RECEIVED

2:50 pm, Feb 01, 2008

Alameda County Environmental Health

LIMITED ENVIRONMENTAL SITE CHARACTERIZATION PAPERMILL PARCELS Emeryville, California

Archstone-Smith San Francisco, California

13 February 2007 Project No. 4542.02

13 February 2007 Project 4542.02

Mr. Richard Juarez Archstone-Smith 1390 Market Street San Francisco, California 94102

Subject:

Limited Environmental Site Characterization

Papermill Parcels Emeryville, California

Dear Mr. Juarez:

We are pleased to submit our report titled "Limited Environmental Site Characterization" for the Papermill Parcels properties in Emeryville, California.

We appreciate the opportunity to be of service to you on this project. If you have any questions or require additional information, please call.

Sincerely yours, TREADWELL & ROLLO, INC.

Peter J. Cusack, REA

Senior Associate

45420101.PJC

Enclosure

Philip G. Smith, REA II

Principal

LIMITED ENVIRONMENTAL SITE CHARACTERIZATION PAPERMILL PARCELS Emeryville, California

Archstone-Smith San Francisco, California

13 February 2007 Project No. 4542.02

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	PROJECT DESCRIPTION	1
3.0	BACKGroUND	2
4.0	SCOPE AND PURPOSE OF SITE CHARACTERIZATION WORK	3
5.0	FIELD INVESTIGATION	3
6.0	SUBSURFACE CONDITIONS	4
7.0	SAMPLE SELECTION AND ANALYTICAL TESTING	5
8.0	LABORATORY TEST RESULTS AND EVALUATION	5
8.0	CONCLUSIONS AND PRELIMINARY RECOMMENDATIONS	
9.0	LIMITATIONS	9
APPE	NDIX A – Tables of Previous Analytical Results	
APPE	NDIX B – Exploratory Boring Logs	
APPE	NDIX C – Certified Analytical Results and Chain-of-Custody Records	
TABL	ES	
FIGUR	DTC	

LIMITED ENVIRONMENTAL SITE CHARACTERIZATION PAPERMILL PARCELS Emeryville, California

1.0 INTRODUCTION

This report, prepared for Archstone-Smith, presents the results of our Limited Environmental Site Characterization (ESC) for the Papermill Parcel development ("Site") in Emeryville, California (Figure 1).

The project area is approximately three acres and consists of the two city blocks bounded by Hollis, Powell, Beaudry, and Stanford Streets. The Site is currently occupied by three buildings (referred to as Powell Street, Hollis Street, and Doyle Street buildings) which are occupied by office and light manufacturing facilities, paved parking and landscaping areas. We understand that there is an existing half basement beneath the Hollis Street building.

2.0 PROJECT DESCRIPTION

Preliminary plans include demolishing the existing structures and constructing town homes and apartments. The town homes will be constructed in two phases: Phase 1 Development will consist of 22 at- grade town homes in the area bound by Powell, Beaudry, Doyle, and the City of Emeryville Park. Phase 2 Development will consist of a podium parking structure with apartment units above the parking structure in the area bound by Powell, Hollis, Doyle and the City of Emeryville Parking lot. The foundation systems for both Phase 1 and Phase 2 Developments will be continuous footings and slab on-grade construction.

3.0 BACKGROUND

We have reviewed the following environmental documents regarding the Papermill project that were provided to us:

- Preliminary Site Assessment Phase I, Papermill, Emeryville, California prepared by Harza Kaldveer dated 21 July 1993;
- Phase I Environmental Site Assessment, Papermill Project, 5710 5770 Hollis Street, 1255-1349 Powell Street, 5741 5745 Doyle Street, and 1342 Stanford Avenue, Emeryville, California prepared by CERES Environmental dated 8 February 1994;
- Soil and Groundwater Sampling Report, Papermill Project, 1255 Powell Street, Emeryville, California prepared by CERES Environmental dated 33 April 1998;
- Limited Soil Sampling and Analysis, Papermill Properties Foundation and Cripple Wall Addition, Southwesterly Corner of Powell and Doyle Street, Emeryville, California prepared by Anton Geological dated 30 October 2002;
- Phase I Environmental Site Assessment, The Papermill Properties, Emeryville, California prepared by PES Environmental, Inc dated 17 April 2006; and
- Summary Report, Phase II Site Investigation Findings, The Papermill, Emeryville, California prepared by PES Environmental, Inc dated 17 May 2006.

A summary of the previous laboratory analytical results are presented in Appendix A. Based on the analytical results of limited soil samples collected in the near surface soils at the Site, elevated lead and chromium levels and low levels of petroleum hydrocarbons were detected in the shallow soil. Total lead was detected at concentrations of 6.3 milligrams per kilograms (mg/kg) to 2,700 mg/kg. The State of California hazardous waste criteria for total lead is greater than or equal to 1,000 mg/kg, and/or soluble lead at a soluble threshold limit concentration (STLC) greater than or equal to 5.0 milligrams per liter (mg/l).

Based on the reported analytical results, elevated lead was detected beneath the Powell Street building and an elevated chromium level (110 mg/kg) was detected beneath the parking lot near the Hollis Street building. Petroleum hydrocarbons were detected in the parking area (within and

near the former tank backfill) of the Doyle Street building but no analyses for heavy metals were performed on the soil samples.

4.0 SCOPE AND PURPOSE OF SITE CHARACTERIZATION WORK

Our work included collecting soil samples of the fill material and underlying alluvial soil from ten exploratory borings, chemical testing of selected soil samples, and evaluating the results. The objective of the ESC was to assess the presence of petroleum hydrocarbon and metal contamination in the soil beneath the Site that will be removed and disposed during the proposed construction activities. Concentrations of chemical compounds detected in the soil samples were compared to state and federal criteria for hazardous waste and disposal options.

5.0 FIELD INVESTIGATION

On 11 December 2006, a total of ten exploratory borings, B-1, B-2, and SB-10 through SB-17 were drilled to depths ranging from 2 to 78.5 below ground surface (bgs) at the locations shown on Figure 2. Borings B-1 and B-2 were drilled by Pitcher Drilling Company using a truck mounted, rotary-wash drill rig to depths of 78.5 feet bgs. Borings SB-10 through SB-17 were drilled by Gregg Drilling to depths of 8.0 feet bgs using a Geoprobe Model 5400 hydraulic direct push rig mounted on a pickup truck.

Soil samples were obtained from the geotechnical borings (B-1 and B-2) using a Sprague and Henwood (S&H) split-barrel sampler with a 3.0-inch-outside diameter, 2.5-inch-inside diameter, lined with stainless steel tubes with an inside diameter of 2.43 inches. After the S&H sampler was driven, a six-inch, lined sample core was retained for chemical analyses.

Soil sampling was obtained from the environmental borings (SB-10 through SB-17) with probes consisting of hollow steel rods with an attached Macrocore. The Macrocore used in this investigation was 4 feet in length and 1.75 inch in diameter. The Macrocore allows for continuous soil sampling lithology identification and the collection of soil in clear butyrate liners

for laboratory analysis. After the sampler was driven, selected sample cores were retained for chemical analyses by cutting the Macrocore sampler at the desired depths.

The soil sample ends were covered with Teflon, sealed with plastic end caps, labeled and stored in an ice-cooled chest for delivery to the analytical laboratory. All soil sampling equipment was thoroughly cleaned with a detergent solution and rinsed with distilled water before each sampling event.

All samples were delivered under chain-of-custody control to McCampbell Analytical, Inc., a California Department of Health Services certified analytical laboratory in Pittsburg, California. Boring logs from this investigation are presented in Appendix B as Figures B-1 through B-10. The soil encountered was classified in accordance with the classification chart shown on Figure B-11.

All exploratory borings were backfilled with cement/bentonite grout, under the approval of the Alameda County Public Works Department, Water Well Program inspector. The soil cuttings and water generated during the drilling operations were placed into 55-gallon drums, chemically tested, and will be disposed offsite.

6.0 SUBSURFACE CONDITIONS

The results of previous and our subsurface investigation indicate the Site is underlain by approximately 3- to 4½-inches thick of asphalt concrete. The asphalt concrete is underlain by approximately three feet of medium stiff to stiff clay with sand fill. The fill is underlain by native alluvial soil, stiff to hard clay, sandy clay to the maximum depths explored 78.5 feet bgs. Groundwater was not measured in the borings as it was obscured by the rotary-wash drilling fluid but was previously reported at depths of approximately 11 to 27 feet below the ground surface.

7.0 SAMPLE SELECTION AND ANALYTICAL TESTING

The objective of the soil sampling was to assess the presence of hazardous materials and petroleum hydrocarbons in the soil beneath the Site that will be disturbed during the proposed construction activities. The soil samples were submitted to McCampbell Analytical Laboratories for some or all of the analyses as listed below:

- Total recoverable petroleum hydrocarbons (TRPH) by EPA Method 418.1
- Total petroleum hydrocarbons as gasoline and diesel by Modified EPA Method 8015;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270;
- Polychlorinated biphenyls (PCBs) by EPA Method 8081;
- California assessment manual (CAM) 17 metals by EPA Method 6010/200.7 series:
- Leaking underground fuel tank (LUFT) 5 metals by EPA Method 6010/200.7 series; and
- Total lead by EPA Method 6010/200.7.

Most of the soil samples were analyzed for TRPH and total lead. Some samples with elevated concentrations of total lead (greater than 50 parts per million), as indicated on Table 2, were also analyzed for soluble lead using Soluble Threshold Limit Concentration (STLC) by California Waste Extraction Test (WET). These soluble lead analyses were performed to assess if the lead concentrations in select soil samples exceeded State hazardous waste levels.

8.0 LABORATORY TEST RESULTS AND EVALUATION

A summary of the laboratory analytical results is presented on Tables 1 and 2. Copies of the laboratory analytical reports are presented in Appendix B. The results of the laboratory analysis are discussed below.

TRPH was detected in 13 of the 27 soil samples analyzed, at concentrations ranging from 27 milligrams per kilograms (mg/kg) to 180 mg/kg. Low level of diesel was detected in 4 of the 12 at concentrations from 1.3 mg/kg to 3.1 mg/kg. Gasoline was detected in one of the 12 samples analyzed at a concentration of 3.8 mg/kg. No SVOCs or PCBs were detected at or above method reporting limits in the samples analyzed.

Total lead was detected in all 27 soil samples analyzed at concentrations ranging from 5.3 mg/kg to 700 mg/kg. The remaining metal concentrations were within normal¹ background ranges found in the western United States. STLC lead was detected in 5 of the soil samples analyzed at concentrations ranging from 0.74 milligrams per liter (mg/l) to 140 mg/l.

8.0 CONCLUSIONS AND PRELIMINARY RECOMMENDATIONS

Currently, the Site is occupied by three buildings (referred to as Powell Street, Hollis Street, and Doyle Street buildings) which are occupied by office and light manufacturing facilities, paved parking and landscaping areas. We understand that there is an existing half basement beneath the Hollis Street building and based on previous analytical results of sampling performed, no contaminated fill exists beneath the half basement.

The Site is underlain by approximately three feet of medium stiff to stiff clay with sand fill. The fill is underlain by native alluvial soil, stiff to hard clay, sandy clay to the maximum depths explored 78.5 feet bgs.

The soil sample analytical results from this and previous subsurface investigations were compared to State of California total threshold limit concentration (TTLC) and STLC hazardous waste criteria. Based on these comparisons, the fill material beneath the Powell Street building and SB-15 and SB-17 near the Doyle Street building will likely require disposal at a State of

[&]quot;U.S.G.S. Professional Paper 1270, Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States," 1984

California Hazardous Waste facility. The remaining fill material throughout the Site will likely be re-used on-site as fill material or be disposed of at a Class II/III non-hazardous waste facility.

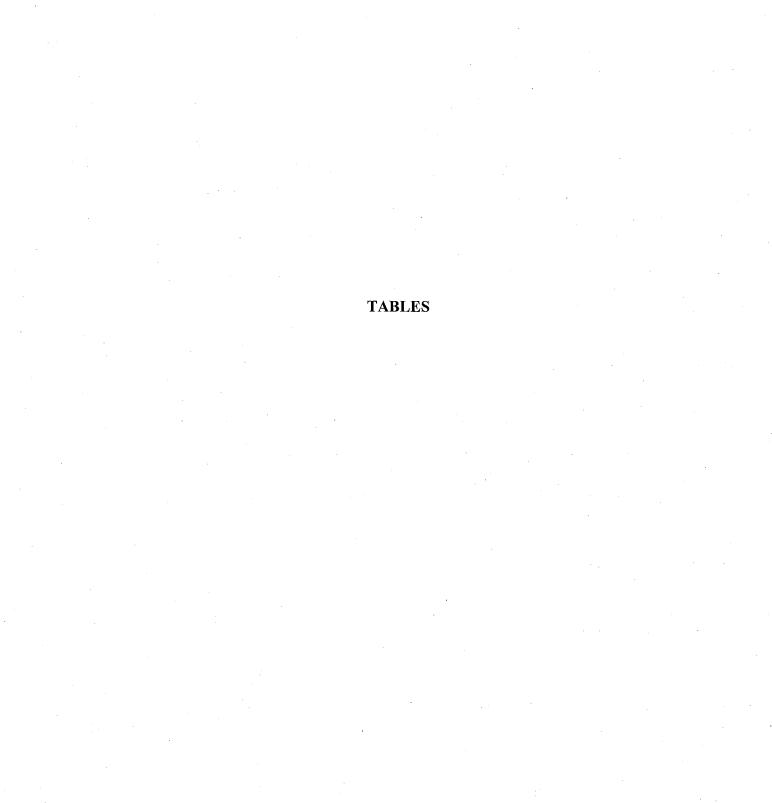
For the proposed Phase I Development, we have estimated the amount of fill material that will need to be excavated of during construction activities. In estimating the quantity of the fill material at the site, we used the following information:

- Total depth of the fill material at the site is 3 feet bgs.
- The Phase 1 Development Site is approximately 28,290 square feet in total area.
- Used a factor of 1.6 to convert from cubic yards to tons.
- Used our drawing dated 12/12/06 for soil boring locations and area of the site.
- Based on analytical results (performed on soil samples collected during the period of April 1998 and December 2006), we interpolated analytical results for lead and petroleum hydrocarbons between soil boring locations, and interpolated depth of fill material between soil boring locations.
- The exploratory boring logs from this and previous investigations determined the depth of fill material at the site.

This method of estimating in-place quantities of the various classes of soil is standard industry practice; however, a final volume estimate is dependent upon review and approval of the receiving landfill waste acceptance coordinator. In summary, approximately 650 tons (407 cubic yards) of fill material classified as State of California Class I (Non-RCRA) hazardous waste, and approximately 4,390 tons (2,745 cubic yards) of fill material classified as non-hazardous Class II/III likely exist within the 3 feet of fill material at the proposed Phase 1 Development.

For the proposed Phase 2 Development, we have estimated the amount of fill material that will need to be excavated of during construction activities. In estimating the quantity of the fill material at the site, we used the following information:

- Total depth of the fill material at the site is 3 feet bgs.
- The Phase 2 Development Site is approximately 110,450 square feet in total area. With the Hollis Street Building having a half basement, we assume that no fill is beneath the Building so we are deducting the square footage of the Building (12,000 square feet) from the total Site area. Based on theses calculations, we used 98,450 square feet in total area for the Phase 2 Development.
- Used a factor of 1.6 to convert from cubic yards to tons.
- Used our drawing dated 12/12/06 for soil boring locations and area of the site.
- Based on analytical results (performed on soil samples collected during the period of April 1998 and December 2006), we interpolated analytical results for lead and petroleum hydrocarbons between soil boring locations, and interpolated depth of fill material between soil boring locations.
- The exploratory boring logs from this and previous investigations determined the depth of fill material at the site.


This method of estimating in-place quantities of the various classes of soil is standard industry practice; however, a final volume estimate is dependent upon review and approval of the receiving landfill waste acceptance coordinator. In summary, approximately 800 tons (500 cubic yards) of fill material classified as State of California Class I (Non-RCRA) hazardous waste, and approximately 12,800 tons (8,000 cubic yards) of fill material classified as non-hazardous Class II/III likely exist within the 3 feet of fill material at the proposed Phase 2 Development site.

At this time, preliminary construction and excavation plans include the possible re-use some of the non-hazardous Class II/III soil on-site to fill in the half basement below the Hollis Street building which will be capped by pavement, concrete, or other structures. The soil may also be re-compacted and re-used on-site as general fill.

With the presence of elevated levels of total and soluble lead and petroleum hydrocarbons detected at the Site, a Soil Management Plan (SMP) and a Health and Safety (H&S) plan (prepared by others for site contractors) will be required prior to construction. The SMP will include a soil handling plan which segregates the fill material from the underlying native alluvial soil, post-excavation soil sampling to confirm the removal of the Class I contaminated fill material, and maintenance requirements to ensure that the long-term soil management measures, specifically capping the soils will remain effective during the Site's use and occupancy period. The H&S plan will outline proper soil handling procedures and health and safety requirements to minimize worker and public exposure to hazardous materials during construction.

9.0 LIMITATIONS

Descriptions of specific field activities and historical events are based on our observations and on information provided by others. The opinions and information presented in this report apply to site conditions and the information that was available at the time the work was performed and do not apply to changes of which we are not aware or have not had the opportunity to evaluate. Treadwell & Rollo, Inc. makes no guarantees or warranties with respect to the accuracy or completeness of this information.

Table 1 Soil Analytical Results for Petroleum Hydrocarbons Papermill Parcels Emeryville, California

Sample ID	Depth feet	Date Sample	ТРНд	TPHd	TRPH	Acetone	Other VOCs	svoc	PCBs
B1	2.0-2.5	12/11/2006	3.8	1.7	56		ND	ND	< 0.025
B1	5.0-5.5	12/11/2005	< 1.0	< 1.0	< 10			·	
B2	2.0-2.5	12/11/2006			< 10				
B2	5.0-5.5	12/11/2006	< 1.0	< 1.0	< 10	·			
SB10	0.5-1.0	12/11/2006			< 10				
SB10	1.5-2.0	12/11/2006			140				
SB10	4.0-4.5	12/11/2006	< 1.0	< 1.0	< 10				
SB11	0.5-1.0	12/11/2006			27				
SB11	1.5-2.0	12/11/2006			< 10				
SB11	2.5-3.0	12/11/2006	< 1.0	< 1.0	< 10				
SB-12	0.5-1.0	12/11/2006	< 1.0	1.3	30		ND	ND	< 0.025
SB-12	1.5-2.0	12/11/2006	·		< 10				
SB-13	0.5-1.0	12/11/2006			44			·	
SB-13	1.5-2.0	12/11/2006			82				
SB-13	2.5-3.0	12/11/2006	< 1.0		< 10				
SB-14	0.5-1.0	12/11/2006			< 10				
SB-14	1.5-2.0	12/11/2006		;	< 10				
SB-14	2.5-3.0	12/11/2006	< 1.0	< 1.0	< 10				
SB-15	0.5-1.0	12/11/2006			80				
SB-15	1.5-2.0	12/11/2006			140				
SB-15	2.5-3.0	12/11/2006	< 1.0	< 1.0	28	·			
SB-16	0.5-10	12/11/2006	< 1.0	2.8	31	0.12	ND	ND	< 0.025
SB-16	1.5-2.0	12/11/2006			< 10		·		
SB-16	2.5-3.0	12/11/2006	< 1.0	< 1.0	< 10				
SB-17	0.5-10	12/11/2006			180			-	
SB-17	1.5-2.0	12/11/2006			120				
SB-17	2.5-3.0	12/11/2006	< 1.0	3.1	31				

Notes:

-- Not Analyzed

All results are reported in milligrams per kilogram (mg/kg)

TPHg - Total Petroleum Hydrocarbons as Gasoline, EPA Method 8015M

TPHd - Total Petroleum Hydrocarbons as Diesel Range (C10-C23), EPA Method 8015M

TRPH -Total Recoverable Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds, EPA 8260B

PCBs - Poly Chlorinated Biphenyls, EPA Method 8082

< 0.025 - Analyte was not detected above the laboratory reporting limit (0.005 mg/kg)

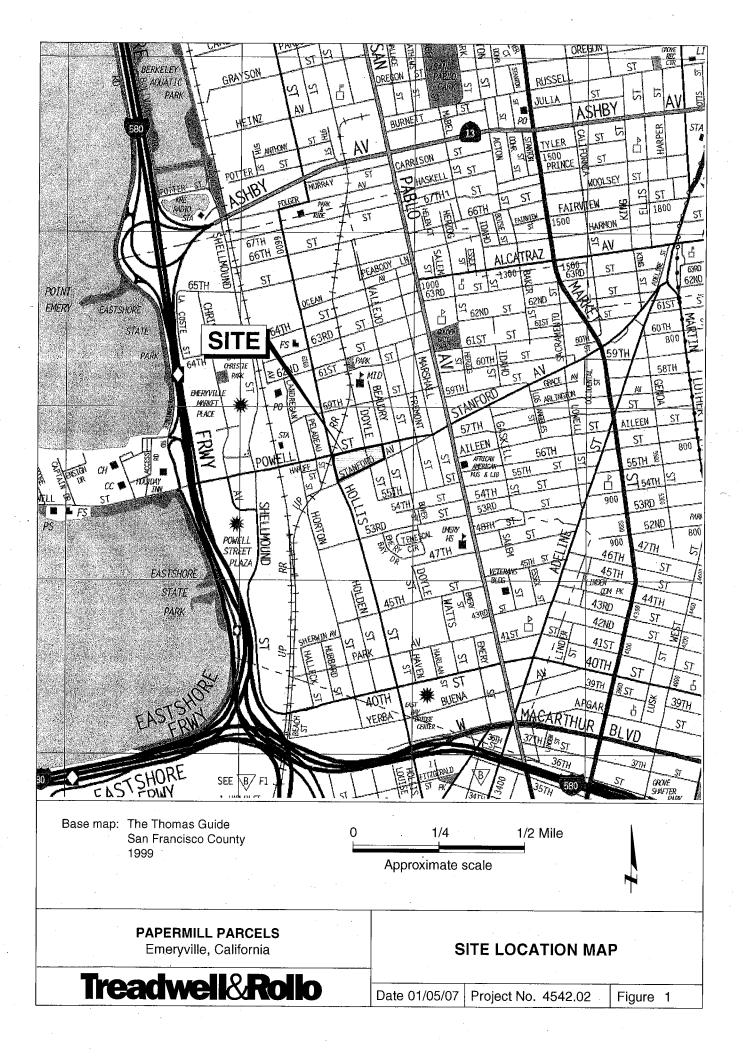
ND - Not detected at or above the laboratory reporting limit

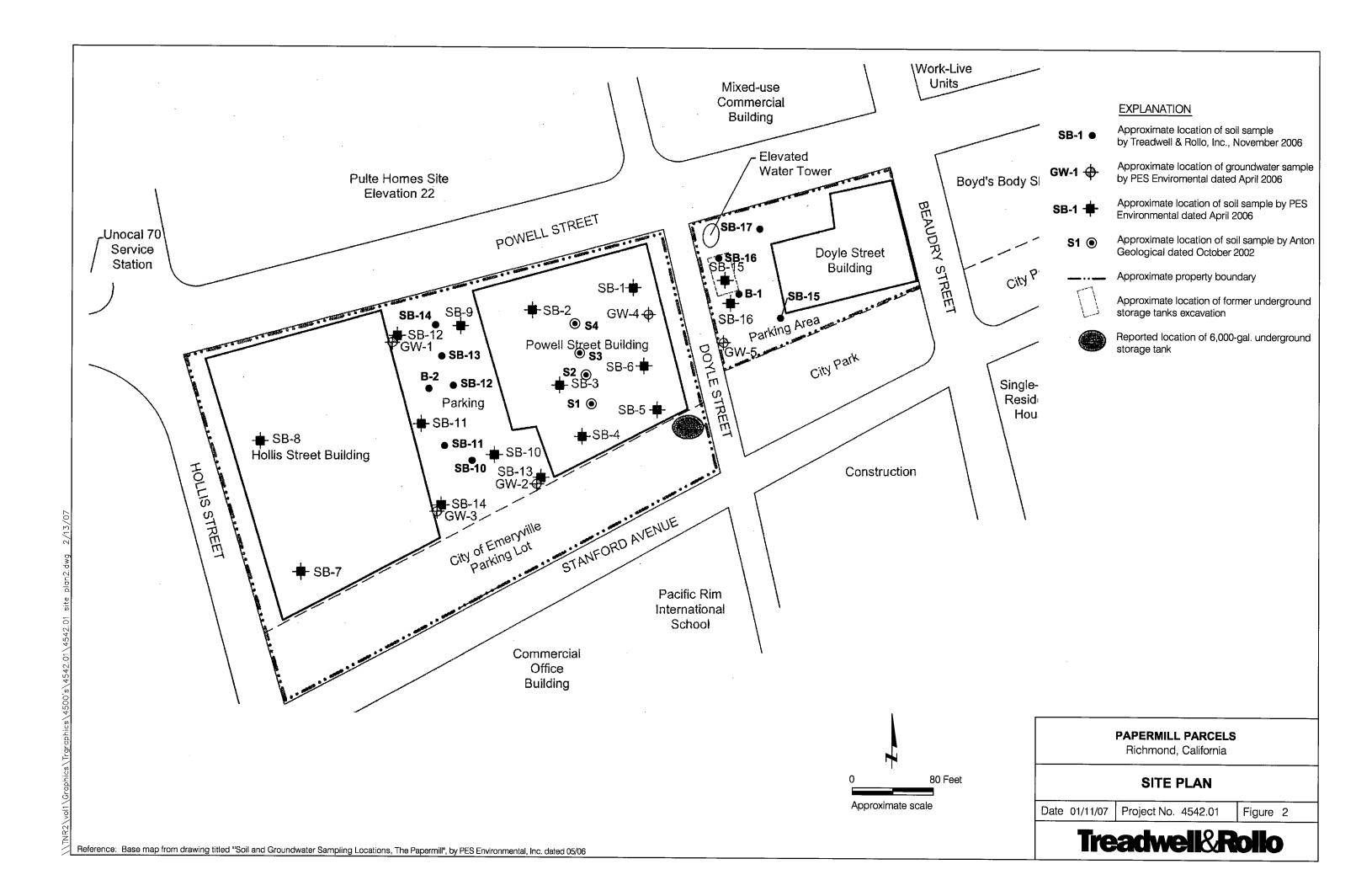
Table 2
Soil Analytical Results for Total Metals
Papermill Parcels
Emeryvile, California

Sample ID	Depth (feet)	Date Sampled	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	STLC Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B1	2.0-2.5	12/11/2006	0.67	3.8	180	0.64	< 0.25	36	9.7	15	5.3		< 0.05	0.58	29	< 0.5	< 0.5	< 0.5	38	31
B1	5.0-5.5	12/11/2006									9.6						<u> </u>			
B2	2.0-2.5	12/11/2006									7.1									<u></u>
B2	5.0-5.5	12/11/2006									7.9									
SB10	0.5-1.0	12/11/2006									12									
SB10	1.5-2.0	12/11/2006					: 				41	·			~=					
SB10	4.0-4.5	12/11/2006					< 1.5	83			17				44					·
SB11	0.5-1.0	12/11/2006									61	0.74			~-					65
SB11	1.5-2.0	12/11/2006		<u></u>							7.9	'								
SB11	2.5-3.0	12/11/2006					< 1.5	54			14				61.0					
SB-12	0.5-1.0	12/11/2006	0.69	4.0	140	< 0.5	< 0.25	58	15	65	8.9		0.054	< 0.5	72	< 0.5	< 0.5	< 0.5	150	59
SB-12	1.5-2.0	12/11/2006			·						6.5									71
SB-13	0.5-1.0	12/11/2006									9.9									
SB-13	1.5-2.0	12/11/2006									14				<u></u>					
SB-13	2.5-3.0	12/11/2006				'					7.6									
SB-14	0.5-1.0	12/11/2006	. 		-7						11									
SB-14	1.5-2.0	12/11/2006									11						·		<u></u>	
SB-14	2.5-3.0	12/11/2006									10									
SB-15	0.5-1.0	12/11/2006									100	7								
SB-15	1.5-2.0	12/11/2006									29	_ <u>-</u> -		<u></u>						
SB-15	2.5-3.0	12/11/2006									8.1									
SB-16	0.5-10	12/11/2006	2.1	5.9	180	< 0.5	0.33	40	8.6	29	53	4.8	0.084	0.64	37	< 0.5	< 0.5	< 0.5	43	95
SB-16	1.5-2.0	12/11/2006				<u></u>					17									93
SB-16	2.5-3.0	12/11/2006									7.3	 .				:				-
SB-17	0.5-10	12/11/2006									700	140								
SB-17	1.5-2.0	12/11/2006									100	4.2				 				
SB-17	2.5-3.0	12/11/2006						- <u>-</u>	:		65						 	 		

Notes:

mg/kg - milligrams per kilograms


STLC - California Soluble Threshold Limit Concentration


mg/L - milligrams per liter

< 5.0 - Analyte was not detected above the laboratory reporting limit (5.0 mg/kg).

-- Not analyzed

FIGURES

APPENDIX A
Previous Analytical Results

Table 1 Shallow Soil Sample Analytical Results Papermill Site Hollis/Powell Street Emeryville, California

Sample	Sample	Sample	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver	Mercury	TPHd	TPHmo	TPHg	PCBs	PCE
Location	ID	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)*	(mg/kg)	(µg/kg)
SB-1	SB-1-0.5	4/28/2006	4.8	270	<1.0	28	16	<2.0	<1.0	0.077	<2.5	<10	<0.100	<0.10	<5.0
	SB-1-1.0	4/28/2006	7.9	210	<1.0	25		<2.0	<1.0	0.21	<2.5	76	<0.110	<0.10	<5.4
SB-2	SB-2-0.5	4/28/2006	4.6	110	<1.0	29	995	<2.0	<1.0	0.061	<2.5	22	<0.110	<0.10	<5.3
	SB-2-1.0	4/28/2006	3.3	140	. <1.0	25	14	<2.0	<1.0	0.087	<2.5	<10	<0.100	<0.10	<5.0
SB-3	SB-3-0.5	4/28/2006	3.7	110	<1.0	22	9.7	<2.0	<1.0	0.12	<2.5	<10	<0.100	<0.10	<5.2
	SB-3-1.0	4/28/2006	4.1	150	<1.0	23	12	<2.0	<1.0	0.10	<2.5	<10	<0.100	<0.10	<5.0
SB-4	SB-4-0.5	4/28/2006	3.2	140	<1.0	20	12	<2.0	<1.0	0.089	<2.5	<10	0.150	<0.10	<4.4
	SB-4-1.0	4/28/2006	6.3	140	<1.0	30	270	<2.0	<1.0	0.086	<2.5	21	<0.086	<0.10	<4.3
SB-5	SB-5-0.5	4/28/2006	4.3	220	<1.0	25	23	<2.0	<1.0	0.080	<2.5	<10	<0.100	<0.10	<5.2
05-0	SB-5-1.0	4/28/2006	2.9	58	<1.0	32	7.4	<2.0	<1.0	0.22	<2.5	<10	<0.110	<0.10	<5.6
SB-6	SB-6-0.5	4/28/2006	3.8	140	<1.0	25	18	<2.0	<1.0	0.13	<2.5	<10	<0.088	<0.10	<4.4
35-0	SB-6-1.0	4/28/2006	2.7	110	<1.0	21	6.1	<2.0	<1.0	<0.050	<2.5	<10	<0.087	<0.10	<4.4
SB-7	SB-7-1.5	4/28/2006	8.3	120	<1.0	44	4.6	<2.0	<1.0	0.056	<2.5	<10	<0.085	<0.10	<4.2
SB-8	SB-8-1.5	4/28/2006	5.5	120	<1.0	30	5.3	<2.0	<1.0	0.11	<2.5	<10	<0.089	<0.10	<4.5
SB-9	SB-9-1.5	4/28/2006	3.3	82	<1.0	46	4.6	<2.0	<1.0	0.073	<2.5	<10	<0.081	<0.10	<4.1
SB-10	SB-10-1.5	4/28/2006	4.9	180	<1.0	41	9.8	<2.0	<1.0	0.076	<2.5	Figure	<0.085	<0.10	<4.2
SB-11	SB-11-1.5	4/29/2006	6.3	330	<1.0	40	18	<2.0	<1.0	0.062	<2.5	<10	<0.095	<0.10	<4.8
SB-11	SB-12-1.5	4/29/2006	5.6	90	<1.0	110	12	<2.0	<1.0	0.30	<2.5	<10	<0.086	<0.10	
	1 1	4/29/2006	5.6	130	<1.0	49	6.3	<2.0	<1.0	0.46	<2.5 ⁽¹⁾	<10	<0.087	<0.10	<4.3
SB-13	SB-13-1.5	4/29/2006	6.5	190	<1.0	38	17	<2.0	<1.0	0.10	<2.5	<10	<0.077_	<0.10	<3.9
SB-14	SB-14-1.5		NA	NA	NA NA	NA NA	NA	NA.	NA	NA	540	140	300	NA.	<2,300
SB-15	0.5 d 5 d 4	4/29/2006	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	<2.5	<10	<0.081	NA	<4.1
CD 46	SB-15-11 SB-16-7	4/29/2006 4/29/2006	NA NA	NA NA	NA NA	NA NA	NA NA	l NA	NA.	NA.	<2.5	<10	<0.079	NA	<3.9
SB-16	SB-16-7 SB-16-11	4/29/2006	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	<2.5	<10	<0.083	NA_	<4.2
Shallow Soil E		4/23/2000	5.5	750	1.7	58	150	10	20	3.7	100	500	100	0.22	87

Notes:

TPHd - Total Petroleum Hydrocarbon as diesel

TPHmo - Total Petroleum Hydrocarbon as motor oil

TPHg - Total Petroleum Hydrocarbon as gasoline

mg/kg - miligrams per kilogram µg/kg - micrograms per kilogram

<1.0 - Analyte not detected at or above indicated laboratory reporting limit

NA - Not Analyzed

* - Laboratory results reported in µg/kg and converted into mg/kg

(1) - 3 mg/kg discrete peaks (C8-C18). No Diesel pattern present

Table 2 Groundwater Sample Analytical Results Papermill Site Hollis/Powell Street Emeryville, California

Sample Location	Sample ID	Sample Date	TPHd (µg/L)	TPHmo (μg/L)	TPHg (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Toluene (µg/L)
GW-1	GW-1-42	4/29/2006	<52 ⁽¹⁾	<210	<25	<20	<0.50	
GW-2	GW-2-42	4/29/2006	<52 ⁽²⁾	<210	<25	<20	<0.50	<0.50
GW-3	GW-3-42	4/29/2006	<91 ⁽³⁾	<360	<25	<20	<0.50	<0.50
GW-4	GW-4-42	4/29/2006	<62 ⁽⁴⁾	<250	<25	<20	<0.50	0,66
GW-5	GW-5-42	4/29/2006	<62 ⁽⁵⁾	<250		50	and a second	ANGE
Shallow Grou	ndwater ESL'	s	100	100	100	1500	70	40

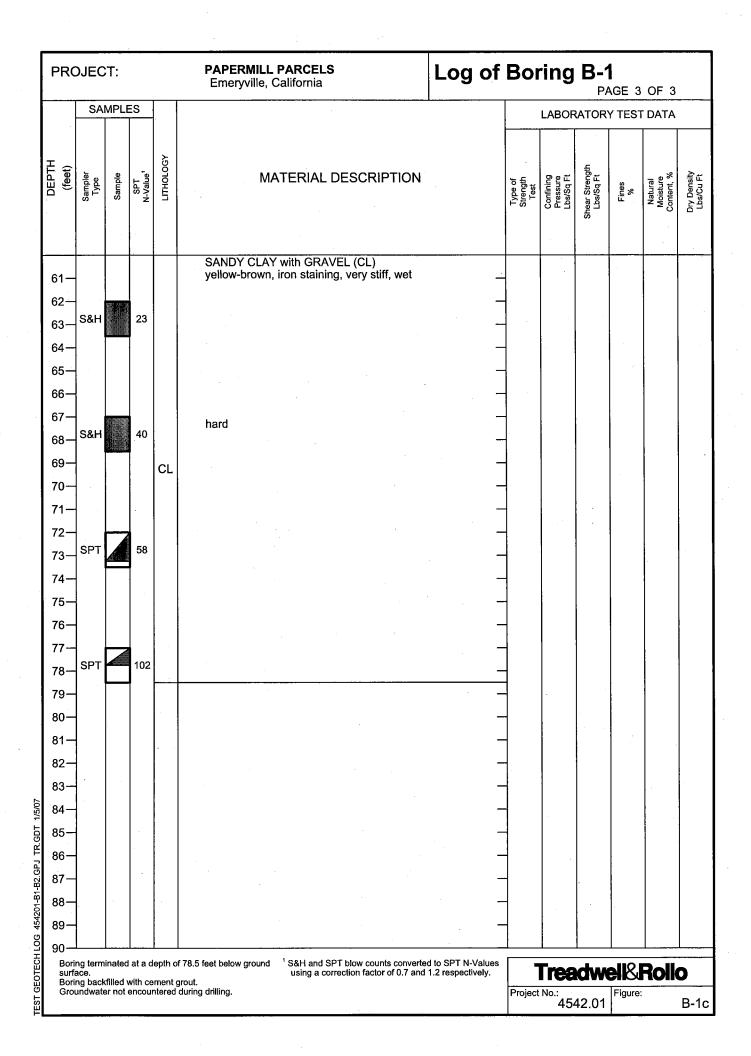
Notes:

TPHd - Total Petroleum Hydrocarbon as diesel

TPHmo - Total Petroleum Hydrocarbon as motor oil

TPHg - Total Petroleum Hydrocarbon as gasoline

μg/L - micrograms per liter


<52 - Analyte not detected at or above indicated laboratory reporting limit

- (1) 90 ppb Hydrocarbon (C10-C30). No Diesel pattern present.
- (2) 70 ppb Hydrocarbon (C10-C30). No Diesel pattern present.
- (3) 170 ppb Hydrocarbon (C10-C30). No Diesel pattern present.
- (4) 110 ppb Hydrocarbon (C10-C30). No Diesel pattern present.
- (5) 230 ppb Hydrocarbon (C10-C30). No Diesel pattern present.

APPENDIX B
Exploratory Boring Logs

	PRO	JEC	T:			PAPERMILL PARCELS Emeryville, California	Log of	Bor	ring			OF 3	
	Boring	loca	ation		See S	ite Plan, Figure 2	<u> </u>	Logg	ed by:		olombo		
	Date s				2/11								
	Drilling					v Stem Auger							
						40 lbs./30-inches Hammer type: Automatic enwood (S&H), Standard Penetration Test (SPT)			LABOF	RATORY	/ TEST	DATA	
			MPLE					* =	ភូទិជ	angth Ft		- e %	sity Ft
•	DEPTH (feet)	Sampler Type	Sample	SPT N-Value ¹	линогоеу	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	"	5&H	7	6	CL	3-inches Asphalt Concrete SANDY CLAY (CL) black, medium stiff, moist, fine sand LL = 26, Pl = 8 CLAY (CH-CL) dark olive-brown, stiff, moist		-					
	5-	5&H		13	СН		-	TxUU	720	2,543		29.0	94.1
	6-3 7- 8-												
	9-				_	CLAY with SAND (CL) light olive-brown, stiff, wet	<u> </u>	1					-
	11-	S&H		8	CL	Consolidation Test, see Figure B-	-				e.		
	12— 13— 14—					SANDY CLAY (CL)	_	_					
	15-	5&H		15		yellow-brown, mottled iron staining, stiff to v moist	ery stiff, - -	TxUU	1,920	2,120		24.1	101.9
	17-		i i				-						
	19-		***************************************				-						
		S&H	1	11	CL	light olive-brown, mottled iron staining, stiff,	moist -						
.	23-												
, , , ,	25—	S&H	4	10			-						
. 6	27—						-	_					
	29—						-	+					
	30—				L					L			
									Tre	dw			0
, 1	2							Project	t No.: 45	42.01	Figure:		B-1a

PR	OJEC	T:			PAPERMILL PARCELS Emeryville, California	Log of	Boı	ring	B- ′	1 AGE 2	OF 3	
	SA	MPLI	ES					LABOF	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	SPT N-Value	ГІТНОГОБУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
					very stiff	· 						
31- 32- 33-	S&H -		18 ·	CL	· · · · · · · · · · · · · · · · · · ·	- - -	-				26.4	96.8
34-				_	CLAY with SAND (CL) yellow-brown, mottled iron staining, stiff, mo	oist, fine						
35- 36-	S&H		11		Saliu	- -	1					
37-						- -				·		
39- 40-	S&H		35/	CL	with fine to coarse sand, hard	. · · · -						
41- 42- 43-			4"			- - -				-		
44- 45-		4.3			SANDY CLAY with GRAVEL (CL)	<u>-</u>						
46- 47-	_ S&H 	43	16	CL	yellow-brown, iron staining, very stiff, wet		-			:		
48- 49-					SANDY CLAY (CL) yellow-brown, mottled iron staining, very stif	ff, moist		- -				
50- 51- 52-	S&H		20			-					22.0	104
53-				٠		-						
55- 56-	S&H	•	18	CL		- -						
57- 58-	SPT		24			-	_					
54- 55- 56- 57- 58- 59- 60-												
							-	Trea	dw		Rolle	D
							Project	No.: 45	42 N1	Figure:		B-1

PROJECT:		PAPERMILL PARCELS Emeryville, California	Log	of	Bor	ing			OF 3	
Boring location:	See S	ite Plan, Figure 2			Logg	ed by:		olombo		
Date started:	12/11/	06 Date finished: 12/11/06								
Drilling method:		/ Stem Auger				_				
Hammer weight/d						LABOR	ATORY	TEST	DATA	
Sampler: Sprage	1 1	enwood (S&H), Standard Penetration Test (SPT)					t gt		%	≥+
(feet) Sampler Type Sample Sample	— У 1	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strengtl Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1—	CL	4.5-inches Asphalt Concrete CLAY with SAND (CL) olive-brown, stiff, moist		T						
2- 3- S&H 1	1			V						
4—		SANDY CLAY (CL) yellow-brown, iron staining, very stiff, moist, coarse sand	fine to	_	·					
6—	6	Consolidation Test, see Figure B-		- -						
8-	CL			_						
9—				_						
10— 11— S&H 1	15			_						, i
11-300										
13-		CLAY (CH) yellow-brown, with iron staining, brown and b	olack,							
15—	-	stiff, moist		_						
16—S&H	13 CH			-						
17-				_						
18-				_						-
20—		SANDY CLAY (CL)			-					
21—S&H	14	olive-gray to brown, stiff, moist		_						
22—				-	1					
23-				_						
24-	CL	W. 18.14. B. 1		_			-		,	
26 S&H	13	mottled light olive-brown		_	ТхОО	2,314	1,555		24.2	101.6
27—				-	-			-		
28-				_	1					
29 30 30 S				_		!		·		
24— 25— 26— S&H 27— 28— 28— 30— 30— 30— 30— 30— 30— 30— 30— 30— 30	-				1	Trea	dwe	!!!!	Rolk	D
20 20 20 20 20 20 20 20 20 20 20 20 20 2					Project	No.: 454	42.01	Figure:		B-2a

PRO	DJEC				PAPERMILL PARCELS Emeryville, California	Log	of	Воі	ring	B-2	AGE 2	OF 3	
	SA	MPLE	S						LABOF	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	SPT N-Value	LITHOLOGY	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
-					SANDY CLAY (CL) (continued)								
31— 32— 33—	S&H		14		O'ME I CENT (CE) (COMMISCO)		-						
34— 35— 36—	S&H		15	CL			-	-			·	19.9	107.2
37— 38— 39—			·				. -						
40-		consistentia					_						
41- 42- 43- 44-	S&H SPT		90	sc	CLAYEY SAND with GRAVEL (SC) yellow-brown, wet, fine to coarse sand, fine t medium subrounded gravel	0	- - -	-			22.1	14.2	
45- 46- 47- 48-	SPT	A	26	CL	CLAY (CL) olive-brown, very stiff, moist		- - -						
49- 50- 51- 52-	S&H	j	23		SANDY CLAY with GRAVEL (CL) yellow-brown, iron staining, very stiff, wet							,	
53- 54- 55-				CL			- - -						
54— 55— 56— 57— 58— 59— 60—							- - 						
59- 60-						•		<u>.</u>	'	L	<u></u>		
								•	Trea	dw		Roll	0
5								Project	No.: 45	42 01	Figure:		B-2b

PRO	DJEC	T:			PAPERMILL PARCELS Emeryville, California	Log	of	Boı	ring	B-2	2 AGE 3	OF 3	
	SA	MPL	ES						LABOF	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	SPT N-Value ¹	ГТНОГОСУ	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	0011		05		SANDY CLAY with GRAVEL (CL) (continue	ed)	_						
61— 62— 63—	S&H		25				- -						
64— 65— 66—				CL			-						
67— 68— 69—							- -						
70-	S&H		30		hard				:				
72— 73— 74—							- -						-
75— 76— 77—							- -	- -				:	
78- 79- 80-				-			- -						
81— 82—							-						
83 84- 85- 85-							-						
84 — 85 — 85 — 86	·					· .	- -						
5 89—							-	1					
90— Borid Surfa	ace.				f 71.5 feet below ground 1 S&H and SPT blow counts converte using a correction factor of 0.7 and	ed to SPT N- I 1.2 respecti	Values ively.	•	Frea	dw		Rolle	
Grov	ng back undwate	er not	encoui	ntered	grout. during drilling.			Project	No.:	42.01	Figure:		B-2c

	PRO	DJECT:						MILL PARCELS ville, California	Log of	Boring SB	-10 AGE 1 OF 1
		ng location started:				Plan,	Figu	re 2 Date finished: 12/11/06		Logged by: M. Ch Drilled By: Gregg	edorain
	Drilli	ng metho	d: C	Direct	Pusl	1					
		mer weig					psi	Hammer type: Pneumatic			
	Sam	pler: Co			Core						
	ΕΩ	SA	MPL			(md	ЭGY	MATERIA	AL DESCRIP	TION	
	DEPTH (feet)	Sample Number	Sample	Blow	Recover (inches)	OVM (ppm)	гітногосу				
		SB10-						CLAY with GRAVEL (CL) brown, stiff, moist, very plastic,	roots, gravel up	o to 1-inch, no odor	1
	1	(0.5- 1.0)									-
.*	2—	(1.5- 2.0)	•				CL				ᆸ -
	2			-	-						<u>=</u>
	3—				24/ 48						-
	4-	-						CLAY (CL)			<u> </u>
٠	·	(4.0- 4.5) -		-				brown, stiff, moist, very plastic,	no odor		
	5-	(5.0- 5.5)									<u>-</u>
	6-				48/ 48		CL				· <u>-</u>
	_										
	7-										
707	8-	_		<u> </u>							
R.GDT 1/E							,				•
TEST ENVIRONMENTAL 454202.GPJ T&R.GDT 1/5/07	9—										· <u>-</u>
NTAL	,,										
IVIRONME	10 — Borii Borii Groi	ng terminate ng backfilled undwater not	d at 8	feet be	elow g	round	surface).		Treadwe	H&Rollo
ST EN	5,00		. 51100	J		will				Project No.: 4542.02	Figure: B-3
Ξ́										4042.02	<u> </u>

Boring locati	on:	See	Site F	 ¹lan,	, Figur	e 2	PAGE 1 OF 1 Logged by: M. Chedorain
Date started	: 12/1	1/06				Date finished: 12/11/06	Drilled By: Gregg
Orilling meth							
lammer we		op:	up to	500	psi	Hammer type: Pneumatic	<u> </u>
Sampler: E			·····I		· 		
Sample Number	Sample Samble		Recovery (inches)	ОУМ (ррт)	ГІТНОГОСУ	MATERIA	L DESCRIPTION
SB11-	 		<u> </u>			CLAY with GRAVEL (CL) brown, soft, moist, very plastic, g	ravel up to 1-inch, no odor
(0.5- 1.0)						
2- (1.5- 2.0					CL		
(2.5-3.0)						
(3.5- 4.0					СН	CLAY (CH) gray, soft, wet, very plastic, no o	dor
4-						gray, sort, wet, very plastic, no o	uoi
5—				-			
			-				
6							
7-							
8—							
9—				i			

	DJECT:						rille, California	Log of		PAGE 1 OF 1
	ng location started:			ite F	lan,	Figur	e 2 Date finished: 12/11/06		Logged by: Drilled By:	M. Chedorain Gregg
	ng method			uge	r		Bate iiiiisiied. 12/11/00			
	mer weigl				_	psi	Hammer type: Pneumatic			
Sam	pler: Ba	g								
DEPTH (feet)	SA	MPLE		5	AL DESCRIP	TION				
DEF (fe	Sample Number	Sample	Count	(inches	ОVМ (ррт)	LITHOLOGY				
	SB12-						CLAYEY SAND with GRAVEL gray, medium dense, dry, plast	(SC) iic, bricks and fil	l, gravel up to	2-inches, no odor
1	(0.5- 1.0)	•		:		sc				.
2-	(1.5- 2.0)	•							•	· · · · · · · · · · · · · · · · · · ·
_										
3-										. · · · · · · · · · · · · · · · · · · ·
4-					•					- -
_										
5—										-
6—							•			· -
7-										-
					٠					
8-										-
9-										<u>-</u>
10— Borin	g terminated g backfilled	l at 2 fe	et belo	w gro	ound s	surface.			Troc	dweli&Rollo
DOUG	g backfilled ndwater not	with Cer	nent gl	ivul. turina					ırea	OKONYNISWU

	ng location:		Site	Plan,	, Figu		Logged by: M. Chedorain Drilled By: Gregg
	started: 1					Date finished: 12/11/06	Drilled By. Gregg
	ng method: mer weight					Hammer type: Pneumatic	
	pler: Bag		up to	300	psi	nammer type. Friedmatic	
		//PLES		Ê	<u>~</u>	· · · · · · · · · · · · · · · · · · ·	
(feet)	Sample Number	Sample	Recovery (inches)	OVM (ppm)	LITHOLOGY	MATERIAL DI	ESCRIPTION
	SB13-					CLAYEY SAND with GRAVEL (SC) brown, medium dense, dry, plastic, n	o odor
1—	(0.5- 1.0)				sc		
2—	(1.5- 2.0)			:	CL	CLAY with GRAVEL (CL)	· · · · · · · · · · · · · · · · · · ·
0	(2.5- 3.0)				SC	dark brown, dense, moist, plastic, no CLAYEY SAND with GRAVEL (SC) brown, medium dense, moist, plastic	
3—	(3.5- 4.0)				sc	CLAYEY SAND (SC) brown, medium dense, moist, semi-p	plactic no odor
4— 5—							
6 -							
Ŭ							
7—							
8-							
9—							
-		-					

Drilling Hamm Sample	tarted: g method er weigh er: Bag SA Sample Number SB14-	d: Hant/dro	and A			isq		AL DESCRIPT	Drilled By: Gregg	
Hamm Sample (teat)	er weigh er: Bag SA Sample Number SB14-	nt/dro g MPLE	p: u	ip to	500		MATER	AL DESCRIPT	TION	
Sample (teet)	SA Sample Number SB14-	g MPLE	S				MATER	AL DESCRIPT	TION	
((eet)	SA Sample Number SB14-	MPLE		Recovery (inches)	OVM (ppm)	ГІТНОГОСУ		AL DESCRIPT	TION	· · · · · · · · · · · · · · · · · · ·
1-	Sample Number SB14-			Recovery (inches)	OVM (ppm)	ГІТНОГОСУ		AL DESCRIPT	ION	
1-	: =		•	<u>~</u>						
(.	- 1		sc	CLAYEY SAND with GRAVEL gray, loose, dry, semi-plastic,	(SC) gravel to 1-inch, r	no odor	
	-					sc	CLAYEY GRAVELLY SAND (brown, loose, moist, semi-plas	SC) tic, bricks up to 2	-inches, no odor	
27	(1.5- 2.0)		•			CL	SANDY CLAY with GRAVEL (black, medium stiff, moist, plan	CL) stic, gravel up to	1-inch, no odor	
	(2.5- 3.0)		•			CL	CLAY (CL) brown, stiff, moist, very plastic	, no odor		
3-	-	#9	•			CL	SANDY CLAY (CL) brown, medium stiff, moist, ve	ry plastic, no odo	r ·	
4-	(3.5- 4.0)	ţ	<u> </u>			CL	CLAY (CL) gray, stiff, moist, very plastic,	no odor		
1									• .	
5—										
6-										
			-							
7-										
8-					٠					
							· · · · · · · · · · · · · · · · · · ·			
9-								· .		
10								1,5,144		

Table State (1.27 17/106) Table State (1.27 17/106) Tampler Bag Sampler Bag Sampler Bag (0.5-1.0) Sampler (0.5-1.0) Sampler (0.5-1.0) Sampler (0.5-1.0) Sampler Bag (0.5-1.0) Sampler Bag (0.5-1.0) Sampler Bag (0.5-1.0) Sampler Bag CLAYEY SAND with GRAVEL (SC) rad-brown, loose, moist, non plastic, no odor, fill with brick to 1-inch CLAYEY SAND (SC) brown, medium dense, moist, semi-plastic, no odor SANDY CLAY (CL) brown, medium stiff, moist, plastic, no odor SANDY CLAY (CL) dark brown, medium stiff, moist, plastic, no odor CL CL Color change to light brown	Borir	ng location	: See	Site I	Plan,	Figu	re 2	1.	PAGE 1 OF 1 Logged by: M. Chedorain	
Hammer weight/drop: up to 500 psi Hammer type: Pneumatic Sampler Bag MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Sampler Bag S							Date finished: 12/11/06		Drilled By: Gregg	
Sampler: Bag SAMPLES Sometic Bag Sampler: Bag SAMPLES Sometic Bag Sampler: Bag Sam				<u>-</u> -			· · · · · · · · · · · · · · · · · · ·			
SAMPLES Sargote Number Sec Sec				up to	500	psi	Hammer type: Pneumatic	<u>.</u>		
Sample S		 				>	<u> </u>			
SC CLAYEY SAND with GRAVEL (SC) red-brown, loose, moist, no plastic, no odor, fill with brick to 1-linch (0.5-1.0) GC CLAYEY GRAVEL with SAND (GC) black, loose, moist, semi-plastic, no odor (0.5-1.0) CLAYEY SAND (SC)	(feet)	Sample	1	ecovery inches)	OVM (ppm	лтногос	MATERI	AL DESCRIP	TION	
Color change to light brown Colo		SB15-		120			CLAYEY SAND with GRAVEL red-brown, loose, moist, non p	(SC) lastic, no odor, f	fill with brick to 1-inch	A
SC CLYY SAND (SC) brown, medium dense, moist, semi-plastic, no odor SANDY CLAY (CL) brown, medium stiff, moist, plastic, no odor SANDY CLAY (CL) dark brown, medium stiff, moist, plastic, no odor CL color change to light brown CL color change to light brown Transducil R Rollo	1_	(0.5- 1.0)				GC	black, loose, moist, semi-plast	(GC) ic, no odor, grav	rel to 2-inches	
CL brown, medium stiff, moist, plastic, no odor SANDY CLAY (CL) dark brown, medium stiff, moist, plastic, no odor CL color change to light brown Class 4.0) Sandy CLAY (CL) color change to light brown Treadwell Rollo					'	sc	brown, medium dense, moist,	semi-plastic, no	odor	
dark brown, medium stiff, moist, plastic, no odor color change to light brown color change to light brown color change to light brown framework and the state of the state	2-	(1.5- 2.0)				CL	brown, medium stiff, moist, pla	stic, no odor		-
3 — (3.5-4.0) 4 — (3.5-4.0) 5 — (3.5-4.0) 8							dark brown, medium stiff, mois	st, plastic, no odo	or	
4— (3.5-4.0) 5— 6— 7— 8— 9— Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treactwell&Rollo	3—	(2.5- 3.0)	<u>.</u>			CL				
4 -		(3.5- 4.0)					color change to light brown			
6- 7- 8- 9- Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Tresdwelk Rollo	4—								·	_
6- 7- 8- 9- Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Tresdwelk Rollo										
8- 9- Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Tresdwelk.Rollo	5—				-					
8- 9- Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treadwelk Rollo	6									
8- 9- Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treadwelk Rollo										
9— Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treadwell&Rollo	7-									
9— Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treadwell&Rollo										
Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treadwell&Rollo	8-									
Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treadwell&Rollo										
Boring terminated at 4 feet below ground surface. Boring backfilled with cement grout. Treadwelk Rollo	9 —									
Boring backfilled with cement grout.	10					-	· · · · · · · · · · · · · · · · · · ·			
	Borir	ng backfilled w	ith cemen	it grout.					Treadwell&Rollo)

Borin	ig location	า:	See	Site F		Figur	rille, California e 2		Logged by:	PAGE 1 OF M. Chedorain	- 1
	started:					<u> </u>	Date finished: 12/11/06	Drilled By:	Gregg		
	ng metho						- ·				
	mer weig		op: ı	up to	500	psi	Hammer type: Pneumatic				
	pler: Ba	g MPL	EC								
DEPTH (feet)	Sample Number		Blow	(inches)	OVM (ppm)	гтногосу	MATER	AL DESCRIP	TION		-
<u>.</u>	SB16-			<u> </u>			CLAY (CL) black with olive mottling, medi	um stiff, moist, p	lastic, no odor		
1—	(0.5- 1.0)					CL					-
	(1.5- 2.0)										
2-	-						CLAY (CL) gray, stiff, moist, very plastic,	no odor	. ,		
3-	(2.5- 3.0)	•				CL					 -
	(3.5- 4.0)										
4-	-	-	-								
5—											-
6-	·										
7—					.* -						-
										: •	
8-											•
9—				-					•		-
Bori	ng terminate ng backfilled undwater not	with o	ement	t grout.					Trea	dwell&Ro	
		onco	untara	d durin	a drill	ına.					

Borin	g location	: Se	e Site	Plan	, Figu	re 2	Logged by: M. Chedorain
	started:					Date finished: 12/11/06	Drilled By: Gregg
Drillir	ng method	l: Han	d Aug	er			
	mer weigt		up to	500	psi	Hammer type: Pneumatic	
Sam	oler: Baç			Τ.	· · · · · · · · · · · · · · · · · · ·		
(feet)	Sample Number	Sample Blow	Count Recovery (inches)	OVM (ppm)	гиногосу	MATERIA	L DESCRIPTION
	SB17- (0.5- 1.0)	38	Re (in	. 0	GC	CLAYEY GRAVEL with SAND (Cred-brown, loose, moist, semi-pla	GC) astic, no odor, gravel up to 1.5-inches
1-	(1.5- 2.0)	•				SANDY CLAY with GRAVEL (Cl gray, soft, moist, plastic, no odor	-)
3-	(2.5- 3.0)				CL		
4—	(3.5- 4.0)						
•							
5—		-					
6—							
7—							
3							
9—							
0_			-				

		-	UNIFIED SOIL CLASSIFICATION SYSTEM
N	ajor Divisions	Symbols	Typical Names
200	0	GW	Well-graded gravels or gravel-sand mixtures, little or no fines
Soils > no.	Gravels (More than half of	GP	Poorly-graded gravels or gravel-sand mixtures, little or no fines
	coarse fraction > no. 4 sieve size)	GM	Silty gravels, gravel-sand-silt mixtures
	110. 4 Sieve Size)	GC	Clayey gravels, gravel-sand-clay mixtures
Coarse-Grained (more than half of soil sieve size	Sands	SW	Well-graded sands or gravelly sands, little or no fines
ars han	(More than half of	SP	Poorly-graded sands or gravelly sands, little or no fines
S at	coarse fraction < no. 4 sieve size)	SM	Silty sands, sand-silt mixtures
Ĕ.		sc	Clayey sands, sand-clay mixtures
e) ij (e)		ML	Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts
Soils of soil size)	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays
-Grained \$ than half of 200 sieve	<u> </u>	OL	Organic silts and organic silt-clays of low plasticity
Gra than 200	<u></u>	МН	Inorganic silts of high plasticity
Fine -Grained (more than half < no. 200 sieve	Silts and Clays LL = > 50	СН	Inorganic clays of high plasticity, fat clays
Œ E ▽		ОН	Organic silts and clays of high plasticity
Highl	y Organic Soils	PT	Peat and other highly organic soils

sampler

SAMPLER TYPE

Disturbed sample

	GRAIN SIZE CHART										
	Range of Gra	ain Sizes									
Classification	U.S. Standard Sieve Size	Grain Size in Millimeters									
Boulders	Above 12"	Above 305									
Cobbles	12" to 3"	305 to 76.2									
Gravel coarse fine	3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 76.2 to 19.1 19.1 to 4.76									
Sand coarse medium fine	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.074 4.76 to 2.00 2.00 to 0.420 0.420 to 0.074									
Silt and Clay	Below No. 200	Below 0.074									

Unstabilized groundwater level

✓ Stabilized groundwater level

✓ Sample taken with Direct Push sampler

C Core barrel

CA California split-barrel sampler with 2.5-inch outside diameter and a 1.93-inch inside diameter

D&M Dames & Moore piston sampler using 2.5-inch outside diameter, thin-walled tube
 O Osterberg piston sampler using 3.0-inch outside

diameter, thin-walled Shelby tube

PT Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube

SAMPLE DESIGNATIONS/SYMBOLS

Sample taken with Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter.

Classification sample taken with Standard Penetration Test

Darkened area indicates soil recovered

Sampling attempted with no recovery

Undisturbed sample taken with thin-walled tube

S&H Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter

SPT Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and a 1.5-inch inside diameter

ST Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure

PAPERMILL PARCELS
Emeryville, California

Treadwell&Rollo

CLASSIFICATION CHART

Date 01/05/07 | Project No. 4542.02

Figure B-9

APPENDIX C
Certified Analytical Results and
Chain-of-Custody Records

APPENDIX C
Certified Analytical Results and
Chain-of-Custody Records

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Reported: 12/21/06
Suil Tunoisco, CA 54111	Client P.O.:	Date Completed: 12/21/06

WorkOrder: 0612245

December 21, 2006

Dear Peter:

Enclosed are:

- 1). the results of 18 analyzed samples from your #4542.01; Papermill project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

Job Number:	<u> </u>	E O		•••									Ana	lvs.i	s R	eau	este	d						narou	n.d
Project Manager\Con Bampiers: Recorder (Signature	43 T. C	P.Cusa ENDOR THO				_	o. Co												gel clean-up				1000	Time	
Field Sample identification No.	Date	Time	Lab Sample No.	T T	Water S		Š Pres		other O	译				3					Silica get clt	plot	239		∕S⊨4 Remar	/	
BI-(2.0-2.5)	HDECDE	830		М				Х		\mathbb{I}_{X}	X	⟨	13	\mathcal{A}	지)	XI.									
B1(5.0-5.5)		855		M				lĹ												X	SHOL	. D <	Ann.	PLE	
Bi(180-105)		240		7																X	PEN	DIN	G-I	NAC	ATV
B2/20-2.5)	<i>[H</i>]	1430		图						ЦX					<u> </u>	₫.						SSY	7.5	7	
<u> </u>		1435		凶				Ш												\times					
B2/10.0-105)		1440		14				Ш.				1								M					
SB10(05-1.0)		915		凶				Ш		$oldsymbol{\times}$					L	<u> </u>					/	-3	T, F	:LTE	K FOK
B10 (1573)		920		凶				Ш		\mathbb{Z}			Ш			<u>XI</u>					(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		7AL		K.
3310 (40-45)		925						Ш									10.00			M					557777777777
5810 (5.05.5)		920		M		11		Ш												M					
5B11 (0.5-1.4)		946		凶						X					12	S)									
5811 (4.5.2.9)		950		<u> </u>				Ш		X						4									
SBN (2.5-3.0)		955	a far er man til å nerdin ennes	Ж				П							T					M				***************************************	***************************************
SBII (35-40)	Ψ	1000		N.				V					П				П			X				***************************************	***************************************
Refinquished by: (Signatu			Date 12-DEC-66				2α				elvac	bV (Signor	ture)			2		Dai	2	126	7	Time	2	55
emiquished by (Signatu	"	<u> </u>	Date,	6	1	Time	50	סי		Re	eived	by (lure)	دار/	Ι			Dat		1/2/0	, I	Time /	700	
Relinquished by: (Signatu	(e)		Date /		V	Tim.				Red	eived	by L	ab: (S	igna	ture)		***************************************	***************************************	Dat				Time		

Treadwell&Rollo

CHAIN OF CUSTODY RECORD

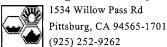
Page 2 of 5

Environmental and Geote	echnical Consul	tant _i	France-4	***	•									.9040/Fax 0.874.450		955.90	141			
Site Name:	ragern			impus	Comm	ons R	d., S	uite 200,	Sacran	iento				5.7412/F	ax: 916	3.565.7 	r412			i
Job Number:	4542.5					da d					Anal	ysis	Requi	ested				T	urnarou	ind
Project Manager\Cor Samplers:	<u> </u>		K KAWN										Ŗ		ß				Time	
Recorder (Signature	Required):	MA		Mat	rix			tainers rvative	- 1	1	Ŋ	Ħ	넵		dn-ueap-nb		L			
Field Sample Identification No.	Date	Time	Lab Sample No.	Soll	Special Specia	d å £	ŐNH	Other		1		취 기	抖		Silica gel	Hold		Rem	arks	
\$8-12(05-1-P)	NDEC08	1020		X				<i></i>	$ X\rangle$	41	XX	41 7	48							
58-12 (15-2-0)		1025		X				۷ ۲	N/				X							
38-13 a5-108		1050		M				X	X				Х				←Anolue			
5B-13/15-20)		e55		X				$X \square$	X	\perp			M			8/	A . (.) /	20_		
58-13/2,5-3.0)		1100	52,410	M				\mathbf{V}					<u> </u>			ዾ	Z			
58-13(3.5-4.6)		1105		14	Ш								1.1			X	1460			
SB-14(0.5-10)		1128		X				УЦ	<u> </u>	L			<u> </u>		1		REND		ANALY	mcq
<u> </u>		1130		X.				A.	14				X		4		TES	<u> </u>		
58-14/2.5-3.2)		1135														M.	<u></u>			
58-14 (3.5-4.6)		1140		시				$X \square$						111		M				
5845 (05-10)		12/5		<u>181</u>	11		Ш	$\Delta \!\!\!\! \perp \!\!\!\! \perp$	LXL	1			Δ						LIFY.	FOL
58-15(1.5-20)		12.3-5		1, 1/2			تنا تنسستن	XI.	Δ				M				<u>L ME</u>	TAG	<u> </u>	
38-15 (2.5-3.0)		1230		X				Д		1						M				
3815/35-41	NZ:	1235		X.			\$ · · · · · · · · · · · · · · · · · · ·			Ш						X				
Retinguished by: (Signati	ure)———		Date 2 DEC	Δ6	1	îme 2	ο¢		Rece	øed)	y Jerry	ture) Ž			Da	le <u>//</u> /	12/6		20	70
Redictional By (Signal)			Date/2//2/	26	ľ	arras .	0		Recei	yed t	y (Signa	ature) V	M		De	9 /2	1/2/04	0 Time	1700)
Relinquished by: (Signate	u(e)		Date /		J	ime			Recei	ved t	by Lab: (5	Signati	ıre)		Da	le		Time	,	
Sent to Laboratory (Laboratory Commen		McCa	ughell						Mett L		of Ships and Carrie	********	Private	Lab cour Courier (Parameter 1	ed Ex [d Airbo	ane [Jups
		White Coev	- Original		ilow (CODY	- Lai	ocratory		soonedata ii,	Pin	k Cor	ıv - Fiel	ď		COC	Number:	-	المستور وستور	4 , , , , , ≪ , , , , , , , , , , , ,

Environmental and Geotechnical Consultant

CHAIN OF CUSTODY RECORD

	2		-
Page	- Marie	of	


006537

COC Number.

Pink Copy - Field

555 Montgomery Street, Suite 1300, San Francisco, CA 94111 Ph: 415.955.9040/Fax: 415.955.9041 501 14th Street, Third Floor, Oakland CA 94612 Ph; 510.874.4500/Fax; 510.874.4507 777 Campus Commons Rd., Suite 200, Sacramento, CA 95825 Ph: 918.565.7412/Fax: 916.565.7412 Site Name: Job Number: Analysis Requested Turnaround Project ManageriContact: Time MOCHENDARAIN Samplers: Silica gel clean-up Recorder (Signature Required): No. Containers Matrix & Preservative ŎSŦ Ś Z Other Other Field Sample Identification No. Date Time Lab Sample No. Remarks 9B16(05-10) ii PEC OLA 1350 1335 (152c) HOLD SHUPLES 1340 1345 400 1405 (1,5-20 TO FILLER 200 m Septate (X Reimbulshed by: (Signature) Received by Signetus 2 te c 56 700 Relinquished by: (Signature) Time Received by Lab: (Signature) Date Time Sent to Laboratory (Name): Method of Shipment Lab courier Fed Ex UPS Airbome Laboratory Comments/Notes: Hand Carried Private Courier (Co. Name)

Yellow Copy - Laboratory

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

WorkOrder: 0612245

ClientID: TWRF

 □ EDF
 □ Fax
 ☑ Email
 □ HardCop
 □ ThirdPart

Report to:

Peter Cusack

Treadwell & Rollo

555 Montgomery St., Suite 1300 San Francisco, CA 94111

Email: TEL: pjcusack@treadwellrollo.com

(415) 955-904

ProjectNo: #4542.01; Papermill

PO:

Bill t

Accounts Payable

Treadwell & Rollo

555 Montgomery St., Suite 1300 San Francisco, CA 94111

94111 Date Print

Date Received 12/12/2006

Date Printed: 12/13/2006

Prepared by: Rosa Venegas

Requested TAT:

								Req	uested	Tests (See le	gend b	elow)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0612245-001	B1-(2.0-2.5)	Soil	12/11/2006		Α	А	Α	А	A	Α				Τ		
0612245-004	B2 (2.0-2.5)	Soil	12/11/2006		Α						Α					
0612245-007	SB10 (0.5-1.0)	Soil	12/11/2006		Α						Α					
0612245-008	SB10 (1.5-2.0)	Soil	12/11/2006		Α						Α					
0612245-011	SB11 (0.5-1.0)	Soil	12/11/2006		Α						Α					
0612245-012	SB11 (1.5-2.0)	Soil	12/11/2006		Α						Α					
0612245-015	SB-12 (0.5-1.0)	Soil	12/11/2006		Α	Α	Α	Α	Α	Α						
0612245-016	SB-12 (1.5-2.0)	Soil	12/11/2006		Α						Α					
0612245-017	SB-13 (0.5-1.0)	Soil	12/11/2006		Α						Α					
0612245-018	SB-13 (1.5-2.0)	Soil	12/11/2006		Α						A					
0612245-021	SB-14 (0.5-1.0)	Soil	12/11/2006		Α		I				Α					
0612245-022	SB-14 (1.5-2.0)	Soil	12/11/2006		Α						Α	T				
0612245-025	SB-15 (0.5-1.0)	Soil	12/11/2006		Α						Α					
0612245-026	SB-15 (1.5-2.0)	Soil	12/11/2006		Α						Α					
0612245-029	SB16 (0.5-10)	Soil	12/11/2006	П	Α	Α	Α	Α	Α	Α						

FAX: (415) 955-904

Test Legend:

1 418_SG_S	2 8082A_PCB_S	3 8260B_S	4 8270D_S	5 CAM17MS_S
6 G-MBTEX_S	7 PB_S	8	9	10
11	12			

The following SamplDs: 0612245-001A, 0612245-015A, 0612245-029A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

WorkOrder: 0612245

ClientID: TWRF HardCop

☐ ThirdPart

Requested TAT:

Report to:

Peter Cusack

Treadwell & Rollo

555 Montgomery St., Suite 1300 San Francisco, CA 94111

Email: TEL:

pjcusack@treadwellrollo.com

(415) 955-904

FAX: (415) 955-904 ProjectNo: #4542.01; Papermill

☐ EDF

PO:

Bill t

Fax

Accounts Payable Treadwell & Rollo

555 Montgomery St., Suite 1300

San Francisco, CA 94111

✓ Email

Date Received 12/12/2006

Date Printed: 12/13/2006

•									Requ	uested	Tests (See le	gend be	elow)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2		3	4	5	6	7	8	9	10	11	12
0612245-030	SB16 (1.5-2.0)	Soil	12/11/2006		Α		1	Т		<u> </u>		Α					
0612245-033	SB17 (0.5-10)	Soil	12/11/2006		Α							Α					
0612245-034	SB17 (1.5-2.0)	Soil	12/11/2006		Α				•			Α					

Test Legend:

1	418_SG_S
6	G-MBTEX_S
11	

2	8082A_PCB_S
7	PB S
12	

4	8270D_S
9	

5	CAM17MS_S
10	

The following SampIDs: 0612245-001A, 0612245-015A, 0612245-029A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Tclephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 12/12/06
	Client P.O.:	Date Analyzed 12/14/06

Total Recoverable Petroleum Hydrocarbons with Silica Gel Clean-Up by IR Spectrometry*

Analytical methods E418.1 Work Order: 061224 TRPH Lab ID Client ID Matrix DF % SS 0612245-001A B1-(2.0-2.5) S 56 1 91 0612245-004A B2 (2.0-2.5) S ND 1 90 0612245-007A SB10 (0.5-1.0) S ND 93 1 0612245-008A SB10 (1.5-2.0) S 140 87 0612245-011A SB11 (0.5-1.0) S 27 1 81 0612245-012A SB11 (1.5-2.0) S ND 92 0612245-015A SB-12 (0.5-1.0) S 30 1 89 0612245-016A S SB-12 (1.5-2.0) ND 1 90 0612245-017A SB-13 (0.5-1.0) S 44 1 87 0612245-018A SB-13 (1.5-2.0) S 1 88 82 0612245-021A SB-14 (0.5-1.0) S ND 92 0612245-022A S SB-14 (1.5-2.0) ND 1 89 0612245-025A SB-15 (0.5-1.0) S 80 84 0612245-026A S SB-15 (1.5-2.0) 140 1 86 0612245-029A S SB16 (0.5-10) 31 1 91 0612245-030A SB16 (1.5-2.0) S ND 85 1

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	10	mg/Kg

^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

[#] surrogate diluted out of range or not applicable to this sample.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 12/12/06
	Client P.O.:	Date Analyzed 12/14/06

		Chem P.O.:		Date Analyzed 12/14/06		
Total Recoverable Petroleum Hyd		leum Hydrocarbons wit	h Silica Gel Clean-Up by IR Spec			
Analytical methods E41	8.1			Work Order:	061224	
Lab ID	Client ID	Matrix	TRPH	DF	% SS	
0612245-033A	SB17 (0.5-10)	S	180	1	82	
0612245-034A	SB17 (1.5-2.0)	S	120	1	93	
	Limit for DF =1;	W	NA		IA	
	not detected at or e reporting limit	S	10	m	g/Kg	

Reporting Limit for Di 1,	W	NA	NA
ND means not detected at or	S	10	mg/Kg
above the reporting limit		10	mg/Kg
the state of the s			

^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

Treadwell & Rollo Client Project ID: #4542.01; Papermill Date Sampled: 12/11/06 Date Received: 12/12/06 555 Montgomery St., Suite 1300

333 Monigomery St., Su							
San Francisco, CA 9411	Client Co	ontact: Peter Cu	Date Extracted:	12/12/06	-		
San Trancisco, CA 7411	Client P.	O.:		Date Analyzed: 12/14/06			
	Po	lychlorinated Bi	phenyls (PCBs) A	roclors by GC-l	ECD*	· · · · · ·	
Extraction Method: SW3550C		Anal	Analytical Method: SW8082A				
	Lab ID	0612245-001A	0612245-015A	0612245-029A			
	Client ID		SB-12 (0.5-1.0)	SB16 (0.5-10)		Reporting	
	Matrix	S	S	S		DF	=1
	DF	1	1	1		S	W
Compound			mg/kg	ug/L			
Aroclor1016		ND	ND	ND		0.025	NA
Aroclor1221		ND	ND	ND		0.025	NA
Aroclor1232		ND	ND	ND		0.025	NA
Aroclor1242		ND	ND	ND		0.025	NA
Aroclor1248		ND	ND	ND		0.025	NA
Aroclor1254		ND	ND	ND		0.025	NA
Aroclor1260		ND	0.033	ND		0.025	NA
PCBs, total		ND	0.033	ND		0.025	NA
		Surr	ogate Recoverie	s (%)			
%SS:		114	114	114			
Comments				o			

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid
samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

Treadwell & Rollo

555 Montgomery St., Suite 1300

San Francisco, CA 94111

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Date Analyzed 12/14/06

Client Project ID: #4542.01; Papermill Date Sampled: 12/11/06 Date Received: 12/12/06 Client Contact: Peter Cusack Date Extracted: 12/12/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0612245

Lab ID 0612245-001A Client ID B1-(2.0-2.5) Matrix Soil

Client P.O.:

Matrix Soil							
Compound	Concentration *	DF	Reporting ·	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1,0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND _	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND_	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0,005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1.1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND.	1.0	0.005		ND	1.0	0.005
nvaga.	1		ogate Re	coveries (%)	1		
%SS1:	92		•	%SS2:	96)	
%SS3:	. 85						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

McCampbell Analytical, Inc. "When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
	Date Received: 12/12/06
Client Contact: Peter Cusack	Date Extracted: 12/12/06
Client P.O.:	Date Analyzed 12/14/06
	Client Contact: Peter Cusack

Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Extraction Method: SW5030B Work Order: 0612245

Lab ID 0612245-015A Client ID SB-12 (0.5-1.0) Matrix Soil

Matrix							
Compound	Concentration *	on * DF Reporting Limit		Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	_ ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1,0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	NDND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	NDND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0		Xvlenes	ND	1.0	0.005
		Surr	ogate Re	coveries (%)			
%SS1:	. 77			%SS2: 102			
%SS3:	91						
	70005.						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St. Suite 1300		Date Received: 12/12/06
555 Montgomery St., Suite 1300	Client Contact: Peter Cusack	Date Extracted: 12/12/06
San Francisco, CA 94111	Client P ()	Date Analyzed 12/14/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0612245

Lab ID 0612245-029A Client ID SB16 (0.5-10)

Cheft ID		5510 (0.5-10)						
Matrix		Soil						
Compound	Concentration * DF Reporting Limit Compound			Concentration *	DF	Reporting Limit		
Acetone	0.12	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.003	
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.003	
Bromoform	ND.	1.0	0.005	Bromomethane	ND	1.0	0.00	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.003	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.003	
Carbon Tetrachloride	ND	1,0	0.005	Chlorobenzene	ND	1.0	0.00	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.003	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.003	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.00	
1.2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.00	
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene	ND	1.0	0.00	
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.00	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.00	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.00	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.00	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.00	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.00	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.00	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.00	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.00	
Hexachloroethane	· ND	1.0	0.005	2-Hexanone	ND	1.0	0.00	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.00	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.00	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.00	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.00	
Styrene	ND	1.0	0.005	1.1.1.2-Tetrachloroethane	ND	1.0	0.00	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.00	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.00	
1,2,4-Trichlorobenzene	ND	1.0	0.005		ND	1.0	0.00	
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.00	
Trichlorofluoromethane	ND	1.0	0.005		ND	1.0	0.00	
1,2,4-Trimethylbenzene	ND	1.0	0.005		ND	1.0	0.00	
Vinvl Chloride	ND	1.0		Xvlenes	ND	1.0	0.003	
		Surr	•	coveries (%)				
%SS1:	91			%SS2:	10	1		
%SS3:	92			,				
Comments:	1				· ··· ···-			

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; i) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
555 Monigomery St., Build 1500	Client Contact: Peter Cusack	Date Extracted: 12/12/06
San Francisco, CA 94111	Client P.O.:	Date Analyzed 12/19/06

Semi-Volatile Organics by GC/MS (Basic Target List)*

ı	Extraction Method: SW3550C	Analytical Method: SW8270C	Work Order: 0612245
	Lab ID	0612245-001A	
	Client ID	B1-(2.0-2.5)	
	Matrix	Soil	•

IVIALITA	Watrix Soil			2011				
Compound	Concentration *	DF	DF Reporting Limit Compound C		Concentration *	DF	Reporting Limit	
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33	
Acetochlor	ND	1.0	0.33	Anthracene	ND	1.0	0.33	
Benzidine	ND	1.0	1.6	Benzoic Acid	ND	1.0	1.6	
Benzo(a)anthracene	ND	1.0	0.33	Benzo(b)fluoranthene	ND	1.0	0.33	
Benzo(k)fluoranthene	ND	1.0	0.33	Benzo(g,h,i)perylene	ND	1.0	0.33	
Benzo(a)pyrene	ND	1.0	0.33	Benzyl Alcohol	ND	1.0	0.66	
1,1-Biphenyl	ND	1.0	0.33	Bis (2-chloroethoxy) Methane	ND	1.0	0.33	
Bis (2-chloroethyl) Ether	ND	1.0	0.33	Bis (2-chloroisopropyl) Ether	ND	1.0	0.33	
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33	
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66	
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33	
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33	
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33	
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33	
1,2-Dichlorobenzene	ND	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33	
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66	
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33	
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33	
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6	
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33	
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND	1.0	0.33	
Fluoranthene	ND	1.0	0.33	Fluorene	ND	1.0	0.33	
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene	ND	1.0	0.33	
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane	ND	1.0	0.33	
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone	ND	1.0	0.33	
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.33	
3 &/or 4-Methylphenol (m,p-Cres	ND	1.0	0.33	Naphthalene	ND	1.0	0.33	
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND	1.0	1.6	
4-Nitroaniline	ND .	1.0	1.6	Nitrobenzene	ND	1,0	0.33	
2-Nitrophenol	ND	1.0	1.6	4-Nitrophenol	ND	1.0	1.6	
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND	1.0	0.33	
Pentachlorophenol	ND	1.0	1.6	Phenanthrene	ND	1.0	0.33	
Phenol	. ND	1.0	0.33	Pyrene	ND	1.0	0.33	
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND	1.0_	0.33	
2.4.6-Trichlorophenol	ND	1.0	0.33					

Surrogate Recoveries (%)									
%SS1:	83	%SS2:	107						
%SS3:	66	%SS4:	91						
%SS5:	79	%SS6:	74						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit raised due to insufficient sample amount; r) results are reported on a dry weight basis.

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

San Francisco, CA 94111

555 Montgomery St., Suite 1300

Treadwell & Rollo

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #4542.01; Papermill Date Sampled: 12/11/06 Date Received: 12/12/06 Client Contact: Peter Cusack Date Extracted: 12/12/06 Client P.O.: Date Analyzed 12/21/06

Semi-Volatile Organics by GC/MS (Basic Target List)*

Extraction Method: SW3550C Analytical Method: SW8270C Work Order: 0612245

Lab ID 0612245-015A Client ID SB-12 (0.5-1.0) Matrix Soil

Matrix		Soil					
Compound	Concentration *	DF	DF Reporting Limit Compound C		Concentration *	DF	Reporting Limit
Acenaphthene	ND<6.6	20	0.33	Acenaphthylene	ND<6.6	20	0.33
Acetochlor	ND<6.6	20	0.33	Anthracene	ND<6.6	20	0.33
Benzidine	ND<32	20	1.6	Benzoic Acid	ND<32	20	1.6
Benzo(a)anthracene	ND<6.6	20	0.33	Benzo(b)fluoranthene	ND<6.6	20	0.33
Benzo(k)fluoranthene	ND<6.6	20	0.33	Benzo(g,h,i)perylene	ND<6.6	20	0.33
Benzo(a)pyrene	ND<6.6	20	0.33	Benzyl Alcohol	ND<13	20	0.66
1,1-Biphenyl	ND<6.6	20	0.33	Bis (2-chloroethoxy) Methane	ND<6.6	20	0.33
Bis (2-chloroethyl) Ether	ND<6.6	20	0.33	Bis (2-chloroisopropyl) Ether	ND<6.6	20	0.33
Bis (2-ethylhexyl) Phthalate	ND<6.6	20	0.33	4-Bromophenyl Phenyl Ether	ND<6.6	20	0.33
Butylbenzyl Phthalate	ND<6.6	20	0.33	4-Chloroaniline	ND<13	20	0.66
4-Chloro-3-methylphenol	ND<6.6	20	0.33	2-Chloronaphthalene	ND<6.6	20	0.33
2-Chlorophenol	ND<6.6	20	0.33	4-Chlorophenyl Phenyl Ether	ND<6.6	20	0.33
Chrysene	ND<6.6	20	0.33	Dibenzo(a,h)anthracene	ND<6.6	20	0.33
Dibenzofuran	ND<6.6	20	0.33	Di-n-butyl Phthalate	ND<6.6	20	0.33
1,2-Dichlorobenzene	ND<6.6	20	0.33	1,3-Dichlorobenzene	ND<6.6	20	0.33
1,4-Dichlorobenzene	ND<6.6	20	0.33	3,3-Dichlorobenzidine	ND<13	20	0.66
2,4-Dichlorophenol	ND<6.6	20	0.33	Diethyl Phthalate	ND<6.6	_20	0.33
2,4-Dimethylphenol	ND<6.6	20	0.33	Dimethyl Phthalate	ND<6.6	20	0.33
4,6-Dinitro-2-methylphenol	ND<32	20	1.6	2,4-Dinitrophenol	ND<32	20	1.6
2,4-Dinitrotoluene	ND<6.6	20	0.33	2,6-Dinitrotoluene	ND<6.6	20	0.33
Di-n-octyl Phthalate	ND<6.6	20	0.33	1,2-Diphenylhydrazine	ND<6.6	20	0.33
Fluoranthene	ND<6.6	20	0.33	Fluorene	ND<6.6	20	0.33
Hexachlorobenzene	ND<6.6	20	0.33	Hexachlorobutadiene	ND<6.6	_20	0.33
Hexachlorocyclopentadiene	ND<32	20	1.6	Hexachloroethane	ND<6.6	20	0.33
Indeno (1,2,3-cd) pyrene	ND<6.6	20	0.33	Isophorone	ND<6.6	20	0.33
2-Methylnaphthalene	ND<6.6	20	0.33	2-Methylphenol (o-Cresol)	ND<6.6	20	0,33
3 &/or 4-Methylphenol (m,p-Cres	ND<6.6	20	0.33	Naphthalene	ND<6.6	20	0.33
2-Nitroaniline	ND<32	20	1.6	3-Nitroaniline	ND<32	20	1.6
4-Nitroaniline	ND<32	20	1.6	Nitrobenzene	ND<6.6	_ 20	0.33
2-Nitrophenol	ND<32	20	1.6	4-Nitrophenol	ND<32	20	1.6
N-Nitrosodiphenylamine	ND<6.6	20	0.33	N-Nitrosodi-n-propylamine	ND<6.6	20	0.33
Pentachlorophenol	ND<32	20	1.6	Phenanthrene	ND<6.6	20	0.33
Phenol	ND<6.6	20	0.33	Pyrene	ND<6.6	20	0.33
1,2,4-Trichlorobenzene	ND<6.6	20	0.33	2,4,5-Trichlorophenol	ND<6.6	20	0.33
2.4.6-Trichlorophenol	ND<6.6	_20	0.33				

Surrogate Recoveries (%)								
%SS1:	61	%SS2:	84					
%SS3:	100	%SS4:	115					
%SS5:	#	%SS6:	104					

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit raised due to insufficient sample amount; r) results are reported on a dry weight basis.

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

Client Project ID: #4542.01; Papermill Treadwell & Rollo Date Sampled: 12/11/06 Date Received: 12/12/06 555 Montgomery St., Suite 1300 Client Contact: Peter Cusack Date Extracted: 12/12/06 San Francisco, CA 94111 Client P.O.: Date Analyzed 12/19/06

Semi-Volatile Organics by GC/MS (Basic Target List)*

Analytical Method: SW8270C Extraction Method: SW3550C Work Order: 0612245

Lab ID 0612245-029A Client ID SB16 (0.5-10) Matrix Soil

IVIAU IX Soil							
Compound	Concentration *	DF Reporting Limit Compound C		Concentration *	DF	Reporting Limit	
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33
Acetochlor	ND	1.0	0.33	Anthracene	ND	1.0	0.33
Benzidine	ND	1.0	1.6	Benzoic Acid	ND	1.0	1.6
Benzo(a)anthracene	ND	1.0	0.33	Benzo(b)fluoranthene	ND	1.0	0.33
Benzo(k)fluoranthene	ND	1.0	0.33	Benzo(g,h,i)perylene	ND	1.0	0.33
Benzo(a)pyrene	ND	1.0	0.33	Benzyl Alcohol	ND	1.0	0.66
1,1-Biphenyl	ND	1.0	0.33	Bis (2-chloroethoxy) Methane	ND	1.0	0.33
Bis (2-chloroethyl) Ether	ND	1.0	0.33	Bis (2-chloroisopropyl) Ether	ND	1.0	0.33
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33
1,2-Dichlorobenzene	ND .	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND	1.0	0.33
Fluoranthene	ND	1.0	0.33	Fluorene	ND	1.0	0.33
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene	ND	1.0	0.33
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane	ND	1.0	0.33
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone	ND	1.0	0.33
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.33
3 &/or 4-Methylphenol (m,p-Cres	ND	1.0	0.33	Naphthalene	ND	1.0	0.33
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND	1.0	1.6
4-Nitroaniline	ND	1.0	1.6	Nitrobenzene	ND	1.0	0.33
2-Nitrophenol	ND	1.0	1.6	4-Nitrophenol	ND	1.0	1.6
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND	1,0	0.33
Pentachlorophenol	ND	1.0	1.6	Phenanthrene	ND	1.0	0.33
Phenol	ND	1.0	0.33	Pyrene	ND	1.0	0.33
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND	1.0	0.33
2.4.6-Trichlorophenol	ND	1.0	0.33				
		Surre	ogate Re	coveries (%)			

Surrogate Recoveries (%) %SS1 %SS2: 66 %SS3: 53 %SS4: 61 %SS5: %SS6: 51

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit raised due to insufficient sample amount; r) results are reported on a dry weight basis,

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
	Date Received: 12/12/06
Client Contact: Peter Cusack	Date Extracted: 12/12/06
Client P.O.:	Date Analyzed 12/14/06-12/16/06
	Client Contact: Peter Cusack

CAM / CCR 17 Metals*

Lab ID	0612245-001A	0612245-015A	0612245-029A	Reporting Lin	nit for DF =1;
Client ID	B1-(2.0-2.5)	SB-12 (0.5-1.0)	SB16 (0.5-10)	ND means not detected above the reporting lim	
Matrix	S	S	S	S	w
Extraction Type	TTLC	TTLC	TTLC	mg/Kg	mg/L

ICP-MS Metals, Concentration*

Analytical Method: 6020A	Extr	action Method: SW30	050B	Work Order;	0612245
Dilution Factor	1	1	1	1	1
Antimony	0.67	0.69	2.1	0.5	NA
Arsenic	3.8	4.0	5.9	0.5	NA
Barium	180	140	180	5.0	NA
Beryllium	0.64	ND	ND	0.5	NA
Cadmium	ND	ND	0.33	0.25	NA
Chromium	36	58	40	0.5	NA
Cobalt	9.7	15	8.6	0.5	NA
Copper	15	65	29	0.5	NA
Lead	5.3	8.9	53	0.5	NA
Mercury	ND	0.054	0.084	0.05	NA
Molybdenum	0.58	ND	0.64	0.5	NA
Nickel	29	72	37	0.5	NA
Selenium	ND	ND	ND	0.5	NA
Silver	ND	ND_	ND	0.5	NA
Thallium	ND	ND	ND	0.5	NA
Vanadium	38	150	43	0.5	NA
Zinc	31	71	95	5.0	NA
%SS:	107	102	99		

Comments

^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

[#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

"When Quality Counts!

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

										
Treadwell & Re	ollo	Client Proje	ct ID: #4542.01; Papermill	Date Sampled:	12/11/	06				
555 Montgome	ery St., Suite 1300			Date Received:	12/12/	06				
San Francisco,	CA 94111	Client Con	Client Contact: Peter Cusack Date Extracted: 12/12/							
San Transisos,		Client P.O.:	Client P.O.: Date Analyzed 12/13							
	Gasoline Ra	ange (C6-C1	2) Volatile Hydrocarbons as C	Gasoline*						
Extraction method S	W5030B	Aı	nalytical methods SW8015Cm		Work Or	rder: 06	12245			
Lab ID	Client ID	Matrix	ТРН(д)		DF	% SS			
001A	B1-(2.0-2.5)	S	3.8,g	;		1	80			
015A	SB-12 (0.5-1.0)	S	ND			1	87			
029A	029A SB16 (0.5-10)		ND			1	87			
						-				
:										
					_					

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 12/12/06
	Client P.O.:	Date Analyzed 12/13/06-12/19/06

Lead by ICP*

Extraction method SW:	3050B		Analytical methods	nalytical methods 6010C Work Order:		r: 0612245	
Lab ID	Client ID	Matrix	Extraction	Lead	DF	% SS	
0612245-004A	B2 (2.0-2.5)	S	TTLC	7.1	1	102	
0612245-007A	SB10 (0.5-1.0)	S	TTLC	12	1	101	
0612245-008A	SB10 (1.5-2.0)	S	TTLC	41	1	103	
0612245-011A	SB11 (0.5-1.0)	S	TTLC	61	1	106	
0612245-012A	SB11 (1.5-2.0)	S	TTLC	7.9	1	106	
0612245-016A	SB-12 (1.5-2.0)	S .	TTLC	6.5	1	107	
0612245-017A	SB-13 (0.5-1.0)	S	TTLC	9.9	1	100	
0612245-018A	SB-13 (1.5-2.0)	S	TTLC	14	1	101	
0612245-021A	SB-14 (0.5-1.0)	S	TTLC	11	1	105	
0612245-022A	SB-14 (1.5-2.0)	S	TTLC	11	1	100	
0612245-025A	SB-15 (0.5-1.0)	S	TTLC	100	1	105	
0612245-026A	SB-15 (1.5-2.0)	S	TTLC	29	1	97	
0612245-030A	SB16 (1.5-2.0)	s	TTLC	17	1	99	
0612245-033A	SB17 (0.5-10)	s	TTLC	700	1	92	
0612245-034A	SB17 (1.5-2.0)	S	TTLC	100	1	98	

Reporting Limit for DF =1; ND means not detected at or	W	TTLC	NA	μg/L
above the reporting limit	S	TTLC	5.0	mg/Kg

^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

[#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

	"When Ouality Counts"			Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Treadwell & R	ollo	Client Proje	ct ID:	#4542.01; Papermill	Date Sampled: 12/11	/06					
555 Montgome	ery St., Suite 1300		Date Received: 12/12/								
San Francisco,	CA 9/111	Client Cont	Client Contact: Peter Cusack Date Extracted: 12/12/0								
San Trancisco,		Client P.O.:	Client P.O.: Date Analyzed 12/15/06-12/19								
				ctable Hydrocarbons a	s Diesel*						
Extraction method S			nalytical m	nethods SW8015C	Work O	rder: 06	12245				
Lab ID	Client ID	Matrix		TPH(d))	DF	% SS				
0612245-001A	B1-(2.0-2.5)	s		1.7,d		1	96				
0612245-015A	SB-12 (0.5-1.0)	S		1.3,g,b)	1	117				
0612245-029A	SB16 (0.5-10)	s		2.8,g,b	1	114					
						-					
-											
					-						
						 					
						1					

Reporting Limit for DF =1;	w	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

b: www.mccampbell.com E-mail: main@mccampbell.co Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E418.1

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0612245

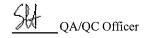
EPA Method: E418.1	E	Extraction: SW3550_TRPH				BatchID: 25050 S			Spiked Sample ID: 0612106-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	LCSD Acceptance Criteria (%)			%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TRPH	ND	20.8	130	130	0	91.8	93.8	2.07	70 - 130	30	70 - 130	30
%SS:	110	100	110	120	8.70	109	104	4.58	70 - 130	30	70 - 130	30

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 25050 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-001A	12/11/06 8:30 AM	12/12/06	12/14/06 5:46 PM	0612245-004A	12/11/06 2:30 PM	12/12/06	12/14/06 5:51 PM
0612245-007A	12/11/06 9:15 AM	12/12/06	12/14/06 5:56 PM	0612245-008A	12/11/06 9:20 AM	12/12/06	12/14/06 6:01 PM
0612245-011A	12/11/06 9:45 AM	12/12/06	12/14/06 6:06 PM	0612245-012A	12/11/06 9:50 AM	12/12/06	12/14/06 6:11 PM
0612245-015A	12/11/06 10:20 AM	12/12/06	12/14/06 6:16 PM	0612245-016A	12/11/06 10:25 AM	12/12/06	12/14/06 6:21 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E418.1

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0612245

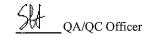
EPA Method: E418.1	E	Extraction: SW3550_TRPH				BatchID: 25178			piked Sample ID: 0612245-021A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	А	cceptan	ce Criteria (º	%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TRPH	ND	20.8	114	113	0.847	108	107	0.893	70 - 130	30	70 - 130	30
%SS:	92	100	89	86	3.43	100	102	2.07	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 25178 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-017A	12/11/06 10:50 AM	12/12/06	12/14/06 6:26 PM	0612245-018A	12/11/06 10:55 AM	12/12/06	12/14/06 6:31 PM
0612245-021A	12/11/06 11:28 AM	12/12/06	12/14/06 6:36 PM	0612245-022A	12/11/06 11:30 AM	12/12/06	12/14/06 6:41 PM
0612245-025A	12/11/06 12:15 PM	12/12/06	12/14/06 6:46 PM	0612245-026A	12/11/06 12:25 PM	12/12/06	12/14/06 6:51 PM
0612245-029A	12/11/06 1:30 PM	12/12/06	12/14/06 6:56 PM	0612245-030A	12/11/06 1:35 PM	12/12/06	12/14/06 7:01 PM
0612245-033A	12/11/06 2:00 PM	12/12/06	12/14/06 7:06 PM	0612245-034A	12/11/06 2:05 PM	12/12/06	12/14/06 7:11 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

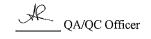
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8260B	Extraction SW5030B BatchID: 25150 Spiked Sample ID: 06122									: 0612217-0)10A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME	ND	0.050	85	94.7	10.9	99.6	99.8	0.141	70 - 130	30	70 - 130	30	
Benzene	ND	0.050	115	120	4.58	127	127	0	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	0.25	83.6	86.2	2.98	112	106	5.71	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	0.050	92.3	101	9.23	108	107	1.35	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	0.050	95.6	107	10.9	115	110	4.39	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	0.050	97.2	106	8.63	114	113	0.489	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	0.050	112	119	6.14	98.2	97.8	0.355	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	0.050	101	112	9.84	118	116	1.53	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	0.050	91.5	102	11.0	108	105	2.55	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	0.050	93.1	104	11.2	110	110	0	70 - 130	30	70 - 130	30	
Toluene	ND	0.050	102	110	7.93	117	109	6.94	70 - 130	30	70 - 130	30	
Trichloroethene	ND	0.050	73.7	78.8	6.70	86.2	84.4	2.11	70 - 130	30	70 - 130	30	
%SS1:	94	0.050	105	105	0	103	103	0	70 - 130	30	70 - 130	30	
%SS2:	102	0.050	104	103	0.397	102	98	4.08	70 - 130	30	70 - 130	30	
%SS3:	94	0.050	103	104	0.967	104	101	2.40	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 25150 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-001	12/11/06 8:30 AM	12/12/06	12/14/06 7:42 AM	0612245-015	2/11/06 10:20 AM	12/12/06	12/14/06 9:56 AM
0612245-029	12/11/06 1:30 PM	12/12/06	2/14/06 10:41 AM				ſ

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

QC SUMMARY REPORT FOR SW8082A

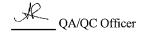
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8082A	A Method SW8082A Extraction SW3550C								BatchID: 25151 Spiked Sample ID: 06122				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)	
, wayto	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Aroclor1260	ND	0.075	91.9	91.1	0.836	107	109	1.88	70 - 130	20	70 - 130	20	
%SS:	117	0.050	113	116	1.96	102	102	0	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 25151 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-001	12/11/06 8:30 AM	12/12/06	12/14/06 4:00 AM	0612245-015	2/11/06 10:20 AM	12/12/06	12/14/06 4:56 AM
0612245-029	12/11/06 1:30 PM	12/12/06	12/14/06 5:52 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8270C	Extraction SW3550C BatchID: 25154 Spiked Sample ID: 0612182-010)10A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
Allaryte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Acenaphthene	ND	2	67.5	67.3	0.341	92.8	93.8	1.10	30 - 130	30	30 - 130	30
4-Chloro-3-methylphenol	ND	4	67.8	65.1	4.07	72.8	83.5	13.7	30 - 130	30	30 - 130	30
2-Chlorophenol	ND	4	74.8	73.2	2.15	97.9	94.7	3.34	30 - 130	30	30 - 130	30
1,4-Dichlorobenzene	ND	2	77.8	77.2	0.735	102	101	1.15	30 - 130	30	30 - 130	30
2,4-Dinitrotoluene	ND	2	84.3	84.2	0.0831	96.1	106	9.35	30 - 130	30	30 - 130	30
4-Nitrophenol	ND	4	64.7	65.5	1.22	67.2	59.7	11.8	30 - 130	30	30 - 130	30
N-Nitrosodi-n-propylamine	ND	2	85.3	87.2	2.17	98	104	5.46	30 - 130	30	30 - 130	30
Pentachlorophenol	ND	4	71.4	68	4.92	53.8	59.6	10.2	30 - 130	30	30 - 130	30
Phenol	ND	4	99.1	91.8	7.68	82.5	75.2	9.25	30 - 130	30	30 - 130	30
Pyrene	ND	2	62.8	62.3	0.799	90.6	95.4	5.14	30 - 130	30	30 - 130	30
1,2,4-Trichlorobenzene	ND	2	76.1	76.5	0.472	92.8	107	14.2	30 - 130	30	30 - 130	30
%SS1:	89	200	84	84	0	86	87	1.52	30 - 130	30	30 - 130	30
%SS2:	91	200	81	77	5.45	71	66	8.17	30 - 130	30	30 - 130	30
%SS3:	92	200	92	92	0	111	119	6.49	30 - 130	30	30 - 130	30
%SS4:	80	200	80	80	0	90	86	5.19	30 - 130	30	30 - 130	30
%SS5:	94	200	94	93	0.527	101	109	8.30	30 - 130	30	30 - 130	30
%SS6:	74	200	73	72	1.29	69	72	4.23	30 - 130	30	30 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25154 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-001	12/11/06 8:30 AM	12/12/06	2/19/06 12:14 PM	0612245-015	2/11/06 10:20 AM	12/12/06	2/21/06 12:06 PM
0612245-029	12/11/06 1:30 PM	12/12/06	12/19/06 4:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil

QC Matrix: Soil

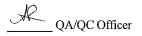
WorkOrder 0612245

EPA Method	6020A			Extracti	Extraction SW3050B			BatchID: 25172			Spiked Sample ID 0612182-035A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)			
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Antimony	ND	50	101	100	1.32	10	102	105	2.41	75 - 125	20	80 - 120	20	
Arsenic	5.4	50	101	99.3	1.42	10	104	106	1.81	75 - 125	20	80 - 120	20	
Barium	55	500	105	103	1.70	100	101	102	0.981	75 - 125	20	80 - 120	20	
Beryllium	2.8	50	96.4	94.7	1.62	10	98.6	99.5	0.919	75 - 125	20	80 - 120	20	
Cadmium	ND	50	101	99.1	1.74	10	101	103	1.77	75 - 125	20	80 - 120	20	
Chromium	4.9	50	97.4	97.1	0.243	10	104	105	0.767	75 - 125	20	80 - 120	20	
Cobalt	1.9	50	91.6	91.2	0.357	10	101	102	1.38	75 - 125	20	80 - 120	20	
Copper	2.8	50	97.9	97.1	0.776	10	105	106	0.947	75 - 125	20	80 - 120	20	
Lead	30	50	103	101	1.29	10	103	103	0	75 - 125	20	80 - 120	20	
Mercury	ND	2.5	102	101	0.968	0.50	106	107	0.180	75 - 125	20	80 - 120	20	
Molybdenum	2.6	50	99.6	98.4	1.13	10	99.4	102	2.38	75 - 125	20	80 - 120	20	
Nickel	2.9	50	98.9	98.2	0.709	10	105	108	2.54	75 - 125	20	80 - 120	20	
Selenium	ND	50	101	102	0.766	10	102	103	1.07	75 - 125	20	80 - 120	20	
Silver	ND	50	98	96.9	1.13	10	102	104	1.46	75 - 125	20	80 - 120	20	
Thallium	ND	50	102	101	0.807	10	99.6	99.9	0.331	75 - 125	20	80 - 120	20	
Vanadium	8.8	50	97.7	96.5	1.08	10	103	105	2.60	75 - 125	20	80 - 120	20	
Zinc	45	500	101	99.8	0.897	100	98.9	101	1.89	75 - 125	20	80 - 120	20	
%SS:	101	250	105	102	2.87	250	103	105	1.81	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25172 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-001A	12/11/06 8:30 AM	1 12/12/06 12	2/14/06 11:27 PM	0612245-001A	12/11/06 8:30 AM	12/12/06	12/16/06 5:57 AM
0612245-015A	12/11/06 10:20 AM	1 12/12/06 12	2/14/06 11:35 PM	0612245-015A	2/11/06 10:20 AM	12/12/06	12/16/06 6:02 AM
0612245-015A	12/11/06 10:20 AM	1 12/12/06 1	2/16/06 6;08 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil

QC Matrix: Soil

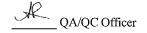
WorkOrder 0612245

EPA Method 6	020A			Extracti	on SW305	0B	В	atchID: 2	5177	Spiked Sample ID 0612245-029A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)			
, many to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Antimony	2.1	50	99.4	98.3	1.07	10	95.9	95.1	0.869	75 - 125	20	80 - 120	20	
Arsenic	5.9	50	98.3	98.6	0.272	10	94.6	93.1	1.58	75 - 125	20	80 - 120	20	
Barium	180	500	107	106	0.239	100	95.1	94.6	0.527	75 - 125	20	80 - 120	20	
Beryllium	ND	50	96.6	95.9	0.741	10	93.3	92.2	1.10	75 - 125	20	80 - 120	20	
Cadmium	0.33	50	97	96.5	0.493	10	93.8	92.8	1.03	75 - 125	20	80 - 120	20	
Chromium	40	50	95.3	98.6	1.86	10	94.6	93.4	1.21	75 - 125	20	80 - 120	20	
Cobalt	8.6	50	87.1	85.7	1.33	10	91.2	91	0.198	75 - 125	20	80 - 120	20	
Copper	29	50	98.6	99.4	0.486	10	94.9	94.7	0.232	75 - 125	20	80 - 120	20	
Lead	53	50	102	105	1.24	10	90.8	92	1.41	75 - 125	20	80 - 120	20	
Mercury	ND	2.5	93.9	95	1.12	0.50	96.5	100	3.72	75 - 125	20	80 - 120	20	
Molybdenum	0.64	50	95.4	94.3	1.14	10	90.8	90.6	0.242	75 - 125	20	80 - 120	20	
Nickel	37	50	99.8	101	0.777	10	95.1	96.6	1.63	75 - 125	20	80 - 120	20	
Selenium	ND	50	99	97.7	1.33	10	95.9	95.4	0.596	75 - 125	20	80 - 120	20	
Silver	ND	50	96.2	95.6	0.642	10	104	100	3.24	75 - 125	20	80 - 120	20	
Thallium	ND	50	100	99.3	1.04	10	88.2	90	2.04	75 - 125	20	80 - 120	20	
Vanadium	43	50	96.2	98.4	1.23	10	93.6	92.7	0.945	75 - 125	20	80 - 120	20	
Zinc	95	500	99.8	100	0.403	100	91.5	91.2	0.324	75 - 125	20	80 - 120	20	
%SS:	99	250	100	102	1.89	250	97	96	1.37	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25177 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-029A	12/11/06 1:30 PM	12/12/06 12	/14/06 11:03 PM	0612245-029A	12/11/06 1:30 PM	12/12/06	12/16/06 5:52 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

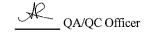
QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8015Cm	E	xtraction	SW503	0B	BatchID: 25171				Spiked Sample ID: 0612241-006A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	ce Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex [£]	ND	0.60	102	111	8.70	106	111	4.45	70 - 130	30	70 - 130	30	
МТВЕ	ND	0.10	113	101	11.7	105	95.4	9.16	70 - 130	30	70 - 130	30	
Benzene	ND	0.10	105	95.6	9.24	98.9	99.7	0.710	70 - 130	30	70 - 130	30	
Toluene	ND	0.10	93.7	85.9	8.69	87.9	90.9	3.35	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	0.10	98.9	90.1	9.32	88.4	93.8	5.91	70 - 130	30	70 - 130	30	
Xylenes	ND	0.30	95.7	91.7	4.27	92	100	8.33	70 - 130	30	70 - 130	30	
%SS:	88	0.10	91	93	2.17	95	97	2.08	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25171 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-001	12/11/06 8:30 AM	12/12/06	12/13/06 7:10 AM	0612245-015	2/11/06 10:20 AM	12/12/06	12/13/06 7:39 AM
0612245-029	12/11/06 1:30 PM	12/12/06	12/13/06 8:39 AM				ĺ

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil

QC Matrix: Soil

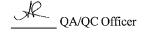
WorkOrder 0612245

EPA Method 60	010C			Extracti	on SW305	0B	В	atchID: 2	5114	Spiked Sa	ımple	ID 0612144	-015A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%	,)
, and yes	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	11	50	89.4	88.6	0.718	10	105	91.8	13.4	75 - 125	20	80 - 120	20
%SS:	100	250	98	97	1.13	250	99	99	0	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25114 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-004A	12/11/06 2:30 PN	1 12/12/06	12/19/06 3:55 PM	0612245-007A	12/11/06 9:15 AM	12/12/06	12/19/06 3:57 PM
0612245-008A	12/11/06 9:20 AM	1 12/12/06	12/19/06 4:00 PM	0612245-011A	12/11/06 9:45 AM	12/12/06	12/19/06 4:02 PM
0612245-012A	12/11/06 9:50 AM	1 12/12/06	12/19/06 4:04 PM	0612245-016A	2/11/06 10:25 AM	12/12/06	12/19/06 4:06 PM
0612245-017A	12/11/06 10:50 AM	1 12/12/06	12/19/06 4:09 PM	0612245-018A	2/11/06 10:55 AM	12/12/06	12/19/06 4:11 PM
0612245-021A	12/11/06 11:28 AM	1 12/12/06	12/19/06 4:13 PM	0612245-022A	2/11/06 11:30 AM	12/12/06	12/19/06 4:16 PM
0612245-025A	12/11/06 12:15 PM	12/12/06	12/19/06 4:22 PM	0612245-026A	12/11/06 12:25 PM	12/12/06	12/13/06 3:08 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil

QC Matrix: Soil

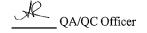
WorkOrder 0612245

EPA Method 60	010C			Extraction SW3050B			В	BatchID: 25179			Spiked Sample ID 0612273-016A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%	·)		
7a.y.b	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Lead	7.6	50	94.7	94.9	0.182	10	104	97.8	6.31	75 - 125	20	80 - 120	20		
%SS:	105	250	103	106	3.35	250	98	99	1.84	70 - 130	20	70 - 130	20		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25179 SUMMARY

_	Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
ſ	0612245-030A	12/11/06 1:35 Pi	M 12/12/06	12/13/06 3:10 PM	0612245-033A	12/11/06 2:00 PN	12/12/06	12/13/06 3:12 PM
l	0612245-034A	12/11/06 2:05 PI	M 12/12/06	12/13/06 3:14 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

QC SUMMARY REPORT FOR SW8015C

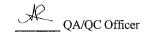
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8015C	E	xtraction	SW355	0C		BatchII	D: 25174		Spiked San	nple ID	: 0612182-0	60A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria ('	%)
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	1.2	20	124	128	3.37	111	115	3.76	70 - 130	30	70 - 130	30
%SS:	115	50	117	116	1.15	102	109	6.58	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 25174 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-001	12/11/06 8:30 AM	12/12/06	12/15/06 2:56 PM	0612245-015	2/11/06 10:20 AM	12/12/06	12/15/06 8:01 AM
0612245-029	12/11/06 1:30 PM	12/12/06	12/19/06 3:37 PM		*		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

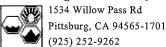
MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Reported: 12/21/06
Sui Huioisoo, Off 74111	Client P.O.:	Date Completed: 01/05/07

WorkOrder: 0612245

January 05, 2007

Dear Peter:


Enclosed are:

- 1). the results of 14 analyzed samples from your #4542.01; Papermill project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

CHAIN-OF-CUSTODY RECORD

✓ Email

Page 1 of 1

WorkOrder: 0612245

ClientID: TWRF

□ EDF

Fax

Bill t

HardCop

☐ ThirdPart

Report to:

Peter Cusack Treadwell & Rollo

555 Montgomery St., Suite 1300 San Francisco, CA 94111

Email: TEL:

PO:

pjcusack@treadwellrollo.com

(415) 955-904

ProjectNo: #4542.01; Papermill

FAX: (415) 955-904

Accounts Payable Treadwell & Rollo

555 Montgomery St., Suite 1300

San Francisco, CA 94111

Requested TAT: 5 days Date Received 2/12/2006

Date Add-On: 2/22/2006

Date Printed: 1/02/2007

								Req	uested	Tests (See le	gend b	elow)				
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
0612245-002	B1 (5.0-5.5)	Soil	12/11/2006		Α	Α	1	Α		Α		1	<u> </u>				
0612245-005	B2 (5.0-5.5)	Soil	12/11/2006		Α	Α		Α		Α	1						
0612245-009	SB10 (4.0-4.5)	Soil	12/11/2006		Α	Α	Α			Α			l				
0612245-011	SB11 (0.5-1.0)	Soil	12/11/2006						Α								
0612245-013	SB11 (2.5-3.0)	Soil	12/11/2006		Α	Α	Α			Α							
0612245-019	SB-13 (2.5-3.0)	Soil	12/11/2006		Α	Α		Α		Α							
0612245-023	SB-14 (2.5-3.0)	Soil	12/11/2006		Α	Α		A		Α							
0612245-025	SB-15 (0.5-1.0)	Soil	12/11/2006			T			Α								
0612245-027	SB-15 (2.5-3.0)	Soil	12/11/2006		Α	Α		Α		Α	ł						
0612245-029	SB16 (0.5-10)	Soil	12/11/2006						Α								
0612245-031	SB16 (2.5-3.0)	Soil	12/11/2006		Α	Α		Α		Α							
0612245-033	SB17 (0.5-10)	Soil	12/11/2006				1		Α								
0612245-034	SB17 (1.5-2.0)	Soil	12/11/2006			1	1		Α		1						
0612245-035	SB17 (2.5-3.0)	Soil	12/11/2006		Α	Α		Α		Α	•						

Test Legend:

1	418_SG_S	
6	TPH(D)_S	
11		

2	G-MBTEX_S
7	
12	

3	LUFT_S
8	

4	PB_S	
9		

5	PB_STLC_Soil
10	

Prepared by: Rosa Venegas

Comments:

TRPH, TPHg&d, Luft, Pb, &PbSTLC added on 12/06/06.

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

242342
7 7 7 20
Z 170000000
A
V 22

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 01/02/07
	Client P.O.:	Date Analyzed 01/03/07

Total Recoverable Petroleum Hydrocarbons with Silica Gel Clean-Up by IR Spectrometry*

18.1			Work Order:	061224
Client ID	Matrix	ТКРН	DF	% SS
B1 (5.0-5.5)	S	ND	1	116
B2 (5.0-5.5)	S	ND	1	119
SB10 (4.0-4.5)	S	ND	1	114
SB11 (2.5-3.0)	s	ND	1	115
SB-13 (2.5-3.0)	S	ND	1	114
SB-14 (2.5-3.0)	S	ND	1	118
SB-15 (2.5-3.0)	S	28	1	114
SB16 (2.5-3.0)	S	ND	1	116
SB17 (2.5-3.0)	s	31	1	110
			-	
	Client ID B1 (5.0-5.5) B2 (5.0-5.5) SB10 (4.0-4.5) SB11 (2.5-3.0) SB-13 (2.5-3.0) SB-14 (2.5-3.0) SB-15 (2.5-3.0) SB16 (2.5-3.0)	Client ID Matrix B1 (5.0-5.5) S B2 (5.0-5.5) S SB10 (4.0-4.5) S SB11 (2.5-3.0) S SB-13 (2.5-3.0) S SB-14 (2.5-3.0) S SB-15 (2.5-3.0) S SB16 (2.5-3.0) S	Client ID Matrix TRPH B1 (5.0-5.5) S ND B2 (5.0-5.5) S ND SB10 (4.0-4.5) S ND SB11 (2.5-3.0) S ND SB-13 (2.5-3.0) S ND SB-14 (2.5-3.0) S ND SB-15 (2.5-3.0) S 28 SB16 (2.5-3.0) S ND	Client ID Matrix TRPH DF B1 (5.0-5.5) S ND 1 B2 (5.0-5.5) S ND 1 SB10 (4.0-4.5) S ND 1 SB11 (2.5-3.0) S ND 1 SB-13 (2.5-3.0) S ND 1 SB-14 (2.5-3.0) S ND 1 SB-15 (2.5-3.0) S 28 1 SB16 (2.5-3.0) S ND 1

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	10	mg/Kg

^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

[#] surrogate diluted out of range or not applicable to this sample.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 01/02/07
	Client P.O.:	Date Analyzed 01/03/07

2 do 1 mary 2007							
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline* Extraction method SW5030B Analytical methods SW8015Cm Work Order: 0612245							
002A	B1 (5.0-5.5)	S	ND	1	105		
005A	B2 (5.0-5.5)	S	ND	1	100		
009A	SB10 (4.0-4.5)	S	ND	1	107		
013A	SB11 (2.5-3.0)	S	ND	1	99		
019A	SB-13 (2.5-3.0)	S	ND	1	103		
023A	SB-14 (2.5-3.0)	S	ND	1	105		
027A	SB-15 (2.5-3.0)	S	ND	1	99		
031A	SB16 (2.5-3.0)	s	ND	1	111		
035A	SB17 (2.5-3.0)	S	ND	1	100		
					ļ		
	·						
_	ting Limit for DF =1;	W	NA	N	ĮΑ		
	eans not detected at or ve the reporting limit	S	1.0	mg	g/Kg		

ĺ	* water and vapor samples and all TCLP	& SPLP extracts are rep	orted in ug/L. soil/sludge/so	olid samples in mg/kg	wine samples in ug/wine
	product/oil/non-aqueous liquid samples it		orrea in pg/2, someraugerse	ond dampide in mg kg,	wipe samples in µg, wipe,

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269


Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 01/02/07
	Client P.O.:	Date Analyzed 01/03/07

							2 are 1 mary 2		, ,	
Extraction m	LUFT 5 Metals* xtraction method SW3050B Analytical methods 6010C Work Order: 0612245									
Lab ID	Client ID	Matrix	Extraction	Cadmium	Chromium	Lead	Nickel	Zinc	DF	% S
009A	SB10 (4.0-4.5)	s	TTLC	ND	83	17	44	65	1	102
013A	SB11 (2.5-3.0)	S	TTLC	ND	54	14	61	59	1	10
		<u> </u>								<u> </u>
		-							<u> </u>	-
									+	
	·									
									_	
										<u> </u>
		 -								\vdash
										<u> </u>
	ng Limit for DF =1; ns not detected at or	W	TTLC	NA	NA	NA	NA	NA		ΙA
	the reporting limit	S	TTLC	1.5	1.5	5.0	1.5	5.0	m	g/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

above the reporting limit

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 01/02/07
	Client P.O.:	Date Analyzed 01/03/07

Lead by ICP*

Extraction method SW3050B Analytical methods 6010C Work Order: 0612245 Lab ID Client ID Extraction DF Matrix Lead % SS 0612245-002A B1 (5.0-5.5) S TTLC 9.6 105 0612245-005A B2 (5.0-5.5) S TTLC 7.9 1 103 0612245-019A SB-13 (2.5-3.0) S TTLC 103 7.6 1 0612245-023A SB-14 (2.5-3.0) S TTLC 10 99 1 0612245-027A TTLC SB-15 (2.5-3.0) S 100 8.1 1 0612245-031A SB16 (2.5-3.0) S TTLC7.3 1 101 0612245-035A S TTLC 102 SB17 (2.5-3.0) 65 1

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
ND means not detected at or above the reporting limit	S	TTLC	5.0	mg/Kg

^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 01/02/07-01/04/07
,	Client P.O.:	Date Analyzed 01/04/07

Lead by ICP*

Extraction method CA Titl	le 22	Analytical n	nethods SW6010C		Work Order: 06	12245
Lab ID	Client ID	Matrix	Extraction	Lead	DF	% SS
0612245-011A	SB11 (0.5-1.0)	S	STLC	0.74	1	N/A
0612245-025A	SB-15 (0.5-1.0)	S	STLC	7.0	1	N/A
0612245-029A	SB16 (0.5-10)	s	STLC	4.8	1	N/A
0612245-033A	SB17 (0.5-10)	S	STLC	140	1	N/A
0612245-034A	SB17 (1.5-2.0)	S	STLC	4.2	1	N/A
						+
			<u> </u>			
				 		
	-					
						+-
						
				· · ·		┼─
						<u> </u>
						T-

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
ND means not detected at or above the reporting limit	S	STLC	0.2	mg/L

^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Treadwell & Rollo	Client Project ID: #4542.01; Papermill	Date Sampled: 12/11/06
555 Montgomery St., Suite 1300		Date Received: 12/12/06
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 01/02/07
	Client P.O.:	Date Analyzed 01/02/07-01/03/07

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method SW	3550C	Analytical me	thods SW8015C	Work Or	ier: 06	12245
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS
0612245-002A	B1 (5.0-5.5)	S	ND	<u> </u>	1	97
0612245-005A	B2 (5.0-5.5)	S	ND		1	102
0612245-009A	SB10 (4.0-4.5)	S	ND		1	101
0612245-013A	SB11 (2.5-3.0)	S	ND		1	105
0612245-019A	SB-13 (2.5-3.0)	S	ND		1	97
0612245-023A	SB-14 (2.5-3.0)	S	ND	-	1	98
0612245-027A	SB-15 (2.5-3.0)	S	ND		1	95
0612245-031A	SB16 (2.5-3.0)	S	ND		1	96
0612245-035A	SB17 (2.5-3.0)	S	3.1,b		1	103
						
-						
				-		

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

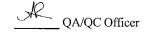
QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8015C	E	xtraction	SW355	0C	BatchID: 25493				Spiked Sample ID: 0701004-014A			
Analyte	Sample	Sample Spiked MS MSD		MS-MSD	MS-MSD LCS LCSD LCS-LCSD		Acceptance Criteria (%)			%)		
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	160	20	NR	NR	NR	90	102	12.7	70 - 130	30	70 - 130	30
%SS:	122	50	107	107	0	97	107	10.0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25493 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-002	12/11/06 8:35 AM	1/02/07	1/03/07 5:12 PM	0612245-005	12/11/06 2:35 PM	1/02/07	1/02/07 7:54 PM
0612245-009	12/11/06 9:25 AM	1/02/07	1/02/07 9:01 PM	0612245-013	12/11/06 9:55 AM	1/02/07	1/02/07 10:08 PM
0612245-019	2/11/06 11:00 AM	1/02/07	1/03/07 6:23 PM	0612245-023	!/11/06 11:35 AM	1/02/07	1/02/07 9:01 PM
0612245-027	2/11/06 12:30 PM	1/02/07	1/03/07 4:06 AM	0612245-031	12/11/06 1:40 PM	1/02/07	1/02/07 10:08 PM
0612245-035	12/11/06 2:10 PM	1/02/07	1/03/07 6:23 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR E418.1

W.O. Sample Matrix: Soil

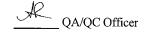
QC Matrix: Soil

WorkOrder 0612245

EPA Method E418.1	E	Extraction	SW355	0_TRPH	BatchID: 25496 Spiked Sample ID: 061224					: 0612245-0)05A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ice Criteria (%)
,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TRPH	ND	20.8	104	115	9.65	107	109	1.34	70 - 130	30	70 - 130	30
%SS:	119	100	108	106	2.52	104	103	0.867	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25496 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-002	12/11/06 8:35 AM	1/02/07	1/03/07 12:27 PM	0612245-005	12/11/06 2:35 PM	1/02/07	1/03/07 12:32 PM
0612245-009	12/11/06 9:25 AM	1/02/07	1/03/07 12:37 PM	0612245-013	12/11/06 9:55 AM	1/02/07	1/03/07 12:42 PM
0612245-019	2/11/06 11:00 AM	1/02/07	1/03/07 12:47 PM	0612245-023	2/11/06 11:35 AM	1/02/07	1/03/07 12:52 PM
0612245-027	2/11/06 12:30 PM	1/02/07	1/03/07 12:57 PM	0612245-031	12/11/06 1:40 PM	1/02/07	1/03/07 1:02 PM
0612245-035	12/11/06 2:10 PM	1/02/07	1/03/07 1:07 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

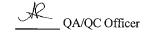
QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8021B	/8015Cm E	xtraction	SW503	0B		Batchil): 25492	S	Spiked Sar	nple ID	: 0701004-0)14A	
Analyte	Sample	le Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Accep									eptance Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex)	170	0.60	NR	NR	NR	82.6	93.1	12.0	70 - 130	30	70 - 130	30	
MTBE	ND<5.0	0.10	99.9	92	8.26	90.6	96.4	6.26	70 - 130	30	70 - 130	30	
Benzene	2	0.10	NR	NR	NR	94.5	95.3	0.861	70 - 130	30	70 - 130	30	
Toluene	11	0.10	NR	NR	NR	78.6	78.1	0.610	70 - 130	30	70 - 130	30	
Ethylbenzene	11	0.10	NR	NR	NR	94.7	94.5	0.211	70 - 130	30	70 - 130	30	
Xylenes	54	0.30	NR	NR	NR	86.3	86	0.387	70 - 130	30	70 - 130	30	
%SS:	116	0.10	107	104	3.02	101	106	4.32	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25492 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-002	12/11/06 8:35 AM	1/02/07	1/03/07 1:39 AM	0612245-005	12/11/06 2:35 PM	1/02/07	1/03/07 2:08 AM
0612245-009	12/11/06 9:25 AM	1/02/07	1/03/07 2:37 AM	0612245-013	12/11/06 9:55 AM	1/02/07	1/03/07 3:06 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

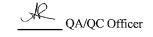
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0612245

EPA Method SW8021B/80	I5Cm E	xtraction	SW503	0B	BatchID: 25494 Spiked Sample ID: 0701007-005/							
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria							%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	0.60	103	101	1.65	116	104	10.7	70 - 130	30	70 - 130	30
МТВЕ	ND	0.10	103	89	14.7	88.7	95.3	7.09	70 - 130	30	70 - 130	30
Benzene	ND	0.10	106	96.1	9.36	91.7	99.2	7.83	70 - 130	30	70 - 130	30
Toluene	ND	0.10	85.3	78.6	8.11	75.2	80.8	7.25	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	100	93.6	6.60	89.4	96.5	7.63	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	90.7	86	5.28	84.3	89.7	6.13	70 - 130	30	70 - 130	30
%SS:	107	0.10	119	109	8.77	112	117	4.37	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 25494 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-019	2/11/06 11:00 AM	1/02/07	1/03/07 4:04 AM	0612245-023	2/11/06 11:35 AM	1/02/07	1/03/07 4:33 AM
0612245-027	2/11/06 12:30 PM	1/02/07	1/03/07 5:02 AM	0612245-031	12/11/06 1:40 PM	1/02/07	1/03/07 5:31 AM
0612245-035	12/11/06 2:10 PM	1/02/07	1/03/07 6:29 AM				ĺ

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil/Soil

QC Matrix: Soil

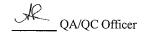
WorkOrder 0612245

EPA Method		Extraction SW3050B				BatchID: 25427			Spiked Sample ID 0612609-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD		LCS % Rec.	LCSD % Rec.	LCS-LCSD % RPD	Acceptance Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD					MS / MSD	RPD	LCS/LCSD	RPD
Cadmium	ND	50	97.2	97.6	0.308	10	98.6	98.2	0.483	75 - 125	20	80 - 120	20
Chromium	18	50	95.5	93.7	1.34	10	110	108	1.83	75 - 125	20	80 - 120	20
Lead	7.2	50	94.8	92.1	2.50	10	104	97.8	6.45	75 - 125	20	80 - 120	20
Nickel	9.4	50	94	91.9	1.92	10	100	100	0	75 - 125	20	80 - 120	20
Zinc	52	500	98.3	97.4	0.878	100	101	105	3.55	75 - 125	20	80 - 120	20
%SS:	103	250	103	101	1.67	250	105	103	2.50	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25427 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-002A	12/11/06 8:35 AM	1/02/07	1/03/07 9:18 AM	0612245-005A	12/11/06 2:35 PM	I 1/02/07	1/03/07 9:20 AM
0612245-009A	12/11/06 9:25 AM	1/02/07	1/03/07 9:11 AM	0612245-013A	12/11/06 9:55 AM	1/02/07	1/03/07 9:16 AM
0612245-019A	12/11/06 11:00 AM	1/02/07	1/03/07 9:22 AM	0612245-023A	2/11/06 11:35 AM	1/02/07	1/03/07 9:24 AM
0612245-027A	12/11/06 12:30 PM	1/02/07	1/03/07 9:27 AM	0612245-031A	12/11/06 1:40 PM	1/02/07	1/03/07 9:29 AM
0612245-035A	12/11/06 2:10 PM	1/02/07	1/03/07 9:31 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample dijuted due to bigh matrix or analyte

QC SUMMARY REPORT FOR SW6010C

W.O. Sample Matrix: Soil

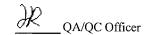
QC Matrix: Soil

WorkOrder: 0612245

EPA Method SW6010C	Extraction CA Title 22						BatchID: 25495 Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	SD Acceptance Criteria		ce Criteria (%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	N/A	1	N/A	N/A	N/A	98.1	102	3.61	N/A	N/A	80 - 120	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25495 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0612245-011	12/11/06 9:45 AM	1/02/07	1/04/07 9:31 PM	0612245-025	2/11/06 12:15 PM	1/02/07	1/04/07 9:43 PM
0612245-029	12/11/06 1:30 PM	1/02/07	1/04/07 9:49 PM	0612245-033	12/11/06 2:00 PM	1/02/07	1/04/07 9:52 PM
0612245-034	12/11/06 2:05 PM	1/02/07	1/04/07 9:54 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

