RECEIVED

By Alameda County Environmental Health at 11:45 am, Feb 13, 2013

Ms. Barbara Jakub Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

Supplementary Soil Vapor Sampling

Sunny Piedmont Cleaners Oakland, California

Dear Ms. Jakub:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

Jimmy Koo

Enclosure: Supplementary Soil Vapor Sampling Report

Ms. Barbara Jakub Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

Supplementary Soil Vapor Sampling

Sunny Piedmont Cleaners

Oakland, California

Dear Barbara:

Enclosed is our report documenting the supplementary soil vapor sampling activities that were conducted at the Sunny Piedmont Cleaners located at 4364 Piedmont Avenue in Oakland, California ("the Site"). The purpose of the supplementary soil vapor sampling was to assess the effectiveness of the soil remedial activities that were conducted in January 2012.

The latest soil vapor results indicated that VOC concentrations were below their respective commercial/industrial ESLs. Based on the results of the confirmation soil and soil vapor samples, the remedial activities have been successfully completed. We recommend closure of the remedial activities at the Site.

If you have any questions or comments concerning this report, please do not hesitate to contact Derek Wong or me.

Pang Leong, P.E.

Sincerely,

Enclosure

rincipal Engineer

cc: Mr. Jimmy Koo, Sunny Piedmont Cleaners

Tel (510) 652-3222

Fax (510) 652-3555

3300 Powell Street Suite #109 Emeryville, CA 94608

SUPPLEMENTARY SOIL VAPOR SAMPLING

SUNNY PIEDMONT CLEANERS OAKLAND, CALIFORNIA

February 4, 2013

ICES 7016

Prepared for

Mr. Jimmy Koo Sunny Piedmont Cleaners 4364 Piedmont Avenue Oakland, California 94611

TABLE OF CONTENTS

						PAGE
LIST O	F TABLES			 		ii
LIST O	F FIGURES		• • • • • •	 	•••	iii
1.0	INTRODUCTION			 		1
2.0	SITE DESCRIPTION		•••••	 	• • •	1
3.0	BACKGROUND	• • • •		 	· · · ·	1
4.0	SUPPLEMENTARY SOIL VAPOR SAM	IPLING		 		4
5.0	DISCUSSION	• • • • •		 		4
6.0	EXCLUSIONS			 		5
TABLE						
FIGURE	ES					

APPENDIX A: LABORATORY CERTIFICATES

LIST OF TABLES

Number	Title	

Soil Vapor Sample Results

1

LIST OF FIGURES

Number	Title
and the second second	
1	Site Location
2	Site Plan

February 4, 2013 ICES 7016

SUPPLEMENTARY SOIL VAPOR SAMPLING

SUNNY PIEDMONT CLEANERS OAKLAND, CALIFORNIA

1.0 INTRODUCTION

This report presents the supplementary soil vapor sampling activities conducted at the Sunny Piedmont Cleaners located at 4364 Piedmont Avenue in Oakland, California ("the Site"; Figure 1). The purpose of the supplementary soil vapor sampling was to assess the effectiveness of the soil remedial activities that were conducted in January 2012.

The Environmental Screening Levels (ESLs) that were developed by the Regional Water Quality Control Board for commercial/industrial applications were adopted as the remedial goals for the Site.

2.0 SITE DESCRIPTION

The Site is located on the west side of Piedmont Avenue, between Brandon Street and Gleneden Avenue, within the city limits of Oakland in a residential and commercial/industrial area of Alameda County, California. The Site is sandwiched between Verizon Wireless to the west and Honey Baked Ham and a packaging store to the east, all of which are housed within a rectangular building. An asphalt-paved parking area adjoins the Site to the south. Sunny Piedmont Cleaners, a dry cleaner, is the current tenant at the Site.

3.0 BACKGROUND

Nova Consulting Group, Inc. (Nova) of San Francisco, California completed a Phase I Environmental Site Assessment (ESA) for the Site in April 2009. The ESA reported that dry cleaning operations using PCE and petroleum based cleaners had been conducted at the Site since 1984, a period of approximately 26 years.

A Phase II site investigation was conducted by Nova in June 2009. The objective of the investigation activities was to evaluate the shallow soil at the Site for the potential

presence of contaminants associated with the onsite dry cleaning operations. Five soil samples were collected from five soil boring locations at depths ranging from 4 to 20 feet below the existing ground surface (bgs) using a hand auger and geoprobe. The soil samples were analyzed for total petroleum hydrocarbons (TPH) as mineral spirits (TPHms) and volatile organic compounds (VOCs). Analysis of the soil samples indicated that TPHms and VOC concentrations were generally below their respective commercial/industrial ESLs with the exception of PCE. The PCE concentration contained in sample HAB-2 that was collected at a depth of approximately 4 feet bgs (located adjacent to the dry cleaning machine at the eastern portion of the Site) of 11 mg/kg exceeded the commercial/industrial ESL of 0.70 mg/kg. The four remaining soil samples contained PCE concentrations below the commercial/industrial ESL. Based on the findings of the investigation, it appeared that a very localized dry cleaning solvent release to the subsurface sediments beneath the eastern portion of the Site had occurred.

ICES conducted a supplementary site characterization in June and July 2010. The purpose of the supplementary site characterization activities was to establish the lateral and vertical extent of VOCs that were encountered in the surficial soil at the Site during the June 2009 Phase II site investigation. Soil samples were collected from three onsite borings (B-1 through B-3). A grab groundwater sample was also collected from boring B-3. Boring B-1 was located adjacent to the dry cleaning machines at the eastern portion of the Site (in the immediate vicinity of boring HAB-2); boring B-2 was located adjacent to the sanitary sewer line and floor drain at the northern portion of the building, north of the dry cleaning machines; and boring B-3 was located along the western perimeter of the building. An angled boring was drilled at boring B-3 to gain access to the groundwater beneath the dry cleaning machines. Laboratory analytical results of the soil samples collected indicated VOC concentrations below their respective commercial/industrial ESLs. VOC concentrations contained in the grab groundwater sample that was collected from boring B-3 were below their respective ESLs.

Based on the laboratory analytical results of the Phase II Site Investigation and supplementary site characterization activities, it appeared that the underlying sediments containing PCE levels exceeding the ESL was confined to the immediate vicinity of the dry cleaning machines and extended to a maximum depth of approximately 5 feet bgs.

As requested by Alameda County Environmental Health, a conduit study and well survey was completed for the Site in July and August 2011. Cruz Brothers of Scotts Valley and Underground Services Alert were contacted to assist in identifying and locating subsurface utilities within the Site, the sidewalk area along Piedmont Avenue (adjacent to and north of the Site), and along Piedmont Avenue. Figure 2 presents the findings of the utility survey showing the approximate location of the utilities.

A review of the City of Oakland Sanitary Sewer maps and a visual inspection of the sanitary sewer alignment onsite and in the adjacent street (Piedmont Avenue) indicated that the sanitary sewer runs south to north within the building to a tie-in at Piedmont Avenue to the north. Water, gas, and electrical lines were aboveground and overhead within the building.

According to the State of California Department of Water Resources database and the Alameda County Public Works Agency database, there are two wells located within a 1,000-foot radius of the Site, five wells located just over 1,500 feet from the Site; and 54 wells located over 2,000 feet from the Site.

A supplementary assessment and investigation in the vicinity of the sanitary sewer alignment was performed by ICES to assess the potential migration of PCE in February 2012. Soil samples were collected from boring B-4 which was located along the sanitary sewer alignment at the northern portion of the Site and approximately 35 feet north of boring B-2 (Figure 2). Soil samples were collected at continuous 2-foot intervals, starting at a depth of approximately 1 foot below the sanitary sewer line (approximately 5 feet bgs) and extended to a depth of approximately 10 feet bgs. The soil from the boring was also screened using a portable photoionization detector (PID). Field screening of the soil from the boring did not detect elevated concentrations of organic vapors when screened using a PID. In addition, neither odor nor discoloration was observed in the soil. Laboratory analysis of the sample that was collected at 5 feet bgs (B-4@5') indicated VOC concentrations below their respective commercial/industrial ESLs.

Remedial activities to remove the PCE-affected soil located within the immediate vicinity of the dry cleaning machines was performed in January and May 2012 in accordance with the approved Work Plan dated August 8, 2011. The removal of the PCE-affected soil was performed manually using shovels and wheel barrows on January 13, 2012. The excavated soil was placed in 55-gallon drums for offsite disposal.

Post excavation confirmation sampling consisted of five soil (four sidewall and one floor) samples. Post excavation final confirmation soil samples did not contain VOC concentrations above their respective commercial/industrial ESLs. The excavation was subsequently backfilled and compacted using virgin import fill on January 14, 2012. The two 55-gallon drums of PCE-affected soil were removed on May 1, 2012 by Veolia Environmental Services and transported to Kettleman Hills landfill located in Kettleman City, California.

Sub-slab soil vapor samples were collected from two onsite borings (SV-1 and SV-2) located at the eastern and western portions of the Site (Figure 2) on February 10, 2012 and May 2, 2012. A summary of the soil vapor sample results are presented in Table 1.

Laboratory analysis of the soil vapor samples indicated that VOC concentrations were generally below their respective commercial/industrial ESLs with the exception of PCE. The detectable PCE contained in soil vapor sample SV-1 collected in February 2012 and May 2012 was 100,000 ug/m³ and 24,000 ug/m³, respectively. PCE concentrations detected in soil vapor sample SV-2 in February 2012 and May 2012 were 14,000 ug/m³ and 13,000 ug/m³, respectively. All the above soil vapor PCE concentrations exceeded the commercial/industrial ESL of 1,400 ug/m³.

4.0 SUPPLEMENTARY SOIL VAPOR SAMPLING

Additional sub-slab soil vapor samples were collected from borings SV-1 and SV-2 which were located at the eastern and western portions of the Site on November 1, 2012 and January 22, 2013. Soil vapor samples were collected from the borings in accordance with the approved Work Plan - Addendum I dated November 8, 2012.

The soil vapor samples were sent to McCampbell and analyzed for VOCs using TO-15; and oxygen, carbon dioxide, and methane using ASTM D 1946-90 on a normal 5-day turnaround basis. A summary of the soil vapor sample results are presented in Table 1.

Laboratory analysis of the soil vapor samples indicated that VOC concentrations were below their respective commercial/industrial ESLs. Oxygen, carbon dioxide, and methane levels contained in sample SV-1 collected on November 1, 2012 were 170,000 uL/L (17%), 36,000 uL/L (3.6%), and 3.0 uL/L (0.0003%), respectively. McCampbell reported the oxygen, carbon dioxide, and methane levels in sample SV-1 collected on January 22, 2013 at 200,000 uL/L (20%), 15,000 uL/L (1.5%), and 3.7 uL/L (0.00037%). The oxygen, carbon dioxide, and methane levels contained in sample SV-2 collected on November 1, 2012 were 180,000 uL/L (18%), 36,000 uL/L (3.6%), and 1.8 u/L (0.00018%); and 190,000 uL/L (19%), 48,000 uL/L (4.8%), and 17.0 uL/L (0.0017%) on January 22, 2013.

5.0 DISCUSSION

The remedial activities consisted of excavating and disposing the PCE-impacted soil within the immediate vicinity of the dry cleaning machines at the eastern portion of the Site. The confirmation excavation sidewall and floor samples indicated that the impacted soil was completely removed. It is highly unlikely that PCE has migrated offsite according to the results of the soil sampling activities that were conducted along the sanitary sewer alignment. The latest soil vapor results showed that residual VOC concentrations were below their respective commercial/industrial ESLs.

Based on our observations and results of the confirmation soil and soil vapor samples, the remedial activities have been successfully completed. We recommend closure of the remedial activities at the Site.

6.0 EXCLUSIONS

ICES assumes no responsibility or liability for the reliance hereon or use hereof of information contained in this report by anyone other than the party to whom it is addressed.

The evaluations and recommendations presented in this report are based on the limited site investigation results available at this time and could be revised if new information necessitating further review of the Site becomes available.

TABLE 1 SOIL VAPOR SAMPLE RESULTS Sunny Piedmont Cleaners Oakland, California

Sample ID	SV-1	SV-1	SV-1	SV-1	Commercial/Industrial ESL
Date Sampled	2/10/2012	5/2/2012	11/1/2012	1/22/2013	
Compound	·				
Acetone (ug/m3)	130	200	130	<120.0	1,800,000
Benzene (ug/m3)	10	<6.5	13	19	280
1,3-Butadiene (ug/m3)	<4.5	<4.5	<4.5	48	NE
Chloroform (ug/m3)	<9.9	28	<9.9	<9.9	1,500
Ethanol (ug/m3)	<96.0	<96.0	170	<96.0	NE
Ethyl Acetate (ug/m3)	17	<7.3	<19.0	<19.0	. NE
Ethylbenzene (ug/m3)	10	11	<8.8	<8.8	3,300
Hexane (ug/m3)	2,500	580	<180.0	200	NE
MIBK (ug/m3)	12	<8.3	<8.3	<8.3	NE
Methylene chloride (ug/m3)	. 110	<7.1	<7.1	<7.1	17,000
Naphthalene (ug/m3)	<11.0	<11.0	<11.0	<11.0	240
Propene (ug/m3)	<88.0	<88.0	<88.0	240	NE
PCE (ug/m3)	100,000	24,000	<14.0	19	1,400
Toluene (ug/m3)	33	12	19	25	180,000
TCE (ug/m3)	500	110	<11.0	<11.0	4,100
1,2,4-Trimethylbenzene (ug/m3)	<10.0	<10.0	<10.0	<10.0	NE
1,3,5-Trimethylbenzene (ug/m3)	<10.0	<10.0	<10.0	<10.0	NE
Xylenes (ug/m3)	. 41	52	<27.0	<27.0	58,000
VOCs (ug/m3)	<4.2-210.0	<4.2-210.0	<4.2-210.0	<4.2-210.0	
Oxygen (uL/L)	150,000	90,000	170,000	200,000	
Methane (uL/L)	5.4	2.5	3.0	3.7	
Carbon Dioxide (uL/L)	7,400	100,000	36,000	15,000	

Notes:

NE = Not Established

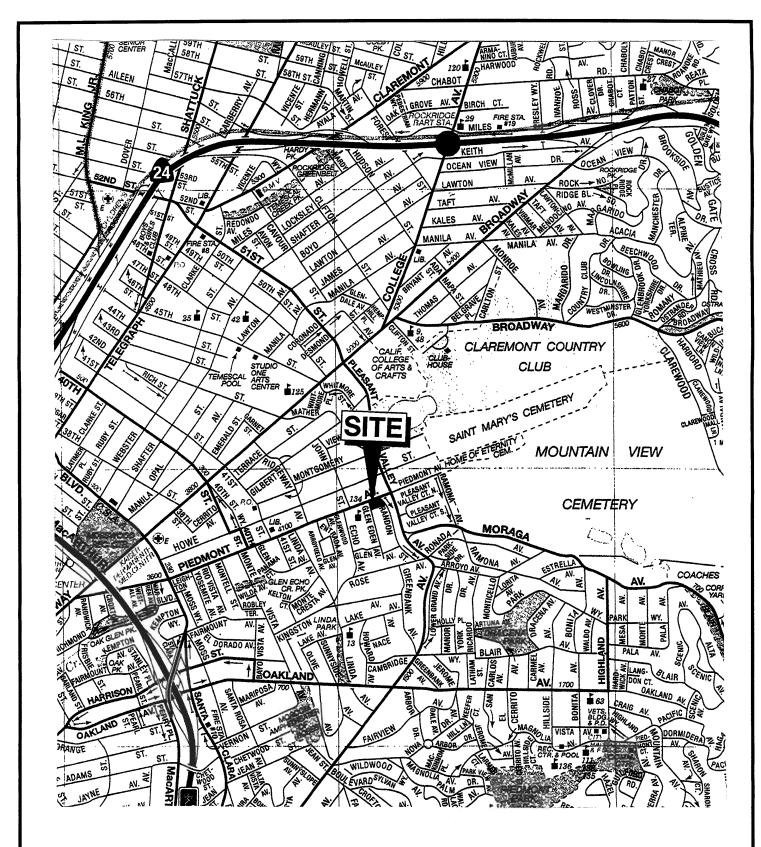
MIBK = 4-Methyl-2-pentanone

PCE = Tetrachloroethene

TCE = Trichlorothene

TABLE 1 SOIL VAPOR SAMPLE RESULTS Sunny Piedmont Cleaners Oakland, California

Sample ID	SV-2	SV-2	SV-2	SV-2	Commercial/Industrial ESL		
Date Sampled	2/10/2012	5/2/2012	11/1/2012	1/22/2013			
Compound							
Acetone (ug/m3)	· 290	150	<120.0	<120.0	1,800,000		
Benzene (ug/m3)	6.7	8.1	8.4	47	280		
1,3-Butadiene (ug/m3)	<4.5	<4.5	<4.5	64	NE		
Chloroform (ug/m3)	19	<9.9	<9.9	<9.9	1,500		
Ethanol (ug/m3)	350	99	180	<96.0	NE		
Ethyl Acetate (ug/m3)	35	17	<19.0	<19.0	NE		
Ethylbenzene (ug/m3)	<8.8	<8.8	<8.8	18	3,300		
Hexane (ug/m3)	· 740	530	<180.0	200	NE		
MIBK (ug/m3)	16	17	<8.3	<8.3	NE		
Methylene chloride (ug/m3)	37	<7.1	<7.1	<7.1	17,000		
Naphthalene (ug/m3)	18	<11.0	<11.0	<11.0	240		
Propene (ug/m3)	<88.0	<88.0	<88.0	320	NE		
PCE (ug/m3)	14,000	13,000	<14.0	71	1,400		
Toluene (ug/m3)	23	26	15	77	180,000		
TCE (ug/m3)	60	83	<11.0	<11.0	4,100		
1,2,4-Trimethylbenzene (ug/m3)	<10.0	<10.0	<10.0	28	NE		
1,3,5-Trimethylbenzene (ug/m3)	<10.0	<10.0	<10.0	10	NE		
Xylenes (ug/m3)	45	<27.0	<27.0	96	58,000		
VOCs (ug/m3)	. <4.2-210.0	<4.2-210.0	<4.2-210.0	<4.2-210.0			
Oxygen (uL/L)	110,000	93,000	180,000	190,000			
Methane (uL/L)	4.6	6.0	1.8	17			
Carbon Dioxide (uL/L)	49,000	110,000	36,000	48,000			


Notes:

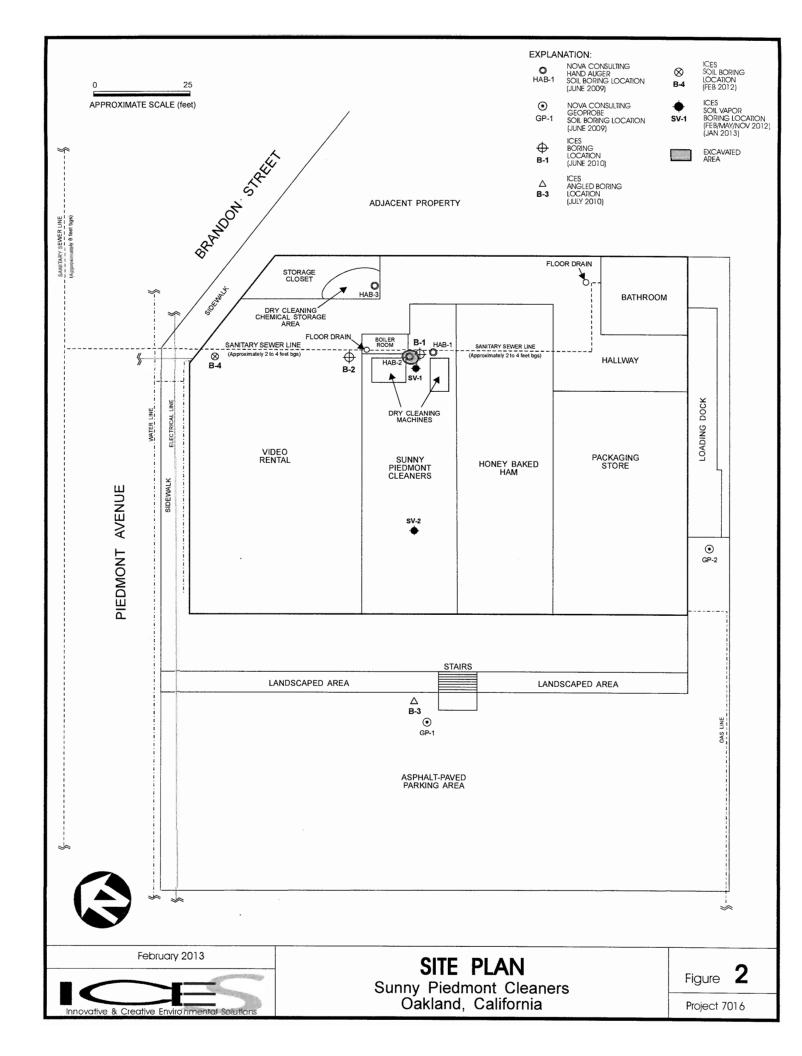
NE = Not Established

MIBK = 4-Methyl-2-pentanone

PCE = Tetrachloroethene

TCE = Trichlorothene

MAP SOURCE :


Scale: 1" = 1100 ft February 2013

Innovative & Creative Environmental Solutions

SITE LOCATION

Sunny Piedmont Cleaners Oakland, California Figure

Project 7016

APPENDIX A

LABORATORY CERTIFICATES

Analytical Report

ICES	Client Project ID: ICES 7016	Date Sampled: 11/01/12
P.O. Box 99288		Date Received: 11/02/12
1.0. B0x 77288	Client Contact: Peng Leong	Date Reported: 11/14/12
Emeryville, CA 94662	Client P.O.:	Date Completed: 11/15/12

WorkOrder: 1211089

November 16, 2012

Dear Peng:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: ICES 7016,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCampbell Analytical, Inc.

(510) 652-3222 FAX: (510) 652-3555

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

ICES

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

ClientCode: ICES

☐ WaterTrax	WriteOn	y EDF	Excel	EQuIS	y Email	HardCopy	ThirdParty	J-flag
-------------	---------	--------------	-------	-------	----------------	----------	------------	--------

Report to:

Peng Leong
Email: derek_ices@yahoo.com
Bill to: Requested TAT: 5 days
Accounts Payable

Email: derek_ices@yahoo.com Accounts Payable cc: ICES

P.O. Box 99288 PO: P.O. Box 99288 Date Received: 11/02/2012
Emeryville, CA 94662 ProjectNo: ICES 7016 Emeryville, CA 94662 Date Printed: 11/14/2012

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
1211089-001	SV-1	Soil Gas	11/1/2012 4:48	Α	Α	Α									
1211089-002	SV-2	Soil Gas	11/1/2012 4:53	Α		Α				1					

Test Legend:

1 LG_SUMMA_SOILGAS	2 PREDF REPORT	3 TO15_SOIL(UG/M3)	4	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Gabrielle Walker

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	ICES				Date and	Time Received:	11/2/2012 8	:13:51 PM
Project Name:	ICES 7016				LogIn Rev	viewed by:		Gabrielle Walker
WorkOrder N°:	1211089	Matrix: Soil Gas			Carrier:	Rob Pringle (M	Al Courier)	
		<u>Cha</u>	ain of C	ustody (COC) Information	1		
Chain of custody	present?		Yes	•	No 🗌			
Chain of custody	signed when relinqu	ished and received?	Yes	•	No 🗌			
Chain of custody	agrees with sample	labels?	Yes	•	No 🗆			
Sample IDs note	ed by Client on COC?	•	Yes	✓	No 🗌			
Date and Time o	of collection noted by	Client on COC?	Yes	\checkmark	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			Sample	Receipt Int	ormation			
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	er/cooler in good cor	ndition?	Yes	✓	No 🗌			
Samples in prop	er containers/bottles	?	Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	d test?	Yes	✓	No 🗌			
		Sample Pre	servatio	n and Hold	Time (HT) Info	ormation		
All samples rece	ived within holding tir	me?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ace / no bubbles?	Yes		No 🗌 No	VOA vials submi	tted 🗹	
Sample labels ch	necked for correct pre	eservation?	Yes	✓	No 🗌			
Metal - pH accep	otable upon receipt (p	H<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			
* NOTE: If the "N	No" box is checked, s	ee comments below.						
Comments:		======	===	====	=====			

	ell Analytical, Inc. n Quality Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com
ICES	Client Project ID: ICES 7016	6 Date Sampled: 11/01/12
P.O. Box 99288		Date Received: 11/02/12
Emanuilla CA 04662	Client Contact: Peng Leong	Date Reported: 11/14/12
Emeryville, CA 94662	Client P.O.:	Date Completed: 11/15/12

Work Order: 1211089

November 15, 2012

CASE NARRATIVE REGARDING TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The dissadvantages are listed in Appendix B of the DTSC Advisory of April 2012.

Angela Rydelius, Lab Manager

	McCampbell Analytical, Inc. "When Quality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
ICES	Client Pr	roject ID: 10	CES 7016	Date Sampled:	Date Sampled: 11/01/12						
P.O. Box 99288				Date Received:	Date Received: 11/02/12						
1.O. DOX 77200	Client Co	ontact: Peng	Leong	Date Extracted:	11/08/12-1	1/13/12					
Emeryville, CA 94662	Client P.	O.:		Date Analyzed:	11/08/12-1	1/13/12					
Extraction Method: ASTM D 1946-90	Ana	Light Ga			Work Order:	1211089					
Lab ID 1	211089-001A	1211089-00)2A			****					
Client ID	SV-1	SV-2									
Matrix	Soil Gas	Soil Gas			Reporting Limit for DF =1 and Pressure Ratio						
Initial Pressure (psia)	13.94	13.74			(Final/In						
Final Pressure (psia)	27.79	27.50									
DF	I	1			Soil Gas	W					
Compound		C	Concentration		μL/L	ug/L					
Carbon Dioxide	36,000	36,000			50	NA					
Methane	3.0	1.8			1.0	NA					
Oxygen	170,000	180,000			4000	NA					
	Surro	ogate Recov	eries (%)								
%SS:	N/A	N/A									
Comments											

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

- W	McCampbell Analytical, Inc.
	"When Quality Counts"

		1.L.
Emeryville, CA 94662	Client P.O.:	Date Analyzed: 11/14/12
	Client Contact: Peng Leong	Date Extracted: 11/14/12
P.O. Box 99288	·	Date Received: 11/02/12
ICES	Client Project ID: ICES 7016	Date Sampled: 11/01/12

Leak Check Compound*

Extraction metho	od: TO15		Analyti	015	Work Order: 1211089			
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure	Isopropyl Alcohol	DF	% SS	Comments
001A	SV-1	Soil Gas	13.94	27.79	ND	1	N/A	
002A	SV-2	Soil Gas	13.74	27.50	ND	1	N/A	
		•						
Rep	porting Limit for DF =1;	W	psia	psia	NA			NA
ND r	means not detected at or cove the reporting limit	SoilGas	psia	psia	50		ı	μg/m³

 leak check compound is reported in μg/m 	*	leak	check	compound	is report	ed in	μg/m ³
---	---	------	-------	----------	-----------	-------	-------------------

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

The (liquid) Leak Check reference is:

DTSC, Advisory-Active Soil Gas Investigations, April 2012, page 17, section 4.2.2.1:

"The laboratory reports should quantify and annotate all detections of the leak check compound at the reporting limit of the target analytes."

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Angela Rydelius, Lab Manager

ICES	Client Project ID: ICES 7016	Date Sampled: 11/01/12
		Date Received: 11/02/12
P.O. Box 99288	Client Contact: Peng Leong	Date Extracted: 11/14/12
Emeryville, CA 94662	Client P.O.:	Date Analyzed: 11/14/12

Volatile Organic Compounds in μg/m³*

Analytical Method: TO15 Work Order: 1211089 Extraction Method: TO15

Lab ID		1211089-001A				Initial Pressure (psia)		
Client ID				SV-1	Final Pressure	e (psia)	27.79	
Matrix				oil Gas				
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	130	1.0	120	Acrylonitrile	ND	1.0	4.4	
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene	13	1.0	6.5	
Benzyl chloride	ND	1.0	11	Bromodichloromethane	ND	1.0	14	
Bromoform	ND	1.0	21	Bromomethane	ND	1.0	7.9	
1,3-Butadiene	· ND	1.0	4.5	2-Butanone (MEK)	ND	1.0	150	
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3	
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4	
Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9	
Chloromethane	ND	1.0	4.2	Cyclohexane	ND	1.0	180	
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane	ND	1.0	20	
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	ND	1.0	12	
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene	ND	1.0	12	
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	ND	1.0	8.2	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene	ND	1.0	8.1	
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene	ND	1.0	8.1	
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene	ND	1.0	9.2	
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.0	14	
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane	ND	1.0	7.3	
Ethanol	170	1.0	96	Ethyl acetate	ND	1.0	19	
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	ND	1.0	8.8	
4-Ethyltoluene	ND	1.0	10	Freon 113	ND	1.0	16	
Heptane	ND	1.0	210	Hexachlorobutadiene	ND	1.0	22	
Hexane	ND	1.0	180	2-Hexanone	ND	1.0	210	
4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3	
Methylene chloride	ND	1.0	7.1	Naphthalene	ND	1.0	11	
Propene	ND	1.0	88	Styrene	ND	1.0	8.6	
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroethane	ND	1.0	14	
Tetrachloroethene	ND	1.0	14	Tetrahydrofuran	ND	1.0	6.0	
Toluene	19	1.0	7.7	1,2,4-Trichlorobenzene	ND	1.0	15	
1,1,1-Trichloroethane	ND	1.0	I 1	1,1,2-Trichloroethane	ND	1.0	11	
Trichloroethene	· ND	1.0	11	Trichlorofluoromethane	ND	1.0	11	
1,2,4-Trimethylbenzene	ND	1.0	10	1,3,5-Trimethylbenzene	ND	1.0	10	
Vinyl Acetate	ND	1.0	180	Vinyl Chloride	ND	1.0	5.2	
Xylenes, Total	ND	1.0	27					
		Sur	rogate R	ecoveries (%)				
%SS1:	10)3		%SS2:	10	4		
%SS3:	10							

Comments:

*vapor samples are reported in μg/m³.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

ICES	ES Client Project ID: ICES 7016	
D O D 00000		Date Received: 11/02/12
P.O. Box 99288	Client Contact: Peng Leong	Date Extracted: 11/14/12
Emeryville, CA 94662	Client P.O.:	Date Analyzed: 11/14/12

Volatile Organic Compounds in μg/m3*

Analytical Method: TO15 Extraction Method: TO15 Work Order: 1211089

Lab ID	1211089			1089-002A	Initial Pressure (psia)		13.74
Client ID				SV-2	Final Pressure	e (psia)	27.50
Matrix			S	Soil Gas	1000		
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	120	Acrylonitrile	ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene	8.4	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethane	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane	ND	1.0	7.9
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)	ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane	ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene	ND	1.0	12
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene	ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane	ND	1.0	7.3
Ethanol	180	1.0	96	Ethyl acetate	ND	1.0	19
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	ND	1.0	8.8
4-Ethyltoluene	ND	1.0	10	Freon 113	ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene	ND	1.0	22
Hexane	ND	1.0	180	2-Hexanone	ND	1.0	210
4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene	ND	1.0	11
Propene	ND	1.0	88	Styrene	ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroethane	ND	1.0	14
Tetrachloroethene	ND	1.0	14	Tetrahydrofuran	ND	1.0	6.0
Toluene	15	1.0	7.7	1,2,4-Trichlorobenzene	ND	1.0	15
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane	ND	1.0	11
Trichloroethene	ND	1.0	11	Trichlorofluoromethane	ND	1.0	11
1,2,4-Trimethylbenzene	ND	1.0	10	1,3,5-Trimethylbenzene	ND	1.0	10
Vinyl Acetate	ND	1.0	180	Vinyl Chloride	ND	1.0	5.2
Xylenes, Total	ND	1.0	27				
		Sui	rrogate R	ecoveries (%)			
%SS1:	10)3		%SS2:	10	2	
%\$\$3:	10)1					

Comments:

*vapor samples are reported in μg/m3.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

QC SUMMARY REPORT FOR ASTM D 1946-90

W.O. Sample Matrix: SoilGas QC Matrix: SoilGas BatchID: 72329 WorkOrder: 1211089

EPA Method: ASTM D 1946-90 Extraction: ASTM D 1946-90 Spiked Sample ID: N/A							N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
,	μL/L	μ L /L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Carbon Dioxide	N/A	100	N/A	N/A	N/A	93	N/A	N/A	70 - 130
Methane	N/A	100	N/A	N/A	N/A	79.8	N/A	N/A	70 - 130
Oxygen	N/A	7000	N/A	N/A	N/A	97.9	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 72329 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1211089-001A	11/01/12 4:48 AM	11/08/12	11/08/12 7:15 PM	1211089-001A	11/01/12 4:48 AM	11/12/12	11/12/12 3:40 PM
1211089-001A	11/01/12 4:48 AM	11/13/12	11/13/12 3:42 PM	1211089-002A	11/01/12 4:53 AM	11/08/12	11/08/12 7:36 PM
1211089-002A	11/01/12 4:53 AM	11/12/12	11/12/12 4:05 PM	1211089-002A	11/01/12 4:53 AM	11/13/12	11/13/12 3:31 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

QC SUMMARY REPORT FOR TO15

QC Matrix: Soilgas BatchID: 72487 W.O. Sample Matrix: Soilgas WorkOrder: 1211089

EPA Method: TO15 Extraction: TO15 Spiked S							Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, wayte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Acrylonitrile	N/A	25	N/A	N/A	N/A	96.8	N/A	N/A	60 - 140
tert-Amyl methyl ether (TAME)	N/A	25	N/A	N/A	N/A	94.6	N/A	N/A	60 - 140
Benzene	N/A	25	N/A	N/A	N/A	91.4	N/A	N/A	60 - 140
Benzyl chloride	N/A	25	N/A	N/A	N/A	95	N/A	N/A	60 - 140
Bromodichloromethane	N/A	25	N/A	N/A	N/A	97.9	N/A	N/A	60 - 140
Bromoform	N/A	25	N/A	N/A	N/A	113	N/A	N/A	60 - 140
t-Butyl alcohol (TBA)	N/A	25	N/A	N/A	N/A	74.9	N/A	N/A	60 - 140
Carbon Disulfide	N/A	25	N/A	N/A	N/A	94.2	N/A	N/A	60 - 140
Carbon Tetrachloride	N/A	25	N/A	N/A	N/A	94.9	N/A	N/A	60 - 140
Chlorobenzene	N/A	25	N/A	N/A	N/A	89.9	N/A	N/A	60 - 140
Chloroethane	N/A	25	N/A	N/A	N/A	105	N/A	N/A	60 - 140
Chloroform	N/A	25	N/A	N/A	N/A	93	N/A	N/A	60 - 140
Chloromethane	N/A	25	N/A	N/A	N/A	107	N/A	N/A	60 - 140
Dibromochloromethane	N/A	25	N/A	N/A	N/A	102	N/A	N/A	60 - 140
1,2-Dibromo-3-chloropropane	N/A	25	N/A	N/A	N/A	121	N/A	N/A	60 - 140
1,2-Dibromoethane (EDB)	N/A	25	N/A	N/A	N/A	91.8	N/A	N/A	60 - 140
1,2-Dichlorobenzene	N/A	25	N/A	N/A	N/A	89.6	N/A	N/A	60 - 140
1,3-Dichlorobenzene	N/A	25	N/A	N/A	N/A	89.8	N/A	N/A	60 - 140
1,4-Dichlorobenzene	N/A	25	N/A	N/A	N/A	83.8	N/A	N/A	60 - 140
Dichlorodifluoromethane	N/A	25	N/A	N/A	N/A	123	N/A	N/A	60 - 140
1,1-Dichloroethane	N/A	25	N/A	N/A	N/A	95.8	N/A	N/A	60 - 140
1,2-Dichloroethane (1,2-DCA)	N/A	25	N/A	N/A	N/A	94.2	N/A	N/A	60 - 140
1,1-Dichloroethene	N/A	25	N/A	N/A	N/A	122	N/A	N/A	60 - 140
cis-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	96.1	N/A	N/A	60 - 140
trans-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	96.6	N/A	N/A	60 - 140
1,2-Dichloropropane	N/A	25	N/A	N/A	N/A	94.7	N/A	N/A	60 - 140
cis-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	94.5	N/A	N/A	60 - 140
trans-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	96.7	N/A	N/A	60 - 140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	N/A	25	N/A	N/A	N/A	88.6	N/A	N/A	60 - 140
Diisopropyl ether (DIPE)	N/A	25	N/A	N/A	N/A	97	N/A	N/A	60 - 140
1,4-Dioxane	N/A	25	N/A	N/A	N/A	91.4	N/A	N/A	60 - 140

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.
NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas QC Matrix: Soilgas BatchID: 72487 WorkOrder: 1211089

EPA Method: TO15	Extraction: TO15						Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
rualyee	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Ethyl acetate	N/A	25	N/A	N/A	N/A	93.1	N/A	N/A	60 - 140
Ethyl tert-butyl ether (ETBE)	N/A	25	N/A	N/A	N/A	98	N/A	N/A	60 - 140
Ethylbenzene	N/A	25	N/A	N/A	N/A	103	N/A	N/A	60 - 140
Freon 113	N/A	25	N/A	N/A	N/A	90.9	N/A	N/A	60 - 140
Hexachlorobutadiene	N/A	25	N/A	N/A	N/A	86	N/A	N/A	60 - 140
4-Methyl-2-pentanone (MIBK)	N/A	25	N/A	N/A	N/A	93.8	N/A	N/A	60 - 140
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	93.2	N/A	N/A	60 - 140
Methylene chloride	N/A	25	N/A	N/A	N/A	107	N/A	N/A	60 - 140
Naphthalene	N/A	25	N/A	N/A	N/A	91.2	N/A	N/A	60 - 140
Styrene	. N/A	25	N/A	N/A	N/A	91.4	N/A	N/A	60 - 140
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	97.7	N/A	N/A	60 - 140
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	94.8	N/A	N/A	60 - 140
Tetrachloroethene	N/A	25	N/A	N/A	N/A	109	N/A	N/A	60 - 140
Tetrahydrofuran	N/A	25	N/A	N/A	N/A	120	N/A	N/A	60 - 140
Toluene	N/A	25	N/A	N/A	N/A	91.1	N/A	N/A	60 - 140
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	89.2	N/A	N/A	60 - 140
1,1,1-Trichloroethane	N/A	25	N/A	N/A	N/A	93.9	N/A	N/A	60 - 140
1,1,2-Trichloroethane	N/A	25	N/A	N/A	N/A	93.7	N/A	N/A	60 - 140
Trichloroethene	N/A	25	N/A	N/A	N/A	90.7	N/A	N/A	60 - 140
1,2,4-Trimethylbenzene	N/A	25	N/A	N/A	N/A	89.5	N/A	N/A	60 - 140
1,3,5-Trimethylbenzene	N/A	25	N/A	N/A	N/A	90.6	N/A	N/A	60 - 140
Vinyl Chloride	N/A	25	N/A	N/A	N/A	94.8	N/A	N/A	60 - 140
%SS1:	N/A	500	N/A	N/A	N/A	99	N/A	N/A	60 - 140
%SS2:	N/A	500	N/A	N/A	N/A	102	N/A	N/A	60 - 140
%SS3:	N/A	500	N/A	N/A	N/A	101	N/A	N/A	60 - 140

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR TO15

QC Matrix: Soilgas BatchID: 72487 WorkOrder: 1211089 W.O. Sample Matrix: Soilgas

EPA Method: TO15	Extraction: TO15 Spiked Sample ID: N/A									
Analyte	Sample Spiked	MS MSD	MS-MSD LCS	Acceptance	Criteria (%)					
,	nL/L nL/L	% Rec. % Rec.	% RPD % Rec.	MS/MSD RPD	LCS					

BATCH 72487 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1211089-001A	11/01/12 4:48 AM	1 11/14/12	11/14/12 10:24 PM	1211089-002A	11/01/12 4:53 AM	11/14/12	11/14/12 9:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

Analytical Report

ICES	Client Project ID: #ICES 7016	Date Sampled: 01/22/13	
P.O. Box 99288		Date Received: 01/23/13	
1.0. Box 77266	Client Contact: Peng Leong	Date Reported: 01/30/13	
Emeryville, CA 94662 .	Client P.O.:	Date Completed: 01/30/13	

WorkOrder: 1301545

January 30, 2013

Dear Peng:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #ICES 7016,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1534 WI Website: y	LLOW vww.me elephor	PASS B	ROAD / F	ALYTICAL INC PITTSBURG, CA 9456 Email: main@mecamp 2 / Fax: (925) 252-9269 Bill To: Same	5-1701 bell.com	CH/ TURN AROUND T EDF Required? Coelt ()	Normal)	RUSH	24 HR rite On (D	48 HR		DAY		
Company: ICES		***************************************		The state of the state of					T	Pı	ressurizati	on Gas		
3300 Powe	ell Stre	et #109	2000000 and appending the second		1996-1985-1 William III 1985 (Westermann 1984)	Pressurized By Date								
Emeryville	e, CA	94662	***************************************	E-Mail: derek_i	ces@yahoo.com	N2								
Tele: (510) 652-3222				Fax: (510) 652-	3555									
Project #: ICES 7016		-		Project Name:		Helium Shroud SN#:								
Project Location: Sun	ny Pie	dmont (Cleaners	5		Other:								
	-	1/				Notes:								
Field Sample ID	1.00	Colle		Cooking Chin	Manifold / Sampler					ŧ				
(Location)		ъ.	701	Canister SN#	Kit SN#	Analysis Requested	Indoor				er Pressure/Vacuum			
		Date	Time				Air	Gas	Initial	Final	Receipt	Final (psi)		
SV-1		1-22-13	2:26	CAN5802-733	MAN316-689	VOCs (TO-15), Oxygen, Carbon Dioxide, Methane		X	29.5	3		X 13.17		
SV-2		1-22-13	2:43	CAN5800-731	MAN316-827	VOCs (TO-15), Oxygen, Carbon Dioxide, Methane		X	30.0	3				
											-			
	-													
***		67/	2											
Relinguished By:	100	12-13		Received Bys			Work Order	The second secon	onnonnen sannan sanna sann	MANA Managarana and a same and a				
Relinquished by:	7	Date:	Time: /539	Received By:	29	Equipment Condition:		MATE VALUE AND THE COLUMN TO T						
Relinquished By:	1	Fate:	Time:	Received By:		Shipped Via:								
												-Page 7 0		

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

JUL	1534 Willow Pass Rd
	Pittsburg, CA 94565-1701
-	(925) 252-9262

	g, CA 94565-1701 52-9262				W	orkC	Order:	130154	5	Cli	ientCo	de: ICE	S				
		WaterTrax	WriteOn	EDF	□E	xcel		EQuIS	✓	Email	[HardCo	oy [ThirdF	arty	J-fla	ag
Report to: Peng Leong ICES P.O. Box 99 Emeryville, (510) 652-32	0288 CA 94662	cc: PO: ProjectNo: #	erek_ices@yai ICES 7016	hoo.com		8	ICES P.O.	unts Pa Box 99 ryville, (288	662		1	Date 1	sted TAT Received Printed:	d:	5 (01/23/2 01/23/2	
					[Re	equeste	d Tests	(See lege	nd be	low)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1301545-001	SV-1		Soil Gas	1/22/2013 14:26		Α	Α										
1301545-002	SV-2		Soil Gas	1/22/2013 14:43		Α	A					:					<u> </u>
Test Legend: 1 LG_SUMN 6 11	7 [12]	TO15_SOIL(L	JG/M3)	8				9					5				

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	ICES				Date and	Time Received:	1/23/2013	5:48:33 PM
Project Name:	#ICES 7016				LogIn Rev	viewed by:		Jena Alfaro
WorkOrder N°:	1301545	Matrix: Soil Gas			Carrier:	Rob Pringle (M	IAI Courier)	
		<u>Ch</u> :	ain of Cu	ustody (CO	C) Information	<u>1</u>		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinq	uished and received?	Yes	✓	No \square			
Chain of custody	agrees with sample	e labels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC	?	Yes	✓	No 🗌			
Date and Time o	f collection noted by	/ Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
			Sample	Receipt In	<u>formation</u>			
Custody seals in	tact on shipping cor	ntainer/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	er/cooler in good co	ondition?	Yes	✓	No 🗌			
Samples in propo	er containers/bottles	s? _.	Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicate	ed test?	Yes	✓	No 🗌			
		Sample Pre	servatio	n and Hold	Time (HT) Inf	ormation		
All samples rece	ived within holding t	ime?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headsp	pace / no bubbles?	Yes		No 🗌 No	VOA vials subm	itted 🗹	
Sample labels ch	necked for correct p	reservation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			
* NOTE: If the "N	lo" box is checked,	see comments below.						
Comments:			===			=====		=====

^{*} soil vapor samples are reported in µL/L.

Comments

[%]SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

- We	McCampbell Analytical, Inc.
	"When Quality Counts"

ICES		Client	Project ID: #	#ICES 7016	Date Sampled: 01/22/1	3		
PO B	30x 99288				Date Received: 01/23/1	3		
r.O. D	50X 99286	Client	Contact: Pen	g Leong	Date Extracted: 01/28/1	3		
Emery	ville, CA 94662	Client	P.O.:		Date Analyzed: 01/28/1	3		
Fortunation	on method: TO15			neck Compou		Work	Order: 13	01545
Lab ID	Client ID	Matrix	Initial Pressure		Isopropyl Alcohol	DF	% SS	Comments
001A	SV-1	Soil Gas	13.49	26.88	ND	1	N/A	
001A	SV-2	Soil Gas	13.63	27.16	ND	1	N/A	
002A	O V - Z	5011 0415	10.00					
			#112 00000 1 7					
	:							
	Reporting Limit for DF =1; ND means not detected at or	W	psia	psia	NA			NA
	above the reporting limit	SoilGas	psia	psia	50			ug/m³
* leak cl	heck compound is reported in μg/m³.							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

The (liquid) Leak Check reference is:

DTSC, Advisory-Active Soil Gas Investigations, April 2012, page 17, section 4.2.2.1:

"The laboratory reports should quantify and annotate all detections of the leak check compound at the reporting limit of the target analytes."

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Angela Rydelius, Lab Manager

Client Project ID: #ICES 7016 Date Sampled: 01/22/13 **ICES** Date Received: 01/23/13 P.O. Box 99288 Date Extracted: 01/28/13 Client Contact: Peng Leong Emeryville, CA 94662 Client P.O.: Date Analyzed: 01/28/13

Volatile Organic Compounds in μg/m3*

Analytical Method: TO15 Work Order: 1301545 Extraction Method: TO15

Lab ID			130	1545-001A	Initial Pressure		13.49
Client ID				SV-1 Soil Gas	Final Pressure	e (psia)	26.88
Matrix							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	120	Acrylonitrile	ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene	19	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethane	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane	ND	1.0	7.9
1,3-Butadiene	48	1.0	4.5	2-Butanone (MEK)	ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane	ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene	ND	1.0	12
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene	ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane	ND	1.0	7.3
Ethanol	ND	1.0	96	Ethyl acetate	ND	1.0	19
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	ND	1.0	8.8
4-Ethyltoluene	ND	1.0	10	Freon 113	ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene	ND	1.0	22
Hexane	200	1.0	180	2-Hexanone	ND	1.0	210
4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene	ND	1.0	11
Propene	240	1.0	88	Styrene	ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroethane	ND	1.0	14
Tetrachloroethene	19	1.0	14	Tetrahydrofuran	ND	1.0	6.0
Toluene	25	1.0	7.7	1,2,4-Trichlorobenzene	ND	1.0	15
1,1,1-Trichloroethane	· ND	1.0	11	1,1,2-Trichloroethane	ND	1.0	11
Trichloroethene	ND	1.0	11	Trichlorofluoromethane	ND	1.0	11
1,2,4-Trimethylbenzene	ND	1.0	10	1,3,5-Trimethylbenzene	ND	1.0	10
Vinyl Acetate	ND	1.0	180	Vinyl Chloride	ND	1.0	5.2
Xylenes, Total	ND	1.0	27				
		Sur	rogate R	ecoveries (%)			
%SS1: 100				%SS2:	9.	4	
%SS3:	9				· · · · · · · · · · · · · · · · · · ·		

Comments:

*vapor samples are reported in µg/m3.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Client Project ID: #ICES 7016 Date Sampled: 01/22/13 **ICES** Date Received: 01/23/13 P.O. Box 99288 Date Extracted: 01/28/13 Client Contact: Peng Leong Client P.O.: Date Analyzed: 01/28/13 Emeryville, CA 94662

Volatile Organic Compounds in µg/m3*

Analytical Method: TO15 Work Order: 1301545 Extraction Method: TO15

Lab ID			1301	545-002A	Initial Pressure	e (psia)	13.63
Client ID				SV-2	Final Pressure	e (psia)	27.16
Matrix			S	oil Gas			
Compound	Concentration *	Reporting					Reporting Limit
Acetone	ND	1.0	120	Acrylonitrile	ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene	47	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichloromethane	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane	ND	1.0	7.9
1,3-Butadiene	64	1.0	4.5	2-Butanone (MEK)	ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide	ND	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene	ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane	ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chloropropane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzene	ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzene	ND	1.0	12
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene	ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroethene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropropene	ND	1.0	9.2
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.0	14
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane	ND	1.0	7.3
Ethanol	ND	1.0	96	Ethyl acetate	ND	1.0	19
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	18	1.0	8.8
4-Ethyltoluene	ND	1.0	10	Freon 113	ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadiene	ND	1.0	22
Hexane	200	1.0	180	2-Hexanone	ND	1.0	210
4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ether (MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene	ND	1.0	11
Propene	320	1.0	88	Styrene	ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloroethane	ND	1.0	14
Tetrachloroethene	71	1.0	14	Tetrahydrofuran	ND	1.0	6.0
Toluene	77	1.0	7.7	1,2,4-Trichlorobenzene	ND	1.0	15
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroethane	ND	1.0	11
Trichloroethene	ND	1.0	11	Trichlorofluoromethane	ND	1.0	11
1,2,4-Trimethylbenzene	28	1.0	10	1,3,5-Trimethylbenzene	10	0.1	10
Vinyl Acetate	ND	1.0	180	Vinyl Chloride	ND	1.0	5.2
Xylenes, Total	96	1.0	27				
		Sur	rogate R	ecoveries (%)			

Surrogate Recoveries (%)									
%SS1:	97	%SS2:	93						
%SS3:	91								

*vapor samples are reported in μg/m3.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

QC SUMMARY REPORT FOR ASTM D 1946-90

W.O. Sample Matrix: SoilGas

QC Matrix: SoilGas

BatchID: 74243

WorkOrder: 1301545

EPA Method: ASTM D 1946-90 Extraction: ASTM D 1946-90 Spiked Sample ID: N/A									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria		Criteria (%)
	µL/L	μL/L	% Rec.		% RPD	% Rec.	MS / MSD	RPD	LCS
Carbon Dioxide	N/A	100	N/A	N/A	N/A	89	N/A	N/A	70 - 130
Methane	N/A	100	N/A	N/A	N/A	71.1	N/A	N/A	70 - 130
Oxygen	N/A	7000	N/A	N/A	N/A	81.5	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 74243 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301545-001A	01/22/13 2:25 PM	01/24/13	01/24/13 3:26 PM	1301545-001A	01/22/13 2:26 PM	01/29/13	01/29/13 5:13 PM
1301545-001A	01/22/13 2:26 PM	01/29/13	01/29/13 7:52 PM	1301545-002A	01/22/13 2:43 PM	01/24/13	01/24/13 3:51 PM
1301545-002A	01/22/13 2:43 PM	01/29/13	01/29/13 5:50 PM	1301545-002A	01/22/13 2:43 PM	01/29/13	01/29/13 5:50 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas QC Matrix: Soilgas BatchlD: 74184 WorkOrder: 1301545

EPA Method: TO15	Extraction: TO15							Spiked Sam	ple ID:	N/A
Analyte	Sam	ple Sp	piked	MS	MSD	MS-MSD	LCS	Acceptance (Criteria (%)
, may to	nL/	L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Acrylonitrile	N/A	1	25	N/A	N/A	N/A	73.3	N/A	N/A	60 - 140
tert-Amyl methyl ether (TAME)	N/A	١.	25	N/A	N/A	N/A	106	N/A	N/A	60 - 140
Benzene	N/A	١.	25	N/A	N/A	N/A	103	N/A	N/A	60 - 140
Benzyl chloride	N/A	4	25	N/A	N/A	N/A	101	N/A	N/A	60 - 140
Bromodichloromethane	N/A	1	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140
Bromoform	N/A	\	25	N/A	N/A	N/A	103	N/A	N/A	60 - 140
t-Butyl alcohol (TBA)	N/A	\ \ \ \	25	N/A	N/A	N/A	75.4	N/A	N/A	60 - 140
Carbon Disulfide	N/A	4	25	N/A	N/A	N/A	68	N/A	N/A	60 - 140
Carbon Tetrachloride	N/A	4	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140
Chlorobenzene	N/A	١	25	N/A	N/A	N/A	101	N/A	N/A	60 - 140
Chloroethane	N/A	1	25	N/A	N/A	N/A	124	N/A	N/A	60 - 140
Chloroform	N/A	1	25	N/A	N/A	N/A	107	N/A	N/A	60 - 140
Chloromethane	N/A	4	25	N/A	N/A	N/A	94	N/A	N/A	60 - 140
Dibromochloromethane	N/A	\	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140
1,2-Dibromo-3-chloropropane	N/A	\ \ \	25	N/A	N/A	N/A	122	N/A	N/A	60 - 140
1,2-Dibromoethane (EDB)	. N/A	\	25	N/A	N/A	N/A	104	N/A	N/A	60 - 140
1,2-Dichlorobenzene	N/A	\	25	N/A	N/A	N/A	97.8	N/A	N/A	60 - 140
1,3-Dichlorobenzene	N/A	Α	25	N/A	N/A	N/A	98.9	N/A	N/A	60 - 140
1,4-Dichlorobenzene	N/A	1	25	N/A	N/A	N/A	84	N/A	N/A	60 - 140
Dichlorodifluoromethane	N/A	\	25	N/A	N/A	N/A	88.6	N/A	N/A	60 - 140
1,1-Dichloroethane	N/A	4	25	N/A	N/A	N/A	107	N/A	N/A	60 - 140
1,2-Dichloroethane (1,2-DCA)	N/A	1	25	N/A	N/A	N/A	112	N/A	N/A	60 - 140
1,1-Dichloroethene	N/A	\	25	N/A	N/A	N/A	83.7	N/A	N/A	60 - 140
cis-1,2-Dichloroethene	N/A	1	25	N/A	N/A	N/A	106	N/A	N/A	60 - 140
trans-1,2-Dichloroethene	N/A	A .	25	N/A	N/A	N/A	105	N/A	N/A	60 - 140
1,2-Dichloropropane	N/A	1	25	N/A	N/A	N/A	107	N/A	N/A	60 - 140
cis-1,3-Dichloropropene	N/A		25	N/A	N/A	N/A	106	N/A	N/A	60 - 140
rans-1,3-Dichloropropene	, N/A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25	N/A	N/A	N/A	111	N/A	N/A	60 - 140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	N/A	1	25	N/A	N/A	N/A	83.6	N/A	N/A	60 - 140
Diisopropyl ether (DIPE)	N/A	1	25	N/A	N/A	N/A	116	N/A	N/A	60 - 140
1,4-Dioxane	N/A	\	25	N/A	N/A	N/A	100	N/A	N/A	60 - 140

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas QC Matrix: Soilgas BatchID: 74184 WorkOrder: 1301545

EPA Method: TO15 Extr	action: TO15						Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance C		Criteria (%)
, include	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Ethyl acetate	N/A	25	N/A	N/A	N/A	111	N/A	N/A	60 - 140
Ethyl tert-butyl ether (ETBE)	N/A	25	N/A	N/A	N/A	109	N/A	N/A	60 - 140
Ethylbenzene	N/A	25	N/A	N/A	N/A	93.8	N/A	N/A	60 - 140
Freon 113	N/A	25	N/A	N/A	N/A	67.8	N/A	N/A	60 - 140
Hexachlorobutadiene	N/A	25	N/A	N/A	N/A	89.6	N/A	N/A	60 - 140
4-Methyl-2-pentanone (MIBK)	N/A	25	N/A	N/A	N/A	111	N/A	N/A	60 - 140
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	105	N/A	N/A	60 - 140
Methylene chloride	N/A	25	N/A	N/A	N/A	66	N/A	N/A	60 - 140
Naphthalene	N/A	25	N/A	N/A	N/A	107	N/A	N/A	60 - 140
Styrene	N/A	25	N/A	N/A	N/A	98.4	N/A	N/A	60 - 140
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	109	N/A	N/A	60 - 140
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	105	N/A	N/A	60 - 140
Tetrachloroethene	N/A	25	N/A	N/A	N/A	98	N/A	N/A	60 - 140
Tetrahydrofuran	N/A	25	N/A	N/A	N/A	95.6	N/A	N/A	60 - 140
Toluene	N/A	25	N/A	N/A	N/A	101	N/A	N/A	60 - 140
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	94.4	N/A	N/A	60 - 140
1,1,1-Trichloroethane	N/A	25	N/A	N/A	N/A	111	N/A	N/A	60 - 140
1,1,2-Trichloroethane	N/A	25	N/A	N/A	N/A	105	N/A	N/A	60 - 140
Trichloroethene	N/A	25	N/A	N/A	N/A	104	N/A	N/A	60 - 140
1,2,4-Trimethylbenzene	N/A	25	N/A	N/A	N/A	100	N/A	N/A	60 - 140
1,3,5-Trimethylbenzene	N/A	25	N/A	N/A	N/A	99.8	N/A	N/A	60 - 140
Vinyl Chloride	N/A	25	N/A	N/A	N/A	78.1	N/A	N/A	60 - 140
%SS1:	N/A	500	N/A	N/A	N/A	89	N/A	N/A	60 - 140
%SS2	N/A	500	N/A	N/A	N/A	92	N/A	N/A	60 - 140
%SS3:	N/A	500	N/A	N/A	N/A	90	N/A	N/A	60 - 140

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas

QC Matrix: Soilgas

BatchID: 74184

WorkOrder: 1301545

EPA Method: TO15 Extraction: TO15 Spiked Sample ID: N/A								N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance	Criteria (%)
	nL/L	nL/L	% Rec.	% Rec.	% RPD		MS/MSD RPD	LCS

BATCH 74184 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301545-001A	01/22/13 2:26 PM	01/28/13	01/28/13 5:23 PM	1301545-001A	01/22/13 2:26 PM	01/28/13	01/28/13 5:23 PM
1301545-002A	01/22/13 2:43 PM	01/28/13	01/28/13 6:03 PM	1301545-002A	01/22/13 2:43 PM	01/28/13	01/28/13 6:03 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.