug/L 110 70 - 130 20 Chlorodibromomethane 25.0 25.5 ug/L 102 70 - 14520

TestAmerica Pleasanton

Page 11 of 20

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Client Sample ID: Lab Control Sam

Lab Sample ID: LCSD 720-165333/6

Matrix: Water

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RP
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
1,2-Dichlorobenzene	25.0	25.1		ug/L		100	70 - 130	1	2
1,3-Dichlorobenzene	25.0	25.5		ug/L		102	70 - 130	2	2
1,4-Dichlorobenzene	25.0	25.4		ug/L		102	70 - 130	1	2
1,3-Dichloropropane	25.0	24.7		ug/L		99	70 - 130	2	2
1,1-Dichloropropene	25.0	27.4		ug/L		109	70 - 130	1	2
1,2-Dibromo-3-Chloropropane	25.0	25.4		ug/L		102	70 - 136	2	2
Ethylene Dibromide	25.0	24.7		ug/L		99	70 - 130	3	2
Dibromomethane	25.0	24.6		ug/L		98	70 - 130	1	2
Dichlorodifluoromethane	25.0	17.4		ug/L		70	34 - 132	0	2
1,1-Dichloroethane	25.0	26.1		ug/L		104	70 - 130	2	2
1,2-Dichloroethane	25.0	24.0		ug/L		96	61 - 132	1	2
1,1-Dichloroethene	25.0	22.5		ug/L		90	64 - 128	2	2
cis-1,2-Dichloroethene	25.0	25.5		ug/L		102	70 - 130	1	2
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	68 - 130	2	2
1,2-Dichloropropane	25.0	26.3		ug/L		105	70 - 130	1	2
cis-1,3-Dichloropropene	25.0	27.6		ug/L		110	70 - 130	0	2
trans-1,3-Dichloropropene	25.0	29.3		ug/L		117	70 ₋ 140	2	2
Ethylbenzene	25.0	25.0		ug/L		100	80 - 120	1	2
Hexachlorobutadiene	25.0	26.3		ug/L		105	70 - 130	3	2
2-Hexanone	125	119		ug/L		95	60 - 164	8	2
Isopropylbenzene	25.0	26.0		ug/L		104	70 - 130	2	2
4-Isopropyltoluene	25.0	26.1		ug/L		104	70 - 130	3	2
Methylene Chloride	25.0	26.0		ug/L		104	70 - 147	1	2
4-Methyl-2-pentanone (MIBK)	125	126		ug/L		101	58 - 130	7	2
Naphthalene	25.0	26.8		ug/L		107	70 - 130		2
N-Propylbenzene	25.0	27.4		ug/L		109	70 - 130	3	2
Styrene	25.0	27.6		ug/L		110	70 ₋ 130	0	2
1,1,1,2-Tetrachloroethane	25.0	26.1		ug/L		105	70 - 130	0	2
1,1,2,2-Tetrachloroethane	25.0	25.2		ug/L		101	70 - 130	1	2
Tetrachloroethene	25.0	24.4		ug/L		97	70 - 130 70 - 130	1	2
Toluene	25.0	25.5		ug/L ug/L		102	78 - 120		2
1,2,3-Trichlorobenzene	25.0	25.5		ug/L ug/L		102	70 - 120 70 - 130	0	2
1,2,4-Trichlorobenzene	25.0	26.2		ug/L ug/L		105	70 - 130 70 - 130	1	2
1,1,1-Trichloroethane	25.0	24.7		ug/L ug/L		99	70 - 130		2
1,1,2-Trichloroethane	25.0	25.4		ug/L ug/L		101	70 - 130 70 - 130	2	2
Trichloroethene	25.0	24.6		_			70 - 130 70 - 130	1	
Trichlorofluoromethane	25.0	25.1		ug/L		99	66 - 132		2
				ug/L		100		-	
1,2,3-Trichloropropane	25.0	25.7		ug/L		103	70 ₋ 130	3	2
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.2		ug/L		85	42 - 162	1	2
ne 1,2,4-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 132	2	2
1,3,5-Trimethylbenzene	25.0	27.1		ug/L		109	70 - 132	2	2
Vinyl acetate	25.0	21.4		ug/L		85	43 - 163	0	2
Vinyl chloride	25.0	19.0		ug/L ug/L		76	54 ₋ 135	1	2
m-Xylene & p-Xylene	25.0	25.3		ug/L ug/L		101	70 ₋ 142	2	2
o-Xylene	25.0	25.8		-		101	70 - 142 70 - 130	2	2
o-Aylene 2,2-Dichloropropane	25.0	26.0		ug/L ug/L		103	70 - 130	1	2

TestAmerica Pleasanton

Page 12 of 20

8/25/2014

3

6

9

10

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165333/6

Lab Sample ID: LCSD 720-165333/8

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab	Control	Sam	ple [Oup
	Prep Tv	pe: T	otal	ΝA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Client Sample ID: Lab Control Sample Dup

Analysis Batch: 165333

Matrix: Water

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	572		ug/L		114	62 - 120	2	20

-C5-C12

	LUSD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130
Toluene-d8 (Surr)	96		70 - 130

ICED ICED

Prep Type: Total/NA

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

GC/MS VOA

Analysis Batch: 165333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method F	Prep Batch
720-59373-1	EB-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165333/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165333/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165333/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165333/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165333/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

9

4

5

6

8

a

10

11

4.0

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Lab Sample ID: 720-59373-1

Matrix: Water

Client Sample ID: EB-1
Date Collected: 08/19/14 15:15
Date Received: 08/19/14 16:50

Batch Batch Batch Dilution Prepared Prep Type Method Run Factor Number or Analyzed Type Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 165333 08/21/14 00:36 PDR TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

5

7

9

44

12

13

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	ram	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analyt	e	

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

G

3

4

5

7

10

11

40

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

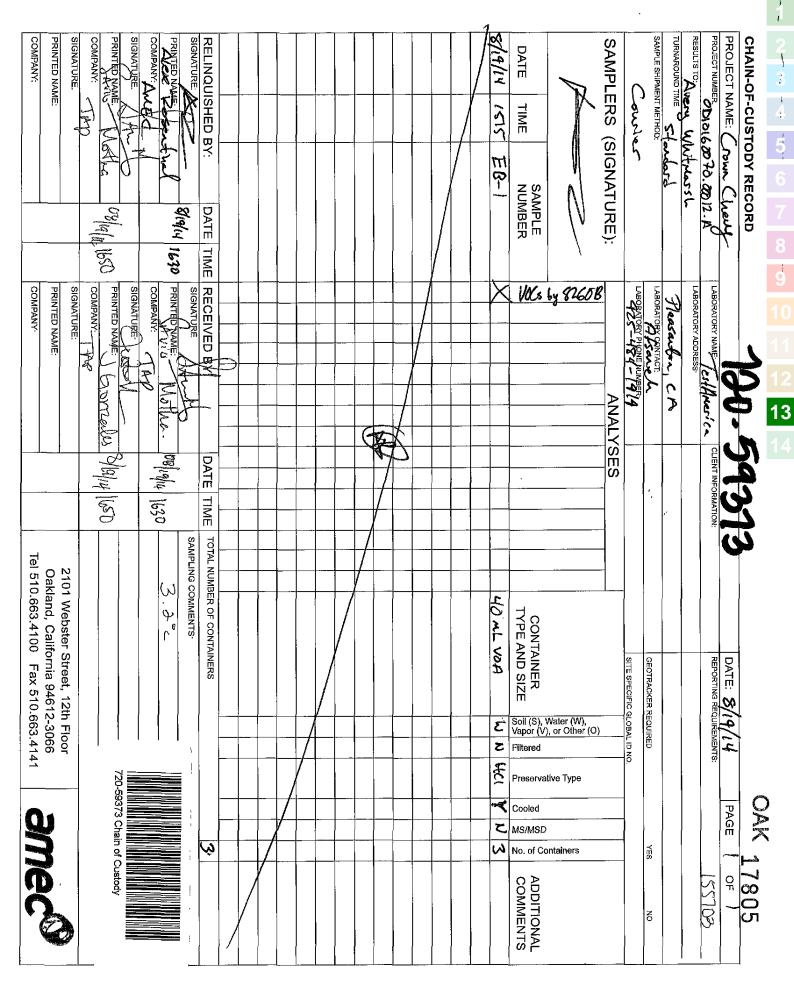
Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59373-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59373-1	EB-1	Water	08/19/14 15:15	08/19/14 16:50

9

4


5

9

10

12

13

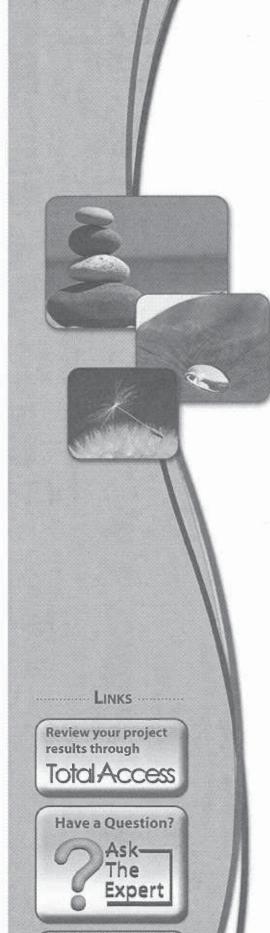
Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59373-1

Login Number: 59373 List Source: TestAmerica Pleasanton

List Number: 1


Creator: Gonzales, Justinn

Creator: Gonzales, Justinn		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

_

TestAmerica Pleasanton

Page 20 of 20

Visit us at:

www.testamericainc.com

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59375-1 Client Project/Site: Crown Chevrolet

For

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

HamfSel)

Authorized for release by: 8/20/2014 2:25:08 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

-		-
п		
м	40	
-11		

DC + 20	
100 + 30	

	1	

	-
	-

	_			
To			0	 nts
		OT	1.0	

Cover Page	1
Table of Contents	
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
	6
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Not Calculated

Quality Control

Relative error ratio

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

NC ND

PQL

QC

RER

RL RPD

TEF TEQ

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	- 100
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	1075
MDA	Minimum detectable activity	ŏ
EDL	Estimated Detection Limit	No.
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	

E

TestAmerica Pleasanton

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Job ID: 720-59375-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59375-1

Comments

No additional comments.

Receipt

The samples were received on 8/19/2014 6:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.4° C.

Except:

The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC):

Both samples received are labeled the same; as PRB-03HP-24.0. One is labeled at 1650 and the other 1715. Labeled the sample at 1715 as PRB-02HP-23.0.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: PRB-02HP-23.0 (720-59375-2). PCE

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

000

9

Œ

12

13

Œ

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

23

Client Sample ID: PRB-03HP-24.0

Lab Sample ID: 720-59375-1

The state of the s						
Analyte	Result Q	ualifier RL	MDL Unit	Dil Fac D	Method	Prep Type
Acetone	74	50	ug/L	1	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	3.3	0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA

Client Sample ID: PRB-02HP-23.0 Lab Sample ID: 720-59375-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	59		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
Gasoline Range Organics (GRO) -C5-C12	60	R	50		ug/L	1		MS 8260B/CA_LUFT MS	Total/NA

5

6

8

3)

112

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: PRB-03HP-24.0

Date Collected: 08/19/14 16:50

Date Received: 08/19/14 18:10

Analyte

Result Qualifier

RL

MDL Unit

D Prepared

Analyzed

Dil Fac

Result Qu	alifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
ND	0.50	ug/L		08/20/14 03:34	1
74	50	ug/L		08/20/14 03:34	1
ND	0.50	ug/L		08/20/14 03:34	1
ND	0.50	ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	50	ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	5.0	ug/L		08/20/14 03:34	1
ND	0.50			08/20/14 03:34	1
ND	0.50	ug/L		08/20/14 03:34	1
ND	1.0			08/20/14 03:34	1
					1
					1
					1
					1
		_			1
					1
					1
					1
					1
		_			1
					1
					1
					1
					1
					1
					1
					1
					1
					1
					1
					1
					1
					1
					1
		_			1
					1
					1
					1
	50	ug/L		08/20/14 03:34	1
ND		ug/L		08/20/14 03:34	1
ND	1.0	ug/L		08/20/14 03:34	1
ND	0.50	ug/L		08/20/14 03:34	1
	74 ND 74 ND ND	ND 0.50 74 50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND	ND	ND 0.50 ug/L 74 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 ug/L ND 0.50	ND

TestAmerica Pleasanton

Page 6 of 22

8/20/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: PRB-03HP-24.0

Date Collected: 08/19/14 16:50

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59375-1

Matrix: Water

Date Received: 08/19/14 18:10 Analyte	Result Qu	nalifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		08/20/14 03:34	1
Tetrachloroethene	3.3	0.50	ug/L		08/20/14 03:34	1
Toluene	ND	0.50	ug/L		08/20/14 03:34	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		08/20/14 03:34	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		08/20/14 03:34	1
1,1,1-Trichloroethane	ND	0.50	ug/L		08/20/14 03:34	1
1,1,2-Trichloroethane	ND	0.50	ug/L		08/20/14 03:34	1
Trichloroethene	ND	0.50	ug/L		08/20/14 03:34	1
Trichlorofluoromethane	ND	1.0	ug/L		08/20/14 03:34	1
1,2,3-Trichloropropane	ND	0.50	ug/L		08/20/14 03:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		08/20/14 03:34	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		08/20/14 03:34	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		08/20/14 03:34	1
Vinyl acetate	ND	10	ug/L		08/20/14 03:34	1
Vinyl chloride	ND	0.50	ug/L		08/20/14 03:34	1
Xylenes, Total	ND	1.0	ug/L		08/20/14 03:34	1
2,2-Dichloropropane	ND	0.50	ug/L		08/20/14 03:34	1
Gasoline Range Organics (GRO) -C5-C12	ND	50	ug/L		08/20/14 03:34	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		67 - 130		08/20/14 03:34	
1,2-Dichloroethane-d4 (Surr)	93		72 - 130		08/20/14 03:34	1
Toluene-d8 (Surr)	95		70 - 130		08/20/14 03:34	1

Client Sample ID: PRB-02HP-23.0 Date Collected: 08/19/14 17:15

Lab Sample ID: 720-59375-2

Matrix: Water

Date Collected, Collocat 40.40							Middi	Wattix. Water	
Date Received: 08/19/14 18:10 Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND	0.	50	ug/L			08/20/14 04:03	1	
Acetone	ND		50	ug/L			08/20/14 04:03	1	
Benzene	ND	0.	50	ug/L			08/20/14 04:03	1	
Dichlorobromomethane	ND	0.	50	ug/L			08/20/14 04:03	1	
Bromobenzene	ND		.0	ug/L			08/20/14 04:03	1	
Chlorobromomethane	ND		.0	ug/L			08/20/14 04:03	- 1	
Bromoform	ND		.0	ug/L			08/20/14 04:03	1	
Bromomethane	ND		.0	ug/L			08/20/14 04:03	1	
2-Butanone (MEK)	ND		50	ug/L			08/20/14 04:03	1	
n-Butylbenzene	ND		.0	ug/L			08/20/14 04:03	1	
sec-Butylbenzene	ND		.0	ug/L			08/20/14 04:03	1	
tert-Butylbenzene	ND		.0	ug/L			08/20/14 04:03	1	
Carbon disulfide	ND		5.0	ug/L			08/20/14 04:03	1	
Carbon tetrachloride	ND	0.	50	ug/L			08/20/14 04:03	1	
Chlorobenzene	ND	0.	50	ug/L			08/20/14 04:03	_1	
Chloroethane	ND		.0	ug/L			08/20/14 04:03	1	
Chloroform	ND		.0	ug/L			08/20/14 04:03	1	
Chloromethane	ND		.0	ug/L			08/20/14 04:03	1	
2-Chlorotoluene	ND	0.	50	ug/L			08/20/14 04:03	1	
4-Chlorotoluene	ND	0.	50	ug/L			08/20/14 04:03	1	
Chlorodibromomethane	ND	0.	50	ug/L			08/20/14 04:03	1	

TestAmerica Pleasanton

Page 7 of 22

8/20/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

4-Bromofluorobenzene

TestAmerica Job ID: 720-59375-1

Kal III

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: PRB-02HP-23.0 Date Collected: 08/19/14 17:15				Lab Sample ID: 7	trix: Water
Date Received: 08/19/14 18:10					icia. Water
Analyte	Result Qualifier	RL	MDL Unit	D Prepared Analyzed	Dil Fac
1,2-Dichlorobenzene	ND	0.50	ug/L	08/20/14 04:0)3
1,3-Dichlorobenzene	ND	0.50	ug/L	08/20/14 04:)3
1,4-Dichlorobenzene	ND	0.50	ug/L	08/20/14 04:0	3 .
1,3-Dichloropropane	ND	1.0	ug/L	08/20/14 04:0)3
1,1-Dichloropropene	ND	0.50	ug/L	08/20/14 04:0)3
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	08/20/14 04:)3
Ethylene Dibromide	ND	0.50	ug/L	08/20/14 04:0)3
Dibromomethane	ND	0.50	ug/L	08/20/14 04:0)3
Dichlorodifluoromethane	ND	0.50	ug/L	08/20/14 04:6)3
1,1-Dichloroethane	ND	0.50	ug/L	08/20/14 04:0)3
,2-Dichloroethane	ND	0.50	ug/L	08/20/14 04:0)3
1,1-Dichloroethene	ND	0.50	ug/L	08/20/14 04:0)3
cis-1,2-Dichloroethene	ND	0.50	ug/L	08/20/14 04:0	
rans-1,2-Dichloroethene	ND	0.50	ug/L	08/20/14 04:0	
,2-Dichloropropane	ND	0.50	ug/L	08/20/14 04:0	
is-1,3-Dichloropropene	ND	0.50	ug/L	08/20/14 04:0	
rans-1,3-Dichloropropene	ND	0.50	ug/L	08/20/14 04:0	
Ethylbenzene	ND	0.50	ug/L	08/20/14 04:	
Hexachlorobutadiene	ND	1.0	ug/L	08/20/14 04:0	
-Hexanone	ND	50	ug/L	08/20/14 04:0	
sopropylbenzene	ND	0.50	ug/L	08/20/14 04:0	
-Isopropyltoluene	ND	1.0	ug/L	08/20/14 04:0	
Methylene Chloride	ND	5.0	ug/L	08/20/14 04:0	
-Methyl-2-pentanone (MIBK)	ND	50	ug/L	08/20/14 04:0	
laphthalene	ND	1.0	ug/L	08/20/14 04:0	
I-Propylbenzene	ND	1.0	ug/L	08/20/14 04:0	
Styrene	ND	0.50	ug/L	08/20/14 04:0	
,1,1,2-Tetrachloroethane	ND	0.50	ug/L	08/20/14 04:0	
,1,2.2-Tetrachloroethane	ND	0.50	ug/L	08/20/14 04:0	
[etrachloroethene	59	0.50	ug/L	08/20/14 04:0	
oluene	ND	0.50	ug/L	08/20/14 04:0	
	ND				
,2,3-Trichlorobenzene ,2,4-Trichlorobenzene	ND	1.0 1.0	ug/L	08/20/14 04:0 08/20/14 04:0	
			ug/L	08/20/14 04:0	
,1,1-Trichloroethane	ND	0.50	ug/L		
I,1,2-Trichloroethane	ND	0.50	ug/L	08/20/14 04:0	
Frichland Control	ND	0.50	ug/L	08/20/14 04:0	
Trichlorofluoromethane	ND	1.0	ug/L	08/20/14 04:0	
1,2,3-Trichloropropane	ND	0.50	ug/L	08/20/14 04:0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	08/20/14 04:0	
I,2,4-Trimethylbenzene	ND	0.50	ug/L	08/20/14 04:0	
I,3,5-Trimethylbenzene	ND	0.50	ug/L	08/20/14 04:0	
/inyl acetate	ND	10	ug/L	08/20/14 04:0	
/inyl chloride	ND	0.50	ug/L	08/20/14 04:0	
Kylenes, Total	ND	1.0	ug/L	08/20/14 04:0	
2,2-Dichloropropane	ND	0.50	ug/L	08/20/14 04:0	
Gasoline Range Organics (GRO) C5-C12	60 R	50	ug/L	08/20/14 04:0	03

TestAmerica Pleasanton

08/20/14 04:03

67 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: PRB-02HP-23.0

Lab Sample ID: 720-59375-2

Matrix: Water

Date Collected: 08/19/14 17:15 Date Received: 08/19/14 18:10 Surrogate

Toluene-d8 (Surr)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	98	72 - 130	1 4	08/20/14 04:03	
Toluene-d8 (Surr)	96	70 130		08/20/14 04:03	

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165258/4

Matrix: Water

Analysis Batch: 165258

Client	Sample	ID:	Meth	od	Blank
	Pro	ep T	vpe:	To	tal/NA

-31
4 JII

L	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
0		ug/L			08/19/14 19:57	1	
0		ug/L			08/19/14 19:57	1	
0		ug/L			08/19/14 19:57	1	鼷
0		ug/L			08/19/14 19:57	1	
0		ug/L			08/19/14 19:57	1	
0		ug/L			08/19/14 19:57	1	
0		ug/L			08/19/14 19:57	1	
0		ug/L			08/19/14 19:57	1	
0		ug/L			08/19/14 19:57	1	

	MB						
Analyte		Qualifier RI			D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50		ug/L		08/19/14 19:57	1
Acetone	ND	50		ug/L		08/19/14 19:57	1
Benzene	ND	0.50		ug/L		08/19/14 19:57	1
Dichlorobromomethane	ND	0.50		ug/L		08/19/14 19:57	1
Bromobenzene	ND	1.0		ug/L		08/19/14 19:57	1
Chlorobromomethane	ND	1.0		ug/L		08/19/14 19:57	1
Bromoform	ND	1.0		ug/L		08/19/14 19:57	1
Bromomethane	ND	1.0)	ug/L		08/19/14 19:57	1
2-Butanone (MEK)	ND	50)	ug/L		08/19/14 19:57	1
n-Butylbenzene	ND	1.0)	ug/L		08/19/14 19:57	1
sec-Butylbenzene	ND	1.0)	ug/L		08/19/14 19:57	1
tert-Butylbenzene	ND	1.0		ug/L		08/19/14 19:57	1
Carbon disulfide	ND	5.0)	ug/L		08/19/14 19:57	1
Carbon tetrachloride	ND	0.50)	ug/L		08/19/14 19:57	1
Chlorobenzene	ND	0.50)	ug/L		08/19/14 19:57	1
Chloroethane	ND	1.0		ug/L		08/19/14 19:57	1
Chloroform	ND	1.0		ug/L		08/19/14 19:57	1
Chloromethane	ND	1.0)	ug/L		08/19/14 19:57	1
2-Chlorotoluene	ND	0.50)	ug/L		08/19/14 19:57	1
4-Chlorotoluene	ND	0.50)	ug/L		08/19/14 19:57	1
Chlorodibromomethane	ND	0.50		ug/L		08/19/14 19:57	1
1,2-Dichlorobenzene	ND	0.50)	ug/L		08/19/14 19:57	1
1,3-Dichlorobenzene	ND	0.50		ug/L		08/19/14 19:57	1
1,4-Dichlorobenzene	ND	0.50		ug/L		08/19/14 19:57	1
1,3-Dichloropropane	ND	1.0		ug/L		08/19/14 19:57	1
1,1-Dichloropropene	ND	0.50		ug/L		08/19/14 19:57	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L		08/19/14 19:57	1
Ethylene Dibromide	ND	0.50		ug/L		08/19/14 19:57	1
Dibromomethane	ND	0.50		ug/L		08/19/14 19:57	1
Dichlorodifluoromethane	ND	0.50		ug/L		08/19/14 19:57	1
1,1-Dichloroethane	ND	0.50		ug/L		08/19/14 19:57	1
1,2-Dichloroethane	ND	0.50		ug/L		08/19/14 19:57	1
1.1-Dichloroethene	ND	0.50		ug/L		08/19/14 19:57	1
cis-1,2-Dichloroethene	ND	0.50		ug/L		08/19/14 19:57	1
trans-1,2-Dichloroethene	ND	0.50		ug/L		08/19/14 19:57	1
	ND	0.50		ug/L		08/19/14 19:57	1
1,2-Dichloropropane	ND	0.50				08/19/14 19:57	1
cis-1,3-Dichloropropene		0.50		ug/L			
trans-1,3-Dichloropropene	ND			ug/L		08/19/14 19:57	1
Ethylbenzene	ND	0.50		ug/L		08/19/14 19:57	1
Hexachlorobutadiene	ND	1.0		ug/L		08/19/14 19:57	1
2-Hexanone	ND	50		ug/L		08/19/14 19:57	1
Isopropylbenzene	ND	0.50		ug/L		08/19/14 19:57	1
4-Isopropyltoluene	ND	1.0		ug/L		08/19/14 19:57	1
Methylene Chloride	ND	5.0		ug/L		08/19/14 19:57	1
4-Methyl-2-pentanone (MIBK)	ND	50		ug/L		08/19/14 19:57	1
Naphthalene	ND	1.0		ug/L		08/19/14 19:57	1
N-Propylbenzene	ND	1.0)	ug/L		08/19/14 19:57	1
Styrene	ND	0.50)	ug/L	-8	08/19/14 19:57	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-165258/4

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.	50	ug/L			08/19/14 19:57	1
1,1,2,2-Tetrachloroethane	ND	0.	50	ug/L			08/19/14 19:57	1
Tetrachloroethene	ND	0.	50	ug/L			08/19/14 19:57	1
Toluene	ND	0.	50	ug/L			08/19/14 19:57	1
1,2,3-Trichlorobenzene	ND		.0	ug/L			08/19/14 19:57	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/19/14 19:57	1
1,1,1-Trichloroethane	ND	0.	50	ug/L			08/19/14 19:57	1
1,1,2-Trichloroethane	ND	0.	50	ug/L			08/19/14 19:57	1
Trichloroethene	ND	0.	50	ug/L			08/19/14 19:57	1
Trichlorofluoromethane	ND		.0	ug/L			08/19/14 19:57	1
1,2,3-Trichloropropane	ND	0.	50	ug/L			08/19/14 19:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.	50	ug/L			08/19/14 19:57	1
1,2,4-Trimethylbenzene	ND	0.	50	ug/L			08/19/14 19:57	1
1,3,5-Trimethylbenzene	ND	0.	50	ug/L			08/19/14 19:57	1
Vinyl acetate	ND		10	ug/L			08/19/14 19:57	1
Vinyl chloride	ND	0.	50	ug/L			08/19/14 19:57	1
Xylenes, Total	ND	1	.0	ug/L			08/19/14 19:57	1
2,2-Dichloropropane	ND	0.	50	ug/L			08/19/14 19:57	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			08/19/14 19:57	1

	1010 1010				
Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96	67 - 130		08/19/14 19:57	1
1,2-Dichloroethane-d4 (Surr)	94	72 - 130		08/19/14 19:57	1
Toluene-d8 (Surr)	95	70 - 130		08/19/14 19:57	1

Lab Sample ID: LCS 720-165258/5

Matrix: Water

Amelyain Detahy 405250

Client Sample	ID:	Lab	Control	Sample	
		Prep	Type: 1	otal/NA	

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	25.5		ug/L		102	62 - 130
Acetone	125	119		ug/L		95	26 - 180
Benzene	25.0	25.3		ug/L		101	79 - 130
Dichlorobromomethane	25.0	25.3		ug/L		101	70 - 130
Bromobenzene	25.0	25.5		ug/L		102	70 - 130
Chlorobromomethane	25.0	24.0		ug/L		96	70 - 130
Bromoform	25.0	25.8		ug/L		103	68 - 136
Bromomethane	25.0	20.8		ug/L		83	43 - 151
2-Butanone (MEK)	125	120		ug/L		96	54 - 130
n-Butylbenzene	25.0	24.9		ug/L		99	70 - 142
sec-Butylbenzene	25.0	25.2		ug/L		101	70 - 134
ert-Butylbenzene	25.0	25.6		ug/L		102	70 - 135
Carbon disulfide	25.0	22.9		ug/L		92	58 - 130
Carbon tetrachloride	25.0	24.3		ug/L		97	70 - 146
Chlorobenzene	25.0	24.2		ug/L		97	70 - 130
Chloroethane	25.0	21.5		ug/L		86	62 - 138
Chloroform	25.0	24.6		ug/L		98	70 - 130

TestAmerica Pleasanton

Page 11 of 22

8/20/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Lab Sample ID: LCS 720-165258/5

TestAmerica Job ID: 720-59375-1

Client Sample ID: Lab Control Sample

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits
Chloromethane	25.0	21.8	uç	g/L	87	52 - 175
2-Chlorotoluene	25.0	26.1	uç	g/L	105	70 - 130
-Chlorotoluene	25.0	26.1	uç	g/L	104	70 - 130
Chlorodibromomethane	25.0	25.7	uç	g/L	103	70 - 145
,2-Dichlorobenzene	25.0	24.8	uç	g/L	99	70 - 130
,3-Dichlorobenzene	25.0	24.8	uç	g/L	99	70 - 130
,4-Dichlorobenzene	25.0	24.6	uç	g/L	99	70 - 130
,3-Dichloropropane	25.0	24.7	uç	g/L	99	70 - 130
,1-Dichloropropene	25.0	25.9	ug	g/L	104	70 - 130
,2-Dibromo-3-Chloropropane	25.0	25.5	ug	g/L	102	70 - 136
Ethylene Dibromide	25.0	25.0	uç	g/L	100	70 - 130
Dibromomethane	25.0	24.4	uç	g/L	98	70 - 130
Dichlorodifluoromethane	25.0	18.4		g/L	73	34 - 132
,1-Dichloroethane	25.0	25.0		g/L	100	70 - 130
,2-Dichloroethane	25.0	23.9	ug	g/L	96	61 - 132
,1-Dichloroethene	25.0	21.6		g/L	86	64 - 128
is-1,2-Dichloroethene	25.0	24.6		g/L	98	70 - 130
rans-1,2-Dichloroethene	25.0	23.6		g/L	95	68 _ 130
,2-Dichloropropane	25.0	25.6		g/L	102	70 - 130
is-1,3-Dichloropropene	25.0	27.0		g/L	108	70 - 130
rans-1,3-Dichloropropene	25.0	29.3		g/L	117	70 - 140
Ethylbenzene	25.0	24.1		g/L	96	80 - 120
lexachlorobutadiene	25.0	25.1		g/L	100	70 - 130
-Hexanone	125	121		g/L	97	60 - 164
sopropylbenzene	25.0	24.8		g/L	99	70 - 130
-Isopropyltoluene	25.0	24.6		g/L	99	70 - 130
Methylene Chloride	25.0	24.8		g/L	99	70 - 147
I-Methyl-2-pentanone (MIBK)	125	128			103	58 - 130
				g/L		
Naphthalene	25.0	26.9		g/L /1	108	70 - 130
N-Propylbenzene	25.0	26.0		g/L	104	70 - 130
Styrene	25.0	26.8		g/L	107	70 - 130
,1,1,2-Tetrachloroethane	25.0	25.8		g/L	103	70 - 130
,1,2,2-Tetrachloroethane	25.0	25.0		g/L	100	70 - 130
Tetrachloroethene	25.0	23.4		g/L	94	70 - 130
Toluene	25.0	24.6		g/L	99	78 - 120
1,2,3-Trichlorobenzene	25.0	25.0		g/L	100	70 _ 130
1,2,4-Trichlorobenzene	25.0	25.3		g/L	101	70 - 130
I,1,1-Trichloroethane	25.0	24.2		g/L	97	70 - 130
1,1,2-Trichloroethane	25.0	25.5		g/L	102	70 - 130
Trichloroethene	25.0	24.4		g/L	97	70 - 130
richlorofluoromethane [Fig. 1]	25.0	24.4		g/L ·	97	66 - 132
1,2,3-Trichloropropane	25.0	26.0	นรู	g/L	104	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20,8	uç	g/L	83	42 - 162
ne						
1,2,4-Trimethylbenzene	25.0	25.3		g/L	101	70 - 132
1,3,5-Trimethylbenzene	25.0	26.0		g/L	104	70 - 130
Vinyl acetate	25.0	19.6	นรู	g/L	78	43 - 163

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165258/5

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec. Spike Result Qualifier Added Unit %Rec Limits Analyte 24.0 m-Xylene & p-Xylene 25.0 ug/L 96 70 - 142 o-Xylene 25.0 24.9 ug/L 100 70 - 130 25.0 26.3 70 - 140 2,2-Dichloropropane ug/L 105

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCS 720-165258/7 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 165258

LCS LCS %Rec. Spike Result Qualifier Added Unit %Rec Limits Analyte 500 551 ug/L 110 62 - 120 Gasoline Range Organics (GRO) -C5-C12

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 72 - 130 94 70 - 130 Toluene-d8 (Surr) 96

Lab Sample ID: LCSD 720-165258/6

Matrix: Water

Analysis Ratch: 165258

Client	Sample	ID:	Lab	Contro	ol Sar	nple	Dup
				Prep T	ype:	Tota	I/NA

Analysis Batch: 165258									
	Spike		LCSD				%Rec.		RPE
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Methyl tert-butyl ether	25.0	24.9		ug/L		100	62 - 130	2	20
Acetone	125	114		ug/L		91	26 - 180	5	30
Benzene	25.0	25.3		ug/L		101	79 - 130	0	20
Dichlorobromomethane	25.0	25.1		ug/L		101	70 - 130	1	20
Bromobenzene	25.0	25.6	14	ug/L		102	70 - 130	0	20
Chlorobromomethane	25.0	23.9		ug/L		96	70 - 130	0	20
Bromoform	25.0	24.9		ug/L		100	68 - 136	3	20
Bromomethane	25.0	20.8		ug/L		83	43 - 151	0	20
2-Butanone (MEK)	125	111		ug/L		89	54 - 130	7	20
n-Butylbenzene	25.0	25.1		ug/L		100	70 - 142	1	20
sec-Butylbenzene	25.0	25.2		ug/L		101	70 - 134	0	20
tert-Butylbenzene	25.0	25.7		ug/L		103	70 - 135	1	20
Carbon disulfide	25.0	22.9		ug/L		92	58 - 130	0	20
Carbon tetrachloride	25.0	24.4		ug/L		98	70 - 146	1	20
Chlorobenzene	25.0	24.1		ug/L		96	70 - 130	0	20
Chloroethane	25.0	21.5		ug/L		86	62 - 138	0	20
Chloroform	25.0	24.6		ug/L		98	70 - 130	0	20
Chloromethane	25.0	21.4		ug/L		86	52 - 175	1	20
2-Chlorotoluene	25.0	26.3		ug/L		105	70 - 130	1	20
4-Chlorotoluene	25.0	26.3		ug/L		105	70 - 130	1	20
Chlorodibromomethane	25.0	25.4		ug/L		101	70 - 145	1	20

TestAmerica Pleasanton

Page 13 of 22

8/20/2014

Prep Type: Total/NA

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165258/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 165258	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	24.9	- Guainiei	ug/L		100	70 - 130	0	20
1,3-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130	0	20
1,4-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130	0	20
1,3-Dichloropropane	25.0	24.4		ug/L		97	70 - 130	1	20
1,1-Dichloropropene	25.0	26.0		ug/L		104	70 - 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	24.0		ug/L		96	70 - 136	6	20
Ethylene Dibromide	25.0	24.6		ug/L		98	70 - 130	2	20
Dibromomethane	25.0	23.9		ug/L		96	70 - 130	2	20
Dichlorodifluoromethane	25.0	18.3		ug/L		73	34 - 132	0	20
1,1-Dichloroethane	25.0	25.1		ug/L		101	70 - 130	1	20
1,2-Dichloroethane	25.0	23.7		ug/L		95	61 - 132	1	20
1,1-Dichloroethene	25.0	21.8		ug/L		87	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	24.6		ug/L		98	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	23.8		ug/L		95	68 - 130	1	20
1,2-Dichloropropane	25.0	25.6		ug/L		102	70 - 130	0	20
cis-1,3-Dichloropropene	25.0	26.9		ug/L		107	70 - 130		20
trans-1,3-Dichloropropene	25.0	28.5		ug/L		114	70 - 140	3	20
Ethylbenzene	25.0	24.2		ug/L		97	80 - 120	0	20
Hexachlorobutadiene	25.0	25.1		ug/L		101	70 - 130	0	20
2-Hexanone	125	114		ug/L		92	60 - 164	6	20
Isopropylbenzene	25.0	25.0		ug/L		100	70 - 130	1	20
4-Isopropyltoluene	25.0	24.8		ug/L		99	70 - 130	1	20
Methylene Chloride	25.0	24.8		ug/L		99	70 - 147	0	20
4-Methyl-2-pentanone (MIBK)	125	122		ug/L		97	58 - 130	5	20
Naphthalene	25.0	26.1		ug/L		105	70 - 130	3	20
N-Propylbenzene	25.0	26.1		ug/L		104	70 - 130	0	20
Styrene	25.0	26.8		ug/L		107	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	25.8		ug/L		103	70 - 130	0	20
1,1,2,2-Tetrachloroethane	25.0	24.1		ug/L		96	70 - 130	4	20
Tetrachloroethene	25.0	23.6		ug/L		94	70 - 130	1	20
Toluene	25.0	24.6		ug/L		99	78 - 120	0	20
1,2,3-Trichlorobenzene	25.0	24.9		ug/L		100	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	25.1		ug/L		101	70 - 130	0	20
1,1,1-Trichloroethane	25.0	24.1		ug/L		96	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.2		ug/L		101	70 - 130	1	20
Trichloroethene	25.0	24.5		ug/L		98	70 - 130	1	20
Trichlorofluoromethane	25.0	24.2		ug/L		97	66 - 132	0	20
1,2,3-Trichloropropane	25.0	25.1		ug/L		101	70 - 130	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.4		ug/L		82	42 - 162	2	20
ne									
1,2,4-Trimethylbenzene	25.0	25.6		ug/L		103	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	26.2		ug/L		105	70 - 130	1	20
Vinyl acetate	25.0	17.9		ug/L		72	43 - 163	9	20
Vinyl chloride	25.0	19.4		ug/L		77	54 - 135	1	20
m-Xylene & p-Xylene	25.0	24.3		ug/L		97	70 - 142	1	20
o-Xylene	25.0	25.0		ug/L		100	70 - 130	0	20
2,2-Dichloropropane	25.0	24.9		ug/L		100	70 - 140	5	20

TestAmerica Pleasanton

Spike

Added

500

553

ug/L

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165258/6

Matrix: Water

Analysis Batch: 165258

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-165258/8

Matrix: Water

Analysis Batch: 165258

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec. RPD LCSD LCSD Result Qualifier Unit %Rec Limits RPD Limit 62 - 120 0 111

-C5-C12

Analyte

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130
Toluene-d8 (Surr)	96		70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

2

GC/MS VOA

Analysis	Batch:	165258
----------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59375-1	PRB-03HP-24.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59375-2	PRB-02HP-23.0	Total/NA	Water	8260B/CA_LUFT	
1.00 700 10505015	1.10			MS	
LCS 720-165258/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
LCS 720-165258/7	Lab Castral Cassala	Total/NA	10/-4	MS	
LCS /20-100208//	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
LCSD 720-165258/6	Lab Control Sample Dup	Total/NA	Water	MS	
E00D 720-10020070	Lab control cample bup	TOTALITYA	vvater	8260B/CA_LUFT MS	
LCSD 720-165258/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA LUFT	
	2.2			MS	
MB 720-165258/4	Method Blank	Total/NA	Water	8260B/CA LUFT	
				-	

13

4

5

6

7

8

9

112

Lab Chronicle

Dilution

Factor

Batch

Number

165258

Prepared

or Analyzed

08/20/14 03:34

Analyst

ASC

Client; AMEC Environment & Infrastructure, Inc.

Batch

Туре

Client Sample ID: PRB-02HP-23.0

Analysis

Batch

Method

8260B/CA_LUFTMS

Client Sample ID: PRB-03HP-24.0

Project/Site: Crown Chevrolet

Date Collected: 08/19/14 16:50

Date Received: 08/19/14 18:10

Date Collected: 08/19/14 17:15

Date Received: 08/19/14 18:10

Prep Type

Total/NA

TestAmerica Job ID: 720-59375-1

Lab Sample ID: 720-59375-1

Lab

TAL PLS

Matrix: Water

Lab Sample ID: 720-59375-2

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B/CA LUFTMS 165258 08/20/14 04:03 ASC TAL PLS

Run

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

Certification Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

	F		
	٠	3	

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Progr	am	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analy	te	

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Method	Method Description	Protocol	Laboratory	
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS	
9				

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

R

13

8

9

Sample Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59375-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59375-1	PRB-03HP-24.0	Water	08/19/14 16:50	08/19/14 18:10
720-59375-2	PRB-02HP-23 0	Water	08/19/14 17:15	08/19/14 18:10

5

0

8

9

12

13

m

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59375-1

Login Number: 59375

List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	N/A		
Sample custody seals, if present, are intact.	N/A		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	False	SEE NCM	
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59402-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Akanef Sal

Authorized for release by: 8/22/2014 4:14:53 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ·······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

-6

4

6

R

9

11

13

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Job ID: 720-59402-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59402-1

Comments

No additional comments.

Receipt

The samples were received on 8/20/2014 1:55 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample is due to the presence of discrete peaks: PRB-03HP-28.0 (720-59402-1). PCE

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

a

3

4

6

7

0

1 0

11

13

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: PRB-03HP-28.0

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Lab Sample ID: 720-59402-1

_										
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Tetrachloroethene	110		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA	
								MS		
Trichloroethene	2.3		0.50		ug/L	1		8260B/CA_LUFT	Total/NA	
								MS		
Gasoline Range Organics (GRO)	110		50		ug/L	1		8260B/CA_LUFT	Total/NA	
-C5-C12								MS		

5

4

J

7

Q

10

12

13

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Project/Site: Crown Chevrolet

Client Sample ID: PRB-03HP-28.0

Date Collected: 08/20/14 08:00

1,1,1,2-Tetrachloroethane

TestAmerica Job ID: 720-59402-1

Lab Sample ID: 720-59402-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	0.50	ug/L		08/20/14 22:41	1
Acetone	ND	50	ug/L		08/20/14 22:41	1
Benzene	ND	0.50	ug/L		08/20/14 22:41	1
Dichlorobromomethane	ND	0.50	ug/L		08/20/14 22:41	1
Bromobenzene	ND	1.0	ug/L		08/20/14 22:41	1
Chlorobromomethane	ND	1.0	ug/L		08/20/14 22:41	1
Bromoform	ND	1.0	ug/L		08/20/14 22:41	1
Bromomethane	ND	1.0	ug/L		08/20/14 22:41	1
2-Butanone (MEK)	ND	50	ug/L		08/20/14 22:41	1
n-Butylbenzene	ND	1.0	ug/L		08/20/14 22:41	1
sec-Butylbenzene	ND	1.0	ug/L		08/20/14 22:41	1
tert-Butylbenzene	ND	1.0	ug/L		08/20/14 22:41	1
Carbon disulfide	ND	5.0	ug/L		08/20/14 22:41	1
Carbon tetrachloride	ND	0.50	ug/L		08/20/14 22:41	1
Chlorobenzene	ND	0.50	ug/L		08/20/14 22:41	1
Chloroethane	ND	1.0	ug/L		08/20/14 22:41	1
Chloroform	ND	1.0	ug/L		08/20/14 22:41	1
Chloromethane	ND	1.0	ug/L		08/20/14 22:41	1
2-Chlorotoluene	ND	0.50	ug/L		08/20/14 22:41	
4-Chlorotoluene	ND	0.50	ug/L		08/20/14 22:41	1
Chlorodibromomethane	ND	0.50	ug/L		08/20/14 22:41	1
1,2-Dichlorobenzene	ND	0.50	ug/L		08/20/14 22:41	
1,3-Dichlorobenzene	ND	0.50	ug/L		08/20/14 22:41	1
1,4-Dichlorobenzene	ND	0.50	ug/L		08/20/14 22:41	1
1,3-Dichloropropane	ND	1.0	ug/L		08/20/14 22:41	
1,1-Dichloropropene	ND	0.50	ug/L		08/20/14 22:41	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/20/14 22:41	1
Ethylene Dibromide	ND	0.50	ug/L		08/20/14 22:41	
Dibromomethane	ND	0.50	ug/L		08/20/14 22:41	1
Dichlorodifluoromethane	ND	0.50	ug/L		08/20/14 22:41	1
1.1-Dichloroethane	ND	0.50	ug/L		08/20/14 22:41	
1,2-Dichloroethane	ND	0.50	ug/L		08/20/14 22:41	1
1,1-Dichloroethene	ND	0.50	ug/L		08/20/14 22:41	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/20/14 22:41	
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/20/14 22:41	1
	ND	0.50	ug/L		08/20/14 22:41	1
1,2-Dichloropropane cis-1,3-Dichloropropene	ND	0.50	ug/L ug/L		08/20/14 22:41	
						1
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/20/14 22:41	1
Ethylbenzene	ND ND	0.50	ug/L		08/20/14 22:41	
Hexachlorobutadiene	ND ND	1.0	ug/L		08/20/14 22:41	1
2-Hexanone	ND ND	50	ug/L		08/20/14 22:41	1
Isopropylbenzene	ND ND	0.50	ug/L		08/20/14 22:41	1
4-Isopropyltoluene	ND	1.0	ug/L		08/20/14 22:41	1
Methylene Chloride	ND	5.0	ug/L		08/20/14 22:41	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/20/14 22:41	1
Naphthalene	ND	1.0	ug/L		08/20/14 22:41	1
N-Propylbenzene	ND	1.0	ug/L		08/20/14 22:41	1
Styrene	ND	0.50	ug/L		08/20/14 22:41	1

TestAmerica Pleasanton

8/22/2014

08/20/14 22:41

Page 6 of 23

0.50

ug/L

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

Client Sample ID: PRB-03HP-28.0 Date Collected: 08/20/14 08:00

TestAmerica Job ID: 720-59402-1

Lab Sample	e ID:	720	-59	402-1
	N	latri	x: V	Vate

Date Received: 08/20/14 13:55	5 "	O 115			_			5.1.5
Analyte	Result		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L			08/20/14 22:41	1
Tetrachloroethene	110	0.50		ug/L			08/20/14 22:41	1
Toluene	ND	0.50		ug/L			08/20/14 22:41	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			08/20/14 22:41	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			08/20/14 22:41	1
1,1,1-Trichloroethane	ND	0.50		ug/L			08/20/14 22:41	1
1,1,2-Trichloroethane	ND	0.50		ug/L			08/20/14 22:41	1
Trichloroethene	2.3	0.50		ug/L			08/20/14 22:41	1
Trichlorofluoromethane	ND	1.0		ug/L			08/20/14 22:41	1
1,2,3-Trichloropropane	ND	0.50		ug/L			08/20/14 22:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50		ug/L			08/20/14 22:41	1
1,2,4-Trimethylbenzene	ND	0.50		ug/L			08/20/14 22:41	1
1,3,5-Trimethylbenzene	ND	0.50		ug/L			08/20/14 22:41	1
Vinyl acetate	ND	10		ug/L			08/20/14 22:41	1
Vinyl chloride	ND	0.50		ug/L			08/20/14 22:41	1
Xylenes, Total	ND	1.0		ug/L			08/20/14 22:41	1
2,2-Dichloropropane	ND	0.50		ug/L			08/20/14 22:41	1
Gasoline Range Organics (GRO) -C5-C12	110	50		ug/L			08/20/14 22:41	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98	67 - 130		08/20/14 22:41	1
1,2-Dichloroethane-d4 (Surr)	95	72 - 130		08/20/14 22:41	1
Toluene-d8 (Surr)	96	70 - 130		08/20/14 22:41	1

8/22/2014

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165333/4

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

,
E

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50		ug/L			08/20/14 15:32	
Acetone	ND		50		ug/L			08/20/14 15:32	
Benzene	ND		0.50	i	ug/L			08/20/14 15:32	
Dichlorobromomethane	ND		0.50		ug/L			08/20/14 15:32	
Bromobenzene	ND		1.0		ug/L			08/20/14 15:32	
Chlorobromomethane	ND		1.0		ug/L			08/20/14 15:32	
Bromoform	ND		1.0		ug/L			08/20/14 15:32	
Bromomethane	ND		1.0	ı	ug/L			08/20/14 15:32	
2-Butanone (MEK)	ND		50		ug/L			08/20/14 15:32	
n-Butylbenzene	ND		1.0		ug/L			08/20/14 15:32	
sec-Butylbenzene	ND		1.0	ı	ug/L			08/20/14 15:32	
ert-Butylbenzene	ND		1.0	ı	ug/L			08/20/14 15:32	
Carbon disulfide	ND		5.0		ug/L			08/20/14 15:32	
Carbon tetrachloride	ND		0.50		ug/L			08/20/14 15:32	
Chlorobenzene	ND		0.50		ug/L			08/20/14 15:32	
Chloroethane	ND		1.0		ug/L			08/20/14 15:32	
Chloroform	ND		1.0		ug/L			08/20/14 15:32	
Chloromethane	ND		1.0		ug/L			08/20/14 15:32	
2-Chlorotoluene	ND		0.50		ug/L			08/20/14 15:32	
I-Chlorotoluene	ND		0.50		ug/L			08/20/14 15:32	
Chlorodibromomethane	ND		0.50		ug/L			08/20/14 15:32	
,2-Dichlorobenzene	ND		0.50		ug/L			08/20/14 15:32	
,3-Dichlorobenzene	ND		0.50		ug/L			08/20/14 15:32	
,4-Dichlorobenzene	ND		0.50		ug/L			08/20/14 15:32	
I,3-Dichloropropane	ND		1.0		ug/L			08/20/14 15:32	
,1-Dichloropropene	ND		0.50		ug/L			08/20/14 15:32	
,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/20/14 15:32	
Ethylene Dibromide	ND		0.50		ug/L			08/20/14 15:32	
Dibromomethane	ND		0.50		ug/L			08/20/14 15:32	
Dichlorodifluoromethane	ND		0.50		ug/L			08/20/14 15:32	
I,1-Dichloroethane			0.50					08/20/14 15:32	
	ND				ug/L				
,2-Dichloroethane	ND ND		0.50		ug/L			08/20/14 15:32	
,1-Dichloroethene	ND		0.50		ug/L			08/20/14 15:32	
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/20/14 15:32	
rans-1,2-Dichloroethene	ND		0.50		ug/L			08/20/14 15:32	
,2-Dichloropropane	ND		0.50		ug/L			08/20/14 15:32	
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/20/14 15:32	
rans-1,3-Dichloropropene	ND		0.50		ug/L			08/20/14 15:32	
Ethylbenzene	ND		0.50		ug/L			08/20/14 15:32	
Hexachlorobutadiene	ND		1.0		ug/L			08/20/14 15:32	
2-Hexanone	ND		50		ug/L			08/20/14 15:32	
sopropylbenzene	ND		0.50		ug/L			08/20/14 15:32	
1-Isopropyltoluene	ND		1.0		ug/L			08/20/14 15:32	
Methylene Chloride	ND		5.0		ug/L			08/20/14 15:32	
1-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/20/14 15:32	
Naphthalene	ND		1.0	1	ug/L			08/20/14 15:32	
N-Propylbenzene	ND		1.0	ı	ug/L			08/20/14 15:32	
Styrene	ND		0.50		ug/L			08/20/14 15:32	

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-165333/4

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Daton. 100000									32 32 32 32 32 32 32 32 32 32 32 32 32 3
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 15:32	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 15:32	
Tetrachloroethene	ND		0.50		ug/L			08/20/14 15:32	
Toluene	ND		0.50		ug/L			08/20/14 15:32	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/20/14 15:32	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/20/14 15:32	
1,1,1-Trichloroethane	ND		0.50		ug/L			08/20/14 15:32	
1,1,2-Trichloroethane	ND		0.50		ug/L			08/20/14 15:32	
Trichloroethene	ND		0.50		ug/L			08/20/14 15:32	
Trichlorofluoromethane	ND		1.0		ug/L			08/20/14 15:32	
1,2,3-Trichloropropane	ND		0.50		ug/L			08/20/14 15:32	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/20/14 15:32	
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/20/14 15:32	
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/20/14 15:32	
Vinyl acetate	ND		10		ug/L			08/20/14 15:32	
Vinyl chloride	ND		0.50		ug/L			08/20/14 15:32	
Xylenes, Total	ND		1.0		ug/L			08/20/14 15:32	
2,2-Dichloropropane	ND		0.50		ug/L			08/20/14 15:32	
Gasoline Range Organics (GRO)	ND		50		ug/L			08/20/14 15:32	

-C5-C12

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 67 - 130 08/20/14 15:32 4-Bromofluorobenzene 99 1,2-Dichloroethane-d4 (Surr) 72 - 130 08/20/14 15:32 94 Toluene-d8 (Surr) 70 - 130 08/20/14 15:32 95

Lab Sample ID: LCS 720-165333/5

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batom 100000	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	26.2		ug/L		105	62 - 130
Acetone	125	127		ug/L		102	26 - 180
Benzene	25.0	25.8		ug/L		103	79 - 130
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130
Bromobenzene	25.0	25.3		ug/L		101	70 - 130
Chlorobromomethane	25.0	24.5		ug/L		98	70 - 130
Bromoform	25.0	26.3		ug/L		105	68 - 136
Bromomethane	25.0	20.7		ug/L		83	43 - 151
2-Butanone (MEK)	125	125		ug/L		100	54 - 130
n-Butylbenzene	25.0	26.4		ug/L		106	70 - 142
sec-Butylbenzene	25.0	25.7		ug/L		103	70 - 134
tert-Butylbenzene	25.0	25.5		ug/L		102	70 - 135
Carbon disulfide	25.0	23.7		ug/L		95	58 - 130
Carbon tetrachloride	25.0	25.1		ug/L		100	70 - 146
Chlorobenzene	25.0	24.7		ug/L		99	70 - 130
Chloroethane	25.0	21.6		ug/L		86	62 _ 138
Chloroform	25.0	24.9		ug/L		100	70 - 130

Page 9 of 23

1

TestAmerica Pleasanton

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165333/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	25.0	21.6	-	ug/L		86	52 - 175
2-Chlorotoluene	25.0	26.5		ug/L		106	70 _ 130
4-Chlorotoluene	25.0	26.5		ug/L		106	70 _ 130
Chlorodibromomethane	25.0	26.0		ug/L		104	70 - 145
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130
1,3-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130
1,4-Dichlorobenzene	25.0	25.1		ug/L		100	70 - 130
1,3-Dichloropropane	25.0	25.3		ug/L		101	70 - 130
1,1-Dichloropropene	25.0	27.0		ug/L		108	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.8		ug/L		103	70 ₋ 136
Ethylene Dibromide	25.0	25.4		ug/L		101	70 - 130
Dibromomethane	25.0	24.8		ug/L		99	70 - 130
Dichlorodifluoromethane	25.0	17.5		ug/L		70	34 - 132
1,1-Dichloroethane	25.0	25.6		ug/L		102	70 - 130
1,2-Dichloroethane	25.0	24.4		ug/L		98	61 - 132
1,1-Dichloroethene	25.0	22.0		ug/L		88	64 - 128
cis-1,2-Dichloroethene	25.0	25.2		ug/L		101	70 - 130
trans-1,2-Dichloroethene	25.0	24.3		ug/L		97	68 - 130
1,2-Dichloropropane	25.0	26.0		ug/L		104	70 - 130
cis-1,3-Dichloropropene	25.0	27.6		ug/L		110	70 - 130
trans-1,3-Dichloropropene	25.0	29.7		ug/L		119	70 - 140
Ethylbenzene	25.0	24.8		ug/L		99	80 - 120
Hexachlorobutadiene	25.0	25.5		ug/L		102	70 - 130
2-Hexanone	125	129		ug/L		103	60 - 164
Isopropylbenzene	25.0	25.6		ug/L		102	70 - 130
4-Isopropyltoluene	25.0	25.4		ug/L ug/L		102	70 - 130
Methylene Chloride	25.0	26.2		ug/L ug/L		105	70 - 130 70 - 147
4-Methyl-2-pentanone (MIBK)	125	134		ug/L ug/L		107	58 ₋ 130
Naphthalene	25.0	27.5				110	70 - 130
N-Propylbenzene	25.0	26.6		ug/L ug/L		106	70 - 130 70 - 130
Styrene 1,1,1,2-Tetrachloroethane	25.0	27.5		ug/L		110	70 - 130 70 - 130
	25.0 25.0	26.2 25.4		ug/L		105 101	70 ₋ 130 70 ₋ 130
1,1,2,2-Tetrachloroethane				ug/L		101	
Tetrachloroethene	25.0	24.1		ug/L		96	70 ₋ 130
Toluene	25.0	25.0		ug/L		100	78 ₋ 120
1,2,3-Trichlorobenzene	25.0	25.4		ug/L		102	70 - 130
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	70 ₋ 130
1,1,1-Trichloroethane	25.0	24.6		ug/L		98	70 ₋ 130
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	70 ₋ 130
Trichloroethene	25.0	24.5		ug/L		98	70 - 130
Trichlorofluoromethane	25.0	25.3		ug/L		101	66 - 132
1,2,3-Trichloropropane	25.0	26.6		ug/L		106	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.4		ug/L		85	42 - 162
ne 1,2,4-Trimethylbenzene	25.0	26.0		ua/l		104	70 - 132
·	25.0	26.5		ug/L			70 - 132 70 - 130
1,3,5-Trimethylbenzene	25.0 25.0	20.5		ug/L		106 85	43 - 163
Vinyl acetate Vinyl chloride	25.0	18.8		ug/L ug/L		85 75	43 - 163 54 - 135

TestAmerica Pleasanton

Page 10 of 23

_

0

10

12

13

Ш

Project/Site: Crown Chevrolet

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165333/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165333

	Бріке	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	24.8		ug/L		99	70 - 142	
o-Xylene	25.0	25.4		ug/L		102	70 - 130	
2,2-Dichloropropane	25.0	26.2		ug/L		105	70 - 140	

LCS LCS %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 91 72 - 130 Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: LCS 720-165333/7 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 165333

		Shike	LUS	LUS				/ortec.	
Analyte		Added	Result	Qualifier	Unit	0	%Re	c Limits	
Gasoline Range Organics (GRO)	 	500	563		ug/L		11	3 62 - 120	

Cnika

-C5-C12

Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr)	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-165333/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165333

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	25.5		ug/L		102	62 - 130	3	20
Acetone	125	114		ug/L		91	26 - 180	11	30
Benzene	25.0	26.0		ug/L		104	79 - 130	1	20
Dichlorobromomethane	25.0	25.4		ug/L		102	70 - 130	0	20
Bromobenzene	25.0	25.7		ug/L		103	70 - 130	2	20
Chlorobromomethane	25.0	24.2		ug/L		97	70 - 130	1	20
Bromoform	25.0	25.6		ug/L		102	68 - 136	3	20
Bromomethane	25.0	20.7		ug/L		83	43 - 151	0	20
2-Butanone (MEK)	125	116		ug/L		92	54 - 130	8	20
n-Butylbenzene	25.0	26.9		ug/L		108	70 - 142	2	20
sec-Butylbenzene	25.0	26.3		ug/L		105	70 - 134	2	20
tert-Butylbenzene	25.0	26.3		ug/L		105	70 - 135	3	20
Carbon disulfide	25.0	23.9		ug/L		96	58 - 130	1	20
Carbon tetrachloride	25.0	25.5		ug/L		102	70 - 146	2	20
Chlorobenzene	25.0	24.8		ug/L		99	70 - 130	0	20
Chloroethane	25.0	21.6		ug/L		86	62 - 138	0	20
Chloroform	25.0	25.1		ug/L		100	70 - 130	1	20
Chloromethane	25.0	21.5		ug/L		86	52 - 175	0	20
2-Chlorotoluene	25.0	27.2		ug/L		109	70 - 130	3	20
4-Chlorotoluene	25.0	27.4		ug/L		110	70 - 130	4	20
Chlorodibromomethane	25.0	25.5		ug/L		102	70 - 145	2	20

TestAmerica Pleasanton

Page 11 of 23

Prep Type: Total/NA

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165333/6

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 165333	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	25.1			100	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.5	ug	- 3/L	102	70 - 130	2	20
1,4-Dichlorobenzene	25.0	25.4		у g/L	102	70 - 130	1	20
1,3-Dichloropropane	25.0	24.7		, 3/L	99	70 - 130	2	20
1,1-Dichloropropene	25.0	27.4		у g/L	109	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	25.4		g/L	102	70 - 136	2	20
Ethylene Dibromide	25.0	24.7		, ₃ /L	99	70 - 130	3	20
Dibromomethane	25.0	24.6		, g/L	98	70 - 130	1	20
Dichlorodifluoromethane	25.0	17.4		9/L	70	34 - 132	0	20
1,1-Dichloroethane	25.0	26.1		, g/L	104	70 - 130	2	20
1,2-Dichloroethane	25.0	24.0		g/L	96	61 - 132	1	20
1,1-Dichloroethene	25.0	22.5		у g/L	90	64 - 128	2	20
cis-1,2-Dichloroethene	25.0	25.5		, g/L	102	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.8		g/L	99	68 - 130	2	20
1,2-Dichloropropane	25.0	26.3		g/L	105	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	27.6		9′ — g/L	110	70 - 130		20
trans-1,3-Dichloropropene	25.0	29.3		g/L	117	70 - 140	2	20
Ethylbenzene	25.0	25.0		g/L	100	80 - 120	1	20
Hexachlorobutadiene	25.0	26.3		9′	105	70 - 130		20
2-Hexanone	125	119		g/∟ g/L	95	60 ₋ 164	8	20
Isopropylbenzene	25.0	26.0		g/L g/L	104	70 - 130	2	20
4-Isopropyltoluene	25.0	26.1			104	70 - 130	3	20
Methylene Chloride	25.0	26.0		g/L g/L	104	70 - 130 70 - 147	1	20
•	125	126		g/∟ g/L	104	58 ₋ 130	7	20
4-Methyl-2-pentanone (MIBK)	25.0	26.8			107	70 - 130	2	20
Naphthalene		27.4		g/L -//				
N-Propylbenzene	25.0			g/L - "	109	70 - 130	3	20
Styrene	25.0	27.6		g/L 	110	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	26.1		g/L	105	70 ₋ 130	0	20
1,1,2,2-Tetrachloroethane	25.0	25.2		g/L	101	70 ₋ 130	1	20
Tetrachloroethene	25.0	24.4		3/L ,	97	70 - 130		20
Toluene	25.0	25.5		g/L	102	78 - 120	2	20
1,2,3-Trichlorobenzene	25.0	25.5		g/L 	102	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	26.2		3/L -,,	105	70 - 130	1	20
1,1,1-Trichloroethane	25.0	24.7		g/L 	99	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.4		g/L	101	70 - 130	2	20
Trichloroethene	25.0	24.6		g/L 	99	70 - 130		20
Trichlorofluoromethane	25.0	25.1		g/L 	100	66 - 132	1	20
1,2,3-Trichloropropane	25.0	25.7		g/L	103	70 - 130	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	21.2		g/L 	85	42 _ 162	1	20
1,2,4-Trimethylbenzene	25.0	26.5		g/L	106	70 - 132	2	20
1,3,5-Trimethylbenzene	25.0	27.1		g/L	109	70 - 130	2	20
Vinyl acetate	25.0	21.4	uç	g/L	85	43 - 163	0	20
Vinyl chloride	25.0	19.0		g/L	76	54 - 135	1	20
m-Xylene & p-Xylene	25.0	25.3	uç	g/L	101	70 - 142	2	20
o-Xylene	25.0	25.8	uç	g/L	103	70 - 130	2	20
2,2-Dichloropropane	25.0	26.0	uç	g/L	104	70 - 140	1	20

TestAmerica Pleasanton

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165333/6

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-165333/8

Matrix: Water

Analysis Batch: 165333

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec.		RPD	
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
500	572		ua/L		114	62 _ 120	2	20	

-C5-C12

Analyte

LCSD LCSD %Recovery Qualifier

Surrogate	%Recovery	Quaimer	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130
Toluene-d8 (Surr)	96		70 - 130

Lab Sample ID: 720-59402-1 MS Client Sample ID: PRB-03HP-28.0 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 165333										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	26.0		ug/L		104	60 - 138	
Acetone	ND		125	135		ug/L		85	60 _ 140	
Benzene	ND		25.0	26.2		ug/L		105	60 - 140	
Dichlorobromomethane	ND		25.0	26.2		ug/L		105	60 _ 140	
Bromobenzene	ND		25.0	25.8		ug/L		103	60 - 140	
Chlorobromomethane	ND		25.0	24.9		ug/L		99	60 - 140	
Bromoform	ND		25.0	25.5		ug/L		102	56 - 140	
Bromomethane	ND		25.0	20.3		ug/L		81	23 _ 140	
2-Butanone (MEK)	ND		125	117		ug/L		94	60 - 140	
n-Butylbenzene	ND		25.0	25.7		ug/L		103	60 - 140	
sec-Butylbenzene	ND		25.0	25.3		ug/L		101	60 - 140	
tert-Butylbenzene	ND		25.0	25.4		ug/L		102	60 - 140	
Carbon disulfide	ND		25.0	23.1		ug/L		92	38 _ 140	
Carbon tetrachloride	ND		25.0	24.9		ug/L		99	60 - 140	
Chlorobenzene	ND		25.0	24.6		ug/L		99	60 - 140	
Chloroethane	ND		25.0	21.7		ug/L		87	51 ₋ 140	
Chloroform	ND		25.0	25.4		ug/L		102	60 - 140	
Chloromethane	ND		25.0	19.7		ug/L		79	52 _ 140	
2-Chlorotoluene	ND		25.0	26.7		ug/L		107	60 _ 140	
4-Chlorotoluene	ND		25.0	26.8		ug/L		107	60 - 140	
Chlorodibromomethane	ND		25.0	26.4		ug/L		105	60 - 140	
1,2-Dichlorobenzene	ND		25.0	25.1		ug/L		100	60 - 140	
1,3-Dichlorobenzene	ND		25.0	25.2		ug/L		101	60 - 140	
1,4-Dichlorobenzene	ND		25.0	25.3		ug/L		101	60 - 140	
1,3-Dichloropropane	ND		25.0	25.3		ug/L		101	60 - 140	
1,1-Dichloropropene	ND		25.0	26.6		ug/L		106	60 - 140	

TestAmerica Pleasanton

Page 13 of 23

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59402-1 MS

Matrix: Water

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 165333

Client Sample ID: PRB-03HP-28.0

Prep Type: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromo-3-Chloropropane	ND		25.0	24.6		ug/L		98	60 - 140
Ethylene Dibromide	ND		25.0	25.4		ug/L		102	60 - 140
Dibromomethane	ND		25.0	25.1		ug/L		100	60 - 140
Dichlorodifluoromethane	ND		25.0	17.4		ug/L		70	38 - 140
1,1-Dichloroethane	ND		25.0	26.0		ug/L		104	60 - 140
1,2-Dichloroethane	ND		25.0	24.4		ug/L		97	60 - 140
1,1-Dichloroethene	ND		25.0	22.0		ug/L		88	60 - 140
cis-1,2-Dichloroethene	ND		25.0	25.5		ug/L		102	60 - 140
trans-1,2-Dichloroethene	ND		25.0	24.3		ug/L		97	60 - 140
1,2-Dichloropropane	ND		25.0	26.6		ug/L		106	60 - 140
cis-1,3-Dichloropropene	ND		25.0	28.0		ug/L		112	60 - 140
trans-1,3-Dichloropropene	ND		25.0	30.3		ug/L		121	60 - 140
Ethylbenzene	ND		25.0	24.4		ug/L		98	60 - 140
Hexachlorobutadiene	ND		25.0	24.5		ug/L		98	60 - 140
2-Hexanone	ND		125	117		ug/L		93	60 - 140
Isopropylbenzene	ND		25.0	24.9		ug/L		100	60 - 140
4-Isopropyltoluene	ND		25.0	24.8		ug/L		99	60 - 140
Methylene Chloride	ND		25.0	25.7		ug/L		103	40 - 140
4-Methyl-2-pentanone (MIBK)	ND		125	124		ug/L		100	58 - 130
Naphthalene	ND		25.0	26.3		ug/L		105	56 - 140
N-Propylbenzene	ND		25.0	26.4		ug/L		105	60 - 140
Styrene	ND		25.0	27.4		ug/L		110	60 - 140
1,1,1,2-Tetrachloroethane	ND		25.0	26.3		ug/L		105	60 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	25.2		ug/L		101	60 - 140
Tetrachloroethene	110		25.0	123	4	ug/L		70	60 - 140
Toluene	ND		25.0	24.8		ug/L		99	60 - 140
1,2,3-Trichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140
1,2,4-Trichlorobenzene	ND		25.0	25.7		ug/L		103	60 - 140
1,1,1-Trichloroethane	ND		25.0	24.5		ug/L		98	60 - 140
1,1,2-Trichloroethane	ND		25.0	26.2		ug/L		105	60 - 140
Trichloroethene	2.3		25.0	26.8		ug/L		98	60 - 140
Trichlorofluoromethane	ND		25.0	24.0		ug/L		96	60 - 140
1,2,3-Trichloropropane	ND		25.0	25.1		ug/L		101	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.9		ug/L		84	60 - 140
ne									
1,2,4-Trimethylbenzene	ND		25.0	25.9		ug/L		104	60 - 140
1,3,5-Trimethylbenzene	ND		25.0	26.2		ug/L		105	60 - 140
Vinyl acetate	ND		25.0	21.0		ug/L		84	40 - 140
Vinyl chloride	ND		25.0	19.3		ug/L		77	58 - 140
m-Xylene & p-Xylene	ND		25.0	24.4		ug/L		98	60 - 140
o-Xylene	ND		25.0	25.4		ug/L		102	60 - 140
2,2-Dichloropropane	ND		25.0	25.4		ug/L		102	60 - 140

TestAmerica Pleasanton

Limits

67 - 130

72 - 130

70 - 130

MS MS %Recovery Qualifier

98

92

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59402-1 MSD

Client Sample ID: PRB-03HP-28.0

Matrix: Water								Prep T	ype: To	tal/NA
Analysis Batch: 165333	Comple	Sample	Snika	MSD	MSD			%Rec.		RPD
Analyte	-	Qualifier	Spike Added	Result		D	%Rec	%Rec.	RPD	Limit
Methyl tert-butyl ether	ND.	- Qualifier	25.0 Added	27.1			108	60 ₋ 138	——————————————————————————————————————	20
•	ND ND		125	144	ug/L		92	60 - 130	6	20
Acetone					ug/L					
Benzene	ND		25.0	26.2	ug/L		105	60 - 140	0	20
Dichlorobromomethane	ND		25.0	26.4	ug/L		106	60 - 140	1	20
Bromobenzene	ND		25.0	25.8	ug/L		103	60 - 140	0	20
Chlorobromomethane	ND		25.0	24.9	ug/L		100	60 - 140	0	20
Bromoform	ND		25.0	26.3	ug/L		105	56 - 140	3	20
Bromomethane	ND		25.0	20.0	ug/L		80	23 - 140	1	20
2-Butanone (MEK)	ND		125	122	ug/L		98	60 - 140	4	20
n-Butylbenzene	ND		25.0	25.7	ug/L		103	60 - 140	0	20
sec-Butylbenzene	ND		25.0	25.0	ug/L		100	60 - 140	1	20
tert-Butylbenzene	ND		25.0	25.3	ug/L		101	60 - 140	0	20
Carbon disulfide	ND		25.0	23.4	ug/L		94	38 - 140	1	20
Carbon tetrachloride	ND		25.0	24.6	ug/L		98	60 - 140	1	20
Chlorobenzene	ND		25.0	24.7	ug/L		99	60 - 140	0	20
Chloroethane	ND		25.0	21.5	ug/L		86	51 - 140	1	20
Chloroform	ND		25.0	25.5	ug/L		102	60 - 140	0	20
Chloromethane	ND		25.0	19.3	ug/L		77	52 - 140	2	20
2-Chlorotoluene	ND		25.0	26.5	ug/L		106	60 - 140	1	20
4-Chlorotoluene	ND		25.0	26.6	ug/L		106	60 - 140	1	20
Chlorodibromomethane	ND		25.0	26.8	ug/L		107	60 - 140	2	20
1,2-Dichlorobenzene	ND		25.0	25.4	ug/L		102	60 - 140	1	20
1,3-Dichlorobenzene	ND		25.0	25.3	ug/L		101	60 - 140	0	20
1,4-Dichlorobenzene	ND		25.0	25.4	ug/L		101	60 - 140	0	20
1,3-Dichloropropane	ND		25.0	26.0	ug/L		104	60 - 140	3	20
1,1-Dichloropropene	ND		25.0	26.6	ug/L		106	60 - 140	0	20
1,2-Dibromo-3-Chloropropane	ND		25.0	25.9	ug/L		104	60 - 140	5	20
Ethylene Dibromide	ND		25.0	26.2	ug/L		105	60 - 140	3	20
Dibromomethane	ND		25.0	25.7	ug/L		103	60 - 140	2	20
Dichlorodifluoromethane	ND		25.0	16.4	ug/L		66	38 - 140	5	20
1,1-Dichloroethane	ND		25.0	26.0	ug/L		104	60 - 140	0	20
1,2-Dichloroethane	ND		25.0	25.0	ug/L		100	60 - 140	3	20
1,1-Dichloroethene	ND		25.0	21.8	ug/L		87	60 - 140	1	20
cis-1,2-Dichloroethene	ND		25.0	25.5	ug/L		102	60 - 140		20
trans-1,2-Dichloroethene	ND		25.0	24.3	ug/L		97	60 - 140	0	20
1,2-Dichloropropane	ND ND		25.0	27.1	ug/L		108	60 - 140	2	20
	ND		25.0	28.1	ug/L			60 - 140	1	20
cis-1,3-Dichloropropene				30.6			113		1	
trans-1,3-Dichloropropene	ND		25.0		ug/L		122	60 ₋ 140		20
Ethylbenzene	ND		25.0	24.6	ug/L		98	60 - 140	1	20
Hexachlorobutadiene	ND		25.0	24.8	ug/L		99	60 - 140	1	20
2-Hexanone	ND		125	125	ug/L		100	60 - 140	7	20
Isopropylbenzene	ND		25.0	24.9	ug/L		100	60 - 140		20
4-Isopropyltoluene	ND		25.0	24.8	ug/L		99	60 - 140	0	20
Methylene Chloride	ND		25.0	25.7	ug/L		103	40 - 140	0	20
4-Methyl-2-pentanone (MIBK)	ND		125	134	ug/L		107	58 - 130	7	20
Naphthalene	ND		25.0	27.6	ug/L		110	56 - 140	5	20
N-Propylbenzene	ND		25.0	26.3	ug/L		105	60 - 140	0	20
Styrene	ND		25.0	27.5	ug/L		110	60 - 140	0	20

TestAmerica Pleasanton

Page 15 of 23

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Client Sample ID: PRB-03HP-28.0

Prep Type: Total/NA

Lab Sample ID: 720-59402-1 MSD

Matrix: Water

Analysis Batch: 165333

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	26.4		ug/L		106	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	26.2		ug/L		105	60 - 140	4	20
Tetrachloroethene	110		25.0	121	4	ug/L		61	60 - 140	2	20
Toluene	ND		25.0	24.9		ug/L		100	60 - 140	0	20
1,2,3-Trichlorobenzene	ND		25.0	25.8		ug/L		103	60 - 140	3	20
1,2,4-Trichlorobenzene	ND		25.0	26.3		ug/L		105	60 - 140	2	20
1,1,1-Trichloroethane	ND		25.0	24.5		ug/L		98	60 - 140	0	20
1,1,2-Trichloroethane	ND		25.0	26.6		ug/L		106	60 - 140	1	20
Trichloroethene	2.3		25.0	26.6		ug/L		97	60 - 140	1	20
Trichlorofluoromethane	ND		25.0	23.9		ug/L		95	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	26.6		ug/L		106	60 - 140	6	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.7		ug/L		83	60 - 140	1	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	0	20
1,3,5-Trimethylbenzene	ND		25.0	26.3		ug/L		105	60 - 140	1	20
Vinyl acetate	ND		25.0	21.8		ug/L		87	40 - 140	4	20
Vinyl chloride	ND		25.0	19.0		ug/L		76	58 - 140	1	20
m-Xylene & p-Xylene	ND		25.0	24.5		ug/L		98	60 - 140	0	20
o-Xylene	ND		25.0	25.4		ug/L		101	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	25.7		ug/L		103	60 - 140	1	20

1SD	MSD	

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	97		70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

GC/MS VOA

Analysis Batch: 165333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59402-1	PRB-03HP-28.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59402-1 MS	PRB-03HP-28.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59402-1 MSD	PRB-03HP-28.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165333/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165333/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165333/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165333/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165333/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

2

3

4

ŏ

9

12

13

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Lab Sample ID: 720-59402-1

Matrix: Water

Client Sample ID: PRB-03HP-28.0 Date Collected: 08/20/14 08:00

Date Received: 08/20/14 13:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS			165333	08/20/14 22:41	PDR	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
California	State Prog	State Program		2496	01-31-16	
Analysis Method	Prep Method	Matrix	Analyt	e		

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

G

3

4

E

7

0

10

11

12

Sample Summary

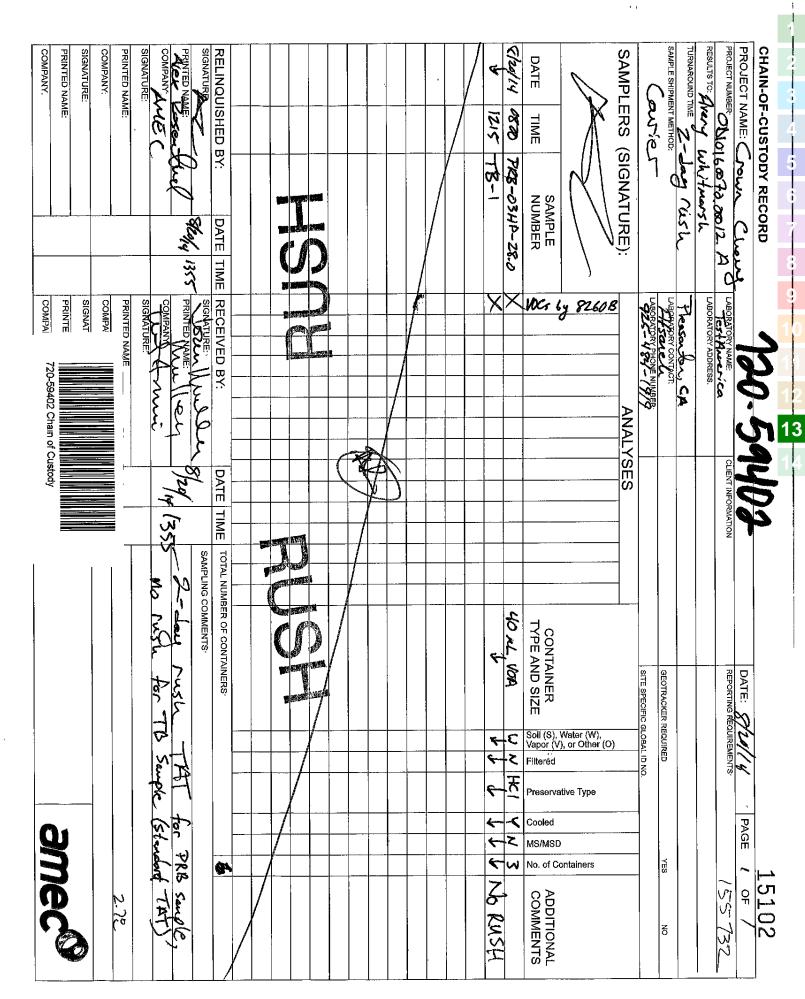
 $\label{linear_continuity} \textbf{Client: AMEC Environment \& Infrastructure, Inc.}$

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59402-1	PRB-03HP-28.0	Water	08/20/14 08:00	08/20/14 13:55

6


8

9

10

12

13

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59402-1

Login Number: 59402 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Creator: Gonzales, Justinn		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

6

o

9

11

14

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59402-2 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Authorized for release by: 8/25/2014 12:25:13 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

6

8

9

11

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Toxicity Equivalent Quotient (Dioxin)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-2

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-2

Job ID: 720-59402-2

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59402-2

Comments

No additional comments.

Receipt

The samples were received on 8/20/2014 1:55 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

Δ

6

0

9

IU

12

13

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: TB-1

TestAmerica Job ID: 720-59402-2

Lab Sample ID: 720-59402-2

No Detections.

5

9

4 4

16

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: TB-1 Date Collected: 08/20/14 12:15 TestAmerica Job ID: 720-59402-2

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: 720-59402-2

.au	Jan	hie	ID.	120-	334	02-2
			N	latrix	k: W	ater

Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		08/22/14 01:28	
Acetone	ND	50	ug/L		08/22/14 01:28	•
Benzene	ND	0.50	ug/L		08/22/14 01:28	•
Dichlorobromomethane	ND	0.50	ug/L		08/22/14 01:28	•
Bromobenzene	ND	1.0	ug/L		08/22/14 01:28	•
Chlorobromomethane	ND	1.0	ug/L		08/22/14 01:28	•
Bromoform	ND	1.0	ug/L		08/22/14 01:28	
Bromomethane	ND	1.0	ug/L		08/22/14 01:28	•
2-Butanone (MEK)	ND	50	ug/L		08/22/14 01:28	
n-Butylbenzene	ND	1.0	ug/L		08/22/14 01:28	
sec-Butylbenzene	ND	1.0	ug/L		08/22/14 01:28	
tert-Butylbenzene	ND	1.0	ug/L		08/22/14 01:28	
Carbon disulfide	ND	5.0	ug/L		08/22/14 01:28	
Carbon tetrachloride	ND	0.50	ug/L		08/22/14 01:28	
Chlorobenzene	ND	0.50	ug/L		08/22/14 01:28	
Chloroethane	ND	1.0	ug/L		08/22/14 01:28	
Chloroform	ND	1.0	ug/L		08/22/14 01:28	
Chloromethane	ND	1.0	ug/L		08/22/14 01:28	
2-Chlorotoluene	ND	0.50	ug/L		08/22/14 01:28	
4-Chlorotoluene	ND	0.50	ug/L		08/22/14 01:28	
Chlorodibromomethane	ND	0.50	ug/L		08/22/14 01:28	
1,2-Dichlorobenzene	ND	0.50	ug/L		08/22/14 01:28	
1,3-Dichlorobenzene	ND	0.50	ug/L		08/22/14 01:28	
1,4-Dichlorobenzene	ND	0.50	ug/L		08/22/14 01:28	
1,3-Dichloropropane	ND	1.0	ug/L		08/22/14 01:28	
1,1-Dichloropropene	ND	0.50	ug/L		08/22/14 01:28	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/22/14 01:28	
Ethylene Dibromide	ND	0.50	ug/L		08/22/14 01:28	
Dibromomethane	ND	0.50	ug/L		08/22/14 01:28	
Dichlorodifluoromethane	ND	0.50	ug/L		08/22/14 01:28	
1.1-Dichloroethane	ND	0.50	ug/L		08/22/14 01:28	
1.2-Dichloroethane	ND	0.50	ug/L		08/22/14 01:28	
1,1-Dichloroethene	ND	0.50	ug/L		08/22/14 01:28	
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/22/14 01:28	
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/22/14 01:28	
1,2-Dichloropropane	ND	0.50	ug/L		08/22/14 01:28	
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/22/14 01:28	
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/22/14 01:28	
Ethylbenzene	ND	0.50	ug/L		08/22/14 01:28	
Hexachlorobutadiene	ND	1.0	ug/L		08/22/14 01:28	
2-Hexanone	ND	50	ug/L		08/22/14 01:28	
Isopropylbenzene	ND	0.50	ug/L		08/22/14 01:28	
4-Isopropyltoluene	ND	1.0	ug/L		08/22/14 01:28	
Methylene Chloride	ND	5.0	ug/L		08/22/14 01:28	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/22/14 01:28	
Naphthalene	ND	1.0	ug/L		08/22/14 01:28	
N-Propylbenzene	ND ND	1.0	ug/L		08/22/14 01:28	
Styrene	ND	0.50	ug/L		08/22/14 01:28	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		08/22/14 01:28	,

TestAmerica Pleasanton

8/25/2014

Page 6 of 20

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: TB-1 Date Collected: 08/20/14 12:15 TestAmerica Job ID: 720-59402-2

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab	Jampie	ID. 120-3	J 4 02-2
		Matrix:	Water

Date Received: 08/20/14 13:55 Analyte	Beault	Qualifier RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	0.50	IVIDL	ug/L		Prepareu	08/22/14 01:28	1
Tetrachloroethene	ND ND	0.50		_			08/22/14 01:28	1
				ug/L				
Toluene	ND	0.50		ug/L			08/22/14 01:28	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			08/22/14 01:28	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			08/22/14 01:28	1
1,1,1-Trichloroethane	ND	0.50		ug/L			08/22/14 01:28	1
1,1,2-Trichloroethane	ND	0.50		ug/L			08/22/14 01:28	1
Trichloroethene	ND	0.50		ug/L			08/22/14 01:28	1
Trichlorofluoromethane	ND	1.0		ug/L			08/22/14 01:28	1
1,2,3-Trichloropropane	ND	0.50		ug/L			08/22/14 01:28	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50		ug/L			08/22/14 01:28	1
1,2,4-Trimethylbenzene	ND	0.50		ug/L			08/22/14 01:28	1
1,3,5-Trimethylbenzene	ND	0.50		ug/L			08/22/14 01:28	1
Vinyl acetate	ND	10		ug/L			08/22/14 01:28	1
Vinyl chloride	ND	0.50		ug/L			08/22/14 01:28	1
Xylenes, Total	ND	1.0		ug/L			08/22/14 01:28	1
2,2-Dichloropropane	ND	0.50		ug/L			08/22/14 01:28	1
Gasoline Range Organics (GRO)	ND	50		ug/L			08/22/14 01:28	1
-C5-C12								

:	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
-	4-Bromofluorobenzene	96		67 - 130	_		08/22/14 01:28	1
1	1,2-Dichloroethane-d4 (Surr)	91		72 - 130			08/22/14 01:28	1
1	Toluene-d8 (Surr)	97		70 - 130			08/22/14 01:28	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165412/4

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50		ug/L			08/21/14 16:40	
Acetone	ND		50		ug/L			08/21/14 16:40	
Benzene	ND		0.50	į	ug/L			08/21/14 16:40	
Dichlorobromomethane	ND		0.50		ug/L			08/21/14 16:40	
Bromobenzene	ND		1.0		ug/L			08/21/14 16:40	
Chlorobromomethane	ND		1.0		ug/L			08/21/14 16:40	
Bromoform	ND		1.0		ug/L			08/21/14 16:40	
Bromomethane	ND		1.0	ı	ug/L			08/21/14 16:40	
2-Butanone (MEK)	ND		50	ı	ug/L			08/21/14 16:40	
n-Butylbenzene	ND		1.0		ug/L			08/21/14 16:40	
sec-Butylbenzene	ND		1.0		ug/L			08/21/14 16:40	
tert-Butylbenzene	ND		1.0	ı	ug/L			08/21/14 16:40	
Carbon disulfide	ND		5.0		ug/L			08/21/14 16:40	
Carbon tetrachloride	ND		0.50		ug/L			08/21/14 16:40	
Chlorobenzene	ND		0.50		ug/L			08/21/14 16:40	
Chloroethane	ND		1.0		ug/L			08/21/14 16:40	
Chloroform	ND		1.0		ug/L			08/21/14 16:40	
Chloromethane	ND		1.0		ug/L			08/21/14 16:40	
2-Chlorotoluene	ND		0.50		ug/L			08/21/14 16:40	
4-Chlorotoluene	ND		0.50		ug/L			08/21/14 16:40	
Chlorodibromomethane	ND		0.50		ug/L			08/21/14 16:40	
1,2-Dichlorobenzene	ND		0.50		ug/L			08/21/14 16:40	
1,3-Dichlorobenzene	ND		0.50		ug/L			08/21/14 16:40	
1,4-Dichlorobenzene	ND		0.50		ug/L			08/21/14 16:40	
1,3-Dichloropropane	ND		1.0		ug/L			08/21/14 16:40	
1,1-Dichloropropene	ND		0.50		ug/L			08/21/14 16:40	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L ug/L			08/21/14 16:40	
Ethylene Dibromide	ND		0.50		ug/L ug/L			08/21/14 16:40	
Dibromomethane	ND		0.50		ug/L			08/21/14 16:40	
Dichlorodifluoromethane	ND		0.50		ug/L			08/21/14 16:40	
1,1-Dichloroethane	ND		0.50					08/21/14 16:40	
1,2-Dichloroethane	ND		0.50		ug/L			08/21/14 16:40	
1,1-Dichloroethene	ND ND		0.50		ug/L			08/21/14 16:40	
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/21/14 16:40	
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/21/14 16:40	
, ,	ND ND		0.50		ug/L			08/21/14 16:40	
1,2-Dichloropropane					ug/L				
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/21/14 16:40	
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/21/14 16:40	
Ethylbenzene	ND		0.50		ug/L			08/21/14 16:40	
Hexachlorobutadiene	ND		1.0		ug/L			08/21/14 16:40	
2-Hexanone	ND		50		ug/L			08/21/14 16:40	
Isopropylbenzene	ND		0.50		ug/L			08/21/14 16:40	
4-Isopropyltoluene	ND		1.0		ug/L			08/21/14 16:40	
Methylene Chloride	ND		5.0		ug/L			08/21/14 16:40	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/21/14 16:40	
Naphthalene	ND		1.0		ug/L			08/21/14 16:40	
N-Propylbenzene	ND		1.0		ug/L			08/21/14 16:40	

TestAmerica Pleasanton

8/25/2014

Page 8 of 20

3

4

_

9

11

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

ND

ND

Lab Sample ID: MB 720-165412/4

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Water

Analyte

Toluene

Analysis Batch: 165412

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1.2.3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

Tetrachloroethene

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed ND 0.50 08/21/14 16:40 ug/L ug/L ND 0.50 08/21/14 16:40 ND 0.50 ug/L 08/21/14 16:40 ND 0.50 ug/L 08/21/14 16:40 ND 1.0 ug/L 08/21/14 16:40 ND ug/L 08/21/14 16:40 1.0 ND 0.50 ug/L 08/21/14 16:40 ND 0.50 ug/L 08/21/14 16:40 ND 0.50 ug/L 08/21/14 16:40

ug/L

ug/L

Trichlorofluoromethane ND 1.0 ug/L 08/21/14 16:40 1,2,3-Trichloropropane ND 0.50 ug/L 08/21/14 16:40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 08/21/14 16:40 1,2,4-Trimethylbenzene ND 0.50 ug/L 08/21/14 16:40 1,3,5-Trimethylbenzene ND 0.50 ug/L 08/21/14 16:40 Vinyl acetate ND 08/21/14 16:40 10 ug/L Vinyl chloride ND 0.50 ug/L 08/21/14 16:40 Xylenes, Total ND ug/L 08/21/14 16:40 1.0

-C5-C12

2,2-Dichloropropane

Gasoline Range Organics (GRO)

MΒ Prepared Dil Fac Qualifier Limits Surrogate %Recovery Analyzed 4-Bromofluorobenzene 97 67 - 130 08/21/14 16:40 1,2-Dichloroethane-d4 (Surr) 89 72 - 130 08/21/14 16:40 70 - 130 08/21/14 16:40 Toluene-d8 (Surr) 96

0.50

50

Lab Sample ID: LCS 720-165412/5

Matrix: Water

Analysis Batch: 165412

Client Sample ID: Lab Control Sample Prep Type: Total/NA

08/21/14 16:40

08/21/14 16:40

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	25.9		ug/L		103	62 - 130	
Acetone	125	103		ug/L		83	26 - 180	
Benzene	25.0	27.0		ug/L		108	79 ₋ 130	
Dichlorobromomethane	25.0	29.5		ug/L		118	70 - 130	
Bromobenzene	25.0	26.1		ug/L		105	70 - 130	
Chlorobromomethane	25.0	26.5		ug/L		106	70 - 130	
Bromoform	25.0	30.0		ug/L		120	68 - 136	
Bromomethane	25.0	25.7		ug/L		103	43 _ 151	
2-Butanone (MEK)	125	123		ug/L		99	54 - 130	
n-Butylbenzene	25.0	29.1		ug/L		116	70 - 142	
sec-Butylbenzene	25.0	28.1		ug/L		112	70 - 134	
tert-Butylbenzene	25.0	26.9		ug/L		107	70 _ 135	
Carbon disulfide	25.0	26.5		ug/L		106	58 ₋ 130	
Carbon tetrachloride	25.0	29.3		ug/L		117	70 - 146	
Chlorobenzene	25.0	27.4		ug/L		110	70 - 130	
Chloroethane	25.0	22.8		ug/L		91	62 _ 138	
Chloroform	25.0	27.1		ug/L		108	70 - 130	

TestAmerica Pleasanton

Page 9 of 20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165412/5

Matrix: Water

Client Sample ID:	Lab Cor	ntrol Sar	nple
	Prep Ty	pe: Tota	I/NA

Matrix: Water					Prep Type: Tot	tal/NA
Analysis Batch: 165412	0	100 100			0/ D	
Analista	Spike	LCS LCS	fian Ilmit	D	%Rec. Limits	
Analyte Chloromethane	Added 25.0	Result Quali			52 - 175	
			ug/L			
2-Chlorotoluene	25.0	27.2	ug/L	109	70 ₋ 130	
4-Chlorotoluene	25.0	27.3	ug/L	109	70 ₋ 130	
Chlorodibromomethane	25.0	30.1	ug/L	120	70 - 145	
1,2-Dichlorobenzene	25.0	27.2	ug/L	109	70 - 130	
1,3-Dichlorobenzene	25.0	27.3	ug/L	109	70 - 130	
1,4-Dichlorobenzene	25.0	27.5	ug/L	110	70 - 130	
1,3-Dichloropropane	25.0	27.2	ug/L	109	70 - 130	
1,1-Dichloropropene	25.0	28.0	ug/L	112	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	28.6	ug/L	114	70 - 136	
Ethylene Dibromide	25.0	28.4	ug/L	113	70 - 130	
Dibromomethane	25.0	26.8	ug/L	107	70 - 130	
Dichlorodifluoromethane	25.0	24.7	ug/L	99	34 - 132	
1,1-Dichloroethane	25.0	26.3	ug/L	105	70 - 130	
1,2-Dichloroethane	25.0	24.4	ug/L	98	61 - 132	
1,1-Dichloroethene	25.0	23.4	ug/L	94	64 - 128	
cis-1,2-Dichloroethene	25.0	25.0	ug/L	100	70 - 130	
trans-1,2-Dichloroethene	25.0	26.9	ug/L	108	68 - 130	
1,2-Dichloropropane	25.0	26.7	ug/L	107	70 - 130	
cis-1,3-Dichloropropene	25.0	29.7	ug/L	119	70 - 130	
trans-1,3-Dichloropropene	25.0	32.2	ug/L	129	70 - 140	
Ethylbenzene	25.0	27.5	ug/L	110	80 - 120	
Hexachlorobutadiene	25.0	26.8	ug/L	107	70 - 130	
2-Hexanone	125	112	ug/L	89	60 - 164	
Isopropylbenzene	25.0	28.3	ug/L	113	70 - 130	
4-Isopropyltoluene	25.0	27.5	ug/L	110	70 - 130	
Methylene Chloride	25.0	24.3	ug/L	97	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	112	ug/L	90	58 - 130	
Naphthalene	25.0	29.5	ug/L	118	70 - 130	
N-Propylbenzene	25.0	28.0	ug/L	112	70 - 130	
Styrene	25.0	28.2	ug/L	113	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	29.7	ug/L	119	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	28.0	ug/L	112	70 - 130	
Tetrachloroethene	25.0	27.0	ug/L	108	70 - 130	
Toluene	25.0	27.2	ug/L	109	78 - 120	
1,2,3-Trichlorobenzene	25.0	28.1	ug/L	112	70 - 130	
1,2,4-Trichlorobenzene	25.0	28.5	ug/L	114	70 - 130	
1,1,1-Trichloroethane	25.0	27.4	ug/L	110	70 - 130	
1,1,2-Trichloroethane	25.0	28.2	ug/L	113	70 - 130	
Trichloroethene	25.0	26.4	ug/L	105	70 ₋ 130	
Trichlorofluoromethane	25.0	30.6		122	66 - 132	
	25.0		ug/L			
1,2,3-Trichloropropane		28.3	ug/L	113	70 ₋ 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.9	ug/L	96	42 - 162	
ne 1,2,4-Trimethylbenzene	25.0	27.2	ug/L	109	70 - 132	
1,3,5-Trimethylbenzene	25.0	27.5	ug/L	110	70 - 132 70 - 130	
Vinyl acetate	25.0	21.7	ug/L ug/L	87	43 ₋ 163	
Vinyl chloride	25.0	22.4			54 - 135	

TestAmerica Pleasanton

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Project/Site: Crown Chevrolet

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165412/5

Matrix: Water Analysis Batch: 165412

LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec m-Xylene & p-Xylene 25.0 27.6 70 - 142 ug/L 110 o-Xylene 25.0 27.5 ug/L 110 70 - 130 2,2-Dichloropropane 25.0 26.6 ug/L 106 70 - 140

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 67 - 130 98 87 1,2-Dichloroethane-d4 (Surr) 72 - 130 Toluene-d8 (Surr) 99 70 - 130

Lab Sample ID: LCS 720-165412/7

Matrix: Water

Analysis Batch: 165412

Spike LCS LCS %Rec. Added Result Qualifier Unit Limits 500 549 110 62 _ 120 ug/L Gasoline Range Organics (GRO)

-C5-C12

LCS LCS Surrogate %Recovery Qualifier Limits 99 67 - 130 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) 89 72 - 130 Toluene-d8 (Surr) 98 70 - 130

Lab Sample ID: LCSD 720-165412/6

Matrix: Water

Analysis Batch: 165412

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	25.3		ug/L		101	62 - 130	2	20
Acetone	125	96.3		ug/L		77	26 - 180	7	30
Benzene	25.0	26.8		ug/L		107	79 - 130	1	20
Dichlorobromomethane	25.0	28.3		ug/L		113	70 - 130	4	20
Bromobenzene	25.0	26.3		ug/L		105	70 - 130	1	20
Chlorobromomethane	25.0	26.1		ug/L		104	70 - 130	2	20
Bromoform	25.0	29.3		ug/L		117	68 - 136	3	20
Bromomethane	25.0	24.8		ug/L		99	43 - 151	4	20
2-Butanone (MEK)	125	117		ug/L		94	54 - 130	5	20
n-Butylbenzene	25.0	28.5		ug/L		114	70 - 142	2	20
sec-Butylbenzene	25.0	27.6		ug/L		110	70 - 134	2	20
tert-Butylbenzene	25.0	26.4		ug/L		106	70 - 135	2	20
Carbon disulfide	25.0	25.6		ug/L		102	58 - 130	3	20
Carbon tetrachloride	25.0	28.7		ug/L		115	70 - 146	2	20
Chlorobenzene	25.0	27.0		ug/L		108	70 - 130	1	20
Chloroethane	25.0	21.8		ug/L		87	62 - 138	5	20
Chloroform	25.0	26.8		ug/L		107	70 - 130	1	20
Chloromethane	25.0	19.7		ug/L		79	52 - 175	4	20
2-Chlorotoluene	25.0	27.1		ug/L		108	70 - 130	0	20
4-Chlorotoluene	25.0	27.3		ug/L		109	70 - 130	0	20
Chlorodibromomethane	25.0	30.0		ug/L		120	70 - 145	0	20

TestAmerica Pleasanton

Page 11 of 20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165412/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 165412	Spike	I CGD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	%Rec.	RPD	Limit
1,2-Dichlorobenzene	25.0	26.9	- Qualifier	ug/L		108	70 ₋ 130	1	20
1,3-Dichlorobenzene	25.0	27.1		ug/L		108	70 - 130	1	20
1,4-Dichlorobenzene	25.0	27.2		ug/L		109	70 ₋ 130	1	20
1,3-Dichloropropane	25.0	26.8		ug/L		107	70 - 130	2	20
1,1-Dichloropropene	25.0	27.8		ug/L		111	70 ₋ 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.5		ug/L		106	70 - 136	8	20
Ethylene Dibromide	25.0	27.5		ug/L		110	70 - 130	3	20
Dibromomethane	25.0	26.3		ug/L		105	70 - 130	2	20
Dichlorodifluoromethane	25.0	23.6		ug/L		94	34 - 132	5	20
1,1-Dichloroethane	25.0	25.7		ug/L		103	70 - 130	2	20
1,2-Dichloroethane	25.0	23.8		ug/L		95	61 - 132	2	20
1,1-Dichloroethene	25.0	22.6		ug/L		91	64 - 128	3	20
cis-1,2-Dichloroethene	25.0	24.5		ug/L		98	70 - 130	2	20
trans-1,2-Dichloroethene	25.0	26.6		ug/L ug/L		106	68 ₋ 130	1	20
1,2-Dichloropropane	25.0	26.5		ug/L ug/L		106	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	29.4				118	70 - 130		20
	25.0			ug/L			70 - 130 70 - 140	2	
trans-1,3-Dichloropropene	25.0	31.7 27.2		ug/L		127 109	70 - 140 80 - 120	1	20 20
Ethylbenzene Hexachlorobutadiene				ug/L			70 - 130	3	
	25.0 125	26.2 105		ug/L		105	70 - 130 60 - 164	3 7	20
2-Hexanone				ug/L		84	70 - 130		20
Isopropylbenzene	25.0	27.9		ug/L		112			20
4-Isopropyltoluene	25.0	27.0		ug/L		108	70 ₋ 130	3	
Methylene Chloride	25.0	23.5		ug/L		94	70 ₋ 147		20
4-Methyl-2-pentanone (MIBK)	125	105		ug/L		84	58 - 130	7	20
Naphthalene	25.0	28.4		ug/L		113	70 ₋ 130	4	20
N-Propylbenzene	25.0	27.8		ug/L		111	70 - 130	1	20
Styrene	25.0	27.9		ug/L		111	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	29.3		ug/L		117	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	27.4		ug/L		109	70 - 130	2	20
Tetrachloroethene	25.0	26.4		ug/L		106	70 - 130	2	20
Toluene	25.0	27.0		ug/L		108	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	27.2		ug/L		109	70 - 130	3	20
1,2,4-Trichlorobenzene	25.0	28.3		ug/L		113	70 - 130	1	20
1,1,1-Trichloroethane	25.0	26.9		ug/L		108	70 - 130	2	20
1,1,2-Trichloroethane	25.0	27.7		ug/L		111	70 - 130	2	20
Trichloroethene	25.0	26.2		ug/L		105	70 - 130	1	20
Trichlorofluoromethane	25.0	29.3		ug/L		117	66 - 132	4	20
1,2,3-Trichloropropane	25.0	27.7		ug/L		111	70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.9		ug/L		92	42 _ 162	4	20
ne	25.0			/		100	70 ₋ 132		
1,2,4-Trimethylbenzene	25.0	27.2 27.5		ug/L		109			20
1,3,5-Trimethylbenzene	25.0			ug/L		110	70 ₋ 130	0	20
Vinyl acetate	25.0	21.1		ug/L		84	43 - 163	3	20
Vinyl chloride	25.0	22.0		ug/L		88 100	54 ₋ 135	2	20
m-Xylene & p-Xylene	25.0	27.2		ug/L		109	70 ₋ 142	1	20
o-Xylene 2,2-Dichloropropane	25.0 25.0	27.1		ug/L		109	70 - 130	1	20

TestAmerica Pleasanton

Page 12 of 20

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-2

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165412/6

Matrix: Water

Surrogate

Analysis Batch: 165412

4-Bromofluorobenzene

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: Lab Control Sample Dup

LCSD LCSD %Recovery Qualifier Limits 67 - 130 98 87 72 - 130

98

Lab Sample ID: LCSD 720-165412/8

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 165412

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	558		ug/L		112	62 _ 120	1	20

70 - 130

-C5-C12

	LCSD LCSD	
Surrogate	%Recovery Qualified	r Limits
4-Bromofluorobenzene	99	67 - 130
1,2-Dichloroethane-d4 (Surr)	91	72 - 130
Toluene-d8 (Surr)	98	70 - 130

Prep Type: Total/NA

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-2

GC/MS VOA

Analysis Batch: 165412

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59402-2	TB-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165412/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165412/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165412/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165412/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165412/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
L				MS	

3

4

O

10

11

4.6

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: TB-1

TestAmerica Job ID: 720-59402-2

Lab Sample ID: 720-59402-2

Matrix: Water

Date Collected: 08/20/14 12:15 Date Received: 08/20/14 13:55

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number or Analyzed Type Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 165412 08/22/14 01:28 PDR TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

5

9

44

12

16

| 1 4

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-2

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority California	Program State Prog	gram	EPA Region 9	Certification ID 2496	Expiration Date 01-31-16
Analysis Method	Prep Method	Matrix	Analyt	е	

-2

3

4

5

6

10

12

13

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-2

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

G

3

4

E

5

7

8

10

11

4 /

Sample Summary

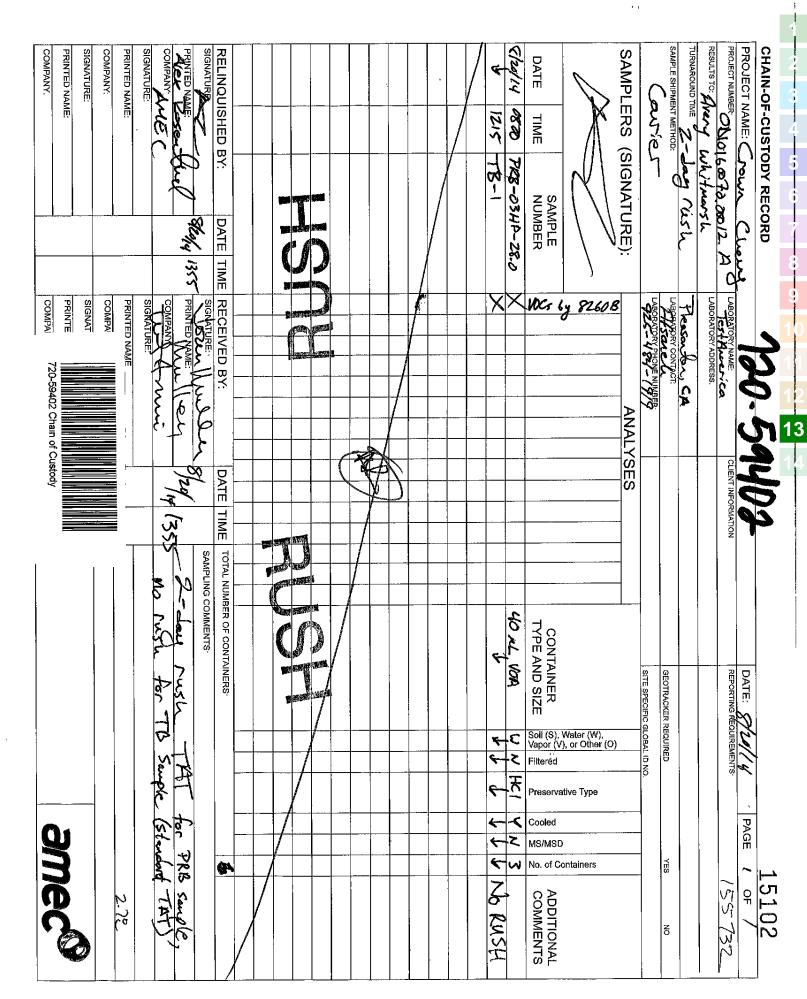
Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59402-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59402-2	TB-1	Water	08/20/14 12:15	08/20/14 13:55

6


8

9

. .

12

13

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59402-2

Login Number: 59402 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Creator: Gonzales, Justinii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

_

_

9

11

4.0

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59412-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Authorized for release by: 8/22/2014 11:16:50 AM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

3

4

6

8

9

11

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

8/22/2014

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

Job ID: 720-59412-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59412-1

Comments

No additional comments.

Receipt

The sample was received on 8/20/2014 5:50 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.1° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

4

5

6

7

8

9

. .

12

13

Detection Summary

 $\label{linear_continuity} \textbf{Client: AMEC Environment \& Infrastructure, Inc.}$

Project/Site: Crown Chevrolet

Client Sample ID: P-01HP-19.0

TestAmerica Job ID: 720-59412-1

Lab Sample ID: 720-59412-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	2.1		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
								MS	

3

4

6

8

3

11

13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: P-01HP-19.0

TestAmerica Job ID: 720-59412-1

Lab Sample ID: 720-59412-1

6

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Date Received: 08/20/14 17:50	D"	Qualifia:	D:	MDI U	5	Dyama:	Amabar	Dil 5-
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			08/20/14 23:10	1
Acetone	ND		50	ug/L			08/20/14 23:10	1
Benzene	ND		0.50	ug/L			08/20/14 23:10	
Dichlorobromomethane	ND		0.50	ug/L			08/20/14 23:10	1
Bromobenzene	ND		1.0	ug/L			08/20/14 23:10	1
Chlorobromomethane	ND		1.0	ug/L			08/20/14 23:10	1
Bromoform	ND		1.0	ug/L			08/20/14 23:10	1
Bromomethane	ND		1.0	ug/L			08/20/14 23:10	1
2-Butanone (MEK)	ND		50	ug/L			08/20/14 23:10	1
n-Butylbenzene	ND		1.0	ug/L			08/20/14 23:10	1
sec-Butylbenzene	ND		1.0	ug/L			08/20/14 23:10	1
tert-Butylbenzene	ND		1.0	ug/L			08/20/14 23:10	1
Carbon disulfide	ND		5.0	ug/L			08/20/14 23:10	1
Carbon tetrachloride	ND		0.50	ug/L			08/20/14 23:10	1
Chlorobenzene	ND		0.50	ug/L			08/20/14 23:10	1
Chloroethane	ND		1.0	ug/L			08/20/14 23:10	1
Chloroform	ND		1.0	ug/L			08/20/14 23:10	1
Chloromethane	ND		1.0	ug/L			08/20/14 23:10	1
2-Chlorotoluene	ND		0.50	ug/L			08/20/14 23:10	1
4-Chlorotoluene	ND		0.50	ug/L			08/20/14 23:10	1
Chlorodibromomethane	ND		0.50	ug/L			08/20/14 23:10	1
1,2-Dichlorobenzene	ND		0.50	ug/L			08/20/14 23:10	1
1,3-Dichlorobenzene	ND		0.50	ug/L			08/20/14 23:10	1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/20/14 23:10	1
1,3-Dichloropropane	ND		1.0	ug/L			08/20/14 23:10	1
1,1-Dichloropropene	ND		0.50	ug/L			08/20/14 23:10	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/20/14 23:10	1
Ethylene Dibromide	ND		0.50	ug/L			08/20/14 23:10	1
Dibromomethane	ND		0.50	ug/L			08/20/14 23:10	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/20/14 23:10	1
1,1-Dichloroethane	ND		0.50	ug/L			08/20/14 23:10	1
1,2-Dichloroethane	ND		0.50	ug/L			08/20/14 23:10	1
1,1-Dichloroethene	ND		0.50	ug/L			08/20/14 23:10	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			08/20/14 23:10	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/20/14 23:10	1
1,2-Dichloropropane	ND		0.50	ug/L			08/20/14 23:10	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/20/14 23:10	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/20/14 23:10	1
Ethylbenzene	ND		0.50	ug/L			08/20/14 23:10	1
Hexachlorobutadiene	ND		1.0	ug/L			08/20/14 23:10	1
2-Hexanone	ND		50	ug/L			08/20/14 23:10	1
Isopropylbenzene	ND		0.50	ug/L			08/20/14 23:10	1
4-Isopropyltoluene	ND		1.0	ug/L			08/20/14 23:10	
Methylene Chloride	ND		5.0	ug/L			08/20/14 23:10	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/20/14 23:10	1
	ND						08/20/14 23:10	
Naphthalene N-Propylbenzene	ND ND		1.0 1.0	ug/L			08/20/14 23:10	
• •				ug/L				1
Styrene 1,1,1,2-Tetrachloroethane	ND ND		0.50	ug/L			08/20/14 23:10 08/20/14 23:10	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

Client Sample ID: P-01HP-19.0

Date Collected: 08/20/14 16:00

Date Received: 08/20/14 17:50

TestAmerica Job ID: 720-59412-1

Lab Sample ID: 720-59412-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/20/14 23:10	1
Tetrachloroethene	2.1		0.50	ug/L			08/20/14 23:10	1
Toluene	ND		0.50	ug/L			08/20/14 23:10	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/20/14 23:10	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/20/14 23:10	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/20/14 23:10	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/20/14 23:10	1
Trichloroethene	ND		0.50	ug/L			08/20/14 23:10	1
Trichlorofluoromethane	ND		1.0	ug/L			08/20/14 23:10	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/20/14 23:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/20/14 23:10	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/20/14 23:10	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/20/14 23:10	1
Vinyl acetate	ND		10	ug/L			08/20/14 23:10	1
Vinyl chloride	ND		0.50	ug/L			08/20/14 23:10	1
Xylenes, Total	ND		1.0	ug/L			08/20/14 23:10	1
2,2-Dichloropropane	ND		0.50	ug/L			08/20/14 23:10	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			08/20/14 23:10	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		67 - 130	_		08/20/14 23:10	1
1,2-Dichloroethane-d4 (Surr)	94		72 - 130			08/20/14 23:10	1
Toluene-d8 (Surr)	94		70 - 130			08/20/14 23:10	1

TestAmerica Job ID: 720-59412-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165333/4

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND ND	0.50	ug/L		08/20/14 15:32	
Acetone	ND	50	ug/L		08/20/14 15:32	
Benzene	ND	0.50	ug/L		08/20/14 15:32	
Dichlorobromomethane	ND	0.50	ug/L		08/20/14 15:32	
Bromobenzene	ND	1.0	ug/L		08/20/14 15:32	
Chlorobromomethane	ND	1.0	ug/L		08/20/14 15:32	
Bromoform	ND	1.0	ug/L		08/20/14 15:32	
Bromomethane	ND	1.0	ug/L		08/20/14 15:32	
2-Butanone (MEK)	ND	50	ug/L		08/20/14 15:32	
n-Butylbenzene	ND	1.0	ug/L		08/20/14 15:32	
sec-Butylbenzene	ND	1.0	ug/L		08/20/14 15:32	
tert-Butylbenzene	ND	1.0	ug/L		08/20/14 15:32	
Carbon disulfide	ND	5.0	ug/L		08/20/14 15:32	
Carbon tetrachloride	ND	0.50	ug/L		08/20/14 15:32	
Chlorobenzene	ND	0.50	ug/L		08/20/14 15:32	
Chloroethane	ND	1.0	ug/L		08/20/14 15:32	
Chloroform	ND	1.0	ug/L		08/20/14 15:32	
Chloromethane	ND	1.0	ug/L		08/20/14 15:32	
2-Chlorotoluene	ND	0.50	ug/L		08/20/14 15:32	
4-Chlorotoluene	ND	0.50	ug/L		08/20/14 15:32	
Chlorodibromomethane	ND	0.50	ug/L		08/20/14 15:32	
1,2-Dichlorobenzene	ND	0.50	ug/L		08/20/14 15:32	
1,3-Dichlorobenzene	ND	0.50	ug/L		08/20/14 15:32	
1,4-Dichlorobenzene	ND	0.50	ug/L		08/20/14 15:32	
1,3-Dichloropropane	ND	1.0	ug/L		08/20/14 15:32	
1,1-Dichloropropene	ND	0.50	ug/L		08/20/14 15:32	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/20/14 15:32	
Ethylene Dibromide	ND	0.50	ug/L		08/20/14 15:32	
Dibromomethane	ND	0.50	ug/L		08/20/14 15:32	
Dichlorodifluoromethane	ND	0.50	ug/L		08/20/14 15:32	
1,1-Dichloroethane	ND	0.50	ug/L		08/20/14 15:32	
1,2-Dichloroethane	ND	0.50	ug/L		08/20/14 15:32	
1,1-Dichloroethene	ND	0.50	ug/L		08/20/14 15:32	
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/20/14 15:32	
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/20/14 15:32	
1,2-Dichloropropane	ND	0.50	ug/L		08/20/14 15:32	
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/20/14 15:32	
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/20/14 15:32	
Ethylbenzene	ND	0.50	ug/L		08/20/14 15:32	
Hexachlorobutadiene	ND	1.0	ug/L		08/20/14 15:32	
2-Hexanone	ND	50	ug/L		08/20/14 15:32	
	ND					
Isopropyltolyono		0.50	ug/L		08/20/14 15:32	
4-Isopropyltoluene	ND ND	1.0	ug/L		08/20/14 15:32	
Methylene Chloride	ND ND	5.0	ug/L		08/20/14 15:32	
4-Methyl-2-pentanone (MIBK)	ND ND	50	ug/L		08/20/14 15:32	
Naphthalene	ND ND	1.0	ug/L		08/20/14 15:32	
N-Propylbenzene Styrene	ND ND	1.0 0.50	ug/L ug/L		08/20/14 15:32 08/20/14 15:32	

TestAmerica Pleasanton

8/22/2014

Page 8 of 20

TestAmerica Job ID: 720-59412-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

MR MR

Lab Sample ID: MB 720-165333/4

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/20/14 15:32	1
Tetrachloroethene	ND		0.50		ug/L			08/20/14 15:32	1
Toluene	ND		0.50		ug/L			08/20/14 15:32	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/20/14 15:32	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/20/14 15:32	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/20/14 15:32	1
Trichloroethene	ND		0.50		ug/L			08/20/14 15:32	1
Trichlorofluoromethane	ND		1.0		ug/L			08/20/14 15:32	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/20/14 15:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/20/14 15:32	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/20/14 15:32	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/20/14 15:32	1
Vinyl acetate	ND		10		ug/L			08/20/14 15:32	1
Vinyl chloride	ND		0.50		ug/L			08/20/14 15:32	1
Xylenes, Total	ND		1.0		ug/L			08/20/14 15:32	1
2,2-Dichloropropane	ND		0.50		ug/L			08/20/14 15:32	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			08/20/14 15:32	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130	_		08/20/14 15:32	1
1,2-Dichloroethane-d4 (Surr)	94		72 - 130			08/20/14 15:32	1
Toluene-d8 (Surr)	95		70 - 130			08/20/14 15:32	1

Lab Sample ID: LCS 720-165333/5

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Datch. 100000								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	26.2	-	ug/L		105	62 - 130	
Acetone	125	127		ug/L		102	26 - 180	
Benzene	25.0	25.8		ug/L		103	79 - 130	
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130	
Bromobenzene	25.0	25.3		ug/L		101	70 - 130	
Chlorobromomethane	25.0	24.5		ug/L		98	70 - 130	
Bromoform	25.0	26.3		ug/L		105	68 - 136	
Bromomethane	25.0	20.7		ug/L		83	43 - 151	
2-Butanone (MEK)	125	125		ug/L		100	54 - 130	
n-Butylbenzene	25.0	26.4		ug/L		106	70 - 142	
sec-Butylbenzene	25.0	25.7		ug/L		103	70 - 134	
tert-Butylbenzene	25.0	25.5		ug/L		102	70 - 135	
Carbon disulfide	25.0	23.7		ug/L		95	58 - 130	
Carbon tetrachloride	25.0	25.1		ug/L		100	70 - 146	
Chlorobenzene	25.0	24.7		ug/L		99	70 - 130	
Chloroethane	25.0	21.6		ug/L		86	62 - 138	
Chloroform	25.0	24.9		ug/L		100	70 - 130	
				-				

Page 9 of 20

TestAmerica Pleasanton

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Lab Sample ID: LCS 720-165333/5

Matrix: Water

Analysis Batch: 165333	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	25.0	21.6		ug/L		86	52 - 175
2-Chlorotoluene	25.0	26.5		ug/L		106	70 - 130
4-Chlorotoluene	25.0	26.5		ug/L		106	70 _ 130
Chlorodibromomethane	25.0	26.0		ug/L		104	70 - 145
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130
1,3-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130
1,4-Dichlorobenzene	25.0	25.1		ug/L		100	70 - 130
1,3-Dichloropropane	25.0	25.3		ug/L		101	70 - 130
1,1-Dichloropropene	25.0	27.0		ug/L		108	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.8		ug/L		103	70 - 136
Ethylene Dibromide	25.0	25.4		ug/L		101	70 - 130
Dibromomethane	25.0	24.8		ug/L		99	70 - 130
Dichlorodifluoromethane	25.0	17.5		ug/L		70	34 _ 132
1,1-Dichloroethane	25.0	25.6		ug/L		102	70 - 130
1,2-Dichloroethane	25.0	24.4		ug/L		98	61 ₋ 132
1,1-Dichloroethene	25.0	22.0		ug/L		88	64 - 128
cis-1,2-Dichloroethene	25.0	25.2		ug/L		101	70 - 130
trans-1,2-Dichloroethene	25.0	24.3		ug/L		97	68 _ 130
1,2-Dichloropropane	25.0	26.0		ug/L		104	70 - 130
cis-1,3-Dichloropropene	25.0	27.6		ug/L		110	70 - 130
trans-1,3-Dichloropropene	25.0	29.7		ug/L		119	70 - 140
Ethylbenzene	25.0	24.8		ug/L		99	80 - 120
Hexachlorobutadiene	25.0	25.5		ug/L		102	70 - 130
2-Hexanone	125	129		ug/L		103	60 - 164
Isopropylbenzene	25.0	25.6		ug/L		102	70 - 130
4-Isopropyltoluene	25.0	25.4		ug/L		102	70 - 130
Methylene Chloride	25.0	26.2		ug/L		105	70 - 147
4-Methyl-2-pentanone (MIBK)	125	134		ug/L		107	58 - 130
Naphthalene	25.0	27.5		ug/L		110	70 - 130
N-Propylbenzene	25.0	26.6		ug/L		106	70 - 130
Styrene	25.0	27.5		ug/L		110	70 - 130
1,1,1,2-Tetrachloroethane	25.0	26.2		ug/L		105	70 - 130
1,1,2,2-Tetrachloroethane	25.0	25.4		ug/L		101	70 - 130
Tetrachloroethene	25.0	24.1		ug/L		96	70 - 130
Toluene	25.0	25.0		ug/L		100	78 - 120
1,2,3-Trichlorobenzene	25.0	25.4		ug/L		102	70 - 130
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	70 - 130
1,1,1-Trichloroethane	25.0	24.6		ug/L		98	70 - 130
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	70 - 130
Trichloroethene	25.0	24.5		ug/L		98	70 - 130
Trichlorofluoromethane	25.0	25.3		ug/L		101	66 - 132
1,2,3-Trichloropropane	25.0	26.6		ug/L		106	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.4		ug/L		85	42 _ 162
ne				<u>,</u>			
1,2,4-Trimethylbenzene	25.0	26.0		ug/L		104	70 - 132
1,3,5-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 130
Vinyl acetate	25.0	21.3		ug/L		85	43 - 163
Vinyl chloride	25.0	18.8		ug/L		75	54 - 135

TestAmerica Pleasanton

Page 10 of 20

2

3

5

7

0

10

12

TestAmerica Job ID: 720-59412-1

Project/Site: Crown Chevrolet

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165333/5

Matrix: Water Analysis Batch: 165333 Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Result Qualifier Limits Analyte Added Unit %Rec D 25.0 99 70 - 142 m-Xylene & p-Xylene 24.8 ug/L o-Xylene 25.0 25.4 ug/L 102 70 - 130 25.0 26.2 105 70 - 140 2,2-Dichloropropane ug/L

LCS LCS Surrogate %Recovery Qualifier Limits 67 - 130 4-Bromofluorobenzene 100 1,2-Dichloroethane-d4 (Surr) 91 72 - 130Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: LCS 720-165333/7 **Client Sample ID: Lab Control Sample**

Analysis Batch: 165333

Spike LCS LCS %Rec. Added Result Qualifier Unit Limits %Rec 500 563 ug/L 113 62 - 120 Gasoline Range Organics (GRO)

-C5-C12

Matrix: Water

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 103 67 - 130 1,2-Dichloroethane-d4 (Surr) 97 72 - 130Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: LCSD 720-165333/6

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Analyte Added Qualifier Unit %Rec Limits RPD Limit Result Methyl tert-butyl ether 25.0 25.5 102 62 - 130 3 20 ug/L 125 Acetone 114 ug/L 91 26 - 180 11 30 ug/L 25.0 26.0 104 79 - 130 20 Benzene 70 - 130 Dichlorobromomethane 25.0 25.4 ug/L 102 0 20 Bromobenzene 25.0 25.7 ug/L 103 70 - 130 20 Chlorobromomethane 25.0 24 2 ug/L 97 70 - 130 20 Bromoform 25.0 25.6 ug/L 102 68 - 136 20 Bromomethane 25.0 20.7 83 43 _ 151 20 ug/L 2-Butanone (MEK) 125 116 92 54 - 130 20 ug/L 25.0 26.9 108 70 - 142 2 20 n-Butylbenzene ug/L sec-Butylbenzene 25.0 26.3 105 70 - 134 20 ug/L 25.0 26.3 ug/L 105 70 - 135 20 tert-Butylbenzene Carbon disulfide 25.0 23.9 ug/L 96 58 - 130 20 ug/L Carbon tetrachloride 25.0 25.5 102 70 - 146 20 Chlorobenzene 25.0 24.8 ug/L 99 70 - 130 20 Chloroethane 25.0 21.6 ug/L 86 62 - 138 20 25.0 25.1 100 20 Chloroform ug/L 70 - 130Chloromethane 25.0 21.5 ug/L 86 52 - 175 20 27 2 2-Chlorotoluene 25.0 ug/L 109 70 - 130 3 20 4-Chlorotoluene 25.0 27.4 ug/L 110 70 - 130 20 Chlorodibromomethane 25.0 25.5 ug/L 102 70 - 14520

TestAmerica Pleasanton

Page 11 of 20

Prep Type: Total/NA

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Lab Sample ID: LCSD 720-165333/6

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

1,1,2-Trichloro-1,2,2-trifluoroetha

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

m-Xylene & p-Xylene

2,2-Dichloropropane

Vinyl acetate

Vinyl chloride

o-Xylene

Matrix: Water

TestAmerica Job ID: 720-59412-1

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 165333							Jpo . 10.	
7 , 0.0	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	25.1	ug/L		100	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.5	ug/L		102	70 - 130	2	20
1,4-Dichlorobenzene	25.0	25.4	ug/L		102	70 - 130	1	20
1,3-Dichloropropane	25.0	24.7	ug/L		99	70 - 130	2	20
1,1-Dichloropropene	25.0	27.4	ug/L		109	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	25.4	ug/L		102	70 - 136	2	20
Ethylene Dibromide	25.0	24.7	ug/L		99	70 - 130	3	20
Dibromomethane	25.0	24.6	ug/L		98	70 - 130	1	20
Dichlorodifluoromethane	25.0	17.4	ug/L		70	34 - 132	0	20
1,1-Dichloroethane	25.0	26.1	ug/L		104	70 - 130	2	20
1,2-Dichloroethane	25.0	24.0	ug/L		96	61 - 132	1	20
1,1-Dichloroethene	25.0	22.5	ug/L		90	64 - 128	2	20
cis-1,2-Dichloroethene	25.0	25.5	ug/L		102	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.8	ug/L		99	68 - 130	2	20
1,2-Dichloropropane	25.0	26.3	ug/L		105	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	27.6	ug/L		110	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	29.3	ug/L		117	70 - 140	2	20
Ethylbenzene	25.0	25.0	ug/L		100	80 - 120	1	20
Hexachlorobutadiene	25.0	26.3	ug/L		105	70 - 130	3	20
2-Hexanone	125	119	ug/L		95	60 - 164	8	20
Isopropylbenzene	25.0	26.0	ug/L		104	70 - 130	2	20
4-Isopropyltoluene	25.0	26.1	ug/L		104	70 - 130	3	20
Methylene Chloride	25.0	26.0	ug/L		104	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	126	ug/L		101	58 - 130	7	20
Naphthalene	25.0	26.8	ug/L		107	70 - 130	2	20
N-Propylbenzene	25.0	27.4	ug/L		109	70 - 130	3	20
Styrene	25.0	27.6	ug/L		110	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	26.1	ug/L		105	70 - 130	0	20
1,1,2,2-Tetrachloroethane	25.0	25.2	ug/L		101	70 - 130	1	20
Tetrachloroethene	25.0	24.4	ug/L		97	70 - 130	1	20
Toluene	25.0	25.5	ug/L		102	78 - 120	2	20
1,2,3-Trichlorobenzene	25.0	25.5	ug/L		102	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	26.2	ug/L		105	70 - 130	1	20
1,1,1-Trichloroethane	25.0	24.7	ug/L		99	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.4	ug/L		101	70 - 130	2	20
Trichloroethene	25.0	24.6	ug/L		99	70 - 130	1	20
Trichlorofluoromethane	25.0	25.1	ug/L		100	66 - 132	1	20
1,2,3-Trichloropropane	25.0	25.7	ug/L		103	70 - 130	3	20
		_						_

TestAmerica Pleasanton

85

106

109

85

76

101

103

104

42 - 162

70 - 132

70 - 130

43 - 163

54 - 135

70 - 142

70 - 130

70 - 140

Page 12 of 20

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

21.2

26.5

27.1

21.4

19.0

25.3

25.8

26.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

20

20

20

20

20

20

20

20

2

2

QC Sample Results

Limits 67 - 130

72 - 130

70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

97

Lab Sample ID: LCSD 720-165333/6

Matrix: Water

Analysis Batch: 165333

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

 Surrogate
 %Recovery
 Qualifier

 4-Bromofluorobenzene
 100

 1,2-Dichloroethane-d4 (Surr)
 88

Lab Sample ID: LCSD 720-165333/8

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 165333

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	572		ug/L		114	62 - 120	2	20
-C5-C12									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130
Toluene-d8 (Surr)	96		70 - 130

10

10

12

13

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

GC/MS VOA

Analysis Batch: 165333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59412-1	P-01HP-19.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165333/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165333/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165333/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165333/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165333/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

-

4

5

7

8

9

10

13

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

Lab Sample ID: 720-59412-1

Matrix: Water

Client Sample ID: P-01HP-19.0 Date Collected: 08/20/14 16:00

Date Received: 08/20/14 17:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	165333	08/20/14 23:10	PDR	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

6

Q

10

12

13

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	State Program		2496	01-31-16
Analysis Method	Prep Method	Matrix	Analyt	e	

TestAmerica Job ID: 720-59412-1

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

 $\label{limit} \textbf{Client: AMEC Environment \& Infrastructure, Inc.}$

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59412-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59412-1	P-01HP-19.0	Water	08/20/14 16:00	08/20/14 17:50

9

4

_

7

8

3

11

12

13

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59412-1

Login Number: 59412 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Creator: Gonzales, Justinii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

11

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59448-1 Client Project/Site: Crown Chevrolet

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue
Suite 1100
Oakland, California 94612

Attn: Avery Whitmarsh

Absorbat

Authorized for release by: 8/28/2014 9:31:55 AM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	20
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
	25
Receipt Checklists	26

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control Relative error ratio

Project/Site: Crown Chevrolet

PQL QC

RER

RL

RPD TEF

TEQ

TestAmerica Job ID: 720-59448-1

***************************************			3
			5
			6
			8
			3550

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

K

Job ID: 720-59448-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59448-1

Comments

No additional comments.

Receipt

The samples were received on 8/21/2014 5:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.7° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample is due to the presence of discrete peaks: PRB-02HP-27.5 (720-59448-1). <<PCE>>

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

ŝ

ŦĄ

8

9

10

12

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Lab Sample ID: 720-59448-3

Client Sample ID: P-02HP-18.0

Client Sample ID: PRB-02HP-27.5					Lab Sample ID: 720			
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type		
Tetrachloroethene	58	0.50	ug/L	.1.	8260B/CA_LUFT MS	Total/NA		
Trichloroethene	2.8	0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA		
Gasoline Range Organics (GRO) -C5-C12	61	50	ug/L	1	8260B/CA_LUFT	Total/NA		

Client Sample ID: P-02HP-27.5 Lab Sample ID: 720-59448-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	40		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Trichloroethene	1.9		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	70		50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	12		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	3.0		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Hexachlorobutadiene

isopropylbenzene

4-Isopropyltoluene

Methylene Chloride

4-Methyl-2-pentanone (MIBK)

1,1,1,2-Tetrachloroethane

2-Hexanone

Naphthalene

Styrene

N-Propylbenzene

TestAmerica Job ID: 720-59448-1

2

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: PRB-02HP-27.5 Date Collected: 08/21/14 15:10 Date Received: 08/21/14 17:45					Lab	Sample ID: 720- Matrix	59448-1 c: Water
Analyte	Result Quali	fier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		•	08/22/14 12:15	1
Acetone	ND	50	ug/L			08/22/14 12:15	1
Benzene	ND	0.50	ug/L			08/22/14 12:15	1
Dichlorobromomethane	ND	0.50	ug/L			08/22/14 12:15	1
Bromobenzene	ND	1.0	ug/L			08/22/14 12:15	1
Chlorobromomethane	ND	1.0	ug/L			08/22/14 12:15	1
Bromoform	ND	1.0	ug/L			08/22/14 12:15	1
Bromomethane	ND	1.0	ug/L			08/22/14 12:15	1
2-Butanone (MEK)	ND	50	ug/L			08/22/14 12:15	1
n-Butylbenzene	ND	1.0	ug/L			08/22/14 12:15	1
sec-Butylbenzene	ND	1.0	ug/L			08/22/14 12:15	1
tert-Butylbenzene	ND	1.0	ug/L			08/22/14 12:15	1
Carbon disulfide	ND	5.0	ug/L			08/22/14 12:15	1
Carbon tetrachloride	ND	0.50	ug/L			08/22/14 12:15	1
Chlorobenzene	ND	0.50	ug/L			08/22/14 12:15	1
Chloroethane	ND	1.0	ug/L		***	08/22/14 12:15	1
Chloroform	ND	1.0	ug/L			08/22/14 12:15	1
Chloromethane	ND	1.0	ug/L			08/22/14 12:15	1
2-Chlorotoluene	ND	0.50	ug/L			08/22/14 12:15	1
4-Chlorotoluene	ND	0.50	ug/L			08/22/14 12:15	1
Chlorodibromomethane	ND	0.50	ug/L			08/22/14 12:15	1
1,2-Dichlorobenzene	ND	0.50	ug/L			08/22/14 12:15	1
1,3-Dichlorobenzene	ND	0.50	ug/L			08/22/14 12:15	1
1,4-Dichlorobenzene	ND	0.50	ug/L			08/22/14 12:15	1
1,3-Dichloropropane	ND	1.0	ug/L			08/22/14 12:15	1
1,1-Dichloropropene	ND	0.50	ug/L			08/22/14 12:15	1
1,2-Dibromo-3-Chioropropane	ND	1.0	ug/L			08/22/14 12:15	1
Ethylene Dibromide	ND	0.50	ug/L			08/22/14 12:15	1
Dibromomethane	ND	0.50	ug/L			08/22/14 12:15	1
Dichlorodifluoromethane	ND	0.50	ug/L			08/22/14 12:15	1
1,1-Dichloroethane	ND	0.50	ug/L			08/22/14 12:15	1
1,2-Dichloroethane	ND	0.50	ug/L			08/22/14 12:15	1
1,1-Dichloroethene	ND	0.50	ug/L			08/22/14 12:15	1
cis-1,2-Dichloroethene	ND	0.50	ug/L			08/22/14 12:15	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			08/22/14 12:15	1
1,2-Dichloropropane	ND	0.50	ug/L			08/22/14 12:15	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			08/22/14 12:15	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			08/22/14 12:15	1
Ethylbenzene	ND	0.50	ug/L			08/22/14 12:15	

TestAmerica Pleasanton

08/22/14 12:15

08/22/14 12:15

08/22/14 12:15

08/22/14 12:15

08/22/14 12:15

08/22/14 12:15

08/22/14 12:15 08/22/14 12:15

08/22/14 12:15

08/22/14 12:15

1.0

50

0.50

1.0

5.0

50

1.0

1.0

0.50

0.50

ug/L

ND

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: PRB-02HP-27.5

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59448-1

Date Collected: 08/21/14 15:10								Matrix	k: Water
Date Received: 08/21/14 17:45									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/22/14 12:15	1
Tetrachloroethene	58		0.50		ug/L			08/22/14 12:15	1
Toluene	ND		0.50		ug/L			08/22/14 12:15	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/22/14 12:15	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/22/14 12:15	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/22/14 12:15	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/22/14 12:15	1
Trichloroethene	2.8		0.50		ug/L			08/22/14 12:15	1
Trichlorofluoromethane	ND		1.0		ug/L			08/22/14 12:15	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/22/14 12:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/22/14 12:15	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/22/14 12:15	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/22/14 12:15	1
Vinyl acetate	ND		10		ug/L			08/22/14 12:15	1
Vinyl chloride	ND		0.50		ug/L			08/22/14 12:15	1
Xylenes, Total	ND		1.0		ug/L			08/22/14 12:15	1
2,2-Dichloropropane	ND		0.50		ug/L			08/22/14 12:15	1
Gasoline Range Organics (GRO)	61	R	50		ug/L			08/22/14 12:15	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		08/22/14 12:15	1
1,2-Dichloroethane-d4 (Surr)	97		72 - 130		08/22/14 12:15	1
Toluene-d8 (Surr)	96		70 - 130		08/22/14 12:15	1

Client Sample ID: P-02HP-27.5 Date Collected: 08/21/14 16:15

-C5-C12

Lab	Sample	ID:	720-59448-2
		B.	Antrive Water

Date Received: 08/21/14 17:45 Analyte	Result	Qualifier	RL	MDL Unit	D Prep	pared Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		08/22/14 12:44	1
Acetone	ND		50	ug/L		08/22/14 12:44	1
Benzene	ND		0.50	ug/L		08/22/14 12:44	1
Dichlorobromomethane	ND		0.50	ug/L		08/22/14 12:44	1
Bromobenzene	ND		1.0	ug/L		08/22/14 12:44	1
Chlorobromomethane	ND		1.0	ug/L		08/22/14 12:44	1
Bromoform	ND		1.0	ug/L		08/22/14 12:44	1
Bromomethane	ND		1.0	ug/L		08/22/14 12:44	1
2-Butanone (MEK)	ND		50	ug/L		08/22/14 12:44	1
n-Butylbenzene	ND		1.0	ug/L		08/22/14 12:44	1
sec-Butylbenzene	ND		1.0	ug/L		08/22/14 12:44	1
tert-Butylbenzene	ND		1.0	ug/L		08/22/14 12:44	1
Carbon disulfide	ND		5.0	ug/L		08/22/14 12:44	1
Carbon tetrachloride	ND		0.50	ug/L		08/22/14 12:44	1
Chlorobenzene	ND		0.50	ug/L		08/22/14 12:44	1
Chloroethane	ND		1.0	ug/L		08/22/14 12:44	1
Chloroform	ND		1.0	ug/L		08/22/14 12:44	1
Chloromethane	ND		1.0	ug/L		08/22/14 12:44	1
2-Chlorotoluene	ND		0.50	ug/L		08/22/14 12:44	1
4-Chlorotoluene	ND		0.50	ug/L		08/22/14 12:44	1
Chlorodibromomethane	ND		0.50	ug/L		08/22/14 12:44	1

TestAmerica Pleasanton

Page 7 of 26

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

2,2-Dichloropropane

-C5-C12

Gasoline Range Organics (GRO)

TestAmerica Job ID: 720-59448-1

2

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Date Collected: 08/21/14 16:15								Sample ID: 720-	
								Matrix	: Water
Date Received: 08/21/14 17:45 Analyte	Recult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.50	11100	ug/L		Trepared	08/22/14 12:44	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/22/14 12:44	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/22/14 12:44	1
1,3-Dichloropropane	ND		1.0		ug/L			08/22/14 12:44	1
1,1-Dichloropropene	ND		0.50		ug/L			08/22/14 12:44	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/22/14 12:44	1
Ethylene Dibromide	ND		0.50		ug/L			08/22/14 12:44	1
Dibromomethane	ND		0.50		ug/L			08/22/14 12:44	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/22/14 12:44	1
1,1-Dichloroethane	ND		0.50		ug/L			08/22/14 12:44	1
1,2-Dichloroethane	ND		0.50		ug/L			08/22/14 12:44	1
1,1-Dichloroethene	ND		0.50		ug/L	100		08/22/14 12:44	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/22/14 12:44	1
rans-1,2-Dichloroethene	ND		0.50		ug/L			08/22/14 12:44	1
1,2-Dichloropropane	ND		0.50		ug/L			08/22/14 12:44	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/22/14 12:44	1
rans-1,3-Dichloropropene	ND		0.50		ug/L			08/22/14 12:44	1
Ethylbenzene	ND		0.50		ug/L			08/22/14 12:44	1

cis-1,2-Dichloroethene	ND	0.50	ug/L	08/22/14 12:44	1
trans-1,2-Dichloroethene	ND	0.50	ug/L	08/22/14 12:44	1
1,2-Dichloropropane	ND	0.50	ug/L	08/22/14 12:44	1
cis-1,3-Dichloropropene	ND	0.50	ug/L	08/22/14 12:44	1
trans-1,3-Dichloropropene	ND	0.50	ug/L	08/22/14 12:44	1
Ethylbenzene	ND	0.50	ug/L	08/22/14 12:44	1
Hexachlorobutadiene	ND	1.0	ug/L	08/22/14 12:44	1
2-Hexanone	ND	50	ug/L	08/22/14 12:44	1
Isopropylbenzene	ND	0.50	ug/L	08/22/14 12:44	1
4-Isopropyltoluene	ND	1.0	ug/L	08/22/14 12:44	1
Methylene Chloride	ND	5.0	ug/L	08/22/14 12:44	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	08/22/14 12:44	1
Naphthalene	ND	1.0	ug/L	08/22/14 12:44	1
N-Propylbenzene	ND	1.0	ug/L	08/22/14 12:44	1
Styrene	ND	0.50	ug/L	08/22/14 12:44	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	08/22/14 12:44	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	08/22/14 12:44	1
Tetrachloroethene	40	0.50	ug/L	08/22/14 12:44	1
Toluene	ND	0.50	ug/L	08/22/14 12:44	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	08/22/14 12:44	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	08/22/14 12:44	1
1,1,1-Trichloroethane	ND	0.50	ug/L	08/22/14 12:44	1
1,1,2-Trichloroethane	ND	0.50	ug/L	08/22/14 12:44	1
Trichloroethene	1.9	0.50	ug/L	08/22/14 12:44	1
Trichlorofluoromethane	ND	1.0	ug/L	08/22/14 12:44	1
1,2,3-Trichloropropane	ND	0.50	ug/L	08/22/14 12:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	08/22/14 12:44	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L	08/22/14 12:44	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L	08/22/14 12:44	1
Vinyl acetate	ND	10	ug/L	08/22/14 12:44	1
Vinyl chloride	ND	0.50	ug/L	08/22/14 12:44	1
Xylenes, Total	ND	1.0	ug/L	08/22/14 12:44	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130	08/22/14 12:44	1

0.50

ug/L

ug/L

ND

ND

TestAmerica Pleasanton

08/22/14 12:44

08/22/14 12:44

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Lab Sample ID: 720-59448-2

Lab Sample ID: 720-59448-3

Matrix: Water

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: P-02HP-27.5 Date Collected: 08/21/14 16:15

Date Received: 08/21/14 17:45

Toluene-d8 (Surr)

Isopropylbenzene

Surrogate	%Recovery Quali	fier Limits	Prepared Analy	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	72 - 130	08/22/14	12:44 1
Toluene-d8 (Surr)	96	70 - 130	08/22/14	1 12.44 1

Client Sample ID: P-02HP-18.0

Date Collected: 08/21/14 16:35							Matrix: Water	
Date Received: 08/21/14 17:45 Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND	0.50	ug/L			08/22/14 14:10		
Acetone	70	50	ug/L			08/22/14 14:10	1	
Benzene	ND	0.50	ug/L			08/22/14 14:10	1	
Dichlorobromomethane	ND	0.50	ug/L			08/22/14 14:10	1	
Bromobenzene	ND	1.0	ug/L			08/22/14 14:10	1	
Chlorobromomethane	ND	1.0	ug/L			08/22/14 14:10	1	
Bromoform	ND	1.0	ug/L			08/22/14 14:10	1	
Bromomethane	ND	1.0	ug/L			08/22/14 14:10	1	
2-Butanone (MEK)	ND	50	ug/L			08/22/14 14:10	1	
n-Butylbenzene	ND	1.0	ug/L			08/22/14 14:10	1	
sec-Butylbenzene	ND	1.0	ug/L			08/22/14 14:10	1	
tert-Butylbenzene	ND	1.0	ug/L			08/22/14 14:10	1	
Carbon disulfide	ND	5.0	ug/L			08/22/14 14:10	1	
Carbon tetrachloride	ND	0.50	ug/L			08/22/14 14:10	1	
Chlorobenzene	ND	0.50	ug/L			08/22/14 14:10	1	
Chloroethane	ND	1.0	ug/L			08/22/14 14:10	1	
Chloroform	ND	1.0	ug/L			08/22/14 14:10	1	
Chloromethane	ND	1.0	ug/L			08/22/14 14:10	1	
2-Chlorotoluene	ND	0.50	ug/L			08/22/14 14:10	1	
4-Chlorotoluene	ND	0.50	ug/L			08/22/14 14:10	1	
Chlorodibromomethane	ND	0.50	ug/L			08/22/14 14:10	1	
1,2-Dichlorobenzene	ND	0.50	ug/L			08/22/14 14:10	1	
1,3-Dichlorobenzene	ND	0.50	ug/L			08/22/14 14:10	1	
1,4-Dichlorobenzene	ND	0.50	ug/L			08/22/14 14:10	1	
1,3-Dichloropropane	ND	1.0	ug/L			08/22/14 14:10	1	
1,1-Dichloropropene	ND	0.50	ug/L			08/22/14 14:10	1	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			08/22/14 14:10	1	
Ethylene Dibromide	ND	0.50	ug/L			08/22/14 14:10	1	
Dibromomethane	ND	0.50	ug/L			08/22/14 14:10	1	
Dichlorodifluoromethane	ND	0.50	ug/L			08/22/14 14:10	1	
1,1-Dichloroethane	ND	0.50	ug/L			08/22/14 14:10	1	
1,2-Dichloroethane	ND	0.50	ug/L			08/22/14 14:10	1	
1,1-Dichloroethene	ND	0.50	ug/L			08/22/14 14:10	1	
cis-1,2-Dichloroethene	ND	0.50	ug/L			08/22/14 14:10	1	
trans-1,2-Dichloroethene	ND	0.50	ug/L			08/22/14 14:10	1	
1,2-Dichloropropane	ND	0.50	ug/L			08/22/14 14:10	1	
cis-1,3-Dichloropropene	ND	0.50	ug/L			08/22/14 14:10	1	
trans-1,3-Dichloropropene	ND	0.50	ug/L			08/22/14 14:10	1	
Ethylbenzene	ND	0.50	ug/L			08/22/14 14:10	1	
Hexachlorobutadiene	ND	1.0	ug/L			08/22/14 14:10	1	
2-Hexanone	ND	50	ug/L			08/22/14 14:10	1	

TestAmerica Pleasanton

08/22/14 14:10

Page 9 of 26

0.50

ug/L

ND

8/28/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: P-02HP-18.0
Date Collected: 08/21/14 16:35
Date Received: 08/21/14 17:45

-C5-C12

Lab Sample ID: 720-59448-3

_	•	•	_	_	_	_		•	_	_	
		ı.							4.		
	IV	12	ш	a)	х:	- 1	N	а	m	er	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			08/22/14 14:10	1
Methylene Chloride	ND		5.0		ug/L			08/22/14 14:10	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/22/14 14:10	1
Naphthalene	ND		1.0		ug/L			08/22/14 14:10	1
N-Propylbenzene	ND		1.0		ug/L			08/22/14 14:10	1
Styrene	ND		0.50		ug/L			08/22/14 14:10	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/22/14 14:10	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/22/14 14:10	1
Tetrachloroethene	12		0.50		ug/L			08/22/14 14:10	1
Toluene	ND		0.50		ug/L			08/22/14 14:10	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/22/14 14:10	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/22/14 14:10	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/22/14 14:10	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/22/14 14:10	1
Trichloroethene	3.0		0.50		ug/L			08/22/14 14:10	1
Trichlorofluoromethane	ND		1.0		ug/L			08/22/14 14:10	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/22/14 14:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/22/14 14:10	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/22/14 14:10	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/22/14 14:10	1
Vinyl acetate	ND		10		ug/L			08/22/14 14:10	1
Vinyl chloride	ND		0.50		ug/L			08/22/14 14:10	1
Xylenes, Total	ND		1.0		ug/L			08/22/14 14:10	1
2,2-Dichloropropane	ND		0.50		ug/L			08/22/14 14:10	1
Gasoline Range Organics (GRO)	+ ND		50		ug/L			08/22/14 14:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		08/22/14 14:10	1
1,2-Dichloroethane-d4 (Surr)	98		72 - 130		08/22/14 14:10	1
Toluene-d8 (Surr)	96		70 - 130		08/22/14 14:10	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165439/4

Matrix: Water

Analysis Batch: 165439

Client	Sample	ID:	Meth	od	Blank	
	-		-	-		

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND Qualifier	0.50	ug/L		08/22/14 08:55	1
Acetone	ND	50	ug/L		08/22/14 08:55	1
Benzene	ND	0.50	ug/L		08/22/14 08:55	1
Dichlorobromomethane	ND	0.50	ug/L		08/22/14 08:55	1
Bromobenzene	ND	1.0	ug/L		08/22/14 08:55	1
Chlorobromomethane	ND	1.0	ug/L		08/22/14 08:55	1
Bromoform	ND	1.0	ug/L		08/22/14 08:55	1
Bromomethane	ND	1.0	ug/L		08/22/14 08:55	1
2-Butanone (MEK)	ND	50	ug/L		08/22/14 08:55	1
n-Butylbenzene	ND	1.0	ug/L		08/22/14 08:55	
sec-Butylbenzene	ND	1.0	ug/L		08/22/14 08:55	1
tert-Butylbenzene	ND	1.0	ug/L		08/22/14 08:55	1
Carbon disulfide	ND	5.0	ug/L		08/22/14 08:55	1
Carbon tetrachloride	ND	0.50	ug/L		08/22/14 08:55	1
Chlorobenzene	ND	0.50	ug/L		08/22/14 08:55	1
Chloroethane	ND	1.0	ug/L		08/22/14 08:55	1
Chloroform	ND	1.0	ug/L		08/22/14 08:55	1
Chloromethane	ND	1.0	ug/L		08/22/14 08:55	1
2-Chlorotoluene	ND	0.50	ug/L		08/22/14 08:55	1
4-Chlorotoluene	ND	0.50	ug/L		08/22/14 08:55	1
Chlorodibromomethane	ND	0.50	ug/L		08/22/14 08:55	1
1,2-Dichlorobenzene	ND	0.50	ug/L		08/22/14 08:55	1
1,3-Dichlorobenzene	ND	0.50	ug/L		08/22/14 08:55	1
1,4-Dichlorobenzene	ND	0.50	ug/L		08/22/14 08:55	1
	ND	1.0	ug/L		08/22/14 08:55	1
1,3-Dichloropropane	ND	0.50	ug/L		08/22/14 08:55	1
1,1-Dichloropropene	ND	1.0	ug/L		08/22/14 08:55	1
1,2-Dibromo-3-Chloropropane	ND	0.50	ug/L		08/22/14 08:55	- 1
Ethylene Dibromide	ND	0.50	ug/L		08/22/14 08:55	1
Dibromomethane	ND	0.50	ug/L		08/22/14 08:55	1
Dichlorodifluoromethane	ND	0.50			08/22/14 08:55	1
1,1-Dichloroethane	ND	0.50	ug/L		08/22/14 08:55	1
1,2-Dichloroethane	ND ND	0.50	ug/L		08/22/14 08:55	
1,1-Dichloroethene		0.50	ug/L		08/22/14 08:55	1
cis-1,2-Dichloroethene	ND	0.50	ug/L			1
trans-1,2-Dichloroethene	ND ND	0.50	ug/L		08/22/14 08:55 08/22/14 08:55	1
1,2-Dichloropropane			ug/L			1
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/22/14 08:55	1
trans-1,3-Dichloropropene	ND ND	0.50 0.50	ug/L		08/22/14 08:55	1
Ethylbenzene	ND		ug/L		08/22/14 08:55	1
Hexachlorobutadiene	ND	1.0	ug/L		08/22/14 08:55	1
2-Hexanone	ND	50	ug/L		08/22/14 08:55	1
Isopropylbenzene	ND	0.50	ug/L		08/22/14 08:55	1
4-Isopropyltoluene	ND	1.0	ug/L		08/22/14 08:55	1
Methylene Chloride	ND	5.0	ug/L		08/22/14 08:55	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/22/14 08:55	1
Naphthalene	ND	1.0	ug/L		08/22/14 08:55	1
N-Propylbenzene	ND	1.0	ug/L		08/22/14 08:55	1
Styrene	ND	0.50	ug/L		08/22/14 08:55	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

JOD ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-165439/4

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 165439

	NR WR							
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.50		ug/L			08/22/14 08:55	1
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L			08/22/14 08:55	1
Tetrachloroethene	ND	0.50		ug/L			08/22/14 08:55	1
Toluene	ND	0.50		ug/L			08/22/14 08:55	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			08/22/14 08:55	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			08/22/14 08:55	1
1,1,1-Trichloroethane	ND	0.50		ug/L			08/22/14 08:55	1
1,1,2-Trichloroethane	ND	0.50		ug/L			08/22/14 08:55	1
Trichloroethene	ND	0.50		ug/L			08/22/14 08:55	1
Trichlorofluoromethane	ND	1.0		ug/L			08/22/14 08:55	1
1,2,3-Trichloropropane	ND	0.50		ug/L			08/22/14 08:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50		ug/L			08/22/14 08:55	1
1,2,4-Trimethylbenzene	ND	0.50		ug/L			08/22/14 08:55	1
1,3,5-Trimethylbenzene	ND	0.50		ug/L			08/22/14 08:55	1
Vinyl acetate	ND	10		ug/L			08/22/14 08:55	1
Vinyl chloride	ND	0.50		ug/L			08/22/14 08:55	1
Xylenes, Total	D	1.0		ug/L			08/22/14 08:55	1
2,2-Dichloropropane	ND	0.50		ug/L			08/22/14 08:55	1
Gasoline Range Organics (GRO) -C5-C12	ND	50		ug/L			08/22/14 08:55	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepa	red Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130		08/22/14 08:55	1
1,2-Dichloroethane-d4 (Surr)	94		72 - 130		08/22/14 08:55	1
Toluene-d8 (Surr)	96		70 - 130		08/22/14 08:55	1

Lab Sample ID: LCS 720-165439/5

Matrix: Water

Analysis Batch: 165439

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 165439							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	26.2		ug/L		105	62 - 130
Acetone	125	125		ug/L		100	26 - 180
Benzene	25.0	25.6		ug/L		103	79 - 130
Dichlorobromomethane	25.0	25.7		ug/L		103	70 - 130
Bromobenzene	25.0	25.1		ug/L		100	70 - 130
Chlorobromomethane	25.0	24.1		ug/L		97	70 - 130
Bromoform	25.0	25.7		ug/L	574	103	68 - 136
Bromomethane	25.0	21.1		ug/L		84	43 - 151
2-Butanone (MEK)	- 125	124		ug/L		99	54 - 130
n-Butylbenzene	25.0	26.3		ug/L		105	70 - 142
sec-Butylbenzene	25.0	25.2		ug/L		101	70 - 134
tert-Butylbenzene	25.0	25.1		ug/L		100	70 - 135
Carbon disulfide	25.0	23.3		ug/L		93	58 - 130
Carbon tetrachloride	25.0	24.5		ug/L		98	70 - 146
Chlorobenzene	25.0	24.4		ug/L		98	70 - 130
Chloroethane	25.0	22.1		ug/L		88	62 - 138
Chloroform	25.0	24.9		ug/L		100	70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165439/5

Matrix: Water

Client	Sample	ID:	Lab	Control	Sample
			Pren	Type: 1	Total/NA

Analysis Batch: 165439	Spike	LCS	1.08				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Chloromethane	25.0	22.5	Qualifier	ug/L		90	52 - 175
2-Chlorotoluene	25.0	26.5		ug/L		106	70 - 130
4-Chlorotoluene	25.0	26.7		ug/L		107	70 - 130
	25.0	26.1		_		104	
Chlorodibromomethane				ug/L			70 - 145
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130
1,3-Dichlorobenzene	25.0	24.9		ug/L		99	70 - 130
1,4-Dichlorobenzene	25.0	25.1		ug/L		100	70 - 130
1,3-Dichloropropane	25.0	25.4		ug/L		102	70 - 130
1,1-Dichloropropene	25.0	26.7		ug/L		107	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.2		ug/L		101	70 - 136
Ethylene Dibromide	25.0	25.4		ug/L		101	70 - 130
Dibromomethane	25.0	25.1		ug/L		100	70 - 130
Dichlorodifluoromethane	25.0	20.4		ug/L		81	34 - 132
1,1-Dichloroethane	25.0	25.7		ug/L		103	70 - 130
,2-Dichloroethane	25.0	24.1		ug/L		96	61 - 132
1,1-Dichloroethene	25.0	21.6		ug/L		86	64 - 128
cis-1,2-Dichloroethene	25.0	25.2		ug/L		101	70 - 130
rans-1,2-Dichloroethene	25.0	24.1		ug/L		97	68 - 130
1,2-Dichloropropane	25.0	26.3		ug/L		105	70 - 130
sis-1,3-Dichloropropene	25.0	27.8		ug/L		111	70 - 130
rans-1,3-Dichloropropene	25.0	30.1		ug/L		120	70 - 140
Ethylbenzene	25.0	24.5		ug/L		98	80 - 120
Hexachlorobutadiene	25.0	24.8		ug/L		99	70 - 130
2-Hexanone	125	126		ug/L		101	60 - 164
sopropylbenzene	25.0	25.1		ug/L		100	70 - 130
1-Isopropyltoluene	25.0	25.0		ug/L		100	70 - 130
Methylene Chloride	25.0	26.6		ug/L		106	70 - 147
4-Methyl-2-pentanone (MIBK)	125	132		ug/L		105	58 - 130
Naphthalene	25.0	26.8		ug/L		107	70 - 130
N-Propylbenzene	25.0	26.6		ug/L		106	70 - 130
Styrene	25.0	27.2		ug/L		109	70 - 130
1,1,1,2-Tetrachloroethane	25.0	25.6		ug/L		102	70 - 130
1,1,2,2-Tetrachloroethane	25.0	25.7		ug/L		103	70 - 130
Fetrachloroethene	25.0	23.8		ug/L		95	70 - 130
	25.0	24.9				99	78 ₋ 120
Foluene				ug/L			
1,2,3-Trichlorobenzene	25.0	25.3		ug/L		101	70 - 130
1,2,4-Trichlorobenzene	25.0	26.3		ug/L		105	70 - 130
1,1,1-Trichloroethane	25.0	24.1		ug/L		96	70 - 130
1,1,2-Trichloroethane	25.0	26.1		ug/L		104	70 - 130
Trichloroethene	25.0	24.7		ug/L		99	70 - 130
Frichlorofluoromethane	25.0	24.8		ug/L		99	66 - 132
,2,3-Trichloropropane	25.0	25.8		ug/L		103	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.5		ug/L		82	42 - 162
ne .				- u		,	70.400
1,2,4-Trimethylbenzene	25.0	25.7		ug/L		103	70 - 132
1,3,5-Trimethylbenzene	25.0	26.3		ug/L		105	70 - 130
Vinyl acetate	25.0	24.8		ug/L		99	43 - 163
Vinyl chloride	25.0	19.1		ug/L		76	54 - 135

TestAmerica Pleasanton

Page 13 of 26

8/28/2014

5

E 58

9

10

12

13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165439/5

Matrix: Water

Analysis Batch: 165439

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	24.7		ug/L		99	70 - 142	
o-Xylene	25.0	25.3		ug/L		101	70 - 130	
2,2-Dichloropropane	25.0	26.1		ug/L		104	70 - 140	

		2010	20.1
LCS	LCS		
%Recovery	Qualifier	Limits	
99		67 - 130	
93		72 - 130	
97		70 - 130	
	%Recovery 99 93	93	LCS LCS %Recovery Qualifier Limits 99 67 - 130 93 72 - 130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water Analysis Batch: 165439

Lab Sample ID: LCS 720-165439/7

Lab Sample ID: LCSD 720-165439/6

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 500 62 - 120 563 ug/L 113 Gasoline Range Organics (GRO)

-C5-C12

Matrix: Water

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		72 - 130
Toluene-d8 (Surr)	96		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix. Frater								, po	
Analysis Batch: 165439	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
			Qualifier				62 - 130	1	20
Methyl tert-butyl ether	25.0	26.5		ug/L		106			
Acetone	125	129		ug/L		103	26 - 180	3	30
Benzene	25.0	25.3		ug/L		101	79 - 130	1	20
Dichlorobromomethane	25.0	25.3		ug/L		101	70 - 130	2	20
Bromobenzene	25.0	24.5		ug/L		98	70 - 130	3	20
Chlorobromomethane	25.0	23.9		ug/L		96	70 - 130	1	20
Bromoform	25.0	26.3		ug/L		105	68 - 136	2	20
Bromomethane	25.0	21.1		ug/L		84	43 - 151	0	20
2-Butanone (MEK)	125	128		ug/L		103	54 - 130	4	20
n-Butylbenzene	25.0	25.9		ug/L		103	70 - 142	2	20
sec-Butylbenzene	25.0	24.9		ug/L		100	70 - 134	1	20
tert-Butylbenzene	25.0	24.8		ug/L		99	70 - 135	1	20
Carbon disulfide	25.0	23.4		ug/L		94	58 - 130	0	20
Carbon tetrachloride	25.0	24.5		ug/L		98	70 - 146	0	20
Chlorobenzene	25.0	24.2		ug/L		97	70 - 130	1	20
Chloroethane	25.0	22.2		ug/L		89	62 - 138	0	20
Chloroform	25.0	24.6		ug/L		98	70 - 130	1	20
Chloromethane	25.0	22.9		ug/L		92	52 - 175	2	20
2-Chlorotoluene	25.0	25.9		ug/L		104	70 - 130	2	20
4-Chlorotoluene	25.0	25.9		ug/L		104	70 - 130	3	20
Chlorodibromomethane	25.0	26.2		ug/L		105	70 - 145	0	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165439/6

Matrix: Water

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	24.3		ug/L		97	70 - 130	2	20
1,3-Dichlorobenzene	25.0	24.4		ug/L		98	70 - 130	2	20
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	70 - 130	2	20
1,3-Dichloropropane	25.0	25.3		ug/L		101	70 - 130	0	20
1,1-Dichloropropene	25.0	26.6		ug/L		106	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.6		ug/L		106	70 - 136	5	20
Ethylene Dibromide	25.0	25.5		ug/L		102	70 - 130	0	20
Dibromomethane	25.0	24.9		ug/L		100	70 - 130	1	20
Dichlorodifluoromethane	25.0	20.5		ug/L		82	34 - 132	1	20
1,1-Dichloroethane	25.0	25.4		ug/L		102	70 - 130	1	20
1,2-Dichloroethane	25.0	24.0		ug/L		96	61 - 132	1	20
1,1-Dichloroethene	25.0	21.6		ug/L		86	64 - 128	0	20
cis-1,2-Dichloroethene	25.0	25.0		ug/L		100	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.0		ug/L		96	68 - 130	1	20
1,2-Dichloropropane	25.0	26.0		ug/L		104	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	27.5		ug/L		110	70 - 130	1	20
trans-1,3-Dichloropropene	25.0	29.7		ug/L		119	70 - 140	1	20
Ethylbenzene	25.0	24.4		ug/L		98	80 - 120	0	20
Hexachlorobutadiene	25.0	24.5		ug/L		98	70 - 130	1	20
2-Hexanone	125	133		ug/L		106	60 - 164	6	20
Isopropylbenzene	25.0	25.1		ug/L		100	70 - 130	0	20
4-Isopropyltoluene	25.0	24.6		ug/L		98	70 - 130	2	20
Methylene Chloride	25.0	26.3		ug/L		105	70 - 130	1	20
	125	139		ug/L		111	58 - 130	5	20
4-Methyl-2-pentanone (MIBK)	25.0	27.2				109	70 - 130	1	
Naphthalene	25.0			ug/L					20
N-Propylbenzene		25.9		ug/L		104	70 - 130	2	20
Styrene	25.0	26.9		ug/L		108	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	25.4		ug/L		102	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	25.9		ug/L		104	70 - 130	1	20
Tetrachloroethene	25.0	23.5		ug/L		94	70 - 130	1	20
Toluene	25.0	24.7		ug/L		99	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	24.7		ug/L		99	70 - 130	3	20
1,2,4-Trichlorobenzene	25.0	25.4		ug/L		102	70 - 130	4	20
1,1,1-Trichloroethane	25.0	24.2		ug/L		97	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	70 - 130	1	20
Trichloroethene	25.0	24.1		ug/L		96	70 - 130	2	20
Trichlorofluoromethane	25.0	24.9		ug/L		99	66 - 132	0	20
1,2,3-Trichloropropane	25.0	26.2		ug/L		105	70 - 130	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	20.5		ug/L		82	42 - 162	0	20
1,2,4-Trimethylbenzene	25.0	25.2		ug/L		101	70 - 132	2	20
1,3,5-Trimethylbenzene	25.0	25.7		ug/L		103	70 - 130	2	20
Vinyl acetate	25.0	25.2		ug/L		101	43 - 163	1	20
Vinyl chloride	25.0	19.3		ug/L		77	54 - 135	1	20
m-Xylene & p-Xylene	25.0	24.5		ug/L		98	70 - 142	1	20
o-Xylene	25.0	25.1		ug/L		100	70 - 130	1	20
2,2-Dichloropropane	25.0	26.0		ug/L		104	70 - 140	0	20

LCSD LCSD

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165439/6

Matrix: Water

Analysis Batch: 165439

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 102 67 - 130 91 1,2-Dichloroethane-d4 (Surr) 72 - 130 70 - 130 Toluene-d8 (Surr) 98

Lab Sample ID: LCSD 720-165439/8

Matrix: Water

Analysis Batch: 165439

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec. RPD %Rec Limits RPD Limit

62 - 120

Added Result Qualifier Unit Analyte 500 559 ug/L Gasoline Range Organics (GRO)

Spike

-C5-C12

LCSD LCSD Limits Surrogate %Recovery Qualifier 4-Bromofluorobenzene 104 67 - 130 1,2-Dichloroethane-d4 (Surr) 99 72 - 130 Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: 720-59448-1 MS

Matrix: Water

Analysis Batch: 165439

Client Sample ID: PRB-02HP-27.5

Prep Type: Total/NA

Analysis Batch: 165439	01-	Sample	Spike	MS	MS			%Rec.	
Analyte	•	Qualifier	Added		Qualifier	Unit	D %Rec	Limits	
Methyl tert-butyl ether	ND		25.0	28.0	Guainter	ug/L	112	60 - 138	
Acetone	ND		125	130		ug/L	104	60 - 140	
Benzene	ND		25.0	26.4		ug/L	104	60 - 140	
Dichlorobromomethane	ND		25.0	26.5		ug/L	106	60 - 140	
Bromobenzene	ND		25.0	25.5		ug/L	102	60 - 140	
Chlorobromomethane	ND		25.0	24.9		ug/L	99	60 - 140	
	ND		25.0	27.2		-	109	56 - 140	
Bromoform			25.0			ug/L	82	23 - 140	
Bromomethane	ND			20.4		ug/L			
2-Butanone (MEK)	ND		125	122		ug/L	98	60 - 140	
n-Butylbenzene	ND		25.0	26.3		ug/L	105	60 - 140	
sec-Butylbenzene	ND		25.0	25.0		ug/L	100	60 - 140	
tert-Butylbenzene	ND		25.0	25.1		ug/L	100	60 - 140	
Carbon disulfide	ND		25.0	23.2		ug/L	93	38 - 140	
Carbon tetrachloride	ND		25.0	24.5		ug/L	98	60 - 140	
Chlorobenzene	ND		25.0	25.0		ug/L	100	60 - 140	
Chloroethane	ND		25.0	22.3		ug/L	89	51 - 140	
Chloroform	ND		25.0	25.4		ug/L	102	60 - 140	
Chloromethane	ND		25.0	21.3		ug/L	85	52 - 140	
2-Chlorotoluene	ND		25.0	26.6		ug/L	106	60 - 140	
4-Chlorotoiuene	ND		25.0	27.0		ug/L	108	60 - 140	
Chlorodibromomethane	ND		25.0	27.5		ug/L	110	60 - 140	
1,2-Dichlorobenzene	ND		25.0	25.4		ug/L	101	60 - 140	
1,3-Dichlorobenzene	ND		25.0	25.3		ug/L	101	60 - 140	
1,4-Dichlorobenzene	ND		25.0	25.6		ug/L	102	60 - 140	
1,3-Dichloropropane	ND		25.0	26.7		ug/L	107	60 - 140	
1.1-Dichloropropene	ND		25.0	26.6		ug/L	106	60 - 140	

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59448-1 MS

Matrix: Water

Analysis Batch: 165439

Client Sample ID: PRB-02HP-27.5

Prep Type: Total/NA

	Sample	Spike		MS				%Rec.	
Analyte		 Added		Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromo-3-Chloropropane	ND	25.0	26.5		ug/L		106	60 - 140	
Ethylene Dibromide	ND	25.0	26.6		ug/L		107	60 - 140	
Dibromomethane	ND	25.0	25.9		ug/L		103	60 - 140	
Dichlorodifluoromethane	ND	25.0	19.9		ug/L		80	38 - 140	
1,1-Dichloroethane	ND	25.0	26.2		ug/L		105	60 - 140	
1,2-Dichloroethane	ND	25.0	25.4		ug/L		102	60 - 140	
1,1-Dichloroethene	ND	25.0	21.2		ug/L		85	60 - 140	
cis-1,2-Dichloroethene	ND	25.0	25.9		ug/L		104	60 - 140	
trans-1,2-Dichloroethene	ND	25.0	24.2		ug/L		97	60 - 140	
1,2-Dichloropropane	ND	25.0	27.3		ug/L		109	60 - 140	
cis-1,3-Dichloropropene	ND	25.0	28.9		ug/L		115	60 - 140	
trans-1,3-Dichloropropene	ND	25.0	31.6		ug/L		126	60 - 140	
Ethylbenzene	ND	25.0	24.9		ug/L		100	60 - 140	
Hexachlorobutadiene	ND	25.0	24.7		ug/L		99	60 - 140	
2-Hexanone	ND	125	135		ug/L		108	60 - 140	
Isopropylbenzene	ND	25.0	25.5		ug/L		102	60 - 140	
4-Isopropyltoluene	ND	25.0	24.9		ug/L		100	60 - 140	
Methylene Chloride	ND	25.0	26.5		ug/L		106	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND	125	142		ug/L		114	58 - 130	
Naphthalene	ND	25.0	28.0		ug/L		112	56 - 140	
N-Propylbenzene	ND	25.0	26.1		ug/L		104	60 - 140	
Styrene	ND	25.0	28.4		ug/L		113	60 - 140	
1,1,1,2-Tetrachloroethane	ND	25.0	26.6		ug/L		107	60 - 140	
1,1,2,2-Tetrachloroethane	ND	25.0	26.6		ug/L		107	60 - 140	
Tetrachloroethene	58	25.0	76.8		ug/L		74	60 - 140	
Toluene	ND	25.0	25.1		ug/L		100	60 - 140	
1,2,3-Trichlorobenzene	ND	25.0	26.3		ug/L		105	60 - 140	
1,2,4-Trichlorobenzene	ND	25.0	26.8		ug/L		107	60 - 140	
1,1,1-Trichloroethane	ND	25.0	24.5		ug/L		98	60 - 140	
1,1,2-Trichloroethane	ND	25.0	27.6		ug/L		110	60 - 140	
Trichloroethene	2.8	25.0	27.0		ug/L		97	60 - 140	
Trichlorofluoromethane	ND	25.0	24.4		ug/L		97	60 - 140	
1,2,3-Trichloropropane	ND	25.0	27.2		ug/L		109	60 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	25.0	19.9		ug/L		80	60 - 140	
ne									
1,2,4-Trimethylbenzene	ND	25.0	26.0		ug/L		104	60 - 140	
1,3,5-Trimethylbenzene	ND	25.0	26.3		ug/L		105	60 - 140	
Vinyl acetate	ND	25.0	26.6		ug/L		106	40 - 140	
Vinyl chloride	ND	25.0	19.1		ug/L		76	58 - 140	
m-Xylene & p-Xylene	ND	25.0	25.1		ug/L		101	60 - 140	
o-Xylene	ND	25.0	26.0		ug/L		104	60 - 140	
2,2-Dichloropropane	ND	25.0	25.7		ug/L		103	60 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102	7 (10.7	67 - 130
1,2-Dichloroethane-d4 (Surr)	94		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Spike

MSD MSD

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS (Continued)

Sample Sample

Lab Sample ID: 720-59448-1 MSD

Analysis Batch: 165439

Matrix: Water

Client Sample ID: PRB-02HP-27.5 Prep Type: Total/NA

		%Rec.		KPD
D	%Rec	Limits	RPD	Limit
	108	60 - 138	4	20
	97	60 - 140	6	20
	104	60 - 140	0	20

Analyte Result Qualifier Added Result Qualifier Unit Methyl tert-butyl ether ND 25.0 27.0 ug/L Acetone ND 125 122 ug/L ug/L ND 25.0 26.2 Benzene Dichlorobromomethane ND 25.0 26.3 ug/L 105 60 - 140 20 ND 25.0 25.1 ug/L 100 60 - 140 2 20 Bromobenzene Chlorobromomethane ND 25.0 24.5 ug/L 98 60 - 140 2 20 ND 26.0 56 - 140 4 20 Bromoform 25.0 ug/L 104 20 Bromomethane ND 25.0 20.3 ug/L 81 23 - 140 2-Butanone (MEK) ND 125 122 ug/L 97 60 - 140 0 20 n-Butylbenzene ND 25.0 26.1 ug/L 104 60 - 140 20 0 20 ND 25.0 25.1 ug/L 100 60 - 140sec-Butylbenzene 0 20 tert-Butylbenzene ND 25.0 25.0 ug/L 100 60 - 140Carbon disulfide ND 23.2 93 38 - 140 0 20 25.0 ug/L Carbon tetrachloride ND 25.0 24.5 ug/L 98 60 - 1400 20 Chlorobenzene ND 25.0 24.6 ug/L 99 60 - 140 1 20 Chloroethane ND 25.0 21.9 ug/L 88 51 - 140 2 101 60 - 140 0 Chloroform ND 25.0 25.3 ug/L Chloromethane 25.0 20.6 82 52 - 140 20 ND ug/L 25.0 26.4 60 - 140 20 2-Chlorotoluene ND ug/L 106 4-Chlorotoluene ND 25.0 26.8 ug/L 107 60 - 140 20 Chlorodibromomethane ND 25.0 26.5 ug/L 106 60 - 140 20 2 ND 25.0 24 8 99 60 - 140 20 1.2-Dichlorobenzene ug/L 20 1,3-Dichlorobenzene ND 25.0 25.0 ug/L 100 60 - 1401 ND 25.0 25.3 101 60 - 140 20 1,4-Dichlorobenzene ug/L ND 25.0 26.0 104 60 - 140 3 20 1,3-Dichloropropane ug/L 60 - 140 1,1-Dichloropropene ND 25.0 26.6 ug/L 106 0 20 1,2-Dibromo-3-Chloropropane ND 25.0 24.8 ug/L 99 60 - 140 6 20 60 - 140 3 20 Ethylene Dibromide ND 25.0 25.9 ug/L 104 ug/L 102 60 - 140 2 20 Dibromomethane ND 25.0 25.4 Dichlorodifluoromethane ND 25.0 19.2 ug/L 77 38 - 140 3 20 1,1-Dichloroethane ND 25.0 26.2 ug/L 105 60 - 140 0 20 1,2-Dichloroethane ND 25.0 24.8 ug/L 99 60 - 140 2 20 ug/L 60 - 140 1.1-Dichloroethene ND 25.0 21.3 85 0 20 cis-1,2-Dichloroethene ND 25.0 25.8 ug/L 103 60 - 14020 trans-1,2-Dichloroethene ND 25.0 24.0 ug/L 96 60 - 14020 1,2-Dichloropropane ND 25.0 27.2 ug/L 109 60 - 140 20 ND 28 4 60 - 140 20 cis-1,3-Dichloropropene 25.0 ug/L 114 60 - 140 20 trans-1,3-Dichloropropene ND 25.0 30.8 ug/L 123 3 ND 25.0 24.7 99 60 - 140 20 Ethylbenzene ug/L ND 25.0 24.8 99 60 - 140 20 Hexachlorobutadiene ug/L 101 60 - 140 20 2-Hexanone ND 125 126 ug/L Isopropylbenzene ND 25.0 25.2 ug/L 101 60 - 14020 60 - 140 0 20 4-Isopropyltoluene ND 25.0 24.8 ug/L 99 ND 26.2 105 40 - 140 20 Methylene Chloride 25.0 ug/L 1 4-Methyl-2-pentanone (MIBK) ND 125 135 ug/L 108 58 - 130 5 20 Naphthalene ND 25.0 27.1 ug/L 108 56 - 140 3 20 N-Propylbenzene ND 25.0 26.1 ug/L 105 60 - 140 0 20 ND 25.0 27.6 ug/L 111 60 - 140 20 Styrene

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Water

2,2-Dichloropropane

Client Sample ID: PRB-02HP-27.5

60 - 140

Prep Type: Total/NA

	RPD	
RPD	Limit	
2	20	

20

|--|

Analysis Batch: 165439											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	26.1		ug/L		104	60 - 140	2	20
1,1,2,2-Tetrachloroethane	ND		25.0	25.5		ug/L		102	60 - 140	4	20
Tetrachloroethene	58		25.0	76.6		ug/L		73	60 - 140	0	20
Toluene	ND		25.0	25.0		ug/L		100	60 - 140	0	20
1,2,3-Trichlorobenzene	ND		25.0	25.6		ug/L		102	60 - 140	3	20
1,2,4-Trichlorobenzene	ND		25.0	26.4		ug/L		106	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	24.4		ug/L		97	60 - 140	0	20
1,1,2-Trichloroethane	ND		25.0	26.5		ug/L		106	60 - 140	4	20
Trichloroethene	2.8		25.0	26.8		ug/L		96	60 - 140	1	20
Trichlorofluoromethane	ND		25.0	24.0		ug/L		96	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	25.7		ug/L		103	60 - 140	6	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	19.8		ug/L		79	60 - 140	0	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	0	20
1,3,5-Trimethylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	1	20
Vinyl acetate	ND		25.0	25.3		ug/L		101	40 - 140	5	20
Vinyl chloride	ND		25.0	19.3		ug/L		77	58 - 140	1	20
m-Xylene & p-Xylene	ND		25.0	24.9		ug/L		100	60 - 140	1	20
o-Xylene	ND		25.0	25.7		ug/L		103	60 - 140	1	20

ug/L

ISD	MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	98		70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

0 ID: 720-59448-1

GC/MS VOA

Ana	lysis	Batc	h: 1	65439
-----	-------	------	------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59448-1	PRB-02HP-27.5	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59448-1 MS	PRB-02HP-27.5	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59448-1 MSD	PRB-02HP-27.5	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59448-2	P-02HP-27.5	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59448-3	P-02HP-18.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165439/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165439/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165439/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165439/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165439/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

ŧ.

1000

7

8

4

13

E.

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

lo-

Client Sample ID: PRB-02HP-27.5

Date Collected: 08/21/14 15:10

Lab Sample ID: 720-59448-1

Matrix: Water

Date Received: 08/21/14 17:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	165439	08/22/14 12:15	ASC	TAL PLS

5

Client Sample ID: P-02HP-27.5

Date Collected: 08/21/14 16:15

Lab Sample ID: 720-59448-2

Matrix: Water

Date Received: 08/21/14 17:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA LUFTMS		1	165439	08/22/14 12:44	ASC	TAL PLS

9

Client Sample ID: P-02HP-18.0

Date Collected: 08/21/14 16:35

Lab Sample ID: 720-59448-3

Matrix: Water

Date Received: 08/21/14 17:45

Batch Dilution Batch Prepared Method Number Prep Type Туре Run Factor or Analyzed Analyst Lab 8260B/CA_LUFTMS 165439 Total/NA Analysis 08/22/14 14:10 ASC TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

B

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	State Program		2496	01-31-16
Analysis Method	Prep Method	Matrix	Analy	rte	

4

6

7

8

I

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Page 23 of 26

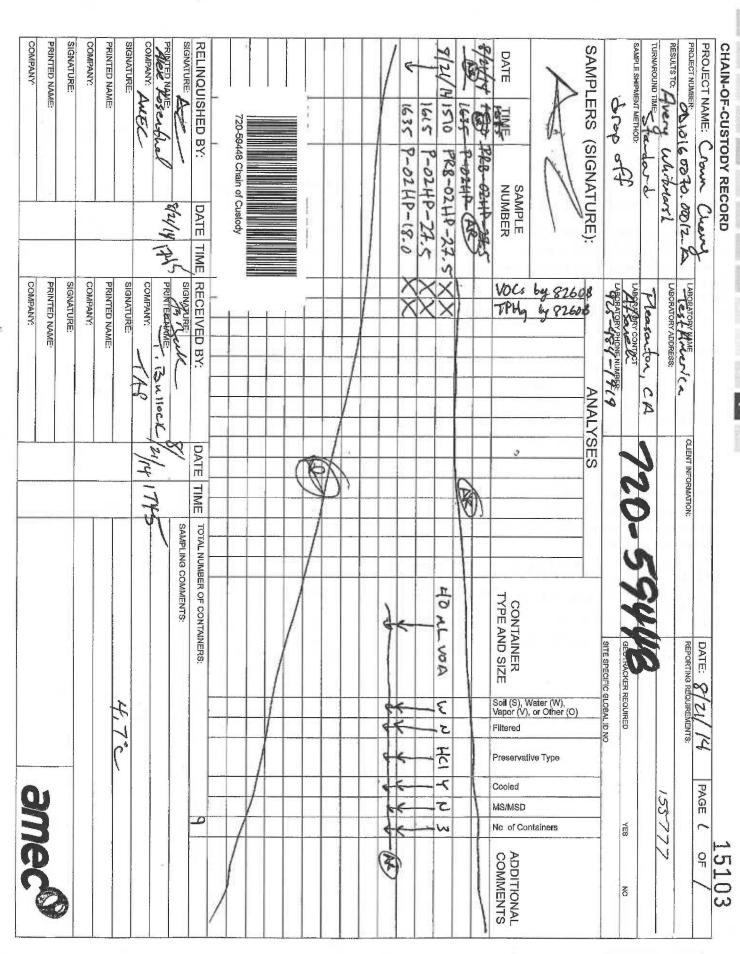
Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59448-1

Lab Sample ID Client Sample ID		Matrix	Collected	Received
720-59448-1	PRB-02HP-27.5	Water	08/21/14 15:10	08/21/14 17:45
720-59448-2	P-02HP-27.5	Water	08/21/14 16:15	08/21/14 17:45
720-59448-3	P-02HP-18.0	Water	08/21/14 16:35	08/21/14 17:45



Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59448-1

Login Number: 59448

List Number: 1

List Source: TestAmerica Pleasanton

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

True

True

N/A

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59492-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Akanaf Sal

Authorized for release by: 8/29/2014 3:54:07 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	14
QC Association Summary	25
Lab Chronicle	26
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

0

9

11

4.0

12

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Toxicity Equivalent Quotient (Dioxin)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Job ID: 720-59492-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59492-1

Comments

No additional comments.

Receipt

The samples were received on 8/25/2014 5:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch #165832 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

5

6

7

ŏ

1 N

11

15

14

Project/Site: Crown Chevrolet

Client Sample ID: PRB-01HP-19.0 Lab Sample ID: 720-59492-1

No Detections.

Client Sample ID: PRB-02HP-33.0 Lab Sample ID: 720-59492-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	2.3		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
								MS	

Client Sample ID: PRB-03HP-34.0 Lab Sample ID: 720-59492-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	11	0.50	ug/L		8260B/CA_LUFT	Total/NA
Trichloroethene	1.3	0.50	ug/L	1	MS 8260B/CA_LUFT	Total/NA
					MS	

Client Sample ID: PRB-03HP-340.0 Lab Sample ID: 720-59492-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	12		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Trichloroethene	1.3		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

Client Sample ID: TB-2 Lab Sample ID: 720-59492-6

No Detections.

This Detection Summary does not include radiochemical test results.

8/29/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: PRB-01HP-19.0 Date Collected: 08/25/14 10:40

Lab Sample ID: 720-59492-1

Matrix: Water

ND	0.50	ug/L			08/27/14 16:35	
ND	50	ug/L			08/27/14 16:35	
ND	0.50	ug/L			08/27/14 16:35	
ND	0.50	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	50	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	5.0	ug/L			08/27/14 16:35	
ND	0.50	ug/L			08/27/14 16:35	
ND	0.50	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	1.0	ug/L			08/27/14 16:35	
ND	0.50	ug/L			08/27/14 16:35	
ND	0.50	_			08/27/14 16:35	
ND	0.50	=			08/27/14 16:35	
ND	0.50	.			08/27/14 16:35	
ND	0.50	_			08/27/14 16:35	
ND	0.50	=			08/27/14 16:35	
ND	1.0				08/27/14 16:35	
ND	0.50	=			08/27/14 16:35	
ND	1.0	_			08/27/14 16:35	
ND	0.50				08/27/14 16:35	
ND		=			08/27/14 16:35	
ND	0.50	_			08/27/14 16:35	
	0.50	.			08/27/14 16:35	
ND	0.50				08/27/14 16:35	
ND	0.50	_				
ND	0.50				08/27/14 16:35	
ND	0.50				08/27/14 16:35	
		.				
ND						
	ND N	ND 50 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 50 ND 1.0 ND 50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.50 ND 0.50 ND 1.0 ND 0.50	ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 ug	ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 u	ND	ND 50 ug/L 08/27/14 16:35 ND 0.50 ug/L 08/27/14 16:35 ND 0.50 ug/L 08/27/14 16:35 ND 0.50 ug/L 08/27/14 16:35 ND 1.0 ug/L 08/27/14 16:35 ND 0.50 ug/L 08/27

TestAmerica Pleasanton

8/29/2014

Page 6 of 31

TestAmerica Job ID: 720-59492-1

Project/Site: Crown Chevrolet

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59492-1 Client Sample ID: PRB-01HP-19.0 Date Collected: 08/25/14 10:40 **Matrix: Water** Date Received: 08/25/14 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/27/14 16:35	1
Tetrachloroethene	ND		0.50		ug/L			08/27/14 16:35	1
Toluene	ND		0.50		ug/L			08/27/14 16:35	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/27/14 16:35	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/27/14 16:35	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/27/14 16:35	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/27/14 16:35	1
Trichloroethene	ND		0.50		ug/L			08/27/14 16:35	1
Trichlorofluoromethane	ND		1.0		ug/L			08/27/14 16:35	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/27/14 16:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/27/14 16:35	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/27/14 16:35	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/27/14 16:35	1
Vinyl acetate	ND		10		ug/L			08/27/14 16:35	1
Vinyl chloride	ND		0.50		ug/L			08/27/14 16:35	1
Xylenes, Total	ND		1.0		ug/L			08/27/14 16:35	1
2,2-Dichloropropane	ND		0.50		ug/L			08/27/14 16:35	1
Gasoline Range Organics (GRO)	ND		50		ug/L			08/27/14 16:35	1
-C5-C12									

Surrogate	%Recovery Qualifier	Limits	Prep	ared Analyzed	Dil Fac
4-Bromofluorobenzene	103	67 - 130		08/27/14 16:35	1
1,2-Dichloroethane-d4 (Surr)	96	72 - 130		08/27/14 16:35	1
Toluene-d8 (Surr)	98	70 - 130		08/27/14 16:35	1

Client Sample ID: PRB-02HP-33.0 Lab Sample ID: 720-59492-3 Date Collected: 08/25/14 11:25 **Matrix: Water** Date Received: 08/25/14 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/27/14 17:04	1
Acetone	ND		50		ug/L			08/27/14 17:04	1
Benzene	ND		0.50		ug/L			08/27/14 17:04	1
Dichlorobromomethane	ND		0.50		ug/L			08/27/14 17:04	1
Bromobenzene	ND		1.0		ug/L			08/27/14 17:04	1
Chlorobromomethane	ND		1.0		ug/L			08/27/14 17:04	1
Bromoform	ND		1.0		ug/L			08/27/14 17:04	1
Bromomethane	ND		1.0		ug/L			08/27/14 17:04	1
2-Butanone (MEK)	ND		50		ug/L			08/27/14 17:04	1
n-Butylbenzene	ND		1.0		ug/L			08/27/14 17:04	1
sec-Butylbenzene	ND		1.0		ug/L			08/27/14 17:04	1
tert-Butylbenzene	ND		1.0		ug/L			08/27/14 17:04	1
Carbon disulfide	ND		5.0		ug/L			08/27/14 17:04	1
Carbon tetrachloride	ND		0.50		ug/L			08/27/14 17:04	1
Chlorobenzene	ND		0.50		ug/L			08/27/14 17:04	1
Chloroethane	ND		1.0		ug/L			08/27/14 17:04	1
Chloroform	ND		1.0		ug/L			08/27/14 17:04	1
Chloromethane	ND		1.0		ug/L			08/27/14 17:04	1
2-Chlorotoluene	ND		0.50		ug/L			08/27/14 17:04	1
4-Chlorotoluene	ND		0.50		ug/L			08/27/14 17:04	1
Chlorodibromomethane	ND		0.50		ug/L			08/27/14 17:04	1

TestAmerica Pleasanton

Page 7 of 31

8/29/2014

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

Vinyl chloride

Xylenes, Total

-C5-C12

Surrogate

2,2-Dichloropropane

4-Bromofluorobenzene

Gasoline Range Organics (GRO)

Client Sample ID: PRB-02HP-33.0 Date Collected: 08/25/14 11:25 Date Received: 08/25/14 17:10 TestAmerica Job ID: 720-59492-1

Lab Sample ID: 720-59492-3

Matrix	: Water	
	B.: E	

Analyte	Result Qualifie	r RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND ND	0.50	ug/L		08/27/14 17:04	1
1,3-Dichlorobenzene	ND	0.50	ug/L		08/27/14 17:04	1
1,4-Dichlorobenzene	ND	0.50	ug/L		08/27/14 17:04	1
1,3-Dichloropropane	ND	1.0	ug/L		08/27/14 17:04	1
1,1-Dichloropropene	ND	0.50	ug/L		08/27/14 17:04	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/27/14 17:04	1
Ethylene Dibromide	ND	0.50	ug/L		08/27/14 17:04	1
Dibromomethane	ND	0.50	ug/L		08/27/14 17:04	1
Dichlorodifluoromethane	ND	0.50	ug/L		08/27/14 17:04	1
1,1-Dichloroethane	ND	0.50	ug/L		08/27/14 17:04	1
1,2-Dichloroethane	ND	0.50	ug/L		08/27/14 17:04	1
1,1-Dichloroethene	ND	0.50	ug/L		08/27/14 17:04	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/27/14 17:04	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/27/14 17:04	1
1,2-Dichloropropane	ND	0.50	ug/L		08/27/14 17:04	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/27/14 17:04	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/27/14 17:04	1
Ethylbenzene	ND	0.50	ug/L		08/27/14 17:04	1
Hexachlorobutadiene	ND	1.0	ug/L		08/27/14 17:04	1
2-Hexanone	ND	50	ug/L		08/27/14 17:04	1
Isopropylbenzene	ND	0.50	ug/L		08/27/14 17:04	1
4-Isopropyltoluene	ND	1.0	ug/L		08/27/14 17:04	1
Methylene Chloride	ND	5.0	ug/L		08/27/14 17:04	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/27/14 17:04	1
Naphthalene	ND	1.0	ug/L		08/27/14 17:04	1
N-Propylbenzene	ND	1.0	ug/L		08/27/14 17:04	1
Styrene	ND	0.50	ug/L		08/27/14 17:04	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		08/27/14 17:04	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		08/27/14 17:04	1
Tetrachloroethene	2.3	0.50	ug/L		08/27/14 17:04	1
Toluene	ND	0.50	ug/L		08/27/14 17:04	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		08/27/14 17:04	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		08/27/14 17:04	1
1,1,1-Trichloroethane	ND	0.50	ug/L		08/27/14 17:04	1
1,1,2-Trichloroethane	ND	0.50	ug/L		08/27/14 17:04	1
Trichloroethene	ND	0.50	ug/L		08/27/14 17:04	1
Trichlorofluoromethane	ND	1.0	ug/L		08/27/14 17:04	1
1,2,3-Trichloropropane	ND	0.50	ug/L		08/27/14 17:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		08/27/14 17:04	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		08/27/14 17:04	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		08/27/14 17:04	1
Vinyl acetate	ND	10	ug/L		08/27/14 17:04	1

TestAmerica Pleasanton

08/27/14 17:04

08/27/14 17:04

08/27/14 17:04

08/27/14 17:04

Analyzed

08/27/14 17:04

Prepared

Page 8 of 31

Limits

67 - 130

0.50

1.0

0.50

50

ND

ND

ND

ND

101

Qualifier

%Recovery

ug/L

ug/L

ug/L

ug/L

8/29/2014

Dil Fac

3

6

8

10

11

13

Limits

72 - 130

70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Toluene-d8 (Surr)

TestAmerica Job ID: 720-59492-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

97

Client Sample ID: PRB-02HP-33.0 Date Collected: 08/25/14 11:25

Lab Sample ID: 720-59492-3

Matrix: Water

Date Received: 08/25/14 17:10 Surrogate %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 98

	Prepared	Analyzed	Dil Fac
<u> </u>		08/27/14 17:04	1
		08/27/14 17:04	1

Date Collected: 08/25/14 15:10					Matri	x: Wate
Date Received: 08/25/14 17:10	Beaute Ovelities	DI	MDI IImia	D. Drawarad	Analysed	D:: F-
Analyte Methyl tert-butyl ether	Result Qualifier ND		MDL Unit ug/L	D Prepared	Analyzed 08/27/14 17:33	Dil Fa
Acetone	ND ND	50	_		08/27/14 17:33	
	ND ND	0.50	ug/L		08/27/14 17:33	
Benzene Dichlorobromomethane	ND	0.50	ug/L		08/27/14 17:33	
Bromobenzene	ND ND		ug/L			
	ND ND	1.0	ug/L		08/27/14 17:33	
Chlorobromomethane		1.0	ug/L		08/27/14 17:33	
Bromoform	ND	1.0	ug/L		08/27/14 17:33	
Bromomethane	ND	1.0	ug/L		08/27/14 17:33	
2-Butanone (MEK)	ND	50	ug/L		08/27/14 17:33	
n-Butylbenzene	ND	1.0	ug/L		08/27/14 17:33	
sec-Butylbenzene	ND	1.0	ug/L		08/27/14 17:33	
tert-Butylbenzene	ND	1.0	ug/L		08/27/14 17:33	
Carbon disulfide	ND	5.0	ug/L		08/27/14 17:33	
Carbon tetrachloride	ND	0.50	ug/L		08/27/14 17:33	
Chlorobenzene	ND	0.50	ug/L		08/27/14 17:33	
Chloroethane	ND	1.0	ug/L		08/27/14 17:33	
Chloroform	ND	1.0	ug/L		08/27/14 17:33	
Chloromethane	ND	1.0	ug/L		08/27/14 17:33	
2-Chlorotoluene	ND	0.50	ug/L		08/27/14 17:33	
4-Chlorotoluene	ND	0.50	ug/L		08/27/14 17:33	
Chlorodibromomethane	ND	0.50	ug/L		08/27/14 17:33	
1,2-Dichlorobenzene	ND	0.50	ug/L		08/27/14 17:33	
1,3-Dichlorobenzene	ND	0.50	ug/L		08/27/14 17:33	
1,4-Dichlorobenzene	ND	0.50	ug/L		08/27/14 17:33	
1,3-Dichloropropane	ND	1.0	ug/L		08/27/14 17:33	
1,1-Dichloropropene	ND	0.50	ug/L		08/27/14 17:33	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/27/14 17:33	
Ethylene Dibromide	ND	0.50	ug/L		08/27/14 17:33	
Dibromomethane	ND	0.50	ug/L		08/27/14 17:33	
Dichlorodifluoromethane	ND	0.50	ug/L		08/27/14 17:33	
1,1-Dichloroethane	ND	0.50	ug/L		08/27/14 17:33	
1,2-Dichloroethane	ND	0.50	ug/L		08/27/14 17:33	
1,1-Dichloroethene	ND	0.50	ug/L		08/27/14 17:33	
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/27/14 17:33	
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/27/14 17:33	
1,2-Dichloropropane	ND	0.50	ug/L		08/27/14 17:33	
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/27/14 17:33	
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/27/14 17:33	
Ethylbenzene	ND	0.50	ug/L		08/27/14 17:33	
Hexachlorobutadiene	ND	1.0	ug/L		08/27/14 17:33	
2-Hexanone	ND	50	ug/L		08/27/14 17:33	
Isopropylbenzene	ND	0.50	ug/L		08/27/14 17:33	

TestAmerica Pleasanton

Page 9 of 31

TestAmerica Job ID: 720-59492-1

Project/Site: Crown Chevrolet

-C5-C12

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59492-4 Client Sample ID: PRB-03HP-34.0 Date Collected: 08/25/14 15:10

Matrix: Water Date Received: 08/25/14 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			08/27/14 17:33	1
Methylene Chloride	ND		5.0		ug/L			08/27/14 17:33	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/27/14 17:33	1
Naphthalene	ND		1.0		ug/L			08/27/14 17:33	1
N-Propylbenzene	ND		1.0		ug/L			08/27/14 17:33	1
Styrene	ND		0.50		ug/L			08/27/14 17:33	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/27/14 17:33	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/27/14 17:33	1
Tetrachloroethene	11		0.50		ug/L			08/27/14 17:33	1
Toluene	ND		0.50		ug/L			08/27/14 17:33	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/27/14 17:33	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/27/14 17:33	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/27/14 17:33	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/27/14 17:33	1
Trichloroethene	1.3		0.50		ug/L			08/27/14 17:33	1
Trichlorofluoromethane	ND		1.0		ug/L			08/27/14 17:33	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/27/14 17:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/27/14 17:33	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/27/14 17:33	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/27/14 17:33	1
Vinyl acetate	ND		10		ug/L			08/27/14 17:33	1
Vinyl chloride	ND		0.50		ug/L			08/27/14 17:33	1
Xylenes, Total	ND		1.0		ug/L			08/27/14 17:33	1
2,2-Dichloropropane	ND		0.50		ug/L			08/27/14 17:33	1
Gasoline Range Organics (GRO)	ND		50		ug/L			08/27/14 17:33	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130	-		08/27/14 17:33	1
1,2-Dichloroethane-d4 (Surr)	96		72 - 130			08/27/14 17:33	1
Toluene-d8 (Surr)	96		70 - 130			08/27/14 17:33	1

Client Sample ID: PRB-03HP-340.0 Lab Sample ID: 720-59492-5 Date Collected: 08/25/14 15:15

Matrix: Water Date Received: 08/25/14 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/29/14 02:46	1
Acetone	ND		50		ug/L			08/29/14 02:46	1
Benzene	ND		0.50		ug/L			08/29/14 02:46	1
Dichlorobromomethane	ND		0.50		ug/L			08/29/14 02:46	1
Bromobenzene	ND		1.0		ug/L			08/29/14 02:46	1
Chlorobromomethane	ND		1.0		ug/L			08/29/14 02:46	1
Bromoform	ND		1.0		ug/L			08/29/14 02:46	1
Bromomethane	ND		1.0		ug/L			08/29/14 02:46	1
2-Butanone (MEK)	ND		50		ug/L			08/29/14 02:46	1
n-Butylbenzene	ND		1.0		ug/L			08/29/14 02:46	1
sec-Butylbenzene	ND		1.0		ug/L			08/29/14 02:46	1
tert-Butylbenzene	ND		1.0		ug/L			08/29/14 02:46	1
Carbon disulfide	ND		5.0		ug/L			08/29/14 02:46	1
Carbon tetrachloride	ND		0.50		ug/L			08/29/14 02:46	1

TestAmerica Pleasanton

Page 10 of 31

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-59492-5 Client Sample ID: PRB-03HP-340.0 Date Collected: 08/25/14 15:15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		0.50		ug/L			08/29/14 02:46	1
Chloroethane	ND		1.0		ug/L			08/29/14 02:46	1
Chloroform	ND		1.0		ug/L			08/29/14 02:46	1
Chloromethane	ND		1.0		ug/L			08/29/14 02:46	1
2-Chlorotoluene	ND		0.50		ug/L			08/29/14 02:46	1
4-Chlorotoluene	ND		0.50		ug/L			08/29/14 02:46	1
Chlorodibromomethane	ND		0.50		ug/L			08/29/14 02:46	1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/29/14 02:46	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/29/14 02:46	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/29/14 02:46	1
1,3-Dichloropropane	ND		1.0		ug/L			08/29/14 02:46	1
1,1-Dichloropropene	ND		0.50		ug/L			08/29/14 02:46	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/29/14 02:46	1
Ethylene Dibromide	ND		0.50		ug/L			08/29/14 02:46	1
Dibromomethane	ND		0.50		ug/L			08/29/14 02:46	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/29/14 02:46	1
1,1-Dichloroethane	ND		0.50		ug/L			08/29/14 02:46	1
1,2-Dichloroethane	ND		0.50		ug/L			08/29/14 02:46	1
1,1-Dichloroethene	ND		0.50		ug/L			08/29/14 02:46	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/29/14 02:46	
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/29/14 02:46	1
1,2-Dichloropropane	ND		0.50		ug/L			08/29/14 02:46	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/29/14 02:46	
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/29/14 02:46	1
Ethylbenzene	ND		0.50		ug/L			08/29/14 02:46	1
Hexachlorobutadiene	ND		1.0		ug/L			08/29/14 02:46	
2-Hexanone	ND		50		ug/L ug/L			08/29/14 02:46	1
Isopropylbenzene	ND		0.50		ug/L			08/29/14 02:46	1
4-Isopropyltoluene	ND		1.0		ug/L ug/L			08/29/14 02:46	
Methylene Chloride	ND		5.0		ug/L ug/L			08/29/14 02:46	1
4-Methyl-2-pentanone (MIBK)			50					08/29/14 02:46	1
	ND				ug/L				
Naphthalene	ND		1.0		ug/L			08/29/14 02:46	1
N-Propylbenzene	ND		1.0		ug/L			08/29/14 02:46	1
Styrene	ND		0.50		ug/L			08/29/14 02:46	
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/29/14 02:46	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/29/14 02:46	1
Tetrachloroethene	12		0.50		ug/L			08/29/14 02:46	
Toluene	ND		0.50		ug/L			08/29/14 02:46	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/29/14 02:46	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/29/14 02:46	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/29/14 02:46	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/29/14 02:46	1
Trichloroethene	1.3		0.50		ug/L			08/29/14 02:46	1
Trichlorofluoromethane	ND		1.0		ug/L			08/29/14 02:46	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/29/14 02:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/29/14 02:46	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/29/14 02:46	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/29/14 02:46	1
Vinyl acetate	ND		10		ug/L			08/29/14 02:46	1

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

Client Sample ID: PRB-03HP-340.0

Date Collected: 08/25/14 15:15

TestAmerica Job ID: 720-59492-1

Lab Sample ID: 720-59492-5

Matrix: Water

Date Received: 08/25/14 17:10							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	0.50	ug/L			08/29/14 02:46	1
Xylenes, Total	ND	1.0	ug/L			08/29/14 02:46	1
2,2-Dichloropropane	ND	0.50	ug/L			08/29/14 02:46	1
Gasoline Range Organics (GRO)	ND	50	ug/L			08/29/14 02:46	1

-C5-C12

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95	67 - 130		08/29/14 02:46	1
1,2-Dichloroethane-d4 (Surr)	99	72 - 130		08/29/14 02:46	1
Toluene-d8 (Surr)	99	70 - 130		08/29/14 02:46	1

Client Sample ID: TB-2 Lab Sample ID: 720-59492-6 Date Collected: 08/25/14 16:35 **Matrix: Water**

Date Received: 08/25/14 17:10 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/27/14 13:14	1
Acetone	ND		50		ug/L			08/27/14 13:14	1
Benzene	ND		0.50		ug/L			08/27/14 13:14	1
Dichlorobromomethane	ND		0.50		ug/L			08/27/14 13:14	1
Bromobenzene	ND		1.0		ug/L			08/27/14 13:14	1
Chlorobromomethane	ND		1.0		ug/L			08/27/14 13:14	1
Bromoform	ND		1.0		ug/L			08/27/14 13:14	1
Bromomethane	ND		1.0		ug/L			08/27/14 13:14	1
2-Butanone (MEK)	ND		50		ug/L			08/27/14 13:14	1
n-Butylbenzene	ND		1.0		ug/L			08/27/14 13:14	1
sec-Butylbenzene	ND		1.0		ug/L			08/27/14 13:14	1
tert-Butylbenzene	ND		1.0		ug/L			08/27/14 13:14	1
Carbon disulfide	ND		5.0		ug/L			08/27/14 13:14	1
Carbon tetrachloride	ND		0.50		ug/L			08/27/14 13:14	1
Chlorobenzene	ND		0.50		ug/L			08/27/14 13:14	1
Chloroethane	ND		1.0		ug/L			08/27/14 13:14	1
Chloroform	ND		1.0		ug/L			08/27/14 13:14	1
Chloromethane	ND		1.0		ug/L			08/27/14 13:14	1
2-Chlorotoluene	ND		0.50		ug/L			08/27/14 13:14	1
4-Chlorotoluene	ND		0.50		ug/L			08/27/14 13:14	1
Chlorodibromomethane	ND		0.50		ug/L			08/27/14 13:14	1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/27/14 13:14	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/27/14 13:14	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/27/14 13:14	1
1,3-Dichloropropane	ND		1.0		ug/L			08/27/14 13:14	1
1,1-Dichloropropene	ND		0.50		ug/L			08/27/14 13:14	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/27/14 13:14	1
Ethylene Dibromide	ND		0.50		ug/L			08/27/14 13:14	1
Dibromomethane	ND		0.50		ug/L			08/27/14 13:14	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/27/14 13:14	1
1,1-Dichloroethane	ND		0.50		ug/L			08/27/14 13:14	1
1,2-Dichloroethane	ND		0.50		ug/L			08/27/14 13:14	1
1,1-Dichloroethene	ND		0.50		ug/L			08/27/14 13:14	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/27/14 13:14	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/27/14 13:14	1

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

Client Sample ID: TB-2

-C5-C12

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Date Collected: 08/25/14 16:35

TestAmerica Job ID: 720-59492-1

Lab Sample ID: 720-59492-6

Matrix: Water

Date Received: 08/25/14 17:10								
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		0.50	ug/L			08/27/14 13:14	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/27/14 13:14	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/27/14 13:14	1
Ethylbenzene	ND		0.50	ug/L			08/27/14 13:14	1
Hexachlorobutadiene	ND		1.0	ug/L			08/27/14 13:14	1
2-Hexanone	ND		50	ug/L			08/27/14 13:14	1
Isopropylbenzene	ND		0.50	ug/L			08/27/14 13:14	1
4-Isopropyltoluene	ND		1.0	ug/L			08/27/14 13:14	1
Methylene Chloride	ND		5.0	ug/L			08/27/14 13:14	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/27/14 13:14	1
Naphthalene	ND		1.0	ug/L			08/27/14 13:14	1
N-Propylbenzene	ND		1.0	ug/L			08/27/14 13:14	1
Styrene	ND		0.50	ug/L			08/27/14 13:14	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/27/14 13:14	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/27/14 13:14	1
Tetrachloroethene	ND		0.50	ug/L			08/27/14 13:14	1
Toluene	ND		0.50	ug/L			08/27/14 13:14	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/27/14 13:14	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/27/14 13:14	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/27/14 13:14	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/27/14 13:14	1
Trichloroethene	ND		0.50	ug/L			08/27/14 13:14	1
Trichlorofluoromethane	ND		1.0	ug/L			08/27/14 13:14	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/27/14 13:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/27/14 13:14	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/27/14 13:14	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/27/14 13:14	1
Vinyl acetate	ND		10	ug/L			08/27/14 13:14	1
Vinyl chloride	ND		0.50	ug/L			08/27/14 13:14	1
Xylenes, Total	ND		1.0	ug/L			08/27/14 13:14	1
2,2-Dichloropropane	ND		0.50	ug/L			08/27/14 13:14	1
Gasoline Range Organics (GRO)	ND		50	ug/L			08/27/14 13:14	1

Limits

67 - 130

72 - 130

70 - 130

%Recovery Qualifier

99

92

94

TestAmerica Pleasanton

Analyzed

08/27/14 13:14

08/27/14 13:14

08/27/14 13:14

Prepared

Dil Fac

TestAmerica Job ID: 720-59492-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165701/4

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

ed	Dil Fac	
08:57	1	
8:57	1	_
8:57	1	_ /
08:57	1	
8:57	1	ď
8:57	1	
18.57	1	Q

	МВ	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50		ug/L			08/27/14 08:57	
Acetone	ND		50		ug/L			08/27/14 08:57	
Benzene	ND		0.50		ug/L			08/27/14 08:57	
Dichlorobromomethane	ND		0.50		ug/L			08/27/14 08:57	
Bromobenzene	ND		1.0		ug/L			08/27/14 08:57	
Chlorobromomethane	ND		1.0		ug/L			08/27/14 08:57	
Bromoform	ND		1.0		ug/L			08/27/14 08:57	
Bromomethane	ND		1.0		ug/L			08/27/14 08:57	
2-Butanone (MEK)	ND		50		ug/L			08/27/14 08:57	
n-Butylbenzene	ND		1.0		ug/L			08/27/14 08:57	
sec-Butylbenzene	ND		1.0		ug/L			08/27/14 08:57	
tert-Butylbenzene	ND		1.0		ug/L			08/27/14 08:57	
Carbon disulfide	ND		5.0		ug/L			08/27/14 08:57	
Carbon tetrachloride	ND		0.50		ug/L			08/27/14 08:57	
Chlorobenzene	ND		0.50		ug/L			08/27/14 08:57	
Chloroethane	ND		1.0		ug/L ug/L			08/27/14 08:57	
Chloroform	ND		1.0		ug/L			08/27/14 08:57	
Chloromethane	ND		1.0		ug/L			08/27/14 08:57	
2-Chlorotoluene	ND		0.50		ug/L ug/L			08/27/14 08:57	
4-Chlorotoluene	ND		0.50					08/27/14 08:57	
4-Chlorodoluene Chlorodibromomethane	ND ND		0.50		ug/L			08/27/14 08:57	
					ug/L				
1,2-Dichlorobenzene	ND		0.50		ug/L			08/27/14 08:57	
1,3-Dichlorobenzene	ND		0.50		ug/L			08/27/14 08:57	
1,4-Dichlorobenzene	ND		0.50		ug/L			08/27/14 08:57	
1,3-Dichloropropane	ND		1.0		ug/L			08/27/14 08:57	
1,1-Dichloropropene	ND		0.50		ug/L			08/27/14 08:57	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/27/14 08:57	
Ethylene Dibromide	ND		0.50		ug/L			08/27/14 08:57	
Dibromomethane	ND		0.50		ug/L			08/27/14 08:57	
Dichlorodifluoromethane	ND		0.50		ug/L			08/27/14 08:57	
1,1-Dichloroethane	ND		0.50		ug/L			08/27/14 08:57	
1,2-Dichloroethane	ND		0.50		ug/L			08/27/14 08:57	
1,1-Dichloroethene	ND		0.50		ug/L			08/27/14 08:57	
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/27/14 08:57	
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/27/14 08:57	
1,2-Dichloropropane	ND		0.50		ug/L			08/27/14 08:57	
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/27/14 08:57	
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/27/14 08:57	
Ethylbenzene	ND		0.50		ug/L			08/27/14 08:57	
Hexachlorobutadiene	ND		1.0		ug/L			08/27/14 08:57	
2-Hexanone	ND		50		ug/L			08/27/14 08:57	
Isopropylbenzene	ND		0.50		ug/L			08/27/14 08:57	
4-Isopropyltoluene	ND		1.0		ug/L			08/27/14 08:57	
Methylene Chloride	ND		5.0		ug/L			08/27/14 08:57	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/27/14 08:57	
Naphthalene	ND		1.0		ug/L			08/27/14 08:57	
N-Propylbenzene	ND		1.0		ug/L			08/27/14 08:57	
Styrene	ND		0.50		ug/L ug/L			08/27/14 08:57	

TestAmerica Job ID: 720-59492-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-165701/4

Matrix: Water

Analysis Batch: 165701

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Baton. 100701									
		MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/27/14 08:57	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/27/14 08:57	1
Tetrachloroethene	ND		0.50		ug/L			08/27/14 08:57	1
Toluene	ND		0.50		ug/L			08/27/14 08:57	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/27/14 08:57	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/27/14 08:57	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/27/14 08:57	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/27/14 08:57	1
Trichloroethene	ND		0.50		ug/L			08/27/14 08:57	1
Trichlorofluoromethane	ND		1.0		ug/L			08/27/14 08:57	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/27/14 08:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/27/14 08:57	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/27/14 08:57	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/27/14 08:57	1
Vinyl acetate	ND		10		ug/L			08/27/14 08:57	1
Vinyl chloride	ND		0.50		ug/L			08/27/14 08:57	1
Xylenes, Total	ND		1.0		ug/L			08/27/14 08:57	1
2,2-Dichloropropane	ND		0.50		ug/L			08/27/14 08:57	1
Gasoline Range Organics (GRO)	ND		50		ug/L			08/27/14 08:57	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130	-		08/27/14 08:57	1
1,2-Dichloroethane-d4 (Surr)	93		72 - 130			08/27/14 08:57	1
Toluene-d8 (Surr)	95		70 - 130			08/27/14 08:57	1

Lab Sample ID: LCS 720-165701/5

Matrix: Water

-C5-C12

Analysis Batch: 165701

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Daton. 100701	0.11						0/ 5	
	Spike		LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	24.9		ug/L		99	62 - 130	
Acetone	125	119		ug/L		95	26 - 180	
Benzene	25.0	25.3		ug/L		101	79 - 130	
Dichlorobromomethane	25.0	24.8		ug/L		99	70 - 130	
Bromobenzene	25.0	26.6		ug/L		106	70 - 130	
Chlorobromomethane	25.0	23.6		ug/L		95	70 - 130	
Bromoform	25.0	27.9		ug/L		112	68 - 136	
Bromomethane	25.0	20.4		ug/L		82	43 _ 151	
2-Butanone (MEK)	125	111		ug/L		88	54 - 130	
n-Butylbenzene	25.0	26.5		ug/L		106	70 _ 142	
sec-Butylbenzene	25.0	26.1		ug/L		104	70 - 134	
tert-Butylbenzene	25.0	26.3		ug/L		105	70 _ 135	
Carbon disulfide	25.0	22.7		ug/L		91	58 _ 130	
Carbon tetrachloride	25.0	24.3		ug/L		97	70 - 146	
Chlorobenzene	25.0	24.9		ug/L		100	70 - 130	
Chloroethane	25.0	19.8		ug/L		79	62 - 138	
Chloroform	25.0	23.9		ug/L		96	70 - 130	

TestAmerica Pleasanton

Page 15 of 31

8/29/2014

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Lab Sample ID: LCS 720-165701/5

Matrix: Water

Analysis Batch: 165701							0/ 5	
	Spike		LCS		_		%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Chloromethane	25.0	19.7		ug/L		79	52 - 175	
2-Chlorotoluene 4-Chlorotoluene	25.0	26.9		ug/L		108	70 ₋ 130	
	25.0	27.4		ug/L		109	70 ₋ 130	
Chlorodibromomethane	25.0	26.5		ug/L		106	70 - 145	
1,2-Dichlorobenzene	25.0	26.1		ug/L		105	70 ₋ 130	
1,3-Dichlorobenzene	25.0	26.2		ug/L		105	70 - 130	
1,4-Dichloropenzene	25.0	26.5		ug/L		106	70 ₋ 130 70 ₋ 130	
1,3-Dichloropropane	25.0	24.8		ug/L		99		
1,1-Dichloropropene 1,2-Dibromo-3-Chloropropane	25.0	26.1		ug/L		104	70 - 130	
	25.0	26.5		ug/L		106	70 _ 136	
Ethylene Dibromide	25.0 25.0	25.1		ug/L		100	70 - 130	
Dibromomethane Diable red diffusion methans	25.0 25.0	24.0		ug/L		96 70	70 ₋ 130	
Dichlorodifluoromethane		19.7		ug/L		79	34 - 132	
1,1-Dichloroethane 1,2-Dichloroethane	25.0 25.0	24.4 22.7		ug/L		98 91	70 ₋ 130 61 ₋ 132	
	25.0 25.0			ug/L		91 85	64 - 128	
1,1-Dichloroethene		21.2		ug/L			70 - 130	
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	25.0 25.0	23.9 23.7		ug/L		96 95	70 - 130 68 - 130	
	25.0	24.9		ug/L		99	70 - 130	
1,2-Dichloropropane	25.0	26.8		ug/L		107	70 - 130	
cis-1,3-Dichloropropene	25.0	29.5		ug/L		118	70 - 130 70 - 140	
trans-1,3-Dichloropropene Ethylbenzene	25.0	29.5		ug/L ug/L		98	70 - 1 4 0 80 ₋ 120	
Hexachlorobutadiene	25.0	27.5		ug/L		110	70 - 130	
2-Hexanone	125	111		ug/L ug/L		89	70 - 150 60 - 164	
Isopropylbenzene	25.0	26.1		ug/L ug/L		104	70 - 130	
4-Isopropyltoluene	25.0	26.1		ug/L		104	70 - 130	
Methylene Chloride	25.0	24.3		ug/L ug/L		97	70 - 130 70 - 147	
4-Methyl-2-pentanone (MIBK)	125	118		ug/L		95	58 ₋ 130	
Naphthalene	25.0	28.0		ug/L		112	70 - 130	
N-Propylbenzene	25.0	26.5		ug/L		106	70 - 130 70 - 130	
Styrene	25.0	28.4		ug/L		113	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	26.7		ug/L		107	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	25.7		ug/L		107	70 - 130 70 - 130	
Tetrachloroethene	25.0	24.5		ug/L		98	70 - 130	
Toluene	25.0	24.7		ug/L		99	78 - 120	
1,2,3-Trichlorobenzene	25.0	26.8		ug/L		107	70 - 120	
1,2,4-Trichlorobenzene	25.0	27.9		ug/L		112	70 - 130 70 - 130	
1,1,1-Trichloroethane	25.0	23.9		ug/L		96	70 - 130	
1,1,2-Trichloroethane	25.0	25.7		ug/L		103	70 - 130	
Trichloroethene	25.0	24.4		ug/L		98	70 - 130	
Trichlorofluoromethane	25.0	25.1		ug/L		100	66 - 132	
1,2,3-Trichloropropane	25.0	26.8		ug/L ug/L		107	70 ₋ 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.8		ug/L		83	42 ₋ 162	
ne	20.0	20.0		~g, =		50	10_	
1,2,4-Trimethylbenzene	25.0	26.6		ug/L		106	70 - 132	
1,3,5-Trimethylbenzene	25.0	27.0		ug/L		108	70 - 130	
Vinyl acetate	25.0	20.3		ug/L		81	43 - 163	
Vinyl chloride	25.0	16.7		ug/L		67	54 - 135	

TestAmerica Pleasanton

Page 16 of 31

2

3

5

7

9

10

12

. .

Ш,

TestAmerica Job ID: 720-59492-1

Project/Site: Crown Chevrolet

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165701/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165701

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	24.8		ug/L	_	99	70 - 142	
o-Xylene	25.0	25.7		ug/L		103	70 - 130	
2,2-Dichloropropane	25.0	25.7		ug/L		103	70 - 140	
	m-Xylene & p-Xylene o-Xylene	Analyte Added m-Xylene & p-Xylene 25.0 o-Xylene 25.0	Analyte Added m-Xylene & p-Xylene Result 25.0 24.8 o-Xylene 25.0 25.7	Analyte Added m-Xylene & p-Xylene Result 25.0 Qualifier o-Xylene 25.0 24.8 25.0 25.7	m-Xylene & p-Xylene 25.0 24.8 ug/L o-Xylene 25.0 25.7 ug/L	Analyte Added m-Xylene & p-Xylene Result 25.0 Qualifier 24.8 Unit ug/L D ug/L o-Xylene 25.0 25.7 ug/L ug/L	Analyte Added m-Xylene & p-Xylene Result gualifier Unit ug/L D wRec m-Xylene & p-Xylene 25.0 24.8 ug/L 99 o-Xylene 25.0 25.7 ug/L 103	Analyte Added m-Xylene & p-Xylene Result gualifier Unit ug/L D %Rec with NRec Limits o-Xylene 25.0 24.8 ug/L 99 70 - 142 ug/L 103 70 - 130

LCS LCS %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 98 67 - 130 85 1,2-Dichloroethane-d4 (Surr) 72 - 130 Toluene-d8 (Surr) 98 70 - 130

Lab Sample ID: LCS 720-165701/7 Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 165701

	Бріке	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	541		ug/L	_	108	62 _ 120	

-C5-C12

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-165701/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 165701

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	24.2		ug/L		97	62 - 130	3	20
Acetone	125	114		ug/L		91	26 - 180	4	30
Benzene	25.0	25.5		ug/L		102	79 - 130	1	20
Dichlorobromomethane	25.0	24.1		ug/L		96	70 - 130	3	20
Bromobenzene	25.0	25.3		ug/L		101	70 - 130	5	20
Chlorobromomethane	25.0	23.6		ug/L		94	70 - 130	0	20
Bromoform	25.0	25.4		ug/L		102	68 - 136	9	20
Bromomethane	25.0	21.0		ug/L		84	43 - 151	3	20
2-Butanone (MEK)	125	107		ug/L		86	54 - 130	3	20
n-Butylbenzene	25.0	25.6		ug/L		102	70 - 142	4	20
sec-Butylbenzene	25.0	25.4		ug/L		101	70 - 134	3	20
tert-Butylbenzene	25.0	25.7		ug/L		103	70 - 135	2	20
Carbon disulfide	25.0	23.2		ug/L		93	58 - 130	2	20
Carbon tetrachloride	25.0	25.0		ug/L		100	70 - 146	3	20
Chlorobenzene	25.0	24.5		ug/L		98	70 - 130	2	20
Chloroethane	25.0	20.4		ug/L		81	62 - 138	3	20
Chloroform	25.0	24.0		ug/L		96	70 - 130	1	20
Chloromethane	25.0	20.1		ug/L		80	52 - 175	2	20
2-Chlorotoluene	25.0	25.9		ug/L		104	70 - 130	4	20
4-Chlorotoluene	25.0	26.2		ug/L		105	70 - 130	4	20
Chlorodibromomethane	25.0	25.0		ug/L		100	70 - 145	6	20

TestAmerica Pleasanton

Page 17 of 31

Spike

Added

25.0

LCSD LCSD

25.0

Result Qualifier

Unit

ug/L

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165701/6

Matrix: Water

1,2-Dichlorobenzene

Analyte

Analysis Batch: 165701

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA %Rec. RPD Limit D %Rec Limits RPD 100 20 70 - 130 4

1,2-Dichioropenzene	25.0	25.0	ug/L	100	70 - 130	4	20
1,3-Dichlorobenzene	25.0	25.2	ug/L	101	70 - 130	4	20
1,4-Dichlorobenzene	25.0	25.3	ug/L	101	70 - 130	5	20
1,3-Dichloropropane	25.0	23.7	ug/L	95	70 - 130	5	20
1,1-Dichloropropene	25.0	26.3	ug/L	105	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	24.0	ug/L	96	70 - 136	10	20
Ethylene Dibromide	25.0	24.0	ug/L	96	70 - 130	4	20
Dibromomethane	25.0	23.4	ug/L	94	70 - 130	2	20
Dichlorodifluoromethane	25.0	20.1	ug/L	81	34 - 132	2	20
1,1-Dichloroethane	25.0	25.0	ug/L	100	70 - 130	2	20
1,2-Dichloroethane	25.0	22.4	ug/L	90	61 - 132	1	20
1,1-Dichloroethene	25.0	22.0	ug/L	88	64 - 128	4	20
cis-1,2-Dichloroethene	25.0	24.2	ug/L	97	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.2	ug/L	97	68 - 130	2	20
1,2-Dichloropropane	25.0	24.7	ug/L	99	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	26.4	ug/L	106	70 - 130	2	20
trans-1,3-Dichloropropene	25.0	27.9	ug/L	112	70 - 140	5	20
Ethylbenzene	25.0	24.4	ug/L	98	80 - 120	1	20
Hexachlorobutadiene	25.0	27.0	ug/L	108	70 - 130	2	20
2-Hexanone	125	106	ug/L	84	60 - 164	5	20
Isopropylbenzene	25.0	25.6	ug/L	102	70 - 130	2	20
4-Isopropyltoluene	25.0	25.3	ug/L	101	70 - 130	3	20
Methylene Chloride	25.0	24.7	ug/L	99	70 - 147	2	20
4-Methyl-2-pentanone (MIBK)	125	112	ug/L	89	58 - 130	6	20
Naphthalene	25.0	26.4	ug/L	105	70 - 130	6	20
N-Propylbenzene	25.0	26.0	ug/L	104	70 - 130	2	20
Styrene	25.0	27.5	ug/L	110	70 - 130	3	20
1,1,1,2-Tetrachloroethane	25.0	25.6	ug/L	102	70 - 130	4	20
1,1,2,2-Tetrachloroethane	25.0	23.6	ug/L	94	70 - 130	9	20
Tetrachloroethene	25.0	24.7	ug/L	99	70 - 130	1	20
Toluene	25.0	25.0	ug/L	100	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	25.6	ug/L	103	70 - 130	5	20
1,2,4-Trichlorobenzene	25.0	26.5	ug/L	106	70 - 130	5	20
1,1,1-Trichloroethane	25.0	24.1	ug/L	96	70 - 130	1	20
1,1,2-Trichloroethane	25.0	24.4	ug/L	98	70 - 130	5	20
Trichloroethene	25.0	24.7	ug/L	99	70 - 130	1	20
Trichlorofluoromethane	25.0	25.6	ug/L	103	66 - 132	2	20
1,2,3-Trichloropropane	25.0	24.2	ug/L	97	70 - 130	10	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.5	ug/L	86	42 - 162	3	20
ne	050	05.0		400	70 400		
1,2,4-Trimethylbenzene	25.0	25.8	ug/L	103	70 ₋ 132	3	20
1,3,5-Trimethylbenzene	25.0	26.3	ug/L	105	70 ₋ 130	3	20
Vinyl ablarida	25.0	19.3	ug/L	77	43 - 163	5	20
Vinyl chloride	25.0	17.7	ug/L	71	54 ₋ 135	6	20
m-Xylene & p-Xylene	25.0	24.9	ug/L	99	70 ₋ 142	0	20
o-Xylene	25.0	25.4	ug/L	102	70 - 130	1	20
2,2-Dichloropropane	25.0	25.4	ug/L	102	70 - 140	1	20

TestAmerica Job ID: 720-59492-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165701/6

Matrix: Water

Analysis Batch: 165701

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	84		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-165701/8

Matrix: Water

Analysis Batch: 165701

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD	
	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
_	500	511		ua/L		102	62 - 120	6	20	

-C5-C12

Analyte

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: MB 720-165832/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 165832

Prep Type: Total/NA

Analyte	MB	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result								
Methyl tert-butyl ether	ND		0.50		ug/L			08/28/14 18:34	1
Acetone	ND		50		ug/L			08/28/14 18:34	1
Benzene	ND		0.50		ug/L			08/28/14 18:34	1
Dichlorobromomethane	ND		0.50		ug/L			08/28/14 18:34	1
Bromobenzene	ND		1.0		ug/L			08/28/14 18:34	1
Chlorobromomethane	ND		1.0		ug/L			08/28/14 18:34	1
Bromoform	ND		1.0		ug/L			08/28/14 18:34	1
Bromomethane	ND		1.0		ug/L			08/28/14 18:34	1
2-Butanone (MEK)	ND		50		ug/L			08/28/14 18:34	1
n-Butylbenzene	ND		1.0		ug/L			08/28/14 18:34	1
sec-Butylbenzene	ND		1.0		ug/L			08/28/14 18:34	1
tert-Butylbenzene	ND		1.0		ug/L			08/28/14 18:34	1
Carbon disulfide	ND		5.0		ug/L			08/28/14 18:34	1
Carbon tetrachloride	ND		0.50		ug/L			08/28/14 18:34	1
Chlorobenzene	ND		0.50		ug/L			08/28/14 18:34	1
Chloroethane	ND		1.0		ug/L			08/28/14 18:34	1
Chloroform	ND		1.0		ug/L			08/28/14 18:34	1
Chloromethane	ND		1.0		ug/L			08/28/14 18:34	1
2-Chlorotoluene	ND		0.50		ug/L			08/28/14 18:34	1
4-Chlorotoluene	ND		0.50		ug/L			08/28/14 18:34	1
Chlorodibromomethane	ND		0.50		ug/L			08/28/14 18:34	1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/28/14 18:34	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/28/14 18:34	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/28/14 18:34	1
1,3-Dichloropropane	ND		1.0		ug/L			08/28/14 18:34	1
1,1-Dichloropropene	ND		0.50		ug/L			08/28/14 18:34	1

TestAmerica Pleasanton

Page 19 of 31

8/29/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-165832/4

Matrix: Water

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 165832

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/28/14 18:34	1
Ethylene Dibromide	ND		0.50		ug/L			08/28/14 18:34	1
Dibromomethane	ND		0.50		ug/L			08/28/14 18:34	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/28/14 18:34	1
1,1-Dichloroethane	ND		0.50		ug/L			08/28/14 18:34	1
1,2-Dichloroethane	ND		0.50		ug/L			08/28/14 18:34	1
1,1-Dichloroethene	ND		0.50		ug/L			08/28/14 18:34	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/28/14 18:34	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/28/14 18:34	1
1,2-Dichloropropane	ND		0.50		ug/L			08/28/14 18:34	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/28/14 18:34	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/28/14 18:34	1
Ethylbenzene	ND		0.50		ug/L			08/28/14 18:34	1
Hexachlorobutadiene	ND		1.0		ug/L			08/28/14 18:34	1
2-Hexanone	ND		50		ug/L			08/28/14 18:34	1
Isopropylbenzene	ND		0.50		ug/L			08/28/14 18:34	1
4-Isopropyltoluene	ND		1.0		ug/L			08/28/14 18:34	1
Methylene Chloride	ND		5.0		ug/L			08/28/14 18:34	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/28/14 18:34	1
Naphthalene	ND		1.0		ug/L			08/28/14 18:34	1
N-Propylbenzene	ND		1.0		ug/L			08/28/14 18:34	1
Styrene	ND		0.50		ug/L			08/28/14 18:34	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/28/14 18:34	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/28/14 18:34	1
Tetrachloroethene	ND		0.50		ug/L			08/28/14 18:34	1
Toluene	ND		0.50		ug/L			08/28/14 18:34	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/28/14 18:34	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/28/14 18:34	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/28/14 18:34	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/28/14 18:34	1
Trichloroethene	ND		0.50		ug/L			08/28/14 18:34	1
Trichlorofluoromethane	ND		1.0		ug/L			08/28/14 18:34	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/28/14 18:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/28/14 18:34	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/28/14 18:34	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/28/14 18:34	1
Vinyl acetate	ND		10		ug/L			08/28/14 18:34	1
Vinyl chloride	ND		0.50		ug/L			08/28/14 18:34	1
Xylenes, Total	ND		1.0		ug/L			08/28/14 18:34	1
2,2-Dichloropropane	ND		0.50		ug/L			08/28/14 18:34	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			08/28/14 18:34	1

TestAmerica Pleasanton

Analyzed

08/28/14 18:34

08/28/14 18:34

08/28/14 18:34

Prepared

Limits

67 - 130

72 - 130

70 - 130

MB MB

%Recovery Qualifier

95

103

98

Dil Fac

-

4

9

11

13

Client: AMEC Environment & Infrastructure, Inc.

Lab Sample ID: LCS 720-165832/5

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualif	ier Unit	D %Rec	Limits	
Methyl tert-butyl ether	25.0	26.7	ug/L		62 - 130	
Acetone	125	103	ug/L	82	26 - 180	
Benzene	25.0	24.7	ug/L	99	79 - 130	
Dichlorobromomethane	25.0	27.2	ug/L	109	70 - 130	
Bromobenzene	25.0	26.1	ug/L	105	70 - 130	
Chlorobromomethane	25.0	27.3	ug/L	109	70 - 130	
Bromoform	25.0	27.3	ug/L	109	68 - 136	
Bromomethane	25.0	23.3	ug/L	93	43 ₋ 151	
2-Butanone (MEK)	125	123	ug/L	98	54 ₋ 130	
n-Butylbenzene	25.0	24.2	ug/L	97	70 - 142	
sec-Butylbenzene	25.0	23.9	ug/L	96	70 - 134	
tert-Butylbenzene	25.0	24.1	ug/L	97	70 _ 135	
Carbon disulfide	25.0	20.4	ug/L	81	58 - 130	
Carbon tetrachloride	25.0	26.0	ug/L	104	70 ₋ 146	
Chlorobenzene	25.0	25.7	ug/L	103	70 - 130	
Chloroethane	25.0	21.0	ug/L	84	62 - 138	
Chloroform	25.0	26.3	ug/L	105	70 - 130	
Chloromethane	25.0	18.7	ug/L	75	52 ₋ 175	
2-Chlorotoluene	25.0	23.9	-	96	70 - 130	
4-Chlorotoluene	25.0	24.4	ug/L	97	70 - 130 70 - 130	
Chlorodibromomethane	25.0	29.1	ug/L	116	70 - 130 70 - 145	
			ug/L			
1,2-Dichlorobenzene	25.0	26.0	ug/L	104	70 - 130	
1,3-Dichlorobenzene	25.0 25.0	25.7	ug/L	103	70 ₋ 130	
1,4-Dichlorobenzene		25.3	ug/L	101	70 - 130	
1,3-Dichloropropane	25.0	26.0	ug/L	104	70 ₋ 130	
1,1-Dichloropropene	25.0	26.0	ug/L	104	70 ₋ 130	
1,2-Dibromo-3-Chloropropane	25.0	26.3	ug/L	105	70 - 136	
Ethylene Dibromide	25.0	27.2	ug/L	109	70 - 130	
Dibromomethane	25.0	26.8	ug/L	107	70 - 130	
Dichlorodifluoromethane	25.0	20.6	ug/L	82	34 - 132	
1,1-Dichloroethane	25.0	24.0	ug/L	96	70 - 130	
1,2-Dichloroethane	25.0	25.8	ug/L	103	61 - 132	
1,1-Dichloroethene	25.0	21.2	ug/L	85	64 - 128	
cis-1,2-Dichloroethene	25.0	24.8	ug/L	99	70 - 130	
trans-1,2-Dichloroethene	25.0	23.5	ug/L	94	68 - 130	
1,2-Dichloropropane	25.0	24.5	ug/L	98	70 - 130	
cis-1,3-Dichloropropene	25.0	27.4	ug/L	110	70 - 130	
trans-1,3-Dichloropropene	25.0	30.7	ug/L	123	70 - 140	
Ethylbenzene	25.0	25.0	ug/L	100	80 - 120	
Hexachlorobutadiene	25.0	24.0	ug/L	96	70 - 130	
2-Hexanone	125	108	ug/L	86	60 - 164	
Isopropylbenzene	25.0	25.0	ug/L	100	70 - 130	
4-Isopropyltoluene	25.0	24.3	ug/L	97	70 _ 130	
Methylene Chloride	25.0	23.9	ug/L	96	70 _ 147	
4-Methyl-2-pentanone (MIBK)	125	111	ug/L	89	58 - 130	
Naphthalene	25.0	24.7	ug/L	99	70 - 130	
N-Propylbenzene	25.0	24.4	ug/L	97	70 - 130	
Styrene	25.0	26.2	ug/L	105	70 ₋ 130	

TestAmerica Pleasanton

Page 21 of 31

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-165832/5

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Water Analysis Batch: 165832 Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit %Rec 1,1,1,2-Tetrachloroethane 25.0 27.5 70 - 130 ug/L 110 1,1,2,2-Tetrachloroethane 25.0 23.6 ug/L 94 70 - 130 25.0 26.5 Tetrachloroethene ug/L 106 70 - 130 Toluene 25.0 23.9 ug/L 96 78 - 120 1,2,3-Trichlorobenzene 25.0 28.3 70 - 130 ug/L 113 1,2,4-Trichlorobenzene 25.0 27.5 ug/L 110 70 - 130 1,1,1-Trichloroethane 25.0 25.3 ug/L 101 70 - 130 1,1,2-Trichloroethane 25.0 26.1 ug/L 105 70 - 130 70 - 130 Trichloroethene 25.0 26.7 ug/L 107 Trichlorofluoromethane 25.0 24.4 ug/L 98 66 - 132 1,2,3-Trichloropropane 25.0 25.4 ug/L 102 70 - 130 25.0 22.2 ug/L 89 42 - 162 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 24.7 99 1,2,4-Trimethylbenzene ug/L 70 - 132 1,3,5-Trimethylbenzene 25.0 24.7 ug/L 99 70 - 130 77 Vinyl acetate 25.0 19.2 ug/L 43 - 163 Vinyl chloride 25.0 20.9 ug/L 83 54 - 135 m-Xylene & p-Xylene 25.0 25.0 ug/L 100 70 - 142 o-Xylene 25.0 25.5 ug/L 102 70 - 130 2,2-Dichloropropane 25.0 25.4 ug/L 102 70 - 140

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	97	67 - 130
1,2-Dichloroethane-d4 (Surr)	101	72 _ 130
Toluene-d8 (Surr)	101	70 - 130

Lab Sample ID: LCS 720-165832/7

Matrix: Water

Analysis Batch: 165832

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	 	500	511		ug/L		102	62 _ 120	
-C5-C12									

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	105		72 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCSD 720-165832/6

Matrix: Water

Analysis Batch: 165832

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.5		ug/L		106	62 - 130	1	20
Acetone	125	102		ug/L		82	26 - 180	1	30
Benzene	25.0	25.2		ug/L		101	79 - 130	2	20
Dichlorobromomethane	25.0	26.4		ug/L		105	70 - 130	3	20

TestAmerica Pleasanton

Prep Type: Total/NA

Page 22 of 31

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165832/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 165832	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromobenzene		25.9	Qualifier	ug/L		104	70 ₋ 130	1	20
Chlorobromomethane	25.0	27.6		ug/L		110	70 - 130	1	20
Bromoform	25.0	27.4		ug/L		110	68 - 136		20
Bromomethane	25.0	24.0		ug/L		96	43 - 151	3	20
2-Butanone (MEK)	125	121		ug/L		97	54 ₋ 130	1	20
n-Butylbenzene	25.0	24.9		ug/L		99	70 - 142	3	20
sec-Butylbenzene	25.0	24.1		ug/L		96	70 - 1 42 70 ₋ 134	1	20
tert-Butylbenzene	25.0	24.4		ug/L		97	70 - 13 4 70 - 135	1	20
Carbon disulfide	25.0	21.1		ug/L		84	58 - 130	4	20
Carbon tetrachloride	25.0	26.1		ug/L		105	70 ₋ 146	1	20
Chlorobenzene	25.0	25.8		ug/L		103	70 - 140 70 - 130	1	20
Chloroethane	25.0	21.4				86	62 - 138	2	20
Chloroform	25.0	26.2		ug/L		105	70 - 130	1	
				ug/L					20
Chloromethane	25.0	19.4		ug/L		78	52 - 175 70 - 130	3	20
2-Chlorotoluene	25.0	24.0		ug/L		96		0	20
4-Chlorotoluene	25.0	24.2		ug/L		97	70 - 130	0	20
Chlorodibromomethane	25.0	28.7		ug/L		115	70 - 145	1	20
1,2-Dichlorobenzene	25.0	26.3		ug/L		105	70 - 130	1	20
1,3-Dichlorobenzene	25.0	26.0		ug/L		104	70 - 130	1	20
1,4-Dichlorobenzene	25.0	25.8		ug/L		103	70 - 130	2	20
1,3-Dichloropropane	25.0	26.0		ug/L		104	70 - 130	0	20
1,1-Dichloropropene	25.0	26.3		ug/L		105	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.3		ug/L		105	70 - 136	0	20
Ethylene Dibromide	25.0	26.8		ug/L		107	70 - 130	1	20
Dibromomethane	25.0	26.6		ug/L		106	70 - 130	1	20
Dichlorodifluoromethane	25.0	21.4		ug/L		86	34 - 132	4	20
1,1-Dichloroethane	25.0	24.4		ug/L		97	70 - 130	1	20
1,2-Dichloroethane	25.0	25.5		ug/L		102	61 ₋ 132	1	20
1,1-Dichloroethene	25.0	22.2		ug/L		89	64 - 128	4	20
cis-1,2-Dichloroethene	25.0	24.8		ug/L		99	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	24.2		ug/L		97	68 - 130	3	20
1,2-Dichloropropane	25.0	24.6		ug/L		99	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	27.5		ug/L		110	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	30.5		ug/L		122	70 - 140	1	20
Ethylbenzene	25.0	25.2		ug/L		101	80 - 120	1	20
Hexachlorobutadiene	25.0	24.3		ug/L		97	70 - 130	1	20
2-Hexanone	125	106		ug/L		85	60 - 164	1	20
Isopropylbenzene	25.0	25.2		ug/L		101	70 - 130	1	20
4-Isopropyltoluene	25.0	24.6		ug/L		98	70 - 130	1	20
Methylene Chloride	25.0	24.7		ug/L		99	70 - 147	3	20
4-Methyl-2-pentanone (MIBK)	125	109		ug/L		87	58 - 130	2	20
Naphthalene	25.0	24.8		ug/L		99	70 - 130	0	20
N-Propylbenzene	25.0	24.3		ug/L		97	70 - 130	0	20
Styrene	25.0	26.5		ug/L		106	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	27.3		ug/L		109	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	23.8		ug/L		95	70 - 130	1	20
Tetrachloroethene	25.0	26.8		ug/L		107	70 - 130	1	20
Toluene	25.0	24.1		ug/L		96	78 - 120	1	20

TestAmerica Pleasanton

Page 23 of 31

2

3

5

7

8

. .

12

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-165832/6

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Water

Analysis Batch: 165832

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Alialysis balcii. 100002									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3-Trichlorobenzene	25.0	29.1		ug/L		116	70 - 130	3	20
1,2,4-Trichlorobenzene	25.0	27.9		ug/L		111	70 - 130	1	20
1,1,1-Trichloroethane	25.0	25.3		ug/L		101	70 - 130	0	20
1,1,2-Trichloroethane	25.0	26.3		ug/L		105	70 - 130	1	20
Trichloroethene	25.0	26.9		ug/L		108	70 - 130	1	20
Trichlorofluoromethane	25.0	24.8		ug/L		99	66 - 132	2	20
1,2,3-Trichloropropane	25.0	26.1		ug/L		104	70 - 130	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.2		ug/L		93	42 - 162	5	20
ne									
1,2,4-Trimethylbenzene	25.0	24.6		ug/L		98	70 - 132	0	20
1,3,5-Trimethylbenzene	25.0	24.7		ug/L		99	70 - 130	0	20
Vinyl acetate	25.0	19.3		ug/L		77	43 - 163	1	20
Vinyl chloride	25.0	21.5		ug/L		86	54 - 135	3	20
m-Xylene & p-Xylene	25.0	25.1		ug/L		100	70 - 142	1	20
o-Xylene	25.0	25.5		ug/L		102	70 - 130	0	20
2,2-Dichloropropane	25.0	24.4		ug/L		98	70 - 140	4	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 720-165832/8

Matrix: Water

Analysis Batch: 165832

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	534		ug/L	_	107	62 - 120	4	20
-C5-C12									

	LCSD LCSD	
Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	98	67 - 130
1,2-Dichloroethane-d4 (Surr)	100	72 - 130
Toluene-d8 (Surr)	100	70 - 130

TestAmerica Pleasanton

Page 24 of 31

QC Association Summary

 ${\bf Client:\ AMEC\ Environment\ \&\ Infrastructure,\ Inc.}$

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

GC/MS VOA

Analysis Batch: 165701

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59492-1	PRB-01HP-19.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59492-3	PRB-02HP-33.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59492-4	PRB-03HP-34.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59492-6	TB-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165701/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165701/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165701/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165701/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165701/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
_				MS	

Analysis Batch: 165832

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59492-5	PRB-03HP-340.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165832/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165832/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165832/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165832/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165832/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

4

6

8

9

11

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: PRB-01HP-19.0 Lab Sample ID: 720-59492-1

Date Collected: 08/25/14 10:40 Date Received: 08/25/14 17:10

Matrix: Water

Batch Dilution Batch Batch Prepared Factor **Prep Type** Type Method Run Number or Analyzed Analyst Lab Total/NA Analysis 8260B/CA LUFTMS 165701 08/27/14 16:35 PDR TAL PLS

Client Sample ID: PRB-02HP-33.0 Lab Sample ID: 720-59492-3

Date Collected: 08/25/14 11:25 **Matrix: Water**

Date Received: 08/25/14 17:10

Batch Batch Dilution Batch Prepared Method Factor Prep Type Туре Run Number or Analyzed Analyst Lab Total/NA 8260B/CA_LUFTMS 08/27/14 17:04 PDR TAL PLS Analysis 165701

Client Sample ID: PRB-03HP-34.0 Lab Sample ID: 720-59492-4

Date Collected: 08/25/14 15:10 Matrix: Water

Date Received: 08/25/14 17:10

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number or Analyzed Analyst Run Lab Total/NA Analysis 8260B/CA LUFTMS 165701 08/27/14 17:33 PDR TAL PLS

Lab Sample ID: 720-59492-5 Client Sample ID: PRB-03HP-340.0 **Matrix: Water**

Date Collected: 08/25/14 15:15

Date Received: 08/25/14 17:10

Batch Dilution Batch Prepared Method Prep Type Туре Factor Number or Analyzed Run Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 165832 08/29/14 02:46 ASC TAL PLS

Client Sample ID: TB-2 Lab Sample ID: 720-59492-6

Date Collected: 08/25/14 16:35 **Matrix: Water**

Date Received: 08/25/14 17:10

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Analysis 8260B/CA LUFTMS 165701 TAL PLS Total/NA 08/27/14 13:14 PDR

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
California	State Prog	State Program		2496	01-31-16	
Analysis Method	Prep Method	Matrix	Analyt	e		

TestAmerica Job ID: 720-59492-1

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59492-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59492-1	PRB-01HP-19.0	Water	08/25/14 10:40	08/25/14 17:10
720-59492-3	PRB-02HP-33.0	Water	08/25/14 11:25	08/25/14 17:10
720-59492-4	PRB-03HP-34.0	Water	08/25/14 15:10	08/25/14 17:10
720-59492-5	PRB-03HP-340.0	Water	08/25/14 15:15	08/25/14 17:10
720-59492-6	TB-2	Water	08/25/14 16:35	08/25/14 17:10

3

4

6

8

9

44

12

13

PRINTED NAME: COMPANY: TAME SIGNATURE: PRINTED NAME: COMPANY: SIGNATURE: PRINTED NAME: COMPANY: COMPANY:	RELINQUISHED BY: DATE TIME	1515 PRB-03HP-34.0 1515 PRB-03HP-340.0	1-1-7-1	MPLERS (SAMPLE SHIPMENT METHOD	CHAIN-OF-CUSTODY RECORD PROJECT NAME: Craw Cheve PROJECT NUMBER: ON 10160370.0312. C RESULTS TO ALVAY WILLIAMS L TURNAROUND TIME: L. J.
PRINTED NAME: COMPANY: COMPANY: COMPANY: COMPANY: COMPANY: SIGNATURE: PRINTED NAME: COMPANY: COMP		XXX		MCx by 8260B TPHS by 8260B HOLB ANALYSES	THE CONTROL OF THE CO	
NG COMMENTS:	UMBER OF CONTAINERS:	4	to the man Hei An 3	TYPE AND SIZE Soll (S), Water (W), Vapor (V), or Other (O) Filtered Preservative Type Cooled MS/MSD No. of Containers COMMENTS	GEOTRACKER REQUIRED YES NO SITE SPECIFIC GLOBAL ID NO.	DATE:8/15/14 PAGE 7 OF / REPORTING REQUIREMENTS: / 55830

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

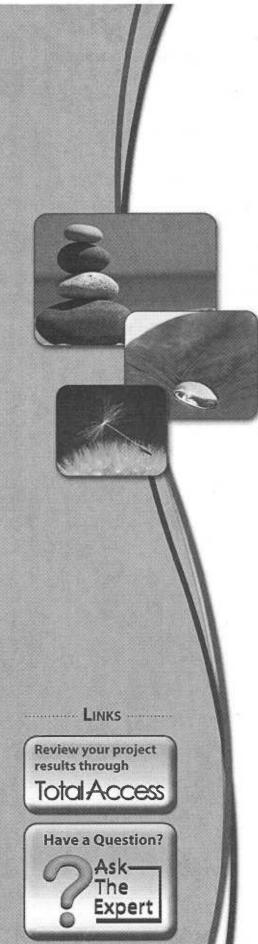
Job Number: 720-59492-1

Login Number: 59492 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Creator: Gonzales, Justinii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	



A

e

0

13

Visit us at:

www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-59507-1 Client Project/Site: Crown Chevrolet

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Akanaf Sal

Authorized for release by: 8/29/2014 1:15:52 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
TI .	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Oil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
4DA	Minimum detectable activity	
DL	Estimated Detection Limit	
MDC .	Minimum detectable concentration	
IDL	Method Detection Limit	
/ L	Minimum Level (Dioxin)	
IC	Not Calculated	
ND .	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
req	Toxicity Equivalent Quotient (Dioxin)	

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Job ID: 720-59507-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-59507-1

Comments

No additional comments.

Receipt

The samples were received on 8/26/2014 12:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.1° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: PRB-04HP-28.0 (720-59507-1), PRB-04HP-280.0 (720-59507-2). <<PCE>>

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

BECOME:

4

5

6

8

12

13

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Į,

Client Sample ID: PRB-04HP-28.0

Lab Sample ID: 720-59507-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	91		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Trichloroethene	2.1		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	92	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA

5

Client Sample ID: PRB-04HP-280.0

Lab Sample ID: 720-59507-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	74		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	1.9		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	82	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA

m

12

T

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: PRB-04HP-28.0 Date Collected: 08/26/14 09:50						Lab Sample ID: 720-59507- Matrix: Wate				
Date Received: 08/26/14 12:20								IVIALITI/	. Water	
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND		0.50	u	ıg/L			08/28/14 14:35	1	
Acetone	ND		50	u	ıg/L			08/28/14 14:35	1	
Benzene	ND		0.50	u	ig/L			08/28/14 14:35	1	
Dichlorobromomethane	ND		0.50	u	ıg/L			08/28/14 14:35	1	
Bromobenzene	ND		1.0	u	ıg/L			08/28/14 14:35	1	
Chlorobromomethane	ND		1.0	u	ıg/L			08/28/14 14:35	1	
Bromoform	ND		1.0	u	ıg/L			08/28/14 14:35	1	
Bromomethane	ND		1.0	u	ıg/L			08/28/14 14:35	1	
2-Butanone (MEK)	ND		50	u	ıg/L			08/28/14 14:35	1	
n-Butylbenzene	ND		1.0	u	ıg/L			08/28/14 14:35	1	
sec-Butylbenzene	ND		1.0	u	ıg/L			08/28/14 14:35	1	
tert-Butylbenzene	ND		1.0	u	ıg/L			08/28/14 14:35	1	
Carbon disulfide	ND		5.0	и	ıg/L			08/28/14 14:35	1	
Carbon tetrachloride	ND		0.50	u	ıg/L			08/28/14 14:35	1	
Chlorobenzene	ND		0.50	u	ıg/L			08/28/14 14:35	1	
Chloroethane	ND		1.0	u	ıg/L			08/28/14 14:35	1	
Chloroform	ND		1.0	u	ıg/L			08/28/14 14:35	1	
Chloromethane	ND		1.0	u	ıg/L			08/28/14 14:35	1	
2-Chlorotoluene	ND		0.50	u	ıg/L			08/28/14 14:35	1	
4-Chlorotoluene	ND		0.50	u	ıg/L			08/28/14 14:35	1	

14 15

ND 0.50 08/28/14 14:35 Chlorodibromomethane ug/L ND 0.50 08/28/14 14:35 1,2-Dichlorobenzene ug/L 08/28/14 14:35 1,3-Dichlorobenzene ND 0.50 ug/L 1,4-Dichlorobenzene ND 0.50 ug/L 08/28/14 14:35 ND 1.0 ug/L 08/28/14 14:35 1,3-Dichloropropane ND 0.50 08/28/14 14:35 ug/L 1,1-Dichloropropene 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/28/14 14:35 ND 0.50 08/28/14 14:35 Ethylene Dibromide ug/L Dibromomethane ND 0.50 ug/L 08/28/14 14:35 Dichlorodifluoromethane ND 0.50 ug/L 08/28/14 14:35 1,1-Dichloroethane ND 0.50 ug/L 08/28/14 14:35 ND 08/28/14 14:35 1,2-Dichloroethane 0.50 ug/L ND 08/28/14 14:35 1,1-Dichloroethene 0.50 ug/L ND 08/28/14 14:35 cis-1,2-Dichloroethene 0.50 ug/L trans-1,2-Dichloroethene ND 0.50 ug/L 08/28/14 14:35 1,2-Dichloropropane 08/28/14 14:35 ND 0.50 ug/L 08/28/14 14:35 ND 0.50 cis-1,3-Dichloropropene ug/L 08/28/14 14:35 trans-1,3-Dichloropropene ND 0.50 ug/L Ethylbenzene ND 0.50 ug/L 08/28/14 14:35 08/28/14 14:35 Hexachlorobutadiene ND 1.0 ug/L ug/L ND 08/28/14 14:35 2-Hexanone 50 0.50 Isopropylbenzene ND ug/L 08/28/14 14:35 4-Isopropyitoluene ND 1.0 ug/L 08/28/14 14:35 Methylene Chloride ug/L ND 5.0 08/28/14 14:35 4-Methyl-2-pentanone (MIBK) ND 50 ug/L 08/28/14 14:35 Naphthalene ND 1.0 ug/L 08/28/14 14:35 ND 08/28/14 14:35 N-Propylbenzene 1.0 ug/L ND 0.50 08/28/14 14:35 Styrene ug/L ND 08/28/14 14:35 1,1,1,2-Tetrachloroethane 0.50 ug/L

TestAmerica Pleasanton

RL

0.50

0.50

0.50

1.0

1.0

0.50

0.50

0.50

1.0

0.50

0.50

0.50

0.50

0.50

1.0

0.50

Limits

67 - 130

72 - 130

70 - 130

50

10

MDL Unit

ug/L

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Result Qualifier

ND

91

ND

ND

ND

ND

ND

2.1

ND

ND

ND

ND

ND

ND

ND

ND

ND

98

86

100

%Recovery

92 3

Qualifier

Project/Site: Crown Chevrolet

Client Sample ID: PRB-04HP-28.0

Date Collected: 08/26/14 09:50

Date Received: 08/26/14 12:20

1,1,2,2-Tetrachloroethane

Tetrachloroethene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

Vinyl chloride

Xylenes, Total

-C5-C12 Surrogate

2,2-Dichloropropane

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

1,1,2-Trichloro-1,2,2-trifluoroethane

Gasoline Range Organics (GRO)

Client Sample ID: PRB-04HP-280.0

Date Collected: 08/26/14 08:20

Trichloroethene

Analyte

TestAmerica Job ID: 720-59507-1

Prepared

Prepared

Matrix: Water

Lab Sample ID: 720-59507-1

Analyzed

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

Analyzed

08/28/14 14:35

08/28/14 14:35

08/28/14 14:35

DIIFAC	500
1	-
1	E
1	
1	
1	
1	
1	100-
1	107
1	8
1	
1	
1	
1	
1	

Dil Fac

1

Lab Sample ID: 720-59507-2 Matrix: Water

Date Received: 08/26/14 12:20									Matrix	k: vvater
Analyte	Result	Qualifier	RL	MDL	Unit	19	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L				08/28/14 15:05	1
Acetone	ND	23	50		ug/L				08/28/14 15:05	1
Benzene	ND		0.50		ug/L				08/28/14 15:05	1
Dichlorobromomethane	ND		0.50		ug/L				08/28/14 15:05	1
Bromobenzene	ND		1.0		ug/L				08/28/14 15:05	1
Chlorobromomethane	ND		1.0		ug/L				08/28/14 15:05	1
Bromoform	ND		1.0		ug/L				08/28/14 15:05	1
Bromomethane	ND		1.0		ug/L				08/28/14 15:05	1
2-Butanone (MEK)	ND		50		ug/L				08/28/14 15:05	1
n-Butylbenzene	ND		1.0		ug/L				08/28/14 15:05	1
sec-Butylbenzene	ND		1.0		ug/L				08/28/14 15:05	1
tert-Butylbenzene	ND		1.0		ug/L				08/28/14 15:05	1
Carbon disulfide	ND		5.0		ug/L				08/28/14 15:05	1
Carbon tetrachloride	· ND		0.50		ug/L				08/28/14 15:05	1
Chlorobenzene	ND		0.50		ug/L				08/28/14 15:05	1
Chloroethane	ND		1.0		ug/L				08/28/14 15:05	1
Chloroform	ND		1.0		ug/L				08/28/14 15:05	1
Chloromethane	ND		1.0		ug/L				08/28/14 15:05	1
2-Chlorotoluene	ND		0.50		ug/L				08/28/14 15:05	1
4-Chlorotoluene	ND		0.50		ug/L				08/28/14 15:05	1
Chlorodibromomethane	ND		0.50		ug/L				08/28/14 15:05	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

TestAmerica 300 fb. 720-39507-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: PRB-04HP-280.0 Date Collected: 08/26/14 08:20							Lab	Sample ID: 720- Matrix	59507-2 k: Water
Date Received: 08/26/14 12:20 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.50		ug/L			08/28/14 15:05	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/28/14 15:05	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/28/14 15:05	1
1,3-Dichloropropane	ND		1.0		ug/L			08/28/14 15:05	1
1,1-Dichloropropene	ND		0.50		ug/L			08/28/14 15:05	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/28/14 15:05	1
Ethylene Dibromide	ND		0.50		ug/L			08/28/14 15:05	1
Dibromomethane	ND		0.50		ug/L			08/28/14 15:05	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/28/14 15:05	1
1,1-Dichloroethane	ND		0.50		ug/L			08/28/14 15:05	1
1,2-Dichloroethane	ND		0.50		ug/L			08/28/14 15:05	1
1,1-Dichloroethene	ND		0.50		ug/L			08/28/14 15:05	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/28/14 15:05	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/28/14 15:05	1
1,2-Dichloropropane	ND		0.50		ug/L			08/28/14 15:05	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/28/14 15:05	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/28/14 15:05	1
Ethylbenzene	ND		0.50		ug/L			08/28/14 15:05	1
Hexachlorobutadiene	ND		1.0		ug/L			08/28/14 15:05	1
2-Hexanone	ND		50		ug/L			08/28/14 15:05	1
Isopropylbenzene	ND		0.50		ug/L			08/28/14 15:05	1
4-Isopropyltoluene	ND		1.0		ug/L			08/28/14 15:05	1
Methylene Chloride	ND		5.0		ug/L			08/28/14 15:05	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/28/14 15:05	1
Naphthalene	ND		1.0		ug/L			08/28/14 15:05	1
N-Propylbenzene	ND		1.0		ug/L			08/28/14 15:05	1
	ND		0.50		ug/L			08/28/14 15:05	1
Styrene	ND		0.50					08/28/14 15:05	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/28/14 15:05	1
1,1,2,2-Tetrachloroethane					ug/L				1
Tetrachloroethene	74		0.50		ug/L			08/28/14 15:05	1
Toluene	ND		0.50		ug/L			08/28/14 15:05	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/28/14 15:05	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/28/14 15:05	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/28/14 15:05	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/28/14 15:05	1
Trichloroethene	1.9		0.50		ug/L			08/28/14 15:05	1
Trichlorofluoromethane	ND		1.0		ug/L			08/28/14 15:05	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/28/14 15:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/28/14 15:05	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/28/14 15:05	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/28/14 15:05	1
Vinyl acetate	ND		10		ug/L			08/28/14 15:05	1
Vinyl chloride	ND		0.50		ug/L			08/28/14 15:05	1
Xylenes, Total	ND		1.0		ug/L			08/28/14 15:05	1
2,2-Dichloropropane	ND	^	0.50		ug/L			08/28/14 15:05	1
Gasoline Range Organics (GRO) -C5-C12	82	R	50		ug/L			08/28/14 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130					08/28/14 15:05	1

TestAmerica Pleasanton

Page 8 of 23

8/29/2014

V.

a

6

7

3

10

15

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: PRB-04HP-280.0 Date Collected: 08/26/14 08:20 Date Received: 08/26/14 12:20

Lab Sample ID: 720-59507-2

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	. 85		72 - 130		08/28/14 15:05	1
Toluene-d8 (Surr)	100		70 - 130		08/28/14 15:05	1

c

0

8

9

Surrogate Summary

12DCE

(72-130)

86

85

85

90

85

88

85

TOL

(70-130)

100

100

101

100

101

100

98

BFB

(67-130)

98

98

97

99

98

100

99

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID

PRB-04HP-28.0

PRB-04HP-280.0

Lab Control Sample

Lab Control Sample

Method Blank

Lab Control Sample Dup

Lab Control Sample Dup

Project/Site: Crown Chevrolet

Matrix: Water

Lab Sample ID 720-59507-1

720-59507-2

LCS 720-165779/6

LCS 720-165779/8

LCSD 720-165779/7

LCSD 720-165779/9

Surrogate Legend BFB = 4-Bromofluorobenzene 12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

MB 720-165779/5

TestAmerica Job ID: 720-59507-1

Percent Surrogate Recovery (Acceptance Limits)

Prep Type: Total/NA

TestAmerica Pleasanton

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-165779/5

Matrix: Water

Client	Sample	ID:	Method	Blank
	Dre	an T	Type: To	tal/NA

Amelida		MB Qualifier	D!	BAPS 1	Heit		Deserved	Amaliana	D2 =
Analyte		Quaimer	RL	MDL		D .	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50		ug/L			08/28/14 09:04	
Acetone	ND		50		ug/L			08/28/14 09:04	
Benzene	ND		0.50		ug/L			08/28/14 09:04	
Dichlorobromomethane	ND		0.50		ug/L			08/28/14 09:04	•
Bromobenzene	ND		1.0		ug/L			08/28/14 09:04	,
Chlorobromomethane	ND		1.0		ug/L			08/28/14 09:04	
Bromoform	ND		1.0		ug/L			08/28/14 09:04	
Bromomethane	ND		1.0		ug/L			08/28/14 09:04	
2-Butanone (MEK)	ND		50		ug/L			08/28/14 09:04	·
n-Butylbenzene	ND		1.0		ug/L			08/28/14 09:04	
sec-Butylbenzene	ND		1.0		ug/L			08/28/14 09:04	
tert-Butylbenzene	ND		1.0		ug/L			08/28/14 09:04	•
Carbon disulfide	ND		5.0		ug/L			08/28/14 09:04	
Carbon tetrachloride	ND		0.50		ug/L			08/28/14 09:04	•
Chlorobenzene	ND		0.50		ug/L			08/28/14 09:04	•
Chloroethane	ND		1.0		ug/L			08/28/14 09:04	
Chloroform	ND		1.0		ug/L			08/28/14 09:04	
Chloromethane	ND		1.0		ug/L			08/28/14 09:04	
2-Chlorotoluene	ND	. 9	0.50		ug/L			08/28/14 09:04	
4-Chlorotoluene	ND	18	0.50		ug/L			08/28/14 09:04	4
Chlorodibromomethane	ND	£1	0.50		ug/L			08/28/14 09:04	1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/28/14 09:04	
1,3-Dichlorobenzene	ND		0.50		ug/L			08/28/14 09:04	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/28/14 09:04	1
1,3-Dichloropropane	ND		1.0		ug/L			08/28/14 09:04	
1,1-Dichloropropene	ND		0.50		ug/L			08/28/14 09:04	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/28/14 09:04	
Ethylene Dibromide	ND		0.50		ug/L			08/28/14 09:04	
Dibromomethane	ND		0.50		ug/L			08/28/14 09:04	
Dichlorodifluoromethane	ND		0.50		ug/L			08/28/14 09:04	
1,1-Dichloroethane	ND		0.50		ug/L			08/28/14 09:04	
1,2-Dichloroethane	ND		0.50		ug/L			08/28/14 09:04	
1,1-Dichloroethene	ND		0.50		ug/L			08/28/14 09:04	
cis-1,2-Dichloroethene	ND		0.50		ug/L			08/28/14 09:04	
	ND								1
trans-1,2-Dichloroethene			0.50		ug/L			08/28/14 09:04	
1,2-Dichloropropane	ND		0.50		ug/L			08/28/14 09:04	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/28/14 09:04	
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/28/14 09:04	1
Ethylbenzene	ND		0.50		ug/L			08/28/14 09:04	1
Hexachlorobutadiene	ND		1.0		ug/L			08/28/14 09:04	1
2-Hexanone	ND		50		ug/L			08/28/14 09:04	1
Isopropylbenzene	ND		0.50		ug/L			08/28/14 09:04	1
4-Isopropyltoluene	ND		1.0		ug/L			08/28/14 09:04	1
Methylene Chloride	ND		5.0		ug/L			08/28/14 09:04	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/28/14 09:04	1
Naphthalene	ND		1.0		ug/L			08/28/14 09:04	1
N-Propylbenzene	ND		1.0		ug/L			08/28/14 09:04	1
Styrene	ND		0.50		ug/L			08/28/14 09:04	1

TestAmerica Pleasanton

Page 11 of 23

8/29/2014

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS (Continued)

мв мв

Result

ND

ND

ND

Lab Sample ID: MB 720-165779/5

Matrix: Water

Analyte

Analysis Batch: 165779

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Client	Sample	ID:	Method	Blank
	Dre	nn T	Type: To	tal/NIA

t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<u> </u>	0.50		ug/L			08/28/14 09:04	
)	0.50		ug/L			08/28/14 09:04	
)	0.50		ug/L			08/28/14 09:04	,
)	0.50		ua/I			08/28/14 09:04	

Tetrachloroethene	ND	0.50	ug/L	08/28/14 09:04	1
Toluene	ND	0.50	ug/L	08/28/14 09:04	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	08/28/14 09:04	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	08/28/14 09:04	1
1,1,1-Trichloroethane	ND	0.50	ug/L	08/28/14 09:04	1
1,1,2-Trichloroethane	ND	0.50	ug/L	08/28/14 09:04	1
Trichloroethene	ND	0.50	ug/L	08/28/14 09:04	1
Trichlorofluoromethane	ND	1.0	ug/L	08/28/14 09:04	1
1,2,3-Trichloropropane	ND	0.50	ug/L	08/28/14 09:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	08/28/14 09:04	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L	08/28/14 09:04	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L	08/28/14 09:04	1

08/28/14 09:04 ND 0.50 ug/L 08/28/14 09:04 ND 10 ug/L 08/28/14 09:04 ND 0.50 ug/L 08/28/14 09:04 ND 1.0 ug/L 2,2-Dichloropropane ND 0.50 ug/L 08/28/14 09:04

ug/L

Gasoline Range Organics (GRO) -C5-C12

Vinyl acetate

Vinyl chloride

Xylenes, Total

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130		08/28/14 09:04	1
1,2-Dichloroethane-d4 (Surr)	85		72 - 130		08/28/14 09:04	1
Toluene-d8 (Surr)	98		70 - 130		08/28/14 09:04	1

50

Client Sample ID: Lab Control Sample Prep Type: Total/NA

08/28/14 09:04

Matrix: Water

Lab Sample ID: LCS 720-165779/6

Analysis Batch: 165779								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	24.1		ug/L		96	62 - 130	
Acetone	125	91.8		ug/L		73	26 - 180	
Benzene	25.0	24.9		ug/L		100	79 - 130	
Dichlorobromomethane	25.0	26.6		ug/L		106	70 - 130	
Bromobenzene	25.0	24.1		ug/L		97	70 - 130	
Chlorobromomethane	25.0	25.5		ug/L		102	70 - 130	
Bromoform	25.0	28.6		ug/L		114	68 - 136	
Bromomethane	25.0	24.2		ug/L		97	43 - 151	
2-Butanone (MEK)	125	113		ug/L		91	54 - 130	
n-Butylbenzene	25.0	26.4		ug/L		106	70 - 142	
sec-Butylbenzene	25.0	25.4		ug/L		102	70 - 134	
tert-Butylbenzene	25.0	24.7		ug/L		99	70 - 135	
Carbon disulfide	25.0	23.6		ug/L		95	58 - 130	
Carbon tetrachloride	25.0	27.8		ug/L		111	70 - 146	
Chlorobenzene	25.0	25.8		ug/L		103	70 - 130	
Chloroethane	25.0	21.1		ug/L		84	62 - 138	
Chloroform	25.0	25.4		ug/L		101	70 - 130	

TestAmerica Pleasanton

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: Lab Control Sample

_	_	_	
Dre	OP TW	pe: To	tal/NIA

Analysis	Batch:	165779
-----------------	--------	--------

Matrix: Water

Lab Sample ID: LCS 720-165779/6

voltage and the second	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Chloromethane	25.0	17.4		ug/L		70	52 _ 175
2-Chlorotoluene	25.0	24.5		ug/L		98	70 - 130
4-Chlorotoluene	25.0	24.9		ug/L		100	70 - 130
Chlorodibromomethane	25.0	29.1		ug/L		116	70 - 145
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130
1,3-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130
1,4-Dichlorobenzene	25.0	25.4		ug/L		101	70 - 130
1,3-Dichloropropane	25.0	24.7		ug/L		99	70 - 130
I,1-Dichloropropene	25.0	26.0		ug/L		104	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.6		ug/L		102	70 - 136
Ethylene Dibromide	25.0	26.2		ug/L		105	70 - 130
Dibromomethane	25.0	24.3		ug/L		97	70 - 130
Dichlorodifluoromethane	25.0	21.0		ug/L		84	34 - 132
1,1-Dichloroethane	25.0	23.5		ug/L		94	70 - 130
1,2-Dichloroethane	25.0	21.7		ug/L		87	61 - 132
1,1-Dichloroethene	25.0	21.1		ug/L		84	64 - 128
sis-1,2-Dichloroethene	25.0	22.2		ug/L		89	70 - 130
rans-1,2-Dichloroethene	25.0	25.5		ug/L		102	68 - 130
,2-Dichloropropane	25.0	23.5		ug/L		94	70 - 130
is-1,3-Dichloropropene	25.0	27.1		ug/L		109	70 - 130
rans-1,3-Dichloropropene	25.0	29.7		ug/L		119	70 - 140
Ethylbenzene	25.0	25.5		ug/L		102	80 - 120
Hexachlorobutadiene	25.0	25.1		ug/L		100	70 - 130
2-Hexanone	125	91.8		ug/L		73	60 - 164
sopropylbenzene	25.0	27.0		ug/L		108	70 - 130
-Isopropyltoluene	25.0	25.4	0.	ug/L		102	70 - 130
Methylene Chloride	25.0	21.9		ug/L		88	70 - 147
I-Methyl-2-pentanone (MIBK)	125	92.3		ug/L		74	58 - 130
√aphthalene	25.0	26.3		ug/L		105	70 - 130
i-Propylbenzene	25.0	25.3		ug/L		101	70 - 130
Styrene	25.0	26.7		ug/L		107	70 - 130
,1,1,2-Tetrachloroethane	25.0	28.2		ug/L		113	70 - 130
,1,2,2-Tetrachloroethane	25.0	24.8		ug/L		99	70 - 130
etrachloroethene	25.0	26.1		ug/L		104	70 - 130
oluene	25.0	25.5		ug/L		102	78 - 120
.2.3-Trichlorobenzene	25.0	25.4		ug/L		102	70 - 130
,2,4-Trichlorobenzene	25.0	26.5		ug/L		106	70 - 130
1,1,1-Trichloroethane	25.0	26.3		ug/L		105	70 - 130
.1,2-Trichloroethane	25.0	26.1		ug/L		104	70 - 130
richloroethene	25.0	25.1		ug/L		100	70 - 130
richlorofluoromethane	25.0	27.8		ug/L		111	66 - 132
,2,3-Trichloropropane	25.0	25.8		ug/L ug/L		103	70 - 130
,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.5		ug/L		90	42 - 162
ne	20.0	22,0		ugit		90	74 - 104
,2,4-Trimethylbenzene	25.0	25.0		ug/L		100	70 - 132
,3,5-Trimethylbenzene	25.0	25.2		ug/L		101	70 - 130
/inyl acetate	25.0	19.2		ug/L		77	43 - 163
/inyl chloride	25.0	20.3		ug/L		81	54 - 135

TestAmerica Pleasanton

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260B/CA_I	LUFTMS - 8260B	/ CA LUFT MS	(Continued)

Lab Sample ID: LCS 720-165779/6

Matrix: Water

Analysis Batch: 165779

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	26.0		ug/L	77	104	70 - 142	
o-Xylene	25.0	25.7		ug/L		103	70 - 130	
2,2-Dichloropropane	25.0	26.9		ug/L		108	70 - 140	

LCS LCS Limits %Recovery Qualifier Surrogate 4-Bromofluorobenzene 97 67 - 130 1,2-Dichloroethane-d4 (Surr) 85 72 - 130 101 70 - 130 Toluene-d8 (Surr)

Lab Sample ID: LCS 720-165779/8

Matrix: Water

Analysis Batch: 165779

Analysis Baton. 100770	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	490		ug/L		98	62 - 120	
-C5-C12								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 720-165779/7

Matrix: Water

Client Sample	ID:	Lab	Cont	rol	Sam	ple	Dup
			Prep	Ту	pe:	Tota	I/NA

Analysis Batch: 165779			1212						
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	24.4		ug/L		98	62 - 130	1	20
Acetone	125	91.9		ug/L		74	26 - 180	0	30
Benzene	25.0	25.2		ug/L		101	79 - 130	1	20
Dichlorobromomethane	25.0	26.8		ug/L		107	70 - 130	1	20
Bromobenzene	25.0	24.7		ug/L		99	70 - 130	2	20
Chlorobromomethane	25.0	25.8		ug/L		103	70 - 130	1	20
Bromoform	25.0	29.0		ug/L		116	68 - 136	2	20
Bromomethane	25.0	23.4		ug/L		94	43 - 151	4	20
2-Butanone (MEK)	125	112		ug/L		90	54 - 130	1	20
n-Butylbenzene	25.0	26.7		ug/L		107	70 - 142	1	20
sec-Butylbenzene	25.0	25.9		ug/L		104	70 - 134	2	20
tert-Butylbenzene	25.0	25.2		ug/L		101	70 - 135	2	20
Carbon disulfide	25.0	22.3		ug/L		89	58 - 130	6	20
Carbon tetrachloride	25.0	28.2		ug/L		113	70 - 146	1	20
Chlorobenzene	25.0	26.2		ug/L		105	70 - 130	1	20
Chloroethane	25.0	20.4		ug/L		82	62 - 138	3	20
Chloroform	25.0	25.5		ug/L		102	70 - 130	0	20
Chloromethane	25.0	16.7		ug/L		67	52 - 175	4	20
2-Chlorotoluene	25.0	25.3		ug/L		101	70 - 130	3	20
4-Chlorotoluene	25.0	25.4		ug/L		101	70 - 130	2	20
Chlorodibromomethane	25.0	29.1		ug/L		116	70 - 145	0	20

TestAmerica Pleasanton

8/29/2014

Page 14 of 23

Client: AMEC Environment & Infrastructure, Inc.

Lab Sample ID: LCSD 720-165779/7

Project/Site: Crown Chevrolet

Matrix: Water

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample I	ID: Lab	Control Sample Dup
		Prep Type: Total/NA

Analysis Batch: 165779	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	25.1		ug/L	-	100	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.7		ug/L		103	70 - 130	2	20
1,4-Dichlorobenzene	25.0	26.1		ug/L		104	70 - 130	3	20
1,3-Dichloropropane	25.0	24.9		ug/L		100	70 - 130	1	20
1,1-Dichloropropene	25.0	26.2		ug/L		105	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	25.9		ug/L		104	70 - 136	1	20
Ethylene Dibromide	25.0	26.4		ug/L		106	70 - 130	1	20
Dibromomethane	25.0	24.4		ug/L		98	70 - 130	1	20
Dichlorodifluoromethane	25.0	20.5		ug/L		82	34 - 132	2	20
1,1-Dichloroethane	25.0	23.5		ug/L		94	70 - 130	0	20
1,2-Dichloroethane	25.0	21.8		ug/L		87	61 - 132	0	20
1,1-Dichloroethene	25.0	20.9		ug/L		84	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	22.4		ug/L		90	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	25.5		ug/L		102	68 - 130	0	20
1,2-Dichloropropane	25.0	23.8		ug/L		95	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	27.6		ug/L		110	70 - 130	2	20
trans-1,3-Dichloropropene	25.0	29.9		ug/L		120	70 - 140	1	20
Ethylbenzene	25.0	25.8		ug/L		103	80 - 120	1	20
Hexachlorobutadiene	25.0	24.9		ug/L		100	70 - 130	0	20
2-Hexanone	125	91.7		ug/L		73	60 - 164	0	20
Isopropylbenzene	25.0	27.3		ug/L		109	70 - 130	1	20
4-Isopropyltoluene	25.0	25.7		ug/L		103	70 - 130	1	20
Methylene Chloride	25.0	21.6		ug/L		86	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	92.0		ug/L		74	58 - 130	0	20
Naphthalene	25.0	26.3		ug/L		105	70 - 130	0	20
N-Propylbenzene	25.0	26.1		ug/L		104	70 - 130	3	20
Styrene	25.0	26.9		ug/L		108	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	28.8		ug/L		115	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	25.3		ug/L		101	70 - 130	2	20
Tetrachloroethene	25.0	26.4		ug/L		106	70 - 130	1	20
Toluene	25.0	25.9		ug/L		104	78 - 120	2	20
1,2,3-Trichlorobenzene	25.0	25.3		ug/L		101	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	26.4		ug/L		106	70 - 130	0	20
1,1,1-Trichloroethane	25.0	26.6		ug/L		106	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.9		ug/L		104	70 - 130	1	20
Trichloroethene	25.0	25.3		ug/L		101	70 - 130	1	20
Trichlorofluoromethane	25.0	27.7		ug/L		111	66 - 132	0	20
1,2,3-Trichloropropane	25.0	26.7		ug/L		107	70 - 130	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.3		ug/L		89	42 - 162	0	20
ne				-3/-		-	12 - 102	v	20
1,2,4-Trimethylbenzene	25.0	25.4		ug/L		101	70 - 132	2	20
1,3,5-Trimethylbenzene	25.0	25.7		ug/L		103	70 - 130	2	20
Vinyl acetate	25.0	18.6		ug/L		74	43 - 163	4	20
Vinyl chloride	25.0	19.7		ug/L		79	54 - 135	3	20
m-Xylene & p-Xylene	25.0	26.3		ug/L		105	70 - 142	1	20
o-Xylene	25.0	26.0		ug/L		104	70 - 130	1	20
2,2-Dichloropropane	25.0	27.3		ug/L		109	70 - 140	2	20

TestAmerica Pleasanton

Page 15 of 23

8/29/2014

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

LCSD LCSD

Lab Sample ID: LCSD 720-165779/7

Matrix: Water

Analysis Batch: 165779

Client Sample	ID: I	Lab	Control	Sample	Dup
			Dean Tu	no. Tota	I/NIA

Prep Type: Total/NA

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	85		72 - 130
Toluene-d8 (Surr)	101		70 - 130

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 720-165779/9 Prep Type: Total/NA Matrix: Water

Analysis Batch: 165779

RPD %Rec. Spike LCSD LCSD Limits Limit RPD Added Result Qualifier %Rec 20 62 - 120 0 500 489 ug/L 98 Gasoline Range Organics (GRO) -C5-C12

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130
Toluene-d8 (Surr)	100		70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

GC/MS VOA

Analysis Batch: 165779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-59507-1	PRB-04HP-28.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-59507-2	PRB-04HP-280.0	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165779/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-165779/8	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165779/7	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-165779/9	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-165779/5	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MC	

TestAmerica Pleasanton

5

17

8

9

13

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Client Sample ID: PRB-04HP-28.0

Date Collected: 08/26/14 09:50

Lab Sample ID: 720-59507-1

Matrix: Water

Date Received: 08/26/14 12:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	165779	08/28/14 14:35	ASC	TAL PLS

5

Client Sample ID: PRB-04HP-280.0

Date Collected: 08/26/14 08:20

Lab Sample ID: 720-59507-2

Lab TAL PLS Matrix: Water

Date Received: 08/26/14 12:20

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260B/CA_LUFTMS 165779 08/28/14 15:05 ASC

9

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

10

12

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

TestAmerica Job ID: 720-59507-1

Project/Site: Crown Chevrolet

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

EPA Region Authority Program *Certification ID **Expiration Date** California State Program 01-31-16 Analysis Method Prep Method Matrix Analyte

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-59507-1

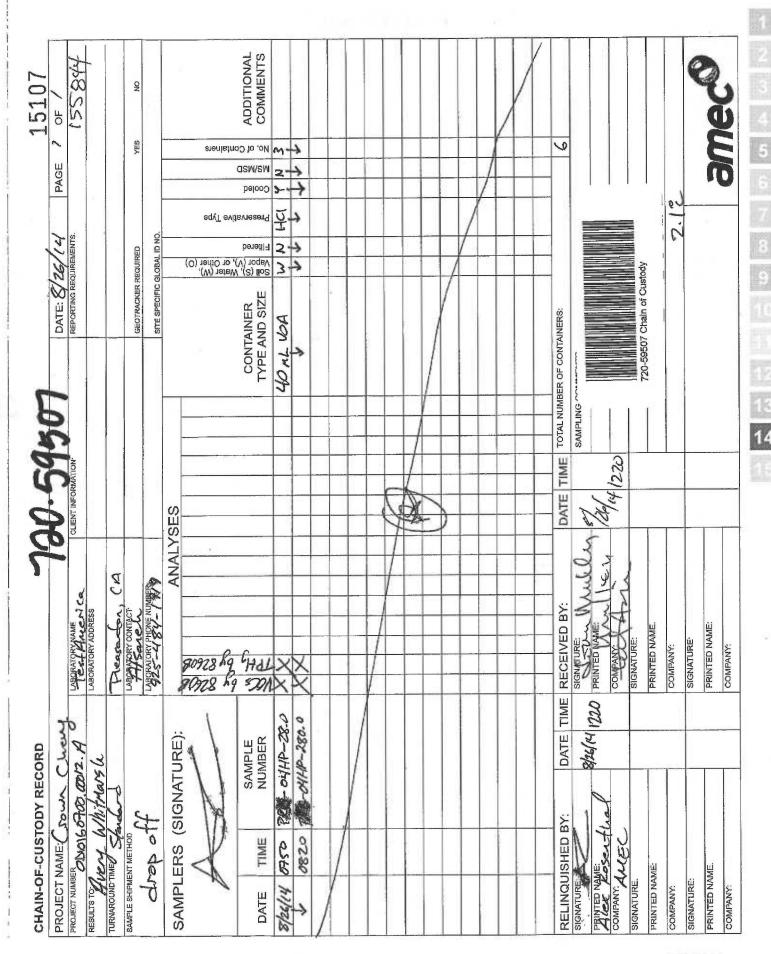
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-59507-1	PRB-04HP-28.0	Water	08/26/14 09:50	08/26/14 12:20
720-59507-2	PRB-04HP-280.0	Water	08/26/14 08:20	08/26/14 12:20

0040 8775

779

7

8


9

Ī

12

14

Ta

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-59507-1

Login Number: 59507

List Number: 1

Creator: Gonzales, Justinn

List Source: TestAmerica Pleasanton

Question	Answer	Comment		
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td> <td></td>	N/A			
The cooler's custody seal, if present, is intact.	N/A			
Sample custody seals, if present, are intact.	N/A			
The cooler or samples do not appear to have been compromised or tampered with.	True			
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True			
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			
There are no discrepancies between the containers received and the COC.	True			
Samples are received within Holding Time.	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified.	N/A			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Residual Chlorine Checked.	N/A			

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-60404-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Akanaf Sal

Authorized for release by: 10/17/2014 4:12:04 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	1
Detection Summary	5
Client Sample Results	3
QC Sample Results	12
QC Association Summary	22
Lab Chronicle	24
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	34

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Job ID: 720-60404-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-60404-1

Comments

No additional comments.

Receipt

The samples were received on 10/6/2014 5:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.6° C and 3.2° C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method(s) 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for prep batch 168743 were outside control limits. Sample matrix interference and/or

Method(s) 6010B: The following sample(s) was diluted due to the abundance of non-target analyte Fe: IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10 (720-60404-17). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

7

8

11

12

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: IDW-W-1,-2,-3,-4,-5

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Lab Sample ID: 720-60404-6

Client Sample ID: IDW-W-1						La	ab S	ample II	D: 720-60404-1
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D M	lethod	Prep Type
рН	12.0		0.100		SU	1	9	040B	Total/NA
Client Sample ID: IDW-W-2						La	ab S	ample II	D: 720-60404-2
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D M	lethod	Prep Type
pH	12.3		0.100		SU	1	9	040B	Total/NA
Client Sample ID: IDW-W-3						La	ab S	ample II	D: 720-60404-3
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D M	lethod	Prep Type
pH	7.77		0.100		SU	1	9	040B	Total/NA
Client Sample ID: IDW-W-4						La	ab S	ample II	D: 720-60404-4
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D M	lethod	Prep Type
рН	7.86		0.100		SU	1	9	040B	Total/NA
Client Sample ID: IDW-W-5						La	ab S	ample II	D: 720-60404-5
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D M	lethod	Prep Type
pH	12.3		0.100		SU	1	9	040B	Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Barium	0.42		0.0050		mg/L	1	60	10B	Total/NA
Chromium	0.052		0.010		mg/L	1	60	10B	Total/NA
Molybdenum	0.046		0.010		mg/L	1	60	10B	Total/NA

Client Sample ID: IDW	ient Sample ID: IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10							Lab Sample ID: 720-60404-17			
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type			
Arsenic	7.1		2.9		mg/Kg	4	6010B	Total/NA			
Barium	110		1.5		mg/Kg	4	6010B	Total/NA			
Beryllium	0.41		0.29		mg/Kg	4	6010B	Total/NA			
Chromium	38		1.5		mg/Kg	4	6010B	Total/NA			
Cobalt	8.8		0.58		mg/Kg	4	6010B	Total/NA			
Copper	25		4.4		mg/Kg	4	6010B	Total/NA			
Lead	6.4		1.5		mg/Kg	4	6010B	Total/NA			
Nickel	36		1.5		mg/Kg	4	6010B	Total/NA			
Vanadium	37		1.5		mg/Kg	4	6010B	Total/NA			
Zinc	52		4.4		mg/Kg	4	6010B	Total/NA			
Mercury	0.025		0.0097		mg/Kg	1	7471A	Total/NA			

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier	RL	MDL Unit	_			
	RL	MDI Unit				
ND		WIDE OILL	D	Prepared	Analyzed	Dil Fa
	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	•
ND	48	ug/Kg		10/15/14 20:30	10/15/14 22:45	•
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	•
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	19	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	9.7	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	48	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	9.7	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8			10/15/14 20:30	10/15/14 22:45	
					10/15/14 22:45	
					10/15/14 22:45	
						•
						•
	4.8			10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
	9.7			10/15/14 20:30	10/15/14 22:45	
ND	48	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	9.7	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	
ND	4.8	ug/Kg		10/15/14 20:30	10/15/14 22:45	•
	ND N	ND 4.8 ND 19 ND 4.8 ND 9.7 ND 4.8 ND 4.8 ND 4.8 ND 4.8 ND 9.7 ND 4.8 ND 9.7 ND 4.8 ND 9.7 ND 4.8 ND 9.7 ND 4.8 ND 4.8	ND	ND	ND 4.8 ug/Kg 10/15/14 20:30 ND 19 ug/Kg 10/15/14 20:30 ND 4.8 ug/Kg 10/15/14 20:30 ND 9.7 ug/Kg 10/15/14 20:30 ND 9.7 ug/Kg 10/15/14 20:30 ND 4.8 ug/Kg 10/15/14 20:30 ND 9.7 ug/Kg 10/15/14 20:30 ND 4.8 ug/Kg 10/15/14 20:30 ND	ND

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: Crown Chevrolet

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

TestAmerica Job ID: 720-60404-1

Lab Sample ID: 720-60404-17

10/15/14 20:30

10/15/14 20:30

10/15/14 20:30

10/15/14 22:45

10/15/14 22:45

10/15/14 22:45

5 Sample ID: 720-60404-17

Matrix: Solid

Date Collected: 10/06/14 15:01							Matri	x: Solid
Date Received: 10/06/14 17:40 Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Tetrachloroethene	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Toluene	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,2,3-Trichlorobenzene	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,2,4-Trichlorobenzene	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,1,1-Trichloroethane	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,1,2-Trichloroethane	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Trichloroethene	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Trichlorofluoromethane	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,2,3-Trichloropropane	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,2,4-Trimethylbenzene	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
1,3,5-Trimethylbenzene	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Vinyl acetate	ND	19		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Vinyl chloride	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Xylenes, Total	ND	9.7		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
2,2-Dichloropropane	ND	4.8		ug/Kg		10/15/14 20:30	10/15/14 22:45	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

45 - 131

60 - 140

58 - 140

91

86

91

4

5

7

9

10

11

13

4 /

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 6010B - Metals (ICP)

Date Collected: 10/06/14 14:40

Client Sample ID: IDW-W-1,-2,-3,-4,-5

TestAmerica Job ID: 720-60404-1

Lab Sample ID: 720-60404-6

Matrix: Water

Date Received: 10/06/14 17:40								
Analyte	Result Qu	ıalifier RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	0.010		ng/L		10/13/14 22:08	10/14/14 17:53	1
Arsenic	ND	0.010	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Barium	0.42	0.0050	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Beryllium	ND	0.0020	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Cadmium	ND	0.0025	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Chromium	0.052	0.010	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Cobalt	ND	0.0020	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Copper	ND	0.020	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Lead	ND	0.0050	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Molybdenum	0.046	0.010	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Nickel	ND	0.010	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Selenium	ND	0.020	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Silver	ND	0.0050	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Thallium	ND	0.010	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Vanadium	ND	0.010	m	ng/L		10/13/14 22:08	10/14/14 17:53	1
Zinc	ND	0.020	m	na/L		10/13/14 22:08	10/14/14 17:53	1

Client Sample ID: IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10 Lab Sample ID: 720-60404-17 **Matrix: Solid**

Date Collected: 10/06/14 15:01

Date Collected. 10/06/14 15.01								Maui	x. Soliu
Date Received: 10/06/14 17:40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Arsenic	7.1		2.9		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Barium	110		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Beryllium	0.41		0.29		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Cadmium	ND		0.36		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Chromium	38		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Cobalt	8.8		0.58		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Copper	25		4.4		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Lead	6.4		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Molybdenum	ND		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Nickel	36		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Selenium	ND		2.9		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Silver	ND		0.73		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Thallium	ND		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Vanadium	37		1.5		mg/Kg		10/13/14 23:22	10/17/14 10:52	4
Zinc	52		4.4		mg/Kg		10/13/14 23:22	10/17/14 10:52	4

10/17/2014

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Method: 7470A - Mercury (CVAA)

Client Sample ID: IDW-W-1,-2,-3,-4,-5

Date Collected: 10/06/14 14:40

Date Received: 10/06/14 17:40

Analyte Mercury

Result Qualifier

ND

0.00020

MDL Unit mg/L

Unit mg/L

D Prepared 10/15/14 08:

10/15/14 08:22 10/15/14

Analyzed D 10/15/14 18:43

Lab Sample ID: 720-60404-6

ed Dil Fac

Matrix: Water

6

R

10

11

13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Method: 7471A - Mercury (CVAA)

Client Sample ID: IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10

Date Collected: 10/06/14 15:01

Date Received: 10/06/14 17:40

Analyte

Mercury 0.025

Result Qualifier

RL0.0097

MDL Unit mg/Kg

Prepared

10/15/14 14:35 10/16/14 14:24

Lab Sample ID: 720-60404-17

Dil Fac Analyzed

Matrix: Solid

Client: AMEC Environment & Infrastructure, Inc.

12.3

Project/Site: Crown Chevrolet

Client Sample ID: IDW-W-5

рН

TestAmerica Job ID: 720-60404-1

10/06/14 19:05

Lab Sample ID: 720-60404-5

General Chemistry Client Sample ID: IDW-W-1 Lab Sample ID: 720-60404-1 Date Collected: 10/06/14 14:40 **Matrix: Water** Date Received: 10/06/14 17:40 RL Unit Dil Fac RL Analyte Result Qualifier D Prepared Analyzed 0.100 SU 10/06/14 19:00 рΗ 12.0 Client Sample ID: IDW-W-2 Lab Sample ID: 720-60404-2 Date Collected: 10/06/14 14:42 **Matrix: Water** Date Received: 10/06/14 17:40 Analyzed Analyte Result Qualifier RL **RL** Unit D Prepared Dil Fac

Client Sample ID: IDW-W-3 Lab Sample ID: 720-60404-3 Date Collected: 10/06/14 14:44 **Matrix: Water** Date Received: 10/06/14 17:40 Analyte Result Qualifier RL RL Unit D Analyzed Dil Fac Prepared 0.100 SU 10/06/14 19:08 pН 7.77

0.100

SU

Client Sample ID: IDW-W-4 Lab Sample ID: 720-60404-4 Date Collected: 10/06/14 14:46 **Matrix: Water** Date Received: 10/06/14 17:40 Analyte RL Unit Result Qualifier RL D Prepared Analyzed Dil Fac

SU pН 7.86 0.100 10/06/14 19:11

Date Collected: 10/06/14 15:08 **Matrix: Water** Date Received: 10/06/14 17:40 Analyte Result Qualifier RL **RL** Unit D Analyzed Dil Fac Prepared

SU 0.100 10/06/14 19:13 рН 12.3

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 720-168905/4

Matrix: Solid

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prepared	Analyzed	Dil Fac
	10/15/14 20:20	1
	10/15/14 20:20	1
	10/15/14 20:20	1

Analysis Batch: 168905	MB MB						
Analyte	Result Quali	fier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	5.0	ug/Kg			10/15/14 20:20	1
Acetone	ND	50	ug/Kg			10/15/14 20:20	1
Benzene	ND	5.0	ug/Kg			10/15/14 20:20	1
Dichlorobromomethane	ND	5.0	ug/Kg			10/15/14 20:20	1
Bromobenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
Chlorobromomethane	ND	20	ug/Kg			10/15/14 20:20	1
Bromoform	ND	5.0	ug/Kg			10/15/14 20:20	1
Bromomethane	ND	10	ug/Kg			10/15/14 20:20	1
2-Butanone (MEK)	ND	50	ug/Kg			10/15/14 20:20	1
n-Butylbenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
sec-Butylbenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
tert-Butylbenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
Carbon disulfide	ND	5.0	ug/Kg			10/15/14 20:20	1
Carbon tetrachloride	ND	5.0	ug/Kg			10/15/14 20:20	1
Chlorobenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
Chloroethane	ND	10	ug/Kg			10/15/14 20:20	1
Chloroform	ND	5.0	ug/Kg			10/15/14 20:20	1
Chloromethane	ND	10	ug/Kg			10/15/14 20:20	1
2-Chlorotoluene	ND	5.0	ug/Kg			10/15/14 20:20	1
4-Chlorotoluene	ND	5.0	ug/Kg			10/15/14 20:20	1
Chlorodibromomethane	ND	5.0	ug/Kg			10/15/14 20:20	1
1,2-Dichlorobenzene	ND ND	5.0	ug/Kg			10/15/14 20:20	
1,3-Dichlorobenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
1,4-Dichlorobenzene	ND	5.0				10/15/14 20:20	1
			ug/Kg				
1,3-Dichloropropane	ND ND	5.0 5.0	ug/Kg			10/15/14 20:20	
1,1-Dichloropropene	ND ND	10	ug/Kg			10/15/14 20:20	1
1,2-Dibromo-3-Chloropropane			ug/Kg			10/15/14 20:20	
Ethylene Dibromide	ND	5.0	ug/Kg			10/15/14 20:20	1
Dibromomethane	ND	10	ug/Kg			10/15/14 20:20	1
Dichlorodifluoromethane	ND	10	ug/Kg			10/15/14 20:20	1
1,1-Dichloroethane	ND	5.0	ug/Kg			10/15/14 20:20	1
1,2-Dichloroethane	ND	5.0	ug/Kg			10/15/14 20:20	1
1,1-Dichloroethene	ND	5.0	ug/Kg			10/15/14 20:20	1
cis-1,2-Dichloroethene	ND	5.0	ug/Kg			10/15/14 20:20	1
trans-1,2-Dichloroethene	ND	5.0	ug/Kg			10/15/14 20:20	1
1,2-Dichloropropane	ND	5.0	ug/Kg			10/15/14 20:20	1
cis-1,3-Dichloropropene	ND	5.0	ug/Kg			10/15/14 20:20	1
trans-1,3-Dichloropropene	ND	5.0	ug/Kg			10/15/14 20:20	1
Ethylbenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
Hexachlorobutadiene	ND	5.0	ug/Kg			10/15/14 20:20	1
2-Hexanone	ND	50	ug/Kg			10/15/14 20:20	1
Isopropylbenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
4-Isopropyltoluene	ND	5.0	ug/Kg			10/15/14 20:20	1
Methylene Chloride	ND	10	ug/Kg			10/15/14 20:20	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/Kg			10/15/14 20:20	1
Naphthalene	ND	10	ug/Kg			10/15/14 20:20	1
N-Propylbenzene	ND	5.0	ug/Kg			10/15/14 20:20	1
Styrene	ND	5.0	ug/Kg			10/15/14 20:20	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-168905/4

Matrix: Solid

Analysis Batch: 168905

Client Sample ID: Method Blank Prep Type: Total/NA

Alialysis Datch. 100303									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		5.0		ug/Kg			10/15/14 20:20	-
1,1,2,2-Tetrachloroethane	ND		5.0		ug/Kg			10/15/14 20:20	
Tetrachloroethene	ND		5.0		ug/Kg			10/15/14 20:20	
Toluene	ND		5.0		ug/Kg			10/15/14 20:20	
1,2,3-Trichlorobenzene	ND		5.0		ug/Kg			10/15/14 20:20	
1,2,4-Trichlorobenzene	ND		5.0		ug/Kg			10/15/14 20:20	
1,1,1-Trichloroethane	ND		5.0		ug/Kg			10/15/14 20:20	
1,1,2-Trichloroethane	ND		5.0		ug/Kg			10/15/14 20:20	
Trichloroethene	ND		5.0		ug/Kg			10/15/14 20:20	
Trichlorofluoromethane	ND		5.0		ug/Kg			10/15/14 20:20	
1,2,3-Trichloropropane	ND		5.0		ug/Kg			10/15/14 20:20	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/Kg			10/15/14 20:20	
1,2,4-Trimethylbenzene	ND		5.0		ug/Kg			10/15/14 20:20	
1,3,5-Trimethylbenzene	ND		5.0		ug/Kg			10/15/14 20:20	
Vinyl acetate	ND		20		ug/Kg			10/15/14 20:20	
Vinyl chloride	ND		5.0		ug/Kg			10/15/14 20:20	
Xylenes, Total	ND		10		ug/Kg			10/15/14 20:20	
2,2-Dichloropropane	ND		5.0		ug/Kg			10/15/14 20:20	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Pro	epared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		45 - 131			10/15/14 20:20	1
1,2-Dichloroethane-d4 (Surr)	92		60 - 140			10/15/14 20:20	1
Toluene-d8 (Surr)	92		58 ₋ 140			10/15/14 20:20	1

Lab Sample ID: LCS 720-168905/5

Matrix: Solid

Analysis Batch: 168905

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Allalysis Batch. 100903	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	50.0	45.8	- Qualifier	ug/Kg		92	70 - 144
Acetone	250	165		ug/Kg		66	30 - 162
Benzene	50.0	46.7		ug/Kg ug/Kg		93	70 - 130
Dichlorobromomethane	50.0	48.0		ug/Kg		96	70 - 131
Bromobenzene	50.0	49.2		ug/Kg		98	70 - 130
Chlorobromomethane	50.0	48.4		ug/Kg		97	70 - 130
Bromoform	50.0	49.2		ug/Kg		98	59 - 158
Bromomethane	50.0	40.0		ug/Kg		80	59 ₋ 132
2-Butanone (MEK)	250	214		ug/Kg		85	53 - 124
n-Butylbenzene	50.0	48.8		ug/Kg		98	70 - 142
sec-Butylbenzene	50.0	46.8		ug/Kg		94	70 - 136
tert-Butylbenzene	50.0	47.4		ug/Kg		95	70 - 130
Carbon disulfide	50.0	38.5		ug/Kg		77	60 - 140
Carbon tetrachloride	50.0	46.3		ug/Kg		93	70 - 138
Chlorobenzene	50.0	47.4		ug/Kg		95	70 - 130
Chloroethane	50.0	42.2		ug/Kg		84	65 _ 130
Chloroform	50.0	46.6		ug/Kg		93	77 ₋ 127
Chloromethane	50.0	40.8		ug/Kg		82	55 ₋ 140
2-Chlorotoluene	50.0	47.4		ug/Kg		95	70 - 138

TestAmerica Pleasanton

Page 13 of 34

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-168905/5

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chlorotoluene	50.0	47.8		ug/Kg		96	70 - 136	
Chlorodibromomethane	50.0	51.0		ug/Kg		102	70 - 146	
1,2-Dichlorobenzene	50.0	49.9		ug/Kg		100	70 - 130	
1,3-Dichlorobenzene	50.0	49.6		ug/Kg		99	70 - 131	
1,4-Dichlorobenzene	50.0	48.6		ug/Kg		97	70 - 130	
1,3-Dichloropropane	50.0	49.9		ug/Kg		100	70 - 140	
1,1-Dichloropropene	50.0	49.4		ug/Kg		99	70 - 130	
1,2-Dibromo-3-Chloropropane	50.0	51.3		ug/Kg		103	60 - 145	
Ethylene Dibromide	50.0	50.8		ug/Kg		102	70 - 140	
Dibromomethane	50.0	49.1		ug/Kg		98	70 - 139	
Dichlorodifluoromethane	50.0	38.1		ug/Kg		76	37 - 158	
1,1-Dichloroethane	50.0	47.8		ug/Kg		96	70 _ 130	
1,2-Dichloroethane	50.0	45.0		ug/Kg		90	70 ₋ 130	
1,1-Dichloroethene	50.0	41.1		ug/Kg		82	76 - 122	
cis-1,2-Dichloroethene	50.0	47.6		ug/Kg		95	70 - 138	
trans-1,2-Dichloroethene	50.0	46.4		ug/Kg		93	67 - 130	
1,2-Dichloropropane	50.0	50.5		ug/Kg		101	73 ₋ 127	
cis-1,3-Dichloropropene	50.0	52.3		ug/Kg		105	68 _ 147	
trans-1,3-Dichloropropene	50.0	55.4		ug/Kg		111	70 - 136	
Ethylbenzene	50.0	43.7		ug/Kg		87	80 _ 137	
Hexachlorobutadiene	50.0	43.5		ug/Kg		87	70 - 132	
2-Hexanone	250	246		ug/Kg		98	44 - 133	
Isopropylbenzene	50.0	45.5		ug/Kg		91	70 - 130	
4-Isopropyltoluene	50.0	45.8		ug/Kg		92	70 - 133	
Methylene Chloride	50.0	46.3		ug/Kg		93	70 - 134	
4-Methyl-2-pentanone (MIBK)	250	250		ug/Kg		100	60 - 160	
Naphthalene	50.0	53.2		ug/Kg		106	60 - 147	
N-Propylbenzene	50.0	47.5		ug/Kg		95	70 - 130	
Styrene	50.0	49.6		ug/Kg		99	70 - 130	
1,1,1,2-Tetrachloroethane	50.0	48.0		ug/Kg		96	70 - 130	
1,1,2,2-Tetrachloroethane	50.0	52.8		ug/Kg		106	70 - 146	
Tetrachloroethene	50.0	47.1		ug/Kg		94	70 - 132	
Toluene	50.0	43.5		ug/Kg		87	80 - 128	
1,2,3-Trichlorobenzene	50.0	48.6		ug/Kg		97	60 - 140	
1,2,4-Trichlorobenzene	50.0	47.7		ug/Kg		95	60 - 140	
1,1,1-Trichloroethane	50.0	44.9		ug/Kg		90	70 - 130	
1,1,2-Trichloroethane	50.0	50.5		ug/Kg ug/Kg		101	70 - 130 70 - 130	
Trichloroethene	50.0	46.7		ug/Kg ug/Kg		93	70 - 133	
Trichlorofluoromethane	50.0	41.1		ug/Kg		82	60 - 140	
1,2,3-Trichloropropane	50.0	51.3		ug/Kg ug/Kg		103	70 ₋ 146	
	50.0	39.7		ug/Kg ug/Kg		79	60 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	30.0	39.1		ug/Ng		19	00 - 140	
1,2,4-Trimethylbenzene	50.0	46.6		ug/Kg		93	70 - 130	
1,3,5-Trimethylbenzene	50.0	47.6		ug/Kg		95	70 - 131	
Vinyl acetate	50.0	42.9		ug/Kg		86	38 - 176	
Vinyl chloride	50.0	37.2		ug/Kg		74	58 - 125	
m-Xylene & p-Xylene	50.0	44.9		ug/Kg		90	70 - 146	
o-Xylene	50.0	46.1		ug/Kg		92	70 - 140	

TestAmerica Pleasanton

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-168905/5

Matrix: Solid

Analysis Batch: 168905

LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec 2,2-Dichloropropane 50.0 43.0 86 70 - 162 ug/Kg

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 97 45 - 131 1,2-Dichloroethane-d4 (Surr) 85 60 - 140 Toluene-d8 (Surr) 94 58 - 140

Lab Sample ID: LCSD 720-168905/6

Matrix: Solid

Analysis Batch: 168905

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	50.0	47.4		ug/Kg		95	70 - 144	3	20
Acetone	250	188		ug/Kg		75	30 - 162	13	30
Benzene	50.0	46.8		ug/Kg		94	70 - 130	0	20
Dichlorobromomethane	50.0	48.0		ug/Kg		96	70 - 131	0	20
Bromobenzene	50.0	49.5		ug/Kg		99	70 - 130	1	20
Chlorobromomethane	50.0	49.7		ug/Kg		99	70 - 130	3	20
Bromoform	50.0	50.3		ug/Kg		101	59 - 158	2	20
Bromomethane	50.0	40.9		ug/Kg		82	59 - 132	2	20
2-Butanone (MEK)	250	228		ug/Kg		91	53 - 124	7	20
n-Butylbenzene	50.0	48.1		ug/Kg		96	70 - 142	2	20
sec-Butylbenzene	50.0	46.9		ug/Kg		94	70 - 136	0	20
tert-Butylbenzene	50.0	47.0		ug/Kg		94	70 - 130	1	20
Carbon disulfide	50.0	38.8		ug/Kg		78	60 - 140	1	20
Carbon tetrachloride	50.0	45.2		ug/Kg		90	70 - 138	2	20
Chlorobenzene	50.0	47.3		ug/Kg		95	70 - 130	0	20
Chloroethane	50.0	43.7		ug/Kg		87	65 - 130	4	20
Chloroform	50.0	46.6		ug/Kg		93	77 - 127	0	20
Chloromethane	50.0	42.6		ug/Kg		85	55 - 140	4	20
2-Chlorotoluene	50.0	47.4		ug/Kg		95	70 - 138	0	20
4-Chlorotoluene	50.0	47.7		ug/Kg		95	70 - 136	0	20
Chlorodibromomethane	50.0	51.1		ug/Kg		102	70 - 146	0	20
1,2-Dichlorobenzene	50.0	50.3		ug/Kg		101	70 - 130	1	20
1,3-Dichlorobenzene	50.0	49.3		ug/Kg		99	70 - 131	1	20
1,4-Dichlorobenzene	50.0	48.7		ug/Kg		97	70 - 130	0	20
1,3-Dichloropropane	50.0	51.1		ug/Kg		102	70 - 140	2	20
1,1-Dichloropropene	50.0	48.8		ug/Kg		98	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	50.0	54.2		ug/Kg		108	60 - 145	5	20
Ethylene Dibromide	50.0	51.6		ug/Kg		103	70 - 140	2	20
Dibromomethane	50.0	50.4		ug/Kg		101	70 - 139	3	20
Dichlorodifluoromethane	50.0	39.8		ug/Kg		80	37 - 158	4	20
1,1-Dichloroethane	50.0	48.4		ug/Kg		97	70 - 130	1	20
1,2-Dichloroethane	50.0	44.3		ug/Kg		89	70 - 130	2	20
1,1-Dichloroethene	50.0	41.5		ug/Kg		83	76 ₋ 122	1	20
cis-1,2-Dichloroethene	50.0	48.1		ug/Kg		96	70 - 138	1	20
trans-1,2-Dichloroethene	50.0	46.8		ug/Kg		94	67 - 130	1	20
1,2-Dichloropropane	50.0	50.8		ug/Kg		102	73 - 127	1	20

TestAmerica Pleasanton

Page 15 of 34

Project/Site: Crown Chevrolet

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-168905/6

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Solid

Analysis Batch: 168905

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene	50.0	52.9		ug/Kg		106	68 - 147	1	20
trans-1,3-Dichloropropene	50.0	55.7		ug/Kg		111	70 - 136	0	20
Ethylbenzene	50.0	43.3		ug/Kg		87	80 - 137	1	20
Hexachlorobutadiene	50.0	44.4		ug/Kg		89	70 - 132	2	20
2-Hexanone	250	262		ug/Kg		105	44 - 133	7	20
Isopropylbenzene	50.0	45.3		ug/Kg		91	70 - 130	0	20
4-Isopropyltoluene	50.0	45.6		ug/Kg		91	70 - 133	0	20
Methylene Chloride	50.0	47.3		ug/Kg		95	70 - 134	2	20
4-Methyl-2-pentanone (MIBK)	250	266		ug/Kg		106	60 - 160	6	20
Naphthalene	50.0	55.9		ug/Kg		112	60 - 147	5	20
N-Propylbenzene	50.0	46.6		ug/Kg		93	70 - 130	2	20
Styrene	50.0	49.5		ug/Kg		99	70 - 130	0	20
1,1,1,2-Tetrachloroethane	50.0	47.9		ug/Kg		96	70 - 130	0	20
1,1,2,2-Tetrachloroethane	50.0	55.4		ug/Kg		111	70 - 146	5	20
Tetrachloroethene	50.0	46.3		ug/Kg		93	70 - 132	2	20
Toluene	50.0	43.7		ug/Kg		87	80 - 128	0	20
1,2,3-Trichlorobenzene	50.0	50.7		ug/Kg		101	60 - 140	4	20
1,2,4-Trichlorobenzene	50.0	49.3		ug/Kg		99	60 - 140	3	20
1,1,1-Trichloroethane	50.0	44.2		ug/Kg		88	70 - 130	1	20
1,1,2-Trichloroethane	50.0	52.4		ug/Kg		105	70 - 130	4	20
Trichloroethene	50.0	46.7		ug/Kg		93	70 - 133	0	20
Trichlorofluoromethane	50.0	41.0		ug/Kg		82	60 - 140	0	20
1,2,3-Trichloropropane	50.0	52.4		ug/Kg		105	70 - 146	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	40.0		ug/Kg		80	60 - 140	1	20
ne									
1,2,4-Trimethylbenzene	50.0	46.4		ug/Kg		93	70 - 130	0	20
1,3,5-Trimethylbenzene	50.0	47.5		ug/Kg		95	70 - 131	0	20
Vinyl acetate	50.0	49.3		ug/Kg		99	38 - 176	14	20
Vinyl chloride	50.0	37.9		ug/Kg		76	58 - 125	2	20
m-Xylene & p-Xylene	50.0	44.5		ug/Kg		89	70 - 146	1	20
o-Xylene	50.0	45.8		ug/Kg		92	70 - 140	1	20
2,2-Dichloropropane	50.0	42.0		ug/Kg		84	70 - 162	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		45 - 131
1,2-Dichloroethane-d4 (Surr)	83		60 - 140
Toluene-d8 (Surr)	94		58 - 140

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-168743/1-A

Matrix: Water

Analysis Batch: 168805

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 168743

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.010		mg/L		10/13/14 22:08	10/14/14 13:53	1
Arsenic	ND		0.010		mg/L		10/13/14 22:08	10/14/14 13:53	1
Barium	ND		0.0050		mg/L		10/13/14 22:08	10/14/14 13:53	1

TestAmerica Pleasanton

Page 16 of 34

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 720-168743/1-A

Matrix: Water

Analysis Batch: 168805

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 168743

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		0.0020		mg/L		10/13/14 22:08	10/14/14 13:53	1
Cadmium	ND		0.0025		mg/L		10/13/14 22:08	10/14/14 13:53	1
Chromium	ND		0.010		mg/L		10/13/14 22:08	10/14/14 13:53	1
Cobalt	ND		0.0020		mg/L		10/13/14 22:08	10/14/14 13:53	1
Copper	ND		0.020		mg/L		10/13/14 22:08	10/14/14 13:53	1
Lead	ND		0.0050		mg/L		10/13/14 22:08	10/14/14 13:53	1
Molybdenum	ND		0.010		mg/L		10/13/14 22:08	10/14/14 13:53	1
Nickel	ND		0.010		mg/L		10/13/14 22:08	10/14/14 13:53	1
Selenium	ND		0.020		mg/L		10/13/14 22:08	10/14/14 13:53	1
Silver	ND		0.0050		mg/L		10/13/14 22:08	10/14/14 13:53	1
Thallium	ND		0.010		mg/L		10/13/14 22:08	10/14/14 13:53	1
Vanadium	ND		0.010		mg/L		10/13/14 22:08	10/14/14 13:53	1
Zinc	ND		0.020		mg/L		10/13/14 22:08	10/14/14 13:53	1

MB MB

Lab Sample ID: LCS 720-168743/2-A

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 168805							Prep Batcl	h: 168743
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	1.00	0.935		mg/L		93	80 - 120	
Arsenic	1.00	1.01		mg/L		101	80 - 120	
Barium	1.00	1.07		mg/L		107	80 - 120	
Beryllium	1.00	1.05		mg/L		105	80 - 120	
Cadmium	1.00	0.979		mg/L		98	80 - 120	
Chromium	1.00	1.00		mg/L		100	80 - 120	
Cobalt	1.00	1.01		mg/L		101	80 - 120	
Copper	1.00	0.996		mg/L		100	80 - 120	
Lead	1.00	1.04		mg/L		104	80 - 120	
Molybdenum	1.00	1.06		mg/L		106	80 - 120	
Nickel	1.00	1.01		mg/L		101	80 - 120	
Selenium	1.00	0.964		mg/L		96	80 - 120	
Silver	0.500	0.488		mg/L		98	80 - 120	
Thallium	1.00	1.02		mg/L		102	80 - 120	
Vanadium	1.00	1.04		mg/L		104	80 - 120	
Zinc	1.00	0.960		mg/L		96	80 - 120	

Lab Sample ID: LCSD 720-168743/3-A

Matrix: Water

Analysis Batch: 168805

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 168743

%Rec. RPD

Spike Added Result Qualifier Limit Analyte Unit %Rec Limits RPD 1.00 0.936 94 20 Antimony mg/L 80 - 120 0 Arsenic 1.00 0.987 mg/L 99 80 - 120 20 Barium 1.00 0.996 100 80 - 120 20 mg/L Beryllium 1.00 0.993 mg/L 99 80 - 120 20 Cadmium 1.00 0.966 mg/L 97 80 - 120 20 Chromium 1.00 0.995 mg/L 99 80 - 120 20 Cobalt 1.00 0.997 80 - 120 20 mg/L 100 Copper 1.00 0.999 mg/L 100 80 - 120 20

LCSD LCSD

TestAmerica Pleasanton

Page 17 of 34

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSD 720-168743/3-A

Matrix: Water

Analysis Batch: 168805

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 168743

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.00	1.02		mg/L		102	80 - 120	2	20
1.00	1.05		mg/L		105	80 - 120	0	20
1.00	0.997		mg/L		100	80 - 120	2	20
1.00	0.962		mg/L		96	80 - 120	0	20
0.500	0.483		mg/L		97	80 - 120	1	20
1.00	1.01		mg/L		101	80 - 120	1	20
1.00	1.01		mg/L		101	80 - 120	3	20
1.00	0.940		mg/L		94	80 - 120	2	20
	Added 1.00 1.00 1.00 1.00 0.500 1.00 1.00	Added Result 1.00 1.02 1.00 1.05 1.00 0.997 1.00 0.962 0.500 0.483 1.00 1.01 1.00 1.01	Added Result Qualifier 1.00 1.02 1.00 1.05 1.00 0.997 1.00 0.962 0.500 0.483 1.00 1.01 1.00 1.01	Added Result Qualifier Unit 1.00 1.02 mg/L 1.00 1.05 mg/L 1.00 0.997 mg/L 1.00 0.962 mg/L 0.500 0.483 mg/L 1.00 1.01 mg/L 1.00 1.01 mg/L	Added Result Qualifier Unit D 1.00 1.02 mg/L mg/L 1.00 1.05 mg/L mg/L 1.00 0.997 mg/L mg/L 0.500 0.483 mg/L mg/L 1.00 1.01 mg/L mg/L 1.00 1.01 mg/L mg/L	Added Result Qualifier Unit D %Rec 1.00 1.02 mg/L 102 1.00 1.05 mg/L 105 1.00 0.997 mg/L 100 1.00 0.962 mg/L 96 0.500 0.483 mg/L 97 1.00 1.01 mg/L 101 1.00 1.01 mg/L 101	Added Result Qualifier Unit D %Rec Limits 1.00 1.02 mg/L 102 80 - 120 1.00 1.05 mg/L 105 80 - 120 1.00 0.997 mg/L 100 80 - 120 1.00 0.962 mg/L 96 80 - 120 0.500 0.483 mg/L 97 80 - 120 1.00 1.01 mg/L 101 80 - 120 1.00 1.01 mg/L 101 80 - 120	Added Result Qualifier Unit D %Rec Limits RPD 1.00 1.02 mg/L 102 80 - 120 2 1.00 1.05 mg/L 105 80 - 120 0 1.00 0.997 mg/L 100 80 - 120 2 1.00 0.962 mg/L 96 80 - 120 0 0.500 0.483 mg/L 97 80 - 120 1 1.00 1.01 mg/L 101 80 - 120 1 1.00 1.01 mg/L 101 80 - 120 3

Lab Sample ID: MB 720-168744/1-A

Matrix: Solid

Analysis Batch: 169002

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 168744

	МВ	МВ						•	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Arsenic	ND		1.0		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Barium	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Beryllium	ND		0.10		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Cadmium	ND		0.13		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Chromium	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Cobalt	ND		0.20		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Copper	ND		1.5		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Lead	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Molybdenum	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Nickel	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Selenium	ND		1.0		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Silver	ND		0.25		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Thallium	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Vanadium	ND		0.50		mg/Kg		10/13/14 23:22	10/16/14 15:37	1
Zinc	ND		1.5		mg/Kg		10/13/14 23:22	10/16/14 15:37	1

Lab Sample ID: LCS 720-168744/2-A

Matrix: Solid

Analysis Batch: 169002

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 168744**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 50.0 49.4 99 80 - 120 Antimony mg/Kg 50.0 Arsenic 50.6 101 80 - 120 mg/Kg Barium 50.0 53.1 mg/Kg 106 80 - 120 50.0 51.9 80 - 120 Beryllium mg/Kg 104 Cadmium 50.0 50.6 mg/Kg 101 80 - 120 Chromium 50.0 51.8 mg/Kg 104 80 - 120 Cobalt 50.0 52.5 mg/Kg 105 80 - 120 50.0 51.9 104 80 - 120 Copper mg/Kg Lead 50.0 52.2 mg/Kg 104 80 - 120 Molybdenum 50.0 52.3 mg/Kg 105 80 - 120 Nickel 50.0 51.8 mg/Kg 104 80 - 120 Selenium 50.0 49.7 mg/Kg 99 80 - 120 25.0 Silver 25.2 mg/Kg 101 80 - 120

TestAmerica Pleasanton

Page 18 of 34

10/17/2014

Project/Site: Crown Chevrolet

Zinc

Method: 6010B - Metals (ICP) (Continued)

Client: AMEC Environment & Infrastructure, Inc.

Lab Sample ID: LCS 720-168744/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 169002 Prep Batch: 168744

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Thallium 50.0 52.3 80 - 120 mg/Kg 105 Vanadium 50.0 51.2 mg/Kg 102 80 - 120

50.0

Lab Sample ID: LCSD 720-168744/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Prep Type: Total/NA

47.9

mg/Kg

96

80 - 120

Analysis Batch: 169002					Prep Batch: 168744				
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	50.0	49.2		mg/Kg		98	80 - 120	0	20
Arsenic	50.0	50.1		mg/Kg		100	80 - 120	1	20
Barium	50.0	52.3		mg/Kg		105	80 - 120	1	20
Beryllium	50.0	51.0		mg/Kg		102	80 - 120	2	20
Cadmium	50.0	49.9		mg/Kg		100	80 - 120	1	20
Chromium	50.0	51.3		mg/Kg		103	80 - 120	1	20
Cobalt	50.0	51.8		mg/Kg		104	80 - 120	1	20
Copper	50.0	51.4		mg/Kg		103	80 - 120	1	20
Lead	50.0	51.4		mg/Kg		103	80 - 120	1	20
Molybdenum	50.0	52.6		mg/Kg		105	80 - 120	1	20
Nickel	50.0	52.0		mg/Kg		104	80 - 120	0	20
Selenium	50.0	49.2		mg/Kg		98	80 - 120	1	20
Silver	25.0	24.8		mg/Kg		99	80 - 120	2	20
Thallium	50.0	51.3		mg/Kg		103	80 - 120	2	20
Vanadium	50.0	50.6		mg/Kg		101	80 - 120	1	20
Zinc	50.0	47.3		mg/Kg		95	80 - 120	1	20

Lab Sample ID: LCSSRM 720-168744/25-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Thallium

Zinc

Vanadium

Analysis Batch: 169002 **Prep Batch: 168744** Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits Antimony 74.6 35.5 mg/Kg 48 11 - 101 Arsenic 45.5 41.3 91 mg/Kg 69 _ 119 Barium 579 515 mg/Kg 89 61 - 117 Beryllium 155 140 mg/Kg 91 56 - 102 67 - 118 Cadmium 201 175 mg/Kg 87 Chromium 106 95.2 90 67 _ 121 mg/Kg Cobalt 247 221 90 64 - 133 mg/Kg Copper 130 92 68 - 126 119 mg/Kg Lead 302 264 88 62 - 113 mg/Kg Molybdenum 165 143 87 62 - 128 mg/Kg Nickel 305 267 88 65 - 117 mg/Kg Selenium 133 121 mg/Kg 91 63 - 126 Silver 33.5 29.9 89 51 - 130 mg/Kg

TestAmerica Pleasanton

Page 19 of 34

191

214

388

167

195

331

mg/Kg

mg/Kg

mg/Kg

88

91

85

64 - 124

67 - 123

62 - 110

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Limits

Client Sample ID: Lab Control Sample Dup

85 - 115

%Rec.

Limits

85 - 115

Client Sample ID: Method Blank

Analyzed

10/16/14 13:20

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

%Rec.

Limits

80 - 120

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

%Rec

%Rec

Prepared

10/15/14 14:35

%Rec

%Rec

105

104

102

D

103

Prep Type: Total/NA

Prep Batch: 168854

Prep Type: Total/NA

Prep Batch: 168854

Prep Type: Total/NA

Prep Batch: 168854

RPD

Prep Type: Total/NA

Prep Batch: 168888

Prep Type: Total/NA

Prep Batch: 168888

Prep Type: Total/NA

Prep Batch: 168888

RPD

Prep Type: Total/NA

RPD

Limit

Dil Fac

RPD

Limit

20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 720-168854/1-A **Matrix: Water**

Analysis Batch: 168922

мв мв

MB MB

Qualifier

Result

ND

Result Qualifier RLMDL Unit D Prepared Dil Fac Analyte Analyzed 0.00020 10/15/14 08:22 Mercury ND mg/L 10/15/14 18:27

Spike

Added

0.0100

Spike

Added

0.0100

Spike

Added

0.833

Spike

babbA

0.833

LCS LCS

0.0103

0.0102

RL

0.010

Result Qualifier

LCSD LCSD

Result Qualifier

MDL Unit

LCS LCS

LCSD LCSD

Result Qualifier

0.867

0.875

Result Qualifier

mg/Kg

Unit

Unit

mg/Kg

mg/Kg

Unit

mg/L

Unit

mg/L

Lab Sample ID: LCS 720-168854/2-A

Matrix: Water

Analyte

Mercury

Analysis Batch: 168922

Mercury

Lab Sample ID: LCSD 720-168854/3-A

Matrix: Water

Analysis Batch: 168922

Analyte

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 720-168888/1-A

Matrix: Solid

Analysis Batch: 168985

Analyte

Mercury

Lab Sample ID: LCS 720-168888/2-A

Matrix: Solid

Analysis Batch: 168985

Analyte

Lab Sample ID: LCSD 720-168888/3-A

Matrix: Solid

Mercury

Analyte

Mercury

Analysis Batch: 168985

Method: 9040B - pH

Lab Sample ID: LCS 720-168259/1

Matrix: Water

Analysis Batch: 168259

Analyte рН

Spike Added 7.00

Result Qualifier 6.980

LCS LCS Unit SU

%Rec 100

Limits 99 - 101

%Rec.

TestAmerica Pleasanton

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Method: 9040B - pH (Continued)

Lab Sample ID: 720-60404-1 DU

Matrix: Water

Analysis Batch: 168259

0404-1 DU Client Sample ID: IDW-W-1
Prep Type: Total/NA

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier D RPD Limit Unit SU 0.4 5 pН 12.0 12.04

3

4

7

8

3

11

13

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

GC/MS VOA

Analysis Batch: 168905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-17	IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10	Total/NA	Solid	8260B	168929
LCS 720-168905/5	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 720-168905/6	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 720-168905/4	Method Blank	Total/NA	Solid	8260B	

Prep Batch: 168929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-17	IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10	Total/NA	Solid	5030B	

Metals

Prep Batch: 168743

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-6	IDW-W-1,-2,-3,-4,-5	Total/NA	Water	3010A	
LCS 720-168743/2-A	Lab Control Sample	Total/NA	Water	3010A	
LCSD 720-168743/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	
MB 720-168743/1-A	Method Blank	Total/NA	Water	3010A	

Prep Batch: 168744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-17	IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10	Total/NA	Solid	3050B	
LCS 720-168744/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-168744/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-168744/25-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-168744/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 168805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-168743/2-A	Lab Control Sample	Total/NA	Water	6010B	168743
LCSD 720-168743/3-A	Lab Control Sample Dup	Total/NA	Water	6010B	168743
MB 720-168743/1-A	Method Blank	Total/NA	Water	6010B	168743

Analysis Batch: 168818

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-6	IDW-W-1,-2,-3,-4,-5	Total/NA	Water	6010B	168743

Prep Batch: 168854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-6	IDW-W-1,-2,-3,-4,-5	Total/NA	Water	7470A	_
LCS 720-168854/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 720-168854/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
MB 720-168854/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 168888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-17	IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10	Total/NA	Solid	7471A	<u> </u>
LCS 720-168888/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 720-168888/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
MB 720-168888/1-A	Method Blank	Total/NA	Solid	7471A	

TestAmerica Pleasanton

10/17/2014

Page 22 of 34

6

3

0

8

9

10

40

13

1 /

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Metals (Continued)

Analysis Batch: 168922

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-6	IDW-W-1,-2,-3,-4,-5	Total/NA	Water	7470A	168854
LCS 720-168854/2-A	Lab Control Sample	Total/NA	Water	7470A	168854
LCSD 720-168854/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	168854
MB 720-168854/1-A	Method Blank	Total/NA	Water	7470A	168854

Analysis Batch: 168985

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-17	IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10	Total/NA	Solid	7471A	168888
LCS 720-168888/2-A	Lab Control Sample	Total/NA	Solid	7471A	168888
LCSD 720-168888/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	168888
MB 720-168888/1-A	Method Blank	Total/NA	Solid	7471A	168888

Analysis Batch: 169002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-168744/2-A	Lab Control Sample	Total/NA	Solid	6010B	168744
LCSD 720-168744/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	168744
LCSSRM 720-168744/25-A	Lab Control Sample	Total/NA	Solid	6010B	168744
MB 720-168744/1-A	Method Blank	Total/NA	Solid	6010B	168744

Analysis Batch: 169071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-17	IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10	Total/NA	Solid	6010B	168744

General Chemistry

Analysis Batch: 168259

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60404-1	IDW-W-1	Total/NA	Water	9040B	
720-60404-1 DU	IDW-W-1	Total/NA	Water	9040B	
720-60404-2	IDW-W-2	Total/NA	Water	9040B	
720-60404-3	IDW-W-3	Total/NA	Water	9040B	
720-60404-4	IDW-W-4	Total/NA	Water	9040B	
720-60404-5	IDW-W-5	Total/NA	Water	9040B	
LCS 720-168259/1	Lab Control Sample	Total/NA	Water	9040B	

TestAmerica Pleasanton

U

8

9

11

12

13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: IDW-W-1 Lab Sample ID: 720-60404-1

Matrix: Water

Date Collected: 10/06/14 14:40 Date Received: 10/06/14 17:40

Batch Dilution Batch Batch Prepared Method Factor **Prep Type** Type Run Number or Analyzed Analyst Lab Total/NA Analysis 9040B 168259 10/06/14 19:00 EYT TAL PLS

Client Sample ID: IDW-W-2 Lab Sample ID: 720-60404-2

Date Collected: 10/06/14 14:42 **Matrix: Water**

Date Received: 10/06/14 17:40

Batch Batch Dilution Batch Prepared Method Run Factor Prep Type Type Number or Analyzed Analyst Lab Total/NA 9040B 168259 10/06/14 19:05 EYT TAL PLS Analysis

Client Sample ID: IDW-W-3 Lab Sample ID: 720-60404-3

Date Collected: 10/06/14 14:44 Matrix: Water

Date Received: 10/06/14 17:40

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 168259 Total/NA Analysis 9040B 10/06/14 19:08 EYT TAL PLS

Lab Sample ID: 720-60404-4 Client Sample ID: IDW-W-4 **Matrix: Water**

Date Collected: 10/06/14 14:46

Date Received: 10/06/14 17:40

Batch Batch Dilution Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 9040B 168259 10/06/14 19:11 EYT TAL PLS

Client Sample ID: IDW-W-5 Lab Sample ID: 720-60404-5

Date Collected: 10/06/14 15:08 **Matrix: Water**

Date Received: 10/06/14 17:40

Batch Dilution Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab TAL PLS Analysis 9040B 168259 Total/NA 10/06/14 19:13 EYT

Client Sample ID: IDW-W-1,-2,-3,-4,-5 Lab Sample ID: 720-60404-6

Date Collected: 10/06/14 14:40 Matrix: Water

Date Received: 10/06/14 17:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			168743	10/13/14 22:08	CTD	TAL PLS
Total/NA	Analysis	6010B		1	168818	10/14/14 17:53	SLK	TAL PLS
Total/NA	Prep	7470A			168854	10/15/14 08:22	ECT	TAL PLS
Total/NA	Analysis	7470A		1	168922	10/15/14 18:43	SLK	TAL PLS

TestAmerica Pleasanton

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Lab Sample ID: 720-60404-17

Client Sample ID: IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10 Matrix: Solid

Date Collected: 10/06/14 15:01 Date Received: 10/06/14 17:40

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Prep	5030B			168929	10/15/14 20:30	LPL	TAL PLS
Analysis	8260B		1	168905	10/15/14 22:45	PDR	TAL PLS
Prep	3050B			168744	10/13/14 23:22	CTD	TAL PLS
Analysis	6010B		4	169071	10/17/14 10:52	EFH	TAL PLS
Prep	7471A			168888	10/15/14 14:35	ASB	TAL PLS
Analysis	7471A		1	168985	10/16/14 14:24	EFH	TAL PLS
	Type Prep Analysis Prep Analysis Prep	Type Method Prep 5030B Analysis 8260B Prep 3050B Analysis 6010B Prep 7471A	Type Method Run Prep 5030B Analysis 8260B Prep 3050B Analysis 6010B Prep 7471A	Type Method Run Factor Prep 5030B 1 Analysis 8260B 1 Prep 3050B 4 Analysis 6010B 4 Prep 7471A	Type Method Run Factor Number Prep 5030B 168929 Analysis 8260B 1 168905 Prep 3050B 168744 169071 Analysis 6010B 4 169071 Prep 7471A 168888	Type Method Run Factor Number or Analyzed Prep 5030B 168929 10/15/14 20:30 Analysis 8260B 1 168905 10/15/14 22:45 Prep 3050B 168744 10/13/14 23:22 Analysis 6010B 4 169071 10/17/14 10:52 Prep 7471A 168888 10/15/14 14:35	Type Method Run Factor Number or Analyzed Analyst Prep 5030B 168929 10/15/14 20:30 LPL Analysis 8260B 1 168905 10/15/14 22:45 PDR Prep 3050B 168744 10/13/14 23:22 CTD Analysis 6010B 4 169071 10/17/14 10:52 EFH Prep 7471A 168888 10/15/14 14:35 ASB

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	ram	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analyt	e	

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS
7470A	Mercury (CVAA)	SW846	TAL PLS
7471A	Mercury (CVAA)	SW846	TAL PLS
9040B	рН	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

5

7

8

11

12

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60404-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-60404-1	IDW-W-1	Water	10/06/14 14:40	10/06/14 17:40
720-60404-2	IDW-W-2	Water	10/06/14 14:42	10/06/14 17:40
720-60404-3	IDW-W-3	Water	10/06/14 14:44	10/06/14 17:40
720-60404-4	IDW-W-4	Water	10/06/14 14:46	10/06/14 17:40
720-60404-5	IDW-W-5	Water	10/06/14 15:08	10/06/14 17:40
720-60404-6	IDW-W-1,-2,-3,-4,-5	Water	10/06/14 14:40	10/06/14 17:40
720-60404-17	IDW-S-1,-2,-3,-4,-5,-6,-7,-8,-9,-10	Solid	10/06/14 15:01	10/06/14 17:40

6

Л

6

8

9

. .

13

my vocs	context Avery whitmousts			010.8.128.010			1006145	7 7 7 0 0 0 0	11117	6 1 LL 5	1 50	100614	111190011	100611	YR MO DAY TIME	DATE		Recorder:	Isme	20-60397	Oakland, CA 94612 10/4/14 Samplers: (510) 451-1001	_
Relinquished By (Signature)	Received By (Signature):	Relinquished By (Signature)	Received By (Signature):	Neil Huising by Surrating	1 Jakket	.					× 19.		<i>\$</i>	20	I		(oignamic Nednired)	airaclu	.	60404	D. Augot	CHAIN OF CUSTODY FORM
(Print Name)	(Print Name)	(Print Name)		1		OTSUS TO NIV				×			4	- I	3270	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TALS (Cosin	17)601 ANA		7) X 17971	FORM
(Company)	(Company)	(Company)				DY RECORD													LYSIS REQUI		9	Page 102
	Relinquished By (Signature) (Print Name)	Received By (Signature): (Print Name) (Company) Relinquished By (Signature) (Print Name) (Company)	Relinquished By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company) Relinquished By (Signature) (Print Name) (Company)	Received By (Signature): (Print Name) (Company) Relinquished By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company) Relinquished By (Signature) (Print Name) (Company)	Received By (Signature): (Print Name) (Company) Relinquished By (Signature) (Print Name) (Company)	Relinquished By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company) Relinquished By (Signature) (Print Name) (Company)	CHAIN OF CUSTODY RECORD Relinquished By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company)	CHAIN OF CUSTODY RECORD Relinquished By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company) Relinquished By (Signature) (Print Name) (Company)	CHAIN OF CUSTODY RECORD CHAIN OF CUSTODY RECORD Relinquished By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company)	S2 53 51 51 51 51 51 51 51 51 51	50 51 52 53 54 554 CHAIN OF CUSTODY RECORD Relinquished By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company)	CHAIN OF CUSTODY RECORD Relinquished By (Signature) (Print Name) (Company) Received By (Signature) (Print Name) (Company) Received By (Signature): (Print Name) (Company)	4 + + + + + + + + + + + + + + + + + + +	1 1 2 2 2 3 4 4 4 4 4 4 4 4 4	H C Print Name) Received By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company)	ME DEPTH 600 W 6 4 7 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DESCRIPTION DESCR	DESCRIPTION DESCRIPTION DESCRIPTION DEPTH 60 70 E FAIL TO SELECT SELE	ME STATION DESCRIPTION DESCR	ANALYSIS REQUESTE Signature Required) STATION DESCRIPTION DESCRIPT	ANALYSIS REQUESTE Signature Required) STATION DESCRIPTION DEPTH 32 82 93 94 94 94 94 94 94 94 94 94 94 94 94 94	ME Signature Required) ME STATION DESCRIPTION DESCRIPTION DESCRIPTION A STATION DEPTH SSIPE ANALYSIS REQUESTE CHAIN OF CUSTODY RECORD THE CHAIN OF CUSTODY RECORD THE CHAIN OF CUSTODY RECORD Relinquished By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company) Received By (Signature): (Print Name) (Company)

Job Number: ODICIBOTO OCCOBA A Vame/Location: Crown Chevrolet Cadillac Isozu MATRIX CONTAINERS BERGER DE LA LINGUISTA DATE MATRIX CONTAINERS SAMPLE NUMBER YR MO DAY SI J J J J J J J J J J J J J J J J J J J	Recorder: AACL Signature Required) STATION DESCRIPTION DESCRIPTION DESCRIPTION Relinquished By (Signature Signature) Received By (Signature Required) Received By (Signature)	Print Nam	RECORD ANGC ID (Company) Company) Company) Company)	IESTED IE (G & Lu Tub (Date/Time) (Date/Time) (Date/Time) (Date/Time)
(707) 793-3800	Samplers: LATING	भ्वतिषय		
Suite 200 Suite 200 Petaluma, CA 94954		*	amec	
~ 73 Telaidila, CX 94904	Complete P File		•	(
		rug		
0010160070.000	40409 45EE	3470	•	
Crown cherrolet Cadillac			SIS REQUESTE	ט
>	· ' · · ·			-
	(Signature	LSCCA		
		ТАІ		
# CONTAINERS	. /			
Jnpres 12SO4 1NO3 1CL SAMPLE NUMBER	DAY TIME			
9 7 5 - S - S O 1	ر ا ا			
1 4 1	06/150			
-151-1811111111111111	61150			
W-18-9 1141	061150			
1 11 1 01 - 15 - 10	06150			
ADDITIONAL INFORMATION	}	AIN OF CUSTOD	RECORD	-
EPORT TO: avery whitness he and wow	T	A.M.A.M.A	そうか	F/ 13/0
	왕)	(Print Name)	Company),	'Date/Time)
52 450 2010	2 22-		<u>,</u>	イナゲ
	Received By (Signature):	(Print Name)		'Date/Time)
reacired: io	Relinquished By (Signatu			'Date/Time)
and Medals on				
composite in the samples for motols	separadely	(Print Name)		Date/Time)
- 2		1		
COV Sample DON WARPER OF			~	vate/ ime)
() 1 PM-5-18				'Date/Time)
	Method of Shipment			
		aid at Office Conv		
		eld or Office Copy		7

White - Laboratory Copy Yellow - Project Office Copy		1, 182-5-2, 10w-5-3, 10w-5-4, 10w-5-5, 10	p 4) Clanuru , 100 m - 2, 100 m - 3, 100 m - 2, 100 m - 2, 100 m - 3, 100 m - 2, 100 m -	* 8260B and Metals on hold. Please contact Avery whitmoush Thease composite water samples for motals; another spacefully	POT COIZZSESZ ID TIODOGOOOIGIE	핆	TAT: Standard		REPORT TO: avery whitenessing and your	ADDITIONAL INFORMATION	W-5-5 114100	1000171	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3001 7 1 2 - 5 - 2 - 3 - 3 1 1 1	× 1000 11 100 11 100 11 11 11 11 11 11 11		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 1 900 - H 1	Water Soil Air Unpres HNO3 HCL SAMPLE NUMBER 1 YR MO DAY TIME	CONTAINER 720-60404 Chain of Custody	MATRIX # DATE		Project Manager: Avery whiteways Recorder.	Name/Location: Crown Charolet Cadillac Israel	Job Number: 0010160070, 00003, A 770-6037	Lab: 10 Oakland, CA 94612 (0)4/17 Samplers: (510) 451-1001	Seq. 2439 1330 Broadway CHAIN OF	1 2 3 4 5 6 7 8 9 10 11 12 12
	Nethod of Ship	-	Relinquished By (Signature)	Received By (Signature):	Relinquished By (Signature)			uished By (Signature)	- 12 PL+	•			7		7	× 6		2	3	DEPTH 8260 (DESCRIPTION	STATION	(offliation reduied)	PARCY		* 40409.	D. Athart	OF CUSTODY FORM	
Pink - Field or Office Copy		(Print Name) ((Print Name) ((Print Name) ((Print Name) (1	David subject	CHAIN OF CUSTODY RECORD	7	- J ,	*	7.		* * *	. メ ト ナ	4	**	8270 TITLE P나	22 I	MET.	ALS	Cogn	17)60 1 ANALYS	oß av Fund	* * 17471	FORM	
1	3.72/1.60	`.	(Company) (L	(Company) (L	(Company) (L		7	,																	ANALYSIS REQUESTED		156738	V S C C	5 . 1.3
F1008-B	ř	Date/Time)	(Date/Time)	(Date/Time)	(Date/Time)		(Date/Time)	(Date/Time)	10/6/14 Hab		Cov	المار	os Re	age	31	cof	32402	le le	for 6) d.					U	10	0/17/20		*

F1008-E		Pink - Field or Office Copy		Yellow - Project Office Copy	White - Laboratory Copy		
**SEEDIST PROPERTY			Method of Shipment:				
(Date/Time)	(Company)	(Print Name)	Received By (Signature):	, , , , , , , , , , , , , , , , , , , ,	1, 10W-5-10	1005-8, 100-5-d,	
(Date/Time)	(Company)) (Print Name)	Relinquished By (Signature)	1 DW-5-6, 1025-7	composite goil samples for pudgets and	- Please composite	
(Date/Time)	(Company)	(Print Name)	Received By (Signature):	ts; anatyze separately	Composite water sounder for neglets	14mm	
(Date/Time)	(Company)) (Frint Name)	Kelinquished by (oignature)		als on the cp.	* 82608 and Medals	
					(3)	eld Filtered	
(Date/Time)	(Company)	(Print Name)	Received By (Signature):				
(Date/Time)	(Company)	(Print Name)	juished By (Sign	4-8411	doublatibuteannec.com 510-847-8411	PO#: conzose52	
10 60 M /740	かくのつ		Will t			REPORT TO: wery white	
	RECORD	CHAIN OF CUSTODY			ADDITIONAL INFORMATION		
P							
age							
32		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4 1000 1505	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		~
·Of/		\ \ \ \ \		1006150	1 3		. J
				1006150	8 - 5 - 30		乏
		 本		41100611503	1021513	3	34
		≯		4 0006 15011	1 0 - 15 - 10 11	*	7
		8260 8270 TITL	DEPIH	YR MO DAY TIME	SAMPLE NUMBER	Wate Soil Air Unpr H2S0 HNO	
		$\overline{}$	1				
			STATION DESCRIPTION	DATE		MATRIX CONTAINERS	
		TALSCO	(Signature Required)				
		 	+ DODY	Recorder: /	Aign a hitman	Project Manager:	
STED	ANALYSIS REQUESTED	·		i a	cherrolet Cadillac Israu	Name/Location: Crown	
		3470	4040A	1860 W	0010160070.00008,A	Job Number: 0010160	
10/17		17471	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	(707) 793-3800		
7/20	ПР	*	0. A. 19. A	Samplers.	Suite 200 Petaluma CA 94954	lah:	
_	1500	FORM	CHAIN OF CUSTODY FORM		1465 North McDowell Blvd	Seq. No. 1245	
£ 2	0			1	1 1		

Salimpour, Afsaneh

From: Whitmarsh, Avery [avery.whitmarsh@amec.com]

Sent: Friday, October 10, 2014 10:58 AM

To: Salimpour, Afsaneh

Cc: Allbut, David; Stemler, Greg Subject: Crown - sample analysis

Hı Afsaneh -

We'd like to release all the samples from hold that we had submitted on Monday for Crown Chevrolet.

That is for the following job numbers:

- 720-60396
- 720-60404

Please let me know if you have any questions.

Thanks Avery

Avery Whitmarsh, PG Senior Geologist AMEC

en emperi 8 Infrastructure

- 中心 Grand Avenue, Suite 1100, Oakland, CA 94612 USA
- 1 L+0 660 -1100 (fax 510-663-4141)
- 15:510-363-3154-mobile/cell 415-378-3912

avery whitmarsh@amec com

amec com

- His common rentained in this e-mains relended only for the individual or entity to whom it is addressed
- at internalishing any attachments) may contain confidential and/or privileged information

EU / UE 1878 17 A 7 /1/7 -

- to not a intended recipient you must not use, disclose, disseminate, copy or print its confents.
- 1. And the control that a making error, please notify the sender by reply e-mail and delate and destroy the message

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-60404-1

Login Number: 60404 List Source: TestAmerica Pleasanton

List Number: 1 Creator: Bullock, Tracy

Cleator. Bullock, Tracy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

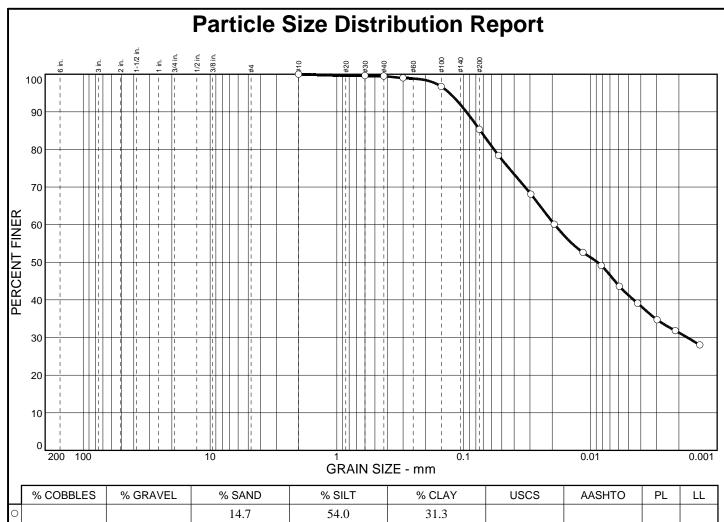
3

4

6

8

10


10

13

ATTACHMENT A-7

Grain-Size Analysis Reports

	% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
0			14.7	54.0	31.3				

SIEVE	PE	PERCENT FINER					
inches size	0						
	GRAIN SIZE						
D ₆₀	0.0191						
D ₃₀	0.0017						
D ₁₀							
	COEFFICIENTS						
C _C							
C _c							

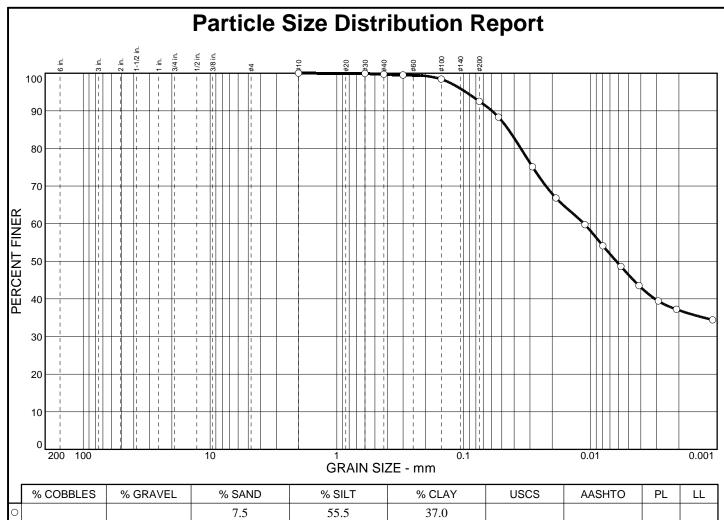
SIEVE	PE	RCENT FIN	ER
number size	0		
size #10 #30 #40 #50 #100 #270	100.0 99.6 99.5 99.0 96.7 85.3 78.4		

O Dark Olive CLAY	

SOIL DESCRIPTION

REMARKS:			
0			

○ Source: PRB-04-18.5


COOPER TESTING LABORATORY

Client: AMEC

Project: Crown Chevy - OD10160070.0012.A

Project No.: 109-747

Figure

	% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
0			7.5	55.5	37.0				
				-					

SIEVE	PERCENT FINER				
inches size	0				
	GRAIN SIZE				
	· `	GRAIN SIZE			
D ₆₀	0.0113				
D ₃₀					
D ₁₀					
	COEFFICIENTS				
		DEFFICIEN	13		
C _c		DEFFICIEN	13		

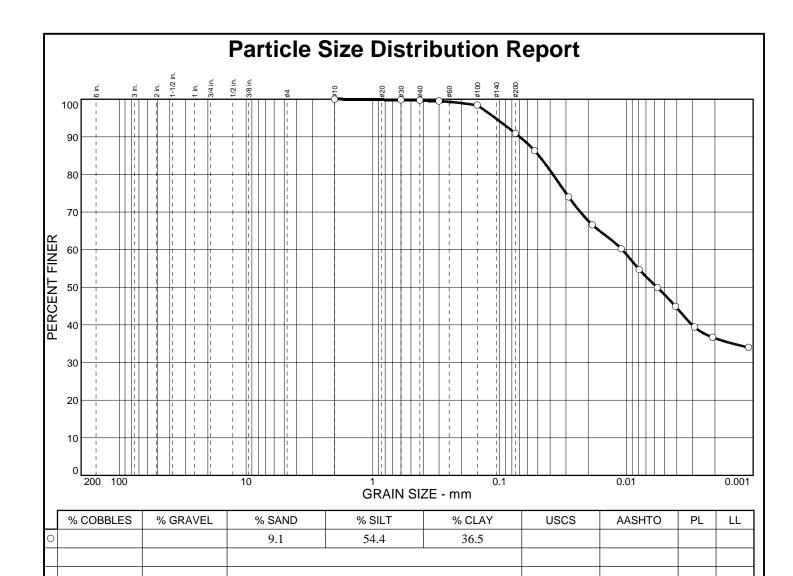
SIEVE	PE	PERCENT FINER					
number size	0						
#10 #30 #40 #50 #100 #200 #270	100.0 99.9 99.7 99.5 98.4 92.5 88.3						

O Dark Olive Gray CLAY

SOIL DESCRIPTION

REMARKS:			
0			

○ Source: PRB-04-20.0


COOPER TESTING LABORATORY

Client: AMEC

Project: Crown Chevy - OD10160070.0012.A

Project No.: 109-747

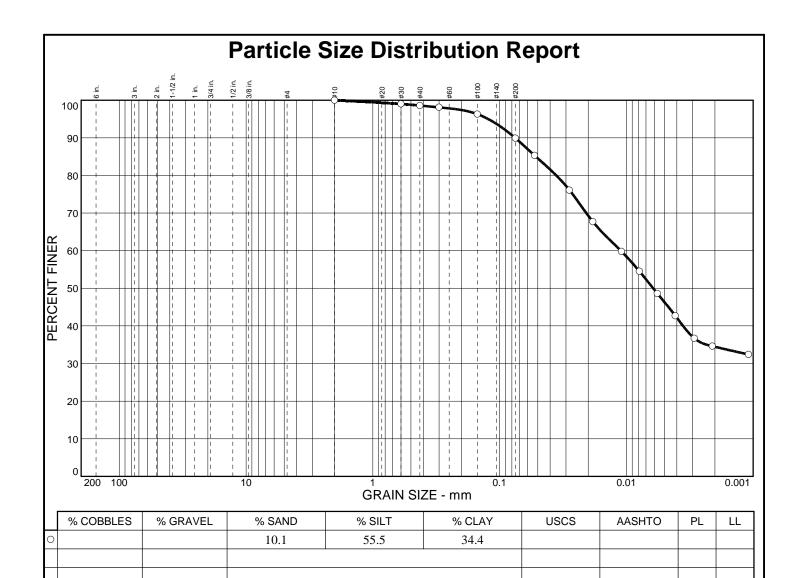
Figure

SIEVE	PERCENT FINER		
inches size	0		
><	(GRAIN SIZE	
D ₆₀	0.0108		
D ₃₀			
D ₁₀			
	COEFFICIENTS		
C _c			
C _u			

SIEVE	PERCENT FINER				
number size	0				
#10 #30 #40 #50 #100 #200 #270	100.0 99.8 99.7 99.5 98.4 90.9 86.3				

<u> </u>	IL DESCRIPTION
0 0	IL DESCRIPTION Oark Olive Gray CLAY

REMARKS:		
0		


○ Source: PRB-04-25.0

COOPER TESTING LABORATORY

Client: AMEC

Project: Crown Chevy - OD10160070.0012.A

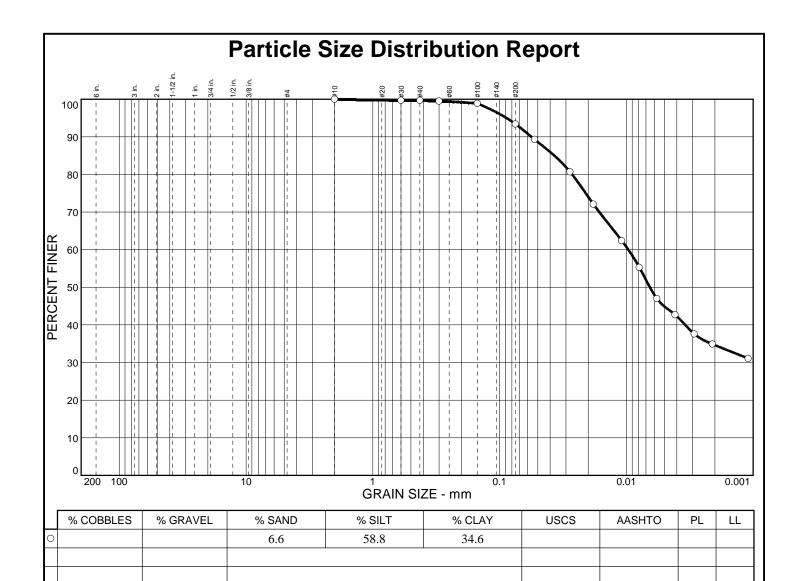
Project No.: 109-747

SIEVE	PERCENT FINER		
inches size	0		
>	(GRAIN SIZE	
D ₆₀	0.0111		
D ₃₀			
D ₁₀			
	COEFFICIENTS		
C _C			
C _c			

PERCENT FINER			
0			
100.0 99.0 98.6 98.1 96.3 89.9 85.3			
	0 100.0 99.0 98.6 98.1 96.3 89.9	0 100.0 99.0 98.6 98.1 96.3 89.9	

SOIL DESCRIPTION
SOIL DESCRIPTION O Dark Olive CLAY

REMARKS:


○ Source: PRB-04-27.5

COOPER TESTING LABORATORY

Client: AMEC

Project: Crown Chevy - OD10160070.0012.A

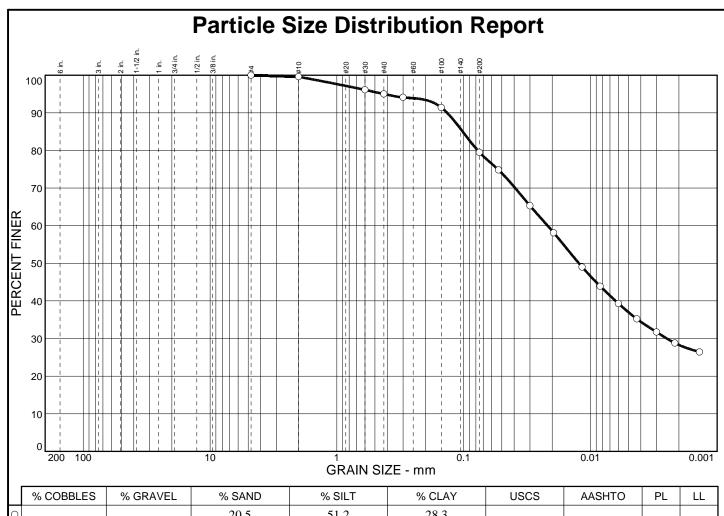
Project No.: 109-747

SIEVE	PE	RCENT FIN	ER
inches size	0		
>	(GRAIN SIZE	
D ₆₀	0.0097		
D ₃₀			
D ₁₀			
	COEFFICIENTS		
C _c			
Cu			

SIEVE	PERCENT FINER				
number size	0				
size #10 #30 #40 #50 #100 #200 #270	100.0 99.7 99.7 99.5 98.9 93.4 89.3				

SOIL DESCRIPTION
O Dark Olive CLAY

REMARKS:


○ Source: PZ-02-16.0

COOPER TESTING LABORATORY

Client: AMEC

Project: Crown Chevy - OD10160070.0012.A

Project No.: 109-747

	% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
0			20.5	51.2	28.3				

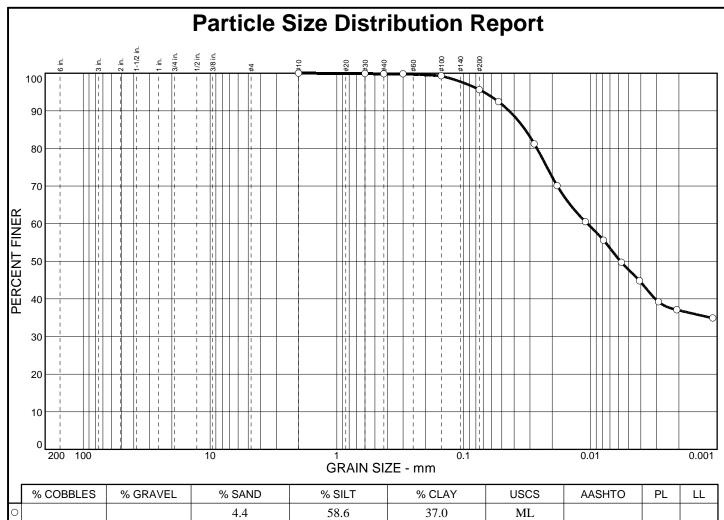
SIEVE	PERCENT FINER		
inches size	0		
	(GRAIN SIZE	
D ₆₀	0.0218		
D ₃₀	0.0025		
D ₁₀			
	COEFFICIENTS		
C _C			
C _c			

SIEVE PERCENT	
number o	
#4 100.0 #10 99.6 #30 96.1 #40 95.0 #50 94.1 #100 91.4 #200 79.5 #270 74.8	

SOIL	DESCRIPTION

O Dark Olive Brown CLAY w/ Sand

REMARKS:


○ Source: PZ-02-18.0

COOPER TESTING LABORATORY

Client: AMEC

Project: Crown Chevy - OD10160070.0012.A

Project No.: 109-747

	% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
0			4.4	58.6	37.0	ML			
					-				

SIEVE	PE	RCENT FIN	ER
inches size	0		
>	(GRAIN SIZE	
D ₆₀	0.0106		
D ₃₀			
D ₁₀			
	CC	DEFFICIEN [®]	TS
C _C			
C _c			

SIEVE	PERCENT FINER		
number size	0		
#10 #30 #40 #50 #100 #200 #270	100.0 99.9 99.8 99.8 99.3 95.6 92.4		

$ \circ$	Dark Olive	Brown CL	AY	

SOIL DESCRIPTION

REMARKS:		
0		

○ Source: PZ-02-19.5

COOPER TESTING LABORATORY

Client: AMEC

Project: Crown Chevy - OD10160070.0012.A

Project No.: 109-747

M# 104747

16930

PROJECT NAME: Crown Chevy				ATE: 9/2/14	PAGE / OF /
PROJECT NAME: Crawn Chery PROJECT NUMBER: ODIO 160070.00012. A	LABORATORY NAME:		2	PORTING REQUIREMENTS:	
RESULTS TO: QUELY Whit was he and c. Com	1937 Connercial St.	9	2		
TURNAROUND TIME: Standard	Palo AHO, CA 94303				
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT.		GE	EOTRACKER REQUIRED	YES · NO
FESEX	LABORATORY PHONE NUMBER:		sı	TE SPECIFIC GLOBAL ID NO.	
SAMPLERS (SIGNATURE):	ANALY	SES			
	Size			Soil (S), Water (W), Vapor (V), or Other (O) Filtered Preservative Type	MSD of Containers ADOITIONAL
DATE TIME NUMBER	Sain		CONTAI TYPE ANI		S S S COMMENTS
8/18/14 1055 PRB-04-18.5			Plasticy bo	5 N NA	NNI
1100 PRB-04-20.0	\times			0	
1550 728-04-25.0					
V 1555 PRB-04-27.5	\times				
8/22/14 0950 72-02-16.0					
0945 87-02-18.0					
V 1955 PZ-02-19.5			V	111	111
		18			
		T *			
RELINQUISHED BY: DATE TIME	RECEIVED BY:	DATE HIVE	AL NUMBER OF CONTAIN		7
PRINTED NAME: 0. 0 9/2/14/1330	SIGNATURE:	SAM	IPLING COMMENTS:	D Grain Size ana	losis w/ Hydroneter
Alex Roserthal				*	U
COMPANY	COMPANY:	Col	ntact Greg	sterler of si	0-663-4191 or
SIGNATURE:	SIGNATURE:		Avery	whiteash at 510	0-663-4154
PRINTED NAME:	PRINTED NAME:	W	ith any qu	Stemler of 510 whitmarsh at 510 estions	
COMPANY:	COMPANY:		0 1		
SIGNATURE:	SIGNATURE:			2	
PRINTED NAME:	PRINTED NAME:				amec®
COMPANY:	COMPANY:				Cilies

ATTACHMENT A-8

Data Quality Review

Data Quality Review

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared for:

BWD Dublin, LLC Dublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

June 2015

Project No. OD14170800

DATA QUALITY REVIEW

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California Site Cleanup Program Case No. RO0003014

June 11, 2015 Project OD14170800

This Data Quality Review appendix was prepared by the staff of Amec Foster Wheeler under the supervision of the project Data Quality Manager whose signature appears hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Jake Torrens

Associate Scientist
Amec Foster Wheeler

Environment & Infrastructure, Inc.

TABLE OF CONTENTS

			Page
1.0	INTRODUCT	TION	A-8-1
2.0	GRAB-GROU	JNDWATER DATA EVALUATION	A-8-1
		ACCURACY	
	2.1.1	Spiked Compounds	A-8-2
		Surrogate Recoveries	
		Method Blanks	
		Trip Blanks	
	2.1.5	Other Factors	A-8-2
	2.2 DATA	PRECISION	A-8-2
		COMPLETENESS	
3.0	SUMMARY (OF GROUNDWATER DATA QUALITY REVIEW	A-8-3
4.0	REFERENCE	≣S	A-8-3

TABLE

Table A-8-1 Summary of Precision Data for Analysis of Groundwater Field Duplicate Sample

ATTACHMENT A-8 DATA QUALITY REVIEW

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler"), evaluated the analytical data from the August 2014 grab-groundwater investigation using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) *USEPA National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, 2014).

The data quality review also included a data completeness check of the data packages, a transcription check of sample results, and a review of all laboratory reporting forms. Qualified data are included in the data summary tables in the main body of this report (with the exception of analytes that have not been detected at the site, which are not tabulated). Data qualifiers for the third and fourth quarter 2014 groundwater monitoring events are included on the laboratory analytical reports, copies of which are included in Attachment A-6.

2.0 GRAB-GROUNDWATER DATA EVALUATION

Quality assurance procedures for groundwater samples collected during the August 2014 grab-groundwater investigation included the collection and analysis of two blind field duplicate samples; laboratory analysis of method blank samples, surrogate spikes, matrix spike/matrix spike duplicate (MS/MSD) samples, and laboratory control spike/laboratory control spike duplicates (LCS/LCSDs); and evaluation of the analytical results.

The blind field duplicate groundwater samples were collected from grab groundwater locations PRB-03HP and PRB-04HP at 34.0 and 28.0 feet, respectively. The primary samples were labeled PRB-03HP-34.0 and PRB-04HP-28.0, and the duplicate samples were labeled PRB-04HP-340.0 and PRB-04HP-280.0.

A review of groundwater data quality is provided in the following sections.

2.1 DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

2.1.1 Spiked Compounds

No results were qualified due to LCS/LCSD or MS/MSD recoveries.

2.1.2 Surrogate Recoveries

No groundwater data were qualified due to surrogate recoveries.

2.1.3 Method Blanks

There were no detections in the method blank samples.

2.1.4 Trip Blanks

Two trip blanks were submitted for volatile organic compound (VOC) analysis. There were no detections in the trip blank samples.

2.1.5 Other Factors

Total petroleum hydrocarbons quantified as gasoline (TPHg; reported by the analytical laboratory as gasoline range organics) were reported at a concentration similar to tetrachloroethene (PCE) in groundwater samples PRB-02HP-23.0, PRB-02HP-27.5, and PRB-04HP-28.0 and its field duplicate, PRB-04HP-280.0. The analytical laboratory indicated in the case narratives for these samples that the reported TPHg results were due to presence of discrete peaks (PCE) and not the presence of gasoline range organics. As a result, Amec Foster Wheeler qualified these TPHg results with "R" to indicate that they are rejected.

2.2 DATA PRECISION

Data precision is evaluated by comparing analytical results from the duplicate sample pair and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD, MS/MSD, and the field duplicate sample pair were evaluated to assess the precision of the analytical methods. A summary of sample results from the field duplicate sample pairs is shown in Table 1.

The RPDs for the MS/MSD, LCS/LCSD, and field duplicate pairs were within acceptance limits.

2.3 DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

The percent complete for groundwater sample data collected during the third quarter 2014 groundwater monitoring event is 100 percent, with the exception of TPHg results, where the percent complete is 70 percent.

3.0 SUMMARY OF GROUNDWATER DATA QUALITY REVIEW

Based on an evaluation of data quality for samples collected during grab-groundwater investigation, all the analytical results are valid and useable, with the exception of the rejected results. The data are acceptable and can be used for decision-making purposes.

4.0 REFERENCES

U.S. Environmental Protection Agency, 2014, USEPA National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, August.

TABLE

TABLE A-8-1

SUMMARY OF PRECISION DATA FOR ANALYSIS OF GROUNDWATER FIELD DUPLICATE SAMPLES

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

All concentrations reported in µg/L

Primary Sample ID	Duplicate Sample ID	Collection Date	Compound ¹	Reporting Limit	Primary Sample Result	Duplicate Sample Result	RPD ²	Absolute Difference Between Sample Results ³
PRB-04HP-	PRB-04HP-	8/26/2014	Tetrachloroethene	0.5	91	74	20.6%	NA
28.0	280.0	0/20/2014	Trichloroethene	0.5	2.1	1.9	10.0%	NA
PRB-03HP-	PRB-03HP-	8/25/2014	Tetrachloroethene	0.5	11	12	8.7%	NA
34.0	340.0	6/25/2014	Trichchloroethene	0.5	1.3	1.3	0.0%	NA

Notes

- 1. Only compounds detected in at least one of the field primary or field duplicate samples are shown.
- 2. Relative Percent Difference (RPD) is calculated by:

$$RPD \% = \left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$$

Where S_1 , is the sample concentration and S_2 is the blind duplicate sample concentration.

3. The RPD is not applicable when the sample results are less than two times the reporting limit. In those cases, duplicate results are acceptable when the absolute difference between the results is less than the reporting limit. When a compound was detected in one duplicate sample, but was not detected at or above the laboratory reporting limit in the other sample, then the results are acceptable when the absolute difference between the detected result and the reporting limit is less than the reporting limit.

Abbreviations

 μ g/L = micrograms per liter NA = not applicable

APPENDIX B

Borehole Dilution Test Methods

Borehole Dilution Test Methods

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared for:

BWD Dublin, LLC Dublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

June 2015

Project No. OD14170800

TABLE OF CONTENTS

		· · · · · · · · · · · · · · · · · · ·	Page
B1.0	INTRO	DUCTION	B-1
B2.0	FIELD B2.1 B2.2 B2.3 B2.4	METHODSINSTRUMENT CALIBRATION	B-1 B-2 B-3
B3.0	DATA B3.1 B3.2	EVALUATION AND ANALYSIS	B-4
B4.0	RESUI	LTS	B-5
B5.0	REFE	RENCES	B-6
		TABLES	
Table E Table E Table E	3-2	Test Setup, Circulation, and Injection Parameters Summary of Analytical Results for Bromide Ion in Groundwater Summary of Calculated Groundwater Seepage Velocity and Darcy Velocity	
		FIGURES	
Figure Figure Figure	B-2	Schematic of Borehole Dilution Test Setup Plot of Concentration vs. Time Bromide Ion Dilution Rate	
		ATTACHMENT	
Attachr	ment B-	1 Laboratory Analytical Report	

APPENDIX B BOREHOLE DILUTION TEST METHODS

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

B1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler") conducted a borehole dilution test at the former Crown Chevrolet site (the site) on October 31, 2014. The test was performed in groundwater piezometer PZ-01 to aid in estimation of horizontal groundwater seepage flow velocities in the vicinity of the proposed permeable reactive barrier (PRB). This work was conducted in general accordance with the *Permeable Reactive Barrier Pre-Design Investigation Work Plan* (AMEC, 2014; "Work Plan") prepared by Amec Foster Wheeler and dated August 14, 2014.

This document describes the field methodology, data analysis, and results of the borehole dilution testing.

B2.0 FIELD METHODS

Amec Foster Wheeler prepared the equipment and conducted the borehole dilution testing on October 31, 2014. The calibration of the bromide-specific probe, test setup and tracer injection, tracer monitoring, and laboratory sample collection and analyses are summarized in the following sections.

B2.1 INSTRUMENT CALIBRATION

A TempHion ion-specific electrode (Br– probe), manufactured by Instrumentation Northwest, was used to monitor the bromide ion (Br–) tracer concentration during the tests. The Br– probe was calibrated the day prior to use using a two-point calibration procedure by a trained technician from the Br– probe supplier, Geotech Environmental. Amec Foster Wheeler then field tested the probe in a Br– standard with an expected concentration of 799 milligrams per liter (mg/L). The Br– standard was prepared prior to fieldwork by Amec Foster Wheeler by mixing a measured quantity of American Chemical Society (ACS) Reagent Grade sodium bromide (NaBr) salt provided by MP Biomedicals of Santa Ana, California, and a measured quantity of de-ionized water provided by TestAmerica Laboratories ("TestAmerica"), of Pleasanton, California. A sample of the field testing Br– standard was submitted along with other project samples to TestAmerica for analysis using U.S. Environmental Protection Agency (U.S. EPA) Method 300.0 to confirm its actual Br- concentration (Attachment B-1). The Br–

concentrations measured for the field testing Br– standard by the probe and the laboratory respectively were 806 mg/L and 810 mg/L respectively, confirming the instrument calibration.

B2.2 TEST SETUP AND TRACER INJECTION

Prior to the setting up the tracer dilution testing assembly, Amec Foster Wheeler removed the well cap from the piezometer, allowed it to equilibrate, and measured the initial water level and the total depth of the piezometer (Table B-1).

To set up the test assembly, thin metal and fiberglass rods were decontaminated, connected into one length, and inserted into the total depth of the piezometer. The connected rods formed the support structure of the test assembly. Two lengths of new, ¼-inch polyethylene tubing were attached to the rods. The bottom of one length of tubing was placed at the bottom of the screened interval for the piezometer, greater than 0.5 foot above the sounded bottom of the piezometer. The bottom of the other length of tubing was placed at the top of the screened interval, greater than 0.5 foot below the measured depth to groundwater. The distance between the bottom of each length of tubing comprised the test interval for the test. A Brprobe was attached to the rod at the approximate midpoint of the test interval. The tube ending at the bottom of the test interval (extraction end) was connected to the intake of the primary peristaltic pump, and the tube ending at the top of the test interval (injection end) was connected to the effluent of the main tubing of the injection/sampling manifold. Another length of new, ¼-inch polyethylene tubing was used to connect the effluent of the primary peristaltic pump and the influent of the main tubing of the injection/sampling manifold, closing the recirculation loop. Figure B-1 provides additional information regarding the test setup, including the assembly of the injection/sampling manifold. Table B-1 provides a summary of the setup parameters for the test, including relevant well construction details and the test interval.

The primary peristaltic pump was adjusted to extract groundwater from near the bottom of the piezometer screen and re-circulate the groundwater back near the top of the piezometer screen at a flow rate of approximately 700 milliliters per minute (mL/min). The primary pump was operated for approximately 45 minutes before the tracer injection. During this period, approximately 30 mL of groundwater was collected into a laboratory-supplied unpreserved 250 mL polyethylene bottle to analyze for the background Br– concentration in groundwater. The sample was shipped to TestAmerica for analysis using EPA Method 300.0. The results of the pre-injection groundwater sample indicate background Br[–] concentrations of 1.3 milligrams per liter (mg/L) in PZ-01. The Br– probes were set up to begin logging during this pre-injection period. After approximately 20 minutes, the background bromide concentration was measured and recorded on an Excel spreadsheet in both voltage (in mV) and the corresponding concentration (in ppm).

The tracer injection solution was made before the start of the test by mixing a measured quantity of NaBr salt into a measured quantity of lab-prepared deionized water. A mass of 0.94 milligrams of NaBr salt was used to achieve an initial Br concentration of approximately 200 to 500 mg/L in the test interval, with a target initial concentration of 250 mg/L (Table B-1).

The bromide solution was injected via the one-way valve of the injection/sampling manifold using the secondary peristaltic pump. The solution was injected at a rate of approximately 50 mL/min so that the entire volume of solution (210 mL) was injected during the time required to circulate one test volume. The time of injection was recorded on the field spreadsheet.

Table B-1 includes a summary of the injection parameters for the test, including circulation rate, tracer mass added, and injection rate.

B2.3 TRACER MONITORING

Beginning immediately after the injection period, the Br– probe datalogger recorded Br– readings once every 4 seconds for the first hour and once every minute for the remainder of the test duration (approximately 10 hours). In addition, Br– readings were recorded on the field spreadsheet on a timed basis during testing (approximately once every 2 minutes for the first 10 minutes, once every 5 minutes until the end of the first hour, and once every 10 minutes until the end of the test). Figure B-2 depicts a concentration versus time plot showing recorded Br– concentrations, as well as a natural logarithmic depiction of Br– concentrations for use in the velocity calculations. This figure also shows the interval selected as the dilution testing period. The dilution testing period was selected based on the timing of stabilization of the tracer concentration and the end of the circulation period.

B2.4 SAMPLE COLLECTION AND LABORATORY ANALYSES

Once every 60 minutes, approximately 30 mL of groundwater was collected into a laboratory-supplied, unpreserved 250 mL polyethylene bottle by opening the sample port on the injection/sampling manifold and pinching the silicone tubing on the injection end of the main tubing in order to direct the flow toward the sample port.

The sample collection time, volume, and probe reading at the time of collection were recorded. The samples were submitted to TestAmerica for analysis of bromide using EPA Method 300.0, and the results were used as a quality control measure to confirm the probe measurements.

The laboratory analytical results are summarized in Table B-2 and plotted on Figure B-1. A copy of the laboratory analytical report is provided in Attachment B-1.

B3.0 DATA EVALUATION AND ANALYSIS

The tracer test data were evaluated using the simplifying assumptions that the water-bearing formation is homogeneous and isotropic through the test interval and that dilution of the tracer over time is dominated by horizontal groundwater flow through the well (Hall, 1993). The data

Amec Foster Wheeler

were used to calculate Darcy velocity and groundwater seepage velocity. The Darcy velocity, also known as specific discharge, represents the volumetric flow rate across a cross-sectional area, and is proportional to the hydraulic conductivity and the hydraulic gradient. Since flow in porous media is confined to the connected pore space (a fraction of the total cross-sectional area), the seepage velocity (or linear/pore velocity), is also calculated. The seepage velocity represents the rate at which water particles and non-sorbing chemicals move in the groundwater, and is equal to the Darcy velocity divided by the effective porosity of the soil matrix. The calculations of groundwater seepage velocity and Darcy velocity are provided in the following sections.

B3.1 CALCULATION OF GROUNDWATER SEEPAGE VELOCITY

The rate of groundwater flow through the well screen, *Q*, was calculated directly from the tracer dilution rate using the assumptions outlined above. The tracer dilution rate is directly related to *Q* and inversely related to the volume of the test interval, *V*, as described below (Hall, 1993):

$$\frac{dC}{dt} = -\left(\frac{Q}{V}\right) \bullet C(t) \tag{1}$$

where C(t) is the tracer concentration at an elapsed time t.

Assuming the tracer is well mixed within the test interval (i.e., the well screen interval) to give the initial tracer concentration, C_0 , Q can be obtained by integrating Equation 1 from time t = 0 to an elapsed time t, where C_0 decreases to a concentration C over the time interval of the test (t), as shown below (Hall, 1993):

$$Q = -\left(\frac{V}{t}\right) \ln\left(\frac{C}{C_0}\right) \tag{2}$$

Q is obtained graphically by plotting the natural logarithm of the tracer concentration versus time (In(C) vs. t). The initial concentration C_0 is calculated from the y-intercept of the plot (concentration at stabilization in the well), and Q/V is obtained from the slope by rearranging Equation 2 as follows:

$$\ln(C) = -\left(\frac{Q}{V}\right)t + \ln(C_0) \tag{3}$$

The groundwater seepage velocity v through the formation of the test interval is calculated using Equation 4 by dividing flow through the well, Q, by the cross-sectional area of the test interval A (well diameter multiplied by length of test interval), a correction factor α (estimated to

be 3.7 for the piezometer PZ-01 based on well construction and borehole skin effects), and the effective porosity of the test interval formation n (estimated to be equal to 0.2):

$$v = \frac{Q}{(nA\alpha)} \tag{4}$$

Substituting Equation 3 into Equation 4 yields Equation 5:

$$v = \frac{-m\pi r}{2n\alpha} \tag{5}$$

where m is the slope of the ln (C) versus t plot, and r is the radius of the well.

B3.2 CALCULATION OF DARCY VELOCITY

The flow rate through the well (Q) may be used to calculate the Darcy velocity Q_f through the formation of the test interval using Equation 6, dividing by the cross-sectional area of the test interval (A) and an assumed correction for flow convergence at the monitoring well (α), (estimated to be 3.7 for the piezometer PZ-01 based on well construction and borehole skin effects), based on Hall (1993):

$$Q_f = \frac{Q}{A\alpha} \tag{6}$$

Substituting Equation 3 into Equation 6 yields Equation 7:

$$Q_f = -\frac{m\pi r}{2\alpha} \tag{7}$$

where m is the slope of the ln (C) versus t plot, and r is the radius of the well. The Darcy velocity can also be calculated by multiplying the groundwater seepage velocity by the effective porosity, n.

B4.0 RESULTS

Based on the equations described above, the groundwater seepage velocity and Darcy velocity were calculated using data from the selected dilution test period. The time at which the observed Br– concentration in the well stabilized was designated as t = 0 (the beginning of the dilution test period), and the time at which circulation stopped was designated as the end of the dilution testing period. The selected dilution test period is shown on the concentration versus time plot (Figure B-1). The Br– concentrations observed in the well during the dilution test period are shown on a detailed scale on Figure B-2. This figure plots In (C) versus t for probe data and laboratory results and includes the best-fit lines for each In (C) versus t plot. A

summary of the groundwater seepage velocity and Darcy velocity values calculated using field probe data and laboratory analyses is provided in Table B-3.

The slopes of the best-fit lines and the assumptions and equations described in Section 3 above indicate that the groundwater velocity though the formation test interval is 0.76 foot per day (ft/day) based on probe measurements and 0.78 ft/day based on laboratory sample results. The corresponding calculated Darcy velocity through the test interval was 0.15 ft/day based on probe measurements and 0.16 ft/day based on laboratory sample results.

The groundwater velocities calculated using the field probe and laboratory analytical results are similar to each other and relatively high for the type of sediments encountered in PZ-01 and the horizontal hydraulic gradient in the vicinity of the piezometer. Because PZ-01 is screened in the coarsest-grained soil encountered by the three piezometers, with similar EC readings to the borings within the PRB alignment, the groundwater velocity estimated by this test is an appropriate representation of the groundwater velocity that will enter the PRB in the coarser-grained, and therefore higher velocity, zones. In general, however, the results described herein should be used with appropriate consideration of (1) heterogeneities in the site subsurface, both recognized and unrecognized, and (2) the simplifying assumptions and uncertainties inherent in the test method. For example, velocity calculated is average velocity for the test interval, and horizontal flow through subzones of higher or lower permeability within the test intervals may be higher or lower than this average.

B5.0 REFERENCES

- Hall, S.H., 1993. Single well tracer tests in aquifer characterization, Ground Water Monitoring and Remediation, vol. 13, no. 2, pp. 118-124.
- AMEC Environment & Infrastructure (AMEC), 2014. Permeable Reactive Barrier Pre-Design Investigation Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard, Dublin, California, August 14.

TABLES

TABLE B-1

TEST SETUP, CIRCULATION, AND INJECTION PARAMETERS

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Piezometer Construction and Testing Measurements ¹					
Depth to Top of Screen (feet bmp)	15.04				
Depth to Bottom of Screen (feet bmp)	19.47				
Depth of Well (feet bmp)	20.03				
Depth to Water (feet bmp)	14.53				
Casing Diameter (inch)	2.067				
Pump Intake Setting (feet bmp)	19.47				
Return Flow Setting (feet bmp)	15.04				
Length of Test Interval or Zone of Circulation (feet)	4.43				
Probe Depth (feet bmp)	17.26				
Volume in Test Interval (L)	2.92				
Recirculation Pumping Rate (Lpm)	0.70				
Time for Recirculation of one Test Interval at Recirculation Pumping Rate (minutes)	4.2				
Volume of Injection Solution at an Injection Rate of 0.05 Lpm (L)	0.21				
Mass of Sodium Bromide for Target Initial Concentration of 250 mg/L Br– (grams) ²	0.94				

Notes

- 1. Amec Foster Wheeler measured the depth to top and bottom of screen in PZ-01 during piezometer installation on 8/21/14. Amec Foster Wheeler measured total depth and depth to water in PZ-01 prior to testing on October 31, 2014.
- 2. 1.29 grams of sodium bromide = 1 gram of the bromide ion.

Abbreviations

Br- = bromide ion feet bmp = feet below measuring point L = liter Lpm = liters per minute mg/L = milligrams per liter

TABLE B-2

SUMMARY OF ANALYTICAL RESULTS FOR BROMIDE ION IN GROUNDWATER

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Results reported in milligrams per liter (mg/L)

			Sample Time Relative to Start	Bromide Ion		
Sample Location		Sample Date	of Injection	Concentration		
or Type	Sample Identification	and Time	(minutes)	(U.S. EPA Method 300.0)	Notes	
Samples from MW-6 Dilution Testing						
	BDT-BACKGROUND	10/31/2014 - 10:00	-12	1.3	Background prior to injection	
	BDT-1052	10/31/2014 - 10:52	39	170		
	BDT-1122	10/31/2014 - 11:22	70	130		
	BDT-1220	10/31/2014 - 12:20	128	100		
PZ-01	BDT-1321	10/31/2014 - 13:21	189	110		
PZ-01	BDT-1421	10/31/2014 - 14:21	249	95		
	BDT-1520	10/31/2014 - 15:20	308	82		
	BDT-1622	10/31/2014 - 16:22	370	67		
	BDT-1724	10/31/2014 - 17:24	432	54		
	BDT-1821	10/31/2014 - 18:21	489	44	Terminated circulation at 18:30	
Standard Samples						
Injectant	BDT-INJECTANT	10/31/2014 - 10:22	NA	3,500	Bromide injection solution	
Probe Field Testing Standard	BDT-CAL	10/31/2014 - 19:50	NA	810	Bromide standard used to test probe calibration	

Abbreviations

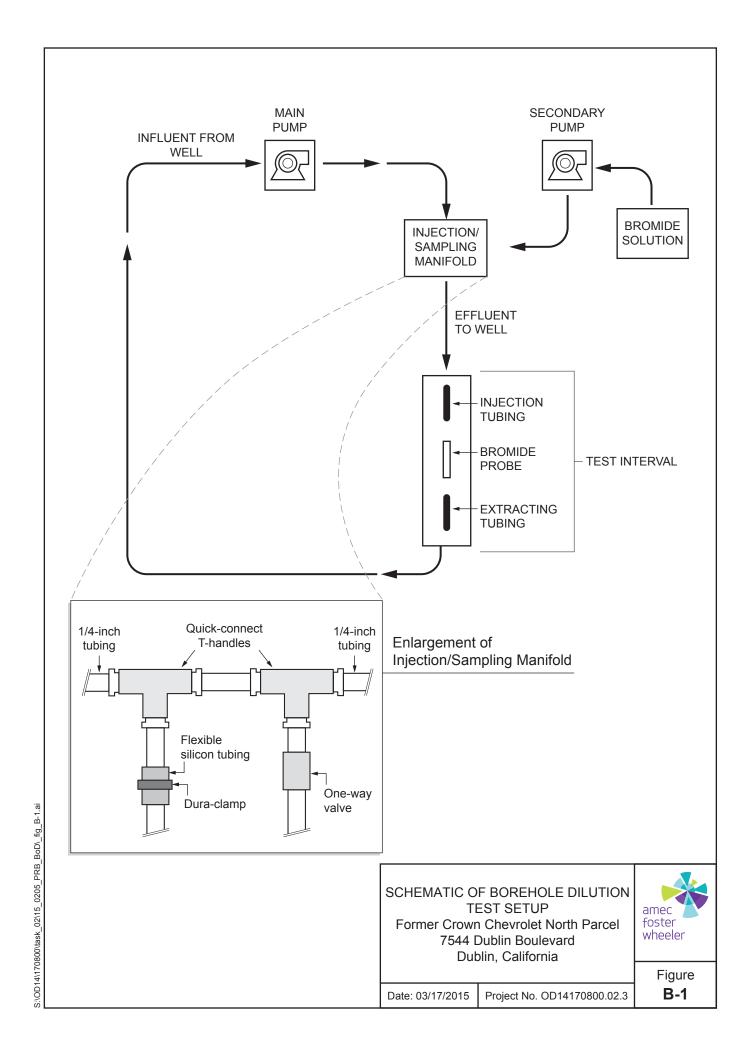
NA = not applicable

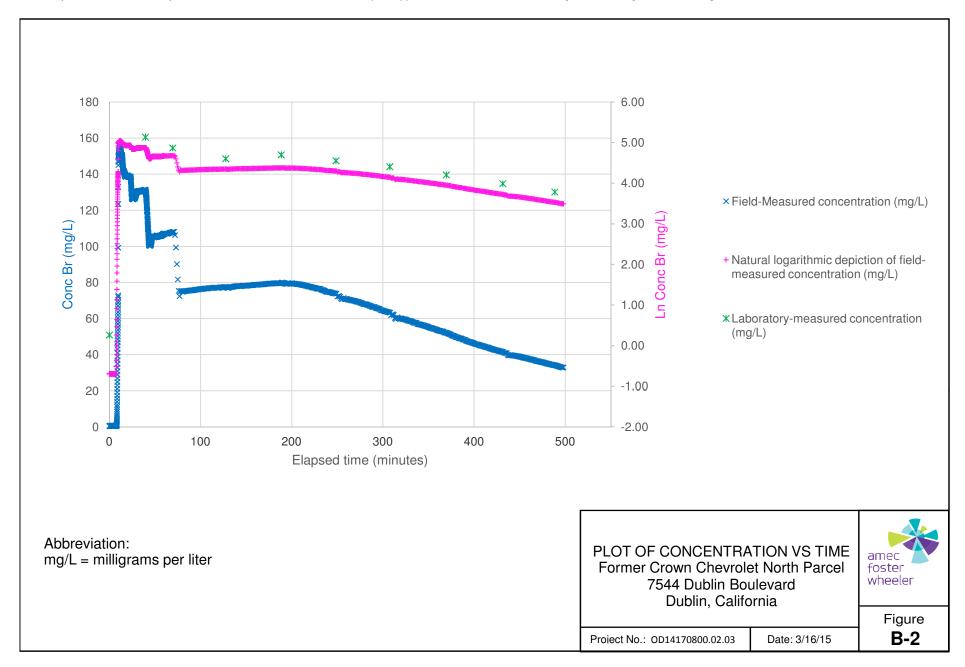
U.S. EPA = U.S. Environmental Protection Agency

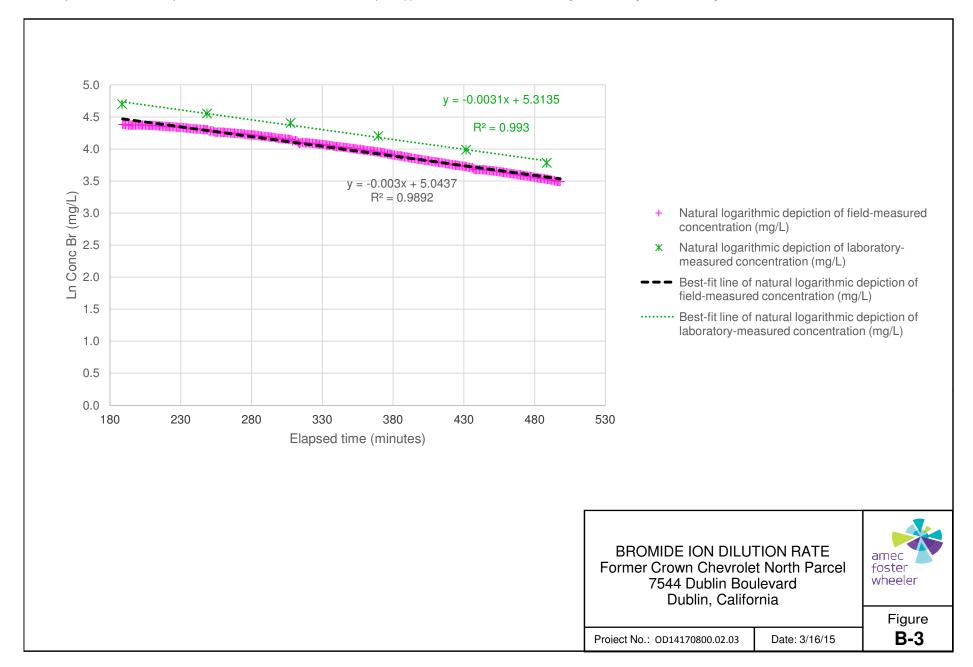
TABLE B-3

SUMMARY OF CALCULATED GROUNDWATER SEEPAGE VELOCITY AND DARCY VELOCITY

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California


		Seepage Velocity (feet/day)			Darcy Velocity (feet/day)		
Location	Test Interval (feet bmp)	Field Probe	Laboratory	Average	Field Probe	Laboratory	Average
PZ-01	15.3 to 19.7	0.76	0.78	0.77	0.15	0.16	0.16


Abbreviation


bmp = below measuring point

FIGURES

ATTACHMENT B-1

Laboratory Analytical Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-60983-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue **Suite 1100** Oakland, California 94612

Attn: Connie Lu

Authorized for release by: 11/12/2014 11:09:31 AM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Chacklists	17

-6

4

8

9

11

12

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60983-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Pleasanton

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60983-1

Job ID: 720-60983-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-60983-1

Comments

No additional comments.

Receipt

The samples were received on 11/3/2014 4:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

6

7

8

1 1

4.0

Client: AMEC Environment & Infrastructure, Inc. TestAmerica Job ID: 720-60983-1

Project/Site: Crown Chevrolet

Client Sample ID: BDT-INJECTANT Lab Sample ID: 720-60983-1 Result Qualifier Dil Fac D Method RL MDL Unit Analyte Prep Type 1000 300.0 **Bromide** 3500 1000 mg/L Total/NA Client Sample ID: BDT-BACKGROUND Lab Sample ID: 720-60983-2 Result Qualifier MDL Unit Method Prep Type Bromide 1.3 1.0 300.0 Total/NA mg/L Client Sample ID: BDT-1052 Lab Sample ID: 720-60983-3 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Bromide 170 20 mg/L 20 300.0 Total/NA Client Sample ID: BDT-1122 Lab Sample ID: 720-60983-4 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Bromide 130 20 mg/L 20 300.0 Total/NA Client Sample ID: BDT-1220 Lab Sample ID: 720-60983-5 Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** 100 20 20 300.0 Bromide mg/L Total/NA Client Sample ID: BDT-1321 Lab Sample ID: 720-60983-6 MDL Method Analyte Result Qualifier RL Unit Dil Fac D Prep Type 110 20 20 300.0 Total/NA Bromide mg/L Client Sample ID: BDT-1421 Lab Sample ID: 720-60983-7 Analyte Result Qualifier RLMDL Unit Dil Fac D Method Prep Type Bromide 95 20 mg/L 20 300.0 Total/NA Client Sample ID: BDT-1520 Lab Sample ID: 720-60983-8 Result Qualifier Method Analyte RL MDL Unit Dil Fac D Prep Type Bromide 82 10 10 300.0 Total/NA mg/L

Client Sample ID: BDT-1821 Lab Sample ID: 720-60983-11

RL

10

RL

10

MDL Unit

MDL Unit

mg/L

mg/L

Result Qualifier

Result Qualifier

54

67

This Detection Summary does not include radiochemical test results.

Client Sample ID: BDT-1622

Client Sample ID: BDT-1724

Analyte

Bromide

Analyte

Bromide

TestAmerica Pleasanton

Lab Sample ID: 720-60983-9

Lab Sample ID: 720-60983-10

Prep Type

Prep Type

Total/NA

Total/NA

Dil Fac D

10

Dil Fac D

10

Method

Method

300.0

300.0

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Client Sample ID: BDT-1821 (Continued)

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60983-1

Lab Sample ID: 720-60983-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Bromide	44	10	mg/L	10 300.0	Total/NA

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Bromide	810	100	mg/L	100 300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 720-60983-1

Lab Sample ID: 720-60983-4

11/07/14 19:08

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Date Collected: 10/31/14 10:00

Client Sample ID: BDT-1122

Bromide

General Chemistry

Client Sample ID: BDT-INJECTANT Date Collected: 10/31/14 10:22	Г						Lab	-Sample ID: 720 Matrix	-60983-1 x: Water	
Date Received: 11/03/14 16:45	D#	0	DI	MDI	1114	_	Downson			ĺ
Analyte Bromide	3500	Qualifier	RL 1000	MDL	mg/L	— –	Prepared	Analyzed 11/07/14 18:34	1000	i
Client Sample ID: BDT-BACKGRO	UND						Lab	Sample ID: 720-	-60983-2	

Date Received: 11/03/14 16:45									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	1.3		1.0		mg/L		-	11/07/14 12:00	1

Client Sample ID: BDT-1052			Lab S	ample ID: 720	0-60983-3
Date Collected: 10/31/14 10:52				Matr	rix: Water
Date Received: 11/03/14 16:45					

Analyte	Result	Qualifier	KL	MDL	Unit	U	Prepared	Analyzed	DII Fac
Bromide	170		20		mg/L			11/07/14 18:51	20
_									

Date Received: 11/03/14 16:45							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BDT-1220	Lab Sample ID: 720-60983-5
Date Collected: 10/31/14 12:20	Matrix: Water

Date Received: 11/03/14 16:45									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	100		20		mg/L			11/07/14 19:25	20

_	
Client Sample ID: BDT-1321	Lab Sample ID: 720-60983-6
Date Collected: 10/31/14 13:21	Matrix: Water

Date Received: 11/03/14 16:45									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepar	ed Analyzed	Dil Fac
Bromide	110		20		mg/L			11/07/14 19:42	20

Client Sample ID: BDT-1421	Lab Sample ID: 720-60983-7
Date Collected: 10/31/14 14:21	Matrix: Water

Date Received: 11/03/14 16:45									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	95		20		mg/L	 _ _		11/07/14 19:59	20

Client Sample ID: BDT-1520	Lab Sample ID: 720-60983-8
Date Collected: 10/31/14 15:20	Matrix: Water

Date Received: 11/03/14 16:45									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	82		10		ma/L			11/07/14 20:56	10

Bromide	82	10	mg/L	11/07/14 20:56	10
Client Sample ID: BDT-1622				Lab Sample ID: 720-	60983-9

Cheff Cample 15: BB1 1022	Lub Gumpio ID: 720 00000 0
Date Collected: 10/31/14 16:22	Matrix: Water
Date Received: 11/03/14 16:45	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Bromide	67	10	mg/L			11/07/14 21:13	10

2

<u>5</u>

6

Matrix: Water

9

10

12

13

1 4

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60983-1

Lab Sample ID: 720-60983-11

Matrix: Water

General Chemistry

Client Sample ID: BDT-1724	Lab Sample ID: 720-60983-10
Date Collected: 10/31/14 17:24	Matrix: Water

Date Received: 11/03/14 16:45

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ı	Bromide	54		10		mg/L			11/07/14 21:30	10

Date Collected: 10/31/14 18:21 Date Received: 11/03/14 16:45

Client Sample ID: BDT-1821

Date Received. 11/00/14 10:40							
Analyte	Result Qualifie	er RL	MDL U	nit D	Prepared	Analyzed	Dil Fac
Bromide	44	10	m	ng/L		11/07/14 21:47	10

Client Sample ID: BDT-CAL Lab Sample ID: 720-60983-12 **Matrix: Water**

Date Collected: 10/31/14 19:50 Date Received: 11/03/14 16:45

Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Bromide	810		100	r	mg/L			11/07/14 22:04	100

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Method: 300.0 - Anions, Ion Chromatography

Project/Site: Crown Chevrolet

Analysis Batch: 170470

Matrix: Water

Analyte

Bromide

Lab Sample ID: MB 720-170470/4

TestAmerica Job ID: 720-60983-1

Client Sample ID: Method Blank

11/07/14 10:18

Prep Type: Total/NA

Dil Fac D Prepared Analyzed

%Rec.

80 _ 120

Lab Sample ID: LCS 720-170470/5 **Client Sample ID: Lab Control Sample**

mg/L

mg/L

MDL Unit

Matrix: Water Prep Type: Total/NA Analysis Batch: 170470

RL

1.0

Spike LCS LCS

мв мв Result Qualifier

ND

Analyte Added Result Qualifier Unit %Rec Limits Bromide 10.0 9.90 mg/L 99 90 - 110

Lab Sample ID: 720-61049-A-3 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA Analysis Batch: 170470

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Bromide ND 1000 988 80 - 120 mg/L

Lab Sample ID: 720-61049-A-3 MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water Prep Type: Total/NA Analysis Batch: 170470

%Rec. RPD Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit Limits Limit %Rec Bromide ND 1000 1000 100

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60983-1

General Chemistry

Analysis Batch: 170470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60983-1	BDT-INJECTANT	Total/NA	Water	300.0	
720-60983-2	BDT-BACKGROUND	Total/NA	Water	300.0	
720-60983-3	BDT-1052	Total/NA	Water	300.0	
720-60983-4	BDT-1122	Total/NA	Water	300.0	
720-60983-5	BDT-1220	Total/NA	Water	300.0	
720-60983-6	BDT-1321	Total/NA	Water	300.0	
720-60983-7	BDT-1421	Total/NA	Water	300.0	
720-60983-8	BDT-1520	Total/NA	Water	300.0	
720-60983-9	BDT-1622	Total/NA	Water	300.0	
720-60983-10	BDT-1724	Total/NA	Water	300.0	
720-60983-11	BDT-1821	Total/NA	Water	300.0	
720-60983-12	BDT-CAL	Total/NA	Water	300.0	
720-61049-A-3 MS	Matrix Spike	Total/NA	Water	300.0	
720-61049-A-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
LCS 720-170470/5	Lab Control Sample	Total/NA	Water	300.0	
MB 720-170470/4	Method Blank	Total/NA	Water	300.0	

3

4

5

8

9

10

4.6

13

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Date Received: 11/03/14 16:45

Client Sample ID: BDT-INJECTANT Lab Sample ID: 720-60983-1

Date Collected: 10/31/14 10:22 Matrix: Water

Batch Dilution Batch Batch Prepared Method Factor Prep Type Type Run Number or Analyzed Analyst Lab Total/NA Analysis 300.0 1000 170470 11/07/14 18:34 MJK TAL PLS

Client Sample ID: BDT-BACKGROUND Lab Sample ID: 720-60983-2

Matrix: Water

Date Collected: 10/31/14 10:00 Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared or Analyzed Method Run Factor **Prep Type** Type Number Analyst Lab Total/NA 300.0 170470 11/07/14 12:00 MJK TAL PLS Analysis

Client Sample ID: BDT-1052 Lab Sample ID: 720-60983-3

Date Collected: 10/31/14 10:52 Matrix: Water

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst 170470 Total/NA Analysis 300.0 20 11/07/14 18:51 MJK TAL PLS

Client Sample ID: BDT-1122 Lab Sample ID: 720-60983-4

Date Collected: 10/31/14 11:22 **Matrix: Water**

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Method Factor Prep Type Туре Run Number or Analyzed Analyst Lab Total/NA Analysis 300.0 20 170470 11/07/14 19:08 MJK TAL PLS

Lab Sample ID: 720-60983-5 Client Sample ID: BDT-1220

Date Collected: 10/31/14 12:20 **Matrix: Water**

Date Received: 11/03/14 16:45

Batch Dilution Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab 170470 MJK TAL PLS 300.0 20 11/07/14 19:25 Total/NA Analysis

Client Sample ID: BDT-1321 Lab Sample ID: 720-60983-6

Date Collected: 10/31/14 13:21 Matrix: Water

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 20 170470 11/07/14 19:42 MJK TAL PLS

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Lab Sample ID: 720-60983-7

Client Sample ID: BDT-1421 Date Collected: 10/31/14 14:21 **Matrix: Water**

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 300.0 20 170470 11/07/14 19:59 MJK TAL PLS

Client Sample ID: BDT-1520 Lab Sample ID: 720-60983-8

Date Collected: 10/31/14 15:20

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Method Factor Number **Prep Type** Type Run or Analyzed Analyst Lab Total/NA Analysis 300.0 10 170470 11/07/14 20:56 MJK TAL PLS

Client Sample ID: BDT-1622 Lab Sample ID: 720-60983-9

Date Collected: 10/31/14 16:22

Date Received: 11/03/14 16:45

Batch Dilution Batch Prepared Batch Method Factor Number or Analyzed Prep Type Туре Run Analyst Lab Analysis 300.0 10 170470 11/07/14 21:13 MJK TAL PLS Total/NA

Client Sample ID: BDT-1724 Lab Sample ID: 720-60983-10

Date Collected: 10/31/14 17:24

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 10 170470 11/07/14 21:30 MJK TAL PLS

Client Sample ID: BDT-1821 Lab Sample ID: 720-60983-11

Date Collected: 10/31/14 18:21

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 300.0 170470 11/07/14 21:47 TAL PLS Total/NA Analysis 10 MJK

Client Sample ID: BDT-CAL Lab Sample ID: 720-60983-12

Date Collected: 10/31/14 19:50

Date Received: 11/03/14 16:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 100 170470 11/07/14 22:04 MJK TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60983-1

Laboratory: TestAmerica Pleasanton

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-16

2

Δ

5

7

ŏ

10

11

13

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60983-1

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL PLS

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

G

3

4

5

6

8

40

11

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

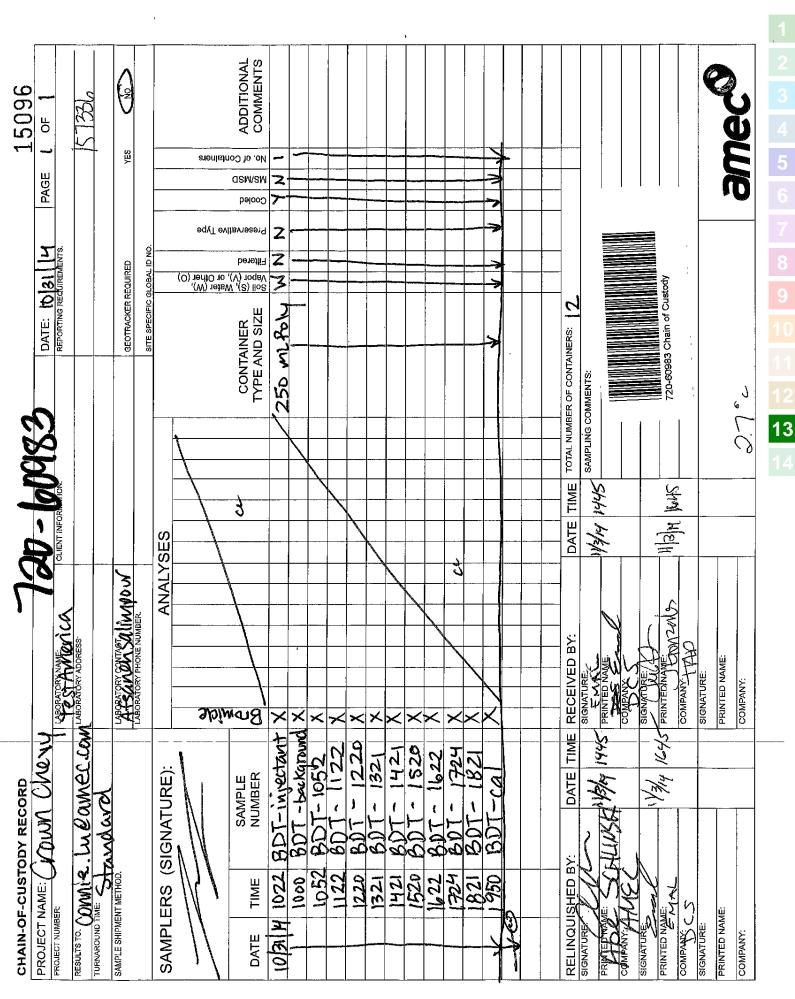
TestAmerica Job ID: 720-60983-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-60983-1	BDT-INJECTANT	Water	10/31/14 10:22	11/03/14 16:45
720-60983-2	BDT-BACKGROUND	Water	10/31/14 10:00	11/03/14 16:45
720-60983-3	BDT-1052	Water	10/31/14 10:52	11/03/14 16:45
720-60983-4	BDT-1122	Water	10/31/14 11:22	11/03/14 16:45
720-60983-5	BDT-1220	Water	10/31/14 12:20	11/03/14 16:45
720-60983-6	BDT-1321	Water	10/31/14 13:21	11/03/14 16:45
720-60983-7	BDT-1421	Water	10/31/14 14:21	11/03/14 16:45
720-60983-8	BDT-1520	Water	10/31/14 15:20	11/03/14 16:45
720-60983-9	BDT-1622	Water	10/31/14 16:22	11/03/14 16:45
720-60983-10	BDT-1724	Water	10/31/14 17:24	11/03/14 16:45
720-60983-11	BDT-1821	Water	10/31/14 18:21	11/03/14 16:45
720-60983-12	BDT-CAL	Water	10/31/14 19:50	11/03/14 16:45

2

4

0


0

9

10

12

13

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-60983-1

Login Number: 60983 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Creator. Gonzales, Justinii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

6

8

46

11

12

APPENDIX C

ZVI Column Test Report

Prepared for:

AMEC 180 Grand Avenue, Suite 1100 Oakland, CA 94612

Final

Treatability Study Report

Column Study to Evaluate Remediation of Chlorinated Solvents in Groundwater Using Zero Valent Iron

Crown Chevrolet Site Dublin, California

Prepared by:

130 Research Lane, Suite 2 Guelph, Ontario N1G 5G3

SiREM Ref: TL0354.02

7January 2015

siremlab.com

TABLE OF CONTENTS

			<u> </u>	Page
1	IN	NTROD	UCTION	1
2	0	BJECT	IVES AND SCOPE OF WORK	2
	2.1	Object	ives	2
	2.2	Scope	of Work	2
3	S	TUDY N	METHODS AND MATERIALS	4
	3.1	Colum	n Construction	4
	3.2	Site G	roundwater Storage and Usage	4
	3.3	Sampl	ing Procedure	5
	3.4	Analyt	ical Methods	5
	3.	.4.1	Analysis of ORP and pH	5
	3.	.4.2	Analysis of cVOCs and Dissolved Hydrocarbon Gases	5
	3.	.4.3	Analysis of Major Anions	6
	3.	.4.4	Analysis of Cations, Anions, Alkalinity, TOC and DOC	7
4	С	VOC R	ESULTS, REACTION PATHWAYS AND DEGRADATION PARAMETERS	8
	4.1	cVOC	Results	8
	4.2	Quality	/ Control cVOC Analyses	9
	4.3	cVOC	Reaction Pathways and Kinetic Expressions	9
	4.4	Detern	nination of Degradation Parameters from Column Data	10
5	F	IELD S	CALE PRB DESIGN CONSIDERATIONS	12
6	IN	NORGA	NIC CHEMISTRY RESULTS AND DISCUSSION	13
	6.1	Colum	n Data	13
	6.2	Possib	ole Mineral Precipitates and Their Effect	15
7	S	UMMAF	RY AND CONCLUSIONS	16
8	R	EFERE	NCES	17

LIST OF TABLES

Table 1:	Column and Materials Specifications
Table 2:	ZVI Column Sampling Schedule

Table 3: Sand Control Column Water Sample cVOC and DHG Results

Table 4: Connelly ZVI Control Column Water Sample cVOC and DHG Results

Table 5: Peerless ZVI Column Water Sample cVOC and DHG Results

Table 6: cVOC Analytical Results Comparison between SIREM and ALS Laboratories

Table 7: Calculated cVOC Half-Life Values

Table 8: Residence Time Calculations for PRB Design

Table 9: Water Sample ORP and pH Results

Table 10: Water Sample Anion Results

Table 11: Water Sample Cation, Alkalinity and TDS Results

LIST OF FIGURES

- Figure 1: Schematic of Column Study Set Up
- Figure 2: Connelly ZVI Column Water cVOC and DHG Concentrations versus Residence Time at End of Test
- Figure 3: Peerless ZVI Column Water cVOC and DHG Concentrations versus Residence Time at End of Test
- Figure 4: Chlorinated Ethene Degradation Pathways with ZVI
- Figure 5: Connelly ZVI Column Water ORP and pH Values versus Residence Time at End of Test
- Figure 6: Peerless ZVI Column Water ORP and pH Values versus Residence Time at End of Test

LIST OF APPENDICES

Appendix A: Chain of Custody Record
Appendix B: External Laboratory Reports

LIST OF ABBREVIATIONS

cDCE cis-1,2-dichloroethene

cVOC chlorinated volatile organic compound

°C degrees Celsius

°C/min degrees Celsius per minute

cm centimeters

°F degrees Fahrenheit

ft feet

ft/day feet per day

DHG dissolved hydrocarbon gases
DOC dissolved organic carbon
GC gas chromatograph

 $\begin{array}{ll} g & \text{grams} \\ t_{1/2} & \text{half life} \\ \text{hrs} & \text{hours} \end{array}$

IC ion chromatograph

ICP-AES inductively coupled plasma – atomic emission spectroscopy

MCLs maximum contaminant levels

μg/L micrograms per liter

μL microliters

mg/L milligrams per liter

mL milliliters

mL/min milliliters per minute

min minute
mm millimeters
mM millimolar
mV millivolts

ORP oxidation reduction potential

% per cent

PRB permeable reactive barrier
RPM revolutions per minute

QL quantitation limit

r² coefficient of determination

SiO₃²⁻ silica

SiREM SiREM Laboratories
PCE tetrachloroethene
TDS total dissolved solids

TCE trichloroethene
VC vinyl chloride
ZVI zero valent iron

1 Introduction

SiREM Laboratory (SiREM) was retained by AMEC to perform a bench scale treatability column study to assess the use of the zero valent iron (ZVI) permeable reactive barrier (PRB) technology for the remediation of chlorinated volatile organic compounds (cVOCs) in groundwater from the Crown Chevrolet Site located in Dublin, California (the site).

The remainder of this report contains:

- the study objectives and scope of work (Section 2);
- experimental methods (Section 3);
- cVOC results and discussion including calculation of cVOC degradation half-lives (Section 4);
- estimation of residence time required for ZVI PRB design (Section 5);
- discussion of inorganic chemistry changes during the column study (Section 6);
- the study conclusions (Section 7); and
- Report references are provided in Section 8.

Objectives and Scope of Work

This section provides the study objectives and the scope of work completed to satisfy the project objectives.

2.1 **Objectives**

The primary objectives of the laboratory ZVI column study were to:

- Determine degradation rates for the main compounds of potential concern (i.e., tetrachloroethene [PCE], trichloroethene [TCE], cis-1,2-dichloroethene [cDCE] and vinyl chloride [VC]) in site groundwater with two types of commercial granular ZVI under flowing water conditions;
- Characterize chlorinated breakdown products of cVOCs detected in the site groundwater and to quantify the rates of degradation; and
- Evaluate changes in inorganic geochemistry caused by ZVI corrosion chemistry, including possible mineral precipitation.

2.2 Scope of Work

Two ZVI columns were set up and performed using 100 per cent (%) granular ZVI and site groundwater containing cVOCs. On 27 August 2014 the granular ZVIs were packed into the columns with care. An additional column was packed with silica sand to serve as a study control. The column and ZVI materials specifications are provided in Table 1. A schematic of the column is provided in Figure 1.

The groundwater for this study was collected by AMEC personnel from the site and was received by SiREM on 28 August 2014. On 3 September 2014 (Day 0) the site groundwater was transferred into the influent reservoir with care taken to minimize volatile losses to the extent practicable. The initial PCE concentration in the influent reservoir was below the target concentrations of 2.0 milligrams per liter (mg/L). Therefore, on 3 September 2014 the influent reservoir water was amended with 24 microliters (uL) of PCE to achieve the target concentration. Additional reservoir bags were filled and spiked with PCE on 7 October 2014 and 12 November 14, respectively. During the final reservoir bag fill and PCE spike an inadvertent inclusion of TCE (~ 2.0 mg/L) occurred which accounts for the increase in TCE concentrations at the endpoint sampling.

On 12 September 2014 the pump was started to feed the water from the influent reservoir vertically upward through the column for a period of seven weeks. A flow velocity of approximately 1.6 feet/day was selected in consultation with AMEC to allow the study to be completed in a reasonable time.

Water samples were collected from seven sampling ports located along the column length as well as from the column influent and effluent for analysis of pH, oxidation-reduction potential (ORP), cVOCs, dissolved hydrocarbon gases (DHGs), cations, anions, alkalinity, and dissolved and total organic carbon (DOC/TOC) according to the schedule presented in Table 2.

The cVOC concentration trends from the column study were used to calculate the degradation rates for each compound detected using a multicomponent first-order kinetic model. The degradation rates obtained, expressed as half-lives, were then corrected for groundwater temperature and used to calculate the residence time required in the field to achieve the regulatory criteria for all compounds. Finally, the column water chemistry data were used to assess the potential effects of water chemistry on the long-term reactivity of ZVI under site conditions.

3 Study Methods and Materials

This section describes the methods and materials used to construct and operate the columns, and to collect water samples for analysis during the ZVI column treatability study.

3.1 Column Construction

The column study consisted of a control column packed with silica sand, one column containing 100% granular ZVI (CC-1004) provided by Connelly-GPM Inc. (Chicago, IL) and one column containing 100% granular ZVI provided by Peerless Metal Powders (Detroit, MI). These commercial ZVI sources have been used for numerous ZVI PRB applications (Gillham et al., 2010). Based on the manufacturer's specifications, the granular ZVI used in the column study has a particle size range from 0.25 to 2.0 millimeters (8 to 50 US Mesh). Silica sand used in the control column had a particle size of 0.21 mm (70 US Mesh).

The columns are constructed of Plexiglas™ with a length of 1.64 feet (ft) (50 centimeters [cm]) and an internal diameter of 0.12 ft (1.5 inches, 3.8 cm) (Figure 1). Seven sampling ports were positioned vertically along the central axis of the columns at distances of 0.08, 0.16, 0.33, 0.50, 0.66, 1.0 and 1.3 ft from the influent end. The column influent and effluent ports were also sampled. All sampling ports within the columns (excluding influent and effluent) were constructed using a nylon Swagelok compression fitting tapped into the column. A 16 gauge needle was positioned through the fitting and secured by tightening the ferrule. Glass wool was threaded through the needle to ensure minimal particulates from entering the samples. Each sample port was then fitted with a Luer-Lock™ fitting so that a glass syringe could be attached to the port for collection of water samples.

To ensure a homogeneous column material bed, the ZVI materials and sand were packed vertically in the column in 100 gram (g) increments. Values of bulk density, porosity, and pore volume were determined by weight and are provided in Table 1. The column study was performed at room temperature (22±1 degrees Celsius [°C]).

A Masterflex® peristaltic pump was used to feed site water vertically upwards through the column. The pump tubing consisted of Viton® 2-stop tubing. All other tubing was 1/16 inch inside diameter Teflon® tubing.

3.2 Site Groundwater Storage and Usage

Seventeen 1-gallon bottles containing groundwater collected from the Site were received by SiREM personnel on 28 August 2014 and stored in cold storage (4°C) until study commencement. A Chain of Custody Record for the water received from the site is provided in Appendix A. Site water was siphoned into the influent reservoir (i.e., a Teflon® bag) with minimal headspace. The influent reservoir contained two Swagelok fittings with Teflon® septa.

3.3 Sampling Procedure

After removing the stagnant water from the sampling needles, 4.0 mL samples were collected from the sampling ports using glass on glass syringes. A 250 µL to 1 mL water sample (depending on the sample location and dilution required) was removed from the glass syringe and transferred immediately into an autosampler vial for gas chromatograph (GC) analysis of cVOCs/DHGs. The remaining sample volume was transferred into a 5 mL plastic vial for ORP and pH measurement. When anion sample collection was required a 0.5 mL sample was transferred to 1.5 mL eppendorf tubes, which were stored frozen until time of analysis.

Water samples for cation, alkalinity, DOC/TOC analyses were collected from the column influent and effluent only. For cations, a 50 mL unfiltered sample was collected into a 110 mL bottle and acidified to a pH of 2 with nitric acid. For alkalinity and TDS 100 mL unfiltered samples were collected into 110 mL bottles and left unpreserved. For metals a 75 mL unfiltered sample was collected into a 110 mL bottle and acidified to pH 2 with nitric acid. Confirmatory samples for cVOC analysis were also collected from the influent and effluent into 2.8 mL vials and 40 mL VOA vials preserved with hydrochloric acid.

Water samples for cation, anion, alkalinity and DOC/TOC, and confirmatory cVOC analyses were placed in coolers with ice packs and shipped under chain of custody to ALS Environmental in Waterloo, Ontario, Canada for analysis.

3.4 Analytical Methods

This section describes the methods of analysis for pH, ORP, cVOCs, DHGs, cations, anions, alkalinity and DOC/TOC.

3.4.1 Analysis of ORP and pH

The ORP measurements were performed at SiREM using a Corning 313 meter with double junction ORP electrode (Ag/AgCl reference). A 3.0 mL sample was collected (as described in section 2.3) and the ORP probe was inserted into the sample vial on the lab bench. A single point calibration of the meter was performed at each sampling event with Zobell ORP calibration solution.

The pH measurements were performed using an Oakton pH spear with a combination pH electrode (Oakton, Vernon Hills, IL). Immediately after ORP measurement the pH probe was inserted into the same sample vial on the lab bench for pH measurement. The pH spear was calibrated at each sampling event according to the manufacturer's instructions using pH 4.0, 7.0 and 10 standards.

3.4.2 Analysis of cVOCs and Dissolved Hydrocarbon Gases

Water sample cVOC and DHG (i.e., ethene, ethane and methane) analyses were performed at SiREM using a Hewlett-Packard (Hewlett Packard 7890) GC equipped with an auto sampler (Hewlett Packard G1888) programmed to heat each sample vial to 75°C for 45 min prior to headspace injection into a GSQ Plot column (0.53 millimeters x 30 meters, J&W) and a flame

ionization detector. Sample vials were heated to ensure that all cVOCs in the aqueous sample would partition into the headspace. The injector temperature was 200°C, and the detector temperature was 250°C. The oven temperature was programmed as follows: 35°C for 2 min, increased to 100°C at 50 degrees Celsius per minute (°C/min), then increased to 185°C at 25°C/min and held at 185°C for 6.80 min. The carrier gas was helium at a flow rate of 11 milliliters per minute (mL/min).

After withdrawing a 250 μ L to 1 mL sample, the sample was injected into a 10 mL auto sampler vial containing between 5.75 and 5.0 mL of acidified deionized water (pH ~2). The water was acidified to inhibit microbial activity between microcosm sampling and GC analysis. The vial was sealed with an inert Teflon[®]-lined septum and aluminum crimp cap for automated injection of 3 mL of headspace onto the GC. One cVOC standard was analyzed with each set of samples to verify the instrument five-point calibration curve using methanolic stock solutions containing known concentrations of the target analytes. Calibration was performed using external standards purchased as standard solutions (Sigma, St Louis, Missouri), where known volumes of standard solutions were added to acidified water in auto sampler vials and analyzed as described above for column samples. The calibration concentrations range from 10 to 10,000 μ g/L. Data were integrated using Chemstation Software (Agilent Technologies, Santa Clara, California).

The quantitation limits (QL) for the cVOCs and DHGs were typically 10 μ g/L to 20 μ g/L based on the lowest concentration standards that were included in the linear calibration trend and the dilution factor applied for a particular sample.

As outlined in the sampling plan, samples from the influent and effluent and one column sampling port for each ZVI column were collected twice at the end of the test and sent to ALS Environmental (Waterloo, ON, Canada) for cVOC analyses using EPA Method 8260B

3.4.3 Analysis of Major Anions

Anion (chloride, nitrate-nitrogen [nitrate], nitrite-nitrogen [nitrite], phosphate and sulfate) analyses were performed at SiREM on a Dionex DX-600 ion chromatograph (IC) equipped with a Dionex AS-40 auto sampler and an AS18 column, the sample loop volume was 25 μ L. An isocratic separation was performed using 33 millimolar (mM) reagent grade sodium hydroxide (Fisher Scientific, Ottawa, ON) eluent for 13 min. One standard was analysed with each set of samples tested in order to verify the seven-point calibration using external standards of known concentrations. External standards were prepared gravimetrically using chemicals of the highest purity available (Sigma St Louis, MO or Bioshop, Burlington, ON). Data were integrated using Peaknet Chromatography software (Dionex, Oakville, ON). The calibration concentrations ranged from 100 to 10,000 μ g/L.

A 0.5 mL sample was withdrawn, after which the sample was placed in a 1.5 mL microcentrifuge tube. Samples were centrifuged for five minutes at 13,000 revolutions per minute (RPM) to remove solids. The supernatant was removed, diluted 50-fold in deionized water and

placed in a Dionex auto sampler vial with a cap that filters the sample during automated injection onto the IC.

3.4.4 Analysis of Cations, Anions, Alkalinity, TOC and DOC

Water sample cation, anions, alkalinity, DOC/TOC analyses were performed by ALS Environmental of Waterloo, Ontario, Canada. Cations were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES) (US EPA Method 6020A). Carbonate alkalinity (expressed as milligrams CaCO₃ per liter) in water was determined using method US EPA Method SM 2320B. Major anions were determined using ion chromatography by US Method EPA Method 300.0 (IC). DOC and TOC were detected in accordance with Method APHA 5310 B-INSTRUMENTAL.

4 cVOC Results, Reaction Pathways and Degradation Parameters

This section discusses the observed water cVOC concentration trends. The column data are then quantified in terms of anticipated cVOC degradation pathways and kinetic rates.

4.1 cVOC Results

Approximately 64 pore volumes (PVs) of groundwater passed through the Connelly and Peerless ZVI columns during the test and approximately 60 PVs passed through the sand controls column. One pore volume corresponded to a residence time of approximately 27 hrs and 26 hrs the Connelly and Peerless ZVI columns, respectively. The water sample cVOC compounds detected (PCE, TCE, cDCE and VC) as well as dechlorination products (ethene and ethane) and methane data from both columns are provided in Tables 3, 4 and 5. Concentration trends for cVOCs and DHGs from the last sampling events in the Connelly and Peerless ZVI columns are presented in Figures 2 and 3. As noted in the method section, the influent reservoir water was refilled two times with site water spiked with PCE. In the last influent reservoir refill performed prior the final cVOC profiles were collected, both PCE and TCE were spiked inadvertently to approximately 2 mg/L.

The influent PCE concentrations decreased slightly along the sand control column throughout the test, likely due to adsorption (Table 2). Decreases in concentrations of minor cVOC were also observed in the sand control column. No change in DHG were detected, indicating that adsorption or volatile losses were likely responsible for the partial cVOC losses in the control column.

At the end of the test, an influent PCE concentration of approximately 2.67 mg/L was degraded to a non-detectable value at a residence time of 10.8 hrs in the Connelly column. PCE concentrations decreased more gradually in the Peerless column to a minimum concentration of 0.037 mg/L measured in the effluent of the Peerless column at a residence time of 25.5 hrs. The TCE concentration decreased from an influent value of 2.23 mg/L to a non-detectable value at a residence time of approximately 10 hrs in both columns. Low concentration of DCE-isomers and VC were degraded within the initial part of both columns, along with PCE and TCE.

As a result of the complete dechlorination of PCE and TCE, up to 0.289 mg/L of ethene and up to 0.238 mg/L of ethane were created in the Connelly column in the last sampling event. The maximum amount of ethene and ethane generated in the Peerless column were 0.127 and 0.091 mg/L, respectively. Using the cumulative molar concentrations of ethene and ethane as products of dechlorination and the molar amounts of degraded cVOCs, the calculated carbon mass balance ranged from 37% to 60% in the Connelly ZIV and 17% to 48% in the Peerless column. These relatively incomplete mass balances are thought to be due to losses in DHG concentrations during column sampling. As indicated in Section 6.1, concentrations of chloride increased by approximately 3 mg/L in both ZVI columns, corresponding to the amount of chloride generated by complete dechlorination of the influent cVOCs. This confirms the influent cVOC were degraded, rather than adsorbed or lost to volatilization in the ZVI columns.

4.2 Quality Control cVOC Analyses

Confirmatory cVOC samples analyzed by US EPA Method 8260B were collected two times before the conclusion of the test. Table 6 presents the cVOC analytical data from SiREM and ALS Environmental. In general, the PCE, TCE, cDCE and VC concentrations measured by SiREM in the influent samples were 13% to 40% higher than those measured by ALS. It is common to observe higher concentrations of this magnitude for samples measured at SiREM compared to external laboratories due to volatiles losses during sample shipping and handling.

4.3 cVOC Reaction Pathways and Kinetic Expressions

Two dominant pathways of degradation of chlorinated hydrocarbon compounds by ZVI include hydrogenolysis and reductive β -elimination (Gillham et al., 2010). In the hydrogenolysis reaction, a chlorine atom is replaced by a hydrogen atom, accompanied by the addition of two electrons (from the iron). Reductive β -elimination involves release of two chlorine atoms and the formation of an additional carbon-carbon bond. Both pathways are thought to occur simultaneously (Arnold and Roberts, 2000). Figure 4 illustrates those pathways for the chlorinated ethene sequence starting from PCE, through TCE, DCE-isomers, VC and finally ethene and ethane. Both of the chlorinated acetylenes are highly unstable and degrade rapidly, primarily through reductive dechlorination to acetylene (Arnold and Roberts, 2000). Another ZVI-mediated transformation mechanism, hydrogenation, involves the addition of two hydrogen atoms across two carbon atoms with the removal of a C-C bond (e.g., reduction of acetylene to ethane, and ethene to ethane as shown in Figure 4).

Based on previous research, the VOC degradation in contact with ZVI appears to be first-order with respect to the concentration of the contaminant (pseudo first-order) (Gillham et al., 2010):

$$\frac{\partial C}{\partial t} = -kt \tag{1}$$

After integration, the equation can be presented in the form of the exponential decay equation:

$$C = C_0 e^{-kt} \tag{2}$$

Where: C is the concentration in solution at a particular time (t), C_o is the initial concentration, and k is the first-order rate constant.

The rate constant (k) is a measure of the reaction rate and can be calculated directly from Equation 2. The time at which the initial concentration declines by one-half, (C/C_o = 0.5), is the half-life ($t_{1/2}$).

$$t_{1/2} = \frac{\ln(2)}{k} \tag{3}$$

4.4 Determination of Degradation Parameters from Column Data

Due to the complexity of the ZVI-induced dechlorination mechanisms (Figure 4), the laboratory data were interpreted using a multi-component kinetic model to quantify degradation rates of compounds that are present in the water initially, as well as potential degradation products. In the model, potential breakdown products are concurrently produced and degraded as described by first-order kinetic equations. Each pathway is characterized by a rate constant (k) and the mole fraction of the compound that follows that particular path (f). Since chlorinated acetylenes are unstable, short-lived, intermediates are rapidly reduced to ethene (Arnold and Roberts, 2000). These compounds are not typically detected in the solution phase and are therefore not explicitly contained in the degradation model. Therefore, first-order rate equations for each cVOC included in the model are as follows:

$$\frac{\partial PCE}{\partial t} = -k_{PCE}PCE \tag{4}$$

$$\frac{\partial TCE}{\partial t} = f_{PCE1} k_{PCE} PCE - k_{TCE} TCE \tag{5}$$

$$\frac{\partial cDCE}{\partial t} = f_{PCE2}k_{PCE}PCE + f_{TCE1}k_{TCE}TCE - k_{cDCE}cDCE$$
 (6)

$$\frac{\partial VC}{\partial t} = f_{PCE3} k_{PCE} PCE + f_{TCE2} k_{TCE} TCE + f_{cDCE} k_{cDCE} cDCE - k_{VC} VC \tag{7}$$

These equations were adapted for the computer program Scientist[®] Version 3.0 (Micromath Research, 2008). The program can be used to fit the first-order equations to experimental data using the least squares best-fit method. The degradation rate and molar conversion are determined for each compound sequentially starting with the most chlorinated cVOC.

The results from the model fitting of column data include half-lives for all cVOCs selected and statistical fit data including coefficient of determination (r^2) values. The half-lives determined from the cVOC profiles from the last two sampling events are shown in Table 7, along with the corresponding r^2 values.

The degradation model provided relatively good fits to the cVOC concentration profiles with r² values of more than 0.96 for the PCE data (Table 7). The fits for other minor cVOCs were less good statistically due to relatively low starting concentrations with respect to the cVOC method detection limits. Based on the last cVOC profiles, the calculated half-lives for the Connelly ZVI column were 2.7 hrs for PCE, 1.9 hrs for TCE and 7.9 hrs for cDCE. The half-life values for the Peerless ZVI column were 3.9 hrs for PCE, 1.5 hrs for TCE and 0.9 hrs for cDCE. VC was detected sporadically in the columns and those detections were followed by a non-detectable value in the next downgradient sampling port. Based on a decrease in the influent VC concentration from 0.19 mg/L to a non-detectable value in the first sampling port (i.e., a residence time of 2.5 to 2.6 hr) in the third sampling event in both columns (Tables 3 and 4), the VC half-lives were calculated to be approximately 0.6 hr or less in both columns. The cVOC degradation half-lives values achieved at the end of this study were within the range of values observed for commercial ZVI studies at room temperature for these compounds (Gillham et al., 2010 and unpublished data). In previous comparative tests performed by SiREM, Connelly ZVI

had higher degradation rates for chlorinated ethenes, compared to Peerless ZVI. However, in the case of PCE, the half-lives obtained for both materials were higher than those typically obtained in previous tests. The lower degradation rates were likely related to the composition of the Site groundwater. In particular, the relatively high concentrations of carbonate alkalinity and calcium may have influenced the ZVI degradation chemistry, as described in Section 6.

5 Field Scale PRB Design Considerations

The laboratory half-lives were obtained at a temperature of 22°C (72 degrees Fahrenheit [°F]). Field groundwater temperature was not provided at the time of this report. For the purpose of this evaluation, we have assumed the minimum field groundwater temperature is approximately 16°C (61°F). Based on the previous research, cVOC degradation half-lives increase by 100% per every 6°C to 8°C temperature decrease within a temperature range of 5 to 25°C (O'Hannesin et al., 2004). Therefore, the laboratory half-life values were increased by a factor of 2 to obtain the anticipated field values (Table 8).

The residence time calculations for the field ZVI PRB were performed assuming the cVOC concentration values in the water used for the bench scale study and using the temperature corrected laboratory half-lives obtained at the end of the study (Table 8). The Scientist® program described in Section 4.4 was used to simulate the change in cVOC concentrations over time using the first-order kinetic equations. In simulation mode, the model calculates the cVOC concentrations over time, from which the time required for the cVOCs to degrade to their regulatory criteria can be determined.

Based on the simulations performed, the residence time required to achieve California drinking water maximum contaminant levels (MCLs) in a PRB at the site are 49 hrs for Connelly GPM ZVI and 70 hrs for Peerless ZVI hours (Table 8). The required ZVI thickness can be obtained by multiplying the residence time required by the groundwater flow rate anticipated in the location of the proposed PRB. Inclusion of a design safety factor for the ZVI PRB thickness is recommended to account for ZVI reactivity losses expected in a long-term operation, as described in Section 6.

6 Inorganic Chemistry Results and Discussion

Previous research has shown that the inorganic composition of the treated groundwater can have a profound influence on the reactivity of commercial granular ZVI materials. Most of these effects are related to long-term performance. Therefore, evaluation of changes in inorganic chemistry along the flow path through the ZVI column is a crucial component of design considerations for a ZVI PRB.

6.1 Column Data

Values of pH and ORP were measured for each cVOC sample collected during the test (Table 9). Major anion samples were collected at baseline and in three sampling events during the test period (Table 10). Major cations, alkalinity, TOC and DOC were measured at baseline and at the end of the test (Table 11). Laboratory reports of analysis for the cations, alkalinity, DOC and TOC are compiled in Appendix B.

When iron is exposed to water, several reactions occur as a result of iron corrosion:

$$Fe^{\circ} \rightarrow Fe^{2+} + 2e^{-} \tag{8}$$

This iron corrosion drives the geochemical changes that occur as groundwater flows through the PRB. When groundwater first contacts the granular iron, any dissolved oxygen present is consumed via iron corrosion:

$$4Fe^{\circ} + 3O_{2(aq)} + 12H^{+} \rightarrow 4Fe^{3+} + 6H_{2}O$$
 (9)

After the initial, rapid depletion of any dissolved oxygen and other oxidizers (e.g., nitrate which was not present in the site water), the water corrosion of iron dominates to produce hydrogen and hydroxide resulting in an increase in pH and decline in Eh:

$$Fe^{\circ} + 2H_2O \rightarrow Fe^{2+} + H_{2(aq)} + 2OH^{-}$$
 (10)

The ORP and pH profiles within the columns are presented in Table 9, and Figures 5 and 6. In the last sampling event, the ORP decreased within the columns from approximately +100 milliVolts (mV) in the influent to -422 and -709 mV in the Connelly and Peerless columns, respectively. The pH values increased from an influent value of 7.2 to up to approximately 9.4 in both columns. The changes in ORP and pH observed along the ZVI columns were the expected results of ZVI corrosion, described in reactions shown in Eq. 8 and 10.

Dechlorination of cVOCs is a redox reaction, whereby ZVI acts as an electron donor and cVOC compounds are electron acceptors. For example, dechlorination of PCE can be represented by the following reaction:

$$4Fe^{0} + C_{2}CI_{4} + 4H^{+} \rightarrow C_{2}H_{4} + 4Fe^{2+} + 4CI^{-}$$
(11)

Therefore, degradation of cVOCs consumes ZVI and generates dissolved iron. As shown in Table 11, dissolved iron was not detected in the effluents of both ZVI columns, which indicates

that the created oxidized iron contributed to the creation of secondary precipitates on ZVI grains, as described below. Some iron minerals created by oxidized iron may be passivating (hematite/goethite or siderite), while other mineral phases such as magnetite or green rust allow electron transfer from the core of ZVI grains to aqueous phase and do not impede ZVI corrosion substantially (Gillham et al., 2010). Green rust is an iron corrosion product containing mixed Fe(II)/Fe(III) hydroxide layers which alternate with negatively charged interlayers containing carbonate, chloride or sulfate anions (Guilbaud et al., 2013). Identification of oxidation product was not included in the scope of this study. However, given the observed losses in carbonate alkalinity and sulfate and the relatively unchanged ZVI degradation rates within the test period. the latter types of iron mineral phases were likely formed which maintained transfer of electrons from the core of ZVI grains to the surface.

The influent calcium concentration of 145 mg/L decreased to 6.0 mg/L and 4.5 mg/L in the effluents of the Connelly and Peerless columns, respectively (Table 11). Losses in magnesium were also observed, from 35 mg/L in the influent to 10 and 23 mg/L in the effluents of the Connelly and Peerless columns, respectively. Carbonate alkalinity was detected in the influent water at a concentration of 459 mg/L, which is relatively high compared to other site waters tested previously by SiREM for ZVI PRB applications. The alkalinity in the ZVI column effluents could not be measured due to analytical interferences. Based on previous results from ZVI columns, most of carbonate alkalinity was lost due to precipitation of calcium, magnesium and iron carbonate minerals:

Aragonite/Calcite:
$$Ca^{2^+} + CO_3^{2^-} \rightarrow CaCO_{3(s)}$$
 (12)
Siderite: $Fe^{2^+} + CO_3^{2^-} \rightarrow FeCO_{3(s)}$ (13)

Siderite:
$$Fe^{2^+} + CO_3^{2^-} \rightarrow FeCO_{3(s)}$$
 (13)

Sodium behaves as a conservative tracer in ZVI systems and, as expected, its concentration remained essentially unchanged within the columns (Table 11). A small increase in chloride concentrations from 91 mg/L in the influent to 94 mg/L in the effluent of both columns were likely due to the generation of chloride from the dechlorination of influent cVOCs. Increases in chloride concentrations within both columns were also observed in the column profile sampling (Table 10).

As illustrated in Table 11, the influent nitrate concentration in the influent of 2.3 mg/L (as N) decreased to non-detectable concentrations in both columns. Nitrate reduction in ZVI results in the production of ammonia/ammonium:

$$NO_3^- + 9 H^+ + 4Fe^0 \rightarrow NH_3 + 3H_2O + 4Fe^{2+}$$
 (14)

It is believed that the nitrate reduction results in the formation of iron oxyhydroxides precipitates on the surface of the granular iron, which in turn passivate the iron surface, reducing the surface area available for nitrate and cVOC reduction. However, given the relatively low nitrate concentration in the site water, this process will not likely influence the long-term performance of the ZVI in Site groundwater.

The concentration of sulfate of 60 mg/L in the influent decreased to a non-detectable value in the Connelly ZVI and 35 mg/L in the Peerless ZVI (Table 11). At the low redox potential (Eh) created by ZVI corrosion, sulfate may be reduced to sulfide (H₂S or HS⁻):

$$SO_4^{2-} + 9H^+ + 8e^- \rightarrow HS^- + 4H_2O$$
 (15)

In the presence of dissolved iron produced by ZVI corrosion, the hydrogen sulfide produced precipitates out of solution.

$$Fe^{2+} + HS^{-} \rightarrow FeS_{(s)} + H^{+}$$

$$\tag{16}$$

Typically, sulfate concentrations do not change in ZVI column testing. Microbially mediated sulfate reduction has been observed in long-term ZVI columns and in mature ZVI PRBs (Battelle, 2002; Wilkin et al., 2003). Given the relatively high pH values measured in both columns which would likely be inhibitory to microbial activity, along with the relatively low dissolved carbon concentrations and lack of indications of anaerobic microbial activity (i.e. methane gas generation), it is believed that the losses of sulfate observed in the test were due to abiotoic processes, likely the formation of sulfate green rust, as discussed above.

Silicon was present in the influent at a concentration of 10 mg/L that decreased to below detection limit (1 mg/L) in both ZVI column effluents in response to geochemical conditions created by ZVI corrosion. Silica (SiO₃²-) is thought to precipitate or adsorb on ZVI surfaces leading to the formation of a silica film or gel on the ZVI surface that may hinder contaminant access to active sites (Klausen et al., 2003).

The influent concentration of DOC and TOC were 2.0 mg/L and 3.5 mg/L, respectively, and both compounds were not detected in the column effluents, including the control, likely due to adsorption onto the materials (Table 11). Previous research suggests that accumulation of certain types of organic matter, such as humic acids, on the surface of ZVI particles can inhibit electron transfer between the underlying metal and the contaminant, resulting in surface passivation and decreasing rates of contaminant reduction (Tratnyek et al., 2001). Another process postulated to inhibit the rates of cVOC degradation is hydrophobic partitioning, whereby hydrophobic contaminants (e.g. chlorinated hydrocarbons) are preferentially partitioned to micelle or membrane-like hydrophobic interiors formed by surfactant aggregates.

6.2 Possible Mineral Precipitates and Their Effect

Iron corrosion reactions (Equations 8-10) promote the reductive dechlorination reactions, but at the same time are sources of ferrous iron and alkalinity. The relatively low dissolved iron that was detected in the column effluent suggests that the iron (oxy) hydroxides and green rust were likely formed in the column, along with carbonates. However, because these hydroxides ultimately transform to magnetite, which is electron-conducting, they do not substantially reduce the reactivity of the iron and the rate of formation is not expected to cause a significant decline in permeability (Gillham et al., 2010).

The observed levels of carbonate alkalinity in Site groundwater, iron and calcium carbonate precipitation, and possibly silica and organic carbon solid phases on ZVI grains are expected to

be the main process influencing the ZVI longevity in PRB at the Site. While there is little doubt that inorganic precipitates (mostly iron oxyhydroxides and carbonates) will form over time in a ZVI PRB at the site, their impact will be proportional to the groundwater velocity. The use of a design safety factor is recommended to account for those ZVI aging process in a long term. Typical design safety factors applied at other ZVI PRB sites ranged from 2 to 3, depending on site conditions.

7 Summary and Conclusions

Bench-scale column treatability testing using site water indicated that:

- i) Connelly and Peerless ZVIs degraded the cVOCs present in the site water. The degradation half-lives generated in the study for the main cVOC, PCE were within the range of values observed for these ZVI sources, but higher than typical values obtained for other groundwaters with comparable cVOC composition. Connelly ZVI was more reactive towards PCE than Peerless ZVI, which is in agreement with previous comparative column test results.
- ii) Based on the anticipated half-lives at site field groundwater temperature (61°F/16°C) obtained at the end of the study and the cVOC concentrations tested, residence times of 49 hrs and 70 hours would be required in a ZVI PRB to achieve the California MCLs using Connelly and Peerless ZVI, respectively.
- iii) Geochemical gradients created by ZVI corrosion resulted in losses in dissolved concentrations of calcium, alkalinity, sulfate, silica and DOC/TOC. This indicates precipitation of various minerals or adsorbed phases likely occurred on ZVI grains, including iron (oxy)hydroxides, green rust, calcium and iron carbonates, silica mineral phases and organic carbon films. Mineral phases such as iron (oxy)hydroxides and green rust are electron-conducting, and therefore do not substantially reduce the reactivity.
- iv) Formation of other types of mineral precipitation such as carbonates, along with silica and organic carbon films (i.e., phases that block the transfer of electrons to the surface of ZVI grains, is expected to affect the long-term performance of the ZVI PRB at this site. Therefore, it is recommended that an engineering safety factor be included in ZVI thickness design calculations for the proposed PRB to assure long-term efficiency.

8 References

Arnold, W.A. and Roberts, L.A., 2000. Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environ. Sci. Technol. Vol. 34, pp. 1794-1805.

Battelle Press, 2002. Evaluating the longevity and hydraulic performance of permeable reactive barriers at the Department of Defense sites. Columbus, Ohio, April 2002.

Gillham, R., Vogan, J., Gui, L., Duchene, M. and Son, J., 2010. Iron barrier walls for chlorinated solvent remediation. In: Stroo, H. F.; Ward, C. H. (eds.), *In Situ* Remediation of Chlorinated Solvent Plumes. Springer Science+Business Media, New York, NY, p. 537.

Guilbaud, R., White, M.L. and S.W. Poulton, 2013. Surface charge and growth of sulphate and carbonate green rustn aqueous media. Geochimica et Cosmochimica Acta 108 (2013) 141–153

Klausen, J., Vikesland, P. J., Kohn, T., Burris, D. R., Ball, W. P., and Roberts A. L., 2003. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environmental Science and Technology. 37(6): 1208-1218.

Micromath Research, 2008. Scientist - Scientific data fitting software. Microsoft Windows Version 3.0, Saint Louis, Missouri 63144.

O'Hannesin, S.F., Przepiora, A. and Gillham, R.W., 2004. Effect of Temperature and Iron Content on Iron PRB Design. Presented at The Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May 24-27.

Tratnyek, P. G., M. M. Scherer, B. Deng, and S. Hu. 2001. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Research. 35(18): 4435-4443.

Wilkin, R.T., Puls, R.W. and Sewell, G.W., 2003. Long-term performance of permeable reactive barriers using zero-valent iron: geochemistry and microbiological effects. Ground Water, Vol. 41, No. 4, pp. 493-503

TABLES

TABLE 1 COLUMN AND MATERIALS SPECIFICATIONS

Crown Chevrolet, Dublin, CA

Column Material Type	Connelly GPM	Peerless Metal Powders	Silica Sand			
Particles Size Range	US Mesh 8 to 50 (0.	NA				
Content						
Dry Weight	1,800 g	819 g				
Column Length	1.)				
Column Inside Diameter	0.12 feet (3.8 centimeters)					
Measured Pore Volume	251 mL	266 mL	276 mL			
Volume of Column		567 cubic centimeters				
Porosity	0.44	0.47	0.49			
Bulk Density	3.17 g/cm3	1.44 g/cm ³				
ZVI:Solution Ratio	7.15 g/mL 6.55 g/mL NA					
Average Residence Time	27.1 hrs	25.5 hrs	28.5 hrs			

Notes:

g/cm³ - grams per cubic centimeter

g/mL - grams per milliliter

ZVI - zero valent iron

TABLE 2 ZVI COLUMN SAMPLING SCHEDULE

Crown Chevrolet, Dublin, CAt

	meters mples	cVOCs	, DHCs , ORP	pH and	М	ajor Anio	ns		Cations, <i>I</i> d DOC/TO	Alkalinity DC	
Sampl	e Location	Connelly ZVI column	Peerless ZVI column	Sand Control column	Connelly ZVI column	Peerless ZVI column	Sand Control column	Connelly ZVI column	Peerless ZVI column	Sand Control column	
	Sampling vents		5			3			2		
Colum	nn Influent	•	•	•	•	•	•	•	•	•	
	Α	•	•		•	•					
orts	В	•	•		•	•					
J Pc	С	•	•		•	•					
Sampling Ports	D	•	•		•	•					
Jub	E	•	•		•	•					
Se	F	•	•		•	•					
	G	•	•		•	•					
Colum	nn Effluent	•	•	•	•	•	•	•	•	•	

Notes:

cVOCs - chlorinated volatile organic compounds

DHGs - dissolved hydrocarbon gases

ORP - oxidation-reduction potential

DOC/TOC - dissolved organic carbon / total organic carbon

ZVI - zero valent iron

• indicates sample collected

^a Major anions, cations, alkalinity, and TDS

TABLE 3 SAND CONTROL COLUMN - WATER SAMPLE CVOC AND DHG RESULTS

Crown Chevrolet, Dublin, CA

Sample Locat	tion	Influent	Effluent
Column Distance		0.00	1.64
Residence Time	(hours)	0.00	28.5
Compound	PV	Concentra	tion (mg/L)
	0.0	1.46	
	6.0	1.62	1.37
205	17.1	2.57	2.27
PCE	28.8	1.82	1.60
	48.1	2.13	2.24
	59.8	2.67	2.28
	0.0	0.026	
	6.0	0.058	0.024
TCE	17.1	0.046	<0.010
ICE	28.8	0.051	0.031
	48.1	0.213	0.028
	59.8	2.23	1.79
	0.0	0.067	
	6.0	<0.010	<0.010
cis-1,2-DCE	17.1	0.027	<0.010
CI3-1,2-DOL	28.8	0.032	<0.010
	48.1	0.004	0.013
	59.8	0.016	<0.01
	0.0	0.000	
	6.0	<0.010	<0.010
vc	17.1	<0.010	<0.010
VO	28.8	0.185	<0.010
	48.1	<0.010	<0.010
	59.8	<0.010	<0.010
	0.0	<0.010	
	2.2	<0.010	<0.010
Ethene	8.9	<0.010	<0.010
Zillollo	20.9	<0.010	<0.010
	46.4	<0.010	<0.010
	56.3	<0.010	<0.010
	0.0	<0.010	
	2.2	<0.010	<0.010
Ethane	8.9	<0.010	<0.010
Zinano	20.9	<0.010	<0.010
	46.4	<0.010	<0.010
	56.3	<0.010	<0.010
	0.0	0.019	
	2.2	0.018	0.017
Methane	8.9	0.019	0.018
	20.9	0.017	0.017
	46.4	0.017	0.018
	56.3	0.018	0.019

Notes:

-- - sample not collected

< - compound not detected, the associated value is the quantitation limit

 $\mu g/L$ - micrograms per liter

cis 1,2-DCE - cis-1,2-dichloroethene

trans 1,2-DCE - trans1,2-dichloroethene

cVOC - chlorinated volatile organic compounds

DHG - dissolved hydrocarbon gases

PCE - tetrachloroethene PV - pore volumes TCE - trichloroethene VC - vinyl chloride

$\begin{tabular}{ll} TABLE~4\\ CONNELLY~ZVI~COLUMN~-~WATER~SAMPLE~cVOC~AND~DHG~RESULTS\\ \end{tabular}$

Crown Chevrolet, Dublin, CA

Sample Lo		Influent	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Effluent
Column Distar		0.00	0.16	0.33	0.49	0.66	0.82	0.98	1.31	1.64
Residence Tim	ne (hours)	0.00	2.6	5.4	8.1	10.8	13.5	16.2	21.6	27.1
Compound	PV				Conc	entration (r	mg/L)			
	0	1.464		-		-			-	-
	6	1.618	0.559	0.183	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	18	2.566	<0.010	0.490	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
PCE	31	1.818	0.832	0.493	0.021	<0.010	<0.010	<0.010	0.021	<0.010
	48	2.132	1.120	0.706	0.030	<0.010	<0.010	0.027	<0.010	<0.010
	57	2.340						<0.010		<0.010
	64	2.671	1.239	1.039	0.105	<0.010	0.017	<0.010	<0.010	<0.010
	0	0.026								
	6	0.058	0.019	<0.010	0.204	0.059	<0.010	<0.010	<0.010	<0.010
	18	0.046	<0.010	0.175	0.007	<0.010	<0.010	<0.010	0.082	<0.010
TCE	31	0.051	0.029	0.034	0.011	<0.010	<0.010	<0.010	<0.010	<0.010
	48	0.213	0.020	0.030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	57	1.540	-					<0.010		<0.010
	64	2.230	0.865	0.556	0.021	<0.010	0.020	<0.010	<0.010	<0.010
	0	0.067								
	6	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	18	0.027	0.020	0.011	0.020	<0.010	<0.010	<0.010	<0.010	<0.010
cis-1,2-DCE	31	0.032	0.026	0.020	<0.010	0.033	0.038	0.034	<0.010	<0.010
	48	<0.010	<0.010	0.014	0.016	<0.010	<0.010	<0.010	<0.010	<0.010
	57	<0.010		-				0.026		<0.010
	64	0.016	0.027	0.056	0.064	0.059	0.037	0.027	0.016	<0.010
	0	<0.010	-	-						-
	6	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	18	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
VC	31	0.19	<0.010	<0.010	<0.010	<0.010	<0.010	0.07	0.062	<0.010
	48	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	57	<0.010		-				<0.010		<0.010
	64	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	0	<0.010		-						_
	6	<0.010	0.053	0.064	0.048	0.041	0.043	0.045	0.031	0.024
	18	<0.010	0.055	0.079	0.055	0.034	0.028	0.023	0.019	0.009
Ethene	31	<0.010	0.036	0.051	0.052	0.032	0.027	0.022	0.012	0.005
	48	<0.010	0.022	0.048	0.071	0.062	0.057	0.043	0.032	0.013
	57									-
	64	<0.010	0.110	0.162	0.289	0.282	0.242	0.258	0.222	0.148
	0	<0.010								
	6	<0.010	0.027	0.030	0.034	0.032	0.035	0.035	0.021	0.016
	18	<0.010	0.148	0.134	0.148	0.156	0.163	0.177	0.185	0.223
Ethane	31	<0.010	0.068	0.073	0.095	0.091	0.109	0.179	0.128	0.125
	48	<0.010	0.027	0.048	0.081	0.115	0.170	0.140	0.162	0.198
	57									-
	64	<0.010	0.069	0.089	0.170	0.186	0.199	0.237	0.234	0.238
	0	0.02								
	6	0.02	0.027	0.029	0.030	0.031	0.036	0.037	0.037	0.038
	18	0.02	0.027	0.027	0.027	0.027	0.029	0.029	0.033	0.038
Methane	31	0.02	0.022	0.023	0.024	0.023	0.025	0.030	0.026	0.026
	48	0.02	0.021	0.021	0.023	0.025	0.027	0.026	0.025	0.027
	57									-
	64	0.02	0.022	0.025	0.028	0.027	0.027	0.028	0.027	0.025
	1	1	1	1		1	1			ı .

Notes:

-- - sample not collected

 $\dot{\text{\ \ }}$ - compound not detected, the associated value is the quantitation limit

 $\mu g/L$ - micrograms per liter

cis 1,2-DCE - cis-1,2-dichloroethene

trans 1,2-DCE - trans1,2-dichloroethene

cVOC - chlorinated volatile organic compounds

DHG - dissolved hydrocarbon gases

PCE - tetrachloroethene PV - pore volumes TCE - trichloroethene VC - vinyl chloride

TABLE 5 PEERLESS ZVI COLUMN - WATER SAMPLE CVOC AND DHG RESULTS

Crown Chevrolet, Dublin, CA

Sample Lo	cation	Influent	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Effluent
Column Distar		0.00	0.16	0.33	0.49	0.66	0.82	0.98	1.31	1.64
Residence Tim	e (hours)	0.00	2.5	5.1	7.7	10.2	12.8	15.3	20.4	25.5
Compound	PV				Conc	entration (ma/l \			
Compound	0	4.404			CONC	entiation (ilig/L)			
	6	1.464 1.618	0.520	0.271	0.087	0.013	0.003	0.003	<0.010	<0.010
	19	1.464	0.520	0.271	0.067	0.013	0.003	<0.003	0.965	0.490
PCE	32	1.818	0.657	0.606	0.117	0.067	0.032	0.159	0.965	0.490
FOL	48	2.132	0.057	0.000	0.399	0.270	0.173	0.139	0.056	<0.010
	57	2.132	0.932	0.770	0.494	0.201	0.202	<0.010	0.050	0.036
	64	2.671	1.57	1.20	0.669	0.377	0.236	0.150	0.107	0.037
	0	0.026	1.57	1.20	0.009	0.377	0.230	0.150	U. 107	
	6	0.028	0.051	0.049	<0.010	<0.010	0.002	<0.010	<0.010	0.013
	19	0.036	0.031	0.049	<0.010	<0.010	0.002	0.031	0.033	0.013
TCE	32	0.020	0.032	0.029	0.010	<0.010	<0.003	<0.031	<0.033	<0.010
ICL	48	0.031	0.019	0.014	<0.011	<0.010	<0.010	<0.010	0.010	<0.010
	57	1.544	0.020	0.015	~0.010 	<u> </u>	\0.010	<0.010	0.011	<0.010
	64	2.230	0.746	0.277	0.040	0.010	<0.010	<0.010	0.019	<0.010
	0	0.067	0.740	0.211	0.040	0.010	<0.010	\0.010	0.019	<0.010
	6	<0.007	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	19	0.027	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.011
cis-1,2-DCE	32	0.027	<0.010	<0.010	0.026	<0.010	<0.010	<0.010	0.010	<0.01
CIS-1,E-DOL	48	<0.010	<0.010	<0.010	<0.010	0.022	<0.010	<0.010	<0.010	0.090
	57	<0.010	<0.010	<0.010	\0.010	0.022	<0.010	<0.010	\0.010	<0.010
	64	0.016	0.013	0.012	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	0	<0.010								
	6	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	19	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
vc	32	0.190	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	48	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.018
	57	<0.010						<0.010		<0.010
	64	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	0	<0.010								
	6	<0.010	0.041	0.044	0.045	0.058	0.050	0.044	0.035	0.023
	19	<0.010	0.058	0.061	0.047	0.054	0.059	0.057	0.049	0.079
Ethene	32	<0.010	0.031	0.031	0.034	0.038	0.032	0.040	0.036	0.040
	48	<0.010	0.040	0.033	0.037	0.038	0.040	0.041	0.039	0.039
	57									
	64	<0.010	0.127	0.105	0.089	0.083	0.084	0.082	0.087	0.079
	0	<0.010	-	-						
	6	<0.010	0.020	0.020	0.021	0.026	0.021	0.017	0.026	0.008
	19	<0.010	0.040	0.042	0.029	0.032	0.035	0.032	0.095	0.134
Ethane	32	<0.010	0.028	0.028	0.030	0.028	0.025	0.030	0.024	0.030
	48	<0.010	0.034	0.034	0.036	0.034	0.037	0.037	0.035	0.033
	57			-						
	64	<0.010	0.091	0.074	0.074	0.066	0.068	0.064	0.069	0.062
	0	0.019								
	6	0.018	0.035	0.034	0.034	0.039	0.037	0.033	0.036	0.028
	19	0.019	0.032	0.032	0.028	0.029	0.030	0.031	0.025	0.027
Methane	32	0.017	0.030	0.027	0.028	0.026	0.027	0.029	0.026	0.029
	48	0.017	0.034	0.031	0.031	0.030	0.031	0.030	0.030	0.029
	57									
	64	0.018	0.047	0.039	0.036	0.033	0.034	0.033	0.033	0.032
	-									

Notes:

-- - sample not collected

 $\dot{\text{\ \ }}$ - compound not detected, the associated value is the quantitation limit

 $\mu g/L$ - micrograms per liter

cis 1,2-DCE - cis-1,2-dichloroethene

trans 1,2-DCE - trans1,2-dichloroethene

cVOC - chlorinated volatile organic compounds

DHG - dissolved hydrocarbon gases

PCE - tetrachloroethene PV - pore volumes TCE - trichloroethene

VC - vinyl chloride

cVOC ANALYTICAL RESULTS COMPARISON BETWEEN SIREM AND ALS LABORATORIES

Crown Chevrolet, Dublin, CA

			SIREM			ALS	
	Analyte	Influent	Port F	Effluent	Influent	Port F	Effluent
				Concen	tration (mg/L)		
	Peerless ZVI						
2014)	PCE	2.34	<0.01	0.036	1.650	0.0867	0.0195
, 20	TCE	1.54	<0.01	<0.01	0.931	<0.0005	<0.0005
17th,	cis-1,2-DCE	<0.01	<0.01	<0.01	0.00244	0.00235	0.00179
1	VC	<0.01	<0.01	<0.01	<0.0005	<0.0005	<0.0005
(Nov.	Connelly ZVI						
	PCE	2.34	<0.01	<0.01	1.650	<0.0005	<0.0005
PVs	TCE	1.54	<0.01	<0.01	0.931	<0.0005	<0.0005
57	cis-1,2-DCE	<0.01	0.026	<0.01	0.00244	0.0115	<0.0005
	VC	<0.01	<0.01	<0.01	<0.0005	<0.0005	<0.0005
	Peerless ZVI						
2014)	PCE	2.67	0.15	0.037	1.73		0.0283
20	TCE	2.23	<0.01	<0.01	1.93		<0.005
27th,	cis-1,2-DCE	0.016	<0.01	<0.01	<0.005		<0.005
. 2.	VC	<0.01	<0.01	<0.01	<0.005		<0.005
Ì	Connelly ZVI						
PVs (Nov.	PCE	2.67	<0.010	<0.01	1.73		<0.005
	TCE	2.23	<0.010	<0.01	1.93		<0.005
64	cis-1,2-DCE	0.016	0.027	<0.01	<0.005		<0.005
	VC	<0.01	<0.010	<0.01	<0.005		<0.005

mg/L - milligrams per liter

< - compound not detected, the associated value is the quantitation limit

cVOC - chlorinated volatile organic compounds

TABLE 7 CALCULATED cVOC HALF-LIFE VALUES

Crown Chevrolet, Dublin, CA

Compound	Pore Volume	Influent Concentration (mg/L)	Half-life ^a (hours)	r²	Conversion (%mol)
Connelly					
Tetrachloroethene	48.2	2.132	2.7	0.976	
retracilioroetrierie	63.9	2.671	2.7	0.965	
					PCE=>TCE
Trichoroethene	48.2	0.213	0.5	0.989	10%
	63.9	2.230	1.9	0.987	10%
					TCE=>cDCE
cis 1,2-Dichloroethene	48.2	0.004	6.9	0.595	6%
	63.9	0.016	7.9	0.726	6%
Peerless					
Tetrachloroethene	48.4	2.132	3.3	0.974	
retracilioroetrierie	63.6	2.671	3.9	0.993	
					PCE=>TCE
Trichoroethene	48.4	0.213	0.5	0.495	11%
	63.6	2.230	1.5	0.999	5%
					TCE=>cDCE
cis 1,2-Dichloroethene	48.4	0.004	NA	NA	NA
	63.6	0.016	0.9	0.489	4%

Notes:

^a Half-life calculated based on test temperature of 22 °C; μ g/L - milligrams per liter cVOC - chlorinated volatile organic compound; r2 - coefficient of determination mol - mole; NA - not applicable; % - percent

TABLE 8 RESIDENCE TIME CALCULATIONS FOR PRB DESIGN

Crown Chevrolet, Dublin, CA

	Anticipated Influent	Target Level		Peerless ZVI		
Compound	Concentration ^a (mg/L)	(mg/L)	Field Anticipated Half-lives ^c (hrs)	Residence time (hrs)	Field Anticipated Half-lives ^c (hrs)	Residence time (hrs)
Tetrachloroethene	2.700	0.005	5.4		7.7	
Trichloroethene	0.213	0.005	3.8	49	3.1	70
cis 1,2-Dichloroethene	0.016	0.006	15.8		1.7	

Notes:

PRB -permeable reactive barrier

mg/L - milligrams per liter

^a Concentrations in the Site water sample provided for the test

^b California Drinking Water Maximum Contaminant Levels (MCLs)

^c Laboratory values at end of test (Table 7) corrected by a factor of 2 to simulate a temperature of 16°C (61°F)

TABLE 9 WATER SAMPLE ORP AND pH RESULTS

Crown Chevrolet, Dublin, CA

Sample Lo		Influent	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Effluent
Column Dista	nce (feet)	0.00	0.08	0.16	0.33	0.49	0.66	0.98	1.31	1.64
Analyte	PV				Instru	ment Rea	adings			
CONNELLY		•								
рН	0	7.14								
	6	7.16	7.87	8.19	8.73	8.77	8.44	8.13	8.51	8.16
	18	7.20	7.39	7.82	8.37	8.99	9.04	8.80	8.41	8.42
[31	7.24	7.37	7.60	8.84	8.67	8.58	8.99	8.96	8.62
	48	7.17	7.21	7.28	8.87	9.04	8.95	8.92	9.02	8.46
	64	7.15	7.51	7.59	9.11	9.28	9.34	9.34	9.26	9.38
ORP (mV)	0	184								
[6	68	-47	-57	-63	-116	-156	-125	-56	-32
	18	45	-290	-426	-423	-345	-322	-381	-209	-178
	31	173	-299	-351	-425	-240	-475	-450	-444	-188
	48	104	-430	-436	-460	-473	-483	-676	-462	-543
	64	99	-135	-101	-118	-71	-45	-293	-150	-422
PEERLESS		T		1					ı	T
рН	0	7.14								
	6	7.16	7.78	8.29	8.91	9.13	9.04	9.06	8.85	8.47
	19	7.20	7.38	7.69	8.78	9.10	9.02	9.16	9.14	9.12
	32	7.24	7.33	7.43	8.03	8.59	8.75	8.94	9.03	9.01
	48	7.17	7.17	7.44	8.08	8.58	8.58	8.85	8.99	9.02
	64	7.15	7.19	7.77		8.88	9.08	9.16	9.58	9.37
ORP (mV)	0	184								
	6	68	-320	-350	-352	-370	-226	-155	-110	-96
	19	45	-372	-458	-433	-376	-369	-448	-354	-353
	32	173	-393	-455	-417	-411	-501	-592	-524	-324
	48	104	-440	-456	-520	-544	-522	-653	-553	-580
	64	99	-456	-370	-383	-515	-514	-555	-709	-520
SAND CONTR										
рН	0	7.14								
	6	7.16								7.14
	17	7.20								7.12
	29	7.24								7.08
	48	7.17								7.36
	60	7.15								7.33
ORP (mV)	0	184								
	6	68	-							52
	17	45								17
[29	173								120
	48	104								115
\	60	99								52

mV - millivolts

ORP - Oxidation Reduction Potential

PV - pore volumes

-- - sample not collected

TABLE 10 WATER SAMPLE ANION RESULTS

Crown Chevrolet, Dublin, CA

Sample Locat	ion	Influent	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Effluent
Column Distance	e (feet)	0.00	0.08	0.16	0.33	0.49	0.66	0.98	1.31	1.64
Analyte	PV				Conce	entration	(ma/L)			
CONNELLY ZVI	<u> </u>						· • /			
Chloride	0	86								
	6	88	91	90	95	85	103			102
	48	84	83	87	101	80	87	100	89	93
	64	84	88	89	98	95	74	96	89	93
Nitrite-Nitrogen	0	<0.09								
	6	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09			<0.09
	48	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
	64	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
Nitrate-Nitrogen	0	2.4								
	6	2.7	0.22	0.98	0.59	0.78	0.87			0.30
	48	2.3	0.12	0.12	0.16	0.23	0.19	0.41	0.32	0.17
	64	2.4	0.11	0.15	0.72	0.19	0.26	0.17	0.19	0.19
Sulfate	0	0.00								
	6	64	64	64	65	77	84			24
	48	49	45	49	43	34	36	33	30	29
	64	56	44	38	25	15	22	1.9	2.1	29
Phosphate	0	0.00								
	6	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07			<0.07
	48	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.64	0.62
	64	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
PEERLESS ZVI		T	T	T	r	T	T			1
Chloride	0	86								
	6	88	75	59	76	73	85	77	85	87
	48	84	92	89	86	79	86	92	91	93
	64	84	76	91	89	88	82	83	87	89
Nitrite-Nitrogen	0	<0.09								
	6	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
	48	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
APC A APC	64	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
Nitrate-Nitrogen	0	2.4								
	6	2.7	0.63	0.64	1.1	1.0	0.68	1.1	0.84	0.99
	48	2.3	0.42	0.17	0.18	0.27	0.22	0.22	0.22	0.14
016-4-	64	2.4	0.20	0.24	0.57	0.15	0.12	0.14	1.5	0.17
Sulfate	0	58								
	6	64	54 57	41	53	51	59 50	54	61	61
	48	49 56	57	63	60	49	58	69	61	61
Dhoonhata	64	56	43	53	53	50	46	46	50	40
Phosphate	0 6	<0.07	 <0.07	<0.07						
	48	<0.07 <0.07	<0.07							
	64			<0.07	<0.07	<0.07	<0.07		<0.07	
	04	<0.07	0.00	\U.U <i>1</i>	\U.U /	\U.U <i>1</i>	\0.07	<0.07	~ U.U <i>1</i>	<0.07

TABLE 10 WATER SAMPLE ANION RESULTS

Crown Chevrolet, Dublin, CA

Sample Locat	tion	Influent	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Effluent
Column Distance	e (feet)	0.00	0.08	0.16	0.33	0.49	0.66	0.98	1.31	1.64
Analyte	PV				Conce	ntration	(mg/L)			
SAND CONTROL		•								
Chloride	0	0.00								-
	6	88								
	48	84								84
	60	88								87
Nitrite-Nitrogen	0	<0.09								
	6	<0.09								
	48	<0.09								<0.09
	60	<0.09								<0.09
Nitrate-Nitrogen	0	2.4								
	6	2.7								
	48	2.3								2.3
	60	2.4								2.4
Sulfate	0	58								
	6	56								
	48	49								50
	60	56								57
Phosphate	0	<0.07								
	6	<0.07								
	48	<0.07								<0.07
	60	<0.07								<0.07

Notes:

mg/L - milligrams per liter

PV - pore volumes

^{-- -} sample not collected

< - compount not detected, the associated value is the quantitation limit

TABLE 11 WATER SAMPLE MAJOR ANION, CATION, ALKALINITY AND TDS RESULTS

Crown Chevrolet, Dublin, CA

				Column	Results	
Analyte	Reporting Limit (μg/L)	Baseline	Influent	Connelly ZVI Effluent	Peerless ZVI Effluent	Sand Control Effluent
			Concentra	tion (mg/L)		
Calcium	0.500	169	145	5.97	4.46	140
Iron	0.050	<0.050	<0.050	0.117	<0.050	<0.050
Magnesium	0.500	36.4	35.4	10.3	23.2	36.0
Manganese	0.001	0.559	0.101	0.0471	0.0635	0.0120
Potassium	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silicon	1.0	11.2	10.4	<1.0	<1.0	10.9
Sodium	0.50	74.6	75.1	75.1	73.5	76.8
Strontium	0.001	1.46	1.38	0.0329	0.0191	1.43
Chloride	10	92	90.7	94.1	94.2	91.0
Nitrate-N	0.50	2.10	2.25	<0.10	<0.10	2.27
Sulfate	10	60	59.8	<2.0	34.6	62.0
Alkalinity, Total (as CaCO3)	10	478	459	NA	NA	430
Dissolved Organic Carbon	1.0	2.0	<1.0	<1.0	<1.0	<1.0
Total Organic Carbon	1.0	3.5	<1.0	<1.0	<1.0	<1.0
Total Dissolved Solids	20	708	694	262	288	704

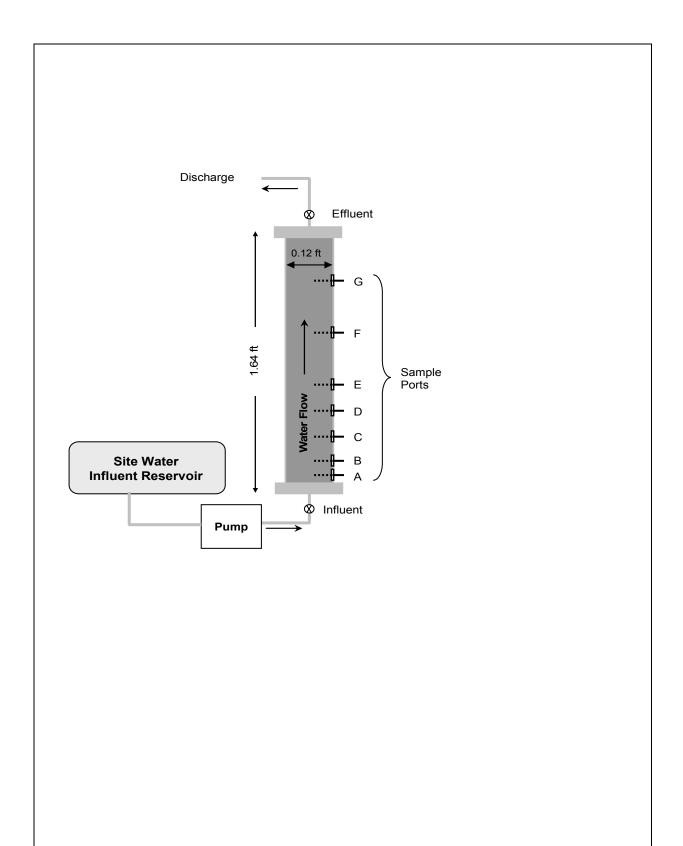
Notes:

μg/L - micrograms per liter

< - compound not detected, the associated value is the reporting limit

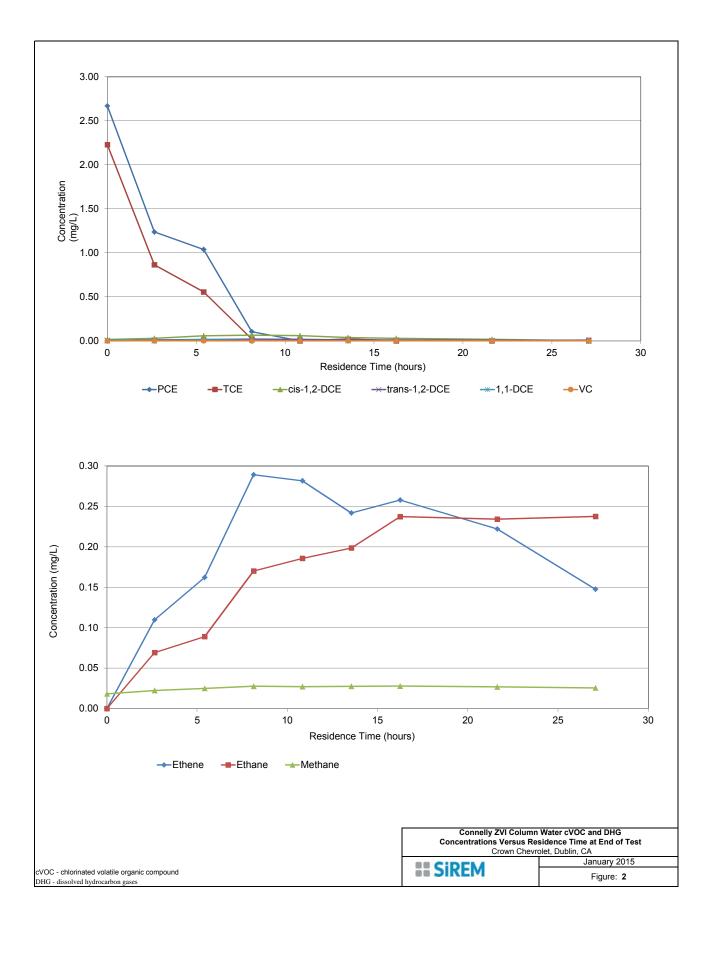
NA - sample not analyzed due to analytical interference

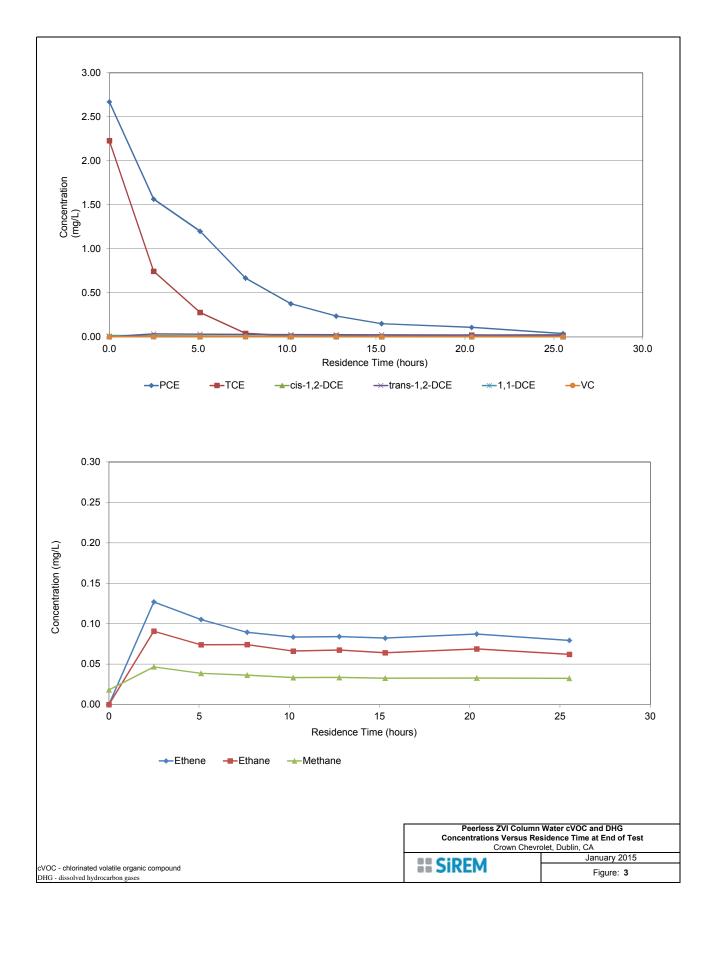
CON - Connelly

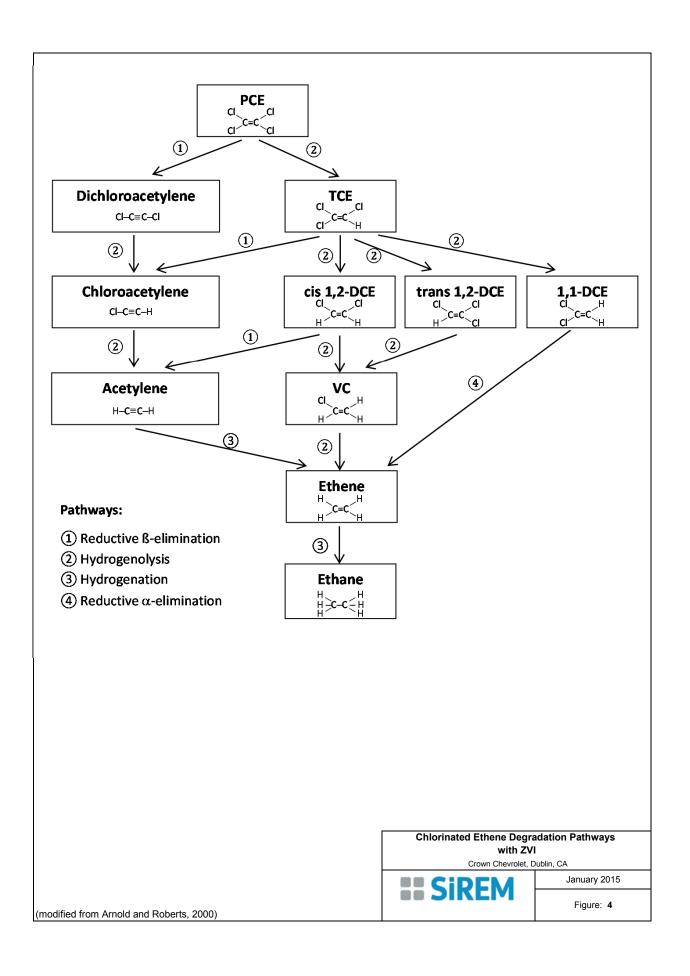

PL - Peerless

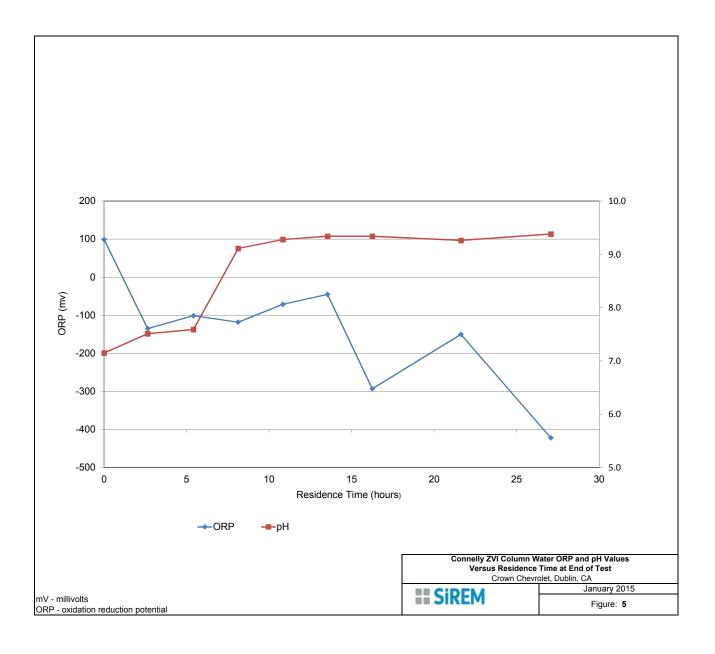
TDS - total dissolved solids

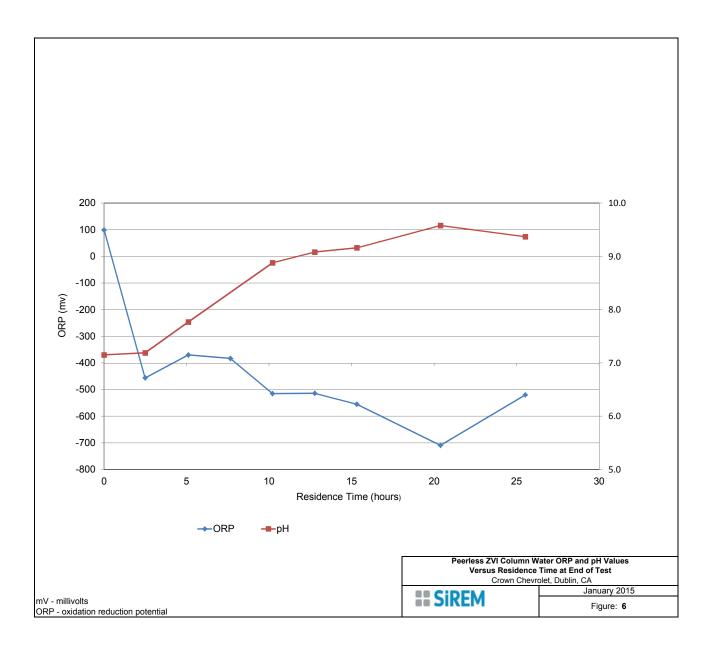
FIGURES


Notes: ft - feet Schematic of Column Study Set Up


Crown Chevrolet, Dublin, CA




January 2015


Figure: 1

APPENDIX A CHAIN OF CUSTODY RECORD

PRINTED NAME:

COMPANY:

PRINTED NAME: COMPANY:

APPENDIX B: EXTERNAL LABORATORY REPORTS

SIREM

ATTN: JASON WHITE

130 Research Lane

Suite 2

Guelph ON N1G 5G3

Date Received: 12-SEP-14

Report Date: 23-SEP-14 14:15 (MT)

Version: FINAL

Client Phone: 519-822-2265

Certificate of Analysis

Lab Work Order #: L1517047

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 14-398293

Legal Site Desc:

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1517047-1 S-3316-110914-B Sampled By: J. WHITE on 11-SEP-14 @ 12:00 Matrix: WATER							
Physical Tests							
Color, Apparent	<1.0		1.0	C.U.		12-SEP-14	R2946906
Conductivity	1230		3.0	umhos/cm		12-SEP-14	R2947389
рН	7.44		0.10	pH units		12-SEP-14	R2947370
Total Dissolved Solids	708		20	mg/L	13-SEP-14	16-SEP-14	R2948404
Turbidity	0.26		0.10	NTU	12-SEP-14	12-SEP-14	R2946040
Anions and Nutrients							
Alkalinity, Bicarbonate (as CaCO3)	477		10	mg/L	16-SEP-14	16-SEP-14	R2949383
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	16-SEP-14	16-SEP-14	R2949383
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	16-SEP-14	16-SEP-14	R2949383
Alkalinity, Total (as CaCO3)	478		10	mg/L	16-SEP-14	16-SEP-14	R2949383
Ammonia, Total (as N)	<0.050		0.050	mg/L		15-SEP-14	R2948475
Bromide	<0.50		0.50	mg/L		16-SEP-14	R2950311
Chloride	92		10	mg/L		16-SEP-14	R2950311
Computed Conductivity	1130			uS/cm		17-SEP-14	
Conductivity % Difference	-8.3			%		17-SEP-14	
Fluoride	<0.50		0.50	mg/L		16-SEP-14	R2950311
Hardness (as CaCO3)	571			mg/L		17-SEP-14	
Ion Balance	124			%		17-SEP-14	
Langelier Index	0.8					17-SEP-14	
Nitrate and Nitrite as N	2.1		1.0	mg/L		17-SEP-14	
Nitrate-N	2.10		0.50	mg/L		16-SEP-14	R2950311
Nitrite-N	<0.50		0.50	mg/L		16-SEP-14	R2950311
Saturation pH	6.61			рН		17-SEP-14	
Phosphate-P (ortho)	0.122		0.0030	mg/L		16-SEP-14	R2951214
TDS (Calculated)	728			mg/L		17-SEP-14	
Sulphate	60		10	mg/L		16-SEP-14	R2950311
Anion Sum	11.9			me/L		17-SEP-14	
Cation Sum	14.7			me/L		17-SEP-14	
Cation - Anion Balance Organic / Inorganic Carbon	10.6			%		17-SEP-14	
Dissolved Organic Carbon	2.0		1.0	mg/L	16-SEP-14	16-SEP-14	R2949524
Total Organic Carbon	3.5		1.0	mg/L	16-SEP-14	16-SEP-14	R2949525
Inorganic Parameters							
Silica Total Metals	24.0		2.1	mg/L		17-SEP-14	
Aluminum (Al)-Total	0.013		0.010	mg/L	15-SEP-14	17-SEP-14	R2948455
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	15-SEP-14	17-SEP-14	R2948455
Arsenic (As)-Total	0.0014		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Barium (Ba)-Total	0.157		0.010	mg/L	15-SEP-14	17-SEP-14	R2948455
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Boron (B)-Total	0.591		0.050	mg/L	15-SEP-14	17-SEP-14	R2948455

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1517047-1 S-3316-110914-B							
Sampled By: J. WHITE on 11-SEP-14 @ 12:00							
Matrix: WATER Total Metals							
Cadmium (Cd)-Total	0.000241		0.000090	mg/L	15-SEP-14	17-SEP-14	R2948455
Calcium (Ca)-Total	169		0.50	mg/L	15-SEP-14	17-SEP-14	R2948455
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	15-SEP-14	17-SEP-14	R2948455
Cobalt (Co)-Total	0.00070		0.00050	mg/L	15-SEP-14	17-SEP-14	R2948455
Copper (Cu)-Total	<0.0010		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Iron (Fe)-Total	<0.050		0.050	mg/L	15-SEP-14	17-SEP-14	R2948455
Lead (Pb)-Total	<0.0010		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Magnesium (Mg)-Total	36.4		0.50	mg/L	15-SEP-14	17-SEP-14	R2948455
Manganese (Mn)-Total	0.559		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Molybdenum (Mo)-Total	0.0019		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Nickel (Ni)-Total	0.0057		0.0020	mg/L	15-SEP-14	17-SEP-14	R2948455
Phosphorus (P)-Total	0.135		0.050	mg/L	15-SEP-14	17-SEP-14	R2948455
Potassium (K)-Total	<1.0		1.0	mg/L	15-SEP-14	17-SEP-14	R2948455
Selenium (Se)-Total	0.00060		0.00040	mg/L	15-SEP-14	17-SEP-14	R2948455
Silicon (Si)-Total	11.2		1.0	mg/L	15-SEP-14	17-SEP-14	R2948455
Silver (Ag)-Total	<0.00010		0.00010	mg/L	15-SEP-14	17-SEP-14	R2948455
Sodium (Na)-Total	74.6		0.50	mg/L	15-SEP-14	17-SEP-14	R2948455
Strontium (Sr)-Total	1.46		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Thallium (TI)-Total	<0.00030		0.00030	mg/L	15-SEP-14	17-SEP-14	R2948455
Tin (Sn)-Total	<0.0010		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Titanium (Ti)-Total	<0.0020		0.0020	mg/L	15-SEP-14	17-SEP-14	R2948455
Tungsten (W)-Total	<0.010		0.010	mg/L	15-SEP-14	17-SEP-14	R2948455
Uranium (U)-Total	<0.0050		0.0050	mg/L	15-SEP-14	17-SEP-14	R2948455
Vanadium (V)-Total	0.0053		0.0010	mg/L	15-SEP-14	17-SEP-14	R2948455
Zinc (Zn)-Total	0.0040		0.0030	mg/L	15-SEP-14	17-SEP-14	R2948455
Zirconium (Zr)-Total	<0.0040		0.0040	mg/L	15-SEP-14	17-SEP-14	R2948455
Volatile Organic Compounds							
Acetone	<20		20	ug/L		16-SEP-14	R2948515
Benzene	<0.50		0.50	ug/L		16-SEP-14	R2948515
Bromodichloromethane	<1.0		1.0	ug/L		16-SEP-14	R2948515
Bromoform	<1.0		1.0	ug/L		16-SEP-14	R2948515
Bromomethane	<0.50		0.50	ug/L		16-SEP-14	R2948515
Carbon Disulfide	<1.0		1.0	ug/L		16-SEP-14	R2948515
Carbon tetrachloride	<0.50		0.50	ug/L		16-SEP-14	R2948515
Chlorobenzene	<0.50		0.50	ug/L		16-SEP-14	R2948515
Dibromochloromethane	<1.0		1.0	ug/L		16-SEP-14	R2948515
Chloroethane	<1.0		1.0	ug/L		16-SEP-14	
Chloroform	<1.0		1.0	ug/L		16-SEP-14	
Chloromethane	<1.0		1.0	ug/L		16-SEP-14	R2948515
1,2-Dibromoethane	<0.50		0.50	ug/L			R2948515
1,2-Dichlorobenzene	<0.50		0.50	ug/L		16-SEP-14	R2948515
* Poter to Peteronand Information for Qualifiers (if any) and							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1517047-1 S-3316-110914-B							
Sampled By: J. WHITE on 11-SEP-14 @ 12:00 Matrix: WATER							
Matrix: WATER Volatile Organic Compounds							
1,3-Dichlorobenzene	<0.50		0.50	ug/L		16-SEP-14	D2049515
1,4-Dichlorobenzene	<0.50		0.50	ug/L ug/L		16-SEP-14	R2948515
Dichlorodifluoromethane	<1.3	DLB	1.3	ug/L		16-SEP-14	R2948515
1,1-Dichloroethane	<0.50		0.50	ug/L			R2948515
1,2-Dichloroethane	<0.50		0.50	ug/L		16-SEP-14	R2948515
1,1-Dichloroethylene	<0.50		0.50	ug/L		16-SEP-14	R2948515
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L		16-SEP-14	
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		16-SEP-14	R2948515
Dichloromethane	<2.0		2.0	ug/L		16-SEP-14	R2948515
1,2-Dichloropropane	<0.50		0.50	ug/L			R2948515
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		16-SEP-14	R2948515
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		16-SEP-14	R2948515
Ethyl Benzene	<0.50		0.50	ug/L		16-SEP-14	
n-Hexane	<0.50		0.50	ug/L		16-SEP-14	R2948515
2-Hexanone	<20		20	ug/L		16-SEP-14	R2948515
Methyl Ethyl Ketone	<20		20	ug/L		16-SEP-14	R2948515
Methyl Isobutyl Ketone	<20		20	ug/L		16-SEP-14	R2948515
MTBE	<0.50		0.50	ug/L		16-SEP-14	R2948515
Styrene	<0.50		0.50	ug/L		16-SEP-14	R2948515
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		16-SEP-14	R2948515
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		16-SEP-14	R2948515
Toluene	<0.50		0.50	ug/L		16-SEP-14	R2948515
1,1,1-Trichloroethane	<0.50		0.50	ug/L		16-SEP-14	R2948515
1,1,2-Trichloroethane	<0.50		0.50	ug/L		16-SEP-14	R2948515
Trichloroethylene	0.64		0.50	ug/L		16-SEP-14	R2948515
Trichlorofluoromethane	<1.0		1.0	ug/L		16-SEP-14	R2948515
Vinyl chloride	<0.50		0.50	ug/L		16-SEP-14	R2948515
o-Xylene	<0.50		0.50	ug/L		16-SEP-14	R2948515
m+p-Xylenes	<1.0		1.0	ug/L		16-SEP-14	R2948515
Xylenes (Total)	<1.1		1.1	ug/L		16-SEP-14	
Surrogate: 4-Bromofluorobenzene	109.4		70-130	%		16-SEP-14	R2948515
Surrogate: 1,4-Difluorobenzene Trihalomethanes	98.8		70-130	%		16-SEP-14	R2948515
Total THMs	<2.0		2.0	ug/L		16-SEP-14	
L1517047-2 S-3316-110914-B2 Sampled By: J. WHITE on 11-SEP-14 @ 12:15 Matrix: WATER							
Volatile Organic Compounds							
Acetone	<20		20	ug/L		23-SEP-14	R2955757
Benzene	<0.50		0.50	ug/L		23-SEP-14	R2955757
Bromodichloromethane	<1.0		1.0	ug/L		23-SEP-14	R2955757
Bromoform	<1.0		1.0	ug/L		23-SEP-14	R2955757

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1517047-2 S-3316-110914-B2 Sampled By: J. WHITE on 11-SEP-14 @ 12:15							
Matrix: WATER							
Volatile Organic Compounds							
Bromomethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
Carbon Disulfide	<1.0		1.0	ug/L		23-SEP-14	R2955757
Carbon tetrachloride	<0.50		0.50	ug/L		23-SEP-14	R2955757
Chlorobenzene	<0.50		0.50	ug/L		23-SEP-14	R2955757
Dibromochloromethane	<1.0		1.0	ug/L		23-SEP-14	R2955757
Chloroethane	<1.0		1.0	ug/L		23-SEP-14	R2955757
Chloroform	<1.0		1.0	ug/L		23-SEP-14	R2955757
Chloromethane	<1.0		1.0	ug/L		23-SEP-14	R2955757
1,2-Dibromoethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,2-Dichlorobenzene	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,3-Dichlorobenzene	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,4-Dichlorobenzene	<0.50		0.50	ug/L		23-SEP-14	R2955757
Dichlorodifluoromethane	<1.0		1.0	ug/L		23-SEP-14	R2955757
1,1-Dichloroethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,2-Dichloroethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,1-Dichloroethylene	<0.50		0.50	ug/L		23-SEP-14	R2955757
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L		23-SEP-14	R2955757
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		23-SEP-14	R2955757
Dichloromethane	<2.0		2.0	ug/L		23-SEP-14	R2955757
1,2-Dichloropropane	<0.50		0.50	ug/L		23-SEP-14	R2955757
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		23-SEP-14	R2955757
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		23-SEP-14	R2955757
Ethyl Benzene	<0.50		0.50	ug/L		23-SEP-14	R2955757
n-Hexane	<0.50		0.50	ug/L		23-SEP-14	R2955757
2-Hexanone	<20		20	ug/L		23-SEP-14	R2955757
Methyl Ethyl Ketone	<20		20	ug/L		23-SEP-14	R2955757
Methyl Isobutyl Ketone	<20		20	ug/L		23-SEP-14	R2955757
MTBE	<0.50		0.50	ug/L		23-SEP-14	R2955757
Styrene	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
Tetrachloroethylene	1220	AWHS	13	ug/L		23-SEP-14	R2955757
Toluene	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,1,1-Trichloroethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
1,1,2-Trichloroethane	<0.50		0.50	ug/L		23-SEP-14	R2955757
Trichloroethylene	0.62		0.50	ug/L			R2955757
Trichlorofluoromethane	<1.0		1.0	ug/L		23-SEP-14	R2955757
Vinyl chloride	<0.50		0.50	ug/L		23-SEP-14	R2955757
o-Xylene	<0.50		0.50	ug/L		23-SEP-14	R2955757
m+p-Xylenes	<1.0		1.0	ug/L		23-SEP-14	R2955757
Xylenes (Total)	<1.1		1.1	ug/L		23-SEP-14	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1517047-2 S-3316-110914-B2							
Sampled By: J. WHITE on 11-SEP-14 @ 12:15 Matrix: WATER							
Matrix: WATER Volatile Organic Compounds							
Surrogate: 4-Bromofluorobenzene	103.8		70-130	%		23-SEP-14	P2055757
Surrogate: 1,4-Difluorobenzene	95.8		70-130	%		23-SEP-14	
Trihalomethanes	95.6		70-130	70		25-OLI -14	112933737
Total THMs	<2.0		2.0	ug/L		23-SEP-14	
* Poter to Poteronand Information for Qualifiers (if any) and							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

PAGE 7 of 8 Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)				
Duplicate	Dichlorodifluoromethane	DLB	L1517047-1				
Matrix Spike	Aluminum (AI)-Total	MS-B	L1517047-1				
Matrix Spike	Calcium (Ca)-Total	MS-B	L1517047-1				
Matrix Spike	Iron (Fe)-Total	MS-B	L1517047-1				
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1517047-1				
Matrix Spike	Manganese (Mn)-Total	MS-B	L1517047-1				
Matrix Spike	Potassium (K)-Total	MS-B	L1517047-1				
Matrix Spike	Silicon (Si)-Total	MS-B	L1517047-1				
Matrix Spike	Sodium (Na)-Total	MS-B	L1517047-1				
Matrix Spike	Strontium (Sr)-Total	MS-B	L1517047-1				
Matrix Spike	Phosphate-P (ortho)	MS-B	L1517047-1				
Method Blank	Dichlorodifluoromethane	RRQC	L1517047-1				
Comments:	RRQC-Method blank positive; related samples have been qualified accordingly.						

Sample Parameter Qualifier key listed:

Campic i ai	amotor quamor key notes.
Qualifier	Description
AWHS	Additional Analytical Performed on Sample With Headspace
DLB	Detection Limit was raised due to detection of analyte at comparable level in Method Blank.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRQC	Refer to report remarks for information regarding this QC result.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-SPEC-WT	Water	Speciated Alkalinity	EPA 310.2
ANIONS-WT	Water	Anion Scan (IC)	EPA 300.0 (IC)
C-DIS-ORG-WT	Water	Dissolved Organic Carbon	APHA 5310 B-INSTRUMENTAL

Dissolved Organic Carbon APHA 5310 B-INSTRUMENTAL Sample is filtered through a 0.45um filter, sample is then injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

COLOUR-WT Water Colour **APHA 2120**

Apparent colour is determined by analysis of the decanted sample using the platinum-cobalt colourimetric method.

APHA 2510 B Water samples can be measured directly by immersing the conductivity cell into the sample.

ETL-N2N3-WT Water Calculate from NO2 + NO3 APHA 4110 B

ETL-SILICA-CALC-WT Water Calculate from SI-TOT-WT EPA 200.8

IONBALANCE-OP03-WT Water **Detailed Ion Balance Calculation** APHA 1030E, 2330B, 2510A

MET-T-MS-WT Total Metals in Water by ICPMS Water EPA 200.8

This analysis involves preliminary sample treatment by hotblock acid digestion (APHA 3030E). Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

Sample is measured colorimetrically. When sample is turbid a distillation step is required, sample is distilled into a solution of boric acid and measured

colorimetrically.

P-ORTHO-LOW-WT Water Phosphorus-P (ortho) APHA 4500-P B E

Ammonia, Total as N

PH-ALK-WT Water APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Water

SOLIDS-TDS-WT **Total Dissolved Solids** APHA 2540C

A well-mixed sample is filtered though glass fibres filter. A known volume of the filtrate is evaporated and dried at 105-5°C overnight and then 180-10°C for 1hr.

L1517047 CONTD....

PAGE 8 of 8

Version: FINAL

Reference Information

THM-SUM-PPB-CALC-WT Water Total Trihalomethanes (THMs)

CALCULATION

SW846 8260

Total Trihalomethanes (THMs) represents the sum of bromodichloromethane, bromoform, chlorodibromomethane and chloroform. For the purpose of calculation, results less than the detection limit (DL) are treated as zero.

TOC-WT Water Total Organic Carbon APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

TURBIDITY-WT Water Turbidity APHA 2130 B

Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by the sample under defined conditions with the intensity of light scattered by the sample under the samp

by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer.

VOC-ROU-HS-WT Water Volatile Organic Compounds Aqueous samples are analyzed by headspace-GC/MS.

XYLENES-SUM-CALC- Water Sum of Xylene Isomer CALCULATION

/T Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

14-398293

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1517047 Report Date: 23-SEP-14 Page 1 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-WT	Water							
Batch R294	9383							
WG1952263-3 C Alkalinity, Total (as	CRM s CaCO3)	WT-ALK-CRM	l 107.6		%		80-120	16-SEP-14
WG1952263-2 C Alkalinity, Total (as	cvs s CaCO3)		97.2		%		85-115	16-SEP-14
WG1952263-4 D Alkalinity, Total (as	OUP s CaCO3)	L1516394-1 401	395		mg/L	1.5	20	16-SEP-14
Alkalinity, Bicarbor	nate (as CaCO3)	400	394		mg/L	1.5	25	16-SEP-14
Alkalinity, Carbona	ate (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	16-SEP-14
Alkalinity, Hydroxic	de (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	16-SEP-14
WG1952263-1 N Alkalinity, Total (as	MB s CaCO3)		<10		mg/L		10	16-SEP-14
ANIONS-WT	Water							
Batch R295	0311							
WG1951924-2 L Chloride	.cs		101.9		%		85-115	16-SEP-14
Bromide			101.3		%		85-115	16-SEP-14
Fluoride			103.0		%		85-115	16-SEP-14
Nitrite-N			103.5		%		85-115	16-SEP-14
Nitrate-N			100.5		%		85-115	16-SEP-14
Sulphate			102.0		%		85-115	16-SEP-14
WG1951924-3 L Chloride	.CSD	WG1951924-2 101.9	! 101.9		%	0.0	25	16-SEP-14
Bromide		101.3	101.3		%	0.0	25	16-SEP-14
Fluoride		103.0	103.2		%	0.2	25	16-SEP-14
Nitrite-N		103.5	102.9		%	0.5	25	16-SEP-14
Nitrate-N		100.5	100.6		%	0.2	25	16-SEP-14
Sulphate		102.0	102.0		%	0.0	25	16-SEP-14
WG1951924-1 N Chloride	Л В		<2.0		mg/L		2	16-SEP-14
Bromide			<0.10		mg/L		0.1	16-SEP-14
Fluoride			<0.10		mg/L		0.1	16-SEP-14
Nitrite-N			<0.10		mg/L		0.1	16-SEP-14
Nitrate-N			<0.10		mg/L		0.1	16-SEP-14
Sulphate			<2.0		mg/L		2	16-SEP-14
C-DIS-ORG-WT	Water							

Workorder: L1517047 Report Date: 23-SEP-14 Page 2 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-WT	Water							
Batch R2949524 WG1951964-2 DUP Dissolved Organic Carb	on	L1516838-1 8.1	7.8		mg/L	3.8	20	16-SEP-14
WG1951964-3 LCS Dissolved Organic Carb	on		100.0		%		80-120	16-SEP-14
WG1951964-1 MB Dissolved Organic Carb	on		<1.0		mg/L		1	16-SEP-14
WG1951964-4 MS Dissolved Organic Carb	on	L1516838-1	99.5		%		70-130	16-SEP-14
COLOUR-WT	Water							
Batch R2946906								
WG1950424-3 CRM Color, Apparent		WT-COLOUR-	CRM 102.1		%		80-120	12-SEP-14
WG1950424-2 CVS Color, Apparent			108.6		%		85-115	12-SEP-14
WG1950424-4 DUP Color, Apparent		L1517047-1 <1.0	<1.0	RPD-NA	C.U.	N/A	20	12-SEP-14
WG1950424-1 MB Color, Apparent			<1.0		C.U.		1	12-SEP-14
EC-WT	Water							
Batch R2947389 WG1950342-3 CVS Conductivity			100.3		%		90-110	12-SEP-14
WG1950342-4 DUP Conductivity		L1516721-1 486	483		umhos/cm	0.6	10	12-SEP-14
WG1950342-1 MB Conductivity			<3.0		umhos/cm		3	12-SEP-14
MET-T-MS-WT	Water							
Batch R2948455 WG1951192-1 CVS								
Aluminum (Al)-Total			101.3		%		80-120	15-SEP-14
Antimony (Sb)-Total			101.6		%		80-120	15-SEP-14
Arsenic (As)-Total			99.7		%		80-120	15-SEP-14
Barium (Ba)-Total			98.5		%		80-120	15-SEP-14
Beryllium (Be)-Total			101.6		%		80-120	15-SEP-14
Bismuth (Bi)-Total			99.4		%		80-120	15-SEP-14
Boron (B)-Total			101.1		%		80-120	15-SEP-14
Cadmium (Cd)-Total			99.4				80-120	

Workorder: L1517047 Report Date: 23-SEP-14 Page 3 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							_
Batch R2948455								
WG1951192-1 CVS								
Cadmium (Cd)-Total			99.4		%		80-120	15-SEP-14
Calcium (Ca)-Total			106.8		%		80-120	15-SEP-14
Chromium (Cr)-Total			100.1		%		80-120	15-SEP-14
Cobalt (Co)-Total			99.2		%		80-120	15-SEP-14
Copper (Cu)-Total			100.5		%		80-120	15-SEP-14
Iron (Fe)-Total			100.6		%		80-120	15-SEP-14
Lead (Pb)-Total			98.2		%		80-120	15-SEP-14
Magnesium (Mg)-Total			97.6		%		80-120	15-SEP-14
Manganese (Mn)-Total			100.8		%		80-120	15-SEP-14
Molybdenum (Mo)-Total			98.5		%		80-120	15-SEP-14
Nickel (Ni)-Total			98.9		%		80-120	15-SEP-14
Phosphorus (P)-Total			100.8		%		80-120	15-SEP-14
Potassium (K)-Total			101.3		%		80-120	15-SEP-14
Selenium (Se)-Total			101.0		%		80-120	15-SEP-14
Silicon (Si)-Total			105.5		%		80-120	15-SEP-14
Silver (Ag)-Total			104.1		%		80-120	15-SEP-14
Sodium (Na)-Total			101.1		%		80-120	15-SEP-14
Strontium (Sr)-Total			105.9		%		80-120	15-SEP-14
Thallium (TI)-Total			98.8		%		80-120	15-SEP-14
Tin (Sn)-Total			99.6		%		80-120	15-SEP-14
Titanium (Ti)-Total			101.5		%		80-120	15-SEP-14
Tungsten (W)-Total			95.8		%		80-120	15-SEP-14
Uranium (U)-Total			95.8		%		80-120	15-SEP-14
Vanadium (V)-Total			101.6		%		80-120	15-SEP-14
Zinc (Zn)-Total			94.9		%		80-120	15-SEP-14
Zirconium (Zr)-Total			100.7		%		80-120	15-SEP-14
WG1951192-3 CVS								
Aluminum (Al)-Total			101.7		%		80-120	17-SEP-14
Antimony (Sb)-Total			98.5		%		80-120	17-SEP-14
Arsenic (As)-Total			98.0		%		80-120	17-SEP-14
Barium (Ba)-Total			99.1		%		80-120	17-SEP-14
Beryllium (Be)-Total			100.2		%		80-120	17-SEP-14
Bismuth (Bi)-Total			104.3		%		80-120	17-SEP-14
Boron (B)-Total			99.6		%		80-120	17-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 4 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2948455								
WG1951192-3 CVS			404.0		0/			
Cadmium (Cd)-Total Calcium (Ca)-Total			101.0		%		80-120	17-SEP-14
			106.3				80-120	17-SEP-14
Chromium (Cr)-Total			99.0 95.7		%		80-120	17-SEP-14
Cobalt (Co)-Total					%		80-120	17-SEP-14
Copper (Cu)-Total			97.9		%		80-120	17-SEP-14
Iron (Fe)-Total			100.9		%		80-120	17-SEP-14
Lead (Pb)-Total			102.6		%		80-120	17-SEP-14
Magnesium (Mg)-Total			98.5		%		80-120	17-SEP-14
Manganese (Mn)-Total			99.1		%		80-120	17-SEP-14
Molybdenum (Mo)-Total			98.7		%		80-120	17-SEP-14
Nickel (Ni)-Total			97.9		%		80-120	17-SEP-14
Phosphorus (P)-Total			99.9		%		80-120	17-SEP-14
Potassium (K)-Total			106.0		%		80-120	17-SEP-14
Selenium (Se)-Total			98.4		%		80-120	17-SEP-14
Silicon (Si)-Total			103.8		%		80-120	17-SEP-14
Silver (Ag)-Total			105.0		%		80-120	17-SEP-14
Sodium (Na)-Total			96.4		%		80-120	17-SEP-14
Strontium (Sr)-Total			102.9		%		80-120	17-SEP-14
Thallium (TI)-Total			102.3		%		80-120	17-SEP-14
Tin (Sn)-Total			99.3		%		80-120	17-SEP-14
Titanium (Ti)-Total			102.8		%		80-120	17-SEP-14
Tungsten (W)-Total			100.5		%		80-120	17-SEP-14
Uranium (U)-Total			99.2		%		80-120	17-SEP-14
Vanadium (V)-Total			101.8		%		80-120	17-SEP-14
Zinc (Zn)-Total			92.5		%		80-120	17-SEP-14
Zirconium (Zr)-Total			99.95		%		80-120	17-SEP-14
WG1951192-4 CVS Aluminum (Al)-Total			101.8		%		80-120	18-SEP-14
Antimony (Sb)-Total			97.2		%		80-120	18-SEP-14
Arsenic (As)-Total			98.5		%		80-120	18-SEP-14
Barium (Ba)-Total			102.0		%		80-120	18-SEP-14
Beryllium (Be)-Total			102.7		%		80-120	18-SEP-14
Bismuth (Bi)-Total			99.0		%		80-120	18-SEP-14
Boron (B)-Total			102.3		%		80-120	18-SEP-14
							-	

Workorder: L1517047 Report Date: 23-SEP-14 Page 5 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2948455								
WG1951192-4 CVS Cadmium (Cd)-Total			101.4		%		80-120	18-SEP-14
Calcium (Ca)-Total			97.0		%		80-120	18-SEP-14
Chromium (Cr)-Total			97.8		%		80-120	18-SEP-14
Cobalt (Co)-Total			97.4		%		80-120	18-SEP-14
Copper (Cu)-Total			97.8		%		80-120	18-SEP-14
Iron (Fe)-Total			101.4		%		80-120	18-SEP-14
Lead (Pb)-Total			95.6		%		80-120	18-SEP-14
Magnesium (Mg)-Total			100.3		%		80-120	18-SEP-14
Manganese (Mn)-Total			100.5		%		80-120	18-SEP-14
Molybdenum (Mo)-Total			97.3		%		80-120	18-SEP-14
Nickel (Ni)-Total			97.4		%		80-120	18-SEP-14
Phosphorus (P)-Total			99.8		%		80-120	18-SEP-14
Potassium (K)-Total			105.4		%		80-120	18-SEP-14
Selenium (Se)-Total			98.1		%		80-120	18-SEP-14
Silicon (Si)-Total			99.96		%		80-120	18-SEP-14
Silver (Ag)-Total			96.3		%		80-120	18-SEP-14
Sodium (Na)-Total			102.3		%		80-120	18-SEP-14
Strontium (Sr)-Total			101.6		%		80-120	18-SEP-14
Thallium (TI)-Total			97.9		%		80-120	18-SEP-14
Tin (Sn)-Total			99.8		%		80-120	18-SEP-14
Titanium (Ti)-Total			102.6		%		80-120	18-SEP-14
Tungsten (W)-Total			96.2		%		80-120	18-SEP-14
Uranium (U)-Total			95.5		%		80-120	18-SEP-14
Vanadium (V)-Total			98.6		%		80-120	18-SEP-14
Zinc (Zn)-Total			92.2		%		80-120	18-SEP-14
Zirconium (Zr)-Total			95.8		%		80-120	18-SEP-14
WG1951155-4 DUP		WG1951155-3						
Aluminum (Al)-Total		4.27	4.01		mg/L	6.1	20	15-SEP-14
Antimony (Sb)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	15-SEP-14
Arsenic (As)-Total		0.0019	0.0019		mg/L	0.3	20	15-SEP-14
Barium (Ba)-Total		0.0645	0.0640		mg/L	8.0	20	15-SEP-14
Beryllium (Be)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	15-SEP-14
Bismuth (Bi)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	15-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 6 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R294845	5							
WG1951155-4 DUP		WG1951155-			m a/l	4.0	00	
Boron (B)-Total		0.047	0.047		mg/L	1.0	20	15-SEP-14
Cadmium (Cd)-Total		0.000131	0.000133		mg/L	1.4	20	15-SEP-14
Calcium (Ca)-Total		65.0	66.3		mg/L	2.0	20	15-SEP-14
Chromium (Cr)-Total		0.00555	0.00546		mg/L	1.6	20	15-SEP-14
Cobalt (Co)-Total		0.00175	0.00173		mg/L	0.9	20	15-SEP-14
Copper (Cu)-Total		0.0078	0.0078		mg/L	0.3	20	15-SEP-14
Iron (Fe)-Total		4.47	4.35		mg/L	2.8	20	15-SEP-14
Lead (Pb)-Total		0.00499	0.00508		mg/L	1.8	20	15-SEP-14
Magnesium (Mg)-Tota		11.2	11.5		mg/L	3.1	20	15-SEP-14
Manganese (Mn)-Tota		0.209	0.211		mg/L	1.1	20	15-SEP-14
Molybdenum (Mo)-Tot	al	0.00085	0.00086		mg/L	0.7	20	15-SEP-14
Nickel (Ni)-Total		0.0049	0.0048		mg/L	2.4	20	15-SEP-14
Phosphorus (P)-Total		0.423	0.441		mg/L	4.1	20	15-SEP-14
Potassium (K)-Total		6.1	6.3		mg/L	3.5	20	15-SEP-14
Selenium (Se)-Total		<0.00040	<0.00040	RPD-NA	mg/L	N/A	20	15-SEP-14
Silicon (Si)-Total		12.2	11.0		mg/L	10	20	15-SEP-14
Silver (Ag)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	15-SEP-14
Sodium (Na)-Total		12.0	12.6		mg/L	5.2	20	15-SEP-14
Strontium (Sr)-Total		0.303	0.307		mg/L	1.4	20	15-SEP-14
Thallium (TI)-Total		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	15-SEP-14
Tin (Sn)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	15-SEP-14
Titanium (Ti)-Total		0.147	0.125		mg/L	16	20	15-SEP-14
Tungsten (W)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	15-SEP-14
Uranium (U)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	15-SEP-14
Vanadium (V)-Total		0.00899	0.00878		mg/L	2.3	20	15-SEP-14
Zinc (Zn)-Total		0.0289	0.0293		mg/L	1.5	20	15-SEP-14
Zirconium (Zr)-Total		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	15-SEP-14
WG1951155-2 LCS Aluminum (Al)-Total			96.3		%		80-120	15-SEP-14
Antimony (Sb)-Total			101.6		%		80-120	15-SEP-14
Arsenic (As)-Total			96.8		%		80-120	15-SEP-14
Barium (Ba)-Total			99.5		%		80-120	15-SEP-14
Beryllium (Be)-Total			88.4		%		80-120	15-SEP-14
. , (= :, : : ::					* *		00 120	10 021 17

Workorder: L1517047 Report Date: 23-SEP-14 Page 7 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2948455								
WG1951155-2 LCS Bismuth (Bi)-Total			97.0		%		80-120	15-SEP-14
Boron (B)-Total			85.1		%		80-120	15-SEP-14
Cadmium (Cd)-Total			97.5		%		80-120	15-SEP-14
Calcium (Ca)-Total			97.5		%		80-120	15-SEP-14
Chromium (Cr)-Total			94.6		%		80-120	15-SEP-14
Cobalt (Co)-Total			96.1		%		80-120	15-SEP-14
Copper (Cu)-Total			97.8		%		80-120	15-SEP-14
Iron (Fe)-Total			97.4		%		80-120	15-SEP-14
Lead (Pb)-Total			99.1		%		80-120	15-SEP-14
Magnesium (Mg)-Total			92.9		%		80-120	15-SEP-14
Manganese (Mn)-Total			96.6		%		80-120	15-SEP-14
Molybdenum (Mo)-Total			98.7		%		80-120	15-SEP-14
Nickel (Ni)-Total			96.9		%		80-120	15-SEP-14
Phosphorus (P)-Total			92.9		%		80-120	15-SEP-14
Potassium (K)-Total			88.2		%		80-120	15-SEP-14
Selenium (Se)-Total			96.3		%		80-120	15-SEP-14
Silicon (Si)-Total			96.4		%		80-120	15-SEP-14
Silver (Ag)-Total			101.8		%		80-120	15-SEP-14
Sodium (Na)-Total			90.4		%		80-120	15-SEP-14
Strontium (Sr)-Total			101.9		%		80-120	15-SEP-14
Thallium (TI)-Total			98.5		%		80-120	15-SEP-14
Tin (Sn)-Total			97.8		%		80-120	15-SEP-14
Titanium (Ti)-Total			93.5		%		80-120	15-SEP-14
Tungsten (W)-Total			94.4		%		80-120	15-SEP-14
Uranium (U)-Total			96.0		%		80-120	15-SEP-14
Vanadium (V)-Total			97.5		%		80-120	15-SEP-14
Zinc (Zn)-Total			99.8		%		80-120	15-SEP-14
Zirconium (Zr)-Total			96.3		%		80-120	15-SEP-14
WG1951155-1 MB Aluminum (Al)-Total			<0.010		mg/L		0.01	15-SEP-14
Antimony (Sb)-Total			<0.00050)	mg/L		0.0005	15-SEP-14
Arsenic (As)-Total			<0.0010		mg/L		0.001	15-SEP-14
Barium (Ba)-Total			<0.0020		mg/L		0.002	15-SEP-14
Beryllium (Be)-Total			<0.00050)	mg/L		0.0005	15-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 8 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2948455 WG1951155-1 MB								
Bismuth (Bi)-Total			<0.0010		mg/L		0.001	15-SEP-14
Boron (B)-Total			<0.010		mg/L		0.01	15-SEP-14
Cadmium (Cd)-Total			<0.000090		mg/L		0.00009	15-SEP-14
Calcium (Ca)-Total			<0.50		mg/L		0.5	15-SEP-14
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	15-SEP-14
Cobalt (Co)-Total			<0.00050		mg/L		0.0005	15-SEP-14
Copper (Cu)-Total			<0.0010		mg/L		0.001	15-SEP-14
Iron (Fe)-Total			< 0.050		mg/L		0.05	15-SEP-14
Lead (Pb)-Total			<0.00050		mg/L		0.0005	15-SEP-14
Magnesium (Mg)-Total			<0.50		mg/L		0.5	15-SEP-14
Manganese (Mn)-Total			<0.0010		mg/L		0.001	15-SEP-14
Molybdenum (Mo)-Total			<0.00050		mg/L		0.0005	15-SEP-14
Nickel (Ni)-Total			<0.0010		mg/L		0.001	15-SEP-14
Phosphorus (P)-Total			<0.050		mg/L		0.05	15-SEP-14
Potassium (K)-Total			<1.0		mg/L		1	15-SEP-14
Selenium (Se)-Total			<0.00040		mg/L		0.0004	15-SEP-14
Silicon (Si)-Total			<1.0		mg/L		1	15-SEP-14
Silver (Ag)-Total			<0.00010		mg/L		0.0001	15-SEP-14
Sodium (Na)-Total			<0.50		mg/L		0.5	15-SEP-14
Strontium (Sr)-Total			<0.0010		mg/L		0.001	15-SEP-14
Thallium (TI)-Total			<0.00030		mg/L		0.0003	15-SEP-14
Tin (Sn)-Total			<0.0010		mg/L		0.001	15-SEP-14
Titanium (Ti)-Total			<0.0020		mg/L		0.002	15-SEP-14
Tungsten (W)-Total			<0.010		mg/L		0.01	15-SEP-14
Uranium (U)-Total			<0.0010		mg/L		0.001	15-SEP-14
Vanadium (V)-Total			<0.00050		mg/L		0.0005	15-SEP-14
Zinc (Zn)-Total			<0.0030		mg/L		0.003	15-SEP-14
Zirconium (Zr)-Total			<0.0040		mg/L		0.004	15-SEP-14
WG1951155-5 MS Aluminum (Al)-Total		WG1951155-3	N/A	MS-B	%		-	15-SEP-14
Antimony (Sb)-Total			86.0		%		70-130	15-SEP-14
Arsenic (As)-Total			102.1		%		70-130	15-SEP-14
Barium (Ba)-Total			115.5		%		70-130	15-SEP-14
Beryllium (Be)-Total			85.5		%		70-130	15-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 9 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2948455 WG1951155-5 MS Bismuth (Bi)-Total		WG1951155-3			%		70.400	45.050.44
` '			97.1 81.1		%		70-130	15-SEP-14
Boron (B)-Total Cadmium (Cd)-Total			98.1		%		70-130	15-SEP-14
` ,				MO D			70-130	15-SEP-14
Calcium (Ca)-Total			N/A	MS-B	%		-	15-SEP-14
Chromium (Cr)-Total			98.7		%		70-130	15-SEP-14
Cobalt (Co)-Total			97.2		%		70-130	15-SEP-14
Copper (Cu)-Total			97.3		%		70-130	15-SEP-14
Iron (Fe)-Total			N/A	MS-B	%		-	15-SEP-14
Lead (Pb)-Total			94.3		%		70-130	15-SEP-14
Magnesium (Mg)-Total			N/A	MS-B	%		-	15-SEP-14
Manganese (Mn)-Total			N/A	MS-B	%		-	15-SEP-14
Molybdenum (Mo)-Total			99.1		%		70-130	15-SEP-14
Nickel (Ni)-Total			96.9		%		70-130	15-SEP-14
Phosphorus (P)-Total			95.7		%		70-130	15-SEP-14
Potassium (K)-Total			N/A	MS-B	%		-	15-SEP-14
Selenium (Se)-Total			100.1		%		70-130	15-SEP-14
Silicon (Si)-Total			N/A	MS-B	%		-	15-SEP-14
Silver (Ag)-Total			99.5		%		70-130	15-SEP-14
Sodium (Na)-Total			N/A	MS-B	%		-	15-SEP-14
Strontium (Sr)-Total			N/A	MS-B	%		-	15-SEP-14
Thallium (TI)-Total			95.4		%		70-130	15-SEP-14
Tin (Sn)-Total			85.0		%		70-130	15-SEP-14
Titanium (Ti)-Total			97.9		%		70-130	15-SEP-14
Tungsten (W)-Total			90.7		%		70-130	15-SEP-14
Uranium (U)-Total			97.8		%		70-130	15-SEP-14
Vanadium (V)-Total			102.5		%		70-130	15-SEP-14
Zinc (Zn)-Total			100.5		%		70-130	15-SEP-14
Zirconium (Zr)-Total			85.3		%		70-130	15-SEP-14
NH3-WT	Water							
Batch R2948475 WG1951238-2 CVS Ammonia, Total (as N)			99.6		%		85-115	15-SEP-14
WG1951238-3 DUP Ammonia, Total (as N)		L1516382-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	15-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 10 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-WT	Water							
Batch R2948475 WG1951238-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	15-SEP-14
WG1951238-4 MS Ammonia, Total (as N)		L1516382-1	97.4		%		75-125	15-SEP-14
P-ORTHO-LOW-WT	Water							
Batch R2951214 WG1952124-3 DUP Phosphate-P (ortho)		L1517047-1 0.122	0.122		mg/L	0.2	20	16-SEP-14
WG1952124-2 LCS Phosphate-P (ortho)			100.9		%		80-120	16-SEP-14
WG1952124-1 MB Phosphate-P (ortho)			<0.0030		mg/L		0.003	16-SEP-14
WG1952124-4 MS Phosphate-P (ortho)		L1517047-1	N/A	MS-B	%		-	16-SEP-14
PH-ALK-WT	Water							
Batch R2947370								
WG1950327-2 DUP pH		L1516721-1 7.68	7.69	J	pH units	0.00	0.2	12-SEP-14
WG1950327-5 DUP pH		WG1950327-4 7.93	7.96	J	pH units	0.03	0.2	12-SEP-14
WG1950327-1 LCS pH			6.93		pH units		6.9-7.1	12-SEP-14
SOLIDS-TDS-WT	Water							
Batch R2948404								
WG1950587-3 DUP Total Dissolved Solids		L1516394-6 <20	<20	RPD-NA	mg/L	N/A	20	16-SEP-14
WG1950587-2 LCS Total Dissolved Solids			94.8		%		85-115	16-SEP-14
WG1950587-1 MB Total Dissolved Solids			<20		mg/L		20	16-SEP-14
TOC-WT	Water							
Batch R2949525		1.4547004.05						
WG1951968-7 DUP Total Organic Carbon		L1517281-35 2.5	2.3		mg/L	8.3	20	16-SEP-14
WG1951968-8 LCS Total Organic Carbon			102.0		%		80-120	16-SEP-14
WG1951968-6 MB								

Workorder: L1517047 Report Date: 23-SEP-14 Page 11 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TOC-WT	Water							
Batch R2949525								
WG1951968-6 MB Total Organic Carbon			<1.0		mg/L		1	16-SEP-14
WG1951968-9 MS Total Organic Carbon		L1517281-35	102.5		%		70-130	16-SEP-14
TURBIDITY-WT	Water							
Batch R2946040 WG1950209-2 CVS Turbidity			112.0		%		85-115	12-SEP-14
WG1950209-4 DUP		L1516721-1						
Turbidity		5.65	5.64		NTU	0.2	15	12-SEP-14
WG1950209-1 MB Turbidity			<0.10		NTU		0.1	12-SEP-14
VOC-ROU-HS-WT	Water							
Batch R2948515								
WG1949741-1 CVS								
1,1,1,2-Tetrachloroetha			94.8		%		70-130	16-SEP-14
1,1,2,2-Tetrachloroetha	ne		92.2		%		70-130	16-SEP-14
1,1,1-Trichloroethane			94.6		%		70-130	16-SEP-14
1,1,2-Trichloroethane			96.3		%		70-130	16-SEP-14
1,2-Dibromoethane			96.4		%		70-130	16-SEP-14
1,1-Dichloroethane			96.4		%		70-130	16-SEP-14
1,1-Dichloroethylene			91.0		%		70-130	16-SEP-14
1,2-Dichlorobenzene			98.9		%		70-130	16-SEP-14
1,2-Dichloroethane			96.7		%		70-130	16-SEP-14
1,2-Dichloropropane			95.3		%		70-130	16-SEP-14
1,3-Dichlorobenzene			98.8		%		70-130	16-SEP-14
1,4-Dichlorobenzene			103.1		%		70-130	16-SEP-14
2-Hexanone			94.9		%		60-140	16-SEP-14
Acetone			105.4		%		60-140	16-SEP-14
Benzene			96.6		%		70-130	16-SEP-14
Bromodichloromethane			91.2		%		70-130	16-SEP-14
Bromoform			91.6		%		70-130	16-SEP-14
Bromomethane			97.4		%		60-140	16-SEP-14
Carbon Disulfide			109.3		%		70-130	16-SEP-14
Carbon tetrachloride			95.0		%		70-130	16-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 12 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R2948515								
WG1949741-1 CVS Chlorobenzene			98.6		%		70-130	46 CED 44
Chloroethane			101.7		%			16-SEP-14 16-SEP-14
Chloroform			97.3		%		70-130 70-130	16-SEP-14
Chloromethane			109.9		%		60-140	16-SEP-14
cis-1,2-Dichloroethylene	ż		94.3		%		70-130	16-SEP-14
cis-1,3-Dichloropropene			98.5		%		70-130	16-SEP-14
Dibromochloromethane			95.8		%		70-130	16-SEP-14
Dichlorodifluoromethan			119.4		%		60-140	16-SEP-14
Dichloromethane	o .		95.3		%		70-130	16-SEP-14
Ethyl Benzene			100.5		%		70-130	16-SEP-14
m+p-Xylenes			100.5		%		70-130	16-SEP-14
Methyl Ethyl Ketone			92.6		%		60-140	16-SEP-14
Methyl Isobutyl Ketone			97.4		%		60-140	16-SEP-14
n-Hexane			104.5		%		70-130	16-SEP-14
MTBE			92.6		%		70-130	16-SEP-14
o-Xylene			103.0		%		70-130	16-SEP-14
Styrene			103.2		%		70-130	16-SEP-14
Toluene			100.9		%		70-130	16-SEP-14
trans-1,2-Dichloroethyle	ene		92.0		%		70-130	16-SEP-14
trans-1,3-Dichloroprope			93.8		%		70-130	16-SEP-14
Trichloroethylene			92.2		%		70-130	16-SEP-14
Trichlorofluoromethane			103.1		%		60-140	16-SEP-14
Vinyl chloride			107.3		%		60-140	16-SEP-14
WG1949741-4 DUP		L1517047-1						
1,1,1,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,1,2,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,2-Dibromoethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 13 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R2948515								
WG1949741-4 DUP		L1517047-1 <0.50	-0.F0	DDD NA	ug/l	N1/A	20	40.0ED 44
1,2-Dichloropropane 1,3-Dichlorobenzene		<0.50	<0.50 <0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
2-Hexanone		<0.50	<20	RPD-NA	ug/L	N/A	30	16-SEP-14
Acetone		<20		RPD-NA	ug/L	N/A	30	16-SEP-14
			<20	RPD-NA	ug/L	N/A	30	16-SEP-14
Benzene Bromodichloromethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Bromoform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
Carbon Disulfide		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Carbon tetrachloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
Chloroethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Chloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
cis-1,2-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
cis-1,3-Dichloropropene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
Dibromochloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Dichlorodifluoromethane	1	<1.3	<1.4	RPD-NA	ug/L	N/A	30	16-SEP-14
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Ethyl Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
m+p-Xylenes		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	16-SEP-14
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	16-SEP-14
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
MTBE		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
o-Xylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
trans-1,2-Dichloroethyler	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
trans-1,3-Dichloroproper	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
Trichloroethylene		0.64	0.62		ug/L	3.2	30	16-SEP-14
Trichlorofluoromethane		<1.0	<1.0		ug/L			16-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 14 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R2948515								
WG1949741-4 DUP		L1517047-1	4.0	555	/1			
Trichlorofluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	16-SEP-14
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-14
WG1949741-2 MB 1,1,1,2-Tetrachloroethan	ie		<0.50		ug/L		0.5	16-SEP-14
1,1,2,2-Tetrachloroethan	ie		<0.50		ug/L		0.5	16-SEP-14
1,1,1-Trichloroethane			<0.50		ug/L		0.5	16-SEP-14
1,1,2-Trichloroethane			<0.50		ug/L		0.5	16-SEP-14
1,2-Dibromoethane			<0.50		ug/L		0.5	16-SEP-14
1,1-Dichloroethane			<0.50		ug/L		0.5	16-SEP-14
1,1-Dichloroethylene			<0.50		ug/L		0.5	16-SEP-14
1,2-Dichlorobenzene			<0.50		ug/L		0.5	16-SEP-14
1,2-Dichloroethane			<0.50		ug/L		0.5	16-SEP-14
1,2-Dichloropropane			<0.50		ug/L		0.5	16-SEP-14
1,3-Dichlorobenzene			<0.50		ug/L		0.5	16-SEP-14
1,4-Dichlorobenzene			<0.50		ug/L		0.5	16-SEP-14
2-Hexanone			<20		ug/L		20	16-SEP-14
Acetone			<20		ug/L		20	16-SEP-14
Benzene			<0.50		ug/L		0.5	16-SEP-14
Bromodichloromethane			<1.0		ug/L		1	16-SEP-14
Bromoform			<1.0		ug/L		1	16-SEP-14
Bromomethane			<0.50		ug/L		0.5	16-SEP-14
Carbon Disulfide			<1.0		ug/L		1	16-SEP-14
Carbon tetrachloride			<0.50		ug/L		0.5	16-SEP-14
Chlorobenzene			<0.50		ug/L		0.5	16-SEP-14
Chloroethane			<1.0		ug/L		1	16-SEP-14
Chloroform			<1.0		ug/L		1	16-SEP-14
Chloromethane			<1.0		ug/L		1	16-SEP-14
cis-1,2-Dichloroethylene			<0.50		ug/L		0.5	16-SEP-14
cis-1,3-Dichloropropene			<0.50		ug/L		0.5	16-SEP-14
Dibromochloromethane			<1.0		ug/L		1	16-SEP-14
Dichlorodifluoromethane			1.3	RRQC	ug/L		1	16-SEP-14
Dichloromethane			<2.0		ug/L		2	16-SEP-14
Ethyl Benzene			<0.50		ug/L		0.5	16-SEP-14
m+p-Xylenes			<1.0		ug/L		1	16-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 15 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R2948515								
WG1949741-2 MB Methyl Ethyl Ketone			<20		ug/L		20	16-SEP-14
Methyl Isobutyl Ketone			<20		ug/L		20	16-SEP-14
n-Hexane			<0.50		ug/L		0.5	16-SEP-14
MTBE			<0.50		ug/L		0.5	16-SEP-14
o-Xylene			<0.50		ug/L		0.5	16-SEP-14
Styrene			<0.50		ug/L		0.5	16-SEP-14
Toluene			<0.50		ug/L		0.5	16-SEP-14
trans-1,2-Dichloroethyle	ne		<0.50		ug/L		0.5	16-SEP-14
trans-1,3-Dichloroproper	ne		<0.50		ug/L		0.5	16-SEP-14
Trichloroethylene			<0.50		ug/L		0.5	16-SEP-14
Trichlorofluoromethane			<1.0		ug/L		1	16-SEP-14
Vinyl chloride			<0.50		ug/L		0.5	16-SEP-14
Surrogate: 1,4-Difluorob	enzene		98.1		%		70-130	16-SEP-14
Surrogate: 4-Bromofluor	obenzene		106.8		%		70-130	16-SEP-14
COMMENTS: RRQC	C-Method blanl	k positive; related s	amples have	e been qualified a	accordingly.			
Batch R2955757								
WG1956858-1 CVS 1,1,1,2-Tetrachloroethar	ne		94.4		%		70-130	23-SEP-14
1,1,2,2-Tetrachloroethar			102.0		%		70-130	23-SEP-14
1,1,1-Trichloroethane			101.0		%		70-130	23-SEP-14
1,1,2-Trichloroethane			98.4		%		70-130	23-SEP-14
1,2-Dibromoethane			97.2		%		70-130	23-SEP-14
1,1-Dichloroethane			102.4		%		70-130	23-SEP-14
1,1-Dichloroethylene			96.3		%		70-130	23-SEP-14
1,2-Dichlorobenzene			100.7		%		70-130	23-SEP-14
1,2-Dichloroethane			104.3		%		70-130	23-SEP-14
1,2-Dichloropropane			101.5		%		70-130	23-SEP-14
1,3-Dichlorobenzene			96.1		%		70-130	23-SEP-14
1,4-Dichlorobenzene			102.5		%		70-130	23-SEP-14
2-Hexanone			97.0		%		60-140	23-SEP-14
Acetone			109.6		%		60-140	23-SEP-14
Benzene			102.6		%		70-130	23-SEP-14
Bromodichloromethane			99.7		%		70-130	23-SEP-14
Bromoform			97.0		%		70-130	23-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 16 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R2955757								
WG1956858-1 CVS			20.5		0/			
Bromomethane			98.5		%		60-140	23-SEP-14
Carbon Disulfide			112.3		%		70-130	23-SEP-14
Carbon tetrachloride			102.0		%		70-130	23-SEP-14
Chlorobenzene			100.0		%		70-130	23-SEP-14
Chloroethane			105.7		%		70-130	23-SEP-14
Chloroform			105.3		%		70-130	23-SEP-14
Chloromethane			107.8		%		60-140	23-SEP-14
cis-1,2-Dichloroethylene			101.3		%		70-130	23-SEP-14
cis-1,3-Dichloropropene			98.4		%		70-130	23-SEP-14
Dibromochloromethane			97.4		%		70-130	23-SEP-14
Dichlorodifluoromethane			111.1		%		60-140	23-SEP-14
Dichloromethane			102.1		%		70-130	23-SEP-14
Ethyl Benzene			101.5		%		70-130	23-SEP-14
m+p-Xylenes			102.5		%		70-130	23-SEP-14
Methyl Ethyl Ketone			90.5		%		60-140	23-SEP-14
Methyl Isobutyl Ketone			98.6		%		60-140	23-SEP-14
n-Hexane			109.1		%		70-130	23-SEP-14
MTBE			102.0		%		70-130	23-SEP-14
o-Xylene			103.0		%		70-130	23-SEP-14
Styrene			101.7		%		70-130	23-SEP-14
Tetrachloroethylene			91.8		%		70-130	23-SEP-14
Toluene			101.1		%		70-130	23-SEP-14
trans-1,2-Dichloroethyler	ne		96.8		%		70-130	23-SEP-14
trans-1,3-Dichloroproper	ne		88.2		%		70-130	23-SEP-14
Trichloroethylene			97.3		%		70-130	23-SEP-14
Trichlorofluoromethane			110.9		%		60-140	23-SEP-14
Vinyl chloride			107.2		%		60-140	23-SEP-14
WG1956858-2 MB								
1,1,1,2-Tetrachloroethan	e		<0.50		ug/L		0.5	23-SEP-14
1,1,2,2-Tetrachloroethan	e		<0.50		ug/L		0.5	23-SEP-14
1,1,1-Trichloroethane			<0.50		ug/L		0.5	23-SEP-14
1,1,2-Trichloroethane			<0.50		ug/L		0.5	23-SEP-14
1,2-Dibromoethane			<0.50		ug/L		0.5	23-SEP-14
1,1-Dichloroethane			<0.50		ug/L		0.5	23-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 17 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R2955757								
WG1956858-2 MB							0.5	
1,1-Dichloroethylene			<0.50		ug/L		0.5	23-SEP-14
1,2-Dichlorobenzene			<0.50		ug/L		0.5	23-SEP-14
1,2-Dichloroethane			<0.50		ug/L		0.5	23-SEP-14
1,2-Dichloropropane			<0.50		ug/L		0.5	23-SEP-14
1,3-Dichlorobenzene			<0.50		ug/L		0.5	23-SEP-14
1,4-Dichlorobenzene			<0.50		ug/L		0.5	23-SEP-14
2-Hexanone			<20		ug/L		20	23-SEP-14
Acetone			<20		ug/L		20	23-SEP-14
Benzene			<0.50		ug/L		0.5	23-SEP-14
Bromodichloromethane			<1.0		ug/L		1	23-SEP-14
Bromoform			<1.0		ug/L		1	23-SEP-14
Bromomethane			<0.50		ug/L		0.5	23-SEP-14
Carbon Disulfide			<1.0		ug/L		1	23-SEP-14
Carbon tetrachloride			<0.50		ug/L		0.5	23-SEP-14
Chlorobenzene			<0.50		ug/L		0.5	23-SEP-14
Chloroethane			<1.0		ug/L		1	23-SEP-14
Chloroform			<1.0		ug/L		1	23-SEP-14
Chloromethane			<1.0		ug/L		1	23-SEP-14
cis-1,2-Dichloroethylene)		< 0.50		ug/L		0.5	23-SEP-14
cis-1,3-Dichloropropene	•		< 0.50		ug/L		0.5	23-SEP-14
Dibromochloromethane			<1.0		ug/L		1	23-SEP-14
Dichlorodifluoromethane	€		<1.0		ug/L		1	23-SEP-14
Dichloromethane			<2.0		ug/L		2	23-SEP-14
Ethyl Benzene			< 0.50		ug/L		0.5	23-SEP-14
m+p-Xylenes			<1.0		ug/L		1	23-SEP-14
Methyl Ethyl Ketone			<20		ug/L		20	23-SEP-14
Methyl Isobutyl Ketone			<20		ug/L		20	23-SEP-14
n-Hexane			<0.50		ug/L		0.5	23-SEP-14
MTBE			<0.50		ug/L		0.5	23-SEP-14
o-Xylene			<0.50		ug/L		0.5	23-SEP-14
Styrene			<0.50		ug/L		0.5	23-SEP-14
Tetrachloroethylene			< 0.50		ug/L		0.5	23-SEP-14
Toluene			<0.50		ug/L		0.5	23-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14 Page 18 of 19

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R29557	57							
WG1956858-2 MB trans-1,2-Dichloroeth			<0.50		ug/L		0.5	23-SEP-14
trans-1,3-Dichloropro	pene		< 0.50		ug/L		0.5	23-SEP-14
Trichloroethylene			< 0.50		ug/L		0.5	23-SEP-14
Trichlorofluorometha	ne		<1.0		ug/L		1	23-SEP-14
Vinyl chloride			< 0.50		ug/L		0.5	23-SEP-14
Surrogate: 1,4-Difluo	robenzene		95.3		%		70-130	23-SEP-14
Surrogate: 4-Bromofl	uorobenzene		106.0		%		70-130	23-SEP-14

Workorder: L1517047 Report Date: 23-SEP-14

Client: SIREM Page 19 of 19

130 Research Lane Suite 2 Guelph ON N1G 5G3

Contact: JASON WHITE

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLB	Detection Limit was raised due to detection of analyte at comparable level in Method Blank.
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical **Request Form**

L1517047-COFC

coc Number: 14 - 398293

invironmental

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Report To Jasen White	Report Forma						low (Rush	Turnaround Time	(TAT) is not a	available for all tests	s)
Company: JIREM	Select Report Format:	DF X EXCEL EDD (DIGITAL)	R	Re	Regular (Standard TAT if received by 3pm)						
Contact:	Quality Control (QC) Report with Re	port 🔀 Yes 🗌 No	P	Pri	ority (2-4 bu	siness day	s if received	d by 3pm)			
Address: 130 RESEARCH LN, SUITEZ	Criteria on Report - provide details be		E	=	Emergency (1-2 business days if received by 3pm)						
GUELPH, ON N10 503		EMAIL MAIL FAX	E2	<u> </u>				received by 10ar	m – contact Al	LS for surcharge.	
GUELPH, ON NIO 503	Email 1 or Fax	Siremlab.com	Specif	y Date F	Required for	r E2,E					
		Email 2 Foblish Sirundh. com						alysis Reque			
nvoice To Same as Report To		istribution	-			(F), Pres	erved (P) or	r Filtered and Pre	served (F/P) b	elow	
Copy of Invoice with Report Yes No		EMAIL FAX	18		6 6					 	\vdash
Company: Silen											
Contact: Karen Browns ma	Email 2	<u> </u>	13	무					}		ers
Project Information		ed Fields (client use)	8260	J. 105, PH, Tubid	EPA 6010						tain
ALS Quote #:					£					!	Š
Job #:	GL Account:	(B)	ی ا							r o	
PO / AFE:	Activity Code:	the state of the s	⊣ "	3 CD	J.B	1,0					Number of Container
LSD:	Location:	T	ارما	3	百百	٦	၂				\$\vec{z}\$
ALS Lab Work Order # (lab use only) LIST 104 1 1380	ALS Contact: Laura Ermeta	Sampler: J. White	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AIK-Spe,	M. H.S. 10C	ANIONS	Doc				
Sample Identification and/or Coordinates (Identification and/or Coordinates (This description will appear on the report)	Date (dd-mmm-yy)	Time (hh:mm) Sample Type	U	Æ	2 E	~					
5-3316-110914-B	11-09-14	12:00 GW	1 ×4	$\times t$	$\times_{\!\scriptscriptstyle{lack}}\!\!\times$	**					
5-3316-110914-BZ	11-09-14	12:15 BW	AX		, ==		-				
3 2318 ILO ILI - DIA											
			+			†				1	
			+ 1			+-	+ +			+	
						-	+ +			+	+
							 			 	
						4	 				
											<u> </u>
							1			1	
									-		
	- Landing (Specific Criteria to add a	n remark (alient Hoo)	1,500		SA	MPLE C	ONDITIO	ON AS RECEI	VED (lab i	ise only)	
Dinking trate (D41) Samples (chem 436)	al Instructions / Specify Criteria to add o		Froze	n .			``	SIF Observation		es 🔲 No	d) to the second of the
Are samples taken from a Regulated DW System? Yes No	is please duplicate is please single s	- 5ample 5-3316-4914-	Coolir	icks og Initiat	Yes 🔽	No	<u> D</u>	Custody seal i	ntact \	Yes 🖸 Ne	
Are samples for human drinking water use?	- Alcan Sinde a	male 5-3316-110914-1	2	IITIAL CO	OLER TEMP	RATURE	s*c	^p Fi	NAL COOLER	TEMPERATURE	36
			17 20 20 20			O 12- 7 9					
T Yes N.No	3, 4,000	•	100	1/4	n in moon	47.4.2	493	D.)	1	- A - 1	
SHIPMENT RELEASE (client use)		CTION (lab use only) Dete: Time:		ived by:	2.74	The state of the s		NT RECEPTION) ON (leib use	only)	

SIREM

ATTN: Jeff Roberts 130 Research Lane

Suite 2

Guelph ON N1G 5G3

Date Received: 21-NOV-14

Report Date: 27-NOV-14 09:12 (MT)

Version: FINAL

Client Phone: 519-515-0840

Certificate of Analysis

Lab Work Order #: L1549724

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1549724-1 S-3316-11192014-CONNELLY-EFF							
Sampled By: JASON WHITE on 19-NOV-14 @ 09:30 Matrix: WATER							
Matrix: WATER Volatile Organic Compounds							
Acetone	<20		20	ug/L		24-NOV-14	R3101153
Benzene	<0.50		0.50	ug/L		24-NOV-14	
Bromodichloromethane	<1.0		1.0	ug/L		24-NOV-14	
Bromoform	<1.0		1.0	ug/L		24-NOV-14	
Bromomethane	<0.50		0.50	ug/L		24-NOV-14	
Carbon Disulfide	<1.0		1.0	ug/L		24-NOV-14	
Carbon tetrachloride	<0.50		0.50	ug/L		24-NOV-14	
Chlorobenzene	<0.50		0.50	ug/L		24-NOV-14	
Dibromochloromethane	<1.0		1.0	ug/L		24-NOV-14	
Chloroethane	<1.0		1.0	ug/L		24-NOV-14	
Chloroform	<1.0		1.0	ug/L		24-NOV-14	
Chloromethane	<1.0		1.0	ug/L		24-NOV-14	
1,2-Dibromoethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,2-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	
1,3-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,4-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dichlorodifluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
1,1-Dichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,2-Dichloroethane	1.34		0.50	ug/L		24-NOV-14	R3101153
1,1-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dichloromethane	13.5		2.0	ug/L		24-NOV-14	R3101153
1,2-Dichloropropane	<0.50		0.50	ug/L		24-NOV-14	R3101153
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	R3101153
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Ethyl Benzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
n-Hexane	<0.50		0.50	ug/L		24-NOV-14	R3101153
2-Hexanone	<20		20	ug/L		24-NOV-14	R3101153
Methyl Ethyl Ketone	<20		20	ug/L		24-NOV-14	R3101153
Methyl Isobutyl Ketone	<20		20	ug/L		24-NOV-14	R3101153
MTBE	<0.50		0.50	ug/L		24-NOV-14	R3101153
Styrene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Tetrachloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Toluene	<0.50		0.50	ug/L		24-NOV-14	
1,1,1-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichlorofluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
* Poter to Peteropood Information for Qualifiers (if any) and							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1549724-1 S-3316-11192014-CONNELLY-EFF Sampled By: JASON WHITE on 19-NOV-14 @ 09:30 Matrix: WATER							
Volatile Organic Compounds							
Vinyl chloride	<0.50		0.50	ug/L		24-NOV-14	R3101153
o-Xylene	<0.50		0.50	ug/L		24-NOV-14	
m+p-Xylenes	<1.0		1.0	ug/L		24-NOV-14	
Xylenes (Total)	<1.1		1.1	ug/L		24-NOV-14	
Surrogate: 4-Bromofluorobenzene	89.3		70-130	%		24-NOV-14	R3101153
Surrogate: 1,4-Difluorobenzene	93.7		70-130	%		24-NOV-14	
Trihalomethanes	00			,,			
Total THMs	<2.0		2.0	ug/L		24-NOV-14	
L1549724-2 S-3316-11192014-PEERLESS-EFF Sampled By: JASON WHITE on 19-NOV-14 @ 09:30 WATER							
Volatile Organic Compounds							
Acetone	<20		20	ug/L		24-NOV-14	R3101153
Benzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Bromodichloromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Bromoform	<1.0		1.0	ug/L		24-NOV-14	R3101153
Bromomethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Carbon Disulfide	<1.0		1.0	ug/L		24-NOV-14	R3101153
Carbon tetrachloride	<0.50		0.50	ug/L		24-NOV-14	R3101153
Chlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dibromochloromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Chloroethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Chloroform	<1.0		1.0	ug/L		24-NOV-14	R3101153
Chloromethane	1.3		1.0	ug/L		24-NOV-14	R3101153
1,2-Dibromoethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,2-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,3-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,4-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dichlorodifluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
1,1-Dichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,2-Dichloroethane	1.25		0.50	ug/L		24-NOV-14	R3101153
1,1-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
cis-1,2-Dichloroethylene	1.79		0.50	ug/L		24-NOV-14	R3101153
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dichloromethane	11.6		2.0	ug/L		24-NOV-14	R3101153
1,2-Dichloropropane	<0.50		0.50	ug/L		24-NOV-14	
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	
Ethyl Benzene	<0.50		0.50	ug/L		24-NOV-14	
n-Hexane	<0.50		0.50	ug/L		24-NOV-14	
2-Hexanone	<20		20	ug/L		24-NOV-14	
Methyl Ethyl Ketone	<20		20	ug/L		24-NOV-14	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1549724-2 S-3316-11192014-PEERLESS-EFF Sampled By: JASON WHITE on 19-NOV-14 @ 09:30 Matrix: WATER							
Volatile Organic Compounds							
Methyl Isobutyl Ketone	<20		20	ug/L		24-NOV-14	R3101153
MTBE	<0.50		0.50	ug/L		24-NOV-14	R3101153
Styrene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Tetrachloroethylene	19.5		0.50	ug/L		24-NOV-14	R3101153
Toluene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,1-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichlorofluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Vinyl chloride	<0.50		0.50	ug/L		1	R3101153
o-Xylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
m+p-Xylenes	<1.0		1.0	ug/L		24-NOV-14	R3101153
Xylenes (Total)	<1.1		1.1	ug/L		24-NOV-14	
Surrogate: 4-Bromofluorobenzene	87.9		70-130	%		24-NOV-14	R3101153
Surrogate: 1,4-Difluorobenzene	94.2		70-130	%		24-NOV-14	R3101153
Trihalomethanes							
Total THMs	<2.0		2.0	ug/L		24-NOV-14	
L1549724-3 S-3316-11202014-CONNELLY-PORT F Sampled By: JASON WHITE on 20-NOV-14 @ 09:30 WATER							
Volatile Organic Compounds							
Acetone	<20		20	ug/L		24-NOV-14	R3101153
Benzene	0.54		0.50	ug/L		24-NOV-14	
Bromodichloromethane	<1.0		1.0	ug/L		24-NOV-14	
Bromoform	<1.0		1.0	ug/L		24-NOV-14	
Bromomethane	<0.50		0.50	ug/L		24-NOV-14	
Carbon Disulfide	<1.0		1.0	ug/L			R3101153
Carbon tetrachloride	<0.50		0.50	ug/L			R3101153
Chlorobenzene	<0.50		0.50	ug/L		24-NOV-14	
Dibromochloromethane	<1.0		1.0	ug/L		24-NOV-14	
Chloroethane	<1.0		1.0	ug/L		24-NOV-14	
Chloroform	<1.0		1.0	ug/L		24-NOV-14	
Chloromethane	1.2		1.0	ug/L		24-NOV-14	
1,2-Dibromoethane	<0.50		0.50	ug/L		24-NOV-14	
1,2-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	
1,3-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,4-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	
Dichlorodifluoromethane	<1.0		1.0	ug/L		24-NOV-14	
1,1-Dichloroethane	<0.50		0.50	ug/L		24-NOV-14	
1,2-Dichloroethane	1.24		0.50	ug/L		24-NOV-14	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1549724-3 S-3316-11202014-CONNELLY-PORT F Sampled By: JASON WHITE on 20-NOV-14 @ 09:30 Matrix: WATER							
Volatile Organic Compounds							
1,1-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
cis-1,2-Dichloroethylene	11.5		0.50	ug/L		24-NOV-14	R3101153
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dichloromethane	<2.0		2.0	ug/L		24-NOV-14	R3101153
1,2-Dichloropropane	<0.50		0.50	ug/L		24-NOV-14	R3101153
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	R3101153
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Ethyl Benzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
n-Hexane	<0.50		0.50	ug/L		24-NOV-14	R3101153
2-Hexanone	<20		20	ug/L		24-NOV-14	R3101153
Methyl Ethyl Ketone	<20		20	ug/L		24-NOV-14	R3101153
Methyl Isobutyl Ketone	<20		20	ug/L		24-NOV-14	R3101153
MTBE	<0.50		0.50	ug/L		24-NOV-14	R3101153
Styrene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Tetrachloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Toluene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,1-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichlorofluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Vinyl chloride	<0.50		0.50	ug/L		24-NOV-14	R3101153
o-Xylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
m+p-Xylenes	<1.0		1.0	ug/L		24-NOV-14	R3101153
Xylenes (Total)	<1.1		1.1	ug/L		24-NOV-14	
Surrogate: 4-Bromofluorobenzene	85.6		70-130	%		24-NOV-14	R3101153
Surrogate: 1,4-Difluorobenzene	93.6		70-130	%		24-NOV-14	R3101153
Trihalomethanes							
Total THMs L1549724-4 S-3316-11202014-PEERLESS-PORT F Sampled By: JASON WHITE on 20-NOV-14 @ 09:30	<2.0		2.0	ug/L		24-NOV-14	
Matrix: WATER							
Volatile Organic Compounds							
Acetone	<20		20	ug/L		24-NOV-14	R3101153
Benzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Bromodichloromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Bromoform	<1.0		1.0	ug/L		24-NOV-14	R3101153
Bromomethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Carbon Disulfide	<1.0		1.0	ug/L		24-NOV-14	R3101153
Carbon tetrachloride	<0.50		0.50	ug/L		24-NOV-14	R3101153
Chlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1549724-4 S-3316-11202014-PEERLESS-PORT F Sampled By: JASON WHITE on 20-NOV-14 @ 09:30							
Matrix: WATER							
Volatile Organic Compounds	4.0		4.0			04 NOV 44	D0404450
Dibromochloromethane	<1.0		1.0	ug/L		24-NOV-14	
Chloroethane	<1.0		1.0	ug/L		24-NOV-14	
Chloroform	<1.0		1.0	ug/L		24-NOV-14	
Chloromethane	<1.0		1.0	ug/L		24-NOV-14	1
1,2-Dibromoethane	<0.50		0.50	ug/L		24-NOV-14	
1,2-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	
1,3-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14 24-NOV-14	
1,4-Dichlorobenzene Dichlorodifluoromethane	<0.50		0.50	ug/L			
	<1.0		1.0	ug/L		24-NOV-14 24-NOV-14	
1,1-Dichloroethane 1,2-Dichloroethane	<0.50		0.50	ug/L		24-NOV-14 24-NOV-14	
1,2-Dichloroethane 1,1-Dichloroethylene	1.53 <0.50		0.50	ug/L		24-NOV-14 24-NOV-14	
cis-1,2-Dichloroethylene	<0.50 2.35		0.50 0.50	ug/L ug/L		24-NOV-14 24-NOV-14	
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L ug/L		24-NOV-14	
Dichloromethane	5.3		2.0	ug/L ug/L		24-NOV-14	
1,2-Dichloropropane	<0.50		0.50	ug/L ug/L		24-NOV-14	
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	
Ethyl Benzene	<0.50		0.50	ug/L		24-NOV-14	
n-Hexane	<0.50		0.50	ug/L		24-NOV-14	
2-Hexanone	<20		20	ug/L		24-NOV-14	
Methyl Ethyl Ketone	<20		20	ug/L		24-NOV-14	
Methyl Isobutyl Ketone	<20		20	ug/L		24-NOV-14	
MTBE	<0.50		0.50	ug/L		24-NOV-14	
Styrene	<0.50		0.50	ug/L		24-NOV-14	
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Tetrachloroethylene	86.7		0.50	ug/L		24-NOV-14	R3101153
Toluene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,1-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Trichlorofluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Vinyl chloride	<0.50		0.50	ug/L		24-NOV-14	R3101153
o-Xylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
m+p-Xylenes	<1.0		1.0	ug/L		24-NOV-14	R3101153
Xylenes (Total)	<1.1		1.1	ug/L		24-NOV-14	
Surrogate: 4-Bromofluorobenzene	84.9		70-130	%		24-NOV-14	R3101153
Surrogate: 1,4-Difluorobenzene	92.5		70-130	%		24-NOV-14	R3101153
Trihalomethanes							
Total THMs	<2.0		2.0	ug/L		24-NOV-14	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1549724-5 S-3316-11212014-CROWN CHEVY-INF							
Sampled By: JASON WHITE on 21-NOV-14 @ 09:30 Matrix: WATER							
Volatile Organic Compounds							
Acetone	<20		20	ug/L		24-NOV-14	R3101153
Benzene	<0.50		0.50	ug/L		24-NOV-14	
Bromodichloromethane	<1.0		1.0	ug/L		24-NOV-14	
Bromoform	<1.0		1.0	ug/L		24-NOV-14	
Bromomethane	<0.50		0.50	ug/L		24-NOV-14	
Carbon Disulfide	<1.0		1.0	ug/L		24-NOV-14	
Carbon tetrachloride	<0.50		0.50	ug/L		24-NOV-14	R3101153
Chlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dibromochloromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Chloroethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
Chloroform	<1.0		1.0	ug/L		24-NOV-14	R3101153
Chloromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
1,2-Dibromoethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,2-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,3-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,4-Dichlorobenzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dichlorodifluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153
1,1-Dichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,2-Dichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
cis-1,2-Dichloroethylene	2.44		0.50	ug/L		24-NOV-14	R3101153
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Dichloromethane	<2.0		2.0	ug/L		24-NOV-14	R3101153
1,2-Dichloropropane	<0.50		0.50	ug/L		24-NOV-14	R3101153
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	R3101153
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		24-NOV-14	R3101153
Ethyl Benzene	<0.50		0.50	ug/L		24-NOV-14	R3101153
n-Hexane	<0.50		0.50	ug/L		24-NOV-14	R3101153
2-Hexanone	<20		20	ug/L		24-NOV-14	R3101153
Methyl Ethyl Ketone	<20		20	ug/L		24-NOV-14	R3101153
Methyl Isobutyl Ketone	<20		20	ug/L		24-NOV-14	R3101153
MTBE	<0.50		0.50	ug/L		24-NOV-14	R3101153
Styrene	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
Tetrachloroethylene	1650	DLA	10	ug/L		26-NOV-14	
Toluene	<0.50		0.50	ug/L		24-NOV-14	
1,1,1-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	R3101153
1,1,2-Trichloroethane	<0.50		0.50	ug/L		24-NOV-14	
Trichloroethylene	931	DLA	10	ug/L		26-NOV-14	
Trichlorofluoromethane	<1.0		1.0	ug/L		24-NOV-14	R3101153

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

<0.50		0.50	ug/L		24-NOV-14	R3101153
<0.50		0.50				
<1.0		1.0	ug/L		24-NOV-14	R3101153
<1.1		1.1	ug/L		26-NOV-14	
87.4		70-130	%		24-NOV-14	R3101153
92.5		70-130	%		24-NOV-14	R3101153
<2.0		2.0	ug/L		26-NOV-14	
	<1.0 <1.1 87.4 92.5	<0.50 <1.0 <1.1 87.4 92.5 <2.0	<pre><0.50 <1.0 <1.1 87.4 92.5 70-130 <2.0 2.0</pre>	<pre><0.50</pre>	<pre><0.50</pre>	 <0.50 0.50 ug/L 24-NOV-14 24-NOV-14 <1.1 1.1 ug/L 26-NOV-14 92.5 70-130 % 24-NOV-14 22-NOV-14 22.0 2.0 ug/L 26-NOV-14 26-NOV-14 26-NOV-14

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1549724 CONTD....

Reference Information

PAGE 9 of 9 Version: FINAL

Sample Parameter Qualifier key listed:

 Qualifier
 Description

 DLA
 Detection Limit adjusted for required dilution

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

THM-SUM-PPB-CALC-WT Water Total Trihalomethanes (THMs) CALCULATION

Total Trihalomethanes (THMs) represents the sum of bromodichloromethane, bromoform, chlorodibromomethane and chloroform. For the purpose of calculation, results less than the detection limit (DL) are treated as zero.

VOC-ROU-HS-WT Water Volatile Organic Compounds SW846 8260

Aqueous samples are analyzed by headspace-GC/MS.

XYLENES-SUM-CALC- Water Sum of Xylene Isomer CALCULATION WT Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1549724 Report Date: 27-NOV-14 Page 1 of 6

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R31011	53							
WG2000652-1 CVS					0.4			
1,1,1,2-Tetrachloroet			113.3		%		70-130	24-NOV-14
1,1,2,2-Tetrachloroet			103.1		%		70-130	24-NOV-14
1,1,1-Trichloroethane			115.5		%		70-130	24-NOV-14
1,1,2-Trichloroethane	9		108.1		%		70-130	24-NOV-14
1,2-Dibromoethane			105.1		%		70-130	24-NOV-14
1,1-Dichloroethane			106.3		%		70-130	24-NOV-14
1,1-Dichloroethylene			103.4		%		70-130	24-NOV-14
1,2-Dichlorobenzene			114.1		%		70-130	24-NOV-14
1,2-Dichloroethane			104.1		%		70-130	24-NOV-14
1,2-Dichloropropane			103.6		%		70-130	24-NOV-14
1,3-Dichlorobenzene			115.9		%		70-130	24-NOV-14
1,4-Dichlorobenzene			112.8		%		70-130	24-NOV-14
2-Hexanone			78.6		%		60-140	24-NOV-14
Acetone			101.8		%		60-140	24-NOV-14
Benzene			106.8		%		70-130	24-NOV-14
Bromodichlorometha	ne		74.0		%		70-130	24-NOV-14
Bromoform			104.1		%		70-130	24-NOV-14
Bromomethane			108.4		%		60-140	24-NOV-14
Carbon Disulfide			106.3		%		70-130	24-NOV-14
Carbon tetrachloride			116.2		%		70-130	24-NOV-14
Chlorobenzene			113.3		%		70-130	24-NOV-14
Chloroethane			115.0		%		70-130	24-NOV-14
Chloroform			110.6		%		70-130	24-NOV-14
Chloromethane			111.9		%		60-140	24-NOV-14
cis-1,2-Dichloroethyle	ene		107.5		%		70-130	24-NOV-14
cis-1,3-Dichloroprope	ene		78.7		%		70-130	24-NOV-14
Dibromochlorometha	ne		107.5		%		70-130	24-NOV-14
Dichlorodifluorometha	ane		117.4		%		60-140	24-NOV-14
Dichloromethane			107.5		%		70-130	24-NOV-14
Ethyl Benzene			107.1		%		70-130	24-NOV-14
m+p-Xylenes			117.6		%		70-130	24-NOV-14
Methyl Ethyl Ketone			90.5		%		60-140	24-NOV-14
Methyl Isobutyl Keton	ne		77.3		%		60-140	24-NOV-14

Workorder: L1549724 Report Date: 27-NOV-14 Page 2 of 6

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R3101153								
WG2000652-1 CVS n-Hexane			116.0		%		70.400	04.1101/44
MTBE			116.0		%		70-130	24-NOV-14
			113.2		%		70-130	24-NOV-14
o-Xylene Styrene			114.6		%		70-130	24-NOV-14
Tetrachloroethylene			112.0		% %		70-130	24-NOV-14
Toluene			107.3		%		70-130	24-NOV-14
trans-1,2-Dichloroethyle	ine		107.5		%		70-130	24-NOV-14
trans-1,3-Dichloroprope			97.3		%		70-130	24-NOV-14
Trichloroethylene	116		110.7		%		70-130	24-NOV-14 24-NOV-14
Trichlorofluoromethane			123.3		%		70-130 60-140	24-NOV-14 24-NOV-14
Vinyl chloride			112.5		%		60-140	24-NOV-14 24-NOV-14
WG2000652-4 DUP		WG2000652-			70		00-140	24-NOV-14
1,1,1,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,1,2,2-Tetrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,2-Dibromoethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,1-Dichloroethane		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
2-Hexanone		<20	<20	RPD-NA	ug/L	N/A	30	24-NOV-14
Acetone		<20	<20	RPD-NA	ug/L	N/A	30	24-NOV-14
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Bromodichloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	24-NOV-14
Bromoform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	24-NOV-14
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Carbon Disulfide		<1.0	<1.0	RPD-NA	ug/L	N/A	30	24-NOV-14
Carbon tetrachloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14

Workorder: L1549724 Report Date: 27-NOV-14 Page 3 of 6

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R3101153								
WG2000652-4 DUP Chloroethane		WG2000652- 3	3 <1.0	DDD NA	ua/l	NI/A	20	04 NOV 44
Chloroform		<1.0	<1.0	RPD-NA RPD-NA	ug/L ug/L	N/A N/A	30	24-NOV-14
Chloromethane		<1.0	<1.0		ug/L		30	24-NOV-14
cis-1,2-Dichloroethylene		<0.50	<0.50	RPD-NA	-	N/A	30	24-NOV-14
cis-1,3-Dichloropropene				RPD-NA	ug/L	N/A	30	24-NOV-14
Dibromochloromethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Dichlorodifluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	24-NOV-14
		<1.0	<1.0	RPD-NA	ug/L	N/A	30	24-NOV-14
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	24-NOV-14
Ethyl Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
m+p-Xylenes		<1.0	<1.0	RPD-NA	ug/L	N/A	30	24-NOV-14
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	24-NOV-14
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	24-NOV-14
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
MTBE		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
o-Xylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
trans-1,2-Dichloroethylen	е	<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
trans-1,3-Dichloropropen	е	<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
Trichlorofluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	24-NOV-14
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	24-NOV-14
WG2000652-2 MB								
1,1,1,2-Tetrachloroethan	е		<0.50		ug/L		0.5	24-NOV-14
1,1,2,2-Tetrachloroethan	е		<0.50		ug/L		0.5	24-NOV-14
1,1,1-Trichloroethane			<0.50		ug/L		0.5	24-NOV-14
1,1,2-Trichloroethane			<0.50		ug/L		0.5	24-NOV-14
1,2-Dibromoethane			<0.50		ug/L		0.5	24-NOV-14
1,1-Dichloroethane			<0.50		ug/L		0.5	24-NOV-14
1,1-Dichloroethylene			<0.50		ug/L		0.5	24-NOV-14
1,2-Dichlorobenzene			<0.50		ug/L		0.5	24-NOV-14
1,2-Dichloroethane			< 0.50		ug/L		0.5	24-NOV-14

Workorder: L1549724 Report Date: 27-NOV-14 Page 4 of 6

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R3101153								
WG2000652-2 MB			0.50				0.5	
1,2-Dichloropropane			<0.50		ug/L		0.5	24-NOV-14
1,3-Dichlorobenzene			<0.50		ug/L		0.5	24-NOV-14
1,4-Dichlorobenzene			<0.50		ug/L		0.5	24-NOV-14
2-Hexanone			<20		ug/L		20	24-NOV-14
Acetone			<20		ug/L		20	24-NOV-14
Benzene			<0.50		ug/L		0.5	24-NOV-14
Bromodichloromethane			<1.0		ug/L		1	24-NOV-14
Bromoform			<1.0		ug/L		1	24-NOV-14
Bromomethane			<0.50		ug/L		0.5	24-NOV-14
Carbon Disulfide			<1.0		ug/L		1	24-NOV-14
Carbon tetrachloride			< 0.50		ug/L		0.5	24-NOV-14
Chlorobenzene			< 0.50		ug/L		0.5	24-NOV-14
Chloroethane			<1.0		ug/L		1	24-NOV-14
Chloroform			<1.0		ug/L		1	24-NOV-14
Chloromethane			<1.0		ug/L		1	24-NOV-14
cis-1,2-Dichloroethylene			< 0.50		ug/L		0.5	24-NOV-14
cis-1,3-Dichloropropene			<0.50		ug/L		0.5	24-NOV-14
Dibromochloromethane			<1.0		ug/L		1	24-NOV-14
Dichlorodifluoromethane)		<1.0		ug/L		1	24-NOV-14
Dichloromethane			<2.0		ug/L		2	24-NOV-14
Ethyl Benzene			< 0.50		ug/L		0.5	24-NOV-14
m+p-Xylenes			<1.0		ug/L		1	24-NOV-14
Methyl Ethyl Ketone			<20		ug/L		20	24-NOV-14
Methyl Isobutyl Ketone			<20		ug/L		20	24-NOV-14
n-Hexane			< 0.50		ug/L		0.5	24-NOV-14
MTBE			< 0.50		ug/L		0.5	24-NOV-14
o-Xylene			<0.50		ug/L		0.5	24-NOV-14
Styrene			<0.50		ug/L		0.5	24-NOV-14
Tetrachloroethylene			<0.50		ug/L		0.5	24-NOV-14
Toluene			<0.50		ug/L		0.5	24-NOV-14
trans-1,2-Dichloroethyle	ne		<0.50		ug/L		0.5	24-NOV-14
trans-1,3-Dichloroproper			<0.50		ug/L		0.5	24-NOV-14
Trichloroethylene			<0.50		ug/L		0.5	

Workorder: L1549724 Report Date: 27-NOV-14 Page 5 of 6

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R3101153 WG2000652-2 MB Trichlorofluoromethane			<1.0		ug/L		1	24-NOV-14
Vinyl chloride			<0.50		ug/L		0.5	24-NOV-14
Surrogate: 1,4-Difluorobe	nzene		95.8		%		70-130	24-NOV-14
Surrogate: 4-Bromofluoro	benzene		87.0		%		70-130	24-NOV-14

Report Date: 27-NOV-14 Workorder: L1549724

SIREM Client: Page 6 of 6

130 Research Lane Suite 2

Guelph ON N1G 5G3

Contact: Jeff Roberts

Legend:

ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

60 NORTHLAND ROAD, UNIT 1

WATERLOO, ON N2V 2B8 Phone: (519) 886-6910

A
伊弘
(ALS)

CHAIN OF CUSTODY / ANALYTICAL SERVICES REQUEST FORM Page ___ of ___

Filone: (519) 660						L	Note: all TAT Quoted material is in business days	s which	i excl	ude	Spec	ify date		ervice re	quest	ed	2 day TAT (50%)	
Fax: (519) 886-9	047		(A	LŜ		statutory holidays and weekends. TAT samples re	eceive	d pasi	3:00	re	quired	5 da	y (regular)	$\mathbf{I}\mathbf{X}$	Next day TAT (100%)	
Toll Free: 1-800	-668-987	8		•		<u></u>	pm or Saturday/Sunday begin the next day.						3-4	day (25%)		ľ	Same day TAT (200%)	
COMPANY NAME	Siker	VĮ					CRITERIA Criteria on report YES NO					ANALY\$I	S REQ	UEST			PLEASE INDICATE FILTER	RED,
OFFICE	130 RE	SEA	ean	Ld.	SUNTE	2	Reg 53/04 Reg 511/09		∇		ПТ		Τ				PRESERVED OR BOTH	
PROJECT MANAGER	GUELA	'H . 1	0 1	ИВ	503	<u> </u>	Table 1 2 3	4		<u> </u>	\vdash		<u> </u>		-	╄		
PROJECT MANAGER	Jeff R	200	ch	-			TCLP MISA PWQO										SUBMISSION #:	1 3
PROJECT #		- 00,	<u>,</u>				ODWS OTHER					·					LI SH4Hat	1
PHONE 5!7 - 515 - ACCOUNT #	0840	FAX					REPORT FORMAT/DISTRIBUTION	١,	10								ENTERED BY SILVES	Y
ACCOUNT #							ELLEN SAY DOTAL	L SH	8260								DATE/TIME ENTERED:	
QUOTATION #	· .	PO#	<u>!</u>				EMAIL FAX BOTH SELECT: PDF DIGITAL BOTH	CONTAINERS	₩								21/11/14	f 🗎
SAN	IPLING INFO	ORMA	ATION	,			EMAIL 1 - SICEMIADO COM		75	1							BIN#: Distriction	THUME
Sample Date/		Τ	YPE	1	/ATRI	ΙX] p	 >	(1 4
Date (dd-mm-yy)	Time (24hr) (hh:mm)	COMP	GRAB	WATER	SOIL	OTHER	SAMPLE DESCRIPTION TO APPEAR ON REPORT	NUMBER		4							COMMENTS	LAB ID
19 Zot4	9:300-			X			5-3316 - 11192014 - Cornelly Eff	2	. 7	J			1		1	1		1
11-19 2014				X		L	5-3316 - 11192014 - POEM - EFF	2	ľ									2
11-20-2014		!		X			5.3316- 11202014-Cornelly Pot F	又	X	┖								3
11-20-2014		<u> </u>	!	X	ļ	<u> </u>	5-3316-11202014-Peurleya PortF	2	LX;	 			_	lacksquare	_	_		4
1-21-2014	-U-	 -	ļ	E		1—	5-3316-11762017-(sounder-124)	42	十大	┿	\vdash		1		+	-		5
# == 				75		-	<i></i>	+	┈	+	\vdash	\dashv	-		┥	╁		
			 		┢			<u> </u>	1	Ь	╂┈┤		┼┈	 	+	+		1
					┢╌	1	 # # # #						1		+	+		
` _											\Box		Ť					
							L1549724-COFC									L.		
			ļ	ļ		L	L 1549724-COFC											
			<u> </u>	<u> </u>	<u> </u>			,	,		(↓ _	<u> </u>		ـــــ	_	<u> </u>
SPECIAL	INSTRUCTIO	NS/C	OMME	NTS :		Milek	THE QUESTIONS BELOW MUST BE AN	ISWERF) D FOI	 RWATE	R SAMP	LES CCHE	CK Yes	OR No har	- 10 place	1242-02-02-02	SAMPLE CONDITIO	N sause
	1.00 331		ob andress.				Are any samples taken from a regulated DW Sy	_				*****	v.		Vo 🚟	CEP.	FROZEN EES DES	MEAN
							If yes, an authorized drinking water COC MUST. Is the water sampled intended to be potable for	be us	ed fo	r this	submis	sion.	The state of	/es1	2997 MJ		COLD COOLING INITIATED AMBIENT	26
SAMPLED BY: Ja'	ion Wite						DATE & TIME RECEIVED BY:				191,000 (1000)		10.00	& TIME		_ 1 81 8710 841	OBSERVATIONS 7	INIT
RELINQUISHED BY:	Jusont		p				DATE & TIME RECEIVED AT LAB BY	11-14	inea.	Χ.			DATE	& TIME T	· k	, 2n	yes add SIF	
Notes	J-3071	V4 . I					T. SCHOOL SEE AND ASS.	ھے ح	ESPETET VOTE		.11/17/04/916013	p → cranii,	1411	JOVIY	70	11()	mentioners of the state of the	

^{1.} Quate number must be provided to ensure pricing

proper 2. TAT may vary dependent on complexity of analysis and lab workload at time of submission. Please contact the lab to confirm TATs.

^{3.} Any known or suspected hazards relating to a sample must be noted on the chain of custody in comments section.

SIREM

ATTN: Jeff Roberts 130 Research Lane

Suite 2

Guelph ON N1G 5G3

Date Received: 04-DEC-14

Report Date: 11-DEC-14 14:14 (MT)

Version: FINAL

Client Phone: 519-515-0840

Certificate of Analysis

Lab Work Order #: L1554928

Project P.O. #: NOT SUBMITTED

Job Reference: S-3316 CROWN CHEVY

C of C Numbers: Legal Site Desc:

Mathumai Ganeshakumar Account Manager

 $[This \ report \ shall \ not \ be \ reproduced \ except \ in \ full \ without \ the \ written \ authority \ of \ the \ Laboratory.]$

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1554928 CONTD....

PAGE 2 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-1 S-3316-11282104-CONNELLY EFFL. Sampled By: J. WHITE on 28-NOV-14 Matrix: WATER							
Physical Tests							
Color, Apparent	3.4		1.0	C.U.		05-DEC-14	R3116433
рН	9.56		0.10	pH units	05-DEC-14	05-DEC-14	
Total Dissolved Solids	262		20	mg/L	05-DEC-14	05-DEC-14	
Turbidity	0.74	PEHR	0.10	NTU	05-DEC-14	05-DEC-14	
Anions and Nutrients	0		0.10		55 225	00 220 11	1.0110001
Ammonia, Total (as N)	0.638		0.050	mg/L		05-DEC-14	R3115695
Bromide	0.21		0.10	mg/L		05-DEC-14	R3116782
Chloride	94.1		2.0	mg/L		05-DEC-14	R3116782
Fluoride	0.15		0.10	mg/L		05-DEC-14	R3116782
Nitrate and Nitrite as N	<0.2		0.20	mg/L		08-DEC-14	
Nitrate-N	<0.10		0.10	mg/L		05-DEC-14	R3116782
Nitrite-N	<0.10		0.10	mg/L		05-DEC-14	
Phosphate-P (ortho)	0.0033		0.0030	mg/L		05-DEC-14	
Sulphate	<2.0		2.0	mg/L		05-DEC-14	
Organic / Inorganic Carbon	12.0		2.0				
Dissolved Organic Carbon	<1.0		1.0	mg/L	06-DEC-14	06-DEC-14	R3117110
Total Organic Carbon	<1.0		1.0	mg/L	06-DEC-14	06-DEC-14	R3117112
Inorganic Parameters							
Silica	<2.1		2.1	mg/L		08-DEC-14	
Total Metals							
Aluminum (Al)-Total	0.026		0.010	mg/L	04-DEC-14	08-DEC-14	R3116494
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	R3116494
Arsenic (As)-Total	0.0742		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Barium (Ba)-Total	0.073		0.010	mg/L	04-DEC-14	08-DEC-14	R3116494
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Boron (B)-Total	0.549		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	04-DEC-14	08-DEC-14	R3116494
Calcium (Ca)-Total	5.97		0.50	mg/L	04-DEC-14	08-DEC-14	R3116494
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	R3116494
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	R3116494
Copper (Cu)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Iron (Fe)-Total	0.117		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494
Lead (Pb)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Magnesium (Mg)-Total	10.3		0.50	mg/L	04-DEC-14	08-DEC-14	
Manganese (Mn)-Total	0.0471		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Molybdenum (Mo)-Total	0.0532		0.0010	mg/L	04-DEC-14	08-DEC-14	
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	04-DEC-14	08-DEC-14	
Phosphorus (P)-Total	0.093		0.050	mg/L	04-DEC-14	08-DEC-14	
Potassium (K)-Total	<1.0		1.0	mg/L	04-DEC-14	08-DEC-14	
Selenium (Se)-Total	<0.00040		0.00040	mg/L	04-DEC-14	08-DEC-14	
Silicon (Si)-Total	<1.0		1.0	mg/L	04-DEC-14	08-DEC-14	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.0	9/ =	0.2014	00 000-14	1.0110494

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 3 of 16

Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-1 S-3316-11282104-CONNELLY EFFL. Sampled By: J. WHITE on 28-NOV-14 Matrix: WATER							
Total Metals							
Silver (Ag)-Total	<0.00010		0.00010	mg/L	04-DEC-14	08-DEC-14	R3116494
Sodium (Na)-Total	75.1		0.50	mg/L	04-DEC-14	08-DEC-14	
Strontium (Sr)-Total	0.0329		0.0010	mg/L	04-DEC-14	08-DEC-14	
Thallium (TI)-Total	<0.0030		0.0010	mg/L	04-DEC-14	08-DEC-14	
Tin (Sn)-Total	<0.0010		0.00030	mg/L	04-DEC-14	08-DEC-14	
Titanium (Ti)-Total	<0.0020		0.0010	mg/L	04-DEC-14	08-DEC-14	
Tungsten (W)-Total	<0.010		0.010	mg/L	04-DEC-14	08-DEC-14	
Uranium (U)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	
Vanadium (V)-Total	<0.0030		0.0030	mg/L	04-DEC-14	08-DEC-14	
Zinc (Zn)-Total	0.0033		0.0010	mg/L	04-DEC-14	08-DEC-14	
Zirconium (Zr)-Total	<0.0033		0.0030	mg/L	04-DEC-14	08-DEC-14	
L1554928-2 S-3316-11282104-PEERLESS EFFL. Sampled By: J. WHITE on 28-NOV-14 Matrix: WATER	X0.0040		0.0040	mg/L	04 020 14	00 DEO 14	13110494
Physical Tests							
Color, Apparent	2.7		1.0	C.U.		05-DEC-14	R3116433
pH	9.42		0.10	pH units	05-DEC-14	05-DEC-14	
Total Dissolved Solids	288		20	mg/L	05-DEC-14	05-DEC-14	
Turbidity	0.30	PEHR	0.10	NTU	05-DEC-14	05-DEC-14	
Anions and Nutrients	0.00		0.10		00 220	00 220 11	1.0110001
Ammonia, Total (as N)	0.351		0.050	mg/L		05-DEC-14	R3115695
Bromide	0.19		0.10	mg/L		05-DEC-14	R3116782
Chloride	94.2		2.0	mg/L		05-DEC-14	R3116782
Fluoride	0.10		0.10	mg/L		05-DEC-14	R3116782
Nitrate and Nitrite as N	<0.2		0.20	mg/L		08-DEC-14	
Nitrate-N	<0.10		0.10	mg/L		05-DEC-14	R3116782
Nitrite-N	<0.10		0.10	mg/L		05-DEC-14	
Phosphate-P (ortho)	<0.0030		0.0030	mg/L		05-DEC-14	
Sulphate	34.6		2.0	mg/L		05-DEC-14	
Organic / Inorganic Carbon				3			
Dissolved Organic Carbon	<1.0		1.0	mg/L	06-DEC-14	06-DEC-14	R3117110
Total Organic Carbon	<1.0		1.0	mg/L	06-DEC-14	06-DEC-14	R3117112
Inorganic Parameters							
Silica	<2.1		2.1	mg/L		08-DEC-14	
Total Metals							
Aluminum (Al)-Total	0.013		0.010	mg/L	04-DEC-14	08-DEC-14	R3116494
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	R3116494
Arsenic (As)-Total	0.0016		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Barium (Ba)-Total	0.015		0.010	mg/L	04-DEC-14	08-DEC-14	R3116494
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Boron (B)-Total	0.299		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 4 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-2 S-3316-11282104-PEERLESS EFFL. Sampled By: J. WHITE on 28-NOV-14							
Matrix: WATER Total Metals							
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	04-DEC-14	08-DEC-14	R3116494
Calcium (Ca)-Total	4.46		0.50	mg/L	04-DEC-14	08-DEC-14	
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	
Copper (Cu)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	
Iron (Fe)-Total	<0.050		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494
Lead (Pb)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Magnesium (Mg)-Total	23.2		0.50	mg/L	04-DEC-14	08-DEC-14	R3116494
Manganese (Mn)-Total	0.0635		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Molybdenum (Mo)-Total	0.0042		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	04-DEC-14	08-DEC-14	R3116494
Phosphorus (P)-Total	0.053		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494
Potassium (K)-Total	<1.0		1.0	mg/L	04-DEC-14	08-DEC-14	R3116494
Selenium (Se)-Total	<0.00040		0.00040	mg/L	04-DEC-14	08-DEC-14	R3116494
Silicon (Si)-Total	<1.0		1.0	mg/L	04-DEC-14	08-DEC-14	R3116494
Silver (Ag)-Total	<0.00010		0.00010	mg/L	04-DEC-14	08-DEC-14	R3116494
Sodium (Na)-Total	73.5		0.50	mg/L	04-DEC-14	08-DEC-14	R3116494
Strontium (Sr)-Total	0.0191		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Thallium (TI)-Total	<0.00030		0.00030	mg/L	04-DEC-14	08-DEC-14	R3116494
Tin (Sn)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Titanium (Ti)-Total	<0.0020		0.0020	mg/L	04-DEC-14	08-DEC-14	
Tungsten (W)-Total	<0.010		0.010	mg/L	04-DEC-14	08-DEC-14	
Uranium (U)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	
Vanadium (V)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	
Zinc (Zn)-Total	<0.0030		0.0030	mg/L	04-DEC-14	08-DEC-14	
Zirconium (Zr)-Total	<0.0040		0.0040	mg/L	04-DEC-14	08-DEC-14	R3116494
L1554928-3 S-3316-11282104-CONTROL EFFL. Sampled By: J. WHITE on 28-NOV-14 WATER							
Physical Tests							
Color, Apparent	<1.0		1.0	C.U.		05-DEC-14	
рН	7.97		0.10	pH units	05-DEC-14	05-DEC-14	
Total Dissolved Solids	704		20	mg/L	05-DEC-14	05-DEC-14	
Turbidity Anions and Nutrients	0.10	PEHR	0.10	NTU	05-DEC-14	05-DEC-14	R3115934
Alkalinity Ricarbonate (as CaCO3)	420		40	ma/l		00 DEC 14	D2117005
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	430 <10		10 10	mg/L mg/L		08-DEC-14 08-DEC-14	
Alkalinity, Hydroxide (as CaCO3)	<10			-		08-DEC-14	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	430		10 10	mg/L mg/L		08-DEC-14 08-DEC-14	
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-DEC-14	
Bromide	0.14		0.050	mg/L		05-DEC-14	
Chloride	91.0		2.0	mg/L		05-DEC-14	
	91.0		2.0	my/L		03-DEC-14	13110/62

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 5 of 16

Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-3 S-3316-11282104-CONTROL EFFL. Sampled By: J. WHITE on 28-NOV-14 Matrix: WATER							
Anions and Nutrients							
Fluoride	0.40		0.10	mg/L		05-DEC-14	R3116782
Nitrate and Nitrite as N	2.27		0.20	mg/L		08-DEC-14	
Nitrate-N	2.27		0.10	mg/L		05-DEC-14	R3116782
Nitrite-N	<0.10		0.10	mg/L		05-DEC-14	R3116782
Phosphate-P (ortho)	0.0662		0.0030	mg/L		05-DEC-14	R3116825
Sulphate	62.0		2.0	mg/L		05-DEC-14	R3116782
Organic / Inorganic Carbon				-			
Dissolved Organic Carbon	<1.0		1.0	mg/L	06-DEC-14	06-DEC-14	R3117110
Total Organic Carbon	<1.0		1.0	mg/L	06-DEC-14	06-DEC-14	R3117112
Inorganic Parameters							
Silica	23.2		2.1	mg/L		08-DEC-14	
Total Metals							
Aluminum (Al)-Total	0.025		0.010	mg/L	04-DEC-14	08-DEC-14	R3116494
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	
Arsenic (As)-Total	0.0053		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Barium (Ba)-Total	0.158		0.010	mg/L	04-DEC-14		R3116494
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Boron (B)-Total	0.336		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	04-DEC-14	08-DEC-14	
Calcium (Ca)-Total	140		0.50	mg/L	04-DEC-14	08-DEC-14	R3116494
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	R3116494
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	
Copper (Cu)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Iron (Fe)-Total	<0.050		0.050	mg/L	04-DEC-14		R3116494
Lead (Pb)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	
Magnesium (Mg)-Total	36.0		0.50	mg/L	04-DEC-14		R3116494
Manganese (Mn)-Total	0.0120		0.0010	mg/L	04-DEC-14		R3116494
Molybdenum (Mo)-Total	0.0019		0.0010	mg/L	04-DEC-14	1	R3116494
Nickel (Ni)-Total Phosphorus (P)-Total	0.0022		0.0020	mg/L	04-DEC-14		
Potassium (K)-Total	0.099		0.050	mg/L	04-DEC-14 04-DEC-14	08-DEC-14	
Selenium (Se)-Total	<1.0		1.0	mg/L		08-DEC-14 08-DEC-14	
Silicon (Si)-Total	0.00062		0.00040	mg/L	04-DEC-14		
	10.9		1.0	mg/L	04-DEC-14 04-DEC-14	08-DEC-14 08-DEC-14	R3116494
Silver (Ag)-Total Sodium (Na)-Total	<0.00010		0.00010	mg/L			
Strontium (Sr)-Total	76.8		0.50	mg/L	04-DEC-14 04-DEC-14	08-DEC-14 08-DEC-14	
Thallium (TI)-Total	1.43 <0.00030		0.0010 0.00030	mg/L mg/L	04-DEC-14 04-DEC-14	08-DEC-14	
Tin (Sn)-Total	<0.00030		0.00030	mg/L	04-DEC-14 04-DEC-14	08-DEC-14	
Titanium (Ti)-Total	<0.0010		0.0010	mg/L	04-DEC-14 04-DEC-14		R3116494 R3116494
Tungsten (W)-Total	<0.0020		0.0020	mg/L	04-DEC-14 04-DEC-14	08-DEC-14	
Uranium (U)-Total				•	04-DEC-14 04-DEC-14		
Granium (O)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	13110494

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 6 of 16

Version: FINAL

Sample Details/Parameters	Result Qualifier* D.I		D.L.	D.L. Units		Analyzed	Batch	
L1554928-3 S-3316-11282104-CONTROL EFFL. Sampled By: J. WHITE on 28-NOV-14 Matrix: WATER								
Total Metals								
Vanadium (V)-Total	0.0043		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494	
Zinc (Zn)-Total	<0.0030		0.0030	mg/L	04-DEC-14	08-DEC-14	R3116494	
Zirconium (Zr)-Total	<0.0040		0.0040	mg/L	04-DEC-14	08-DEC-14		
L1554928-4 S-3316-11282104-INFLUENT Sampled By: J. WHITE on 28-NOV-14 Matrix: WATER				-				
Physical Tests								
Color, Apparent	1.1		1.0	C.U.		05-DEC-14	R3116433	
pH	7.60		0.10	pH units	05-DEC-14	05-DEC-14		
Total Dissolved Solids	694		20	mg/L	05-DEC-14	05-DEC-14		
Turbidity	1.14	PEHR	0.10	NTU	05-DEC-14	05-DEC-14		
Anions and Nutrients	1.17		0.10	711.5	33 223 14	33 223 14	1.0004	
Alkalinity, Bicarbonate (as CaCO3)	459		10	mg/L		08-DEC-14	R3117065	
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L		08-DEC-14		
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L		08-DEC-14		
Alkalinity, Total (as CaCO3)	459		10	mg/L		08-DEC-14	R311706	
Ammonia, Total (as N)	<0.050		0.050	mg/L		05-DEC-14		
Bromide	0.14		0.10	mg/L		05-DEC-14		
Chloride	90.7		2.0	mg/L		05-DEC-14		
Fluoride	0.42		0.10	mg/L		05-DEC-14		
Nitrate and Nitrite as N	2.25		0.20	mg/L		08-DEC-14		
Nitrate-N	2.25		0.10	mg/L		05-DEC-14	R311678	
Nitrite-N	<0.10		0.10	mg/L		05-DEC-14		
Phosphate-P (ortho)	0.119		0.0030	mg/L		05-DEC-14		
Sulphate	59.8		2.0	mg/L		05-DEC-14		
Organic / Inorganic Carbon	33.0		2.0	mg/L		00 000 14	1070	
Dissolved Organic Carbon	<1.0		1.0	mg/L	06-DEC-14	06-DEC-14	R311711	
Total Organic Carbon	<1.0		1.0	mg/L	06-DEC-14			
Inorganic Parameters	1.10							
Silica	22.2		2.1	mg/L		08-DEC-14		
Total Metals								
Aluminum (AI)-Total	0.012		0.010	mg/L	04-DEC-14	08-DEC-14	R311649	
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	R311649	
Arsenic (As)-Total	0.0014		0.0010	mg/L	04-DEC-14	08-DEC-14	R311649	
Barium (Ba)-Total	0.145		0.010	mg/L	04-DEC-14	08-DEC-14	R311649	
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R311649	
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R311649	
Boron (B)-Total	0.310		0.050	mg/L	04-DEC-14	08-DEC-14	R311649	
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	04-DEC-14	08-DEC-14		
Calcium (Ca)-Total	145		0.50	mg/L	04-DEC-14	08-DEC-14		
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	R311649	
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	04-DEC-14	08-DEC-14	R311649	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 7 of 16

Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-4 S-3316-11282104-INFLUENT Sampled By: J. WHITE on 28-NOV-14 Matrix: WATER							
Total Metals							
Copper (Cu)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Iron (Fe)-Total	<0.050		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494
Lead (Pb)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Magnesium (Mg)-Total	35.4		0.50	mg/L	04-DEC-14	08-DEC-14	R3116494
Manganese (Mn)-Total	0.101		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Molybdenum (Mo)-Total	0.0015		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Nickel (Ni)-Total	0.0027		0.0020	mg/L	04-DEC-14	08-DEC-14	R3116494
Phosphorus (P)-Total	0.122		0.050	mg/L	04-DEC-14	08-DEC-14	R3116494
Potassium (K)-Total	<1.0		1.0	mg/L	04-DEC-14	08-DEC-14	R3116494
Selenium (Se)-Total	0.00060		0.00040	mg/L	04-DEC-14	08-DEC-14	R3116494
Silicon (Si)-Total	10.4		1.0	mg/L	04-DEC-14	08-DEC-14	R3116494
Silver (Ag)-Total	<0.00010		0.00010	mg/L	04-DEC-14	08-DEC-14	R3116494
Sodium (Na)-Total	75.1		0.50	mg/L	04-DEC-14	08-DEC-14	R3116494
Strontium (Sr)-Total	1.38		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Thallium (TI)-Total	<0.00030		0.00030	mg/L	04-DEC-14	08-DEC-14	R3116494
Tin (Sn)-Total	<0.0010		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Titanium (Ti)-Total	<0.0020		0.0020	mg/L	04-DEC-14	08-DEC-14	R3116494
Tungsten (W)-Total	<0.010		0.010	mg/L	04-DEC-14	08-DEC-14	R3116494
Uranium (U)-Total	<0.0050		0.0050	mg/L	04-DEC-14	08-DEC-14	R3116494
Vanadium (V)-Total	0.0049		0.0010	mg/L	04-DEC-14	08-DEC-14	R3116494
Zinc (Zn)-Total	0.0038		0.0030	mg/L	04-DEC-14	08-DEC-14	R3116494
Zirconium (Zr)-Total	<0.0040		0.0040	mg/L	04-DEC-14	08-DEC-14	R3116494
L1554928-5 S-3316-4122104-CONNELLY EFFL. Sampled By: J. WHITE on 04-DEC-14 WATER							
Volatile Organic Compounds							
Acetone	<200		200	ug/L		11-DEC-14	R3118854
Benzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Bromobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Bromochloromethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
Bromodichloromethane	<20		20	ug/L		11-DEC-14	R3118854
Bromoform	<10		10	ug/L		11-DEC-14	R3118854
Bromomethane	<10		10	ug/L		11-DEC-14	R3118854
n-Butylbenzene	<50		50	ug/L		11-DEC-14	R3118854
sec-Butylbenzene	<50		50	ug/L		11-DEC-14	R3118854
tert-Butylbenzene	<50		50	ug/L		11-DEC-14	R3118854
Carbon Disulfide	<20		20	ug/L		11-DEC-14	R3118854
Carbon tetrachloride	<5.0		5.0	ug/L		11-DEC-14	R3118854
Chlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dibromochloromethane	<10		10	ug/L		11-DEC-14	R3118854
Chloroethane	<10		10	ug/L		11-DEC-14	R3118854
Chloroform	<10		10	ug/L		11-DEC-14	R3118854

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD....
PAGE 8 of 16
Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-5 S-3316-4122104-CONNELLY EFFL. Sampled By: J. WHITE on 04-DEC-14 Matrix: WATER							
Volatile Organic Compounds							
Chloromethane	<10		10	ug/L		11-DEC-14	R3118854
2-Chlorotoluene	<200		200	ug/L		11-DEC-14	R3118854
4-Chlorotoluene	<200		200	ug/L		11-DEC-14	R3118854
1,2-Dibromo-3-chloropropane	<200		200	ug/L		11-DEC-14	R3118854
1,2-Dibromoethane	<5.0		5.0	ug/L		11-DEC-14	
Dibromomethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,2-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,3-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	
1,4-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dichlorodifluoromethane	<10		10	ug/L		11-DEC-14	R3118854
1,1-Dichloroethane	<5.0		5.0	ug/L		11-DEC-14	
1,2-Dichloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
cis-1,2-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
trans-1,2-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dichloromethane	<50		50	ug/L		11-DEC-14	R3118854
1,2-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,3-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
2,2-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
cis-1,3-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
trans-1,3-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Ethyl Benzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Hexachlorobutadiene	<50		50	ug/L		11-DEC-14	R3118854
n-Hexane	<5.0		5.0	ug/L		11-DEC-14	R3118854
2-Hexanone	<200		200	ug/L		11-DEC-14	R3118854
Isopropylbenzene	<50		50	ug/L		11-DEC-14	R3118854
Isopropyltoluene	<50		50	ug/L		11-DEC-14	R3118854
Methyl Ethyl Ketone	<200		200	ug/L		11-DEC-14	R3118854
Methyl Isobutyl Ketone	<200		200	ug/L		11-DEC-14	R3118854
MTBE	<20		20	ug/L		11-DEC-14	R3118854
Naphthalene	<100		100	ug/L		11-DEC-14	R3118854
n-Propylbenzene	<50		50	ug/L		11-DEC-14	R3118854
Styrene	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1,1,2-Tetrachloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1,2,2-Tetrachloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
Tetrachloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Toluene	<5.0		5.0	ug/L		11-DEC-14	
1,2,3-Trichlorobenzene	<100		100	ug/L		11-DEC-14	R3118854
1,2,4-Trichlorobenzene	<100		100	ug/L		11-DEC-14	R3118854
1,1,1-Trichloroethane	<5.0		5.0	ug/L		11-DEC-14	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 9 of 16

Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-5 S-3316-4122104-CONNELLY EFFL. Sampled By: J. WHITE on 04-DEC-14 WATER							
Volatile Organic Compounds							
1,1,2-Trichloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
Trichloroethylene	<5.0		5.0	ug/L		11-DEC-14	
Trichlorofluoromethane	<10		10	ug/L		11-DEC-14	
1,2,3-Trichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,2,4-Trimethylbenzene	<5.0		5.0	ug/L		11-DEC-14	
1,3,5-Trimethylbenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Vinyl chloride	<5.0		5.0	ug/L		11-DEC-14	R3118854
o-Xylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
m+p-Xylenes	<10		10	ug/L		11-DEC-14	R3118854
Surrogate: 4-Bromofluorobenzene	90.6		70-130	%		11-DEC-14	R3118854
Surrogate: 1,4-Difluorobenzene	96.5		70-130	%		11-DEC-14	R3118854
L1554928-6 S-3316-4122104-PEERLESS EFFL. Sampled By: J. WHITE on 04-DEC-14 WATER							
Volatile Organic Compounds							
Acetone	<200		200	ug/L		11-DEC-14	R3118854
Benzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Bromobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Bromochloromethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
Bromodichloromethane	<20		20	ug/L		11-DEC-14	
Bromoform	<10		10	ug/L		11-DEC-14	
Bromomethane	<10		10	ug/L		11-DEC-14	
n-Butylbenzene	<50		50	ug/L		11-DEC-14	
sec-Butylbenzene	<50		50	ug/L		11-DEC-14	
tert-Butylbenzene	<50		50	ug/L		11-DEC-14	R3118854
Carbon Disulfide	<20		20	ug/L		11-DEC-14	
Carbon tetrachloride	<5.0		5.0	ug/L		11-DEC-14	
Chlorobenzene	<5.0		5.0	ug/L		11-DEC-14	
Dibromochloromethane	<10		10	ug/L		11-DEC-14	
Chloroethane	<10		10	ug/L		11-DEC-14	
Chloroform	<10		10	ug/L		11-DEC-14	
Chloromethane	<10		10	ug/L		11-DEC-14	
2-Chlorotoluene	<200		200	ug/L		11-DEC-14	
4-Chlorotoluene	<200		200	ug/L		11-DEC-14	
1,2-Dibromo-3-chloropropane	<200		200	ug/L		11-DEC-14	
1,2-Dibromoethane	<5.0		5.0	ug/L		11-DEC-14	
Dibromomethane	<5.0		5.0	ug/L		11-DEC-14	
1,2-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	
1,3-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	
1,4-Dichlorobenzene	<5.0 <5.0		5.0	ug/L ug/L		11-DEC-14	
Dichlorodifluoromethane	<5.0 <10		10	ug/L ug/L		11-DEC-14	
1,1-Dichloroethane	<5.0		5.0	ug/L		11-DEC-14	K3118854

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD....
PAGE 10 of 16
Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted Analyzed	Batch
L1554928-6 S-3316-4122104-PEERLESS EFFL. Sampled By: J. WHITE on 04-DEC-14 WATER WATER					
Volatile Organic Compounds					
1,2-Dichloroethane	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,1-Dichloroethylene	<5.0	5.0	ug/L	11-DEC-14	
cis-1,2-Dichloroethylene	<5.0	5.0	ug/L	11-DEC-14	R3118854
trans-1,2-Dichloroethylene	<5.0	5.0	ug/L	11-DEC-14	R3118854
Dichloromethane	<50	50	ug/L	11-DEC-14	
1,2-Dichloropropane	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,3-Dichloropropane	<5.0	5.0	ug/L	11-DEC-14	R3118854
2,2-Dichloropropane	<5.0	5.0	ug/L	11-DEC-14	
1,1-Dichloropropene	<5.0	5.0	ug/L	11-DEC-14	R3118854
cis-1,3-Dichloropropene	<5.0	5.0	ug/L	11-DEC-14	R3118854
trans-1,3-Dichloropropene	<5.0	5.0	ug/L	11-DEC-14	
Ethyl Benzene	<5.0	5.0	ug/L	11-DEC-14	R3118854
Hexachlorobutadiene	<50	50	ug/L	11-DEC-14	
n-Hexane	<5.0	5.0	ug/L	11-DEC-14	R3118854
2-Hexanone	<200	200	ug/L	11-DEC-14	R3118854
Isopropylbenzene	<50	50	ug/L	11-DEC-14	R3118854
Isopropyltoluene	<50	50	ug/L	11-DEC-14	R3118854
Methyl Ethyl Ketone	<200	200	ug/L	11-DEC-14	R3118854
Methyl Isobutyl Ketone	<200	200	ug/L	11-DEC-14	R3118854
MTBE	<20	20	ug/L	11-DEC-14	R3118854
Naphthalene	<100	100	ug/L	11-DEC-14	R3118854
n-Propylbenzene	<50	50	ug/L	11-DEC-14	R3118854
Styrene	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,1,1,2-Tetrachloroethane	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,1,2,2-Tetrachloroethane	<5.0	5.0	ug/L	11-DEC-14	R3118854
Tetrachloroethylene	28.3	5.0	ug/L	11-DEC-14	R3118854
Toluene	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,2,3-Trichlorobenzene	<100	100	ug/L	11-DEC-14	R3118854
1,2,4-Trichlorobenzene	<100	100	ug/L	11-DEC-14	R3118854
1,1,1-Trichloroethane	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,1,2-Trichloroethane	<5.0	5.0	ug/L	11-DEC-14	R3118854
Trichloroethylene	<5.0	5.0	ug/L	11-DEC-14	R3118854
Trichlorofluoromethane	<10	10	ug/L	11-DEC-14	R3118854
1,2,3-Trichloropropane	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,2,4-Trimethylbenzene	<5.0	5.0	ug/L	11-DEC-14	R3118854
1,3,5-Trimethylbenzene	<5.0	5.0	ug/L	11-DEC-14	R3118854
Vinyl chloride	<5.0	5.0	ug/L	11-DEC-14	R3118854
o-Xylene	<5.0	5.0	ug/L	11-DEC-14	R3118854
m+p-Xylenes	<10	10	ug/L	11-DEC-14	R3118854
Surrogate: 4-Bromofluorobenzene	91.2	70-130	%	11-DEC-14	R3118854
Surrogate: 1,4-Difluorobenzene	95.6	70-130	%	11-DEC-14	R3118854

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 11 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-6 S-3316-4122104-PEERLESS EFFL. Sampled By: J. WHITE on 04-DEC-14 Matrix: WATER							
Volatile Organic Compounds							
L1554928-7 S-3316-4122104-CONTROL EFFL. Sampled By: J. WHITE on 04-DEC-14 Matrix: WATER							
Volatile Organic Compounds							
Acetone	<200		200	ug/L		11-DEC-14	R3118854
Benzene	<5.0		5.0	ug/L		11-DEC-14	
Bromobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Bromochloromethane	<5.0		5.0	ug/L		11-DEC-14	
Bromodichloromethane	<20		20	ug/L		11-DEC-14	
Bromoform	<10		10	ug/L		11-DEC-14	
Bromomethane	<10		10	ug/L		11-DEC-14	
n-Butylbenzene	<50		50	ug/L		11-DEC-14	R3118854
sec-Butylbenzene	<50		50	ug/L		11-DEC-14	R3118854
tert-Butylbenzene	<50		50	ug/L		11-DEC-14	R3118854
Carbon Disulfide	<20		20	ug/L		11-DEC-14	R3118854
Carbon tetrachloride	<5.0		5.0	ug/L		11-DEC-14	
Chlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dibromochloromethane	<10		10	ug/L		11-DEC-14	R3118854
Chloroethane	<10		10	ug/L		11-DEC-14	R3118854
Chloroform	<10		10	ug/L		11-DEC-14	R3118854
Chloromethane	<10		10	ug/L		11-DEC-14	R3118854
2-Chlorotoluene	<200		200	ug/L		11-DEC-14	R3118854
4-Chlorotoluene	<200		200	ug/L		11-DEC-14	R3118854
1,2-Dibromo-3-chloropropane	<200		200	ug/L		11-DEC-14	R3118854
1,2-Dibromoethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dibromomethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,2-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,3-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,4-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dichlorodifluoromethane	<10		10	ug/L		11-DEC-14	R3118854
1,1-Dichloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,2-Dichloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
cis-1,2-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
trans-1,2-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dichloromethane	<50		50	ug/L		11-DEC-14	R3118854
1,2-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,3-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
2,2-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
cis-1,3-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
trans-1,3-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 12 of 16

Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted Analyze	ed Batch
L1554928-7 S-3316-4122104-CONTROL EFFL. Sampled By: J. WHITE on 04-DEC-14 Matrix: WATER					
Volatile Organic Compounds					
Ethyl Benzene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
Hexachlorobutadiene	<50	50	ug/L		14 R3118854
n-Hexane	<5.0	5.0	ug/L	11-DEC-	
2-Hexanone	<200	200	ug/L	11-DEC-	
Isopropylbenzene	<50	50	ug/L		14 R3118854
Isopropyltoluene	<50	50	ug/L	11-DEC-	
Methyl Ethyl Ketone	<200	200	ug/L	11-DEC-	14 R3118854
Methyl Isobutyl Ketone	<200	200	ug/L	11-DEC-	14 R3118854
МТВЕ	<20	20	ug/L	11-DEC-	14 R3118854
Naphthalene	<100	100	ug/L	11-DEC-	14 R3118854
n-Propylbenzene	<50	50	ug/L	11-DEC-	14 R3118854
Styrene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
1,1,1,2-Tetrachloroethane	<5.0	5.0	ug/L	11-DEC-	14 R3118854
1,1,2,2-Tetrachloroethane	<5.0	5.0	ug/L	11-DEC-	14 R3118854
Tetrachloroethylene	1480	5.0	ug/L	11-DEC-	14 R3118854
Toluene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
1,2,3-Trichlorobenzene	<100	100	ug/L	11-DEC-	14 R3118854
1,2,4-Trichlorobenzene	<100	100	ug/L	11-DEC-	14 R3118854
1,1,1-Trichloroethane	<5.0	5.0	ug/L	11-DEC-	14 R3118854
1,1,2-Trichloroethane	<5.0	5.0	ug/L	11-DEC-	14 R3118854
Trichloroethylene	1530	5.0	ug/L	11-DEC-	14 R3118854
Trichlorofluoromethane	<10	10	ug/L	11-DEC-	14 R3118854
1,2,3-Trichloropropane	<5.0	5.0	ug/L	11-DEC-	14 R3118854
1,2,4-Trimethylbenzene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
1,3,5-Trimethylbenzene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
Vinyl chloride	<5.0	5.0	ug/L	11-DEC-	14 R3118854
o-Xylene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
m+p-Xylenes	<10	10	ug/L	11-DEC-	14 R3118854
Surrogate: 4-Bromofluorobenzene	88.3	70-130	%	11-DEC-	14 R3118854
Surrogate: 1,4-Difluorobenzene	94.7	70-130	%	11-DEC-	14 R3118854
L1554928-8 S-3316-4122104-INFLUENT Sampled By: J. WHITE on 04-DEC-14 Matrix: WATER					
Volatile Organic Compounds					
Acetone	<200	200	ug/L	11-DEC-	14 R3118854
Benzene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
Bromobenzene	<5.0	5.0	ug/L	11-DEC-	14 R3118854
Bromochloromethane	<5.0	5.0	ug/L	11-DEC-	14 R3118854
Bromodichloromethane	<20	20	ug/L	11-DEC-	14 R3118854
Bromoform	<10	10	ug/L	11-DEC-	14 R3118854
Bromomethane	<10	10	ug/L	11-DEC-	14 R3118854
n-Butylbenzene	<50	50	ug/L	11-DEC-	14 R3118854

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 13 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-8 S-3316-4122104-INFLUENT							
Sampled By: J. WHITE on 04-DEC-14							
Matrix: WATER Volatile Organic Compounds							
sec-Butylbenzene	<50		50	ug/L		11-DEC-14	D2110051
tert-Butylbenzene	<50 <50		50	ug/L ug/L		11-DEC-14	
Carbon Disulfide	<20		20	ug/L		11-DEC-14	
Carbon tetrachloride	<5.0		5.0	ug/L		11-DEC-14	
Chlorobenzene	<5.0		5.0	ug/L		11-DEC-14	
Dibromochloromethane	<10		10	ug/L		11-DEC-14	
Chloroethane	<10		10	ug/L		11-DEC-14	
Chloroform	<10		10	ug/L		11-DEC-14	
Chloromethane	<10		10	ug/L		11-DEC-14	
2-Chlorotoluene	<200		200	ug/L		11-DEC-14	
4-Chlorotoluene	<200		200	ug/L		11-DEC-14	
1,2-Dibromo-3-chloropropane	<200		200	ug/L		11-DEC-14	
1,2-Dibromoethane	<5.0		5.0	ug/L		11-DEC-14	
Dibromomethane	<5.0		5.0	ug/L		11-DEC-14	
1,2-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	
1,3-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,4-Dichlorobenzene	<5.0		5.0	ug/L		11-DEC-14	
Dichlorodifluoromethane	<10		10	ug/L		11-DEC-14	R3118854
1,1-Dichloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,2-Dichloroethane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
cis-1,2-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
trans-1,2-Dichloroethylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Dichloromethane	<50		50	ug/L		11-DEC-14	R3118854
1,2-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,3-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
2,2-Dichloropropane	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
cis-1,3-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
trans-1,3-Dichloropropene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Ethyl Benzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Hexachlorobutadiene	<50		50	ug/L		11-DEC-14	R3118854
n-Hexane	<5.0		5.0	ug/L		11-DEC-14	R3118854
2-Hexanone	<200		200	ug/L		11-DEC-14	R3118854
Isopropylbenzene	<50		50	ug/L		11-DEC-14	R3118854
Isopropyltoluene	<50		50	ug/L		11-DEC-14	R3118854
Methyl Ethyl Ketone	<200		200	ug/L		11-DEC-14	R3118854
Methyl Isobutyl Ketone	<200		200	ug/L		11-DEC-14	R3118854
MTBE	<20		20	ug/L		11-DEC-14	R3118854
Naphthalene	<100		100	ug/L		11-DEC-14	
n-Propylbenzene	<50		50	ug/L		11-DEC-14	R3118854

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD.... PAGE 14 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1554928-8 S-3316-4122104-INFLUENT Sampled By: J. WHITE on 04-DEC-14 Matrix: WATER							
Volatile Organic Compounds							
Styrene	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,1,1,2-Tetrachloroethane	<5.0		5.0	ug/L		11-DEC-14	
1,1,2,2-Tetrachloroethane	<5.0		5.0	ug/L		11-DEC-14	
Tetrachloroethylene	1730		5.0	ug/L		11-DEC-14	
Toluene	<5.0		5.0	ug/L		11-DEC-14	
1,2,3-Trichlorobenzene	<100		100	ug/L		11-DEC-14	
1,2,4-Trichlorobenzene	<100		100	ug/L		11-DEC-14	
1,1,1-Trichloroethane	<5.0		5.0	ug/L		11-DEC-14	
1,1,2-Trichloroethane	<5.0		5.0	ug/L		11-DEC-14	
Trichloroethylene	1930		5.0	ug/L		11-DEC-14	
Trichlorofluoromethane	<10		10	ug/L		11-DEC-14	
1,2,3-Trichloropropane	<5.0		5.0	ug/L		11-DEC-14	
1,2,4-Trimethylbenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
1,3,5-Trimethylbenzene	<5.0		5.0	ug/L		11-DEC-14	R3118854
Vinyl chloride	<5.0		5.0	ug/L		11-DEC-14	R3118854
o-Xylene	<5.0		5.0	ug/L		11-DEC-14	R3118854
m+p-Xylenes	<10		10	ug/L		11-DEC-14	R3118854
Surrogate: 4-Bromofluorobenzene	88.2		70-130	%		11-DEC-14	R3118854
Surrogate: 1,4-Difluorobenzene	96.0		70-130	%		11-DEC-14	R3118854

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1554928 CONTD....

PAGE 15 of 16 Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Aluminum (AI)-Total	MS-B	L1554928-1, -2, -3, -4
Matrix Spike	Calcium (Ca)-Total	MS-B	L1554928-1, -2, -3, -4
Matrix Spike	Strontium (Sr)-Total	MS-B	L1554928-1, -2, -3, -4
Matrix Spike	Chloride	MS-B	L1554928-1, -2, -3, -4
Matrix Spike	Phosphate-P (ortho)	MS-B	L1554928-1, -2, -3, -4

Sample Parameter Qualifier key listed:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-SPEC-MANUAL-WT	Water	Speciated Alkalinity	APHA 2320B
ALK-SPEC-WT	Water	Speciated Alkalinity	EPA 310.2
ANIONS-WT	Water	Anion Scan (IC)	EPA 300.0 (IC)

C-DIS-ORG-WT Dissolved Organic Carbon APHA 5310 B-INSTRUMENTAL Water

Sample is filtered through a 0.45um filter, sample is then injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

COLOUR-WT Water Colour **APHA 2120**

Apparent colour is determined by analysis of the decanted sample using the platinum-cobalt colourimetric method.

ETL-N2N3-WT Water Calculate from NO2 + NO3 APHA 4110 B

Calculate from SI-TOT-WT ETL-SILICA-CALC-WT Water EPA 200.8

MET-T-MS-WT Total Metals in Water by ICPMS Water EPA 200.8

This analysis involves preliminary sample treatment by hotblock acid digestion (APHA 3030E). Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

NH3-WT Water Ammonia, Total as N EPA 350.1

Sample is measured colorimetrically. When sample is turbid a distillation step is required, sample is distilled into a solution of boric acid and measured

colorimetrically.

P-ORTHO-LOW-WT Phosphorus-P (ortho) APHA 4500-P B E Water

PH-ALK-WT Water APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

SOLIDS-TDS-WT Water **Total Dissolved Solids APHA 2540C**

A well-mixed sample is filtered though glass fibres filter. A known volume of the filtrate is evaporated and dried at 105-5°C overnight and then

180-10°C for 1hr.

TOC-WT Water **Total Organic Carbon APHA 5310B**

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

TURBIDITY-WT Turbidity APHA 2130 B Water

Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer.

VOC-ROU1-HS-WT Volatile Organic Compounds SW846 8260 Water

Aqueous samples are analyzed by headspace-GC/MS.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

S-3316 CROWN CHEVY

Reference Information

L1554928 CONTD....
PAGE 16 of 16
Version: FINAL

Laboratory Definition Code

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1554928 Report Date: 11-DEC-14 Page 1 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-WT	Water							
Batch R31170 WG2009836-3 CR Alkalinity, Total (as C	М	WT-ALK-CRM	114.7		%		80-120	08-DEC-14
WG2009836-2 CV Alkalinity, Total (as C			103.3		%		85-115	08-DEC-14
WG2009836-4 DU Alkalinity, Total (as C		L1554347-1 156	152		mg/L	2.5	20	08-DEC-14
WG2009836-1 MB Alkalinity, Total (as C			<10		mg/L		10	08-DEC-14
ANIONS-WT	Water							
Batch R31167	82							
WG2008852-4 DU Chloride	Р	WG2008852-3 93.9	93.9		ma/l	0.0	20	05 DEC 44
Bromide		93.9 0.21	0.21		mg/L mg/L	0.0 0.2	20 20	05-DEC-14 05-DEC-14
Fluoride		0.15	0.15		mg/L	1.9	20	05-DEC-14
Nitrite-N		<0.10	<0.10	RPD-NA	mg/L	1.9 N/A	20	05-DEC-14 05-DEC-14
Nitrate-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	05-DEC-14
Sulphate		<2.0	<2.0	RPD-NA	mg/L	N/A	20	05-DEC-14
WG2008852-2 LC	s	42.0	103.1	NI D NA	g <u>-</u> %	IV/A		
Bromide			97.3		%		90-110	05-DEC-14
Fluoride			101.3		%		85-115	05-DEC-14
Nitrite-N			101.5		%		90-110 90-110	05-DEC-14 05-DEC-14
Nitrate-N			102.1		%		90-110	05-DEC-14 05-DEC-14
Sulphate			102.8		%		90-110	05-DEC-14
WG2008852-1 MB Chloride	1		<2.0		mg/L		2	05-DEC-14
Bromide			<0.10		mg/L		0.1	05-DEC-14
Fluoride			<0.10		mg/L		0.1	05-DEC-14
Nitrite-N			<0.10		mg/L		0.1	05-DEC-14
Nitrate-N			<0.10		mg/L		0.1	05-DEC-14
Sulphate			<2.0		mg/L		2	05-DEC-14
WG2008852-5 MS Chloride		WG2008852-3	N/A	MS-B	%		_	05-DEC-14
Bromide			89.2	WO-D	%		- 75-125	05-DEC-14
Fluoride			98.5		%		75-125 75-125	05-DEC-14
Nitrite-N			103.5		%		75-125	05-DEC-14
					• •		70 120	30 220 14

Workorder: L1554928 Report Date: 11-DEC-14 Page 2 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-WT	Water							
Batch R3116782 WG2008852-5 MS Nitrate-N		WG2008852-3	98.8		%		75-125	05-DEC-14
Sulphate			101.3		%		75-125	05-DEC-14
C-DIS-ORG-WT	Water							
Batch R3117110 WG2009569-3 DUP		L1553811-1						
Dissolved Organic Carb WG2009569-2 LCS	oon	6.1	6.5		mg/L	6.3	20	06-DEC-14
Dissolved Organic Carb	oon		93.0		%		80-120	06-DEC-14
WG2009569-1 MB Dissolved Organic Carb	oon		<1.0		mg/L		1	06-DEC-14
WG2009569-4 MS Dissolved Organic Carb	oon	L1553811-1	106.0		%		70-130	06-DEC-14
COLOUR-WT	Water							
Batch R3116433								
WG2008751-3 CRM Color, Apparent		WT-COLOUR-	CRM 97.2		%		80-120	05-DEC-14
WG2008751-2 CVS Color, Apparent			99.7		%		85-115	05-DEC-14
WG2008751-4 DUP Color, Apparent		L1554463-1 49.8	44.3		C.U.	12	20	05-DEC-14
WG2008751-1 MB Color, Apparent			<1.0		C.U.		1	05-DEC-14
MET-T-MS-WT	Water							
Batch R3116494 WG2008899-1 CVS								
Aluminum (Al)-Total			104.2		%		80-120	05-DEC-14
Antimony (Sb)-Total			98.3		%		80-120	05-DEC-14
Arsenic (As)-Total			97.4		%		80-120	05-DEC-14
Barium (Ba)-Total			96.4		%		80-120	05-DEC-14
Beryllium (Be)-Total			100.7		%		80-120	05-DEC-14
Bismuth (Bi)-Total			99.1		%		80-120	05-DEC-14
Boron (B)-Total			100.8		%		80-120	05-DEC-14
Cadmium (Cd)-Total			100.1		%		80-120	05-DEC-14
Calcium (Ca)-Total			95.6		%		80-120	05-DEC-14
Chromium (Cr)-Total			98.8		%		80-120	05-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 3 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R3116494 WG2008899-1 CVS Cobalt (Co)-Total			97.8		%		90.420	05 DEC 44
Copper (Cu)-Total			97.8		%		80-120 80-120	05-DEC-14
Iron (Fe)-Total			96.3		%		80-120	05-DEC-14 05-DEC-14
Lead (Pb)-Total			101.4		%			
Magnesium (Mg)-Total			101.4		%		80-120 80-120	05-DEC-14
Manganese (Mn)-Total			96.2		%		80-120	05-DEC-14
Molybdenum (Mo)-Total	ı		98.5		%			05-DEC-14
	II		100.5		%		80-120	05-DEC-14
Nickel (Ni)-Total Phosphorus (P)-Total			99.1		%		80-120	05-DEC-14
. ,			99.1		%		80-120	05-DEC-14
Potassium (K)-Total					%		80-120	05-DEC-14
Selenium (Se)-Total			97.9				80-120	05-DEC-14
Silicon (Si)-Total			96.4		%		80-120	05-DEC-14
Silver (Ag)-Total			100.6		%		80-120	05-DEC-14
Sodium (Na)-Total			98.4		%		80-120	05-DEC-14
Strontium (Sr)-Total			97.9		%		80-120	05-DEC-14
Thallium (TI)-Total			100.6		%		80-120	05-DEC-14
Tin (Sn)-Total			98.6		%		80-120	05-DEC-14
Titanium (Ti)-Total			96.9		%		80-120	05-DEC-14
Tungsten (W)-Total			99.9		%		80-120	05-DEC-14
Uranium (U)-Total			98.3		%		80-120	05-DEC-14
Vanadium (V)-Total			100.4		%		80-120	05-DEC-14
Zinc (Zn)-Total			92.0		%		80-120	05-DEC-14
Zirconium (Zr)-Total			99.1		%		80-120	05-DEC-14
WG2008899-3 CVS Aluminum (Al)-Total			99.8		%		90 120	00 DEC 44
Antimony (Sb)-Total			99.6 96.5		%		80-120	08-DEC-14
Arsenic (As)-Total							80-120	08-DEC-14
			96.0		%		80-120	08-DEC-14
Barium (Ba)-Total			94.3		%		80-120	08-DEC-14
Beryllium (Be)-Total			98.0		%		80-120	08-DEC-14
Bismuth (Bi)-Total			96.3		%		80-120	08-DEC-14
Boron (B)-Total			99.0		%		80-120	08-DEC-14
Cadmium (Cd)-Total			99.4		%		80-120	08-DEC-14
Calcium (Ca)-Total			92.0		%		80-120	08-DEC-14
Chromium (Cr)-Total			99.0		%		80-120	08-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 4 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R3116494								
WG2008899-3 CVS			07.0		0/		00.400	
Cobalt (Co)-Total			97.3 99.1		%		80-120	08-DEC-14
Copper (Cu)-Total Iron (Fe)-Total							80-120	08-DEC-14
,			98.6		%		80-120	08-DEC-14
Lead (Pb)-Total			97.8		%		80-120	08-DEC-14
Magnesium (Mg)-Total			98.4		%		80-120	08-DEC-14
Manganese (Mn)-Total			98.2		%		80-120	08-DEC-14
Molybdenum (Mo)-Total			98.7		%		80-120	08-DEC-14
Nickel (Ni)-Total			97.7		%		80-120	08-DEC-14
Phosphorus (P)-Total			97.0		%		80-120	08-DEC-14
Potassium (K)-Total			98.0		%		80-120	08-DEC-14
Selenium (Se)-Total			97.9		%		80-120	08-DEC-14
Silicon (Si)-Total			94.8		%		80-120	08-DEC-14
Silver (Ag)-Total			98.8		%		80-120	08-DEC-14
Sodium (Na)-Total			97.0		%		80-120	08-DEC-14
Strontium (Sr)-Total			99.98		%		80-120	08-DEC-14
Thallium (TI)-Total			97.5		%		80-120	08-DEC-14
Tin (Sn)-Total			97.6		%		80-120	08-DEC-14
Titanium (Ti)-Total			100.9		%		80-120	08-DEC-14
Tungsten (W)-Total			98.2		%		80-120	08-DEC-14
Uranium (U)-Total			95.5		%		80-120	08-DEC-14
Vanadium (V)-Total			99.4		%		80-120	08-DEC-14
Zinc (Zn)-Total			93.5		%		80-120	08-DEC-14
Zirconium (Zr)-Total			100.1		%		80-120	08-DEC-14
WG2008715-4 DUP		WG2008715-3						
Aluminum (Al)-Total		0.299	0.304		mg/L	1.7	20	05-DEC-14
Antimony (Sb)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	05-DEC-14
Arsenic (As)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-DEC-14
Barium (Ba)-Total		0.0180	0.0172		mg/L	4.4	20	05-DEC-14
Beryllium (Be)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	05-DEC-14
Bismuth (Bi)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-DEC-14
Boron (B)-Total		0.016	0.015		mg/L	2.8	20	05-DEC-14
Cadmium (Cd)-Total		<0.000090	<0.000090	RPD-NA	mg/L	N/A	20	05-DEC-14
Calcium (Ca)-Total		37.8	36.8		mg/L	2.7	20	05-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 5 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R3116494 WG2008715-4 DUP		WG2008715-3						
Chromium (Cr)-Total		0.00061	0.00056		mg/L	8.7	20	05-DEC-14
Cobalt (Co)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	05-DEC-14
Copper (Cu)-Total		0.0017	0.0017		mg/L	1.3	20	05-DEC-14
Iron (Fe)-Total		0.425	0.419		mg/L	1.5	20	05-DEC-14
Lead (Pb)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	05-DEC-14
Magnesium (Mg)-Total		9.45	9.27		mg/L	1.9	20	05-DEC-14
Manganese (Mn)-Total		0.0284	0.0271		mg/L	4.6	20	05-DEC-14
Molybdenum (Mo)-Total		0.00058	0.00056		mg/L	4.6	20	05-DEC-14
Nickel (Ni)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-DEC-14
Phosphorus (P)-Total		<0.050	<0.050	RPD-NA	mg/L	N/A	20	05-DEC-14
Potassium (K)-Total		1.2	1.2		mg/L	0.3	20	05-DEC-14
Selenium (Se)-Total		<0.00040	<0.00040	RPD-NA	mg/L	N/A	20	05-DEC-14
Silicon (Si)-Total		1.8	1.7		mg/L	5.8	20	05-DEC-14
Silver (Ag)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	05-DEC-14
Sodium (Na)-Total		6.41	6.26		mg/L	2.4	20	05-DEC-14
Strontium (Sr)-Total		0.494	0.475		mg/L	3.9	20	05-DEC-14
Thallium (TI)-Total		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	05-DEC-14
Tin (Sn)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-DEC-14
Titanium (Ti)-Total		0.0070	0.0070		mg/L	1.0	20	05-DEC-14
Tungsten (W)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-DEC-14
Uranium (U)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-DEC-14
Vanadium (V)-Total		0.00086	0.00088		mg/L	2.5	20	05-DEC-14
Zinc (Zn)-Total		0.0072	0.0073		mg/L	0.9	20	05-DEC-14
Zirconium (Zr)-Total		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	05-DEC-14
WG2008715-2 LCS Aluminum (Al)-Total			107.0		%		80-120	05-DEC-14
Antimony (Sb)-Total			99.2		%		80-120	05-DEC-14
Arsenic (As)-Total			99.1		%		80-120	05-DEC-14
Barium (Ba)-Total			96.4		%		80-120	05-DEC-14
Beryllium (Be)-Total			101.6		%		80-120	05-DEC-14
Bismuth (Bi)-Total			99.98		%		80-120	05-DEC-14
Boron (B)-Total			98.5		%		80-120	05-DEC-14
Cadmium (Cd)-Total			98.3		%		80-120	05-DEC-14
` ´							-	

Workorder: L1554928 Report Date: 11-DEC-14 Page 6 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R3116494	ļ							
WG2008715-2 LCS			00.0		0/			
Calcium (Ca)-Total			98.2		%		80-120	05-DEC-14
Chromium (Cr)-Total			99.0		%		80-120	05-DEC-14
Cobalt (Co)-Total			97.0		%		80-120	05-DEC-14
Copper (Cu)-Total			99.7		%		80-120	05-DEC-14
Iron (Fe)-Total			97.6		%		80-120	05-DEC-14
Lead (Pb)-Total			101.9		%		80-120	05-DEC-14
Magnesium (Mg)-Total			99.2		%		80-120	05-DEC-14
Manganese (Mn)-Total			96.8		%		80-120	05-DEC-14
Molybdenum (Mo)-Tota	al		97.3		%		80-120	05-DEC-14
Nickel (Ni)-Total			99.7		%		80-120	05-DEC-14
Phosphorus (P)-Total			104.1		%		80-120	05-DEC-14
Potassium (K)-Total			100.9		%		80-120	05-DEC-14
Selenium (Se)-Total			98.2		%		80-120	05-DEC-14
Silicon (Si)-Total			102.3		%		80-120	05-DEC-14
Silver (Ag)-Total			100.1		%		80-120	05-DEC-14
Sodium (Na)-Total			98.2		%		80-120	05-DEC-14
Strontium (Sr)-Total			99.5		%		80-120	05-DEC-14
Thallium (TI)-Total			102.2		%		80-120	05-DEC-14
Tin (Sn)-Total			96.5		%		80-120	05-DEC-14
Titanium (Ti)-Total			95.1		%		80-120	05-DEC-14
Tungsten (W)-Total			101.2		%		80-120	05-DEC-14
Uranium (U)-Total			100.2		%		80-120	05-DEC-14
Vanadium (V)-Total			100.3		%		80-120	05-DEC-14
Zinc (Zn)-Total			100.6		%		80-120	05-DEC-14
Zirconium (Zr)-Total			97.3		%		80-120	05-DEC-14
WG2008715-1 MB								
Aluminum (Al)-Total			<0.010		mg/L		0.01	05-DEC-14
Antimony (Sb)-Total			<0.00050)	mg/L		0.0005	05-DEC-14
Arsenic (As)-Total			<0.0010		mg/L		0.001	05-DEC-14
Barium (Ba)-Total			<0.0020		mg/L		0.002	05-DEC-14
Beryllium (Be)-Total			<0.00050)	mg/L		0.0005	05-DEC-14
Bismuth (Bi)-Total			<0.0010		mg/L		0.001	05-DEC-14
Boron (B)-Total			<0.010		mg/L		0.01	05-DEC-14
Cadmium (Cd)-Total			<0.00009	90	mg/L		0.00009	05-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 7 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R3116494								
WG2008715-1 MB Calcium (Ca)-Total			<0.50		mg/L		0.5	05 DEC 44
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	05-DEC-14 05-DEC-14
Cobalt (Co)-Total			<0.00050		mg/L		0.0005	
Copper (Cu)-Total			<0.0010		mg/L		0.0003	05-DEC-14
Iron (Fe)-Total			<0.050		mg/L		0.05	05-DEC-14
Lead (Pb)-Total			<0.00050		mg/L		0.0005	05-DEC-14
Magnesium (Mg)-Total			<0.50		mg/L		0.5	05-DEC-14
			<0.0010		•		0.001	05-DEC-14
Manganese (Mn)-Total			<0.0010		mg/L		0.001	05-DEC-14
Molybdenum (Mo)-Total			<0.00050		mg/L		0.0005	05-DEC-14
Nickel (Ni)-Total					mg/L		0.001	05-DEC-14
Phosphorus (P)-Total Potassium (K)-Total			<0.050		mg/L		0.05	05-DEC-14
()			<1.0		mg/L		0.0004	05-DEC-14
Selenium (Se)-Total			<0.00040		mg/L			05-DEC-14
Silicon (Si)-Total			<1.0		mg/L		1	05-DEC-14
Silver (Ag)-Total			<0.00010		mg/L		0.0001	05-DEC-14
Sodium (Na)-Total			<0.50		mg/L		0.5	05-DEC-14
Strontium (Sr)-Total			<0.0010		mg/L		0.001	05-DEC-14
Thallium (TI)-Total			<0.00030		mg/L		0.0003	05-DEC-14
Tin (Sn)-Total			<0.0010		mg/L		0.001	05-DEC-14
Titanium (Ti)-Total			<0.0020		mg/L		0.002	05-DEC-14
Tungsten (W)-Total			<0.010		mg/L		0.01	05-DEC-14
Uranium (U)-Total			<0.0010		mg/L		0.001	05-DEC-14
Vanadium (V)-Total			<0.00050		mg/L		0.0005	05-DEC-14
Zinc (Zn)-Total			<0.0030		mg/L		0.003	05-DEC-14
Zirconium (Zr)-Total			<0.0040		mg/L		0.004	05-DEC-14
WG2008715-5 MS		WG2008715-3	NI/A	140.5	0/			
Aluminum (Al)-Total			N/A	MS-B	%		-	05-DEC-14
Antimony (Sb)-Total			98.1		%		70-130	05-DEC-14
Arsenic (As)-Total			99.8		%		70-130	05-DEC-14
Barium (Ba)-Total			95.6		%		70-130	05-DEC-14
Beryllium (Be)-Total			100.9		%		70-130	05-DEC-14
Bismuth (Bi)-Total			98.9		%		70-130	05-DEC-14
Boron (B)-Total			97.4		%		70-130	05-DEC-14
Cadmium (Cd)-Total			95.9		%		70-130	05-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 8 of 16

SIREM Client:

130 Research Lane Suite 2

Guelph ON N1G 5G3

Contact: Jeff Roberts

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R3116494 WG2008715-5 MS Calcium (Ca)-Total		WG2008715-3	N/A	MS-B	%			05 PEO 44
Chromium (Cr)-Total			97.0	IVIO-D	%		70.420	05-DEC-14
Cobalt (Co)-Total			95.4		%		70-130	05-DEC-14
Copper (Cu)-Total			96.2		%		70-130	05-DEC-14
Iron (Fe)-Total			96.5		%		70-130	05-DEC-14
Lead (Pb)-Total			99.7		%		70-130	05-DEC-14
Magnesium (Mg)-Total			95.1		%		70-130	05-DEC-14
Manganese (Mn)-Total			95.4		%		70-130	05-DEC-14
Molybdenum (Mo)-Total			97.9		%		70-130	05-DEC-14
Nickel (Ni)-Total			97.3		%		70-130	05-DEC-14 05-DEC-14
Phosphorus (P)-Total			108.0		%		70-130 70-130	
Potassium (K)-Total			96.0		%		70-130	05-DEC-14 05-DEC-14
Selenium (Se)-Total			97.5		%		70-130	05-DEC-14 05-DEC-14
Silicon (Si)-Total			101.5		%		70-130	05-DEC-14 05-DEC-14
Silver (Ag)-Total			100.0		%		70-130	05-DEC-14
Sodium (Na)-Total			95.4		%		70-130	05-DEC-14
Strontium (Sr)-Total			N/A	MS-B	%		70-130	05-DEC-14 05-DEC-14
Thallium (TI)-Total			98.8	INIO D	%		70-130	05-DEC-14 05-DEC-14
Tin (Sn)-Total			95.6		%		70-130	05-DEC-14
Titanium (Ti)-Total			97.2		%		70-130	05-DEC-14
Tungsten (W)-Total			101.7		%		70-130	05-DEC-14
Uranium (U)-Total			99.7		%		70-130	05-DEC-14
Vanadium (V)-Total			100.4		%		70-130	05-DEC-14
Zinc (Zn)-Total			116.9		%		70-130	05-DEC-14
Zirconium (Zr)-Total			96.0		%		70-130	05-DEC-14
NH3-WT	Water							
Batch R3115695								
WG2008846-2 CVS Ammonia, Total (as N)			97.9		%		85-115	05-DEC-14
WG2008846-3 DUP Ammonia, Total (as N)		L1554634-1 0.068	0.069		mg/L	1.9	20	05-DEC-14
WG2008846-1 MB Ammonia, Total (as N)			<0.050		mg/L		0.05	05-DEC-14
WG2008846-4 MS		L1554634-1						

Workorder: L1554928 Report Date: 11-DEC-14 Page 9 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-WT	Water							
Batch R3115695 WG2008846-4 MS Ammonia, Total (as N)		L1554634-1	113.2		%		75-125	05-DEC-14
P-ORTHO-LOW-WT	Water							
Batch R3116825 WG2008902-3 DUP Phosphate-P (ortho)		L1554668-8 0.508	0.573		mg/L	12	20	05-DEC-14
WG2008902-2 LCS Phosphate-P (ortho)			108.8		%		80-120	05-DEC-14
WG2008902-1 MB Phosphate-P (ortho)			<0.0030		mg/L		0.003	05-DEC-14
WG2008902-4 MS Phosphate-P (ortho)		L1554668-8	N/A	MS-B	%		-	05-DEC-14
PH-ALK-WT	Water							
Batch R3115689 WG2009024-3 DUP pH		WG2009024-2 7.25	7.25	J	pH units	0.00	0.2	05-DEC-14
WG2009024-1 LCS pH			6.97		pH units		6.9-7.1	05-DEC-14
SOLIDS-TDS-WT	Water							
Batch R3116163 WG2008795-3 DUP Total Dissolved Solids		L1554463-1 272	292		mg/L	7.1	20	05-DEC-14
WG2008795-2 LCS Total Dissolved Solids			97.3		%		85-115	05-DEC-14
WG2008795-1 MB Total Dissolved Solids			<20		mg/L		20	05-DEC-14
TOC-WT	Water							
Batch R3117112 WG2009571-3 DUP Total Organic Carbon		L1554347-1 <1.0	<1.0	RPD-NA	mg/L	N/A	20	06-DEC-14
WG2009571-2 LCS Total Organic Carbon			93.0		%		80-120	06-DEC-14
WG2009571-1 MB Total Organic Carbon			<1.0		mg/L		1	06-DEC-14
WG2009571-4 MS Total Organic Carbon		L1554347-1	103.5		%		70-130	06-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 10 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Batch R3115934	Water						Analyzed
	water						
WG2009253-2 CVS Turbidity			99.0	%		85-115	05-DEC-14
WG2009253-4 DUP Turbidity		L1554928-1 0.74	0.72	NTU	2.7	15	05-DEC-14
WG2009253-1 MB Turbidity			<0.10	NTU		0.1	05-DEC-14
VOC-ROU1-HS-WT	Water						
Batch R3118854							
WG2011926-1 CVS 1,1,1,2-Tetrachloroethane	2		123.6	%		70.420	11 DEC 11
1,1,2,2-Tetrachloroethane			127.9	%		70-130 70-130	11-DEC-14 11-DEC-14
1,1,1-Trichloroethane			115.4	%		70-130	11-DEC-14 11-DEC-14
1,1,2-Trichloroethane			125.0	%		70-130	11-DEC-14
1,1-Dichloroethane			114.5	%		70-130	11-DEC-14 11-DEC-14
1,1-Dichloroethylene			105.4	%		70-130	11-DEC-14
1,1-Dichloropropene			101.4	%		70-130	11-DEC-14
1,2,3-Trichloropropane			118.4	%		70-130	11-DEC-14
1,2,3-Trichlorobenzene			115.6	%		70-130	11-DEC-14
1,2,4-Trichlorobenzene			106.0	%		70-130	11-DEC-14
1,2,4-Trimethylbenzene			110.6	%		70-130	11-DEC-14
1,2-Dibromo-3-chloroprop	oane		124.9	%		70-130	11-DEC-14
1,2-Dibromoethane			124.1	%		70-130	11-DEC-14
1,2-Dichlorobenzene			113.9	%		70-130	11-DEC-14
1,2-Dichloroethane			122.9	%		70-130	11-DEC-14
1,2-Dichloropropane			118.5	%		70-130	11-DEC-14
1,3,5-Trimethylbenzene			106.0	%		70-130	11-DEC-14
1,3-Dichlorobenzene			107.9	%		70-130	11-DEC-14
1,3-Dichloropropane			122.9	%		70-130	11-DEC-14
1,4-Dichlorobenzene			106.2	%		70-130	11-DEC-14
2,2-Dichloropropane			97.7	%		70-130	11-DEC-14
2-Chlorotoluene			111.3	%		70-130	11-DEC-14
2-Hexanone			112.8	%		70-130	11-DEC-14
4-Chlorotoluene			106.0	%		70-130	11-DEC-14
Acetone			120.1	%		70-130	11-DEC-14
Benzene			114.6	%		70-130	11-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 11 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU1-HS-WT	Water							
Batch R3118854 WG2011926-1 CVS								
Bromobenzene			114.5		%		70-130	11-DEC-14
Bromochloromethane			122.4		%		70-130	11-DEC-14
Bromodichloromethane			103.0		%		70-130	11-DEC-14
Bromoform			122.8		%		70-130	11-DEC-14
Bromomethane			102.3		%		70-130	11-DEC-14
Carbon Disulfide			100.7		%		70-130	11-DEC-14
Carbon tetrachloride			114.6		%		70-130	11-DEC-14
Chlorobenzene			115.4		%		70-130	11-DEC-14
Chloroethane			114.1		%		70-130	11-DEC-14
Chloroform			118.9		%		70-130	11-DEC-14
Chloromethane			108.5		%		70-130	11-DEC-14
cis-1,2-Dichloroethylene			115.6		%		70-130	11-DEC-14
cis-1,3-Dichloropropene			103.0		%		70-130	11-DEC-14
Dibromochloromethane			123.8		%		70-130	11-DEC-14
Dibromomethane			120.4		%		70-130	11-DEC-14
Dichlorodifluoromethane)		90.3		%		70-130	11-DEC-14
Dichloromethane			117.8		%		70-130	11-DEC-14
Ethyl Benzene			110.2		%		70-130	11-DEC-14
Hexachlorobutadiene			103.6		%		70-130	11-DEC-14
n-Hexane			110.1		%		70-130	11-DEC-14
Isopropylbenzene			110.2		%		70-130	11-DEC-14
Isopropyltoluene			105.4		%		70-130	11-DEC-14
m+p-Xylenes			113.2		%		70-130	11-DEC-14
Methyl Ethyl Ketone			124.0		%		70-130	11-DEC-14
Methyl Isobutyl Ketone			112.1		%		70-130	11-DEC-14
MTBE			106.7		%		70-130	11-DEC-14
Naphthalene			121.8		%		70-130	11-DEC-14
n-Butylbenzene			101.4		%		70-130	11-DEC-14
n-Propylbenzene			107.4		%		70-130	11-DEC-14
o-Xylene			111.3		%		70-130	11-DEC-14
sec-Butylbenzene			111.1		%		70-130	11-DEC-14
Styrene			113.6		%		70-130	11-DEC-14
tert-Butylbenzene			105.4		%		70-130	11-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 12 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Note	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Tetrachloroethylene 107.6	VOC-ROU1-HS-WT	Water							
Tetachloroethylene 107.6 % 70-130 11-DEC-14 Toluene 113.4 % 70-130 11-DEC-14 trans-1_2-Dichloroethylene 105.9 % 70-130 11-DEC-14 trans-1_3-Dichloropropene 105.2 % 70-130 11-DEC-14 Trichloroethylene 110.0 % 70-130 11-DEC-14 Vinyl chloride 104.1 % 70-130 11-DEC-14 1,1,22-Tetachloroethane <0.50	Batch R3118	3854							
Toluene 113.4 % 70-130 11-DEC-14 trans-1,2-Dichloroethylene 105.9 % 70-130 11-DEC-14 trans-1,3-Dichloropropene 105.2 % 70-130 11-DEC-14 trans-1,3-Dichloropropene 105.2 % 70-130 11-DEC-14 trans-1,3-Dichloropropene 110.0 % 70-130 11-DEC-14 Trichloroethylene 110.0 % 70-130 11-DEC-14 Trichloroethylene 112.7 % 70-130 11-DEC-14 Trichlorofluoromethane 112.7 % 70-130 11-DEC-14 Trichlorofluoromethane 112.7 % 70-130 11-DEC-14 Trichlorofluoromethane 104.1 % 70-130 11-DEC-14 Trichloroethane 104.1 % 70-130 11-DEC-14 Trichloroethane 10.50 Ug/L 0.5 11-DEC-14 1,1-2-Tetrachloroethane 10.50 Ug/L 0.5 11-DEC-14 1,1-2-Trichloroethane 10.50 Ug/L 0.5 11-DEC-14 1,1-2-Trichloroethane 10.50 Ug/L 0.5 11-DEC-14 1,1-Dichloroethane 10.50 Ug/L 0.5 11-DEC-14 1,1-Dichloroethylene 10.50 Ug/L 0.5 11-DEC-14 1,1-Dichloroethylene 10.50 Ug/L 0.5 11-DEC-14 1,1-Dichloroethylene 10.50 Ug/L 0.5 11-DEC-14 1,1-Dichloropropene 10.50 Ug/L 0.5 11-DEC-14 1,2-3-Trichloropropene 10.50 Ug/L 0.5 11-DEC-14 1,2-3-Trichloropropene 10.50 Ug/L 0.5 11-DEC-14 1,2-4-Trichlorobenzene 10 Ug/L 0.5 11-DEC-14 1,2-4-Trichlorobenzene 10 Ug/L 0.5 11-DEC-14 1,2-4-Trichlorobenzene 10.50 Ug/L 0.5 11-DEC-14 1,2-Dichloroethylene 10.50 Ug/L 0.5 11-DEC-14 1,2-Dichloroethylene 10.50 Ug/L 0.5 11-DEC-14 1,2-Dichlorobenzene 10.50 Ug/L 0.5				407.0		0/			
trans-1,2-Dichloroethylene 105.9 % 70.130 11-DEC-14 trans-1,3-Dichloropropene 105.2 % 70.130 11-DEC-14 Trichloroethylene 110.0 % 70.130 11-DEC-14 Trichlorothylene 110.0 % 70.130 11-DEC-14 Vinyl chloride 104.1 % 70.130 11-DEC-14 WG2011926-2 MB 70.130 11-DEC-14 1,1,1.2-Tetrachloroethane <0.50 ug/L 0.5 11-DEC-14 1,1,1.2-Tetrachloroethane <0.50 ug/L 0.5 11-DEC-14 1,1,1-Dichloroethane <0.50 ug/L 0.5 11-DEC-14 1,1-Dichloroethane <0.50 ug/L 0.5 11-DEC-14 1,1-Dichloroethane <0.50 ug/L 0.5 11-DEC-14 1,1-Dichloroethylene <0.50 ug/L 0.5 11-DEC-14 1,1-Dichloroethylene <0.50 ug/L 0.5 11-DEC-14 1,1-Dichloroethylene <0.50 ug/L 0.5	-	e							
trans-1,3-Dichloropropene 106.2 % 70-130 11-DEC-14 Trichloroethylene 110.0 % 70-130 11-DEC-14 Trichloroethylene 110.0 % 70-130 11-DEC-14 Vinly chloride 104.1 % 70-130 11-DEC-14 WG2011926-2 MB		. Alex de a e							
Trichloroethylene 110.0 % 70-130 11-DEC-14 Trichlorofluoromethane 112.7 % 70-130 11-DEC-14 Vinyl chloride 104.1 % 70-130 11-DEC-14 WG20119262 MB 11.1,12-Tertachloroethane <0.50		-							
Trichlorofluoromethane 112.7 % 70-130 11-DEC-14 Vinyl chloride 104.1 % 70-130 11-DEC-14 WG2011926-2 MB MB MB MB 1.1,1.2-Tetrachloroethane <0.50		propene							
Vinyl chloride 104.1 % 70-130 11-DEC-14 WG2011926-2 MB 1.1.1,27-fetrachloroethane <0.50	-								
WG2011926-2 MB 1.1,1,2-Tetrachloroethane <0.50 ug/L 0.5 11-DEC-14 1.1,1,2-Tetrachloroethane <0.50		nane							
1,1,1,2-Tetrachloroethane <0.50	-			104.1		%		70-130	11-DEC-14
1,1,2,2-Tetrachloroethane <0.50				<0.50		ug/L		0.5	11-DFC-14
1,1,1-Trichloroethane <0.50								0.5	
1,1,2-Trichloroethane <0.50	1,1,1-Trichloroetha	ine						0.5	
1,1-Dichloroethane <0.50								0.5	
1,1-Dichloroethylene <0.50	1,1-Dichloroethane	•		<0.50				0.5	11-DEC-14
1,2,3-Trichloropropane <0.50	1,1-Dichloroethyler	ne		<0.50		ug/L		0.5	
1,2,3-Trichloropropane <0.50	1,1-Dichloropropen	ne		<0.50		ug/L		0.5	11-DEC-14
1,2,4-Trichlorobenzene <10	1,2,3-Trichloroprop	ane		<0.50		ug/L		0.5	11-DEC-14
1,2,4-Trimethylbenzene <0.50	1,2,3-Trichlorobenz	zene		<10		ug/L		10	11-DEC-14
1,2-Dibromo-3-chloropropane <20	1,2,4-Trichlorobenz	zene		<10		ug/L		10	11-DEC-14
1,2-Dibromoethane <0.50	1,2,4-Trimethylben	zene		< 0.50		ug/L		0.5	11-DEC-14
1,2-Dichlorobenzene <0.50	1,2-Dibromo-3-chlo	oropropane		<20		ug/L		20	11-DEC-14
1,2-Dichloroethane <0.50	1,2-Dibromoethane	e		<0.50		ug/L		0.5	11-DEC-14
1,2-Dichloropropane <0.50	1,2-Dichlorobenzer	ne		<0.50		ug/L		0.5	11-DEC-14
1,3,5-Trimethylbenzene <0.50	1,2-Dichloroethane	:		<0.50		ug/L		0.5	11-DEC-14
1,3-Dichlorobenzene <0.50	1,2-Dichloropropan	ne		<0.50		ug/L		0.5	11-DEC-14
1,3-Dichloropropane <0.50	1,3,5-Trimethylben	zene		< 0.50		ug/L		0.5	11-DEC-14
1,4-Dichlorobenzene <0.50	1,3-Dichlorobenzer	ne		< 0.50		ug/L		0.5	11-DEC-14
2,2-Dichloropropane <0.50	1,3-Dichloropropan	ne		<0.50		ug/L		0.5	11-DEC-14
2-Chlorotoluene <20	1,4-Dichlorobenzer	ne		<0.50		ug/L		0.5	11-DEC-14
2-Hexanone <20	2,2-Dichloropropan	ne		<0.50		ug/L		0.5	11-DEC-14
4-Chlorotoluene <20	2-Chlorotoluene			<20		ug/L		20	11-DEC-14
Acetone <20 ug/L 20 11-DEC-14	2-Hexanone			<20		ug/L		20	11-DEC-14
	4-Chlorotoluene			<20		ug/L		20	11-DEC-14
Benzene <0.50 ug/L 0.5 11-DEC-14	Acetone			<20		ug/L		20	11-DEC-14
	Benzene			<0.50		ug/L		0.5	11-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 13 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU1-HS-WT	Water							
Batch R3118854								
WG2011926-2 MB			0.50		//		0.5	
Bromobenzene			<0.50		ug/L		0.5	11-DEC-14
Bromochloromethane			<0.50		ug/L		0.5	11-DEC-14
Bromodichloromethane			<2.0		ug/L		2	11-DEC-14
Bromoform			<1.0		ug/L		1	11-DEC-14
Bromomethane			<1.0		ug/L		1	11-DEC-14
Carbon Disulfide			<2.0		ug/L		2	11-DEC-14
Carbon tetrachloride			<0.50		ug/L		0.5	11-DEC-14
Chlorobenzene			<0.50		ug/L		0.5	11-DEC-14
Chloroethane			<1.0		ug/L		1	11-DEC-14
Chloroform			<1.0		ug/L		1	11-DEC-14
Chloromethane			<1.0		ug/L		1	11-DEC-14
cis-1,2-Dichloroethylene			<0.50		ug/L		0.5	11-DEC-14
cis-1,3-Dichloropropene			< 0.50		ug/L		0.5	11-DEC-14
Dibromochloromethane			<1.0		ug/L		1	11-DEC-14
Dibromomethane			< 0.50		ug/L		0.5	11-DEC-14
Dichlorodifluoromethane	•		<1.0		ug/L		1	11-DEC-14
Dichloromethane			<5.0		ug/L		5	11-DEC-14
Ethyl Benzene			< 0.50		ug/L		0.5	11-DEC-14
Hexachlorobutadiene			<5.0		ug/L		5	11-DEC-14
n-Hexane			<0.50		ug/L		0.5	11-DEC-14
Isopropylbenzene			<5.0		ug/L		5	11-DEC-14
Isopropyltoluene			<5.0		ug/L		5	11-DEC-14
m+p-Xylenes			<1.0		ug/L		1	11-DEC-14
Methyl Ethyl Ketone			<20		ug/L		20	11-DEC-14
Methyl Isobutyl Ketone			<20		ug/L		20	11-DEC-14
MTBE			<2.0		ug/L		2	11-DEC-14
Naphthalene			<10		ug/L		10	11-DEC-14
n-Butylbenzene			<5.0		ug/L		5	11-DEC-14
n-Propylbenzene			<5.0		ug/L		5	11-DEC-14
o-Xylene			<0.50		ug/L		0.5	11-DEC-14
sec-Butylbenzene			<5.0		ug/L		5	11-DEC-14
Styrene			<0.50		ug/L		0.5	11-DEC-14
tert-Butylbenzene			<5.0		ug/L		5	11-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14 Page 14 of 16

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU1-HS-WT	Water							
Batch R3118854 WG2011926-2 MB								
Tetrachloroethylene			<0.50		ug/L		0.5	11-DEC-14
Toluene			<0.50		ug/L		0.5	11-DEC-14
trans-1,2-Dichloroethylene	е		<0.50		ug/L		0.5	11-DEC-14
trans-1,3-Dichloropropene	Э		<0.50		ug/L		0.5	11-DEC-14
Trichloroethylene			<0.50		ug/L		0.5	11-DEC-14
Trichlorofluoromethane			<1.0		ug/L		1	11-DEC-14
Vinyl chloride			<0.50		ug/L		0.5	11-DEC-14
Surrogate: 1,4-Difluorobe	nzene		96.6		%		70-130	11-DEC-14
Surrogate: 4-Bromofluoro	benzene		85.6		%		70-130	11-DEC-14

Workorder: L1554928 Report Date: 11-DEC-14

Client: SIREM Page 15 of 16

130 Research Lane Suite 2 Guelph ON N1G 5G3

Contact: Jeff Roberts

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate RPD Relative F

Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1554928 Report Date: 11-DEC-14

Client: SIREM

130 Research Lane Suite 2

Guelph ON N1G 5G3

Contact: Jeff Roberts

Page 16 of 16

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Colour							
	1	28-NOV-14	05-DEC-14 05:27	48	162	hours	EHTR
	2	28-NOV-14	05-DEC-14 05:27	48	162	hours	EHTR
	3	28-NOV-14	05-DEC-14 05:27	48	162	hours	EHTR
	4	28-NOV-14	05-DEC-14 05:27	48	162	hours	EHTR
Turbidity							
	1	28-NOV-14	05-DEC-14 16:22	48	172	hours	EHTR
	2	28-NOV-14	05-DEC-14 16:24	48	172	hours	EHTR
	3	28-NOV-14	05-DEC-14 16:25	48	172	hours	EHTR
	4	28-NOV-14	05-DEC-14 16:26	48	172	hours	EHTR
рН							
	1	28-NOV-14	05-DEC-14 13:53	4	7	days	EHTR
	2	28-NOV-14	05-DEC-14 13:54	4	7	days	EHTR
	3	28-NOV-14	05-DEC-14 13:55	4	7	days	EHTR
	4	28-NOV-14	05-DEC-14 13:56	4	7	days	EHTR

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1554928 were received on 04-DEC-14 15:15.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

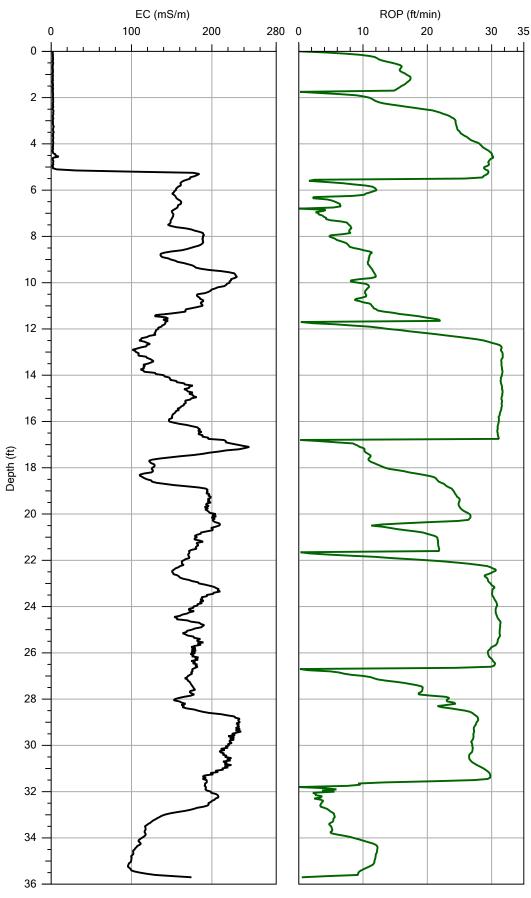
60 NORTHLAND ROAD, UNIT 1

WATERLOO, ON N2V 2B8 Phone: (510) 886-6010

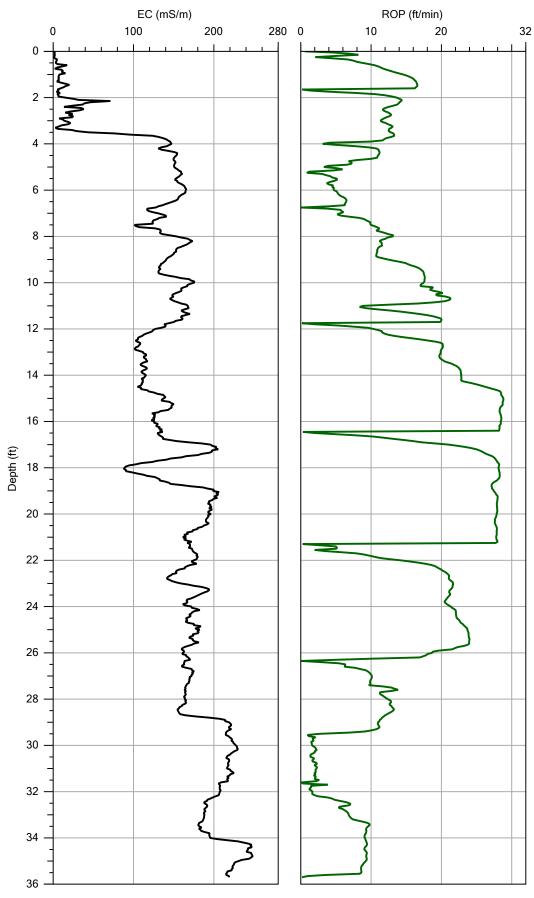
CHAIN OF CUSTODY / ANALYTICAL SERVICES REQUEST FORM Page _____ of ______

huoue: (212) oo					- 1	L	Note: all TAT	Quoted n	naterial	is in business day	which	exclu	ide :	Spe	cify da	ite	S	ervice i	eque	sted		2 day TAT (50%)	
Fax: (519) 886-9	9047		(A	LS		statutory holi	idays and	weeken	ds. TAT samples r	eceived	l past	3:00	re	equired	1	5 day	/ (regul	ir)		X	Next day TAT (100%)	
Toll Free: 1-800	-668-987	78	•	''		-,	pm or Saturd	ay/Sunday	begin	the next day.	·						3-4 (day (25)	6)	I,		Same day TAT (200%)	
COMPANY NAME	SiRE	ĹΜ					CRITERIA	Cri	teria on i	report YES Y NO			70		ANA	YSIS	REQ	UEST				PLEASE INDICATE FILTE	RED,
OFFICE	130 RE		201	Lri-	טענ	TEZ	Reg 153/04	Re	g 511/0	9	1	_	=			_	. 1		$\overline{}$	\neg	_	PRESERVED OR BOTH	
	GUUDA.						Table 1 2	3				۲	3	P	P							< (F, P, F/P)	
PROJECT MANAGER	Jeff						TCLP N			o	্বি		H. Tombia	,	60to/6070							SUBMISSION #	i dir
PROJECT # 5-3	316 (rec	n U	Αüγ				ODWS	OTHER			10/20	90926	5,7	†	ofe						1	Lr554098	5. 100 100 100 100 100 100 100 100 100 10
PHONE 519-821-		FAX	•				REPO	RT FORM	AT/DIS	TRIBUTION	\sim		6600, EL, 705, 21								Ì	ENTERED BY:	lji.
ACCOUNT #							V	=		· ·	J.S.	EPA), j.	h	EPA			.]			ſ	DATE/TIME ENTERED:	
QUOTATION #		PO#	ŀ				EMAILX_ SELECT: PDF	FAX DIC	B	BOTH	CONTAINERS	13)	٥١٩	,	4					ļ		u holi4 1555	5
	MPLING INF	-					EMAIL 2	1000cm	tz 6	BOTH Siremon	OF CO				JH 01) CORPORT	45	٦.					BIN#	
Sample Date	/Time 1 Time	T	YPE		MATR			 .				Z	<u>ĕ</u>		4	9	121		- 1		ŀ	- Phi	- Maria
Date (dd-mm-yy)	(24hr) (hh:mm)	COMP	GRAB	WATER	SOIL	OTHER	SAMPLE DES	CRIPTION	TO AP	PEAR ON REPORT	NUMBER	cylac	Alt:Space)	NH3.	P)V	AND	Ã		.	~		COMMENTS	LAB ID
11 28 2014		X		X			5-331	- 1128	2104	- Connelly Eff	. 3	١. ا	X	X	×	メ	X					•	1
1 -							5-3316-11	28210	- P	wies Effe.	5		X	X	¥	X	×						Ž
										ntrol EFFL	15		X	Y	¥	⊀	人						3
4		ļ					5-33/6-	112821011	- 3	in fleers	5		X	×	×	×	X						4
12/4/2014	\	X		V		-	6.3716-0	H12 71	<u>.</u> ب الم	Courelly Eff	2.	×							_	+			5
161 (-011	 	 ^	 	┢		 				or Los Effl	12	Ŷ						+	+	+	\dashv		+
1	 	+	 		\vdash	1	5-3116 -	117 7 in	4 C	and Etti	11	À		H					\top	+	\dashv		15/
4/1/	 					_	5-3316-				12	×							_				4
	7																	. 1		.1		-	
		_			1	<u> </u>	ļ				lacksquare	Ļ											
	\perp	_	Ь		<u> </u>						ـــ	ļ.,				*				Ш	Ш		+
	\rightarrow	-	├	<u> </u>	ļ	-	· ·				-	┡	., ,, .,					COF					
SPECIA	LINSTRUCTE	U SNS/C	OMME	NTS	eriwai (184	800 Crisis	period and a legal to	THE QUE	STIONS	BELOW MUST BE A	ISWERE					JU 4.	520	001	,			AMPLE CONDITION	ON'IL CERTICE
The second secon	***									regulated DW Sy			eranger :	Disable		EATONIA CO	ers v	es	No	uman in		■ FROZEN	MEAN
Please use	General	. (4)	لمحار	S AK	כ		If ves an aut	horized d	lrinkina	water COC MUST	be us	ed for	this s	ubmi	ssion.					- Jilu in		COLD COLING INITIATED	TEMP
					$\overline{}$			1.1.1		l to be potable fo	r huma	in con	sump	ition?	4416		TIX WILE	es 📖	No_		* (3) d	AMBIENT TO THE ME AND	
SAMPLED BY: J.WL	એ € ૄ		., 4	ge c	معطه	ve	DATE & TIME	RECE	IVED BY:				Αr				DATE	& TIME				OBSERVATIONS ************************************	ILV I
RELINQUISHED BY:	SWIP					12	DATE & TIME	S RECE	IVED AT	LA8 BY:	medicini (m.d) m medicini de me de la lacia de la de lacia de lac		禾	Q L	~	4. Vá	PAT	8 TIME 12/14		511	5	yes add SIF	" #
Notes							1	<u> </u>	- 1101 ,			4		7					<u></u>		النسند	A TOTAL CONTROL OF THE PARTY OF	

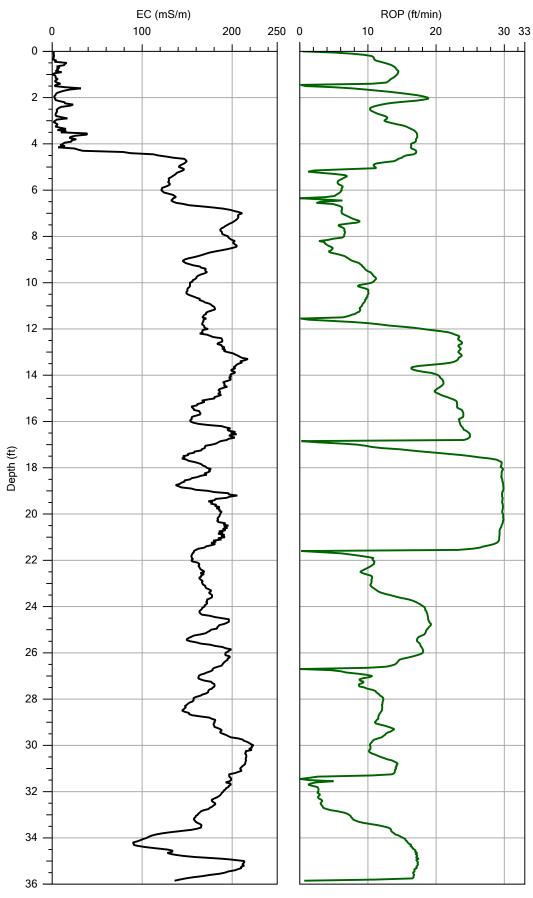
^{1.} Quote number must be provided to ensure pricing


proper 2. TAT may vary dependent on complexity of analysis and lab workload at time of 3. Any known or suspected hazards relating to a sample must be noted submission. Please contact the lab to confirm TATs.

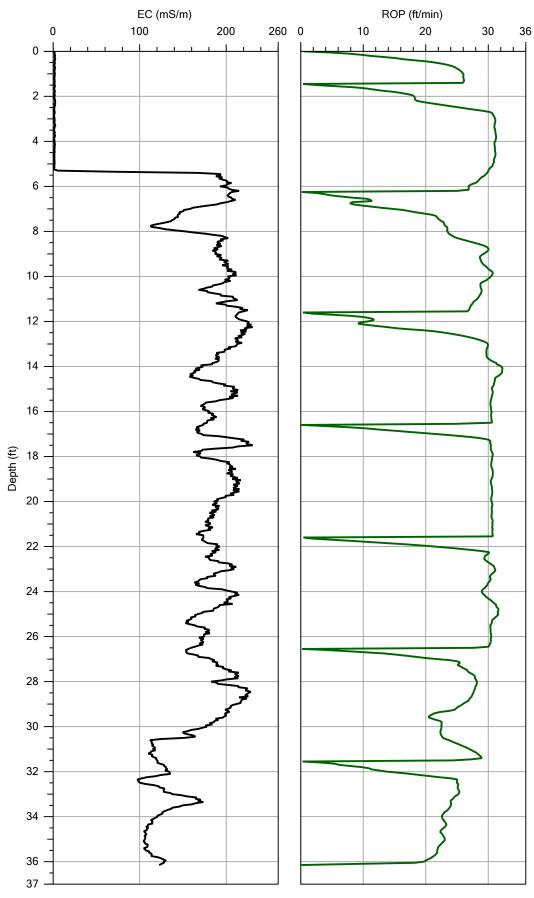
on the chain of custody in comments section.


APPENDIX D

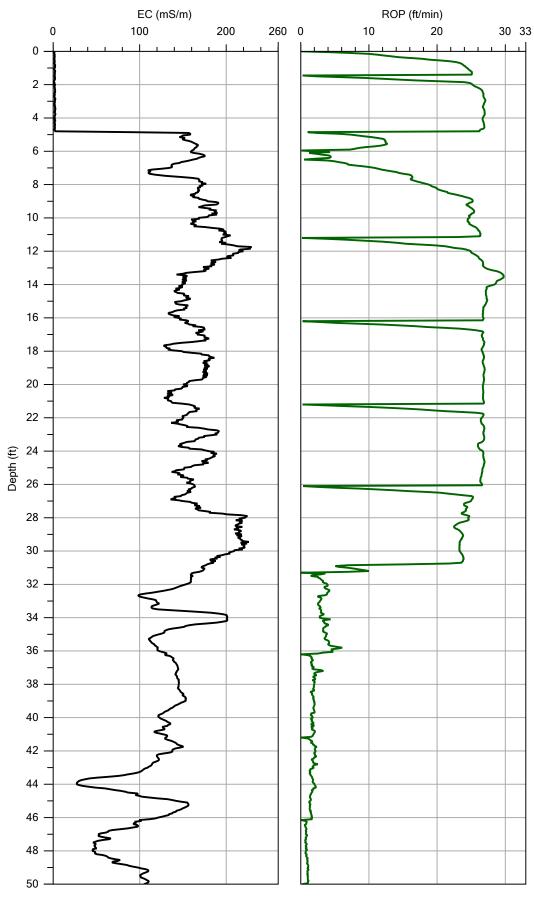
Electrical Conductivity Probe Logs



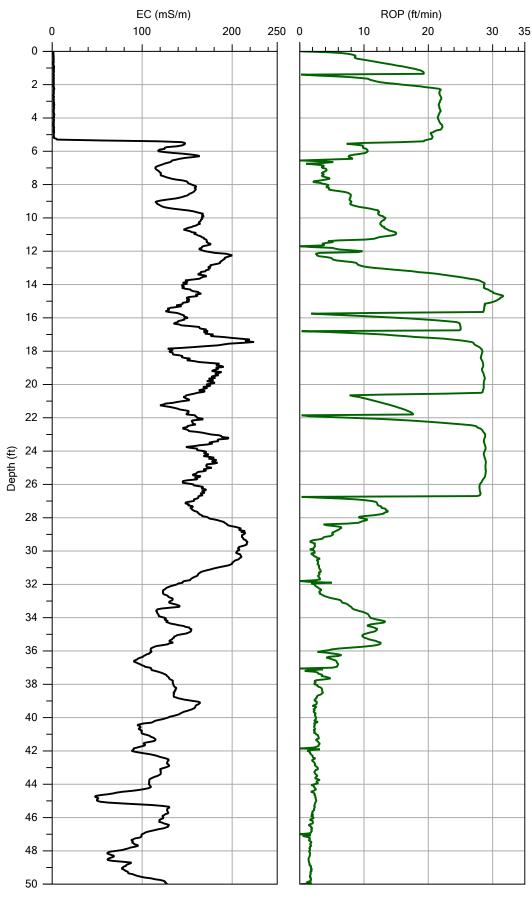
		FIIE:
		AEC.EC
Company:	Operator:	Date:
National EWP	E Jasso	8/20/2014
Project ID:	Client:	Location:
40003.883	AMEC	



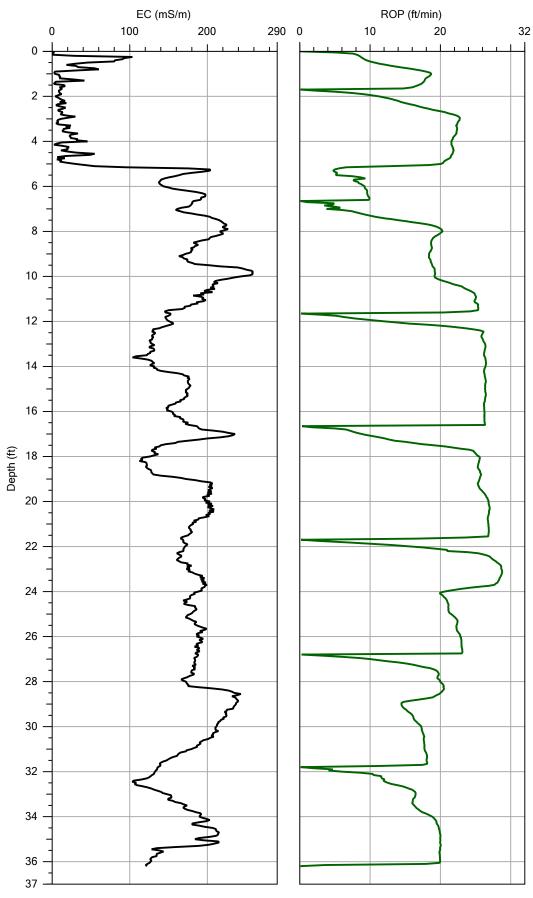
		FIIE:
		BEC.EC
Company:	Operator:	Date:
National EWP	E Jasso	8/20/2014
Project ID:	Client:	Location:
40003.833	AMEC	



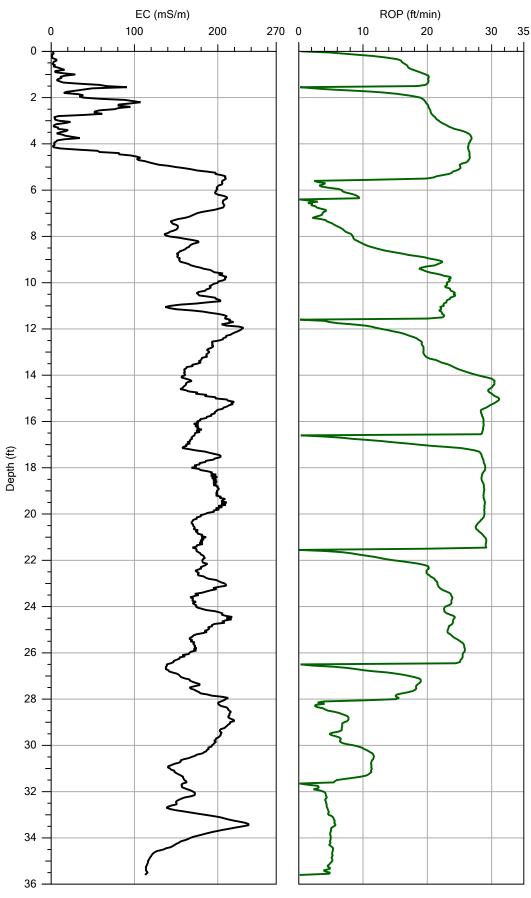
		FIIE:
		CEC.EC
Company:	Operator:	Date:
National EWP	E Jasso	8/20/2014
Project ID:	Client:	Location:
40003.883	AMEC	



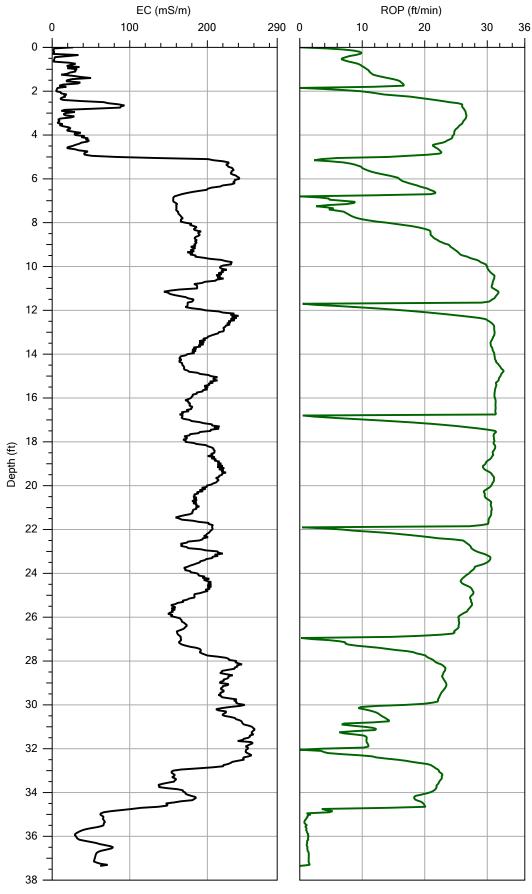
		DEC.EC
Company:	Operator:	Date:
National EWP	E Jasso	8/26/2014
Project ID:	Client:	Location:
40003.833	AMEC	

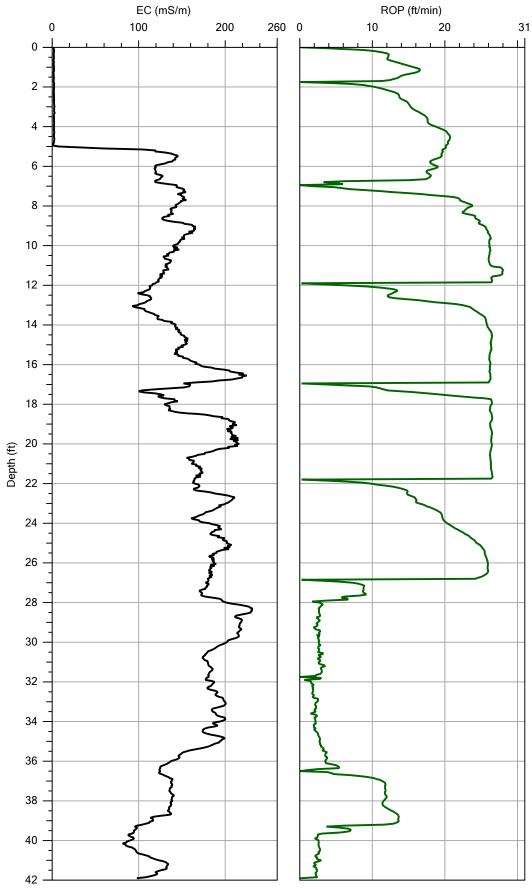


		EEU.EU
Company:	Operator:	Date:
National EWP	E Jasso	8/26/2014
Project ID:	Client:	Location:
40003.833	AMEC	

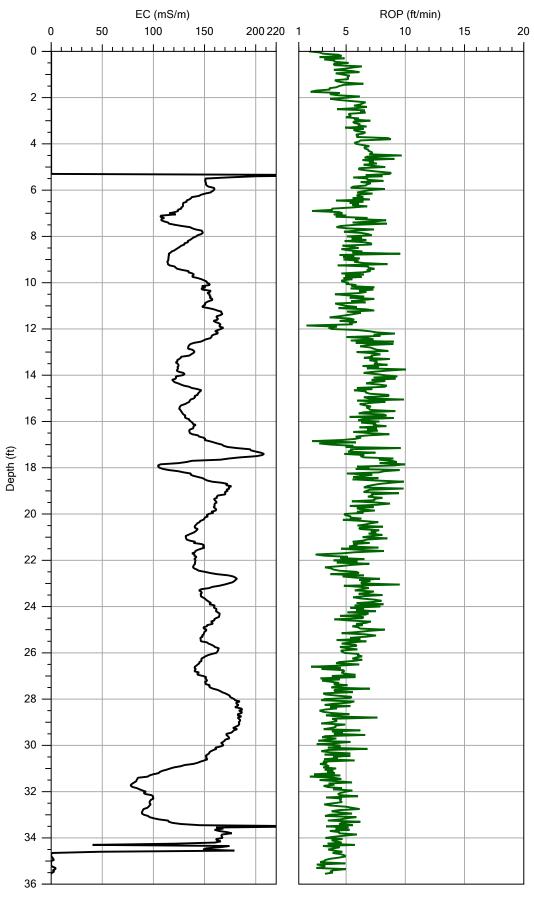


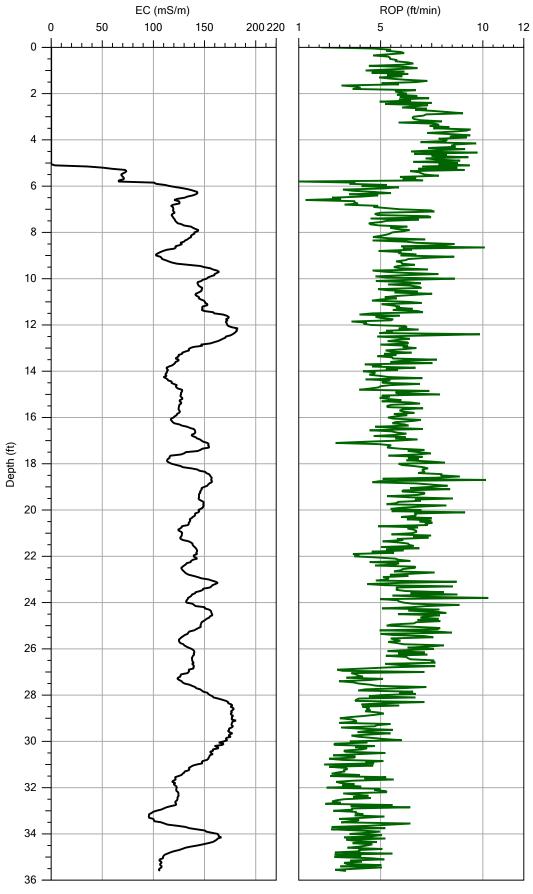
		FEU.EU
Company:	Operator:	Date:
National EWP	E Jasso	8/26/2014
Project ID:	Client:	Location:
40003.833	AMEC	


		PUIEC.EC
Company:	Operator:	Date:
NATIONAL EWP	E JASSO	8/20/2014
Project ID:	Client:	Location:
40003.883	AMEC	

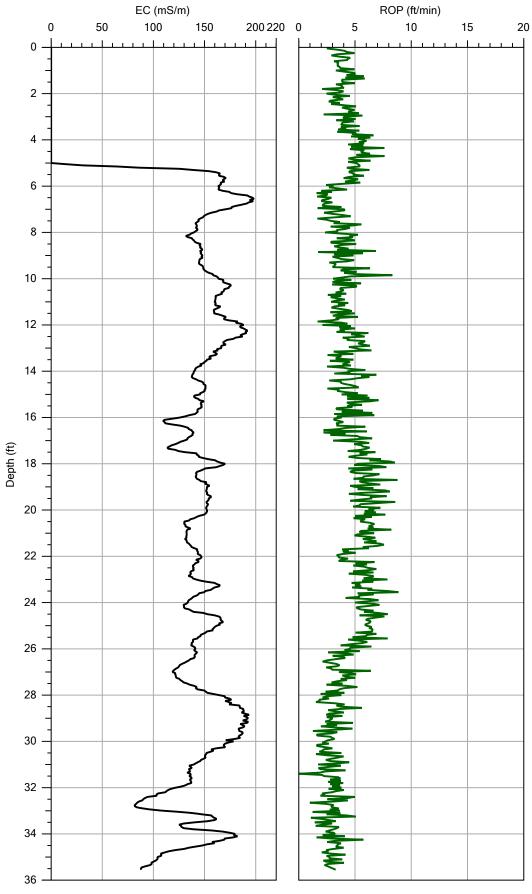

		PUZEU.EU
Company:	Operator:	Date:
NATIONAL EWP	E JASSO	8/20/2014
Project ID:	Client:	Location:
40003.883	AMEC	

File:


		PUSEC EDITZALIAT
Company:	Operator:	Date:
National EWP	E Jasso	
Project ID:	Client:	Location:
40003.833	AMEC	


		File:
		PRB01EC.EC
Company:	Operator:	Date:
NATIONAL EWP	E JASSO	8/20/2014
Project ID:	Client:	Location:
40003.883	AMEC	

File:



		PRBUZEC.DAT
Company:	Operator:	Date:
National EWP, Inc	R Estrada	1/1/1999
Project ID:	Client:	Location:
40003.883	AMEC	

		PRBUSEC.DAT
Company:	Operator:	Date:
National EWP, Inc	R Estrada	1/1/1999
Project ID:	Client:	Location:
40003.883	AMEC	

		PRB04EC.DAT
Company:	Operator:	Date:
National EWP	R. Estrada	8/18/2014
Project ID:	Client:	Location:
40003.883	AMEC	

	TEST	Γ		V	ALT	JE		P/F
INSTRU	INSTRUMENT CALIBRATION TESTS							
	10	OHM:		9	. 1	OHN	1S	PASS
	100	OHM:		98	. 3	OHN	1S	PASS
	1000	OHM:	1	.065	. 3	OHN	1S	FAIL
PROBE	CONTI	VTIUN	TESTS	3		>8	OHMS	FAILS
		R-R:		2	. 0	OHN	1S	PASS
		M-M:		1	. 9	OHN	1S	PASS
		G-G:		1	. 8	OHN	1S	PASS
		B-B:		1	. 9	OHN	1S	PASS
PROBE	ISOLAT	rion :	TESTS		•	<10	KOHMS	FAILS
RI	ED-NEUT	ral:		406	F	COH	1S	PASS
	RED-WI	HITE:		392	F	COH	1S	PASS
	RED-GI	REEN:		443	F	COH	1S	PASS
	RED-BI	LACK:		392	F	COH	1S	PASS
CIHW	E-NEU	ral:		441	F	COH	1S	PASS
WH	HITE-GE	REEN:		419	F	COH	1S	PASS
WH	HITE-BI	LACK:		449	F	COH	1S	PASS
GREE	EN-NEUT	ral:		459	F	COHI	1S	PASS
GF	REEN-BI	LACK:		411	F	COHI	1S	PASS
BLAC	CK-NEUT	ral:		445	F	COHI	1S	PASS

PRB04EC.INF

SITE INFORMATION -- DIRECT IMAGE CONDUCTIVITY PROBE

LOG UNITS: ENGLISH

PROBE AND ARRAY: SC-500 WITH WENNER

100 INCH STRING POT USED

LOG START TIME: Mon Aug 18 2014 12:00

EC LOW QUALITY ENTRIES:
2.00ft to 3.00ft 0.00%
3.00ft to 4.00ft 5.00%
4.00ft to 5.00ft 15.00%

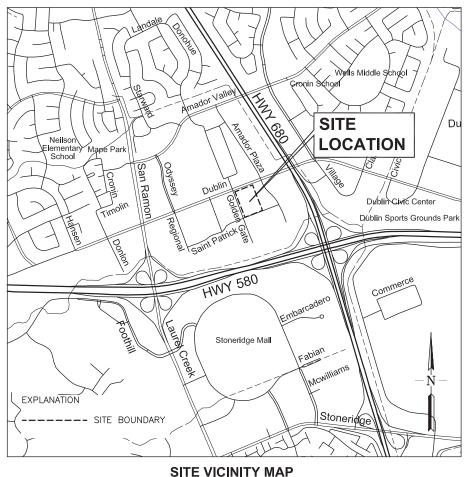
LOG END DEPTH: 35.55 FEET 10.836 METERS

LATITUDE: 0.000000000 LONGITUDE: 0.000000000

ELEVATION: 0.00 METERS; 0.00 FEET

UNABLE TO ESTABLISH A FIX

LOG END TIME: Mon Aug 18 2014 13:19




APPENDIX E

VMS Design Drawings and Technical Specifications

VAPOR MITIGATION SYSTEM (VMS) DUBLIN APARTMENTS - CROWN CHEVROLET NORTH PARCEL 7544 DUBLIN BLVD., DUBLIN, CALIFORNIA

SITE LOCATION MAP


1000 0 1000 200 APPROXIMATE SCALE IN FEET

LIST OF DRAWINGS

SHI NO.	DWG NO.	DWG NAME
1	G-1	LIST OF DRAWINGS, SITE VICINITY, AND LOCATION MAPS
2	G-2	GENERAL NOTES AND ABBREVIATIONS
3	VMS-1A	MEMBRANE AND SUB-SLAB VENTING SYSTEM PLAN
4	VMS-1B	RISER VENT PLAN - 1st FLOOR
5	VMS-1C	RISER VENT PLAN - 2nd FLOOR
6	VMS-2	PODIUM MEMBRANE INSTALLATION DETAILS
7	VMS-3	PT SLAB MEMBRANE INSTALLATION DETAIL
8	VMS-4	SUB-SLAB VENTING SYSTEM DETAILS
9	VMS-5	SUB-SLAB VENTING SYSTEM DETAILS

100% DESIGN SUBMITTAL JUNE 2015

3/938							
ŀ	ŀ	ŀ	1	BY APVD		HOL	- NOGITA
!	!	!	1	ВУ		D. BABLITCH	DITIONE
				NOI	K APVD	F. SZERDY	SHEIDENTIAL INCORMATION AND ITS LISE SCONDITIONED LIBOR THE LIS
	!	!		REVISION	SH	AUL	TINDUITIO

7544 DUBLIN BLVD., DUBLIN, CALIFORNIA
LIST OF DRAWINGS
SITE VICINITY
AND SITE LOCATION MAPS
DS

VERIFY SCALE

BAR IS ONE INCH ON ORIGINAL DRAWING.
0

DATE 06/08/15
PROJECT NO. OD14170800
DWG G-1
SHEET 1 OF 9

GENERAL NOTES

GENERAL NOTES:

- FOR THE PURPOSE OF THE VAPOR MITIGATION SYSTEM (VMS) DRAWING SET, THE FOLLOWING DEFINITIONS APPLY:
 - A. OWNER / CONSTRUCTION MANAGER: BAY WEST DEVELOPMENT (BWD DUBLIN) 2 HENRY ADAMS STREET, SUITE 450 SAN FRANCISCO, CA 94103
 - B. VMS ENGINEER: AMEC FOSTER WHEELER 180 GRAND AVENUE, SUITE 1100 OAKLAND, CA 94612
 - C. CIVIL ENGINEER: CARLSON, BARBEE & GIBSON, INC 2633 CAMINO RAMON, SUITE 350 SAN RAMON, CA 94583
 - D. ARCHITECT:
 BDE ARCHITECTURE
 950 HOWARD STREET
 SAN FRANCISCO, CA 94103
- 2. COORDINATE USE OF SITE WITH OWNER AND CONSTRUCTION MANAGER.
- 3. THE CONTRACTOR SHALL VISUALLY INSPECT THE SITE TO ASCERTAIN THE CONDITION OF EXISTING FEATURES AND FAMILIARIZE THEMSELVES WITH THE PROPOSED WORK.
- 4. THE CONTRACTOR SHALL VERIFY THAT ALL NECESSARY PERMITS FROM THE CITY OF DUBLIN AND ALAMEDA COUNTY ENVIRONMENTAL HEALTH (ACEH) FOR THE INSTALLATION OF THE VAPOR MITIGATION SYSTEM (VMS) HAVE BEEN SECURED.
- 5. RELEVANT KNOWN AND PROPOSED UNDERGROUND UTILITIES AND STRUCTURES ARE SHOWN ON THE DRAWINGS. THE LOCATION OF THESE EXISTING AND PROPOSED UTILITIES SHOULD BE CONSIDERED APPROXIMATE. PRIOR TO THE COMMENCEMENT OF SITE ACTIVITIES, THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL EXISTING UTILITIES OR STRUCTURES IN THE AREAS OF WORK AND NOTIFY UNDERGROUND SERVICES ALERT ([USA ALERT] 811; 800-227-2600) AT LEAST TWO BUSINESS DAYS PRIOR TO COMMENCEMENT OF
- 6. CONTRACTOR SHALL BE REQUIRED TO MAINTAIN THE INTEGRITY OF STRUCTURES, UTILITIES AND OTHER SITE FEATURES AND REPAIR ANY DAMAGE AT NO ADDITIONAL COST
- 7. THE CONTRACTOR SHALL COMPLY WITH THE RULES AND REGULATIONS OF THE STATE CONSTRUCTION SAFETY ORDER.
- 8. ALL SPECIFIED WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL FEDERAL, STATE, AND LOCAL REGULATIONS AND ORDINANCES.
- COORDINATE WORK WITH OTHER TRADES. DRAWINGS ARE DIAGRAMMATIC. INDICATED LOCATIONS OF PENETRATIONS, OFF-SETS, BENDS, OR UNIONS ARE NOT EXACT.
- 10. THE CONTRACTOR SHALL NOT BLOCK EXISTING ACCESS ROADS DURING CONSTRUCTION.
- 11. PROPOSED BUILDING CONDITIONS SHOWN IN DRAWINGS ARE BASED ON INFORMATION PROVIDED BY THE CIVIL ENGINEER AND THE ARCHITECT. A COMPLETE DUBLIN APARTMENTS DESIGN SET, INCLUDING ALL TRADES AND PROPOSED BUILDING CONSTRUCTION, IS AVAILABLE FROM THE OWNER.
- 12. THE VMS ENGINEER ASSUMES NO RESPONSIBILITY BEYOND THE ADEQUACY OF VMS DESIGN CONTAINED HEREIN.

VAPOR MITIGATION MEMBRANE NOTES

- VAPOR MITIGATION SYSTEM MEMBRANE SHALL BE GEO-SEAL MANUFACTURED BY LAND SCIENCE TECHNOLOGIES OR APPROVED EQUIVALENT.
- THE CONTRACTOR SHALL BE A LAND SCIENCE TECHNOLOGIES CERTIFIED INSTALLER FOR THE INSTALLATION OF THE VAPOR MITIGATION MEMBRANE.
- 3. THE CONTRACTOR SHALL INSTALL THE VMS MEMBRANE IN ACCORDANCE WITH THESE DRAWINGS, RELEVANT SPECIFICATIONS, AND AS RECOMMENDED BY THE MEMBRANE MANUFACTURER. THE CONTRACTOR SHALL INFORM THE OWNER AND VMS ENGINEER OF DISCREPANCIES BETWEEN THESE DRAWINGS, THE SPECIFICATIONS, OR THE MANUFACTURE'S RECOMMENDATIONS PRIOR TO COMMENCING WORK
- 4. VMS MEMBRANE GEO-SEAL CORE SHALL BE APPLIED TO A MINIMUM THICKNESS OF 60 MIL.
- 5. THE CONTRACTOR SHALL CONDUCT QUALITY CONTROL (QC) TESTING IN ACCORDANCE WITH THE PROJECT CONSTRUCTION QUALITY ASSURANCE PLAN, THE CONTRACTOR'S CONSTRUCTION QUALITY CONTROL PLAN SPECIFICATIONS AND MANUFACTURER RECOMMENDATIONS. QC TESTING SHALL INCLUDE, BUT NOT LIMITED TO, SMOKE TESTING OF THE INSTALLED VAPOR MITIGATION MEMBRANE. IDENTIFIED DEFICIENCIES IN THE MEMBRANE SHALL BE REPAIRED FOLLOWING MANUFACTURER'S RECOMMENDED REPAIR PROCEDURES.
- 6. GRADATION REQUIREMENTS FOR PERMEABLE BASE MATERIAL ARE AS FOLLOWS (PER GEOTECHNICAL REPORT):

SIEVE SIZE	PERCENTAGE PASSING SIEVE
GRAVE	L OR CRUSHED ROCK
1 INCH	90-100
3/4 INCH	30-100
1/2 INCH	5-25
3/8 INCH	0-6

SUB-SLAB VENTING SYSTEM NOTES

- VAPOR COLLECTION PIPING SHALL BE VAPOR-VENT MANUFACTURED BY LAND SCIENCE TECHNOLOGIES OR APPROVED EQUIVALENT.
- 2. THE CONTRACTOR SHALL INSTALL THE VAPOR COLLECTION PIPING IN ACCORDANCE WITH THESE DRAWINGS, RELEVANT SPECIFICATIONS, AND AS RECOMMENDED BY THE PIPING MANUFACTURER. THE CONTRACTOR SHALL INFORM THE OWNER AND VMS ENGINEER OF DISCREPANCIES BETWEEN THESE DRAWINGS, THE SPECIFICATIONS, AND THE MANUFACTURER'S RECOMMENDATIONS PRIOR TO COMMENCING WORK.
- 3. COORDINATE WITH STRUCTURAL SECTION OF WORK FOR PIPING THROUGH CONCRETE FOUNDATIONS.
- 4. VENT RISER VERTICAL PIPING SHALL BE CENTERED IN THE PARTY/DEMISING WALL AIR GAP
- 5. FOR VENT RISER PLACED WITHIN NON-STRUCTURAL WALLS; THE PIPE SHALL BE ATTACHED TO THE FRAMING OF THE NON-STRUCTURAL WALL IT IS LOCATED IN.
- INSTALL VENT RISER GUARDS AS NECESSARY TO PROTECT EXPOSED VERTICAL PIPING NOT INSTALLED WITHIN WALLS
- 7. DO NOT ALLOW THE PIPING, PIPE CONNECTORS, PIPE HANGERS OR STRAPS TO DIRECTLY TOUCH THE STRUCTURE, STUDS, GYPSUM BOARD, OR OTHER PIPES.
- SUPPORT PIPING AS REQUIRED BY 2013 CALIFORNIA PLUMBING CODE OR AS SPECIFIED BY PIPE SUPPORT MANUFACTURER WHICHEVER IS MORE STRINGENT.
- LOCATION OF ROOF VENTS SHALL COMPLY WITH MINIMUM CLEARANCES AND SETBACKS AS REQUIRED BY 2013 CALIFORNIA PLUMBING CODE, SECTION 906.2.
- 10. VENT RISER MAY BE RELOCATED TO SUIT FIELD CONDITIONS.
 CONTRACTOR SHALL OBTAIN THE OWNER AND THE VMS ENGINEER
 APPROVAL PRIOR TO ANY RELOCATION.
- 11. BUILDING FOUNDATION FEATURES SHOWN ON THESE DRAWINGS ARE DIAGRAMMATIC ONLY AND DO NOT REFLECT ACTUAL FOUNDATION DIMENSIONS.

ABBREVIATIONS

A.B. ANCHOR BOLT

APVD APPROVED

ARCH. ARCHITECTURAL

ASTM AMERICAN SOCIETY FOR TESTING AND MATERIALS

BWD BAY WEST DEVELOPMENT

CHCK CHECKED CLR. CLEARANCE DSGN DESIGNED DRFT DRAFTED DWG DRAWING FTG. FOOTING HD HIGH DENSITY HR HOUR

ID INNER DIAMETER

LLC LIMITED LIABILITY COMPANY

MAX MAXIMUM MIN MINIMUM NO NUMBER NOM NOMINAL OD OUTER DIAMETER PT POST-TENSIONING PVC POLYVINYL CHLORIDE QC QUALITY CONTROL REINF. REINFORCEMENT SCH SCHEDULE

S.O.G. SLAB ON GRADE STRUCT. STRUCTURAL THK. THICK

TYPICAL

TYP

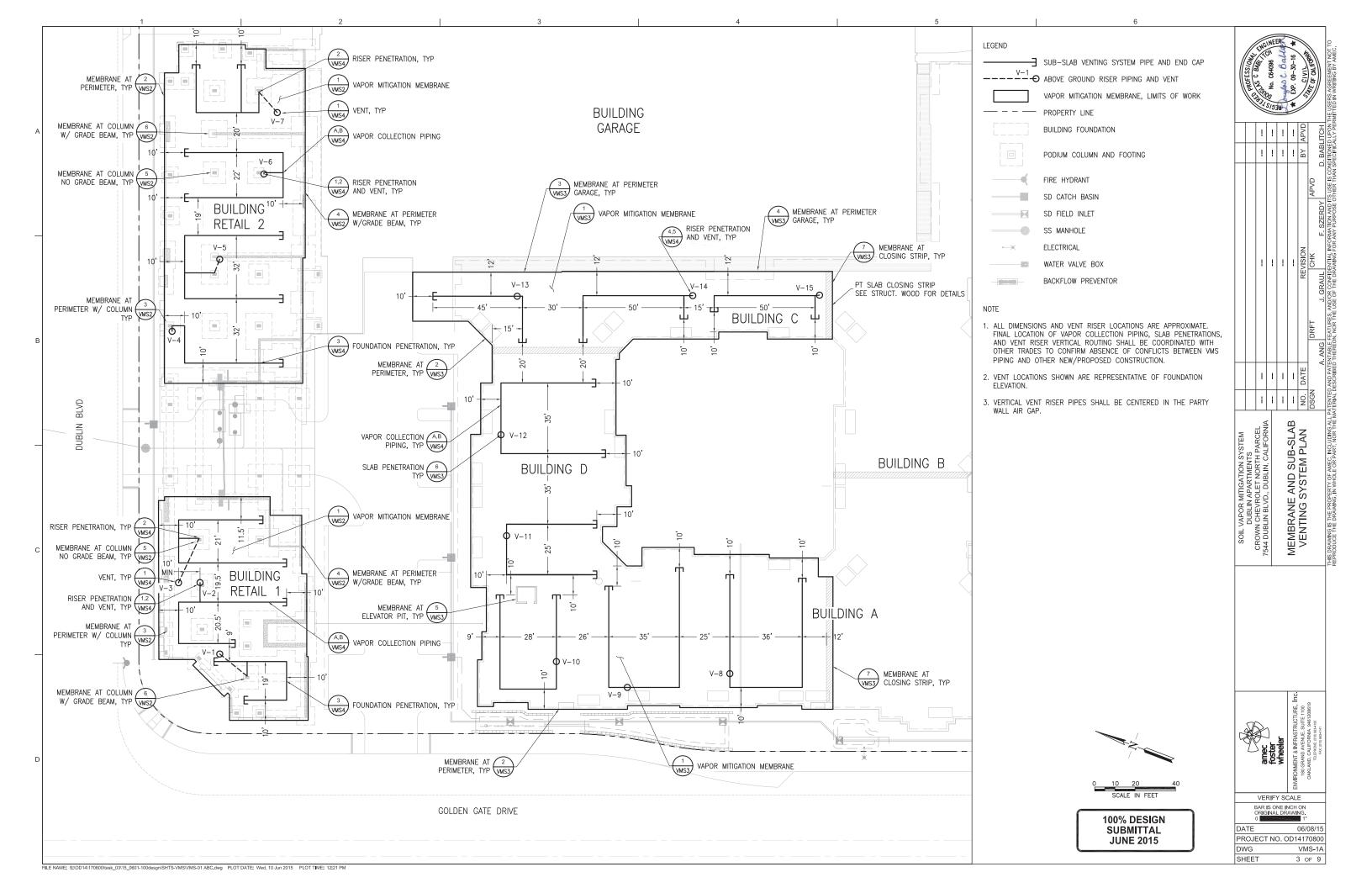
VMS VAPOR MITIGATION SYSTEM

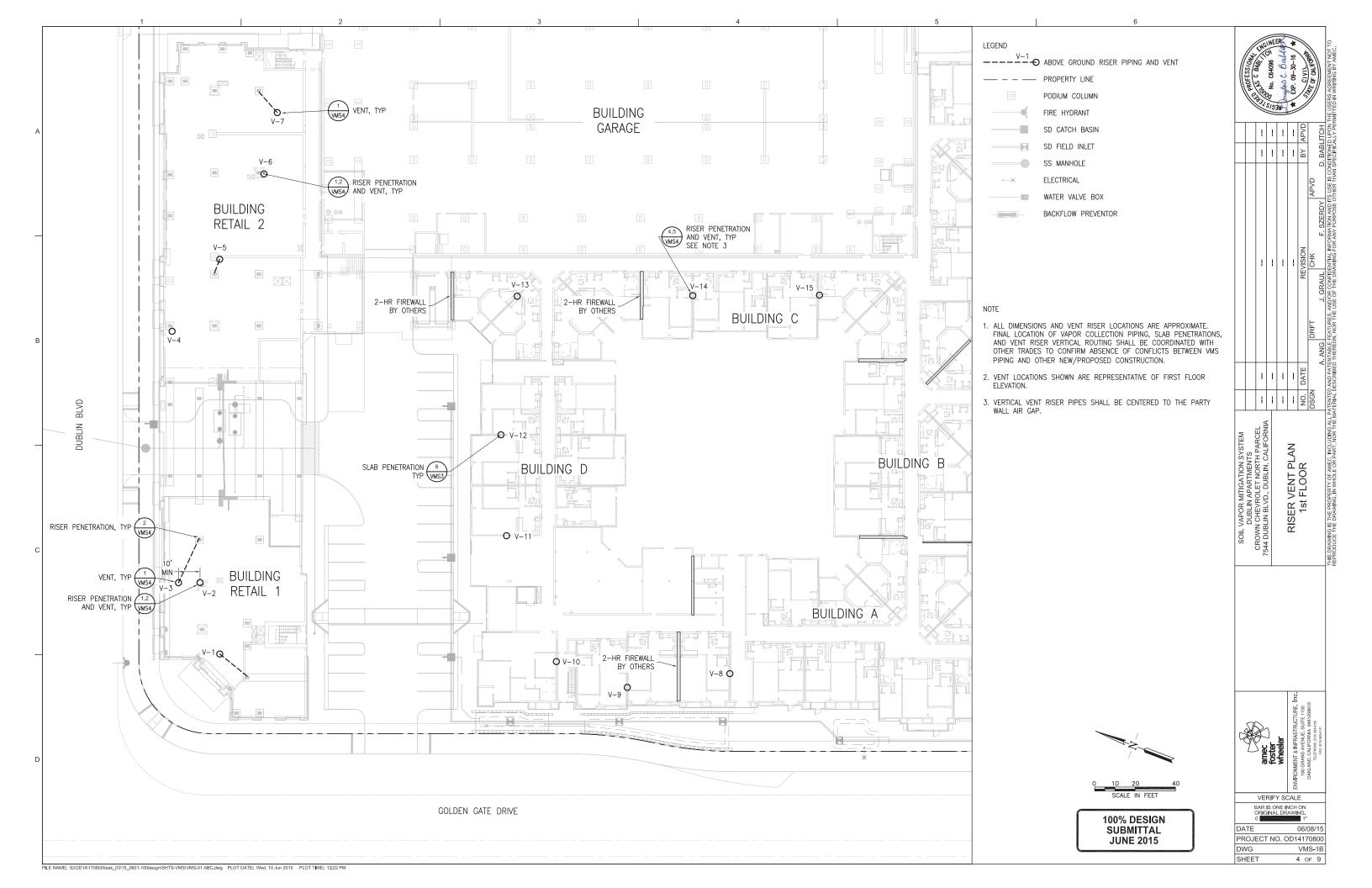
THE COUNTY OF TH

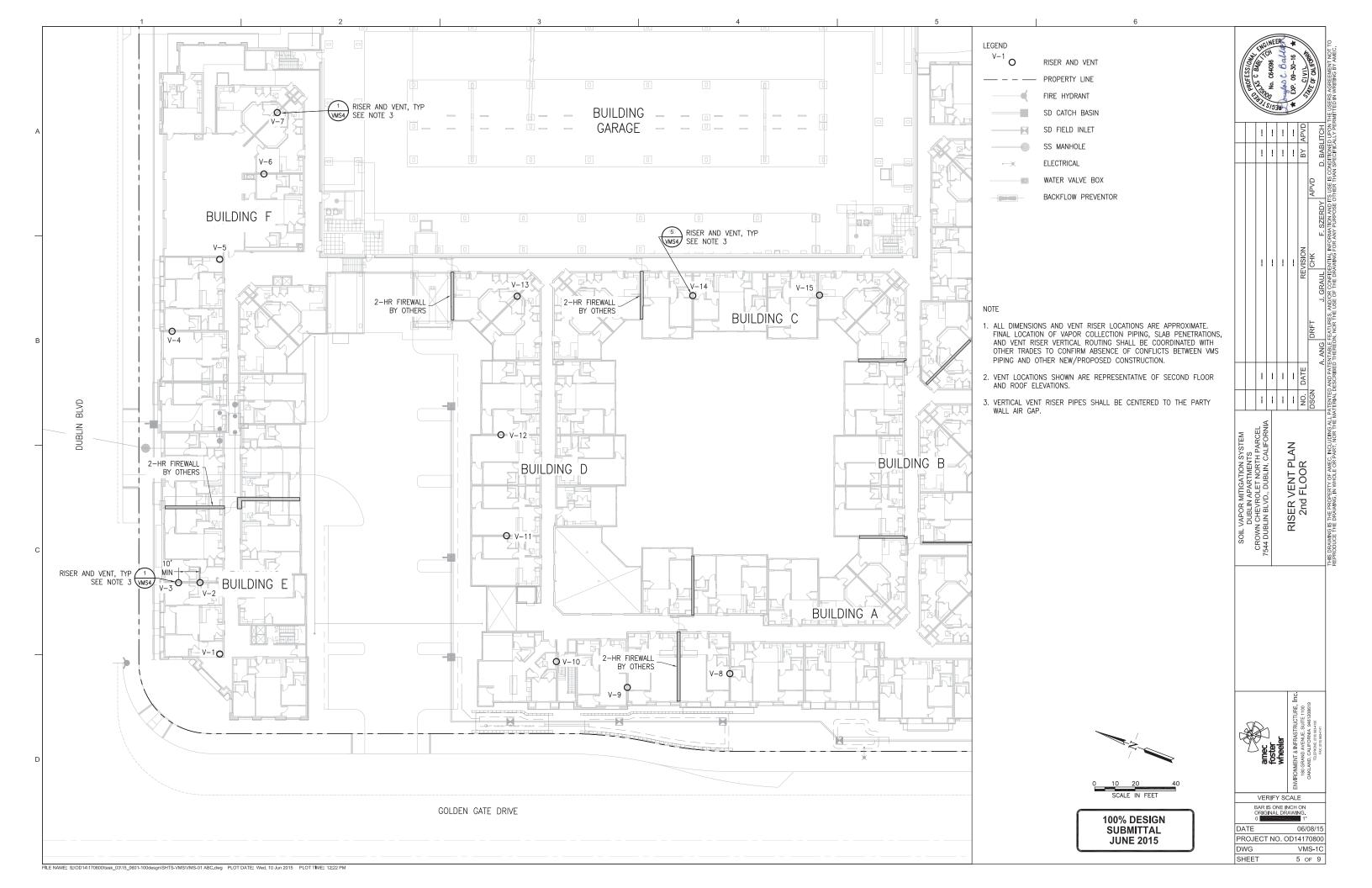
| Natural Marketine | Natu

amec foster wheeler wheeler wheeler sure 1100 own.o.c. ow

CROWN 544 DUBL

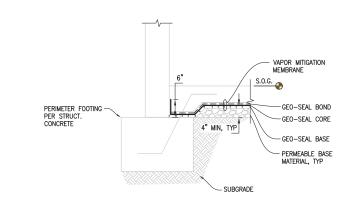

SOIL


VERIFY SCALE

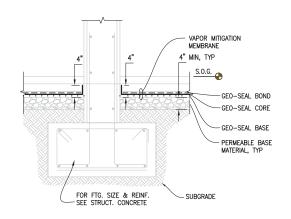

BAR IS ONE INCH ON ORIGINAL DRAWING.
0

DATE 06/08/15
PROJECT NO. OD14170800
DWG G-2
SHEET 2 OF 9

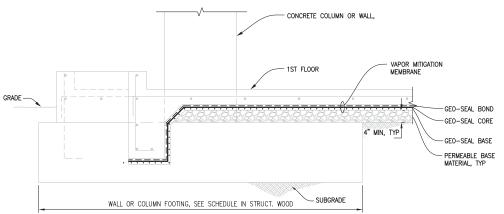
100% DESIGN SUBMITTAL JUNE 2015






2 3 4 5

NOTES


- 1. GEO-SEAL CORE MEMBRANE SHALL BE INSTALLED AT A MIN. 60 MIL THICKNESS AT ALL LOCATIONS.
- 2. FOR PERMEABLE BASE MATERIAL SPECIFICATIONS, SEE VAPOR MITIGATION MEMBRANE NOTES, DWG G-2. 4" MINIMUM THICKNESS PER GEOTECHNICAL REPORT. SEE BUILDING DRAWINGS FOR ACTUAL SECTION REQUIREMENTS.

໌2 `

VMS1A

SUBGRADE

SUBGRADE

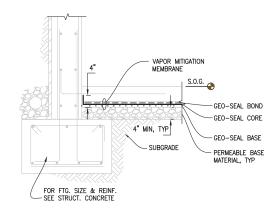
CONSTRUCTION JOINT

CONT. SLAB REINF.

TYP. CONTROL JOINT

VAPOR MITIGATION

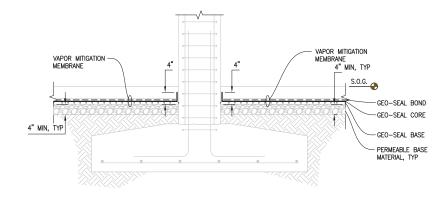
GEO-SEAL BOND GEO-SEAL CORE (60MIL, TYP) GEO-SEAL BASE


PERMEABLE BASE MATERIAL, TYP SEE NOTE 2

VAPOR MITIGATION THE MEMBRANE

GEO-SEAL BOND

GEO-SEAL CORE (60MIL, TYP) GEO-SEAL BASE


PERMEABLE BASE MATERIAL, TYP SEE NOTE 2

PODIUM SLAB ON GRADE SEE STRUCT. CONCRETE FOR DETAILS

PODIUM SLAB ON GRADE SEE STRUCT. CONCRETE FOR DETAILS

MEMBRANE AT PODIUM PERIMETER
WITH COLUMN AND GRADE BEAM
NOT TO SCALE
VMS1A

MEMBRANE AT PODIUM

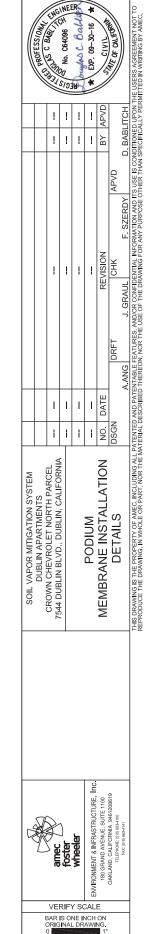
PERIMETER FOOTING

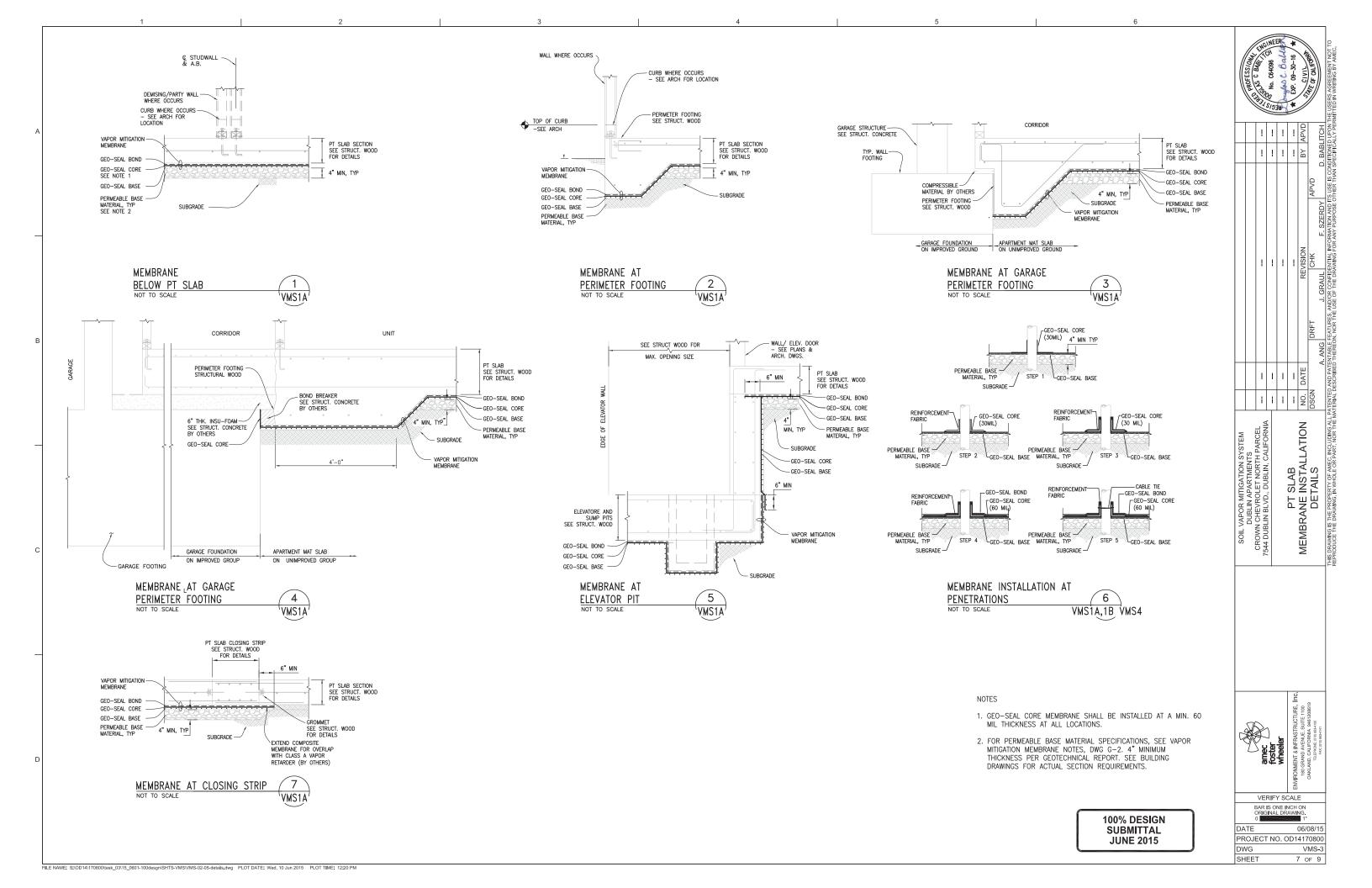
MEMBRANE AT PODIUM CONCENTRIC
COLUMN
(NO GRADE BEAM)
NOT TO SCALE

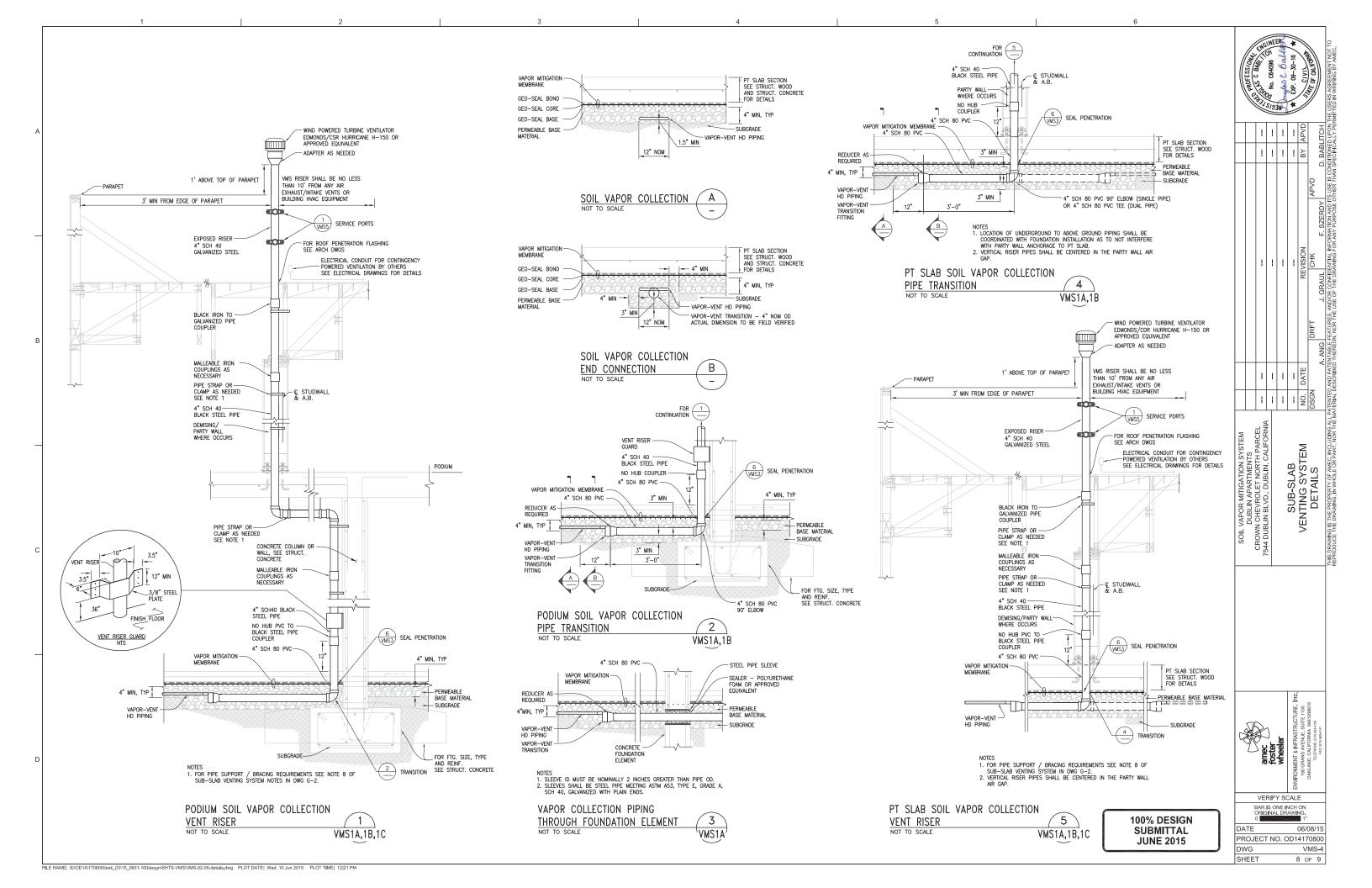
VMS1A

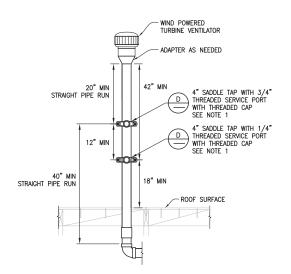
100% DESIGN SUBMITTAL JUNE 2015

DATE

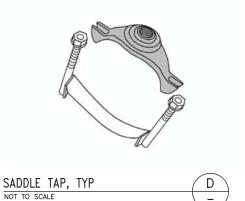

DWG

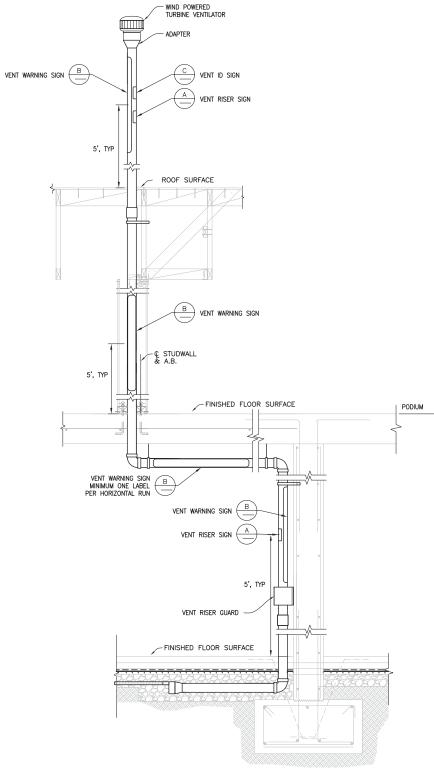

SHEET


PROJECT NO. OD14170800


VMS-2

6 OF 9





NOTES

1. SADDLE BODY SHALL BE NYLON COATED DUCTILE IRON WITH
STAINLESS STEEL STRAP AND BOLTING HARDWARE, ROMAC OR
APPROVED EQUIVALENT.

RISER VENT SERVICE PORTS

NOTES

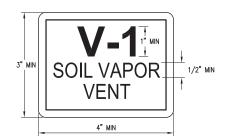
1. YENT RISER SHOWN FOR PODIUM INSTALLATION, SIMILAR SIGNAGE
REQUIRED FOR PT SLAB VENT INSTALLATION.

2. SIGNS INSTALLED AT ROOF LEVEL ON EXPOSED PIPING SHALL HAVE
ADDITIONAL LAMINATION TO REDUCE ULTRAVIOLET LIGHT INDUCED

- NOTES

 1. ALL SIGNS SHALL BE ADHESIVE BACKED PLASTIC AND A MINIMUM 3"
 HIGH X 4" WIDE. LETTERING SHALL BE A MINIMUM 1/4" HIGH, BLACK
 LETTER ON SAFETY YELLOW BACKGROUND.

 2. THE SIGN SHALL BE APPLIED TO EACH VENT RISER NEAR THE TOP
 (ABOVE ROOF LEVEL) AND ALSO NEAR THE BASE OF EXPOSED
 RISERS.


- 1. ALL SIGNS SHALL BE ADHESIVE BACKED PLASTIC AND A MINIMUM 6"
 HIGH, LETTERING SHALL BE A MINIMUM 1" HIGH, BLACK LETTERING ON
 SAFETY YELLOW BACKGROUND. SAFETY YELLOW BACKGROUND.

 2. THE SIGN SHALL BE APPLIED TO EACH VENT RISER INCLUDING THOSE ENCASED IN PARTY WALLS OR OTHER ENCLOSURES.

 3. THE SIGN SHALL BE APPLIED TO THE FRONT AND BACK OF EACH VENT RISER PIPE AT EACH FLOOR AND AT ROOF LEVEL.

 4. THE SIGN SHALL BE CENTERED FIVE FEET ABOVE THE FLOOR/ROOF SURFACE.

VENT WARNING SIGN NOT TO SCALE

- NOTES

 1. ALL SIGNS SHALL BE ADHESIVE BACKED PLASTIC AND A MINIMUM 3"
 HIGH X 4" WIDE. LETTERING SHALL BE A MINIMUM 1/2" HIGH, WHITE
 LETTERS ON BLUE BACKGROUND.

 2. THE SIGN SHALL BE APPLIED TO EACH VENT RISER NEAR THE TOP
 (ABOVE ROOF LEVEL).

 3. REFER TO PLAN VMS—1A FOR VENT RISER LOCATION AND NUMBER.

VENT IDENTIFICATION SIGN

NOT TO SCALE

PERTY OF AMEC, INCLUDING ALL G, IN WHOLE OR PART, NOR THE SUB-SLAB VENTING SYST DETAILS

VERIFY SCALE

BAR IS ONE INCH ON ORIGINAL DRAWING.

PROJECT NO. OD14170800

DATE

DWG

06/08/15

VMS-5 9 OF 9

100% DESIGN SUBMITTAL **JUNE 2015**

SECTION 31 21 16

SOIL VAPOR MITIGATION MEMBRANE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including general and supplementary conditions and Division 1 specification sections, apply to this section.

1.2 SUMMARY

- A. This section includes the following:
 - 1. Substrate preparation:
 - 2. Vapor mitigation barrier components:
 - 3. Seam sealer and accessories.
- B. Related Sections: The following sections contain requirements that relate to this section:
 - 1. Section 01 74 19 Construction Waste Management
 - 2. Section 03 30 00 Cast-in-Place Concrete
 - 3. Section 31.21.16.13 Sub-Slab Venting System

1.3 PERFORMANCE REQUIREMENTS

A. General: The Contractor shall provide a vapor mitigation barrier system that prevents the passage of methane gas and/or volatile organic compound vapors and complies with physical requirements as demonstrated by testing performed by an independent testing agency of vapor mitigation barrier.

1.4 SUBMITTALS

- A. The Contractor shall submit product data for each type of vapor mitigation barrier, including manufacturer's printed instructions for evaluating and preparing the substrate, technical data, and tested physical and performance properties.
- B. Samples The Contractor shall submit representative samples of the following for approval:
 - 1. Vapor mitigation barrier components.
- C. Certified Installer Certificates The Contractor shall submit certificates signed by manufacturer certifying that Contractor or installer is a certified installer and comply with requirements under the "Quality Assurance" article.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: The Contractor or installer shall be an experienced installer who has been trained and certified in writing by the membrane manufacturer, Land Science Technologies™ for the installation of the Geo-Seal[®] System.
- B. Manufacturer Qualification: The Contractor shall obtain vapor mitigation barrier materials and system components from Land Science Technologies.

- C. Field Sample: The Contractor shall prepare a 100 ft² (9.3 m²) of field area as field sample to demonstrate application, detailing, thickness, texture, and standard of workmanship.
 - 1. Notify engineer or special inspector one week in advance of the dates and times when field sample will be prepared.
 - 2. If engineer or special inspector determines that field sample does not meet requirements, reapply field sample until field sample is approved.
 - 3. Retain and maintain approved field sample during construction in an undisturbed condition as a standard for judging the completed vapor mitigation barrier. An undamaged field sample may become part of the completed work.
- D. Pre-installation Conference: The Contractor shall attend a pre-installation conference with the Engineer, other trades influenced by vapor mitigation barrier installation and special inspector (if any) to assure proper site and installation conditions.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. The Contractor shall deliver materials to project site as specified by manufacturer labeled with manufacturer's name, product brand name and type, date of manufacture, shelf life, and directions for storing and mixing with other components.
- B. The Contractor shall store materials as specified by the manufacturer in a clean, dry, protected location and within the temperature range required by manufacturer. Contractor shall protect stored materials from direct sunlight. If freezing temperatures are expected, Contractor shall take necessary steps to prevent the freezing of the Geo-Seal CORE and Geo-Seal CORE Detail components.
- C. The Contractor shall remove and replace material that cannot be applied within its stated shelf life.

1.7 PROJECT CONDITIONS

- A. The Contractor shall protect all adjacent areas not to be installed on. Where necessary, apply masking to prevent staining of surfaces to remain exposed wherever membrane abuts to other finish surfaces.
- B. The Contractor shall perform work only when existing and forecasted weather conditions are within manufacturer's recommendations for the material and application method used.
- C. Minimum vertical clearance of 24 inches is required for application of product. For areas with less than 24-inch clearance, the membrane may be applied by hand using Geo-Seal CORE Detail.
- D. Ambient temperature shall be within manufacturer's specifications (greater than +45°F/+7°C.). Contractor shall consult manufacturer for the proper requirements when desiring to apply Geo-Seal CORE below 45°F/7°C. Contractor shall provide the Engineer manufacturer's approval for installation of the Geo-Seal Core below recommended ambient temperatures and prior installation.
- E. The Contractor shall verify that all plumbing, electrical, mechanical and structural items to be under or passing through the vapor mitigation barrier system are positively secured in their proper positions and appropriately protected prior to membrane application. The Contractor shall notify the Owner and Engineer of any deficiencies found with the installed plumbing,

- electrical, mechanical and structural items that might affect installation of the vapor mitigation barrier.
- F. The Contractor shall install the vapor mitigation barrier before placement of reinforcing steel. When not possible, all exposed reinforcing steel shall be masked by Contractor prior to membrane application.
- G. Stakes used to secure the concrete forms shall not penetrate the vapor mitigation barrier system after it has been installed. If stakes puncture the vapor mitigation barrier system after it has been installed, the Contractor shall perform necessary penetration repairs.

1.8 WARRANTY

- A. General Warranty: The special warranty specified in this article shall not deprive the Owner of other rights the Owner may have under other provisions of the contract documents, and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the contract documents.
- B. Special Warranty: Contractor shall submit a written warranty signed by vapor mitigation barrier manufacturer agreeing to repair or replace vapor mitigation barrier that does not meet requirements or that does not remain volatile organic compound vapor tightness within the specified warranty period.
 - 1. Warranty Period: 1 year after date of substantial completion.
- C. Contractor shall also provide labor and material warranties as provided by the manufacturer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Soil vapor mitigation membrane shall be Geo-Seal by Land Science Technologies[™], San Clemente, CA. (949) 481-8118 ,and consist of the following:
 - 1. Geo-Seal BASE sheet layer
 - 2. Geo-Seal CORE spray layer and Geo-Seal CORE Detail
 - 3. Geo-Seal BOND protection layer

2.2 VAPOR MITIGATION BARRIER SPRAY MATERIALS

- A. Fluid applied vapor mitigation barrier system Geo-Seal CORE; a single course, high build, polymer modified, asphalt emulsion. Waterborne and spray applied at ambient temperatures. A nominal thickness of 60 dry mils, unless specified otherwise. Non-toxic and odorless. Geo-Seal CORE Detail has similar properties with greater viscosity and is roller or brush applied. Manufactured by Land Science Technologies.
- B. Fluid applied vapor mitigation barrier physical properties.

Geo-Seal CORE - TYPICAL CURED PROPERTIES

Properties	Test Method	Results
Tensile Strength - CORE only	ASTM 412	32 psi
Tensile Strength - Geo-Seal System	ASTM 412	662 psi
Elongation	ASTM 412	4140%
Resistance to Decay	ASTM E 154 Section 13	4% Perm Loss
Accelerated Aging	ASTM G 23	No Effect
Moisture Vapor Transmission	ASTM E 96	.026 g/ft ² /hr
Hydrostatic Water Pressure	ASTM D 751	26 psi
Perm rating	ASTM E 96 (US Perms)	0.21
Methane transmission rate	ASTM D 1434	Passed
Adhesion to Concrete & Masonry	ASTM C 836 & ASTM C 704	11 lbf./inch
Hardness	ASTM C 836	80
Crack Bridging	ASTM C 836	No Cracking
Heat Aging	ASTM D 4068	Passed
Environmental Stress Cracking	ASTM D 1693	Passed
Oil Resistance	ASTM D543	Passed
Soil Burial	ASTM D 4068	Passed
Low Temp. Flexibility	ASTM C 836-00	No Cracking at –20°C
Resistance to Acids:		
Acetic		30%
Sulfuric and Hydrochloric		13%
Temperature Effect:		
Stable		248°F
Flexible		13°F

Geo-Seal CORE Detail - TYPICAL CURED PROPERTIES

Properties	Test Method	Results
Tensile Strength	ASTM 412	32 psi
Elongation	ASTM 412	3860%
Resistance to Decay	ASTM E 154 Section 13	9% Perm Loss
Accelerated Aging	ASTM G 23	No Effect
Moisture Vapor Transmission	ASTM E 96	.026 g/ft ² /hr
Hydrostatic Water Pressure	ASTM D 751	28 psi
Perm rating (US Perms)	ASTM E 96	0.17
Methane transmission rate	ASTM D 1434	Passed
Adhesion to Concrete & Masonry	ASTM C 836	7 lbf./inch
Hardness	ASTM C 836	85
Crack Bridging	ASTM C 836	No Cracking
Low Temp. Flexibility	ASTM C 836-00	No Cracking at –20°C
Resistance to Acids:		
Acetic	_	30%
Sulfuric and Hydrochloric		13%
Temperature Effect:		
Stable		248°F
Flexible		13°F

2.3 VAPOR MITIGATION BARRIER SHEET MATERIALS

A. The Geo-Seal BASE layer and Geo-Seal BOND layer are chemically resistant sheets comprised of a 5 mil high density polyethylene sheet thermally bonded to a 3 ounce non woven geotextile.

B. Sheet Course Usage

- 1. As foundation base layer, The Contractor shall use Geo-Seal BASE course.
- 2. As top protective layer, the Contractor shall use Geo-Seal BOND layer.
- C. Geo-Seal BOND and Geo-Seal BASE physical properties.

Properties	Test Method	Results
Film Thickness		5 mil
Composite Thickness		18 mil
Water Vapor Permeability	ASTM E 96	0.214
Adhesion to Concrete	ASTM D 1970	9.2 lbs/inch ²
Dart Impact	ASTM D 1790	>1070 gms, method A
		594 gms, method B
Puncture Properties Tear	ASTM B 2582 MD	11,290 gms
	ASTM B 2582 TD	13,150 gms

2.4 AUXILLARY MATERIALS

- A. Sheet Flashing: 60-mil reinforced modified asphalt sheet good with double-sided adhesive.
- B. Reinforcing Strip: Manufacturer's recommended polypropylene and polyester fabric.
- C. Gas Venting Materials: Geo-Seal Vapor-Vent HD and associated fittings.
- D. Seam Detailing Sealant Mastic: Geo-Seal CORE Detail, a high or medium viscosity polymer modified water based asphalt material.
 - 1. Back Rod: Closed-cell polyethylene foam.

PART 3 - EXECUTION

3.1 AUXILIARY MATERIALS

A. The Contractor shall examine substrates, areas, and conditions under which vapor mitigation barrier will be applied for compliance with requirements and manufacturer recommendations. The Contractor shall repair and correct deficiencies prior to proceeding with installation.

3.2 SUBSTRATE SURFACE PREPARATION

- A. Geo-Seal shall only be installed on the following approved substrates: 1) compacted earth,2) sand, and/or 3) aggregate. The Contractor shall inspect the installed substrate as follows:
 - 1. Compacted Earth: Remove pieces of debris, gravel and/or any other material that can potentially puncture the Geo-Seal BASE. Remove any debris from substrate that can potentially puncture the Geo-Seal system prior to application.

- 2. Sand: A sand subgrade requires no additional preparation, provided any material that can potentially puncture the Geo-Seal BASE layer is not present.
- Aggregate: The gravel layer must be compacted and rolled flat. The gravel substrate shall be as specified in the Drawings and related Section 31.21.16.13 – Sub-Slab Venting System
- B. Should the substrate condition not meet manufacturer's recommendations, the Contractor shall perform or coordinate with substrate installer for necessary repairs. On a horizontal surface, the substrate should be free from material that can potentially puncture the vapor mitigation barrier. The Contractor might install additional protection or cushion layers as required if the gravel substrate contains too many jagged points and edges that could puncture one or more of the system components. As necessary, the Contractor shall contact manufacturer to confirm substrate meets manufacturer's recommendations.
- C. The Contractor shall mask off adjoining surface not receiving the vapor mitigation barrier system to prevent the spillage or over spray affecting other construction.

3.3 CONCRETE SURFACE PREPARATION

- A. The Contractor shall clean and prepare concrete surfaces to manufacturer's recommendations. In general, only apply the Geo-Seal CORE material to dry, clean and uniform substrates. Concrete surfaces must be a light trowel, light broom or equivalent finish. Remove fins, ridges and other projections and fill honeycomb, aggregate pockets, grout joints and tie holes, and other voids with hydraulic cement or rapid-set grout. The Contractor shall be responsible to point out unacceptable substrate conditions to the Owner and Engineer and ensure the proper repairs are made.
- B. When applying the Geo-Seal CORE or Geo-Seal CORE Detail material to concrete, the Contractor shall not apply the product over standing water. Applying over standing water will result in the membrane not setting up properly on the substrate. The Contractor shall be responsible for removal of all standing water and drying (as necessary) of concrete surfaces.
- C. The Contractor shall wipe down or clean surfaces (as necessary) prior to application of the Geo-Seal CORE or Geo-Seal CORE Detail. This includes, but is not limited to, the removal of forming oils, concrete curing agents, dirt accumulation, and other debris. Contractor shall contact form release agent manufacturer or concrete curing agent manufacturer for VOC content and proper methods for removing the respective agent.
- D. Applying the Geo-Seal CORE to "green" concrete is acceptable and can be advantageous in creating a superior bond to the concrete surface. To help reduce blistering, The Contractor shall apply a primer coat of only the asphalt component of the Geo-Seal CORE system. Some blistering of the membrane will occur and may be more severe on surfaces exposed to direct sunlight. Blistering is normal and will subside over time. The Contractor shall use a needle nose depth gauge to confirm that the specified mil thickness has been applied.

3.4 PREPARATIONS AND TREATMENT OF TERMINATIONS

- A. The Contractor shall prepare the substrate surface in accordance with Section 3.3 of this specification. Concrete surfaces that are not a light trowel, light broom or equivalent finish, will need to be repaired.
- B. Terminations on horizontal and vertical surfaces should extend 6" onto the termination surface or as specified in the Drawings.

- C. The Contractor shall apply 30 mils of Geo-Seal CORE to the terminating surface and then embed the Geo-Seal BASE layer by pressing it firmly into the Geo-Seal CORE layer. Next, apply 60 mils of Geo-Seal CORE to the BASE layer. When complete, apply the Geo-Seal BOND layer. After the placement of the Geo-Seal BOND layer is complete, The Contractor shall apply a final 30 mil seal of the Geo-Seal CORE layer over the edge of the termination.
- D. The Contractor shall terminate the membrane onto exterior footings, pile caps, interior footings and grade beams. The Contractor shall implement similar termination process at stem walls and/or vertical surfaces.

3.5 PREPARATIONS AND TREATMENT OF PENETRATIONS

- A. The Contractor shall verify that all pipe penetrations are secured in place prior to the installation of the Geo-Seal system. The Contractor shall inform the Owner and Engineer of loose penetrations, as loose penetrations could potentially exert pressure on the membrane and damage the membrane after installation. The Contractor shall coordinate with the appropriate trade for repairs of loose penetrations.
- B. To properly seal around penetrations, the Contractor shall cut a piece of the Geo-Seal BASE layer that will extend 6" beyond the outside perimeter of the penetration. The Contractor shall cut a hole in the Geo-Seal BASE layer just big enough to slide over the penetration, ensuring the Geo-Seal BASE layer fits snug against the penetration, this can be done by cutting an "X" no larger than the inside diameter of the penetration. The Contractor shall ensure that there is no gap larger than a 1/8" is between the Geo-Seal BASE layer and the penetration. Other methods can also be utilized, provided, there is not a gap larger than 1/8" between the Geo-Seal BASE layer and the penetration.
- C. The Contractor shall seal the Geo-Seal BASE layer using Geo-Seal CORE or Geo-Seal CORE Detail to the underlying Geo-Seal BASE layer.
- D. The Contractor shall apply one coat of Geo-Seal CORE Detail or Geo-Seal CORE spray to the Geo-Seal BASE layer and around the penetration at a thickness of 30 mils. The Contractor shall treat penetrations in a 6-inch radius around penetration and 3 inches onto penetrating object.
- E. The Contractor shall embed a fabric reinforcing strip after the first application of the Geo-Seal CORE spray or Geo-Seal CORE Detail material and then apply a second 30 mil coat over the embedded joint reinforcing strip ensuring its complete saturation of the embedded strip and tight seal around the penetration.
- F. After the placement of the Geo-Seal BOND layer, the Contractor shall install a cable tie around the finished penetration. The cable tie should be snug, but not overly tight so as to slice into the finished seal.

OPTION: A final application of Geo-Seal CORE may be used to provide a finishing seal after the Geo-Seal BOND layer has been installed.

NOTE: Metal or other slick penetration surfaces may require treatment in order to achieve proper adhesion. For plastic pipes, The Contractor may utilize sand paper to achieve a profile, or emery cloth for metal surfaces. An emery cloth should also be used to remove any rust on metal surfaces.

3.6 GEO-SEAL BASE LAYER INSTALLATION

- A. The Contractor shall install the Geo-Seal BASE layer over substrate material in one direction with six-inch overlaps and the geotextile (fabric side) facing down.
- B. The Contractor shall secure the Geo-Seal BASE seams by applying 60 mils of Geo-Seal CORE between the 6" overlapped sheets with the geotextile side down.
- C. The Contractor shall visually verify there are no gaps/fish-mouths in seams.
- D. The Contractor shall install an equal amount of Geo-Seal BASE and Geo-Seal CORE in one day. Leaving unsprayed Geo-Seal BASE overnight might allow excess moisture to collect on the Geo-Seal BASE. If excess moisture collects, it needs to be removed.

NOTE: In windy conditions it might be necessary to encapsulate the seam by spraying the Geo-Seal CORE layer over the completed Geo-Seal BASE seam.

3.7 GEO-SEAL CORE APPLICATION

- A. The Contractor shall set up spray equipment according to manufacturer's instructions.
- B. The Contractor shall mix and prepare materials according to manufacturer's instructions.
- C. The two catalyst nozzles (8001) should be adjusted to cross at about 18" from the end of the wand. This apex of catalyst and emulsion spray should then be less than 24" but greater than 12" from the desired surface when spraying. When properly sprayed the fan pattern of the catalyst should range between 65° and 80°.
- D. The Contractor shall adjust the amount of catalyst used based on the ambient air temperature and surface temperature of the substrate receiving the membrane as recommended by the manufacturer. In hot weather use less catalyst as hot conditions will quickly "break" the emulsion and facilitate the curing of the membrane. In cold conditions and on vertical surfaces use more catalyst to "break" the emulsion quicker to expedite curing and set up time in cold conditions.
- E. The Contractor shall apply one spray coat of Geo-Seal CORE to obtain a seamless membrane free from pinholes or shadows, with a minimum dry film thickness of 60 mils (1.52 mm).
- F. The Contractor shall apply the Geo-Seal CORE layer in a spray pattern that is perpendicular to the application surface to limit voids and thin spots, and create a uniform and consistent membrane.
- G. The Contractor shall verify film thickness of vapor mitigation barrier every 500 ft². (46.45 m²), for information regarding Geo-Seal quality control measures, refer to the quality control procedures in Section 3.9 of this specification.
- H. The membrane will generally cure in 24 to 48 hours. As a rule, when temperature decreases or humidity increases, the curing of the membrane will be prolonged. The membrane does not need to be fully cured prior the placement of the Geo-Seal BOND layer, provided mil thickness has been verified and a smoke test has been conducted.
- I. When applying to a vertical concrete wall, the Contractor shall apply Geo-Seal CORE directly to concrete surface and use manufacturer's recommended protection material based on site specific conditions. If applying Geo-Seal against shoring, the Contractor shall contact manufacturer for site specific installation instructions.

J. Do not penetrate membrane after it has been installed. If membrane is penetrated after the membrane is installed, the Contractor shall be responsible for performing repairs as indicated by the Owner and/or Engineer.

NOTE: Care should be taken to not trap moisture between the layers of the membrane. Trapping moisture may occur from applying a second coat prior to the membrane curing. Repairs and detailing may be done over the Geo-Seal CORE layer when not fully cured.

3.8 GEO-SEAL BOND PROTECTION COURSE INSTALLATION

- A. The Contractor shall Install Geo-Seal BOND protection course perpendicular to the direction of the Geo-Seal BASE course with overlapped seams over nominally cured membrane no later than recommended by manufacturer and before starting subsequent construction operations.
- B. The Contractor shall sweep off any water that has collected on the surface of the Geo-Seal CORE layer, prior to the placement of the Geo-Seal BOND layer.
- C. The Contractor shall overlap and seam the Geo-Seal BOND layer in the same manner as the Geo-Seal BASE layer.
- D. To expedite the construction process, the Contractor might place the Geo-Seal BOND layer over the Geo-Seal CORE immediately after the spray application is complete, provided the Geo-Seal CORE mil thickness has been verified.

3.9 QUALITY ASSURANCE

- A. The Geo-Seal system shall be installed by a trained and certified installer approved by Land Science Technologies.
- B. The Contractor shall arrange for a manufacturer's representative or manufacturer certified 3rd party inspector to inspect and verify that the membrane has been installed per the manufacturer's recommendations.
 - The certified installer is responsible for contacting the inspector for inspection. Prior to application of the membrane, a notice period for inspection should be agreed upon between the applicator and inspector.
- C. The Contractor shall utilize the following required measurement tools to verify the thickness of the Geo-Seal CORE layer.
 - Mil reading caliper: Calipers are used to measure the thickness of coupon samples.
 To measure coupon samples correctly, the thickness of the Geo-Seal sheet layers (18 mils each) must be taken into account. Mark sample area for repair.
 - 2. Wet mil thickness gauge: A wet mil thickness gauge may be used to quickly measure the mil thickness of the Geo-Seal CORE layer. The thickness of the Geo-Seal sheet layers do not factor into the mil thickness reading.
 - NOTE: When first using a wet mil thickness gauge on a project, collect coupon samples to verify the wet mil gauge thickness readings.
 - 3. Needle nose digital depth gauge: A needle nose depth gauge should be used when measuring the Geo-Seal CORE thickness on vertical walls or in field measurements. Mark measurement area for repair.

To obtain a proper wet mil thickness reading, take into account the 5 to 10 percent shrinkage that will occur as the membrane fully cures. Not taking into account the thickness of the sheet layers, a freshly sprayed membrane should have a minimum wet thickness of 63 (5%) to 66 (10%) mils.

The Contractor shall be experienced with the methods on how to properly conduct Geo-Seal CORE thickness sampling as recommended by Land Science Technologies.

- D. The Contractor shall be responsible for repair of areas where coupon samples have been removed.
- E. The Contractor shall be responsible for performing Smoke Testing to test the overall integrity of the installed membrane and the seals around penetrations and terminations. The Contractor shall perform Smoke Testing by pumping non-toxic smoke underneath the Geo-Seal vapor mitigation barrier and then repairing the areas where smoke appears. The Contractor shall follow smoke testing protocols by Land Science Technologies and set forth in related quality construction assurance and quality control documents.
- F. The Contractor shall perform a visual inspections prior to placement of concrete, but after the installation of concrete reinforcing, to identify any punctures that may have occurred during the installation of rebar, post tension cables, etc. Punctures in the Geo-Seal system should be easy to indentify due to the color contrasting layers of the system. The Contractor shall perform necessary repairs to the Geo-Seal system at the direction of the Owner and/or Engineer.

3.10 CONSTRUCTION WASTE MANAGEMENT

- A. General: The Contractor shall comply with the requirements of Section 01 74 19

 Construction Waste Management for removal and disposal of construction debris and waste.
- B. The Contractor shall separate and recycle waste materials to the maximum extent possible.

SECTION 31 21 16.13

SUB-SLAB VENTING SYSTEM

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Substrate preparation.
 - 2. Vapor-Vent™ HD installation.
 - 3. Vapor-Vent HD accessories.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Section 01 74 19 Construction Waste Management
 - 2. Section 03 30 00 Cast-in-Place Concrete
 - 3. Section 26 05 00 Common Work Results for Plumbing
 - 4. Section 31.21.16 Soil Vapor Mitigation Membrane
 - 5. Section 31 21 16.16 Sub Slab Vent Risers

1.3 PERFORMANCE REQUIREMENTS

A. General: The Contractor shall provide a sub-slab gas venting system installed within a permeable material layer that collects gas vapors and directs them to a discharge or collection point (vent riser) as specified in the Drawings and that complies with the physical requirements set forth by the manufacturer. This specification covers installation of the sub-slab venting system up to the riser vent penetration terminated through building slab. Specifications for vent riser construction are presented in Section 31 21 16.16 – Sub Slab Vent Risers

1.4 SUBMITTALS

- A. The Contractor shall submit Product Data for each component of the sub-slab venting system specified, including manufacturer's specifications.
- B. Sample The Contractor shall submit representative samples of the following for approval:
 - Gas venting piping, Vapor-Vent HD.
 - 2. Vapor-Vent HD accessories.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: The Contractor or installer shall be an experienced installer certified by manufacturer Land Science Technologies (LST) for the installation of the Vapor-Vent sub-slab gas venting system.
- B. Manufacturer Qualification: The Contractor shall obtain Vapor –Vent™ gas venting system components from LST.

C. Pre-installation Conference: The Contractor shall attend a pre-installation conference with Engineer, other trades influenced by sub-slab venting system installation and special inspector (if any) to assure proper site and installation conditions.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. The Contractor shall ensure all materials are delivered to project site as specified by manufacturer, are labeled with manufacturer's name, product brand name and type, date of manufacture, shelf life, and directions for handling.
- B. The Contractor shall store materials as specified by the manufacturer in a clean, dry, protected location and within the temperature range required by manufacturer. The Contractor shall protect stored materials from direct sunlight.
- C. The Contractor shall repair or remove and replace material that is damaged.

PART 2 - PRODUCTS

2.1 PERMEABLE MATERIAL (SUBSTRATE)

A. Permeable layer material shall be as specified in the Geotechnical Report

2.2 SUB-SLAB GAS VENT MATERIALS

- A. Vapor-Vent HD- low profile, trenchless, flexible, sub slab vapor collection system manufactured by Land Science Technologies, San Clemente, CA (949) 481-8118
- B. Vapor-Vent HD physical properties

VENT PROPERTIES	TEST METHOD	VAPOR-VENT HD	
Material		HDPE	
Comprehensive Strength	ASTM D-1621	11,400 lbs / ft ²	
In-plane flow (Hydraulic gradient-0.1)	ASTM D-4716	30 gpm / ft of width	
Chemical Resistance		Excellent	
FABRIC PROPERTIES	TEST METHOD	VAPOR-VENT	
Grab Tensile Strength	ASTM D-4632	110 lbs.	
Puncture Strength	ASTM D-4833	30 lbs.	
Mullen Burst Strength	ASTM D-3786	90 PSI	
AOS	ASTM D-4751	50 U.S. Sieve	
Flow Rate	ASTM D-4491	95 gpm / ft ²	
UV Stability (500 hours)	ASTM D-4355	70% Retained	
DIMENSIONAL DATA			
Thickness		1"	
Standard Widths		12"	
Roll Length		165 ft	
Roll Weight		68 lbs	

C. Riser pipe transition shall be schedule (SCH) 80, polyvinyl chloride (PVC) pipe meeting American Society for Testing and Materials (ASTM) D1785-12 - Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120

2.3 AUXILIARY MATERIALS

- A. Vapor-Vent HD fittings including end outs, end caps, elbows and tees supplied by Land Science Technologies.
- B. Reinforced Tape as recommended by manufactured for connection between Vapor-Vent pipe and round PVC pipe.
- C. SCH 80, PVC fittings meeting ASTM D2467-13a Standard Specification for Polyvinyl Chloride (PVC) Plastic Pipe Fittings, Schedule 80.
- D. PVC primer and glue and meeting ASTM F656-1 Standard Specification for Primers for Use in Solvent Cement Joints of Poly(Vinyl Chloride) (PVC) Plastic Pipe and Fittings and ASTM D2564-12 -Standard Specification for Solvent Cements for Poly(Vinyl Chloride) (PVC) Plastic Piping Systems, respectively.
- E. Pipe Sleeves shall be SCH 40, galvanized steel pipes meeting ASTM A53, Type E, Grade A, with plain ends.
- F. Pipe Sleeve Sealant shall be aerosol polyurethane foam sealant meeting ASTM C1620-12 or approved equivalent.

PART 3 - EXECUTION

3.1 EXAMINATION

A. The Contractor shall examine substrates, areas, and conditions under which gas vent system will be installed, with installer present, for compliance with requirements. The Contractor shall not proceed with installation until unsatisfactory conditions have been corrected.

3.2 SUBSTRATE PREPARATION

A. The Contractor shall verify substrate is prepared according to project requirements.

3.3 PREPARATION FOR VAPOR-VENT HD

A. The Contractor shall mark the layout of Vapor-Vent HD piping as shown in Drawings.

3.4 VAPOR-VENT HD INSTALLATION

- A. The Contractor shall install Vapor-Vent over substrate material where designated on drawings with the flat base of the core placed down and shall be overlapped in accordance with manufacturer's recommendations.
- B. At areas where Vapor-Vent HD strips intersect, the Contractor shall cut and fold back fabric to expose the dimpled core. The Contractor shall arrange the strips so that the top strip interconnects into the bottom strip. The Contractor shall unfold fabric to cover the core and use reinforcing tape, as approved by the manufacturer, to seal the connection to prevent sand or gravel from entering the core.
- C. When crossing Vapor-Vent over footings or grade beams, the Contractor shall coordinate with the structural engineer for appropriate use and placement of solid PVC pipe materials per the Drawings. The Contractor shall place solid pipe over or through the foundation concrete element (e.g., and attach a Vapor-Vent End Out at both ends of the pipe before connecting back the Vapor-Vent HD

piping.. The Contractor shall seal the Vapor-Vent HD piping to the Vapor-Vent End Out fitting using fabric reinforcement tape.

- D. The Contractor shall install sleeves for pipes passing through concrete foundation walls as follows:
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Build sleeves into new walls as work progresses.
 - 3. Install large enough sleeve to provide 1-inch annular space between sleeve and pipe.
- E. The Contractor shall place vent risers per the Drawings. The Contractor shall connect Vapor-Vent to Vapor-Vent End Out and seal with fabric reinforced tape. The Contractor shall use Vapor-Vent End Out with the specified diameter piping as shown in the Drawings.

3.5 PLACEMENT OF OVERLYING AND ADJACENT MATERIALS

- A. The Contractor shall place or install all overlying and adjacent permeable layer material using approved procedures and guidelines to prevent damage to the Vapor-Vent HD piping and related installations..
- B. Equipment shall not be directly driven over and stakes or any other materials may not be driven through the Vapor-Vent HD.

3.6 CONSTRUCTION WASTE MANAGEMENT

- A. General: The Contractor shall comply with the requirements of Section 01 74 19 Construction Waste Management for removal and disposal of construction debris and waste.
- B. The Contractor shall separate and recycle waste materials to the maximum extent possible.

SECTION 31 21 16.16

SUB-SLAB VENT RISERS

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - Vent Riser installation.
 - 2. Wind driven turbine ventilator.
 - 3. Sampling Ports
 - 4. Vent Riser signage.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Section 01 74 19 Construction Waste Management
 - 2. Section 26 05 00 Common Work Results for Plumbing
 - 3. Section 31.21.16.13 Sub Slab Venting System

1.3 PERFORMANCE REQUIREMENTS

A. General: The Contractor shall provide vent risers for the sub-slab gas venting system as specified in the Drawings and comply with the installation requirements set forth in this specification. This specification cover installation of the vent riser from the penetration terminated through building slab to its termination discharge point at the roof. Specifications for sub-slab gas venting system construction are presented in Section 31 21 16.13 – Sub Slab Venting System

1.4 SUBMITTALS

- A. The Contractor shall submit Product Data for each component of the vent riser specified, including manufacturer's specifications.
- B. Sample The Contractor shall submit representative samples of the following for approval:
 - 1. Samples of color, lettering style, and other graphic representation required for each identification material and device.
- C. As necessary, welder certificates signed by Contractor certifying that welders comply with requirements specified under "Quality Assurance" Article of this specification.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: The Contractor or installer shall be an experienced installer for the installation of vent risers for sub-slab venting systems. The Contractor shall possess a current contractor license issued by the California Contractor State License Board.

Dublin Apartments
Prepared by: Amec Foster Wheeler

- B. As necessary, qualify welding processes and operators for piping according to American Society of Mechanical Engineers (ASME) "Boiler and Pressure Vessel Code," Section IX, "Welding and Brazing Qualifications."
 - Comply with provisions of ASME B31 Series "Code for Pressure Piping."
 - 2. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved and that certification is current.
- C. To the extent possible, Contractor shall follow ASME A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.
- D. Pre-installation Conference: The Contractor shall attend a pre-installation conference with Engineer, other trades influenced by vent riser installations and special inspector (if any) to assure proper site and installation conditions.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. The Contractor shall ensure all materials are delivered to project site are labeled with manufacturer's name, product brand name and type, and directions for handling.
- B. The Contractor shall ensure delivery of pipes and tubes with factory-applied end-caps. The Contractor shall maintain end-caps through shipping, storage, and handling to prevent pipe-end damage and prevent entrance of dirt, debris, and moisture
- C. The Contractor shall protect stored pipes, fittings, piping specialties, and equipment from moisture and dirt. As necessary, the contractor shall keep material elevated above grade. When stored inside, the Contractor shall verify that the stored materials and equipment do not exceed structural capacity of the floor.
- D. The Contractor shall repair or remove and replace material and equipment that is damaged.

1.7 SEQUENCING AND SCHEDULING

The Contractor shall:

- A. Coordinate vent-riser equipment installation with other building components.
- B. Arrange for chases, slots, and openings in building structure during progress of construction, to allow for vent riser installations.
- C. Coordinate the installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components, as they are constructed.
- D. Sequence, coordinate, and integrate installations of vent risers and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning prior to closing in the building
- E. Coordinate installation of identifying devices after completion of covering and painting, where devices are applied to surfaces. Install identifying devices prior to installation of acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Steel Pipe: ASTM A 53, Type S, Grade A, Schedule 40, seamless, black, plain ends.

- 1. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53 or ASTM A 106, Schedule 40, seamless, black, carbon-steel pipe.
- Vent riser pipe installed outdoors shall be galvanized steel ASTM A 53.
- 3. Vent riser steel piping 4" and smaller shall be threaded with screw fittings. Piping 5" and larger shall be welded.
- 4. Apply polytetrafluoroethylene (PTFE) pipe joint compound on all threaded connections.
- B. No Hub Couplers: Stainless steel cover ASTM C 564 neoprene sleeves with 24 gauge stainless steel bands with worm drive clamps conforming to Cast Iron Soil Pipe Institute (CISPI) 310-12.
- C. Pipe Hangers/Support: Refer to Section 26 05 00 Common Work Results for Plumbing for piping support requirements.
- D. Piping Specialties: Refer to Section 26 05 00 Common Work Results for Plumbing for piping specialties including pipe isolators, vent riser flashing materials, pipe sleeves and wall sleeves common to all plumbing work.
- E. Service Ports: Nylon coated, ductile iron saddle tap and stainless steel trap and bolting hardware by Romac Industries, Inc, or approved equivalent.
- F. Vent Riser Ventilator: Ventilator shall be wind driven turbine by a Hurricane Ventilator Model H150 manufactured by Edmonds/CSR or demonstrated equal.
- G. Vent Riser Signs: Waterproof plastic cloth, all-temperature and self-adhering. Labels on exposed piping shall have additional coating for ultraviolet protection. Size, color, and letters as indicated in the Drawings and the following schedule:

Vent Rise Sign Schedule				
Sign Type	Legend	Color	Letter	
Vent Riser Sign	CAUTION SOIL VAPOR VENT IF DAMAGED IMMEDIATELY NOTIFY BUILDING MANAGEMENT	Yellow	Black	
Vent Warning Sign	SOIL VAPOR VENT POTENTIALLY HAZARDOUS VOLATILE COMPOUNDS	Yellow	Black	
Vent ID Sign	V-1* SOIL VAPOR VENT	Blue	White	

^{*} See Drawings for Vent Riser number designation

PART 3 - EXECUTION

3.1 VENT RISER PIPING

A. General: The Contractor shall install riser vents as described in Drawings, common requirements for plumbing installation in Section 26 05 00 – Common Work Results for Plumbing, and this specification.

- B. General Locations and Arrangements: Drawings indicate general location and typical arrangement of vent riser systems. Contractor shall coordinate with all trades for routing of vent riser piping exposed and within party walls. If conflicts are discovered, a set of prints marked with red pencil showing recommended installation shall be submitted to the Construction Manager and the Design Engineer for approval prior to installation or work in question.
- C. Vent riser installed within party walls shall be centered to the party wall air gap.
- D. Vent riser shall not be installed within any fire rated wall.
- E. Install pipe free of sags and bends.
- F. Install exposed interior and exterior piping at right angles or parallel to building walls. Diagonal run are prohibited, except where indicated.
- G. Install piping tight to slabs, beams, joists, columns, walls, and other building elements. Allow sufficient space above removable ceiling panels to allow for ceiling panel removal.
- H. Install sleeves for pipes passing through concrete and masonry walls, concrete floor and roof slabs, and where indicated. Use the following sleeve materials:
 - 1. Steel Pipe Sleeves: For pipes smaller than 6 inches.
- I. Sleeves are not required for core drilled holes.
- J. Piping Joint Construction: Join pipe and fittings as follows:
 - 1. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - 2. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
 - 3. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full inside diameter. Join pipe fittings and valves as follows:
 - a. Note the internal length of threads in fittings and proximity of internal seat or wall, to determine how far pipe should be threaded into joint.
 - b. Apply appropriate tape or thread compound to external pipe threads (except where dry seal threading is specified).
 - c. Align threads at point of assembly.
 - d. Tighten joint with wrench. Apply wrench to valve end into which pipe is being threaded.
 - e. Damaged Threads: Do not use pipe or pipe fittings having threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- K. The Contractor shall coordinate final location of the vent riser stacks at roof level to maintain minimum setbacks and clearances for roof vents per 2013 California Plumbing Code, Section 906.2.
- L. Service Port Installations: Install saddle taps in accordance to manufacturer's recommended installation instructions.

3.2 VENTILATOR INSTALLATION

- A. The Contractor shall install the ventilator level and plumb at the top of the riser vent.
- B. The Contractor shall cut, fit, and place miscellaneous metal supports and adapters accurately in location, alignment, and elevation to support and anchor the ventilator to the vent riser pipe. The Contractor shall block the ventilator vents until equipment startup is requested.
- C. On completion of installation, the Contractor shall clean the fans according to manufacturer's recommended instructions, remove foreign material and construction debris, and vacuum fan wheel and enclosure.
- D. Prior to equipment startup, the Contractor shall verify that any shipping blocking and bracing has been removed, the unit is secured on mountings and supporting devices, and that lubrication for bearings and other moving parts (as necessary) is complete.
- E. The Contractor shall schedule a startup and training session with Owner and Design Engineer to review troubleshooting, servicing, and maintaining equipment and materials for the installed ventilator.

3.3 LABELING AND IDENTIFYING

- A. The Contractor shall install vent riser labels and markers at locations indicated in the Drawings.
- B. Application: The Contractor shall apply labels and markers on clean surfaces free of dust, grease, oil or any material that will prevent proper adhesion. Replace all non-adhering or curling labels with new labels.
 - 1. As necessary, use spray adhesive in addition to adhesive on labels to attach to pipes.
 - 2. Finish exposed signs with one coat of lacquer.

3.4 CONSTRUCTION WASTE MANAGEMENT

- A. General: The Contractor shall comply with the requirements of Section 01 74 19 Construction Waste Management for removal and disposal of construction debris and waste.
- B. The Contractor shall separate and recycle waste materials to the maximum extent possible.

Dublin Apartments
Prepared by: Amec Foster Wheeler

APPENDIX F

VMS Design Calculations

TABLE F-1

AVERAGE TOTAL CONCENTRATION

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

VMS Area	Soil Vapor Sample Location	Compound	Detected Concentration ^{1,2} (µg/m³)	Average Compound Concentration ² (µg/m³)	Average Compound Concentration (lbs/ft³)	Combined Average Concentration (lbs/ft³)	
		PCE	9,600		, ,	` '	
	SV-24	TCE	410				
Building Retail 1/		Vinyl chloride	5.2	PCE - 5,960	PCE - 0.000000371		
Building E		PCE	2,300	TCE - 4,755	TCE - 0.000000297		
	SV-23	TCE	9,100	Vinyl Chloride - 258	Vinyl Chloride - 0.000000016		
		Vinyl chloride	510				
		PCE	7,300				
5 " " 5 . " 6 .	SV-13	TCE	12,000	505 4045	505 00000050		
Building Retail 2/		Vinyl chloride	500	PCE - 4,045	PCE - 0.000000253		
Building F		PCE	790	TCE - 10,150	TCE - 0.000000634	0.00000056	
	SV-14	TCE	8,300	Vinyl Chloride - 500	Vinyl Chloride - 0.000000031		
		Vinyl chloride	500				
	SG-04	PCE	1,400				
		TCE	5,800				
		Vinyl chloride	130				
		PCE	100				
	SG-05	TCE	5.7				
		Vinyl chloride	3.8				
		PCE	730				
	SG-06	TCE	6.4				
		Vinyl chloride	3.0				
Residential (Building D,		PCE	160	PCE - 385	PCE - 0.000000024		
Building A [Partial],	SG-07	TCE	9.2	TCE - 836	TCE - 0.00000052	1	
Building C [Partial])		Vinyl chloride	3.0	Vinyl Chloride - 22	Vinyl Chloride - 0.000000001		
		PCE	14				
	SV-08	TCE	11				
		Vinyl chloride	5.2				
		PCE	280				
	SV-10	TCE	11				
		Vinyl chloride	5.2				
		PCE	14				
	SV-21	TCE	11				
		Vinyl chloride	5.2				

Notes

- Concentrations from AMEC Environment & Infrastructure, Inc. (AMEC), 2012, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 19.
- 2. Average concentrations calculated using reporting limits for compounds not detected at or above the laboratory reporting limit.

Abbreviations

µg/m³ = micrograms per cubic meter lbs/ft³ = pounds per cubic foot PCE = tetrachloroethene TCE = trichloroethene

VMS = vapor mitigation system

TABLE F-2

DESIGN FLOW RATE AND CALCULATED EMISSIONS

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Maximum Allowable Vent Flow										
Combined										
Average										
Concentration	Combined	Calculated	Calculated							
(lbs/ft ³)	Flow Rate	Emmisions	Emmisions	Total Number	Flow Rate per					
from Table F-1	(ft³/min)	(lbs/minute)	(lbs/day)	of Vents	Vent (ft ³ /min)					
0.00000056	1230	0.00069	0.99	15	82					

	Envir	omental Condit	ions ¹					
		Stack Effect Only	Wind Effect Only	Combined Effect	Tested coeffici	ents and vei	ntilator size ²	
Air density	kg/m ³	1.2	1.2	1.2	C _d	C_f	D _{throat,} (mm)	
Stack height	feet	66	66	66	0.63	0.18	155	
Ambient temperature	°F	50	59	59	.2Σn ₌ 1/2		./2	
Subslab temperature	°F	55	55	55	Qc = 1	$FX\left(\frac{2\sum Pc}{\rho}\right)^{1}$		
Temperature differential	°F	5	-5 (N/A)	4	where: <i>Qc</i> = combined volume flow rate (ow rate (m³/s)	
Mind valority	mph	0	16	16	1		ic area of ventilat	
Wind velocity	m/s	0	6.9	6.9	$\sum Pc = Pw + Ps (Pa)$ $\rho = \text{air density at ambient temperature } (Pa)$			

$$Qc = FX \left(\frac{2\sum Pc}{\rho}\right)^{1/2}$$

F= effective aerodynamic area of ventilator fan (m²)

 ρ = air density at ambient temperature (kg/m³)

Environmental				Flow Rates Calc	ulations ³			
Condition	F(m ²)	P _s (Pa)	Q _s (m ³ /s)	P _w (Pa)	Q _w (m ³ /s)	Q _c (m ³ /s)	Q _c (m ³ /hour)	Q _c (ft ³ /min)
Stack	0.012	2.5	0.024	0.00	0.000	0.024	87	51
Wind	0.012	0.0	0.000	1.88	0.021	0.021	76	45
Combined effect	0.012	2.5	0.024	1.88	0.021	0.032	115	68

	Emissions at Design Flow Rates											
Environmental Condition	Calculated Average Vent Flow Rate (ft ³ /min)	Number of Vents	Total Flow Rate (ft³/min)	Average Compound Concentration (lbs/ft³)	Calculated Emmisions (lbs/minute)	Calculated Emmisions (lbs/day)						
Stack	51	15	771	0.00000056	0.00043	0.62						
Wind	45	15	668	0.00000056	0.00037	0.54						
Combined effect	68	15	1,015	0.0000056	0.00057	0.82						

< 1 lbs/day (meets BAAQMD Regulation 8, Rule 47, Section 8-47-11)

TABLE F-2

DESIGN FLOW RATE AND CALCULATED EMISSIONS

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Notes

- 1. Average Ambient Temperature and Wind Velocity obtained from www.usa.com for the City of Dublin, California (accessed in February 2015).
- 2. Ventilator coefficient values as provided by ventilator manufacturer CSR/Edmonds for ventilator Hurricaine Model H-150 in January 2015.
- 3. Australian/New Zealand Standard (AS/NZS), 2000. Australian/New Zealand Standard AS/NZS 4740:2000, Natural Ventilators - Classification and Performance, March 30.

Abbreviations

BAAQMD = Bay Area Air Quality Management District

C_d = ventilator discharge coefficient

C_f = ventilator flow coefficient

°C = degrees Celsius

°F = degrees Farenheit

F = effective ventilator area

ft³/min = cubic feet per minute

kg/m³ = kilograms per cubic meter

lbs/ft³ = pounds per cubic foot

lbs/day = pounds per day

lbs/min = pounds per minute

m = meter

mm = millimeter

m² = square meter

m³ = cubic meter

m³/hour = cubic meter per hour

m³/s= cubic meter per second

m/s = meters per second

N/A = not applicable

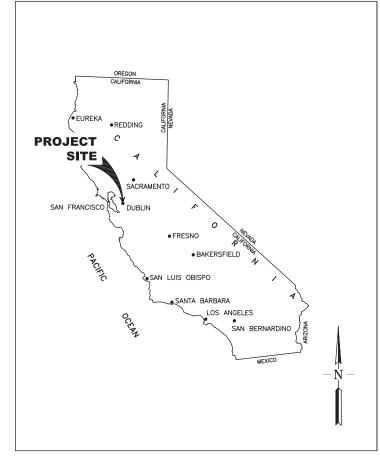
Pa = pascals

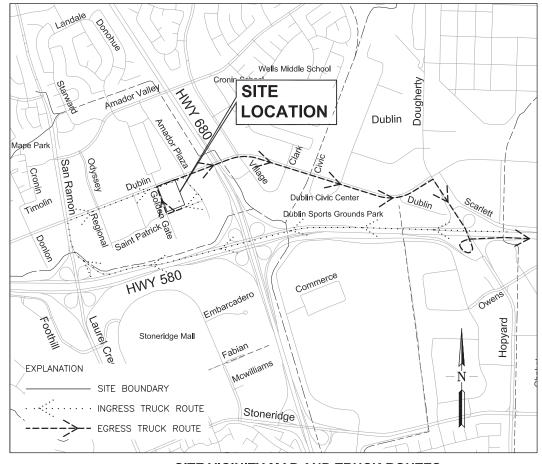
Ps = stack pressure

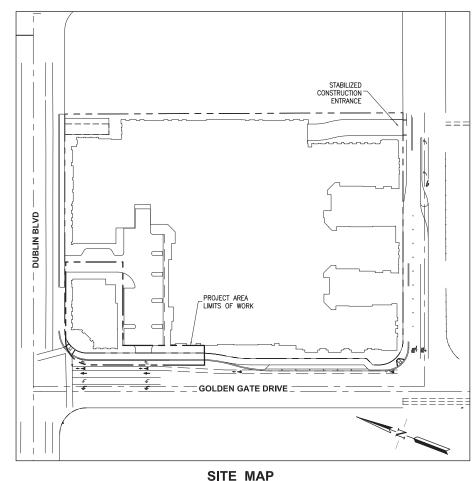
Pw = wind siphoning pressure

Qs = stack pressure flow rate

Qw = wind siphoning pressure flow rate


Qc = combined flow rate




APPENDIX G

PRB Design Drawings and Technical Specifications

PERMEABLE REACTIVE BARRIER (PRB) DUBLIN APARTMENTS - CROWN CHEVROLET NORTH PARCEL 7544 DUBLIN BLVD., DUBLIN, CALIFORNIA

SITE LOCATION MAP

SITE VICINITY MAP AND TRUCK ROUTES

60 0 60 12 APPROXIMATE SCALE IN FEET

LIST OF DRAWINGS (PRB)

SHI NO. DWG NO. DWG NAME

- 1 G-1 LIST OF DRAWINGS, SITE VICINITY, AND SITE LOCATION MAPS
- 2 G-2 LEGEND, SYMBOLS, ABBREVIATIONS, AND GENERAL NOTES
- 3 G-3 TEMPORARY FACILITIES AND ENVIRONMENTAL CONTROLS
- 4 C-1 EXISTING SITE CONDITIONS, UTILITY IDENTIFICATION, AND
- SELECTIVE DEMOLITION
- 5 C-2 FUTURE SITE PLAN AND PRB ALIGNMENT
- 6 C-3 PRB PLAN AND PROFILE
- 7 C-4 PRB DETAILS

100% DESIGN SUBMITTAL JUNE 2015

		// 		 -	-	APVD		LITCH
					-	ВУ		D. BABLITCH
							APVD	
			ļ	ŀ		REVISION	CHK	F. SZERDY
			1	1	1	REVI		J. GRAUL
							DRFT	DA
				I	1	DATE		A. OKADA
		-				NO. DATE	DSGN	
PERMEABLE REACTIVE BARRIER	DUBLIN APARTMENTS	CROWN CHEVROLE I NORTH PARCEL	Control Device: Control Office Control		LIST OF DRAWINGS,	SITE VICINITY,	AND SITE LOCATION MAPS	

DATE 06/09/15
PROJECT NO. OD14170800
DWG G-1
SHEET 1 OF 7

GENERAL NOTES

- FOR THE PURPOSE OF THE PERMEABLE REACTIVE BARRIER DRAWING SET, THE FOLLOWING DEFINITIONS APPLY:
 - A. OWNER / CONSTRUCTION MANAGER:
 BAY WEST DEVELOPMENT (BWD DUBLIN)
 2 HENRY ADAMS STREET, SUITE 450
 SAN FRANCISCO, CA 94103
 - B. PRB ENGINEER: AMEC FOSTER WHEELER 180 GRAND AVENUE, SUITE 1100 OAKLAND, CA 94612
 - C. CIVIL ENGINEER: CARLSON, BARBEE & GIBSON, INC 2633 CAMINO RAMON, SUITE 350 SAN RAMON, CA 94583
 - D. ARCHITECT:
 BDE ARCHITECTURE
 950 HOWARD STREET
 SAN FRANCISCO, CA 94103
- 2. COORDINATE USE OF SITE WITH OWNER AND CONSTRUCTION MANAGER.
- THE CONTRACTOR SHALL VISUALLY INSPECT THE SITE TO ASCERTAIN THE CONDITION OF EXISTING FEATURES AND FAMILIARIZE THEMSELVES WITH THE PROPOSED WORK.
- 4. THE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS FROM THE CITY OF DUBLIN AND ALAMEDA COUNTY DEPARTMENT OF ENVIRONMENTAL HEALTH (ACDEH) FOR THE INSTALLATION OF THE PERMEABLE REACTIVE BARRIER (PRB) AND RELATED SITE WORKS.
- 5. RELEVANT KNOWN AND FUTURE UNDERGROUND UTILITIES AND STRUCTURES ARE SHOWN ON THE DRAWINGS. THE LOCATION OF THESE EXISTING AND FUTURE UTILITIES SHOULD BE CONSIDERED APPROXIMATE. PRIOR TO THE COMMENCEMENT OF SITE ACTIVITIES, THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL EXISTING UTILITIES OR STRUCTURES IN THE AREAS OF WORK AND NOTIFY UNDERGROUND SERVICES ALERT ([USA ALERT] 811; 800-227-2600) AT LEAST TWO BUSINESS DAYS PRIOR TO COMMENCEMENT OF WORK.
- 6. IF UTILITIES ARE TO REMAIN IN PLACE, PROVIDE ADEQUATE MEANS OF PROTECTION. THE CONTRACTOR SHALL CONFIRM THAT ANY ABANDONED UTILITIES WITHIN THE LIMITS OF WORK HAVE BEEN ABANDONED IN ACCORDANCE WITH THE REQUIREMENT OF THE UTILITY OWNERS AND THE CITY OF DUBLIN.
- 7. SHOULD UNCHARTED, OR INCORRECTLY CHARTED UTILITIES OR OTHER UTILITIES BE ENCOUNTERED DURING PERFORMANCE OF WORK, CONSULT THE UTILITY COMPANY, OWNER AND CONSTRUCTION MANAGER, AND PRB ENGINEER IMMEDIATELY FOR DIRECTION. COOPERATE WITH THE UTILITY COMPANIES IN KEEPING RESPECTIVE FACILITIES IN OPERATION. CONTRACTOR SHALL REPAIR DAMAGED UTILITIES TO SATISFACTION OF THE UTILITY OWNER AND THE CITY OF DUBLIN.
- 8. OVERHEAD UTILITY LINES: CONTRACTOR SHALL BE RESPONSIBLE FOR DETERMINING AND MAINTAINING SAFE CLEARANCES FROM OVERHEAD UTILITIES AT ALL TIMES AND, WHERE HAZARDOUS CONDITIONS EXIST, FOR TAKING THE NECESSARY PRECAUTIONS AGAINST INJURY AND DAMAGE
- ALL SPECIFIED WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL FEDERAL, STATE, AND LOCAL REGULATIONS AND ORDINANCES. THE CONTRACTOR SHALL COMPLY WITH THE RULES AND REGULATIONS OF THE STATE CONSTRUCTION SAFETY ORDER.
- 10. CONTRACTOR SHALL ESTABLISH AN EXCLUSION ZONE AROUND THE TRENCHING WORK AREA PRIOR TO BEGINNING EXCAVATION. ALL WORKERS WITHIN THE EXCLUSION ZONE MUST MAINTAIN CURRENT 40 HOUR HAZWOPER SAFETY TRAINING.
- 11. THE CONTRACTOR SHALL DESIGNATE A TEMPORARY VEHICLE AND EQUIPMENT DECONTAMINATION/STAGING AREA. VEHICLES AND EQUIPMENT SHALL BE RESTRICTED TO DEFINED AND MARKED ROUTES. VEHICLE AND EQUIPMENT CLEANING, FUELING, AND MAINTENANCE WILL BE PERFORMED ONLY IN THE DESIGNATED AREA, IN ACCORDANCE WITH CASQA DETAILS NS-8. NS-9. AND NS-10.
- 12. ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH THE MOST RECENT VERSION OF THE CIVIL ENGINEER'S SITE SPECIFIC STORM WATER POLLUTION PREVENTION PLAN (SWPPP) AND ALL AMENDMENTS. WASTE DISCHARGER IDENTIFICATION (WDID) NUMBER 2 01C371103; NOTICE OF INTENT APPROVED 10/08/14.
- CONTRACTOR SHALL BE REQUIRED TO MAINTAIN THE INTEGRITY OF STRUCTURES, UTILITIES AND OTHER SITE FEATURES AND REPAIR ANY DAMAGE AT NO ADDITIONAL COST.

- 14. FUTURE BUILDINGS AND EXISTING SITE CONDITIONS SHOWN IN DRAWINGS ARE BASED ON INFORMATION PROVIDED BY THE CIVIL ENGINEER AND THE ARCHITECT. A COMPLETE DUBLIN APARTMENTS DESIGN SET, INCLUDING ALL TRADES AND BUILDING CONSTRUCTION, IS AVAILABLE FROM THE OWNER AND CONSTRUCTION MANAGER.
- 15. THE PRB ENGINEER ASSUMES NO RESPONSIBILITY BEYOND THE ADEQUACY OF THE PRB DESIGN CONTAINED HEREIN.
- 16. FOR THE PURPOSES OF THIS PRB DRAWING SET, NOT IN CONTRACT (NIC) REFERS TO WORK THAT MAY BE A PART OF THE DUBLIN APARTMENTS PROJECT DESIGNED BY OTHERS, BEYOND THE SCOPE OF THE PRB DESIGN, AND IS PROVIDED FOR REFERENCE.
- 17. ELEVATIONS SHOWN ARE BASED ON NATIONAL GEODETIC VERTICAL DATUM OF 1929 (NGVD29).
- 18. ALL SURVEY AND BASE MAPS SHOWN ARE PREPARED AND PROVIDED BY CIVIL ENGINEER. CITY OF DUBLIN BENCHMARK "DUB-680" CHISELED T PAINTED YELLOW ON TOP CENTER NORTHERLY CURB ABOVE DRAIN INLET 121.5 +/- FEET WESTERLY OF THE CENTERLINE OF I-680, NORTH SIDE OF DUBLIN BOULEVARD ELEVATION 331.597 FEET (NGVD29). BASIS OF BEARING MARKS FOR THIS SURVEY IS THE CENTERLINE OF DUBLIN BOULEVARD AS SHOWN ON PARCEL MAP 8876 9294 PM 40). THE BEARING BEING N69'08'15" E.
- THE CONTRACTOR SHALL MAINTAIN AND NOT BLOCK EXISTING ACCESS ROADS DURING CONSTRUCTION.
- 20. DURING SOIL EXCAVATION ACTIVITIES ADJACENT TO AND AT ELEVATIONS BELOW ACTIVE/OCCUPIED EXISTING UTILITIES OR STRUCTURES, THE UTILITIES OR STRUCTURES SHALL BE MONITORED FOR SIGNS OF SOIL DISPLACEMENT OR MOVEMENT THAT WOULD INDICATE LOSS OF SOIL SUPPORT OR SETTLEMENT.
- 21. THE CONTRACTOR SHALL MANAGE ALL CONSTRUCTION MATERIALS AND WASTES IN ACCORDANCE WITH ALL APPLICABLE REGULATIONS AND REQUIREMENTS, INCLUDING CASQA DETAILS WM-1, WM-2, WM-3, WM-4, WM-7, WM-8, AND WM-10, AND IN ACCORDANCE WITH THE PRB SPECIFICATIONS.
- 22. CONTRACTOR SHALL CONTRACT SOIL AND/OR DEBRIS TRANSPORTATION AND DISPOSAL DIRECTLY WITH THE DISPOSAL FACILITY. THE CONTRACTOR SHALL ARRANGE/PREPARE THE DISPOSAL CHARACTERIZATION AND DOCUMENTATION (I.E., MANIFESTS, LABORATORY ANALYSIS) REQUIRED BY THE DISPOSAL FACILITY.

PERMEABLE REACTIVE BARRIER NOTES

- ZERO VALENT IRON (ZVI) SHALL BE -8/+50 GRANULAR IRON FILINGS, PRODUCT: ETI CC-1004 MANUFACTURED BY CONNELLY GPM INC. OF CHICAGO, IL. ZVI WILL BE DELIVERED TO THE SITE IN 1-TON (APPROX) SUPER SACKS.
- 2. CONTRACTOR SHALL COORDINATE ZVI DELIVERY WITH THE OWNER AND CONSTRUCTION MANAGER AND SHALL BE RESPONSIBLE FOR RECEIVING DELIVERY, OFF—LOADING, STORING, HANDLING, AND PREPARATION OF ZVI/SAND MIX WITH CONTRACTOR SUPPLIED SAND.
- SAND SHALL BE CLEAN AND FROM A VIRGIN SOURCE, WITH UNIFORM GRAIN SIZE SIMILAR TO GRANULAR IRON, AS APPROVED BY PRB ENGINEER. SAND SHALL BE FREE OF STONES, FINES, CLAY PARTICLES, DEBRIS, AND ORGANIC OR DELETERIOUS MATERIAL. DREDGE OR RECYCLED SAND SHALL NOT BE ALLOWED.
- 4. THE CONTRACTOR SHALL INSTALL THE PRB IN ACCORDANCE WITH THESE DRAWINGS AND RELEVANT SPECIFICATIONS. THE CONTRACTOR SHALL INFORM THE OWNER AND CONSTRUCTION MANAGER AND PRB ENGINEER OF DISCREPANCIES BETWEEN THESE DRAWINGS AND THE SPECIFICATIONS PRIOR TO COMMENCING WORK
- PRB SHALL BE INSTALLED USING EITHER BIO—POLYMER SLURRY TRENCH CONSTRUCTION OR SINGLE—PASS TRENCHING TECHNIQUES. USE OF SHORING OR TRENCH BOXES SHALL NOT BE ALLOWED.
- 6. PRB CONTRACTOR SHALL BE QUALIFIED AND EXPERIENCED IN PRB CONSTRUCTION TECHNIQUES. CONTRACTOR SHALL PROVIDE A PRB INSTALLATION WORK PLAN OUTLINING THE MEANS AND METHODS TO BE USED, INCLUSIVE OF ZVI/SAND MIX PREPARATION.
- 7. THE CONTRACTOR SHALL CONDUCT QUALITY CONTROL (QC) TESTING IN ACCORDANCE WITH THE PROJECT CONSTRUCTION QUALITY ASSURANCE PLAN.
- THE CONTRACTOR SHALL DESIGNATE A CDF (CONCRETE) TRUCK WASHOUT AREA. ALL CDF (CONCRETE) WASTE MANAGEMENT WILL COMPLY WITH CASQA FACT SHEET WM-8.

ABBREVIATIONS

AC ASPHALTIC CONCRETE

ACDEH ALAMEDA COUNTY DEPARTMENT OF ENVIRONMENTAL HEALTH

APPROX APPROXIMATE
ARCH ARCHITECTURAL

BGS BELOW GROUND SURFACE

BLVD BOULEVARD

BMPS BEST MANAGEMENT PRACTICES

BWD BAY WEST DEVELOPMENT

CASQA CALIFORNIA STORMWATER QUALITY ASSOCIATION

CB CATCH BASIN

CDF CONTROLLED DENSITY FILL

CHCK CHECKED

CP CONTROL POINT

CY CUBIC YARDS
DI DROP INLET

DRFT DRAFTED

DSGN DESIGNED
DWG DRAWING

(E) EXISTING
E EASTING

FT FEET

LLC LIMITED LIABILITY COMPANY

MIN MINIMUM
(N) NEW

N NORTHING

NIC NOT IN CONTRACT

NTS NOT TO SCALE

PIP PROTECT IN PLACE

PL PROPERTY LINE
PRB PERMEABLE REACTIVE BARRIER

QC QUALITY CONTROL
SD STORM DRAIN

SWPPP STORM WATER POLLUTION PREVENTION PLAN

TYP TYPICAL

WDID WASTE DISCHARGER IDENTIFICATION

ZVI ZERO VALENT IRON

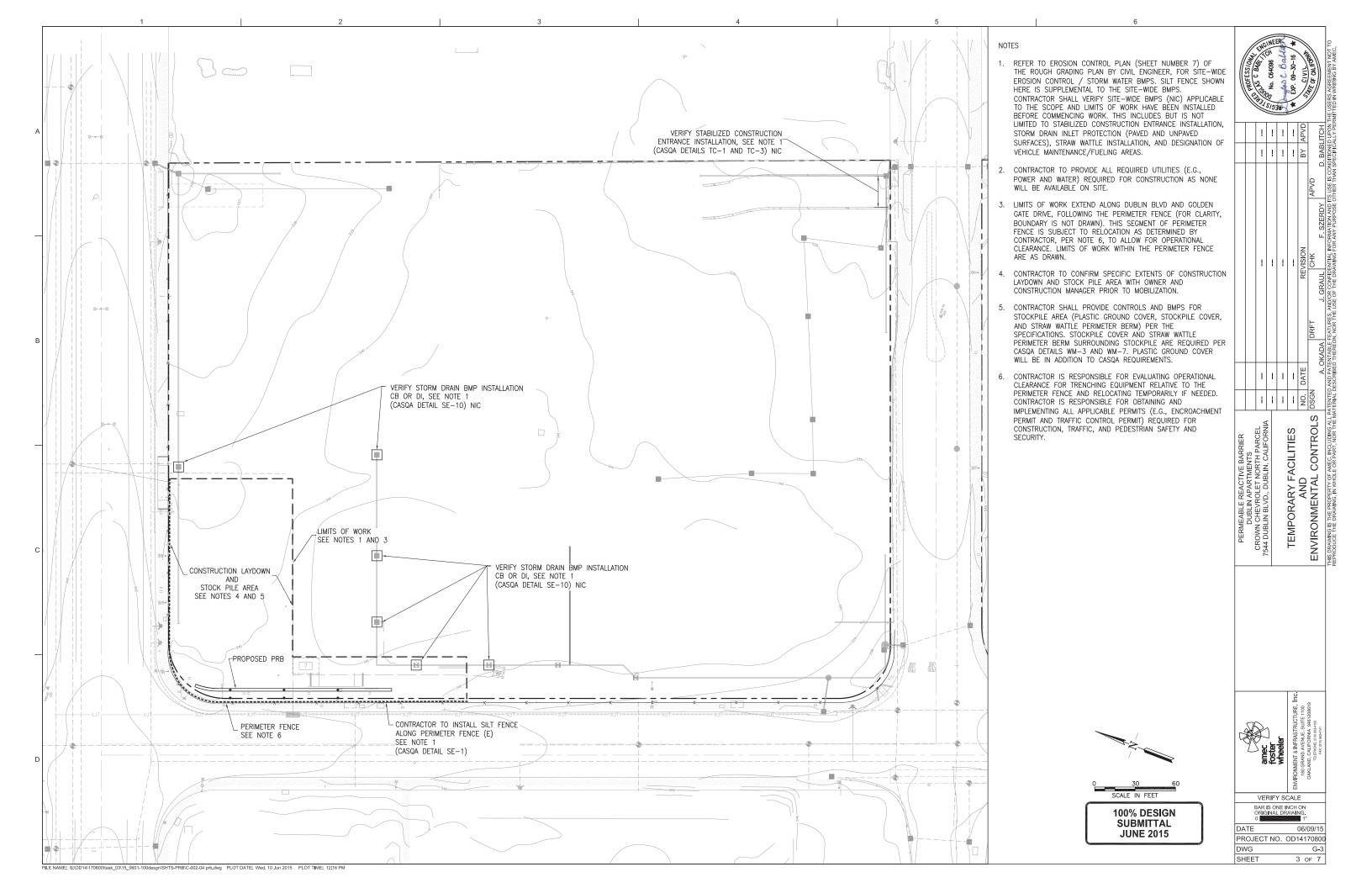
LEGEND

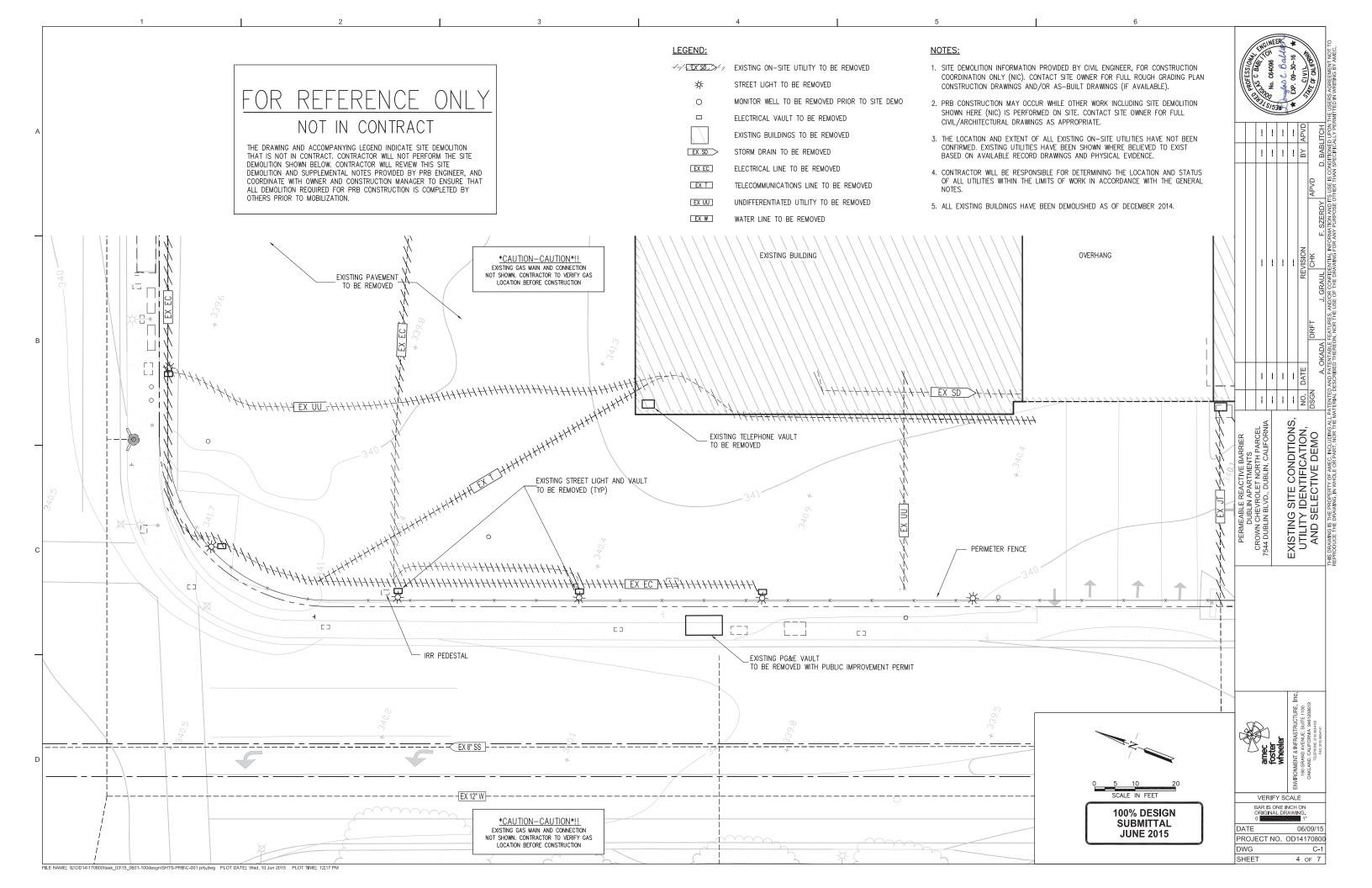
- PROPERTY LINE

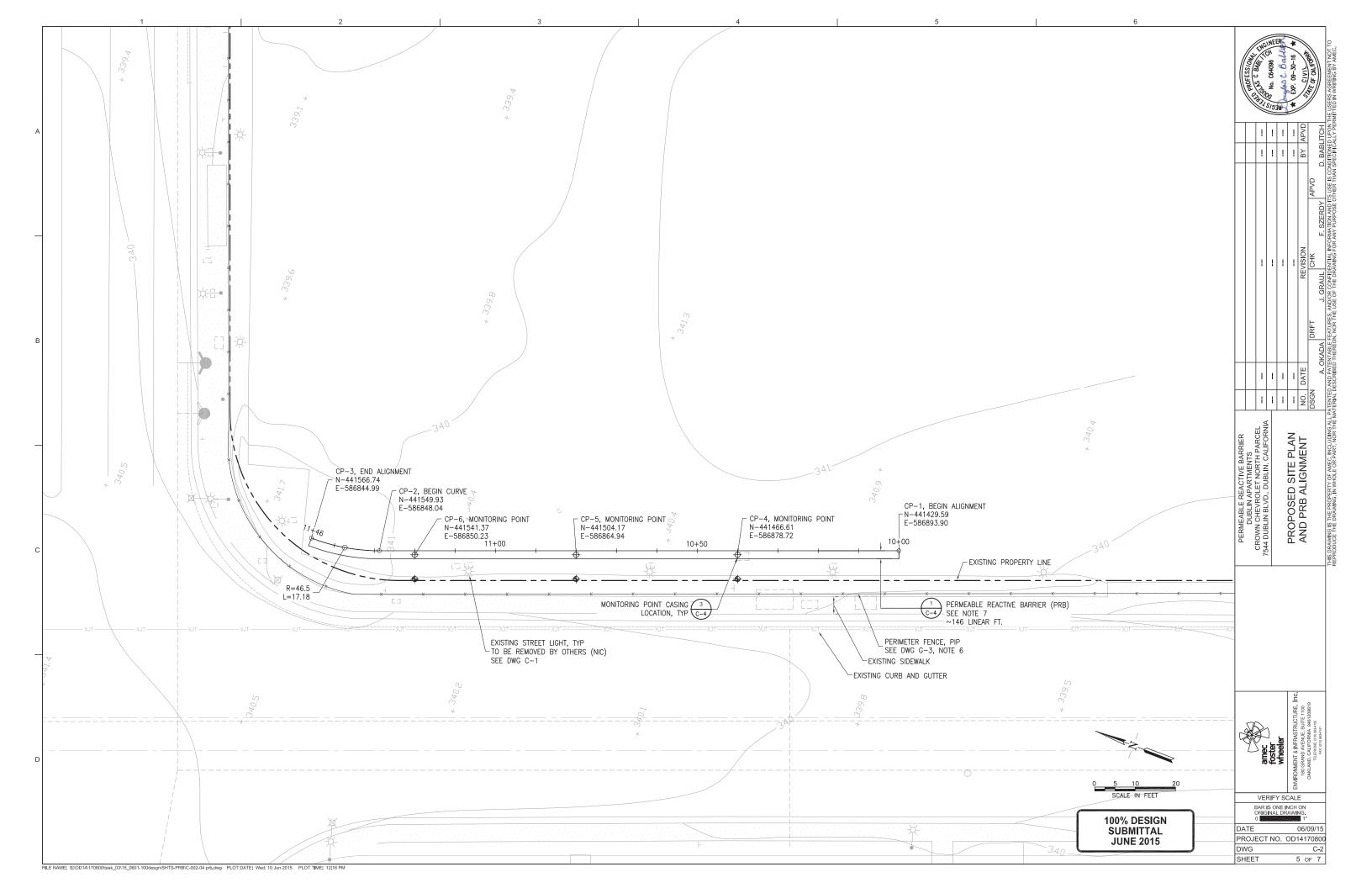
→ MONITORING POINT CASING→ MONITORING WELL, NIC

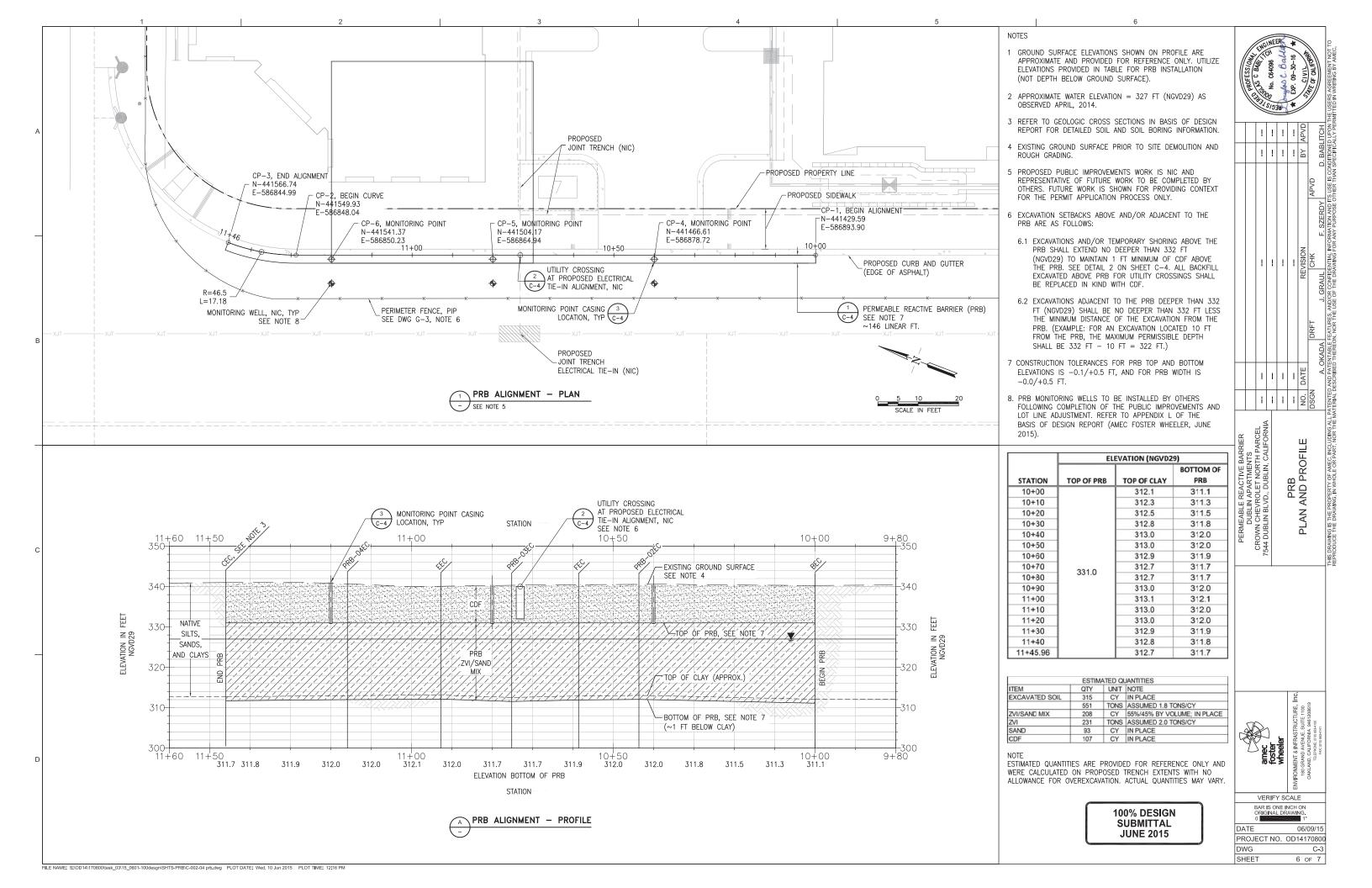
SD CATCH BASIN OR DROP INLET

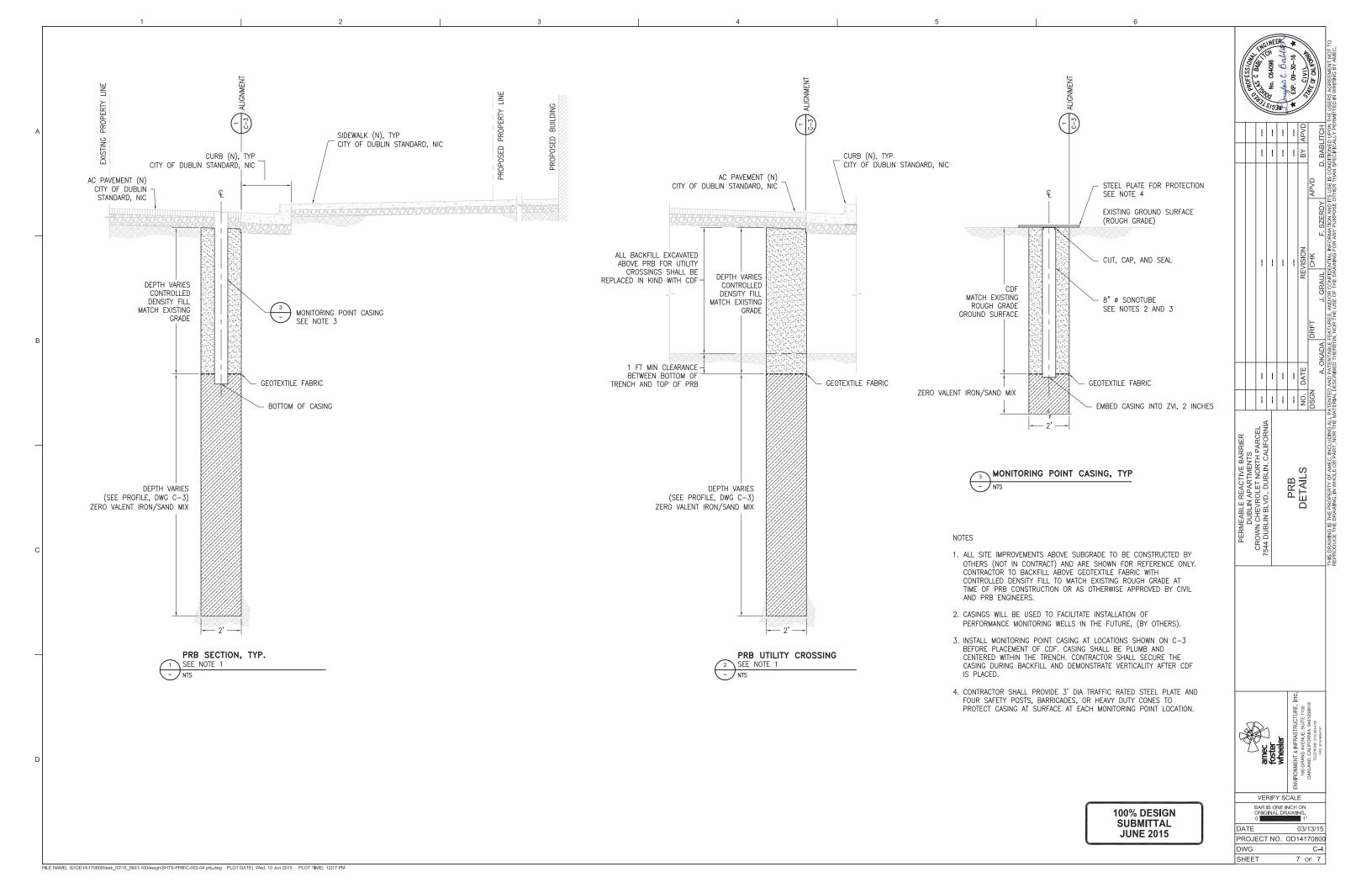
√ CP-1 CONTROL POINT


ions, and indicated in the second sec SYMBOL: LEGEND, SY ABBREVIATIC GENERAL I CROWN 544 DUBL


100% DESIGN SUBMITTAL JUNE 2015


요요	ENVIRONMEN 180 GRA OAKLAND
VERIFY SO	CALE
BAR IS ONE II ORIGINAL DR 0	
	06/09/1
JECT NO. (DD141708
i	G-
ĒΤ	2 OF 7


DATE


PROJECT DWG SHEET

SECTION 02 50 10

PERMEABLE REACTIVE BARRIER

PART 1 GENERAL

1.1 RELATED DOCUMENTS:

- A. The general provisions of the Contract, including General Conditions, Supplemental Conditions (if any), and General Requirements, apply to the work specified in this Section.
- B. The publications listed below form a part of this Section to the extent referenced. The publications are referred to in the text by basic designation only.
 - 1. American Society for Testing and Materials (ASTM):
 - a. ASTM D1557: Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort.
 - b. ASTM D2216: Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock.
 - c. ASTM D2434: Standard Test method for Permeability of Granular Soils (Constant Head).
 - d. ASTM D4044: Standard Test method for (Field Procedure) Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aguifers.
 - e. ASTM D7263: Standard Test Method for Laboratory Determination of Density (Unit Weight) of Soil Specimens.
 - f. ASTM D854: Standard Test Method for Specific Gravity of Soil Solids by Water Pynchometer.
 - g. California Test 202: Method of test for sieve analysis of fine and coarse aggregates.

1.2 RELATED WORK SPECIFIED ELSEWHERE:

- A. Section 01 11 00 Summary of Work
- B. Section 01 33 00 Submittal Procedures
- C. Section 01 35 29 Health and Safety Requirement for Remediation
- D. Section 01 50 00 Temporary Facilities and Controls
- E. Section 01 74 21 Waste Management and Disposal for Remediation
- F. Section 31 23 10 Excavation for Remediation

1.3 DESCRIPTION OF WORK

- A. Confirm adequacy of site demolition, erosion and sediment controls within the PRB limits of work as shown on the drawings.
- B. Furnish the specified PRB Media
- C. Construct a trench using biopolymer slurry trench method to construct a permeable reactive barrier (PRB).
- Perform PRB installation monitoring and PRB Media testing in accordance with this Section.
- E. Perform all required QC testing as described herein.
- F. Perform any necessary corrective actions during the warranty period until PRB achieves the specified performance criteria in this Section.

1.4 SUBMITTALS

A. Bid Submittal Requirements: Bidders shall submit the following with their bid. The submittals will be used to evaluate bids and to expedite the permitting process prior to

contract award. The submittals are listed below.

- Statement of Qualification: Provide summary of PRB installation experience using the proposed methods including the names of individuals maintaining the experience and their role on this project.
- 2. PRB Construction Narrative. The PRB Construction Narrative shall include:
 - A description of proposed methods and sequencing of operations for PRB construction including a detailed description of any proposed alternative construction methods.
 - b. Proposed earth moving and PRB installation equipment to be used.
 - c. Estimated quantity of liquid and solid spoils that will be generated.
 - d. Estimated quantity of PRB Media required.
 - e. Proposed means of demonstrating that no permanent decrease in hydraulic conductivity has occurred using the biopolymer slurry trench method following backfill including the minimum field tests specified in this Section. Include the test methods, approximate number of test locations and proposed sequence of testing.
 - f. Anticipated construction schedule using Microsoft Project including total project duration, start- and finish-dates, and major milestones of work.
- 3. Proposed methods for biopolymer slurry preparation.
- 4. Proposed PRB Media Mix Components.
 - a. Manufacturer specifications and engineering data for the zero valent iron (ZVI) and sand including gradation confirmation test results. Include quarry source for sand.
 - b. Statement certifying the sand is from a virgin source and is free of contamination and deleterious material and meets the requirements of these Specifications.
 - c. Estimated quantities of ZVI and sand.
 - d. Proposed methods for re-crushing the ZVI to manufacturer gradation requirements should condensation within super sacks cause corrosion that cements ZVI particles together.
- 5. PRB Media Preparation Plan:
 - a. Proposed method and equipment for mixing ZVI and sand.
 - b. Proposed methods for handling PRB Media materials.
 - c. Bidder's anticipated mix design (% ZVI and sand) and installation thickness to meet the required design ZVI thicknesses, including calculations and supporting documentation.
 - d. QA/QC methods for ensuring proper mix is installed at a minimum following the requirements specified in Material Quality Control and Field Quality Control in this Section.
 - e. Field sampling procedures to be implemented to ensure that ZVI and sand percentages are compliant with the basis of design.
- 6. Proposed biopolymer slurry, enzyme breaking agents and other proposed slurry additives.
 - a. Manufacturer's specifications and engineering data.
 - b. Documentation and test results indicating that the biopolymer slurry, enzymes and other additives have been used successfully in previous PRB installations with no impact to ZVI reactivity or permeability.
 - c. Documentation of biopolymer slurry and enzyme breaking agent acceptability of use by local regulatory agencies.
 - d. Estimated quantity of each to be used per day and total for the project.
 - e. Provide statement of whether Contractor is intending to use biocides (or microbicides) to slow the breakdown of biopolymer slurry during the

construction process and confirmation that biocides are accepted for use by the local regulatory agency.

- 7. Proposed Biopolymer Slurry Breakdown Method
 - a. Description of the proposed methods and sequence of operations for breaking down the biopolymer slurry within the trench. Details shall include a description of enzyme injection and recirculation, injection and recirculation point information including location and approximate spacing, diameter, total length, screen length, and proposed abandonment methods.
 - b. Bids shall be based on the assumption that injection and recirculation points will be abandoned by tremieing PRB Media into the well for the full length of the well screen and plugging the remaining portion of the well riser to the ground surface with bentonite and grout.
- B. Submittals Prior to Installation. Contractor shall submit the following submittals promptly in accordance with the Submittal Schedule. Updates to Bid Submittals shall include all items provided in the original submittal, with updates based on any new information provided and final contract negotiations:
 - 1. PRB Construction Plan Update. Provide updated PRB Construction narrative that Contractor submitted with Bid Submittal (Section 1.4 A.2) and shall include the following additional items.:
 - a. A Survey Control Plan proposed to control and document PRB placement.
 - 2. Proposed methods for biopolymer slurry preparation updated Bid Submittal (Section 1.4 A.3), .
 - 3. Proposed PRB Media mix components updated Bid Submittal (Section 1.4 A.4).
 - 4. PRB Media updated Bid Submittal (Section 1.4 A.5):
 - 5. Proposed Biopolymer Slurry, Enzyme Breaking Agents and other proposed slurry additives, updated Bid Submittal (Section 1.4 A.6).
 - 6. Proposed Biopolymer Slurry Breakdown Method updated Bid Submittal (Section 1.4 A.7)
 - 7. Methods for determining that specified PRB base elevation has been achieved and method proposed for ensuring continuous media emplacement and integrity for its full length, width and depth.
 - a. Measures proposed to cross and protect the existing underground and aboveground utilities and structures from damage, where encountered and indicated on the drawings to be retained.
 - b. Contingencies and corrective actions in the event of substantial slurry loss and/or trench sloughing.
 - Contingencies that will be implemented in the event cobbles or boulders are encountered
 - d. Contingencies to be implemented in case of inclement weather or equipment breakdown including how ZVI in various stages of placement will be handled to avoid oxidation.
 - 8. Calculations, stamped by a geotechnical engineer registered in the State of California, demonstrating that trench stability can be maintained during all phases of trench construction using the Contractor's proposed biopolymer slurry. Calculations shall address stability against blow-in or bottom heave, adjacent surface loads (such as from construction equipment, and protection of adjacent

- structures from settlement). A geotechnical report on subsurface information is included in the bid package for bidders own interpretation.
- 9. Identify required permits and licenses.
- 10. Security to be implemented to protect Contractor's and/or subcontractor's work and material storage areas and to control access to the work area. Refer to Section 01 50 00 "Temporary Facilities and Controls" for minimum site security requirements.
- 11. Setup of temporary facilities specific to the PRB installation, waste material disposal (construction debris, trash and brush) and material storage areas. Refer to Section 01 50 00 "Temporary Facilities and Controls" for minimum requirements.
- 12. Erosion/runoff control procedures. Refer to the Project Storm Water Pollution Prevention Plan (SWPPP) for minimum requirements.
- 13. Field organization and identification of personnel and their responsibilities. Identification of subcontractors.
- 14. PRB Construction Layout: Drawings showing the layout of the storage areas, PRB Media mixing area, biopolymer slurry preparation areas, spoil stockpile areas, location and sizes of stationary equipment, pumps, valves, hoses; and safety considerations to be implemented.
- 15. Contractor Quality Control (CQC) Plan: Detailed construction quality control requirements to ensure and document the quality of work during the installation of the PRB. (Refer to Part 3, paragraph entitled Field Quality Control for additional details).
- 16. Material Testing: Proposed testing procedures for material quality control and test results as detailed in the paragraph entitled Material Quality Control in Part 2 of this section. Engineer reserves the right to collect split samples of any media or materials.
- 17. Contractor Health and Safety Plan for PRB installation.
- 18. Materials Inspection Report. Submit a report detailing inspection of construction materials prior to installation to ensure that they comply with this Section. Include a certificate of compliance indicating all materials comply with this Section and Related Sections.
- 19. Construction Completion Report (after final acceptance)
 - a. Narrative of installation activities including problems encountered such as boulders during excavation, trench cave-ins, biopolymer slurry quality control issues, iron emplacement issues and how these problems were resolved.
 - b. QC inspection data.
 - c. PRB continuity testing results.
 - d. Final hydraulic conductivity demonstration results.
 - e. As-built survey record drawings (prints and magnetic media) depicting horizontal extent and vertical profile of the PRB, the locations of QC tests, the locations of boulders and other complications encountered during the installation; and plan location of installed monitoring wells.
 - f. Documentation of the quantity of materials installed (ZVI, biopolymer slurry, enzyme additives).
 - g. Construction photographs/video (DVD format).

1.5 QUALITY CONTROL/QUALITY ASSURANCE:

- A. Contractor shall demonstrate experience installing PRBs using the proposed methods.
- B. Contractor shall implement a comprehensive quality control (QC) program to verify that the intent of the specifications is met. Quality control will be provided by the Contractor. Quality assurance (QA) activities will be performed by the Engineer.
- C. Quality Control:
 - The Contractor shall prepare and implement a Construction Quality Control Plan (CQC) for the PRB wall construction. Refer to paragraphs in this Section entitled "Material Quality Control" in Part 2 and "Field Quality Control" under Part 3.
- D. Quality Assurance: The Engineer and/or Owner will provide quality assurance services in accordance with the project Construction Quality Assurance Plan and at the Engineer's/Owner's discretion. The quality assurance program will be independent of the quality control program and shall in no way reduce the Contractor's requirements for quality control. The Contractor shall review a copy of the Project CQA Plan (AMEC 2015); a copy is provided by owner.
- E. Pre-installation Conference: Contractor shall conduct a conference at the Site prior to performing PRB installation activities. This conference may be conducted in conjunction or coordination with conferences required by other Relevant Sections.
 - 1. Review methods and procedures related to excavation including, but not limited to, the following:
 - a. Health and Safety
 - b. Sequencing.
 - c. Media Mixing.
 - d. QC Testing and Inspection coordination.
 - e. Proposed equipment.
 - f. Working area location and stability.
 - g. Soil stockpiles management.
 - h. Liquids management.
 - i. Environmental controls

1.6 DELIVERY, STORAGE, AND HANDLING

- A. The Contractor shall furnish, unload, and store all ZVI and sand media materials.
- B. Contractor shall protect ZVI from contact with water. Do not store ZVI directly on the ground.

1.7 SYSTEM INSTALLATION PERFORMANCE

- A. Ensure continuous PRB Media installation and integrity of the PRB for its full length, depth and width using approved testing methods. Contractor is to describe method proposed for integrity testing in accordance with submittal requirements.
- B. Ensure that no permanent decrease in the hydraulic conductivity has occurred from construction of the PRB. Contractor shall demonstrate that there is no permanent decrease in hydraulic conductivity by:
 - Conducting viscosity measurements within the PRB Media at minimum of 1 well per 25 feet of PRB installed. To achieve substantial completion, viscosity measurements using the Marsh Funnel Test, or equal, shall be equal to background measurements as determined by Contractor and approved by Engineer.
 - 2. Verifying that water levels in the existing monitoring wells and hydraulic gradients in the vicinity of the PRB have returned to natural conditions.
 - 3. Collecting TOC data from PRB recirculation wells for comparison with background concentrations or Engineer approved equal data to assist in assessing biopolymer breakdown.
 - 4. If, in the opinion of the Engineer, any of the above investigation results indicate that the biopolymer slurry has not fully broken or a potential loss in hydraulic conductivity exist, Contactor shall drive a minimum of 1 screened well point per 25-foot length of PRB installed within the PRB to perform slug testing. Slug tests shall be performed

in accordance with ASTM D 4044 or other Engineer approved method proposed by Contractor. If slug testing indicates that the hydraulic conductivity of the in-place PRB Media is less than 142 ft/day, substantial completion has not yet been achieved. Contractor shall be required to inject additional breaking agent, continue recirculation, or other approve actions, at no additional cost to Owner, until the PRB has been demonstrated to meet the hydraulic conductivity requirements.

1.8 DESIGN CONDITIONS AND PERFORMANCE

- A. PRB Dimensions
 - 1. Design wall width, depth, height and length: As shown on the drawings.
 - 2. For bidding purposes, bidders shall base their bid on the design quantity of PRB Media (length x width x depth) plus any additional amount of PRB Media required for Bidder's installation method (i.e., the need for overlapping panels, or difficulty in achieving PRB continuity at depth, if applicable).

1.9 PERFORMANCE WARRANTY

The Contractor shall warrant that within a 1-year period following substantial completion that there will be no permanent decrease in the hydraulic conductivity due to the construction of the PRB (e.g., excavation methods and biopolymer slurry use) and that there will be no differential settlement.

PART 2 PRODUCTS

2.1 ZERO VALENT GRANULAR IRON (ZVI)

- A. The ZVI shall be Iron Aggregate product number ETI CC-1004 with the specified gradation supplied by Connelly-GPM Inc. Chicago, IL; (773) 247-7231.
- B. The ZVI shall have the following gradation (-8/+50 mesh):

US Standard Sieve Size	Percent Passing by Weight
Number 8	95-100
Number 16	75-90
Number 30	25-45
Number 50	0-10
Number 100	0-5

C. Contractor shall have the ZVI tested for the specified gradation by a state licensed laboratory using California Test 202. The Contractor shall submit the gradation test results in accordance with the Submittal requirements. The test results shall be approved by the Engineer.

2.2 SAND

- A. Grain size: Clean sand with no fines and shall have the same gradation as the ZVI.
- B. Sand shall be from a virgin source known to be free contamination and contain no recycled materials.
- C. The sand shall be free of stones, clay particles, debris, and organic or deleterious material.
- D. The sand shall be dry (5 percent moisture content or less by mass as determined by ASTM 2216 or other Engineer approved method). Contractor's use of sand with greater than 5 percent moisture content must be approved by the Engineer prior to mixing with the ZVI. Refer to the paragraph entitled Mixing in Part 3 for maximum storage times of PRB Media for different sand moisture contents.

- E. The sand shall tested for the specified gradation using Test Method No. California 202 by a state certified laboratory. The Contractor shall submit the gradation test results in accordance with the Submittal requirements. The test results shall be approved by the Engineer.
- F. Tests: Refer to paragraph entitled Quality Control/Quality Assurance.
- G. Owner will not pay for excess sand materials that remain unused at the end of construction.

2.3 BIOPOLYMER SLURRY AND ENZYMES

- A. The biopolymer slurry shall be comprised of fully biodegradable G150 Bio-Polymer guar gum or Engineer approved alternative and potable water.
- B. Enzymes approved by Engineer shall be used to speed the natural biodegradation processes. Enzymes shall not negatively impact ZVI reactivity or down gradient water quality and must be approved for use by the oversight agency.
- C. Chemical constituents and breakdown products shall not present a threat to down gradient groundwater quality, the reactivity of the ZVI, or the hydraulic conductivity of the ZVI or groundwater.
- D. Tests: See paragraph entitled Material Quality Control.
- E. Owner will not pay for excess biopolymer slurry and enzyme materials that remain unused at the end of the project.
- F. Use of biocides to slow the breakdown of biopolymer slurry during the construction process is prohibited unless approved for use by the Engineer and oversight agency prior to construction.

2.4 PRB MEDIA

- A. ZVI and sand mixes shall contain not less than 55% ZVI by volume or approximately 60% ZVI by weight (assuming bulk unit weight of 2 tons/CY).
- B. Contractor shall specify whether the proportion of ZVI used in the mixture and verified through quality control testing is given as a weight percentage or volume percentage.
- C. Quality Control Testing: See paragraphs entitled Material Quality Control and Field Quality Control.

2.5 MATERIAL QUALITY CONTROL

- A. Biopolymer Slurry Stability and Compatibility Test: Testing (i.e., viscosity, density, filtrate loss, pH, or other Engineer approved parameters) shall be performed by the Contractor prior to construction to confirm the stability of the mix for trench stability. Testing shall demonstrate that the mix is compatible with the site water chemistry and is stable during the trench construction. Results of this testing will be used as a benchmark for field quality control testing during excavation and PRB Media instalation. Details of proposed testing and the desired design parameters shall be submitted for review and approval by the Engineer prior to the tests being conducted. Test results shall be submitted for review and approval by the Engineer prior to installation.
- B. Biopolymer Breakdown Test: Refer to Bid Submittal Requirements. Bidders are required to provide evidence of successful use of their selected biopolymer and breaking agent on past projects including past test results. If required by Engineer, upon award Contractor shall also perform biopolymer breakdown tests using site water. Engineer will furnish water. Testing will utilize the same parameters as are proposed in the field and will be performed at groundwater temperatures.
- C. ZVI Reactivity Testing (Exposure to Biopolymer Slurry): Refer to Bid Submittal Requirements. Bidders are required to provide evidence of successful use of their selected biopolymer and breaking agent on past projects that demonstrate that iron reactivity has not been impacted. If required by Engineer, upon award, Contractor shall

- also perform reactivity jar tests at an independent laboratory using site water and Contractor's proposed biopolymer and breaking agent at groundwater temperatures. Analysis would be for initial and final concentrations of vinyl chloride and cis-DCE and compared with a control jar without biopolymer.
- D. Sand Gradation: Contractor shall submit sand grain size analysis results on representative samples of sand proposed for the mix design.
- E. Permeability Test (ZVI and PRB Media mixes): Prior to installation, demonstrate by ASTM D 2434 methods that the hydraulic conductivity of the PRB Media will be equal to or greater than a minimum of 142 ft/day. Samples shall be compacted to 90 percent of optimum dry density as obtained using the Modified Proctor Compaction Test (ASTM D 1557). The sand selected for testing shall be the sand that will be available for use and approved by the Engineer in the construction of the PRB. Conduct tests on 100% iron as a baseline and two additional tests at 33% (23% Alt E) and 75% iron by volume.
- F. Porosity Test (ZVI and PRB Media mixes): Prior to installation, demonstrate by ASTM D7263 and D 854 or other approved method that the mixes exceed 40% porosity. The sand selected for testing shall be the sand that will be available for use and approved by the Engineer in construction of the PRB. Conduct tests on 100% ZVI as a baseline and two additional tests at 55% and 45% ZVI by volume.
- G. Bulk Density: Perform bulk density tests for 100% ZVI, 100% Sand, and 55% ZVI/45% Sand. Provide natural water content for sand source.

2.6 BACKFILL MATERIAL:

 Controlled Density Fill and Geotextile: Refer to Section 31 23 10 Excavation for Remediation

PART 3 EXECUTION

3.1 INSPECTION

- A. Contractor shall visually inspect the site prior to mobilization to review the existing conditions and confirm with the Construction Manager that project stormwater BMPs are in place and that the Site demolition by others has been completed.
- B. Inspect materials prior to installation to ensure that they comply with this Section and submit inspection results for Engineer's approval.
- C. Allow Engineer to inspect equipment and materials at any time at the site,
- D. Remove oil or other rust inhibitors from equipment that will contact the ZVI prior to emplacement to the Engineer's satisfaction.

3.2 BIOPOLYMER SLURRY MIXING

A. Contractor shall mix the biopolymer slurry on-site using a slurry mixing plant consisting of a five cubic yard high-speed colloidal shear mixer, transfer pump and electrical generator. The biopolymer slurry mixture ratio shall be 50 to 60 pounds of G150 Bio-Polymer guar gum to approximately 1000 gallons of potable water. The biopolymer slurry shall viscous and sufficiently dense to suspend the maximum size ZVI particle yet capable of being readily pumped by a 6 inch trash pump.

3.3 PRB MEDIA MIX PREPARATION

- A. Contractor shall utilize a Volumetric Mixer (e.g., Elkin) Truck or approved equivalent to mix the PRB Media mix.
- B. Ensure that all equipment used to mix the PRB Media mix is free of foreign materials such as soil, stones, or cement.
- C. PRB Media
 - Mix the ZVI and sand to obtain the desired ZVI and sand ratio that is compliant with Engineer approved Contractor calculations and achieve a homogeneous consistency.

2. Sand moisture content shall not exceed 5 percent by mass as determined by ASTM 2216 or other Engineer approved method. Contractor's use of sand with greater than 5 percent moisture content must be approved by the Engineer prior to mixing with the ZVI. Store PRB Media mix as specified for ZVI. The PRB Media mix shall be stored no longer than indicated in the following table. If additional water is added during mixing, the PRB Media mixture shall be used within 8 hours.

Sand Moisture Content (percent)	PRB Media Mixture Maximum Allowed Storage Time (hr)
0 to 3	72
3 to 6	48
6 to 9	24
Greater than 9	8

- 3. During transport and handling, care shall be taken to minimize vertical drop and vibration of the finished product to prevent separation/segregation.
- 4. Prior to emplacement, Contractor shall demonstrate to the Engineer for his approval that the PRB Media mix meets these specifications. Refer to QC testing requirements.
- 5. Minimize PRB Media mix and biopolymer slurry contact prior to installation and ensure that the ZVI and sand do not separate during placement.

3.4 PRB INSTALLATION

- A. The biopolymer slurry trench shall be excavated to allow placement of the PRB Media to the required alignment, grades and dimensions.
- B. PRB Installation Tolerances. PRB installation tolerances shall be maintained at all points along the entire length of the PRB. The PRB shall be constructed as shown on the drawings and shall not deviate by more than:
 - 1. Alignment, -/+0.5 feet.
 - 2. Depth -0.1/+0.5 feet.
 - 3. Width -0.0/-0.5 feet.
- C. Biopolymer slurry shall be introduced into the trench at the time excavation begins and the level of biopolymer slurry shall be maintained to prevent trench cave-in to permit even installation of the PRB Media. The Contractor shall control surcharges from all excavation and backfilling equipment, waste, berm construction, stockpiles, and any other loading situations that may affect trench stability. In the event of failure of the trench walls prior to completion of the PRB Media installation, the Contractor shall re-excavate the failed length of trench removing all material displaced into the failed trench section and replace the PRB Media at no additional cost to the contract. Engineer shall be informed of any voids or discontinuities in PRB Media installation that are noted by the Contractor.
- D. Biopolymer slurry installation requirements:
 - Partially saturate the PRB Media with water immediately prior to installation in the trench in order to minimize biopolymer slurry infiltration into the PRB Media. Place the PRB Media into the trench through the biopolymer utilizing an 18" tremie tube placed immediately above the current PRB media elevation to minimize the possible segregation of PRB Media and contact with the biopolymer slurry.
 - 2. As PRB Media is being placed, excess biopolymer shall be pumped out of the trench into a frac tank or other Engineer-approved storage container for sampling and disposal.
- E. Minimum Installation Verification Requirements
 - The elevation excavation bottom shall be verified by the Contractor an interval of every 10 linear feet. The Contractor shall record each elevation measurement for approval by the Engineer.

- Contractor shall verify the depth of the trench immediately prior to backfilling with the PRB Media. Backfilling of the trench may commence after excavation of the section of the trench is complete and the depth and width are verified by the Contractor and approved by the Engineer.
- 3. The Contractor shall record the volume and weight of PRB Media installed each day for review and approval by the Engineer.
- 4. The Contractor shall not deviate from the design alignment, depth and width more than the allowable installation tolerances. The Contractor shall stop PRB installation activities immediately upon the direction of the CQA Manager should the CQA Manager observe an installation deviation greater than the specified installation tolerances.

F. Biopolymer Slurry Breakdown Method.

- 1. Enzyme injection points/recirculation well locations shall be adequate to recirculate fluid through the entire length and depth of the PRB. Locations shall be approved by the Engineer prior to implementing biopolymer slurry breakdown procedures.
- Contractor shall break down the biopolymer slurry within the trench using the approved enzyme additive following completion of the PRB Media installation to a marsh funnel viscosity of less than 30 seconds. The trench shall then be flushed and pumping and circulating the biopolymer slurry left in the trench.
- 3. Recirculation wells will be abandoned by tremieing the ZVI media into the well for the full length of the well screen and plugging the remaining portion of the well riser to the ground surface with bentonite and grout.
- 4. Conductor casings for future performance monitoring wells shall not be used for recirculation points without written approval from the Engineer.

G. PRB Completion

- 1. Install conductor casings within the trench to facilitate future monitoring well installation (to be performed by others) as shown on the Drawings.
- 2. Contractor shall cover the finished PRB with geotextile material and backfill the remaining excavation with controlled density fill as specified in Section 31 23 10 Excavation for Remediation.

3.5 FIELD QUALITY CONTROL

- A. Submit for Engineer's approval a Contractor Quality Control (CQC) Plan for the installation of the PRB. The CQC Plan shall include a description of the quality control procedures, personnel, and inspection procedures to be implemented for the work specified. Contractor shall certify that the Plan has been implemented during the PRB installation. All QA/QC records shall be submitted to the Engineer for review and confirmation that the CQC Plan is being adhered to. The Plan shall identify the following:
 - 1. An individual within the Contractor's organization, the Quality Control Manager, who will be responsible for quality control during the work. The responsible individual shall be qualified and have a minimum of 5 years of experience with the type of work tasks specified herein, and shall demonstrate his/her ability to perform correctly the duties required to the satisfaction of the Engineer. The Quality Control Manager shall be on site whenever work is in progress.
 - A schedule for collection, submittal and review of quality control data. The schedule will specify who is responsible for review of the data. State what correction procedures will be used if deficiencies are noted and who will be responsible for implementing the corrections.
 - 3. Plans for measurements and testing shall include:
 - j. A Survey Control Plan used during construction to assure that:
 - (1) the media is being placed to the required alignment, grades, depths, and dimensions.
 - (2) Biopolymer slurry, ZVI and total PRB Media volumes are monitored at regular specified frequency (no less than once every 25 feet).

- k. A materials installation quality control plan to include:
 - (1) Field sampling and frequency requirements to ensure that chemical and geotechnical characteristics of biopolymer slurry mixes are sufficient for excavation wall support prior to installation.
 - (2) Field sampling of PRB Media ZVI and sand percentages to ensure compliance with the basis of design (i.e., required percentage of ZVI) prior to installation and during installation. Testing shall consist of separation of the mixed material using a magnet and accurately measuring each material to ensure it falls within the specification. Contractor shall complete a Magnetic Separation Test Record (MSTR) for each test. Each MSTR shall be approved by the Engineer. The MSTR is included with the Construction Documents as an attachment.
 - (3) Field sampling for analysis of moisture content of the sand from selected stockpiles prior to mixing. Sand shall contain 5 percent moisture or less.
- I. An installment verification plan to verify the installed continuity of the PRB.
- B. Contractor shall perform quality control tests, survey control, and installment verification testing in accordance with the approved CQC Plan and ensure that the work is performed to the specifications established in this Section. Refer to paragraph entitled Material Quality Control for testing requirements of materials prior to installation. If survey control or installment verification testing reveals possible discontinuous placement, Engineer may require that the Contractor replace or add additional iron to the affected portion of the PRB at no additional cost.
- C. Contractor shall maintain records for all testing, measurements, observations and inspections. These QA/QC records shall be submitted to the Engineer for review each workday on a form acceptable to the Engineer, and also retained for submission in the Construction Completion Report.
- D. Contractor shall prepare and maintain daily installation logs for daily review and approval by Engineer. The daily installation logs shall include:
 - 1. Project name/date.
 - 2. Installation equipment used.
 - 3. Activities performed during the day/linear distance of PRB installed.
 - Records/photographs documenting unusual phenomena or changes in soil conditions.
 - 5. Quantities of ZVI, sand, biopolymer slurry used per installed section of PRB.
 - 6. Quantity of spoils generated per day.
 - 7. Deficiencies noted and how corrected.
 - 8. Accidents and safety-related incidents.
- D. If the Engineer notifies the Contractor of any non-compliance with the foregoing requirements or approved CQC Plan:
 - 1. The Contractor shall, after receipt of such notice, immediately take corrective action. Such notice, when delivered to the Contractor at the site, shall be deemed sufficient for the purpose of notification.
 - 2. Any deficiency corrections shall be accomplished within the time stated by the Contractor and approved by the Engineer for completion of the work. If the Contractor fails to comply, the Engineer may issue an order stopping all or part of the work until satisfactory corrective action has been taken.
 - 3. No part of the time lost due to any such stop orders shall be made the subject of claim for extension of time or for excess cost damages by the Contractor.

3.6 FIELD DEMONSTRATION

A. For field demonstrations, refer to paragraph in Part 1 entitled "System Installation Performance" regarding conductivity demonstration for Substantial Completion.

3.7 DOCUMENTATION

- A. Provide all test records, volumes, weights and quantities of materials used.
- B. Provide as-built survey for the final installed extents of the PRB:

- a. Clearly indicate corners, centerline, and curve points.
- b. Provide survey point data at least every 25 feet along each side of the PRB.
- c. Provide surface elevation of final CDF surface. Locate conductor casings installed within the CDF backfill for future monitoring well installation.

3.8 PROTECTION OF COMPLETED PRB

- A. Following completion of the PRB installation, the excavation setbacks above and/or adjacent to the PRB are as follows:
 - a. Excavations and/or temporary shoring above the PRB will extend no deeper than 332 feet (NGVD 29) to maintain 1 foot minimum of CDF above the PRB. See Detail 2 on Sheet C-4.
 - b. Excavations adjacent to the PRB deeper than 332 feet (NGVD 29) will be no deeper than 332 feet less the minimum distance of the excavation from the PRB. (Example: for an excavation located 10 feet from the PRB, the maximum permissible depth will be 332 feet 10 feet = 322 feet.)

END OF SECTION

APPENDIX H

PRB Thickness Design Calculations

TABLE H-1

PERMEABLE REACTIVE BARRIER THICKNESS DESIGN CALCULATIONS

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Constituent of Concern	Influent Concentration C _{Inf} (μg/L)	Effluent Goal C _{Eff} (μg/L)		Laboratory determined 1/2 life ¹ t _{1/2} (days)	Laboratory determined First-order Decay Rate ² k ₀ (day ⁻¹⁾	Field (Adjusted) First-order Decay Rate ³ k ₁ (day ⁻¹)	Field Residence Time (utilizing k₁) T (hours)	Groundwater Seepage Velocity ⁴ V (ft/day)	Estimated Thickness L (ft)	Factor of Safety ⁵	Design ZVI Thickness (effective) (ft)
PCE	250	63	2.7	0.11	6.16	3.08	10.7	0.8	0.36	3.0	1.1
TCE ⁶	213	130	1.9	0.079	8.75	4.38	2.7	0.8	0.095		
cis-1,2-DCE ⁶	40	3100	7.9	0.33	2.11	1.05		0.8			
Vinyl chloride ^b	1	1.8	0.6	0.025	27.72	13.86		0.8			

Notes

- 1. COC half-lives were determined by SiREM using zero-valent iron column studies.
- 2. Laboratory determined first-order decay rate is calculated as $k_0 = \ln(C_{lnf}/C_{1/2}) / t_{1/2} = \ln(2) / t_{1/2}$, where $\ln(2)$ represents a reduction of concentration by half (i.e., half-life).
- 3. The laboratory first-order decay rate was adjusted by a 50% reduction to account for lower temperatures in the field in comparison with the laboratory (DTSC, 2008).
- 4. The groundwater seepage velocity was determined using a borehole dilution test (BOD Report, Appendix B).
- 5. A factor of safety is applied to account for field uncertainties (ITRC, 2011).
- 6. Thickness calculations are not required for COCs other than PCE.

Abbreviations

μg/L = micrograms per liter

cis-1,2-DCE = cis-1,2-dichloroethene

COC = constituent of concern

ft = feet

ft/day = feet per day

PCE = tetrachloroethene

TCE = trichloroethene

APPENDIX I

Construction Quality Assurance Plan, Vapor Mitigation System

and

Construction Quality Assurance Plan, Permeable Reactive Barrier

Construction Quality Assurance Plan Vapor Mitigation System

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared for:

BWD Dublin, LLCDublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100

Oakland, California 94612

June 2015

Project No. OD14170800

TABLE OF CONTENTS

			Page
I1.0	INTR	ODUCTION	I-1
	l1.1	Background	
	l1.2	Purpose	
	I1.3	DEFINITIONS	
		I1.3.1 Construction Quality Management Program	
		I1.3.2 Construction Quality Assurance Plan	
		I1.3.3 Construction Quality Control Plan	
		I1.3.4 Manufacturer Quality Control	
		I1.3.5 Owner	
		I1.3.6 Construction Manager	
		I1.3.7 Regulatory AgencyI1.3.8 Design Engineer	
		I1.3.9 CQA Manager	
		I1.3.10 Contractor	
		I1.3.11 Subcontractor	
		I1.3.12 Construction Documents	
10.0	DECE		
12.0		PONSIBILITIES AND AUTHORITY	
	12.1 12.2	OWNER	
	12.2	REGULATORY AGENCY	
	12.3	DESIGN ENGINEER	
	12.5	CQA MANAGER	
	12.6	CONTRACTOR	
	12.7	SUBCONTRACTOR	
12.0		MUNICATIONS AND MEETINGS	
13.0	I3.1	CHAIN OF COMMAND AND COMMUNICATION	
	13.1 13.2	PRE-CONSTRUCTION MEETINGS	
	13.2	CONSTRUCTION PROGRESS AND COORDINATION MEETINGS	
I4.0		OR MITIGATION SYSTEM QUALITY ASSURANCE	
	14.1	CONTRACTOR QUALIFICATION	
	14.2	SUBGRADE PREPARATION	
	14.3	INSTALLATIONS	
		I4.3.1 Manufacturer Quality Control I4.3.2 Handling and Storage	
		I4.3.2 Handling and StorageI4.3.3 Vapor-Vent and Vent Risers Construction Quality Control	1-10
		Inspection	I-10
		14.3.4 Geo-Seal Construction Quality Control Testing and Inspection	
		14.3.5 Conformance Quality Assurance Testing and Inspection	
	14.4	REPAIRS	
	14.5	INSTALLATION ACCEPTANCE	
15.0	NON-	CONFORMANCE ACTION PLAN	I-12
	l5.1	NON-CONFORMANCE IDENTIFICATION AND REPORTING	
	15.2	NON-CONFORMANCE ACTION PLAN	I-13

TABLE OF CONTENTS (cont'd)

	15.3	CORRECTIVE ACTION ACCEPTANCE	I-13
16.0		UMENTATIONFINAL COMPLETION	
	16.2	CONSTRUCTION COMPLETION REPORT	I-14
	16.3 16.4	RECORD DOCUMENTSSTORAGE AND RETENTION	
17.0	REFE	ERENCES	I-14
		FIGURES	
		FIGURES	

Figure I-2-1 Figure I-2-2 Figure I-2-3 Site Location Map Site Plan Quality Program Organizational Chart

APPENDIX I-2

CONSTRUCTION QUALITY ASSURANCE PLAN VAPOR MITIGATION SYSTEM

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

I1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler") on behalf of Bay West Development Dublin, LLC ("BWD Dublin") has prepared this Construction Quality Assurance (CQA) Plan for construction of the vapor mitigation system (VMS) portion of the approved remedy at the Former Crown Chevrolet facility, located in Dublin, California (the "site"; Figure I-2-1). The CQA Plan describes quality assurance activities that will be performed by the CQA Manager before and during construction to insure that the project fulfills the requirements for quality presented in the Construction Documents.

The site is bound by Dublin Boulevard to the north, Golden Gate Drive to the west, St. Patrick Way to the south and retail businesses to the east, as shown on Figure I-2-2. The site is a rectangular-shaped parcel with plan dimensions of approximately 400 feet by 550 feet.

The primary elements of the approved remedy consists of installation of a VMS and a permeable reactive barrier (PRB). The scope of this document includes quality assurance for construction of the VMS only (the "Project"). Quality assurance for construction of the PRB is addressed in a separate document. CQA requirements for other construction activities at the site are not included in the scope of this document.

I1.1 BACKGROUND

The site was developed in 1968 as a car dealership called Crown Chevrolet Cadillac Isuzu that included an auto body repair shop. Operations as a car dealership and auto body repair shop occurred from 1968 until 2014. Site remedial activities were performed between 2011 and 2015 and included removal of contaminated soil, underground storage tanks (USTs), utilities, and subsurface features from the northern area of the site. From December 2014 through March 2015 select redevelopment activities were completed, including demolition of buildings, foundations, and hardscapes. The site is currently in the process of being redeveloped into a mixed use commercial/residential apartment complex. Additional site background information is presented within the *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* ("Design Report;" Amec Foster Wheeler, 2015).

I1.2 PURPOSE

This CQA Plan has been prepared to meet the quality assurance requirements set forth in the following Project documents:

- Construction Documents.
- An August 16, 2013 Letter from the Alameda County Environmental Health ("ACDEH Letter;" ACDEH, 2013).
- The Final Feasibility Study and Corrective Action Plan (AMEC, 2014), and
- The Design Report.

The CQA Plan presents the quality assurance activities that will be performed by the CQA Manager before and during construction of the Project to insure that the Project fulfills the requirements for quality presented in the documents listed above. Although the design and construction of the VMS are part of a larger commercial/residential development project, the scope of this CQA Plan only addresses requirements specific to the VMS.

The Project Construction Documents have been prepared to meet the requirements of the Corrective Action Objectives (CAOs) and functional objectives, which were developed to mitigate risks associated with contaminated groundwater and soil vapor. The CAOs and functional objectives are presented in the Design Report and the ACDEH Letter.

I1.3 DEFINITIONS

For the purpose of this CQA Plan, the following definitions will apply.

I1.3.1 Construction Quality Management Program

The Construction Quality Management Program (CQMP) is comprised of the CQA Plan and the Construction Quality Control (CQC) Plan. The CQMP defines the roles, responsibilities, and procedures required of the parties involved before, during and after construction of the VMS to ensure that the work is performed in accordance with the design intent and requirements of the Construction Documents.

I1.3.2 Construction Quality Assurance Plan

The CQA Plan has been prepared by the Engineer and will be implemented by the CQA Manager. The CQA Plan presents a planned system of quality assurance activities that will provide the Owner and the Regulator assurances that the construction meets the requirements of the Construction Documents. These requirements include qualifications and experience necessary for contractors and inspectors involved in the construction of the VMS, as well as performance criteria for construction monitoring and documentation, construction inspections, and as-built documentation.

I1.3.3 Construction Quality Control Plan

The CQC Plan is prepared and implemented by the Contractor. The CQC Plan is a planned system of inspections and tests to monitor and verify that construction workmanship is meeting the requirements of the Construction Documents for the Project. The inspections and tests are performed by the Contractor and associated subcontractors throughout construction, as required, to confirm the final constructed product is compliant with the Construction Documents.

I1.3.4 Manufacturer Quality Control

The Manufacturer Quality Control (MQC) program is a planned system of monitoring, inspecting, and testing performed by the manufacturer of construction materials to ensure that the manufactured product meets the required specified values.

11.3.5 Owner

The Owner is the party with whom the Owner's Representative has entered into an agreement and for whom the Project work is to be provided. The Owner coordinates with the Regulatory Agency and makes decisions related to the design and construction of the Project, in consultation with the Design Engineer. The Owner is Dublin Apartment Properties, LLC.

I1.3.6 Construction Manager

The Construction Manager is the Owner's Representative who oversees construction activities. The Construction Manager is BWD Dublin, LLC.

I1.3.7 Regulatory Agency

ACDEH is the regulatory agency that reviews and approves the Design Report, Construction Documents and the Construction Completion Report.

I1.3.8 Design Engineer

The Design Engineer is the Engineer of record for the firm responsible for the completed Project Construction Documents. Amec Foster Wheeler is the firm responsible for the completed Construction Documents. For clarity, the designation "VMS Engineer" has been used within the Construction Documents to differentiate between other engineering and/or architectural entities that have contributed to the overall BWD Dublin Apartments design and associated construction documents.

I1.3.9 CQA Manager

The CQA Manager is responsible for performance of the quality assurance activities identified in the CQA Plan. A professional engineer from Amec Foster Wheeler will be the CQA Manager for the Project.

I1.3.10 Contractor

The Contractor is the party that is hired by the Owner to provide the completed Project. ZCon Builders of Oakland, California, is the Contractor responsible for providing the Project in accordance with the Construction Documents and the Contractor's CQC Plan.

I1.3.11 Subcontractor

A Subcontractor is the party with whom the Contractor has entered into an agreement to provide some or all of the construction work described in the Construction Documents. No Subcontractors have been identified for the Project. Subcontractors for construction of the Project will have to meet the minimum requirements for qualifications and experience described in this CQA plan and within the Construction Documents. The Contractor will be responsible for Subcontractor performance and management.

I1.3.12 Construction Documents

The documents prepared by the Design Engineer on behalf of the Owner for the purpose of conveying the Project to the Contractor. The construction documents include the construction specifications and construction drawings for the VMS only and provide a description of the work and the technical construction requirements.

12.0 RESPONSIBILITIES AND AUTHORITY

The CQMP includes the parties shown on the Quality Program Organizational Chart (Figure I-2-3). The associated responsibilities and authority for each party are described in the following sections.

I2.1 OWNER

The Owner makes the decisions on the Project and selects all associated parties (with the exception of the regulatory agency) to assist them in the execution of the work associated with the Project. Specific responsibilities and authorities include:

- Selecting the Construction Manager.
- Selecting the Design Engineer.
- Stopping the Contractor's work if it is found to be defective or out of compliance with the Construction Documents.
- Approving changes to the Construction Documents including all Addenda, Change in Work Directives/Field Orders, and Change Orders.
- Providing final documentation to the Regulatory Agency to support construction certification.
- Communicating with the Regulatory Agency, the Design Engineer and Construction Manager throughout design, construction, and certification.
- Construction Manager and CQA Manager invoice management and payment.

12.2 CONSTRUCTION MANAGER

The Construction Manager has the following specific responsibilities and authorities:

- Manages and represents the interests of the Owner during construction.
- Retains the Contractor under contract to provide the Project.
- Contractor invoice management and payment.
- Communicating with the Owner, Contractor, and Subcontractor regularly throughout construction.
- Stopping the Contractor's work if it is found to be defective or out of compliance with the Construction Documents.
- Performing daily construction administration and management on behalf of the Owner.
- Reviewing and approving the Contractor's submittals, requests, invoices, and completed work.
- Observing the Contractor's measurement of material quantities to determine appropriate payment.
- Maintaining all required project documentation that permits review by the Regulatory Agency.
- Observing and documenting that the work of the Contractor meets the technical specifications in the Construction Documents.
- Managing, scheduling, and coordinating the required CQA activities with the CQA Manager.
- Reviewing MQC and CQC test results, data, and installed work to verify compliance with the Project requirements.
- Preparing CQA Certification in coordination with CQA Manager for submittal to the Regulatory Agency.

12.3 REGULATORY AGENCY

The Regulatory Agency has the following specific responsibilities and authorities:

- Reviewing, providing comments on, and approving the corrective action design documents submitted by (or on behalf of) the Owner including the Design Report and Construction Documents.
- Providing remedial design approval and authorization for implementing the remedial action.
- Reviewing and accepting CQA Certification at Project completion.

12.4 DESIGN ENGINEER

The Design Engineer has the following specific responsibilities and authorities:

- Assisting the Owner with preparation of the regulatory documents.
- Preparing Construction Documents for the Project as the Engineer of Record for the Project.

- Assisting the Construction Manager in reviewing the Contractor's technical submittals during construction, especially those that are requesting deviations from the Construction Documents such as material substitutions or changes in specified methods of construction.
- Providing responses to requests for information or clarification from the Owner, Construction Manager, Contractor and Subcontractor's.
- Consulting with the Owner and Construction Manager, as required, during construction to address unforeseen or appreciably differing conditions, and any technical issue that affects the design for the Project.
- Assisting the Construction Manager in issuing Field Orders or Change in Work Directives to document and approve design modifications associated with unforeseen conditions, material/product substitutions, or Contractor and/or Subcontractor requests.

I2.5 CQA MANAGER

The CQA Manager has the following specific responsibilities and authorities:

- Implementing the CQA Plan.
- Coordinating implementation of the CQA Plan with the Construction Manager.
- Reviewing and approving the Contractor CQC Plan.
- Performing audits of CQC and CQA Plan performance.
- Reviewing CQC and CQA Plan reporting.
- Providing CQA Certification to the Regulatory Agency.

I2.6 CONTRACTOR

The Contractor has the following specific responsibilities and authorities:

- Performing daily construction administration and management.
- Communicating with the Construction Manager regularly throughout construction.
- Preparing and complying with the CQC Plan, which presents procedures for documenting compliance with construction requirements.
- Stopping the work if it is found to be defective or out of compliance with the Construction Documents.
- Maintaining all required Project documentation that permits review by the Owner, CQA Manager, Design Engineer, Construction Manager and authorized representatives of the Regulatory Agency.
- Contracting with and managing qualified Subcontractors to perform specialty work and installation.
- Observing and documenting that the work practices of the Subcontractor follow the Construction Documents.
- Managing, scheduling, and coordinating the required CQC and CQA Plan activities with the Design Engineer, CQA Manager and Construction Manager.

- Reviewing MQC and CQC Plan test results, data, and installed work to verify compliance with the project requirements.
- Submittal of all MQC and CQC Plan test results and data to the Construction Manager.
- Preparing CQA Certification in coordination with the CQA Manager, Design Engineer and Construction Manager for submittal to the Regulatory Agency.

12.7 SUBCONTRACTOR

The Subcontractor has the following specific responsibilities and authorities:

- Communicating with the Contractor as appropriate throughout construction.
- Constructing the project in accordance with the Construction Documents including equipment and material specification.
- Informing the Contractor of changes required to the Construction Documents due to product/material substitutions or differing/unforeseen conditions.
- Documenting CQC Plan activities, measurements, test results, and inspections.

13.0 COMMUNICATIONS AND MEETINGS

The lines of communication for the Project are shown on Figure I-2-3. The lines of communication were developed to facilitate dialogue between the respective parties leading to collaboration and resolution of design, construction, and regulatory issues.

13.1 CHAIN OF COMMAND AND COMMUNICATION

The identified lines of communication ensure that the appropriate chain-of-command is followed to allow consistent and accurate dissemination of information and decision making. Other direct lines of communications, if requested, will be reviewed and approved by the Owner on a case by case basis.

It is expected that informal communications will occur on a daily basis during execution of the Project. Formal communications in the form of meetings and inspections will be performed at prescribed Project milestones to provide important coordination, documentation of progress, and discussion of non-conforming work and required corrective actions.

I3.2 Pre-Construction Meetings

Pre-construction meetings will be held prior to the start of VMS construction, respectively, after the associated contracts have been awarded. Each meeting will be attended by the Owner, Design Engineer, Construction Manager, CQA Manager, Contractor, and Subcontractors. A representative of ACDEH may also attend and will be notified at least one week prior to the scheduled meeting.

The pre-construction meeting provides the opportunity to introduce the individuals involved in the project and to make sure the responsibilities and authority of each individual are clearly understood. The minimum agenda will include:

Amec Foster Wheeler

- Organizational arrangement of the Contractor's workforce and personnel, and those of subcontractors, suppliers, and the Construction Manager.
- Channels and procedures for communications.
- Sequence of critical work, such as installation of VMS membrane.
- Discussion of the Project and how it is depicted in the Construction Documents, including distribution of original documents and revisions.
- Design features, construction methods, and open discussion of potential construction problems and any other concerns.
- The proposed construction schedule.
- The role and requirements of the CQA Plan and CQC Plan prior to, during and after construction.
- Review process for submittals including shop drawings and other data.
- The submittal schedule including Design Engineer review and response time.
- Procedures for testing and potential implications of the test results.
- Procedures for documentation.
- A tour of the construction site.

13.3 CONSTRUCTION PROGRESS AND COORDINATION MEETINGS

Once construction is started, construction progress and coordination meetings will be held weekly or as required by the Construction Manager. Construction progress and coordination meetings will be used to discuss coordination items, schedules, problems encountered in the field, existing or pending issues that may require proactive planning and response, and to, resolve outstanding issues. The meetings will be attended by the Construction Manager, CQA Manager, Contractor, and the Subcontractor. The Owner or its agents will attend when appropriate and ACDEH may attend. Contractors performing other work at the site may also attend as appropriate. Meeting dates and times will be set at the pre-construction meeting. Minutes of the meetings will be taken and distributed by the Construction Manager.

Construction progress and coordination meetings also may be held with little prior notice, if necessary, to allow discussion of immediate tasks or issues.

The meeting agenda will include:

- Review, revise as necessary, and approve minutes of previous meeting.
- Review of work progress.
- Identification of problems.
- Development of corrective measures and procedures for the identified problems.
- Other current construction business.
- Coordination of the collection of material samples and performing laboratory testing.

- Coordination and scheduling of field testing.
- Discussion of the submission of test results and reports (daily and weekly).
- Implementation of non-conformance action plans to remedy problems detected through failing tests.
- Status of CQC and CQA submittals for approval.

14.0 VAPOR MITIGATION SYSTEM QUALITY ASSURANCE

This section presents specific CQA Plan activities associated with construction of the VMS.

I4.1 CONTRACTOR QUALIFICATION

The Contractor will provide certification of licensure to perform construction at the site and the appropriate health and safety certifications as required by local, state and federal agencies for both the Contractor and Subcontractor as appropriate.

The Contractor will provide documentation demonstrating that the Contractor or Subcontractor meets the experience and qualification requirements specified in the Construction Documents for the successful installation of the Geo-Seal[®] membrane and Vapor-Vent[™] systems. Contractor will provide documentation that they or their Subcontractor are a manufacturer certified installer.

I4.2 SUBGRADE PREPARATION

The subgrade surface must be prepared in accordance with the Construction Documents prior to placement of Vapor-Vent™ system and Geo-Seal membrane. The Contractor will provide documentation confirming that the chemical and geotechnical properties of the subgrade meet the requirements of the Construction Documents. The laboratory testing results and permeable material certifications will be reviewed and evaluated by the Contractor and submitted to the Construction Manager, Design Engineer and CQA Manager for review and approval. The Construction Manager must inspect and approve the final prepared subgrade surface prior to Vapor-Vent system installation. The Construction Manager will provide final acceptance of the prepared subgrade before Geo-Seal membrane installation can occur.

I4.3 INSTALLATIONS

The VMS will consist of Vapor-Vent system and Geo-Seal membrane technologies. The installation of the Vapor-Vent venting system and the Geo-Seal membrane will be performed in accordance with the Construction Documents, the manufacturer's recommendations, and industry-accepted standards.

Installation of Vapor-Vent and Geo-Seal are considered specialty construction that must be completed by a Certified Installer. If necessary, the Contractor will subcontract a Certified Installer to perform the installation and associated QC testing for the Vapor-Vent venting

system and Geo-Seal membrane. The Contractor will be responsible for Subcontractor performance and management.

I4.3.1 Manufacturer Quality Control

The Vapor-Vent system and Geo-Seal membrane manufacturer will provide testing data and certification from their MQC program indicating the material meets or exceeds the specified performance requirements. The testing data and associated certification will be submitted by the Contractor to the Construction Manager, Design Engineer and CQA Manager for review and approval prior to delivery of the material to the site. The MQC testing data and certifications must be for material from the same lot or production run as the material designated for the Project. The required testing data to be included on the MQC certifications for each material are described in the technical specifications for Vapor-Vent and Geo-Seal, which are part of the Construction Documents.

14.3.2 Handling and Storage

The Contractor will inform, and coordinate with the Construction Manager of the delivery schedule for the Vapor-Vent and Geo-Seal material and related equipment. Upon delivery, the Contractor will inspect the materials and confirm they are in accordance with the Specifications before accepting the materials for delivery. Damaged materials not meeting the specifications will be segregated and tagged for repair or replacement.

The storage and handling of Vapor-Vent and Geo-Seal materials will be the responsibility of the Contractor. Storage and handling will follow guidelines set forth in the Construction Documents, including ensuring that materials are stored in a clean, dry, and protected location and within the temperature range required by the manufacturer. The Contractor will provide the Construction Manager and CQA Manager documentation that the Vapor-Vent and Geo-Seal® materials were inspected and delivered in accordance with the Specifications.

I4.3.3 Vapor-Vent and Vent Risers Construction Quality Control Inspection

The Contractor will inspect the installed Vapor-Vent and associated vent risers to ensure the installation is in accordance with Construction Documents. The inspection will include the following:

- Condition of the trench bottom prior to placement of Vapor-Vent bedding.
- Thickness of the Vapor-Vent bedding.
- Line and grade (horizontal and vertical alignment) of the installed Vapor-Vent™.
- Location of slab penetrations in accordance with the Construction Documents.
- Jointing of the Vapor-Vent.
- Adequacy (material, depth, and width) of haunching and initial backfill of Vapor-Vent bedding.

Measuring setbacks and clearances for roof vents.

The Contractor will also complete an as-built survey location of the Vapor-Vent, including horizontal location, pipe invert, and slab penetrations.

Inspections will be documented by the Contractor, verified by the Construction Manager and submitted to the CQA Manager for review and approval. The inspections will also be included in a final Vapor-Vent and Vent Riser Construction Certification Report for submittal to and approval by the CQA Manager.

14.3.4 Geo-Seal Construction Quality Control Testing and Inspection

The Contractor will implement the manufacturer's QC procedures for field QC testing and inspection of the installed Geo-Seal membrane. The manufacturer's QC procedures are presented in the Geo-Seal specifications within the Construction Documents. The Geo-Seal Specifications identifies each classification of testing and testing frequency, and summarizes the specific testing requirements.

Inspection of the installed Geo-Seal membrane will be performed to identify nonconforming areas that require repair or replacement. A manufacturer's representative or manufacturer certified third party inspector will be present during QC testing to verify the Geo-Seal membrane has been installed per the manufacturer's specifications and the Construction Documents. Installed material not meeting the manufacturer or Construction Document requirements will be repaired or removed and replaced by the Contractor and retested accordingly. The Contractor is responsible for scheduling the manufacturer or certified inspector for field QC testing of the membrane. Field QC testing will also be witnessed by the Construction Manager and upon request by the CQA Manager.

The Contractor will document all of the Geo-Seal® field QC test results, verifications, and inspections in a final Geo-Seal® Construction Certification Report for submittal to and approval by the CQA Manager.

14.3.5 Conformance Quality Assurance Testing and Inspection

The Contractor will observe the installation of Vapor-Vent and inspect the completed work at prescribed intervals, including the following:

- The excavated trench bottom.
- The installed Vapor-Vent prior to backfilling.
- The installed Vapor-Vent bedding/cover.
- The installed Vapor-Vent vent riser slab penetrations.

The Contractor will inspect the completed work at prescribed intervals including the following:

- At each floor elevation.
- At each roof penetration.

Field inspection reports will be submitted to the Construction Manager and CQA Manager for review and approval no later than 24 hours after the inspection.

The Contractor will inspect and verify that permeable layer material thickness, Vapor-Vent layout and placement within the permeable material layer, and vent riser penetration locations are in accordance with Construction Documents.

During vertical construction of the vent risers, the Contractor will inspect the installation the risers and verify their construction within the designated party walls and per Construction Documents.

Field QC inspections will be conducted by the CQA Manager at selected intervals during the installation of the system.

I4.4 REPAIRS

The installed VMS including Vapor-Vent and Geo-Seal will be periodically inspected by the Construction Manager for damage or non-conforming installations. Areas identified by the Construction Manager as nonconforming will be repaired or replaced by the Contractor in accordance with the manufacturers' specifications or the Construction Documents until approved by the Construction Manager.

14.5 INSTALLATION ACCEPTANCE

The Design Engineer will review the Contractor as-built drawings, the Vapor-Vent and Vent Riser Construction Certification Report, and the Geo-Seal Construction Certification Report at the end of the Project to confirm the Vapor-Vent system and Geo-Seal membrane installations were in accordance with the Construction Documents and the CQA and CQC Plans.

15.0 NON-CONFORMANCE ACTION PLAN

Non-conforming materials or work are defined as material provided or work completed that does not comply with the requirements/specifications of the Construction Documents.

15.1 NON-CONFORMANCE IDENTIFICATION AND REPORTING

When either of the following two conditions exist, a Non-Conformance Action Plan should be initiated:

 Repeated attempts to construct a component of the work yields a non-conforming product as documented by CQC testing and/or inspection and documentation by the CQC Team. • CQA monitoring, inspection, or testing verifies that materials or completed work do not meet the minimum requirements specified for the Project.

I5.2 Non-Conformance Action Plan

In general, the Non-Conformance Action Plan consists of the following:

- Define the problem.
- Verify that the testing or observations which identify the problem are accurate.
- Define extent of the non-conformance using the available test information or by completing additional tests.
- Resolve the problem through additional work, re-work, or material replacement to the limits of the non-conforming area.

The first step identifies a potential problem found by inspection, and then testing further defines the problem. The second step is to verify that the original result is representative of the construction materials or in-place conditions. Test results that are not in compliance with the Construction Documents could be caused by a problem with sampling, instrument calibration, or laboratory testing errors. For in-place field testing, two additional tests will be taken within a few feet of the failed test location to verify that the test result is correct. When verification testing shows that the initial result seems to be in error, the initial result can be considered an outlier, and documented as such. If the original test result is verified, then additional testing may be conducted to define the limits of the area that is in non-conformance. Repairs or replacement will then be made to the area that is in non-conformance. Results of all testing (non-conformance, verification, and final acceptance) will be reported to the CQA Manager.

I5.3 CORRECTIVE ACTION ACCEPTANCE

A corrective action that is implemented must be confirmed successful through supporting verification testing and/or inspection/measurement. Reported non-conformances must be remedied by accepted corrective actions reviewed and approved by the CQA Manager.

16.0 DOCUMENTATION

The Project is not considered complete until the Owner grants the Contractor Final Completion and the Construction Completion Report documenting performance of the Project is approved by the regulator.

I6.1 FINAL COMPLETION

A final inspection of the site is required to confirm Final Completion of the contractual requirements between the Contractor and the Owner. Upon notice from the Contractor that the Project is complete, the Owner, the Contractor, Design Engineer and the Construction Manager will visit the site and inspect the Project. A punch list of incomplete work items will be developed for the Contractor to complete prior to Owner granting Final Completion.

16.2 CONSTRUCTION COMPLETION REPORT

After the Owner and Construction Manager grant Final Completion status to the Contractor, the Contractor will complete and submit all record documents for the Project to the Owner and Design Engineer. The Contractor will prepare the Construction Completion Report for review and approval by the Owner, Design Engineer and CQA Manager. The report will include the following:

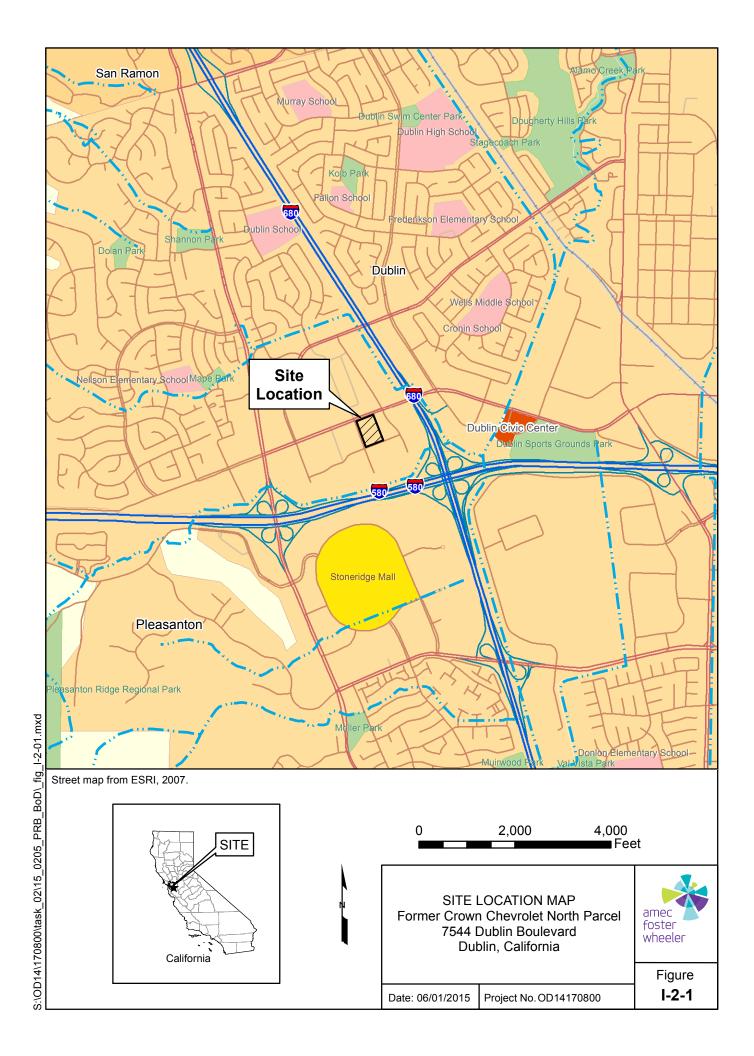
- A description of the work.
- A chronology of the VMS installation.
- Photographic documentation, showing significant stages of construction.
- Record Documents.
- A statement, bearing the seal and signature of the CQA Manager and Design Engineer, certifying that the completed Project conforms to the Construction Documents including this CQA Plan.

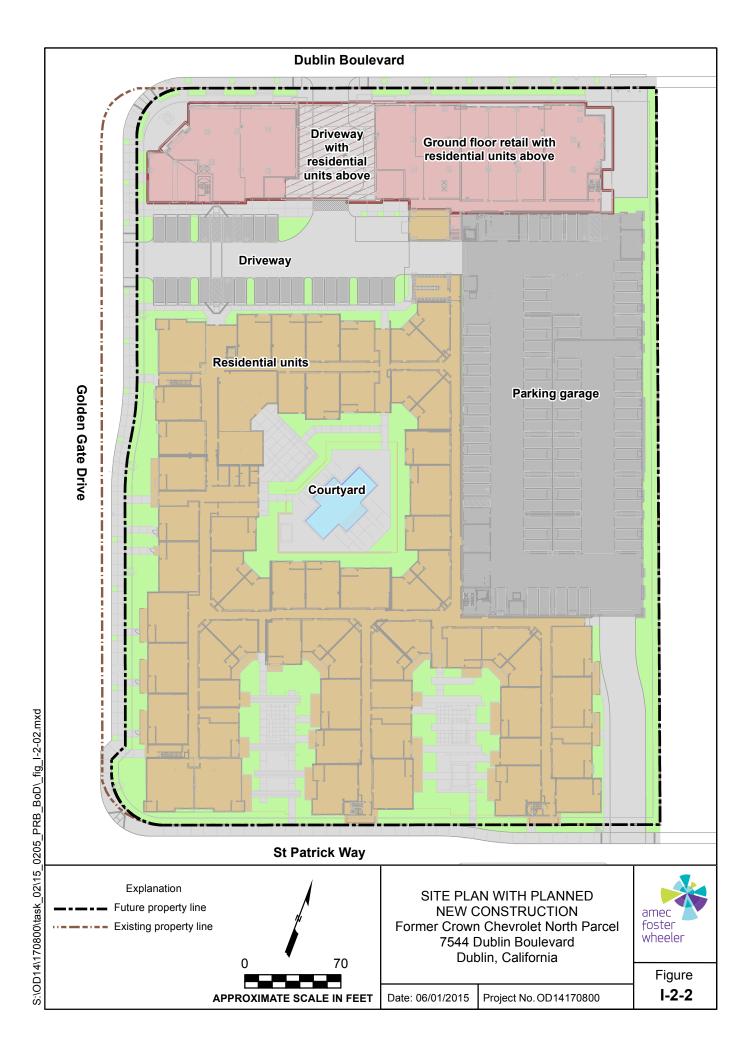
The certified Construction Completion Report will be submitted to the ACDEH for review and approval.

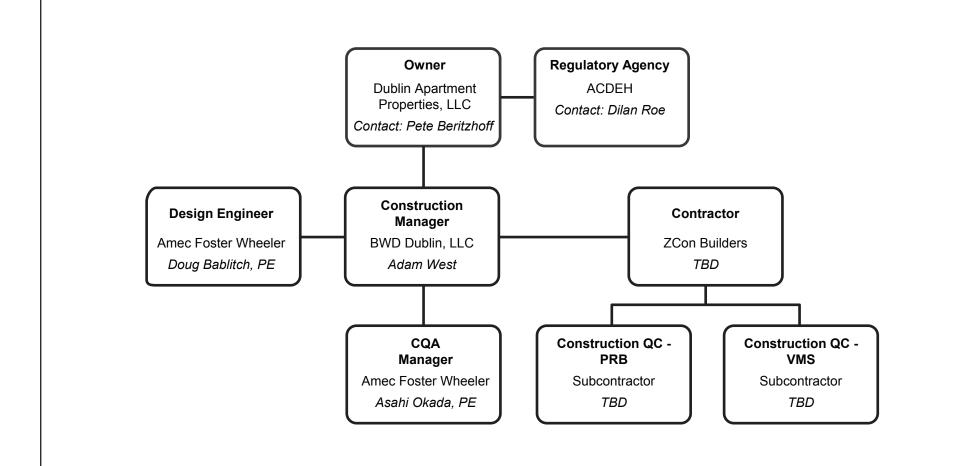
16.3 RECORD DOCUMENTS

Record documents will include field changes, change orders, test reports, material certification documents, Record Drawings, and other documents necessary to accurately define the actual constructed work. The Record Documents will be submitted by the Contractor to the Owner and Design Engineer upon completion of construction. This documentation will also be used in the preparation of the Construction Completion Report for submission to the regulator as described above.

16.4 STORAGE AND RETENTION


All record documents will be maintained by the Owner and Design Engineer in accordance with the required legal statutes.


17.0 REFERENCES


- Alameda County Health Care Services Agency, 2013. Fuel Leak Case No. RO0003014 and GeoTracker Global ID T00000001616, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, 94568, August 16.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2014a. Final Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, May 1.
- Amec Foster Wheeler Environment and Infrastructure, Inc. (Amec Foster Wheeler), 2015. Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin California, March 19.

FIGURES

Abbreviations

ACDEH = Alameda County Department of Environmental Health

CQA = Construction Quality Assurance

PRB = Permeable Reactive Barrier

QC = Quality Control TBD = To Be Determined

VMS = Vapor Mitigation System

QUALITY PROGRAM ORGANIZATIONAL CHART Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

foster wheeler

Figure I-2-3

Date: 06/01/2015

Project No. OD14170800

Construction Quality Assurance Plan Permeable Reactive Barrier

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared for:

BWD Dublin, LLCDublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

June 2015

Project No. OD14170800

TABLE OF CONTENTS

			Page
I1.0	INTRO	DDUCTION	1
	l1.1	BACKGROUND	1
	l1.2	PURPOSE	
	I1.3	DEFINITIONS	
		I1.3.1 Construction Quality Management Program	2
		I1.3.2 Construction Quality Assurance Plan	
		I1.3.3 Construction Quality Control Plan	
		I1.3.5 Owner	
		I1.3.6 Construction Manager	
		I1.3.7 Regulatory Agency	
		I1.3.8 Design Engineer	
		I1.3.9 CQA Manager	
		I1.3.10 Contractor	4
		I1.3.11 Subcontractor	
		I1.3.12 Construction Documents	4
12.0	RESP	ONSIBILITIES AND AUTHORITY	4
	12.1	OWNER	
	12.2	CONSTRUCTION MANAGER	5
	12.3	REGULATORY AGENCY	5
	12.4	DESIGN ENGINEER	5
	12.5	CQA Manager	
	12.6	CONTRACTOR	
	12.7	SUBCONTRACTOR	7
13.0	COMN	MUNICATIONS AND MEETINGS	7
	I3.1	CHAIN OF COMMAND AND COMMUNICATION	
	13.2	PRE-CONSTRUCTION MEETINGS	
	13.3	CONSTRUCTION PROGRESS AND COORDINATION MEETINGS	8
14.0	PERM	IEABLE REACTIVE BARRIER QUALITY ASSURANCE	9
	14.1	CONTRACTOR QUALIFICATION	
	14.2	SITE PREPARATION	9
	14.3	Installation	9
	I4.3.1		_
		HANDLING AND STORAGE	
	14.3.3		
	14.4	CONSTRUCTION QUALITY CONTROL TESTING AND INSPECTION	
	I4.5	INSTALLATION ACCEPTANCE	
15.0		CONFORMANCE ACTION PLAN	
	I5.1	NON-CONFORMANCE IDENTIFICATION AND REPORTING	
	15.2	NON-CONFORMANCE ACTION PLAN	
	15.3	CORRECTIVE ACTION ACCEPTANCE	13
16.0	DOCU	JMENTATION	13
	16.1	FINAL COMPLETION	
	16.2	CONSTRUCTION COMPLETION REPORT	13

TABLE OF CONTENTS (cont'd)

	16.3 16.4	RECORD DOCUMENTS	14 14		
17.0	REFERENCES				
		FIGURES			
Figure Figure Figure	I-1-2	Site Location Map Site Plan Quality Program Organizational Chart			
		ATTACHMENTS			
Attachi Attachi		J J			

APPENDIX I-1

CONSTRUCTION QUALITY ASSURANCE PLAN PERMEABLE REACTIVE BARRIER

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

I1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler") on behalf of Bay West Development Dublin, LLC ("BWD Dublin") has prepared this Construction Quality Assurance (CQA) Plan for construction of the permeable reactive barrier (PRB) portion of the approved remedy at the Former Crown Chevrolet facility, located in Dublin, California (the "site"; Figure I-1-1). The CQA Plan describes quality assurance activities that will be performed by the CQA Manager before and during construction to insure that the project fulfills the requirements for quality presented in the Construction Documents.

The site is bound by Dublin Boulevard to the north, Golden Gate Drive to the west, St. Patrick Way to the south and retail businesses to the east, as shown on Figure I-1-2. The site is a rectangular-shaped parcel with plan dimensions of approximately 400 feet by 550 feet.

The primary elements of the approved remedy consists of installation of a vapor mitigation system (VMS) and a PRB. The scope of this document includes quality assurance for construction of the PRB only (the "Project"). Quality assurance for construction of the VMS is addressed in a separate document. CQA requirements for other construction activities at the site are not included in the scope of this document.

I1.1 BACKGROUND

The site was developed in 1968 as a car dealership called Crown Chevrolet Cadillac Isuzu that included an auto body repair shop. Operations as a car dealership and auto body repair shop occurred from 1968 until 2014. Site remedial activities were performed between 2011 and 2015 and included removal of contaminated soil, underground storage tanks (USTs), utilities, and subsurface features from the northern area of the site. From December 2014 through March 2015 select redevelopment activities were completed, including demolition of buildings, foundations, and hardscapes. The site is currently in the process of being redeveloped into a mixed use commercial/residential apartment complex. Additional site background information is presented within the *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* ("Design Report;" Amec Foster Wheeler, 2015).

I1.2 PURPOSE

This CQA Plan has been prepared to meet the quality assurance requirements set forth in the following Project documents:

- Construction Documents.
- An August 16, 2013 Letter from the Alameda County Environmental Health ("ACDEH Letter;" ACDEH, 2013).
- The Final Feasibility Study and Corrective Action Plan (AMEC, 2014), and
- The Design Report.

The CQA Plan presents the quality assurance activities that will be performed by the CQA Manager before and during construction of the Project to insure that the Project fulfills the requirements for quality presented in the documents listed above. Although the design and construction of the PRB are part of a larger commercial/residential development project, the scope of this CQA Plan only addresses requirements specific to the PRB.

The Project Construction Documents have been prepared to meet the requirements of the Corrective Action Objectives (CAOs) and functional objectives, which were developed to mitigate risks associated with contaminated groundwater and soil vapor. The CAOs and functional objectives are presented in the Design Report and the ACDEH Letter.

I1.3 DEFINITIONS

For the purpose of this CQA Plan, the following definitions will apply.

I1.3.1 Construction Quality Management Program

The Construction Quality Management Program (CQMP) is comprised of the CQA Plan and the Construction Quality Control (CQC) Plan. The CQMP defines the roles, responsibilities, and procedures required of the parties involved before, during and after construction of the PRB to ensure that the work is performed in accordance with the design intent and requirements of the Construction Documents.

I1.3.2 Construction Quality Assurance Plan

The CQA Plan has been prepared by the Engineer and will be implemented by the CQA Manager. The CQA Plan presents a planned system of quality assurance activities that will provide the Owner and the Regulator assurances that the construction meets the requirements of the Construction Documents. These requirements include qualifications and experience necessary for contractors and inspectors involved in the construction of the PRB, as well as performance criteria for construction monitoring and documentation, construction inspections, and as-built documentation.

I1.3.3 Construction Quality Control Plan

The CQC Plan is prepared and implemented by the Contractor. The CQC Plan is a planned system of inspections and tests to monitor and verify that construction workmanship is meeting the requirements of the Construction Documents for the Project. The inspections and tests are performed by the Contractor and associated subcontractors throughout construction, as required, to confirm the final constructed product is compliant with the Construction Documents.

I1.3.4 Manufacturer Quality Control

The Manufacturer Quality Control (MQC) program is a planned system of monitoring, inspecting, and testing performed by the manufacturer of construction materials to ensure that the manufactured product meets the required specified values.

11.3.5 Owner

The Owner is the party with whom the Owner's Representative has entered into an agreement and for whom the Project work is to be provided. The Owner coordinates with the Regulatory Agency and makes decisions related to the design and construction of the Project, in consultation with the Design Engineer. The Owner is Dublin Apartment Properties, LLC.

I1.3.6 Construction Manager

The Construction Manager is the Owner's Representative who oversees construction activities. The Construction Manager is BWD Dublin, LLC.

I1.3.7 Regulatory Agency

ACDEH is the regulatory agency that reviews and approves the Design Report, Construction Documents and the Construction Completion Report.

I1.3.8 Design Engineer

The Design Engineer is the Engineer of record for the firm responsible for the completed Project Construction Documents. Amec Foster Wheeler is the firm responsible for the completed Construction Documents. For clarity, the designation "PRB Engineer" has been used within the Construction Documents to differentiate between other engineering and/or architectural entities that have contributed to the overall BWD Dublin Apartments design and associated construction documents.

I1.3.9 CQA Manager

The CQA Manager is responsible for performance of the quality assurance activities identified in the CQA Plan. A professional engineer from Amec Foster Wheeler will be the CQA Manager for the Project.

I1.3.10 Contractor

The Contractor is the party that is hired by the Owner to provide the completed Project. ZCon Builders of Oakland, California, is the Contractor responsible for providing the Project in accordance with the Construction Documents and the Contractor's CQC Plan.

I1.3.11 Subcontractor

A Subcontractor is the party with whom the Contractor has entered into an agreement to provide some or all of the construction work described in the Construction Documents. No Subcontractors have been identified for the Project. Subcontractors for construction of the Project will have to meet the minimum requirements for qualifications and experience described in this CQA plan and within the Construction Documents. The Contractor will be responsible for Subcontractor performance and management.

I1.3.12 Construction Documents

The documents prepared by the Design Engineer on behalf of the Owner for the purpose of conveying the Project to the Contractor. The construction documents include the construction specifications and construction drawings for the PRB only and provide a description of the work and the technical construction requirements.

12.0 RESPONSIBILITIES AND AUTHORITY

The CQMP includes the parties shown on the Quality Program Organizational Chart (Figure I-1-3). The associated responsibilities and authority for each party are described in the following sections.

I2.1 OWNER

The Owner makes the decisions on the Project and selects all associated parties (with the exception of the regulatory agency) to assist them in the execution of the work associated with the Project. Specific responsibilities and authorities include:

- Selecting the Construction Manager.
- Selecting the Design Engineer.
- Stopping the Contractor's work if it is found to be defective or out of compliance with the Construction Documents.
- Approving changes to the Construction Documents including all Addenda, Change in Work Directives/Field Orders, and Change Orders.
- Providing final documentation to the Regulatory Agency to support construction certification.
- Communicating with the Regulatory Agency, the Design Engineer and Construction Manager throughout design, construction, and certification.
- Construction Manager and CQA Manager invoice management and payment.

12.2 CONSTRUCTION MANAGER

The Construction Manager has the following specific responsibilities and authorities:

- Manages and represents the interests of the Owner during construction.
- Retains the Contractor under contract to provide the Project.
- Contractor invoice management and payment.
- Communicating with the Owner, Contractor, and Subcontractor regularly throughout construction.
- Stopping the Contractor's work if it is found to be defective or out of compliance with the Construction Documents.
- Performing daily construction administration and management on behalf of the Owner.
- Reviewing and approving the Contractor's submittals, requests, invoices, and completed work.
- Observing the Contractor's measurement of material quantities to determine appropriate payment.
- Maintaining all required project documentation that permits review by the Regulatory Agency.
- Observing and documenting that the work of the Contractor meets the technical specifications in the Construction Documents.
- Managing, scheduling, and coordinating the required CQA activities with the CQA Manager.
- Reviewing MQC and CQC test results, data, and installed work to verify compliance with the Project requirements.
- Preparing CQA Certification in coordination with CQA Manager for submittal to the Regulatory Agency.

12.3 REGULATORY AGENCY

The Regulatory Agency has the following specific responsibilities and authorities:

- Reviewing, providing comments on, and approving the corrective action design documents submitted by (or on behalf of) the Owner including the Design Report and Construction Documents.
- Providing remedial design approval and authorization for implementing the remedial action.
- Reviewing and accepting CQA Certification at Project completion.

12.4 DESIGN ENGINEER

The Design Engineer has the following specific responsibilities and authorities:

- Assisting the Owner with preparation of the regulatory documents.
- Preparing Construction Documents for the Project as the Engineer of Record for the Project.

- Assisting the Construction Manager in reviewing the Contractor's technical submittals during construction, especially those that are requesting deviations from the Construction Documents such as material substitutions or changes in specified methods of construction.
- Providing responses to requests for information or clarification from the Owner, Construction Manager, Contractor and Subcontractor's.
- Consulting with the Owner and Construction Manager, as required, during construction to address unforeseen or appreciably differing conditions, and any technical issue that affects the design for the Project.
- Assisting the Construction Manager in issuing Field Orders or Change in Work Directives to document and approve design modifications associated with unforeseen conditions, material/product substitutions, or Contractor and/or Subcontractor requests.

I2.5 CQA MANAGER

The CQA Manager has the following specific responsibilities and authorities:

- Implementing the CQA Plan.
- Coordinating implementation of the CQA Plan with the Construction Manager.
- Reviewing and approving the Contractor CQC Plan.
- Performing audits of CQC and CQA Plan performance.
- Reviewing CQC and CQA Plan reporting.
- Providing CQA Certification to the Regulatory Agency.

I2.6 CONTRACTOR

The Contractor has the following specific responsibilities and authorities:

- Performing daily construction administration and management.
- Communicating with the Construction Manager regularly throughout construction.
- Preparing and complying with the CQC Plan, which presents procedures for documenting compliance with construction requirements.
- Stopping the work if it is found to be defective or out of compliance with the Construction Documents.
- Maintaining all required Project documentation that permits review by the Owner, CQA Manager, Design Engineer, Construction Manager and authorized representatives of the Regulatory Agency.
- Contracting with and managing qualified Subcontractors to perform specialty work and installation.
- Observing and documenting that the work practices of the Subcontractor follow the Construction Documents.
- Managing, scheduling, and coordinating the required CQC and CQA Plan activities with the Design Engineer, CQA Manager and Construction Manager.

- Reviewing MQC and CQC Plan test results, data, and installed work to verify compliance with the project requirements.
- Submittal of all MQC and CQC Plan test results and data to the Construction Manager.
- Preparing CQA Certification in coordination with the CQA Manager, Design Engineer and Construction Manager for submittal to the Regulatory Agency.

12.7 SUBCONTRACTOR

The Subcontractor has the following specific responsibilities and authorities:

- Communicating with the Contractor as appropriate throughout construction.
- Constructing the project in accordance with the Construction Documents including equipment and material specification.
- Informing the Contractor of changes required to the Construction Documents due to product/material substitutions or differing/unforeseen conditions.
- Documenting CQC Plan activities, measurements, test results, and inspections.

13.0 COMMUNICATIONS AND MEETINGS

The lines of communication for the Project are shown on Figure I-1-3. The lines of communication were developed to facilitate dialogue between the respective parties leading to collaboration and resolution of design, construction, and regulatory issues.

13.1 CHAIN OF COMMAND AND COMMUNICATION

The identified lines of communication ensure that the appropriate chain-of-command is followed to allow consistent and accurate dissemination of information and decision making. Other direct lines of communications, if requested, will be reviewed and approved by the Owner on a case by case basis.

It is expected that informal communications will occur on a daily basis during execution of the Project. Formal communications in the form of meetings and inspections will be performed at prescribed Project milestones to provide important coordination, documentation of progress, and discussion of non-conforming work and required corrective actions.

I3.2 Pre-Construction Meetings

Pre-construction meetings will be held prior to the start of PRB construction, respectively, after the associated contracts have been awarded. Each meeting will be attended by the Owner, Design Engineer, Construction Manager, CQA Manager, Contractor, and Subcontractors. A representative of ACDEH may also attend and will be notified at least one week prior to the scheduled meeting.

The pre-construction meeting provides the opportunity to introduce the individuals involved in the project and to make sure the responsibilities and authority of each individual are clearly understood. The minimum agenda will include:

Amec Foster Wheeler

- Organizational arrangement of the Contractor's workforce and personnel, and those of subcontractors, suppliers, and the Construction Manager.
- Channels and procedures for communications.
- Sequence of critical work, such as installation of PRB Media.
- Discussion of the Project and how it is depicted in the Construction Documents, including distribution of original documents and revisions.
- Design features, construction methods, and open discussion of potential construction problems and any other concerns.
- The proposed construction schedule.
- The role and requirements of the CQA Plan and CQC Plan prior to, during and after construction.
- Review process for submittals including shop drawings and other data.
- The submittal schedule including Design Engineer review and response time.
- Procedures for testing and potential implications of the test results.
- Procedures for documentation.
- A tour of the construction site.

13.3 CONSTRUCTION PROGRESS AND COORDINATION MEETINGS

Once construction is started, construction progress and coordination meetings will be held weekly or as required by the Construction Manager. Construction progress and coordination meetings will be used to discuss coordination items, schedules, problems encountered in the field, existing or pending issues that may require proactive planning and response, and to, resolve outstanding issues. The meetings will be attended by the Construction Manager, CQA Manager, Contractor, and the Subcontractor. The Owner or its agents will attend when appropriate and ACDEH may attend. Contractors performing other work at the site may also attend as appropriate. Meeting dates and times will be set at the pre-construction meeting. Minutes of the meetings will be taken and distributed by the Construction Manager.

Construction progress and coordination meetings also may be held with little prior notice, if necessary, to allow discussion of immediate tasks or issues.

The meeting agenda will include:

- Review, revise as necessary, and approve minutes of previous meeting.
- Review of work progress.
- Identification of problems.
- Development of corrective measures and procedures for the identified problems.
- Other current construction business.
- Coordination of the collection of material samples and performing laboratory testing.

- Coordination and scheduling of field testing.
- Discussion of the submission of test results and reports (daily and weekly).
- Implementation of non-conformance action plans to remedy problems detected through failing tests.
- Status of CQC and CQA submittals for approval.

14.0 PERMEABLE REACTIVE BARRIER QUALITY ASSURANCE

This section presents specific CQA Plan activities associated with construction of the PRB.

I4.1 CONTRACTOR QUALIFICATION

The Contractor will provide certification of licensure to perform construction at the site and the appropriate health and safety certifications as required by local, state and federal agencies for both the Contractor and Subcontractor as appropriate.

The Contractor will provide documentation demonstrating that the Contractor or Subcontractor meets the experience and qualification requirements specified in the Construction Documents for the successful installation of a PRB.

I4.2 SITE PREPARATION

The Construction Manager will confirm that the Contractor has prepared the site in accordance with the Contractor's PRB Construction Plan submittal, the Contractor's PRB Trench Construction Layout (Layout) and the Construction Documents. Site preparation includes designating the following areas prior to receipt and placement of materials and arrival of equipment:

- The mixing area.
- Slurry preparation areas.
- Spoil stockpile areas.
- Equipment location areas.

14.3 INSTALLATION

The Contractor will submit to the Construction Manager, CQA Manager, and Design Engineer for review and approval a PRB Construction Plan prior to installation. The PRB Construction Plan will be prepared in accordance with the Specifications and will include a description of the following:

- PRB construction methods and sequencing.
- Biopolymer slurry preparation.
- Estimated quantity of liquid and solid spoils.
- Means of demonstrating that no permanent decrease in hydraulic conductivity of the aquifer has occurred from PRB installation using the biopolymer slurry trench method including the minimum field tests specified in this Section. Include the test

Amec Foster Wheeler

methods, approximate number of sample locations and proposed sequence of testing.

- Anticipated construction schedule.
- Survey control plan to control and document PRB placement.

During installation the CQA Manager will inspect and approve the following installation equipment and monitoring parameters at the frequencies specified:

- On-board weighing system (e.g. bucket scales) or other method to verify weight/volume of media mix.
- Volume of media emplacement a minimum of every 25 linear feet.
- Depth and width of the excavation every 25 feet.

The CQA Manager will alert the Construction Manager if the PRB installation monitoring results are not in accordance with the Construction Documents.

14.3.1 MATERIAL QUALITY ASSURANCE

Materials used in the installation of the PRB will include biopolymer slurry, slurry breaking agents and a PRB media mix of sand and granular zero valent iron (ZVI; collectively called "PRB Media").

The Contractor will select a biopolymer and breaking agent that meets the specified project performance standards. The Contractor will submit the following materials to the CQA Manager and Design Engineer for review and approval prior to construction:

- Manufacturer specifications and engineering data for both the biopolymer slurry and breaking agent.
- The results of a biopolymer slurry stability and compatibility test to confirm the biopolymer slurry mix is compatible with the site's water chemistry and will be stable during PRB construction.
- Evidence of the successful use of the selected biopolymer slurry and breaking
 agent on past ZVI PRB projects including past test results and documentation/tests
 that the biopolymer slurry and breaking agent have been used in previous ZVI
 installations with no impact to ZVI reactivity or permeability.
- Details of the proposed biopolymer slurry and breaking agent ZVI compatibility testing will be submitted for review and approval prior to the tests being conducted.

The PRB media mix will be comprised of ZVI and sand as specified in the Construction Documents. The Contractor will submit the PRB Media mix design to the CQA Manager and Design Engineer for review and approval prior to construction:

- Certification that the sand is provided from a virgin source and is free of contamination.
- Sand and ZVI grain size analysis results on representative samples proposed for the mix design.

PRB permeability and porosity tests.

14.3.2 HANDLING AND STORAGE

The Contractor will inform, and coordinate with the Construction Manager of the PRB Media materials and related equipment delivery schedule. Upon delivery, the Contractor will inspect the materials and confirm they are in accordance with the Specifications before accepting the materials for delivery. Damaged materials not meeting the specifications will be segregated and tagged for return and replacement.

The storage and handling of PRB Media materials will be the responsibility of the Contractor. Storage and handling will follow guidelines set forth in the Construction Documents, including ensuring that materials are stored in a clean, dry, and protected location and within the temperature range required by the manufacturer. The Contractor will provide documentation to the Construction Manager and CQA Manager that the PRB Media materials were inspected and delivered in accordance with the Specifications.

14.3.3 Performance Quality Assurance

The Contractor will submit to the CQA Manager and Design Engineer for review and approval the following performance quality assurance plans, calculations and warranty:

- Calculations performed by a State of California licensed geotechnical engineer demonstrating that the stability of the trench excavation will be maintained during all phases of construction using the Contractor's proposed biopolymer slurry.
- A PRB Demonstration Plan identifying procedures and field test methods to demonstrate that no permanent decrease in hydraulic conductivity of the aquifer has occurred from construction of the PRB.
- Warranty that there will be no permanent decrease in the hydraulic conductivity associated with the biopolymer construction of the PRB and that there will be no differential settlement within a 1-year period of completion of the PRB.

14.4 CONSTRUCTION QUALITY CONTROL TESTING AND INSPECTION

The Contractor will submit for the Design Engineers review and approval a CQC Plan for installation of the PRB. The CQC Plan will include a survey control plan, a materials installation quality control plan and an installation verification plan. The CQC will also include all personnel and inspection procedures to be implemented by the Contractor for the specified work.

The Contractor will submit QC records including testing, measurements, observations and inspections to the CQA Manager for review at the end of each workday. The CQA Manager will also maintain daily installation logs including:

- Project name/date.
- Installation equipment used.

- Activities performed during the day (including linear distance of PRB installed, as applicable).
- Records and photographs documenting unusual phenomena or changes in soil conditions.
- Quantities of PRB Media, biopolymer slurry and breaking agent.
- All QC monitoring and testing forms and results.
- Quantity of spoils generated per day.
- Deficiencies noted and how corrected.
- Accidents and safety-related incidents.

A sample form to record PRB Media mix testing by magnetic separation is included as Attachment I-1 and a sample form to record PRB Media installation volume is included as Attachment I-2.

14.5 INSTALLATION ACCEPTANCE

The CQA Manager and Design Engineer will review the Construction Completion Report (including the Record Drawings) at the end of the Project to confirm the PRB installation was in accordance with the Construction Documents and the CQA and CQC Plans.

15.0 NON-CONFORMANCE ACTION PLAN

Non-conforming materials or work are defined as material provided or work completed that does not comply with the requirements/specifications of the Construction Documents.

15.1 Non-Conformance Identification and Reporting

When either of the following two conditions exist, a Non-Conformance Action Plan should be initiated:

- Repeated attempts to construct a component of the work yields a non-conforming product as documented by CQC testing and/or inspection and documentation by the CQC Team.
- CQA monitoring, inspection, or testing verifies that materials or completed work do not meet the minimum requirements specified for the Project.

I5.2 Non-Conformance Action Plan

In general, the Non-Conformance Action Plan consists of the following:

- Define the problem.
- Verify that the testing or observations which identify the problem are accurate.
- Define extent of the non-conformance using the available test information or by completing additional tests.
- Resolve the problem through additional work, re-work, or material replacement to the limits of the non-conforming area.

The first step identifies a potential problem found by inspection, and then testing further defines the problem. The second step is to verify that the original result is representative of the construction materials or in-place conditions. Test results that are not in compliance with the Construction Documents could be caused by a problem with sampling, instrument calibration, or laboratory testing errors. For in-place field testing, two additional tests will be taken within a few feet of the failed test location to verify that the test result is correct. When verification testing shows that the initial result seems to be in error, the initial result can be considered an outlier, and documented as such. If the original test result is verified, then additional testing may be conducted to define the limits of the area that is in non-conformance. Repairs or replacement will then be made to the area that is in non-conformance. Results of all testing (non-conformance, verification, and final acceptance) will be reported to the CQA Manager.

I5.3 CORRECTIVE ACTION ACCEPTANCE

A corrective action that is implemented must be confirmed successful through supporting verification testing and/or inspection/measurement. Reported non-conformances must be remedied by accepted corrective actions reviewed and approved by the CQA Manager.

I6.0 DOCUMENTATION

The Project is not considered complete until the Owner grants the Contractor Final Completion and the Construction Completion Report documenting performance of the Project is approved by the regulator.

I6.1 FINAL COMPLETION

A final inspection of the site is required to confirm Final Completion of the contractual requirements between the Contractor and the Owner. Upon notice from the Contractor that the Project is complete, the Owner, the Contractor, Design Engineer and the Construction Manager will visit the site and inspect the Project. A punch list of incomplete work items will be developed for the Contractor to complete prior to Owner granting Final Completion.

16.2 CONSTRUCTION COMPLETION REPORT

After the Owner and Construction Manager grant Final Completion status to the Contractor, the Contractor will complete and submit all record documents for the Project to the Owner and Design Engineer. The Contractor will prepare the Construction Completion Report for review and approval by the Owner, Design Engineer and CQA Manager. The report will include the following:

- A description of the work.
- A chronology of the PRB installation.
- Photographic documentation, showing significant stages of construction.
- Record Documents.

 A statement, bearing the seal and signature of the CQA Manager and Design Engineer, certifying that the completed Project conforms to the Construction Documents including this CQA Plan.

The certified Construction Completion Report will be submitted to the ACDEH for review and approval.

16.3 RECORD DOCUMENTS

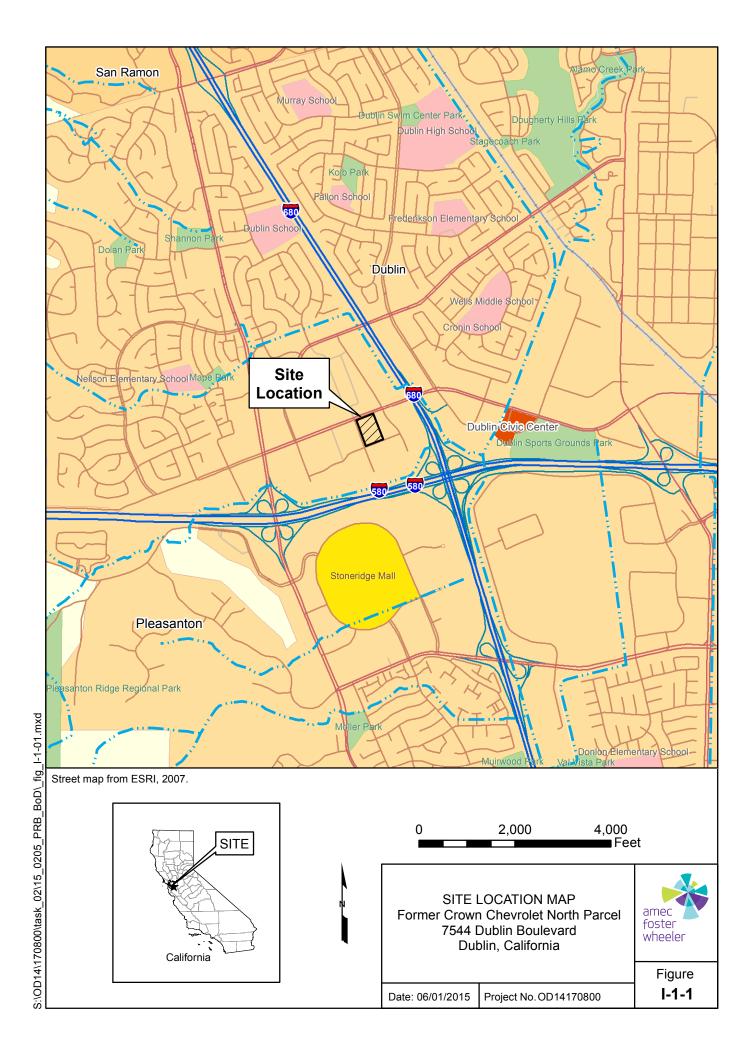
Record documents will include field changes, change orders, test reports, material certification documents, Record Drawings, and other documents necessary to accurately define the actual constructed work. The Record Documents will be submitted by the Contractor to the Owner and Design Engineer upon completion of construction. This documentation will also be used in the preparation of the Construction Completion Report for submission to the regulator as described above.

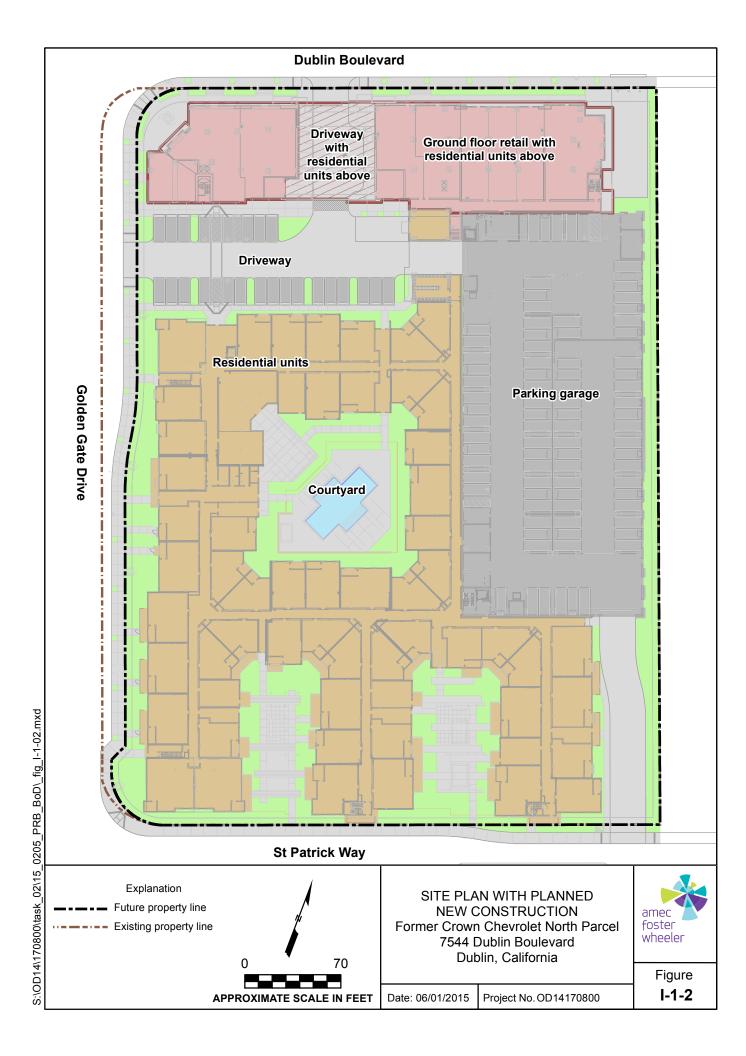
16.4 STORAGE AND RETENTION

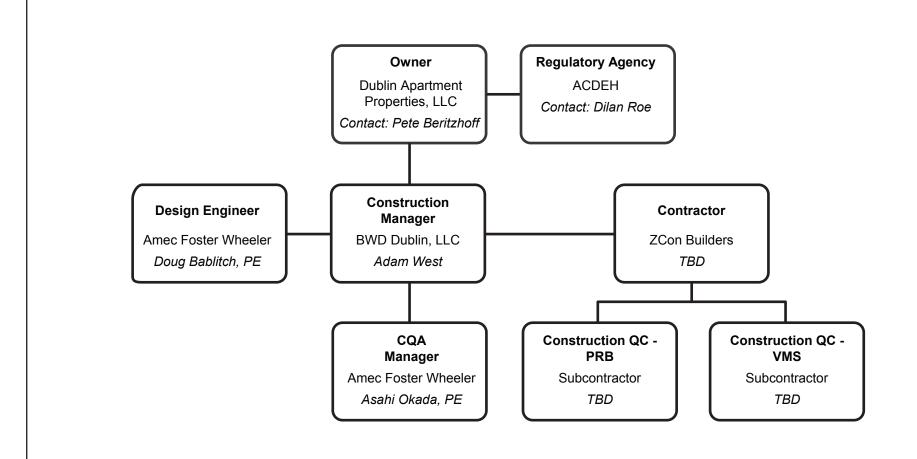
All record documents will be maintained by the Owner and Design Engineer in accordance with the required legal statutes.

17.0 REFERENCES

- Alameda County Health Care Services Agency, 2013. Fuel Leak Case No. RO0003014 and GeoTracker Global ID T00000001616, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, 94568, August 16.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2014a. Final Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, May 1.
- Amec Foster Wheeler Environment and Infrastructure, Inc. (Amec Foster Wheeler), 2015.


 Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report, Crown


 Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin


 California, March 19.

FIGURES

Abbreviations

ACDEH = Alameda County Department of Environmental Health

CQA = Construction Quality Assurance

PRB = Permeable Reactive Barrier

QC = Quality Control TBD = To Be Determined

VMS = Vapor Mitigation System

QUALITY PROGRAM ORGANIZATIONAL CHART Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

foster wheeler

Figure I-1-3 Project No. OD14170800

Date: 06/01/2015

ATTACHMENT I-1-1

Sample Form – PRB Media Magnetic Separation Test Record

ATTACHMENT I-1

CQA PLAN - PRB MEDIA INSTALLATION VOLUME RECORD

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

MAGNETIC SEPARATION TEST RECORD

EXAMPLE RECORD FORM ONLY NOT FOR CONSTRUCTION

oject Nam	e:		Project Number:		
Dat	e: Time:_	_		Conducted by:	
Міх Тур	e: 50% ZVI	10)% ZVI		
(A)	Tare Weight (Container #)		g	
(B)	Wet Sample + Tare Weight		•	g (~300 g)	
(C)	Dry Sample + Tare Weight		•	g	
	Drying Time m	ninutes	•		
(D)	Dry Sample Weight (C – A)			g	
(E)	Sand, Pass 1 + Tare Weight		•	g	
(F)	Sand Weight, Pass 1 (E – A)		•	g	
(G)	Sand, Pass 2 + Tare Weight		•	g	
(H)	Sand Weight, Pass 2 (G - A)		•	g	
(I)	Sand, Pass 3 + Tare Weight		•	g	
(J)	Sand Weight, Pass 3 (I - A)		•	g (stop if <2 g)	
(K)	Sand, Pass 4 + Tare Weight		-	g	
(L)	Sand Weight, Pass 4 (K - A)		•	g (stop if <2 g)	
(M)	Sand, Pass 5 + Tare Weight		•	g	
(N)	Sand Weight, Pass 5 (M - A)		•	g (stop if <2 g)	
(O)	Total Sand + Tare Weight		•	g	
(P)	Total Sand Weight (O – A)		•	g	
(Q)	Total Sand Volume (P / 1.60)		•	mL	
(R)	Total Iron + Tare Weight		•	g	
(S)	Total Iron Weight		•	g	
	Check: P + S should equal D		P + S =	g	
(T)	Total Iron Volume (S / 2.40)		-	mL	
(U)	Percent by Volume Iron in Batch	(T / [Q + T])	-	% (45 – 55%) or (8% – 12%	

ATTACHMENT I-1-2

Sample Form – PRB Media Installation Volume RecordCVR-SL

ATTACHMENT I-2

CQA PLAN - PRB MEDIA INSTALLATION VOLUME RECORD

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared by:	
Date:	
	EXAMPLE RECORD FORM ONLY NOT FOR CONSTRUCTION

<u>Parameters</u>			<u>Current Estimates</u>	
PRB cut width	2.25 ft		ZVI Volume ¹	114 ecy
PRB minimum treatment width	2.0 ft		ZVI Weight ¹	240 ton
Average ZVI Supersack	1.0 ton		Total ZVI Purchase ²	290 ton
ZVI Bulk Density	185 pcf	2.50 ton/cy	Sand Volume ¹	93 ecy
Sand Bulk Density	120 pcf	1.62 ton/cy	Sand Weight ¹	197 ton
ZVI Proportion in ZVI/Sand Mix	0.55		Total Sand Purchase ²	240 ton
Sand Proportion in ZVI/Sand Mix	0.45		Total CDF Volume ¹	106 ecy
ZVI/Sand Mix Bulk Density	155.75 pcf	2.10 ton/cy	Total CDF Purchase ²	130 ecy
Soil Bulking Factor	1.2		Soil Spoils Volume ³	423 lcy
Required Soil Catchment Safety Factor	1.1		Required Soil Catchment Capacity ⁴	470 lcy
ZVI, Sand, and CDF Purchase Safety Factor	1.2			

Station No.	Ground Surface Elevation ⁵	PRB Bottom Elevation	Depth to PRB Bottom (bgs)	Depth, GS to GWE	Depth, GWE to PRB Bottom	Estimated Saturated Fraction	Estimated Soil Spoils ³ (predicted)	Estimated CDF Volume ¹ (predicted)	Estimated ZVI/Sand Mix Volume ¹ (predicted)	Estimated ZVI/Sand Mix Weight ¹ (predicted)	Estimated ZVI Volume ¹ (predicted)	Estimated Sand Volume ¹ (predicted)	Estimated ZVI Weight ¹ (predicted)	Estimated Sand Weight ¹ (predicted)	ZVI/Sand Mix Added (actual)	ZVI Added (actual)	Sand Added (actual)	(actual)	Estimated Average PRB Width ⁶ (actual)	Comments
ft	ft	ft	ft	ft	ft	%	lcy	ecy	есу	ton	ecy	есу	ton	ton	ton	ton	ton	ft	ft	==
10+00	340.8	311.1	29.7	13.8	15.9	54%														
10+10	340.8	311.3	29.5	13.8	15.7	53%	29.6	7.2	14.7	30.9	8.1	6.6	17.0	13.9						
10+20	340.7	311.5	29.2	13.7	15.5	53%	29.3	7.2	14.5	30.6	8.0	6.5	16.8	13.7						
10+30	340.7	311.8	28.9	13.7	15.2	53%	29.0	7.2	14.4	30.2	7.9	6.5	16.6	13.6						
10+40	340.6	312.0	28.6	13.6	15.0	52%	28.7	7.1	14.2	29.8	7.8	6.4	16.4	13.4						
10+50	340.6	312.0	28.6	13.6	15.0	52%	28.6	7.1	14.1	29.6	7.7	6.3	16.3	13.3						
10+60	340.6	311.9	28.7	13.6	15.1	53%	28.6	7.1	14.1	29.6	7.8	6.3	16.3	13.3						
10+70	340.6	311.7	28.9	13.6	15.3	53%	28.8	7.1	14.2	29.9	7.8	6.4	16.4	13.4						
10+80	340.7	311.7	29.0	13.7	15.3	53%	29.0	7.1	14.3	30.1	7.9	6.4	16.5	13.5						
10+90	340.7	312.0	28.7	13.7	15.0	52%	28.8	7.1	14.2	29.9	7.8	6.4	16.4	13.5						
11+00	340.8	312.1	28.7	13.8	14.9	52%	28.7	7.2	14.1	29.6	7.7	6.3	16.3	13.3						
11+10	340.9	312.0	28.9	13.9	15.0	52%	28.8	7.3	14.1	29.5	7.7	6.3	16.3	13.3						
11+20	341.0	312.0	29.0	14.0	15.0	52%	29.0	7.3	14.1	29.7	7.8	6.3	16.3	13.3						
11+30	341.2	311.9	29.3	14.2	15.1	52%	29.2	7.5	14.1	29.7	7.8	6.4	16.3	13.4		-				
11+40	341.3	311.8	29.5	14.3	15.2	51%	29.4	7.6	14.2	29.9	7.8	6.4	16.4	13.4						
11+45.96	341.4	311.7	29.7	14.4	15.3	51%	17.7	4.6	8.5	17.9	4.7	3.8	9.8	8.0				'-	'-	
Totals							423	106	208	437	114	93	240	197						
Averages	340.8	311.8	29.1			52%														

Abbreviations

bgs = below grade surface CDF = controlled density fill

cy = cubic yard ecy = embankment cubic yard (in place, compacted)

ecy = embank ft = feet

GS = ground surface

GWE = groundwater elevation

lcy = loose cubic yard (bulk, not compacted)

pcf = pounds per cubic foot

PRB = permeable reactive barrier

ZVI = zero valent iron

Notes

- 1. Estimated ZVI, Sand, ZVI/Sand Mix, and CDF Volumes and Weights are based on the PRB mimum treatment width (2.0 ft). These numbers reflect the estimated in-place quantities. No safety factor is applied to this number.
- 2. Purchase estimates are based on the Weights (Volume for CDF) multiplied by the Purchase Safety Factor, rounded to the nearest 10 tons. These quantities reflects the estimated ZVI, sand, and CDF to be purchased.
- 3. Estimated excavated soils (spoils) volume is based on the PRB cut width (2.25 ft). A soil bulking factor of 1.2 is applied. This quantity reflects the expected soil spoils that will be generated during PRB installation. No safety factor is applied to this number.
- 4. Total Required Soil Catchment Capacity estimate is based on the Soil Spoils Volume multiplied by the stated Required Soil Catchment Safety Factor, rounded to the the nearest 10 lcy. This quantity reflects the total volume to be reserved for soil management.
- 5. Ground surface elevations per topographic survey by Kister, Savio & Rei, Inc., October 3, 2014. Elevations adjusted from NAVD88 to NGVD29 by subtracting 2.7 feet.
- 6. Estimated Average PRB Width is calculated by dividing the actual ZVI/Sand Mix weight added, by the product of the average trench depth for the segment, the length of the segment, and the bulk density of the ZVI/Sand Mix.

APPENDIX K

PRB Operations, Maintenance, and Monitoring Plan

(to be provided in a future addendum)

APPENDIX L

Work Plan for Monitoring Well Installation

Work Plan for Monitoring Well Installation

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

Prepared for:

BWD Dublin, LLC Dublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

June 2015

Project No. OD14170800

TABLE OF CONTENTS

		Page
L1.0	INTRODUCTION	1
L2.0	BACKGROUND	1
L3.0	WELL INSTALLATION	
	L3.1 PRE-FIELD ACTIVITIES	2
	L3.2 PERFORMANCE MONITORING WELL INSTALLATION	2
	L3.2.1 Upgradient and On-site Well Installation	
	L3.2.2 In-Barrier Performance Monitoring Well Installation	4
	L3.2.3 Surface Completion	4
L4.0	WELL DEVELOPMENT	5
L5.0	SURVEY	5
160	REPORTING	5
∟ 0.0		

FIGURES

Figure L-1 Monitoring Well Network Layout

APPENDIX L

WORK PLAN FOR MONITORING WELL INSTALLATION

Former Crown Chevrolet North Parcel 7544 Dublin Boulevard Dublin, California

L1.0 INTRODUCTION

This work plan has been prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler") on behalf of Bay West Development Dublin, LLC ("BWD Dublin") to describe the methodology for installation of groundwater monitoring wells at the former Crown Chevrolet North Parcel located at 7544 Dublin Boulevard, Dublin, California ("the site"). The on-site monitoring wells will replace the on-site monitoring wells that were destroyed prior to the start of site redevelopment to prevent construction-related damage. The off-site monitoring wells will be used to monitor the performance of permeable reactive barrier (PRB). The PRB is part of a proposed corrective action for the site that comprises installation of a vapor mitigation system (VMS) in the northern part of the site and a PRB on the western edge of the property. This work plan has been prepared as an appendix to the *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* ("Design Report") that describes and documents the final design for the proposed corrective action at the site.

L2.0 BACKGROUND

As described in the Design Report, the purpose of the proposed corrective action is to mitigate potential risk to future site occupants from vapor intrusion from volatile organic compounds (VOCs) in soil and groundwater beneath the site. The VMS will generally consist of a sprayapplied composite membrane installed beneath future building slabs and perforated vapor collection pipes in permeable aggregate below the membrane. Vapor collection pipes will be connected to risers that will passively vent accumulated vapors to outdoor air.

The PRB will consist of a 2-foot-wide, 146-foot-long trench constructed at the upgradient boundary of the site. The PRB will be installed to approximately 29 feet bgs, including a 1-foot key into an existing clay layer observed from approximately 28 to 30 feet below ground surface (bgs). The trench will be backfilled with a mixture of zero-valent iron (ZVI) and sand collectively referred to as PRB Media) that will serve as reactive media to facilitate the reductive dechlorination of VOC-impacted groundwater that passes through the trench. The Design Report provides additional detail concerning the design and construction of the VMS and PRB.

L3.0 WELL INSTALLATION

Following installation of the PRB, six performance monitoring wells will be installed within and upgradient of the PRB to comprise the monitoring well network that will be used to assess the performance of the PRB. Three of the wells will be installed within the PRB trench (e.g., inbarrier monitoring wells) and three of the wells will be installed outside of the barrier, west and upgradient of each in-barrier well. Each upgradient well will be installed and screened at the same depth as its companion in-barrier well. Additionally, five on-site monitoring wells will be installed downgradient of the PRB to replace the previously destroyed on-site monitoring wells. The proposed monitoring well locations are shown on Figure L-1.

The six performance monitoring wells will be located in an area that will be subject to a lot-line adjustment following installation of the PRB and the widening of a portion of Golden Gate Drive. To avoid damage to the wells, the well installation activities will be scheduled following the road work within Golden Gate Drive.

The five on-site wells will be located in areas that allow for reasonable access following construction activities. The well installation activities will be scheduled following completion of site construction work that could result in damage to the monitoring wells.

The following sections describe activities that will be performed as part of installation of the 11 wells that will comprise the monitoring well network at the site.

L3.1 PRE-FIELD ACTIVITIES

Prior to well installation, drilling permits will be obtained from Zone 7 Water Agency, access and encroachment permits obtained (if the lot-line adjustment has been completed), and a site-specific health and safety plan will be prepared. Additionally, at least two business days prior to sampling, the well locations will be marked with white paint and Underground Service Alert of Northern California will be contacted, as required by law, to identify public utilities, if any, that may be in the vicinity of the proposed well locations. Finally, a private underground utility locator will mark below-grade building utilities in the vicinity of the proposed sample locations. The well installation activities may occur in separate mobilizations based on the scheduling constraints discussed in Section L3.0.

L3.2 Performance Monitoring Well Installation

The borings will be drilled and the wells installed by a California-licensed C-57 drilling contractor under the supervision of a California-licensed Professional Geologist. Different drilling methods will be used to advance the upgradient performance monitoring and on-site wells, and the in-barrier performance monitoring wells, as described in the following sections.

L3.2.1 Upgradient and On-site Well Installation

The three wells to be installed upgradient of the PRB and the five on-site wells will be drilled by a California-licensed contractor using a drill rig equipped with 8.25-inch-diameter hollow-stem augers. The wells will be constructed in accordance with state and Zone 7 Water Agency requirements.

The well borings will be continuously sampled to total depth by driving a core-barrel ahead of the augers. Soil retrieved from the cores will be logged following ASTM International Standard D 2488, which is based on the Unified Soil Classification System. Recovered soil will also be screened for the presence of VOCs using a photoionization detector (PID). PID readings will be recorded on the lithologic logs prepared for each boring. Field observations of the presence of any staining or odor will also be recorded on the logs.

The boring for each upgradient PRB performance monitoring well will be advanced to approximately 28 feet bgs (i.e., the top of the identified clay layer that the PRB will key into). The screen interval for the upgradient well in each pair will be determined in the field based on soils encountered in the boring. The well will be screened within the coarsest-grained soil encountered within the vertical interval of the PRB above the clay layer (which is between approximately 10 and 28 feet bgs). This coarsest-grained soil would be expected to have the highest mass flux and would allow for the most conservative evaluation of the effectiveness of the PRB. If the bottom of the screen interval of the well is selected to be shallower than 28 feet bgs, the bottom of the boring will be backfilled with bentonite. Bentonite chips will be placed in the bottom of the boring using the augers as a tremie pipe as the augers are pulled up from the boring, until the top of the pellets are at the planned well depth. The pellets will then be hydrated with potable water. The three upgradient PRB performance monitoring wells may be screened at different depths, depending on the soils encountered in each boring.

The boring for each on-site monitoring well will be advanced to approximately 15 to 20 feet bgs. The screen interval for each well will also be determined in the field based on soils encountered in the boring. Each well will be screened the coarsest-grained soil encountered shallower than 20 feet bgs. If saturated soil is not encountered during drilling, the well may be screened at a depth near the top of the expected saturated zone based on historical water level information from the site.

The monitoring wells will be constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC) blank well casing and 5 feet of 0.010-inch slotted well screen that is lowered into place through the augers. The annular space between the well screen and borehole will then be backfilled from the bottom of the borehole to at least 1 foot above the well screen with #2/12 (or similar) filter pack sand. Approximately 2 feet of bentonite chips will then be placed above the filter pack sand and hydrated with clean water. The annular space above the bentonite

seal will be backfilled using neat cement or a cement/bentonite grout mixture to approximately 0.5 foot bgs. All of the annual materials will be placed into the well through the augers as they are retracted.

L3.2.2 In-Barrier Performance Monitoring Well Installation

As noted in the Design Report text, three 8-inch-diameter cylindrical concrete forms (e.g., Sonotube™) will have been installed by the PRB contractor along the centerline of the PRB to provide a conductor casing through the controlled density backfill (CDF) above the PRB treatment media, facilitating the well installations within the PRB. The Sonotube forms will be installed to a depth of approximately 10 feet bgs, corresponding with the interface between the CDF and the PRB treatment media and covered with a steel plate pending installation of the monitoring wells.

A California-licensed drilling contractor will remove the steel plate covering the Sonotube casing and a direct push drill rig will be used to advance the direct push rods through the PRB media (generally starting at approximately 9 to 10 feet bgs) to a total depth that matches the depth of the corresponding upgradient well (i.e., up to 28 feet bgs). Because the grain size distribution and permeability of the ZVI/sand treatment media is expected to be similar or more permeable/coarser than typical filter pack sand, the PRB backfill material will serve as the filter pack for the in-barrier wells. After drilling to the targeted depth (equal to the depth of the bottom of the filter pack in the companion upgradient well), the well materials will be lowered into the rod string. The monitoring wells will be constructed of 1.5-inch-diameter, Schedule 40 PVC blank well casing and 5 feet of 0.010-inch slotted well screen that is lowered into place through the rods. The depth of the screened interval of each well will match that of its adjacent upgradient well.

After the well screen and casing have been placed at the appropriate depth, the rods will slowly be retracted to the depth of the PRB Media/CDF interface (approximately 9 to 10 feet bgs and the ZVI/sand material will be allowed to collapse around the well casing. The annular space will then be backfilled to at least 1 foot above the ZVI/sand interface with #2/12 (or similar) filter pack sand. Approximately 2 feet of bentonite chips will then be placed above the filter pack sand and hydrated with clean water. The annular space above the bentonite seal will be backfilled using neat cement or a cement/bentonite grout mixture to approximately 0.5 foot bgs. All of the annual materials will be placed into the well through the rods as they are retracted.

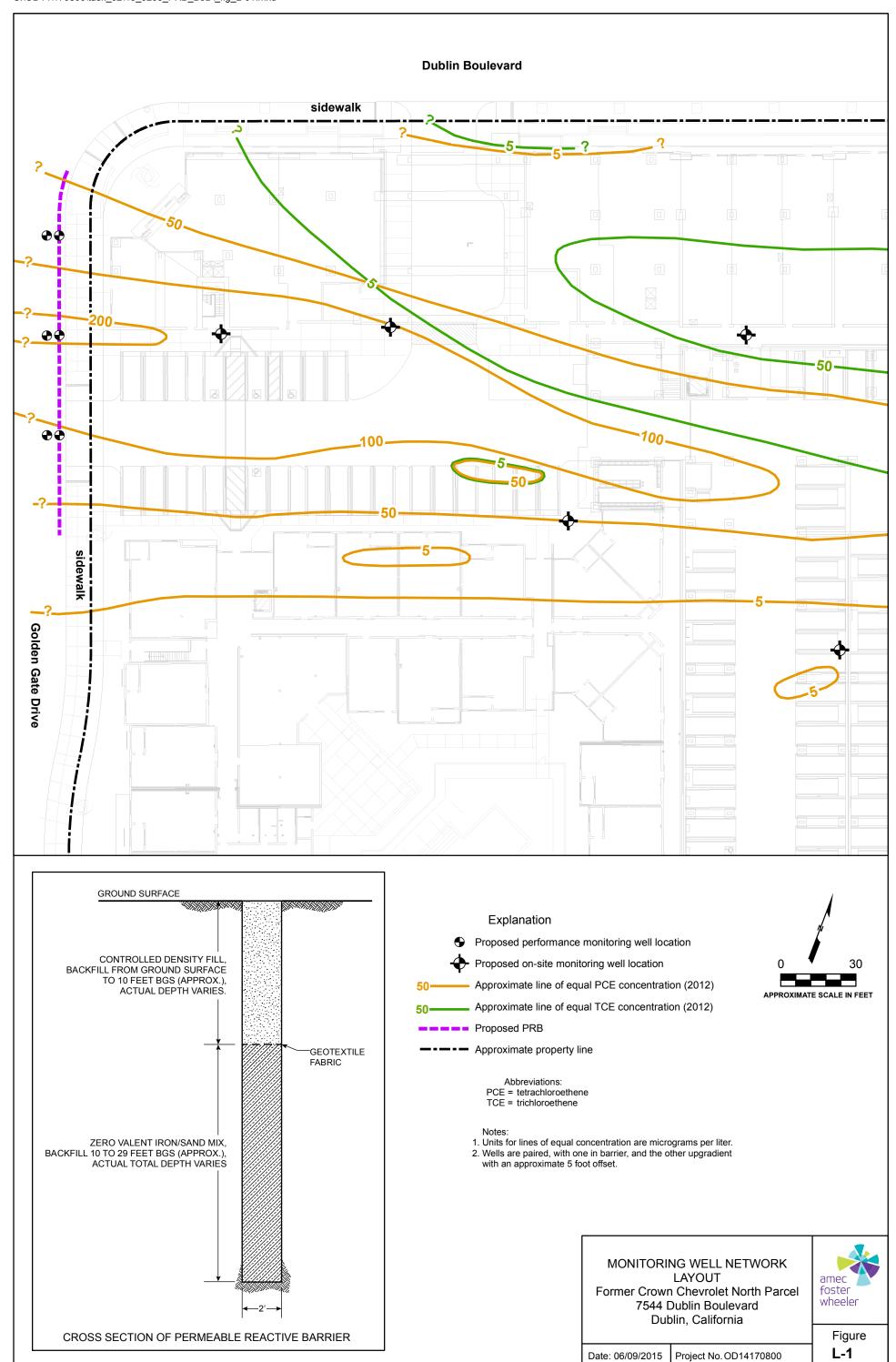
L3.2.3 Surface Completion

The wells will be completed at the ground surface using flush-mounted, traffic-rated boxes set into concrete. A locking, watertight plug will be placed in the top of each well casing.

L4.0 WELL DEVELOPMENT

The groundwater monitoring wells will be developed no sooner than 48 hours after the wells are completed. The monitoring wells will be developed by a combination of bailing, surging, and purging by pump until field parameters (e.g., dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance) are stable and the water becomes visibly clear and free of solids.

L5.0 SURVEY


The horizontal and vertical coordinates of the six wells will be surveyed by a California-licensed surveyor. The horizontal coordinates will be surveyed to an accuracy of 0.1 foot relative to City of Dublin basis of survey benchmarks and the vertical elevations of the north side of the top of the well casing and ground surface elevation will be surveyed to an accuracy of 0.01 foot relative to the National Geodetic Vertical Datum of 1929 (NGVD29).

L6.0 REPORTING

After completion of the well installation, Well Driller's Reports will be completed for each well and submitted to the California Department of Water Resources. The well survey data will also be uploaded to the State Water Resources Control Board's Geotracker database. Lithologic logs will be provided as appendices to a Construction Completion Report that will document construction of the VMS, PMB, and monitoring wells described in this appendix.

FIGURE

