RECEIVED

8:45 am, Apr 13, 2010

Alameda County Environmental Health RECEIVED APR - 2 2010

March 26, 2010

Jerry Wickham Alameda County Environmental Health Svcs 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Transmittal Letter

Site Location:

Springtown Gas

909 Blue Bell Drive, Livermore, CA 94551

Dear Mr. Wickham:

On behalf of Aminifilibadi Masood & Amini Sharbano, Geological Technics Inc. (GTI) prepared the 1st Quarter Groundwater Monitoring Report, dated March 26, 2010 that was sent to your office via electronic delivery per Alameda County's guidelines on April 5, 2010.

I declare under penalty of law that the information and/or recommendations contained in the above referenced document or report is true and correct to the best of my knowledge.

Respectfully submitted,

Aminifilibadi Masood/Amini Sharbano

Property Owner 909 Blue Bell Drive Livermore, CA 94551

Geological Technics Inc._

REPORT

Groundwater Monitoring 1st Quarter 2010

Springtown Gas 909 Bluebell Drive Livermore, California

> Project No. 1409.2 March 26, 2010

Prepared for:
Masood Amini Filibadi and Shahrbano Amini
909 Bluebell Drive
Livermore, California 95353

Prepared by:
Geological Technics Inc.
1172 Kansas Avenue
Modesto, California 95351
(209) 522-4119
www.gtienv.com

Geological Technics Inc._

1172 Kansas Avenue Modesto, California 95351 (209) 522-4119/Fax (209) 522-4227 www.gtienv.com

March 26, 2010

Project No.:

1409.2

Project Name:

Springtown Gas (Bluebell)

Masood Amini Filibadi and Shahrbano Amini Springtown Gas 909 Bluebell Drive Livermore, California 94551

RE:

Report – 1st Quarter 2010 Groundwater Monitoring

Springtown Gas, 909 Bluebell Drive, Livermore, California

Dear Masood Amini Filibadi and Shahrbano Amini:

Geological Technics Inc. (GTI) has prepared the following Report for the 1st Quarter 2010 groundwater monitoring event performed on February 10, 2010 at Springtown Gas, 909 Bluebell Drive, Livermore, California.

If you have any questions, please do not hesitate to call me at (209) 522-4119.

Respectfully submitted,

Tamorah Bryant, P.E.

cc:

Jerry Wickham - ACEHS

USTCFP

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	
2.0	PHYSICAL SETTING	. 2
3.0	GROUNDWATER MONITORING	. 3
	3.1 Groundwater Elevation and Flow Direction	. 3
	3.2 Groundwater Sampling Procedure	. 3
	3.3 Laboratory Analyses	
4.0	CONCLUSIONS	
5.0	RECOMMENDATIONS	. 5
6.0	LIMITATIONS	. 6
7.0	CERTIFICATION	. 6
	FIGURES	
VICIN	TTY MAP	1
GROU		2
GROU	NDWATER GRADIENT ROSE DIAGRAM	3
MTBE		1
TBA C	ONTOUR MAP	5
	APPENDICES	
SUMN	ARY TABLES	
001.11.	Table 1: Summary of Groundwater Elevation	
	Table 2: Summary of Groundwater Analytical Data	
	Table 3: Summary of Water Quality Parameter Data	
	Table 4: Summary of Monitoring Well Completion Data	
CERTI	FIED LABORATORY ANALYTICAL REPORTS E	3
	NDWATER MONITORING FIELD LOGS	

Geological Technics Inc._

1172 Kansas Avenue Modesto, California 95351 (209) 522-4119/Fax (209) 522-4227

REPORT

Groundwater Monitoring

1st Quarter 2010

Springtown Gas 909 Bluebell Drive Livermore, California

Project No. 1409.2 March 26, 2010

1.0 EXECUTIVE SUMMARY

This report summarizes the results of the 1st Quarter 2010 groundwater monitoring and sampling event that took place on February 10, 2010 at Springtown Gas, 909 Bluebell Drive, Livermore, Alameda County, California (Site).

The average groundwater elevation at the site was 512.51 feet above mean sea level (AMSL) and the groundwater flow was variable for this event. This was the fourth monitoring event in which well P-1 was incorporated into the contours. The additional data point shows that the core of MTBE and TBA plumes are centered on well P-1 whereas before they were centered on STMW-1.

The results of analyses conducted on groundwater samples collected from the four monitoring wells (STMW-1, STMW-2, STMW-3 and P-1) did not detect total petroleum hydrocarbons as gasoline (TPH-G) above laboratory reporting limits. Please note that reporting limits for constituents reported in P-1 were elevated due to the 1 to 5 dilution that the California Certified Laboratory applied to the groundwater samples.

The Oxidation Reduction Potential (ORP) factor is consistent with recent data.

During the 1st Quarter 2010, GTI has implemented the Additional Site Characterization and Interim Remedial Action Work Plan that was approved by ACHCSA in their correspondence dated March 13, 2009. The Geoprobe, CPT investigation, and monitoring well installation

were conducted in February and March, 2010, and the hydrogen peroxide injections are anticipated in March and April. A report of findings will be forthcoming.

The following recommendations are made:

- Continue semi-annual groundwater monitoring as directed in the ACEHS correspondence dated July 2009,
- Proceed with hydrogen peroxide injection pilot test as directed.

2.0 PHYSICAL SETTING

The Site is situated in a mixed commercial-residential land-use area of Livermore, California, located at the southeast corner of the intersection of Springtown Boulevard and Blue Bell Drive, approximately 300 feet north of westbound Interstate 580 (Figure 1). The Site occupies approximately 0.74 acres, and is currently an operating service station with minimart retailing Chevron-branded gasoline and diesel fuel products. The site contains one UST cluster in the east portion of the Site consisting of one 12,000 gallon capacity unleaded gasoline UST, and a 12,000 gallon capacity segmented UST storing 6,000 gallons of diesel and 6,000 gallons of premium unleaded. A single story mini-mart is located on the southern portion of the Site, and six canopied fuel dispensers are located in the north portion of the Site. No automotive repair facilities exist on the Site. The Site is adjoined by Springtown Boulevard on the west, motel properties on the south and east, and Bluebell Drive on the north. Retail land-use is located on the north side of Bluebell Drive, with residential land-use beyond to the north and northeast.

The Site is located at an elevation of approximately 520 feet above mean sea level in the northeast portion of the Livermore Valley (USGS 1981). The Livermore Valley is a structural basin bounded by faults on the east and west that create the Altamont Hills uplift on the east and the Pleasanton Ridge uplift on the west (CDM&G, 1991). The shallow Pleistocene to recent sediments underlying the basin consist of alluvial deposits that have been informally divided into upper and lower units. The sediment, ranging from coarse-grained gravel to fine-grained mud, was transported northward from the Northern Diablo Range on the southern margin of the basin and deposited in an alluvial fan, braided stream, and lacustrine environments. Because the sediment prograded northward, the coarse-grained sediment makes up nearly 80% of the sediment in the southern part of the basin, but northward and westward interfingers with clay deposits that may be as much as 30 feet thick (DWR, 2004).

Drainages from the south, north, and east converge in the western part of the basin and flow out of the basin toward the Sunol Valley and Alameda Creek west of Pleasanton Ridge. The nearest surface drainages are Las Positas Creek located approximately 1 mile west of the Site, and Cavetano Creek 2 miles west of the Site (USGS 1981).

The alluvial fan, braided stream and lacustrine deposits are the principal aquifers for most domestic and irrigation purposes in the Livermore Valley, although the underlying Livermore

Formation, which may be as much as 4,000 feet thick, yields significant quantities of groundwater on the eastern side of the basin (DWR 2004).

3.0 GROUNDWATER MONITORING

3.1 Groundwater Elevation and Flow Direction

The average groundwater elevation for the 1st Quarter 2010 monitoring event was 512.51 feet AMSL on February 10, 2010, which corresponds to approximately 6.61 feet below ground surface (bgs). This elevation represents an increase of 1.72 feet since the 3rd Quarter 2009 monitoring event (September 8, 2009), and an elevation decrease of 0.30 feet since the 1st Quarter 2009 monitoring event (March 10, 2009). The groundwater gradient for the 1st Quarter 2010 groundwater monitoring event was variable, which was inconsistent with the previous three events. Groundwater gradient was typically north westerly before data from monitoring well P-1 was incorporated into the calculations.

The gradient direction for the 1st Quarter 2010 groundwater monitoring event is shown on Figure 2 (Groundwater Gradient). The calculated groundwater gradient and flow direction is shown on Figure 3 (Groundwater Gradient Rose Diagram). The groundwater elevation data are summarized in Table 1 included in Appendix A. Table 4 provides a summary of monitoring well completion data.

3.2 Groundwater Sampling Procedure

The 1st Quarter 2010 groundwater monitoring event was conducted on February 10, 2010. GTI monitored groundwater elevations and collected groundwater samples for analyses from four groundwater monitoring wells on the Site. Depth to water in each monitoring well was measured and recorded before groundwater samples were collected from the wells. The wells were purged of at least three well volumes of stagnant water using dedicated Waterra® foot valves and tubing. Purging continued until the temperature, conductivity, and pH of the groundwater stabilized (<10% variation in three consecutive readings), indicating that formation water representative of aquifer conditions was entering the wells. These water quality parameters were measured at intervals of each well volume purged. All purge water was placed in a 55-gallon DOT drums and secured on-site.

Before a sample was collected from each well, the water level was allowed to recharge to at least 80% of its initial level. Dedicated tubing attached to Waterra® foot valves were used to collect groundwater samples from the monitoring wells. The samples were placed into 40-ml VOA vials preserved with hydrochloric acid. Care was taken to minimize sample aeration during sample collection and avoid generating headspace. All samples were checked for the presence of headspace, labeled, recorded on a chain-of-custody, and placed in an ice chest cooled to 4°C for transport to the analytical laboratory. All non-disposable sampling equipment was decontaminated in an Alconox solution and double-rinsed with de-ionized water before initial use and between uses at each monitoring well.

Groundwater monitoring field logs are included in Appendix C. A summary of Water Quality Parameter Data is included in Table 3 of Appendix A.

3.3 Laboratory Analyses

The groundwater samples collected on February 10, 2010, were delivered to Argon Laboratories of Ceres, California (ELAP #2359) for the following analyses:

The laboratory utilized USEPA Method 8260B to analyze the groundwater samples for the following constituents:

- Total petroleum hydrocarbons as gasoline (TPH-G),
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX),
- Methyl tertiary butyl ether (MtBE), and,
- Di-isopropyl alcohol (DIPE), ethyl-tertiary butyl ether (EtBE), tert-amyl-methyl ether (TAME), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), tert butyl alcohol (TBA), methanol and ethanol

The results and detection limits for the above analyses are listed in Table 2 included in Appendix A. Certified analytical reports are included in Appendix B.

As required under AB2886, the groundwater elevation and laboratory analytical data were submitted electronically to GeoTracker on March 26, 2010 for the groundwater elevation data, (confirmation number 3745629848), and the laboratory analytical data (confirmation number 9605302214).

4.0 CONCLUSIONS

The results of the 1st Quarter 2010 groundwater monitoring event indicate the following:

- The average groundwater elevation at the site was 512.51 feet AMSL and the groundwater flow was variable for this event.
- The groundwater gradient and the direction of groundwater flow for the 1st Quarter 2010 monitoring event is consistent with the 1st, 2nd, and 3rd quarters of 2009 and inconsistent with the gradients and groundwater flow directions during the first five quarters due to the addition of the new monitoring well P-1, which shows a higher groundwater elevation at this point.
- The results of analyses conducted on groundwater samples collected from the four monitoring wells (STMW-1, STMW-2, STMW-3 and P-1) did not detect total petroleum hydrocarbons as gasoline (TPH-G) above laboratory reporting limits. Please note that reporting limits for constituents reported in P-1 were elevated due to the 1 to 5 dilution that the California Certified Laboratory applied to the groundwater samples.
- Concentrations of Methyl tertiary Butyl Ether (MtBE) were detected in groundwater samples collected from three of the sites four monitoring wells STMW-1 (32 μg/l),

- STMW-3 (44 μ g/l) and P-1 (110 μ g/l). Figure 4 is a contour map showing the distribution of MtBE concentrations for the 1st Quarter 2010 monitoring event. The contours suggest the MtBE groundwater plume is localized in the vicinity of monitoring well P-1.
- Concentrations of Tert-Butyl Alcohol (TBA) were detected in groundwater samples collected from the sites four monitoring wells STMW-1 (28 μg/l), STMW-2 (110 μg/l), STMW-3 (610 μg/l) and P-1 (5,200 μg/l). Figure 5 is a contour map showing the distribution of TBA concentrations for the 1st Quarter 2010 event. The contours mirror the same conclusion as for the MtBE groundwater plume, the TBA groundwater plume is localized in the vicinity of monitoring well P-1.
- Concentrations of di-isopropyl alcohol (DIPE), ethyl-tertiary butyl ether (EtBE), tertamyl-methyl ether (TAME), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), methanol, ethanol, benzene, toluene, ethylbenzene and total xylenes (BTEX) were not detected in groundwater samples collected from the sites four monitoring wells. Please note that reporting limits for constituents reported in P-1 were elevated for the second consecutive quarter due to the 1 to 5 dilution that the California Certified Laboratory applied to the groundwater samples.
- Concentrations of MtBE and TBA detected in the groundwater samples collected from the sites four monitoring wells STMW-1, STMW-2, STMW-3 and P-1 are consistent with historical trends dating back to November 20, 2008.
- Dissolved Oxygen (DO) concentrations increased during the hydrogen peroxide injection
 pilot test in the injection wells and two extraction wells at the site and depleted to lower
 levels again after the pilot test was done.
- The Oxidation Reduction Potential (ORP) factor is consistent with recent data.
- During the 1st Quarter 2010, GTI has implemented the Additional Site Characterization and Interim Remedial Action Work Plan that was approved by ACHCSA in their correspondence dated March 13, 2009. The Geoprobe, CPT investigation, and monitoring well installation was conducted in February and March, 2010, and the hydrogen peroxide injections are anticipated in March and April. A report of findings will be forthcoming.

5.0 RECOMMENDATIONS

- In response to State Water Resources Control Board Resolution No. 2009-0042, *Actions to Improve Administration of the Underground Storage Tank (UST) Cleanup Fund and UST Cleanup Program*, we recommend to revise the groundwater monitoring schedule as directed by ACEHS in their July, 2009 correspondence and continue semi-annual groundwater monitoring during the 1st and 3rd quarters for this Site.
- Begin hydrogen peroxide injection pilot test as tentatively scheduled.

6.0 LIMITATIONS

This report was prepared in accordance with the generally accepted standard of care and practice in effect at the time Services were rendered. It should be recognized that definition and evaluation of environmental conditions is an inexact science and that the state or practice of environmental geology/hydrology is changing and evolving and that standards existing at the present time may change as knowledge increases and the state of the practice continues to improve. Further, that differing subsurface soil characteristics can be experienced within a small distance and therefore cannot be known in an absolute sense. All conclusions and recommendations are based on the available data and information.

The tasks proposed and completed during this project were reviewed and approved by the local regulatory agency for compliance with the law. No warranty, expressed or implied, is made.

7.0 CERTIFICATION

This report was prepared by:

Michael van den Enden, B.S.c

Geology

This report was prepared under the direction of:

Tamorah Bryant, P.E.

No. 67205

Exp. 9/30/10

CIVIL

OF CALIFORNIA

PROFESSIONAL

PROFESSIONA

Scale: 1"=30"

14092 site plan

File:

SPRINGTOWN GAS (BLUEBELL) 909 BLUEBELL DRIVE LIVERMORE, CA

Scale: 1"=30" 14092 site plan File:

SPRINGTOWN GAS (BLUEBELL) 909 BLUEBELL DRIVE LIVERMORE, CA

14092 site plan File:

1172 Kansas Avenue Modesto, CA 95351 209.522.4119 (tel) 209.522.4227 (fax)

909 BLUEBELL DRIVE LIVERMORE, CA

Appendix A

Summary Tables

Table 1 **Summary of Groundwater Elevation**

Springtown Gas 909 Bluebell Drive Livermore, California

Date		STMW-1	STMW1	STMW-2	STMW2	STMW-3	STMW3	P-1	P-1	Avg GW	AVG GW	GW G	radient
		GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	Elev	DTW	Slope	Direction
	top of casing*	517.55		519.59		520.37		518.93				ft/ft	
9/4/2007		510.97	6.58	511.59	8.00	510.85	9.52			511.14		0.006	N66°W
12/10/07		511.29	6.26	511.59	8.00	511.25	9.12			511.38		0.004	N62°W
09/25/08		510.69	6.86	510.9	8.69	510.65	9.72		-	510.75		0.003	N54°W
11/20/08		510.81	6.74	511.17	8.42	510.82	9.55	-		510.93		0.004	N60°W
12/29/08		511.60	5.95	511.9	7.69	511.50	8.87	- 1	-	511.67		0.004	N64°W
03/10/09		512.60	4.95	512.99	6.60	512.44	7.93	513.20	5.73	512.81	6.30	variable	variable
06/10/09		510.90	6.65	511.21	8.38	510.84	9.53	511.50	7.43	511.11	8.00	variable	variable
09/08/09		510.62	6.93	510.78	8.81	510.59	9.78	511.17	7.76	510.79	8.32	variable	variable
02/10/10		512.39	5.16	512.68	6.91	512.00	8.37	512.95	5.98	512.51	6.61	variable	variable
Historical										511.45	7.31	0.004	N61°W

^{*}TOC elevations surveyed on 9/06/07 by Muir Consutling Inc. NAD 83 and NGVD 29
**Gradient and slope determined from computer generated contours

[&]quot;-" Well P-1 not surveyed until 2/03/09

Table 2 Summary of Groundwater Analytical Data

Springtown Gas 909 Bluebell Drive Livermore, California

WELL	Date	TPHg	В	Т	E	х	MtBE	ТВА	DIPE	EtBE	TAME	1,2-DCA	EDB	Methanol	Ethano
		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/I	ug/l	ug/l
STMW-1	014/0007	000	40	40	40	10	A SA	AT LESS		200	S. Pari	200	6		
SIMW-1	9/4/2007	220	<10	<10	<10	<10	850	6,500	-	-			21		
- 1	12/10/2007	210	<5	<5	<5	<5	540	4,200			•		•8	-	
- 1	9/25/2008	230	<0.5	<0.5	<0.5	<1.0	204	704	<0.5	<0.5	0.6	<0.5	< 0.5	<5	<20
- 1	11/20/2008	<50	<0.5	<0.5	<0.5	<1.0	14	930	<0.5	<0.5	<0.5	79-2	20		-
- 1	12/29/2008	<50	<0.5	<0.5	<0.5	<1.0	15	1,000	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
	3/10/2009	<50	<0.5	<0.5	<0.5	<1.0	29	3,000	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<50	<5
- 1	6/10/2009	<50	<0.5	<0.5	<0.5	<1.0	60	3,800	< 0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
- 1	9/8/2009	<50	< 0.5	<0.5	< 0.5	<1.0	52	190	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<50	<5
	2/10/2010	<50	<0.5	<0.5	<0.5	<1.0	32	28	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
STMW-2	9/4/2007	<50	<0.5	<0.5	<0.5	<0.5	<1	42	2500	1000	- T SE C	1000			
3111111-2	12/10/2007	<50	<0.5	<0.5	<0.5	<0.5	<1	83		1. T					~
- 1	9/25/2008	<50	<0.5	<0.5	<0.5	91535	2.383	18535.4	2000		-	:-		1.0	1.0
- 1	11/20/2008	90	1.7	6.9	1.7	<1 7.6	<0.5	71	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<20
- 1	12/29/2008	65.55	3335	90.5	10000	100000	2.2	190	<0.5	<0.5	<0.5	: ·	-3-	2.	
- 1		<50	<0.5	<0.5	<0.5	<1.0	<0.5	56	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
- 1	3/10/2009	<50	<0.5	<0.5	<0.5	<1.0	1.5	96	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
- 1	6/10/2009	<50	<0.5	<0.5	<0.5	<1.0	1.1	43	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
- 1	9/8/2009	<50	<0.5	<0.5	<0.5	<1.0	<0.5	45	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
	2/10/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	110	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
STMW-3	9/4/2007	59	<1	<1	<1	<1	160	120				SCHOOL STREET		500	2107
	12/10/2007	<50	<0.5	<0.5	<0.5	<0.5	17	86							
- 1	9/25/2008	<50	<0.5	<0.5	<0.5	<0.5	67	31.7	<0.5	<0.5	<0.5	<0.5	0.5	- 1	-
- 1	11/20/2008	<50	<0.5	<0.5	<0.5	<1.0	12	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<20
- 1	12/29/2008	<50	<0.5	<0.5	<0.5	<1.0	2.2	<5.	<0.5	<0.5	<0.5	0.5	0.5		1
- 1	3/10/2009	<50	<0.5	<0.5	<0.5	<1.0	3	95	<0.5			<0.5	<0.5	<50	<5
- 1	6/10/2009	<50	<0.5	<0.5	<0.5	<1.0	8.3	45	100000000000000000000000000000000000000	<0.5	<0.5	<0.5	<0.5	<50	<5
- 1	9/8/2009	<50	<0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
- 1	2/10/2010	<50 <50	<0.5	<0.5	<0.5	<1.0	11	29	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
Name and Address of the Owner, where the Owner, which is the Own	2/10/2010	<50	<0.5	<0.5	<0.5	<1.0	44	610	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
P1	11/20/2008	<50	<5	<5	<5	<10	180	2,300	<5	<5	<5			-	
- 1	12/29/2008	<50	< 0.5	< 0.5	< 0.5	<1.0	120	3,900	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
- 1	3/10/2009	<50	< 0.5	<0.5	<0.5	<1.0	240	9,300	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
- 1	6/10/2009	<50	<0.5	<0.5	<0.5	<1.0	250	6,300	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
- 1	9/8/2009	<250	<2.5	<2.5	<2.5	<5.0	180	2,900	<2.5	<2.5	<2.5	<2.5	<2.5	<250	<25
	2/10/2010	<250	<2.5	<2.5	<2.5	<5.0	110	5,200	<2.5	<2.5	<2.5	<2.5	<2.5	<250	<25

Notes: TPHg Total petroleum hydrocarbons as gasoline

TPHd Total petroleum hydrocarbon:

В Benzene Toluene

Ε Ethylbenzene

X Total xylenes

Methyl tertiary butyl ether Tert-butyl alcohol MtBE TBA

DIPE

Di-isopropyl ether Ethyl-tertiary butyl ether Tert-amyl-methyl ether EtBE TAME

1,2-DCA 1,2-Dichloroethane

EDB 1,2-Dibromoethane bgs below ground surface

ug/l micrograms per liter

Not analyzed or not reported

Table 3 Summary of Water Quality Parameter Data

Springtown Gas 909 Bluebell Drive Livermore, California

Monitoring Well			STI	WW-1					STI	WW-2					STI	WW-3	Ši –	
Date	рН	E.C.	°C	°F	ORP	DO	pН	E.C.	°C	°F	ORP	DO	рН	E.C.	°C	°F	ORP	DO
9/4/2007	6.37	1462	21.4	70.5	NM	NM	6.43	1405	21.1	70.0	NM	NM	6.14	2115	20	68.0	NM	NN
12/10/2007	6.92	1090	18.5	65.3	NM	NM	7.02	1074	19.8	67.6	NM	NM	6.77	1267	NM	NM	NM	NN
9/25/2008	7.22	1706	21.63	70.9	48.3	0.38	7.15	1652	21.26	70.3	34	0.7	6.84	1838	20.32	68.6	60.2	0.8
10/2/2008	7.16	1701	21.57	70.8	45.6	0.68	7.07	1650	21.14	70.1	51.8	0.58	6.82	1892	20.47	68.8	156	1.8
10/9/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NN
10/16/2008	7.53	970	21.48	70.7	71.6	36.39	7.07	1611	21.35	70.4	56.7	0.21	7.38	656	20.64	69.2	66.6	37.
10/23/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NN
10/30/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NN
11/6/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NN
11/20/2008	7.36	1554	20.74	69.3	208.3	11.17	7.20	1782	21.21	70.2	211.4	1.13	7.88	771	20.63	69.1	194.6	15.
12/29/2008	7.78	1685	18.61	65.5	168.8	41.24	7.64	1577	20.21	68.4	66.9	2.04	7.55	1196	19.69	67.4	141.5	32.
3/10/2009	7.23	1861	16.14	61.1	401.3	20.56	7.31	1600	17.94	64.3	372.9	0.67	7.10	1555	17.29	63.1	509.3	7.1
6/10/2009	7.24	1624	18.76	65.8	469.2	12.69	7.30	1548	18.58	65.4	348.7	0.38	7.08	1476	17.97	64.3	557.5	2.1
9/8/2009	7.07	NM	21.66	71.0	544.3	NM	7.22	NM	20.88	69.6	250.1	NM	6.83	NM	20.15	68.3	564.2	N
2/10/2010	7.35	1660	17.09	62.8	531.3	6.77	7.30	1618	18.71	65.7	394.4	0.87	7.20	1642	17.99	64.4	469.0	0.8
Monitoring Well			F	P-1					V	E-1		_			V	E-2		_
Date	рН	E.C.	°C	°F	ORP	DO	pН	E.C.	°C	°F	ORP	DO	рН	E.C.	°C	°F	ORP	DC
9/4/2007	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NI
12/10/2007	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NI
9/25/2008	7.2	1941	20.6	69.1	50.3	1.19	6.9	2072	22.8	73.0	-44.9	3.07	7.1	1933	21.67	71.0	-13.6	6.4
10/2/2008	7.1	1893	20.44	68.8	59.6	1.18	7.18	1780	22.02	71.6	2.1	8.29	NM	NM	NM	NM	NM	NI
10/9/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NI
	7.75	1285	20.61	69.1	85.9	18.23	6.84	1668	22.29	72.1	3.3	1.53	7.16	1912	21.38	70.5	-1.1	7.2
10/16/2008	1./5						NM	NM	NM	NM	NM	NM	7.42	1924	19.91	67.8	49.6	8.4
10/16/2008 10/23/2008	NM	NM	NM	NM	NM	NM	INIVI											
		NM NM	NM NM	NM NM	NM NM	NM NM	NM	NM	NM	NM	NM	NM	7.81	1052	20.05	68.1	164.0	17/2
10/23/2008	NM															68.1 67.9		
10/23/2008 10/30/2008	NM NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	7.81 7.13 6.89	1052 1329 1593	20.05 19.94 19.47	68.1 67.9 67.0	164.0 183.5 224.5	9.7
10/23/2008 10/30/2008 11/6/2008	NM NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	7.13	1329	19.94	67.9	183.5	9.7 9.0 NI
10/23/2008 10/30/2008 11/6/2008 11/20/2008	NM NM NM 7.99	NM NM 1392	NM NM 19.96	NM NM 67.9	NM NM 180	NM NM 8.19	NM NM 6.99	NM NM 1960	NM NM 18.91	NM NM 66.0	NM NM 38.6	NM NM 4.82	7.13 6.89	1329 1593	19.94 19.47	67.9 67.0	183.5 224.5	9.7 9.0 NI
10/23/2008 10/30/2008 11/6/2008 11/20/2008 12/29/2008	NM NM NM 7.99 7.99	NM NM 1392 1766	NM NM 19.96 18.99	NM NM 67.9 66.2	NM NM 180 285.5	NM NM 8.19 43.92	NM NM 6.99 NM	NM NM 1960 NM	NM NM 18.91 NM	NM NM 66.0	NM NM 38.6 NM	NM NM 4.82 NM	7.13 6.89 NM	1329 1593 NM	19.94 19.47 NM	67.9 67.0 NM	183.5 224.5 NM	9.7 9.0 N
10/23/2008 10/30/2008 11/6/2008 11/20/2008 12/29/2008 3/10/2009	NM NM 7.99 7.99 7.30	NM NM 1392 1766 1797	NM NM 19.96 18.99 16.81	NM 67.9 66.2 62.3	NM NM 180 285.5 473.9	NM 8.19 43.92 3.03	NM NM 6.99 NM NM	NM NM 1960 NM NM	NM NM 18.91 NM NM	NM NM 66.0 NM NM	NM NM 38.6 NM NM	NM NM 4.82 NM NM	7.13 6.89 NM NM	1329 1593 NM NM	19.94 19.47 NM NM	67.9 67.0 NM NM	183.5 224.5 NM NM	9.7

notes:

E.C.

Electricval conductivity

°C

Degrees centigrade

°F

Degrees fahrenheit

ORP

regrees ianirenneit

DO

Oxygen reduction potential

....

Dissolved oxygen

NM

Not measured

Table 4 Summary of Monitoring Well Completion Data

Springtown Gas 909 Bluebell Drive Livermore, California

Well Number	Status	Date Drilled	Total Depth	Boring Diameter	Well Casing Diameter	Casing Type	Slot Size	Sand Type	Well S	creen	Filter	Pack	Annula	ır Seal	Grout	t Seal
			(ft)	(in)	(in)				From	To	From	То	From	To	From	То
STMW-1	Active	8/23/2007	20.00	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0
STMW-2	Active	8/23/2007	20.00	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0
STMW-3	Active	8/23/2007	20.00	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0
P1	Active	9/19/2008	20.00	10	4	PVC	0.02	#3/12	10	20	20	8	8	7	7	0

Appendix B

Laboratory Analytical Data Sheets

argon laboratories

18 February 2010

GTI Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

RE: Springtown Gas Project Data

Enclosed are the results for sample(s) received on 02/11/10 08:07 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

Geological Technics Inc.

Page___ of ___

1172 Kansas Avenue Modesto, CA (209) 522-4119 Fax 522-4227 F-mail: eti@gtieny.com

Chain of Custody

E-mail: gti@gtienv.com					Analysis Reques	sted	Laboratory:
Project #: Client/Project Name: 1409.2 Springtown Gas Site Address: 909 Bluebell Dr. Livermon Global ID No.: T06019716197 Sampled By: (print and sign name) Michael Umden Enden Male	ULE S		Preservation Type	Amethod 8260B			Temp. @ Shipping: C° Temp. @ Lab Receipt: C° Purchase Order # 1409 - 362281 EDF Report: Yes DNo Turnaround Time: S = Standard 1 day 2 day 5 day
	ample I.D.	_	-			++-	Remarks
	W-3 4	1 W	HCI	X		+++	*TPH-9, BTEX, MTBE,
	W-2	+H	-	-		++-	ETBE, DIPE, TAME, TBA, 1,2-DCA, EDB, Methanol,
1245 STM V 1345 P-1		D	\perp	1			1, L-DCA, EDB, Methanol,
₩ 1345 P-1		A	4	4	++++	++-	Ethano
							Reporting limits! TPH-9 = 50 mg/1 BTEX 7 0xys, Methanol, Ethanol = 0.5 mg/1.
Relinquished by senature Relinquished by: (signature) Relinquished by: (signature)	2/16/10 Date: Ti	ime: 1530 ime: BO		Re	ceived by: (signature)	offn	Date: Time:

Argon Laboratories Sample Receipt Checklist

Client Name:	Geological Tec	hnics					Date	& Time Receive	d:0	2/11/10	8:07
Project Name:	Springtown Ga	s					Clien	t Project Numbe	r:	1409	9.2
Received By:	S.H.		Matrix:		Water	V	Soil		Sluc	dge [
Sample Carrier:	Client	Laboratory	✓ F	ed Ex		UPS		Other \square			
Argon Labs Projec	t Number:	K002006									
Shipper Container in	good condition?				Sample	s received	l in prop	er containers?	Yes	✓ I	No 🗌
	N/A	Yes 🗸	No [J	Sample	s received	I intact?		Yes	V 1	No 🗌
Samples received un	der refrigeration?	Yes 🗸	No [Sufficie	nt sample	volume	for requested tests	? Yes	✓ I	No 🗌
Chain of custody pres	sent?	Yes 🗸	No [Sample	s received	within h	olding time?	Yes	I	No 🗆
Chain of Custody sign	ned by all parties?	Yes 🗸	No [Do sam	ples conta	in prope	r preservative?	Yes	✓ 1	No 🗌
Chain of Custody ma	tches all sample la	bels?			Do VOA	vials contai	in zero he	eadspace?			
		Yes 🗸	No [(None s	ubmitted [])	Yes	✓ N	No 🗌
	ANY "N	lo" RESPONSI	MUST BE	DETAI	LED IN	THE COM	MENTS	SECTION BELO	w 		
Date Client Contac	ted:			Pers	son Cor	ntacted:					
Contacted By:			Su	ıbject:							
Comments:							-				1
Action Taken:											
		A	DDITIONAL	_ TEST((S) REQ	UEST / O	THER				
Contacted By:					Des	 te:			T:		
Call Received By:					Da	le			Time	:	
Comments:					71						
Comments;											
									_		

aligon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K002006

ANALYTICAL REPORT FOR SAMPLES

Laboratory ID	Matrix	Date Sampled	Date Received
K002006-01	Water	02/10/10 11:10	02/11/10 08:07
K002006-02	Water	02/10/10 11:40	02/11/10 08:07
K002006-03	Water	02/10/10 12:45	02/11/10 08:07
K002006-04	Water	02/10/10 13:45	02/11/10 08:07
	K002006-01 K002006-02 K002006-03	K002006-01 Water K002006-02 Water K002006-03 Water	K002006-01 Water 02/10/10 11:10 K002006-02 Water 02/10/10 11:40 K002006-03 Water 02/10/10 12:45

EIGON laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K002006

TPH-gas & Volatile Organic Compounds by GC/MS

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
STMW-3 (K002006-01) Water	Sampled: 10-Feb-10 11:10	Received: 11-Fe	b-10 08:07				
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	11-Feb-10	EPA 8260B	
Gasoline				*(
Benzene	ND	0.5	(**)	(40)		"	
Toluene	ND	0.5					
Xylenes, total	ND	1.0	*		"		
Ethyl Benzene	ND	0.5	16		"	"	
Methanol	ND	50	**				
Ethanol	ND	5.0	10.5	w.	10	ж	
t-Butanol	28	5.0		.00			
Methyl tert-Butyl Ether	32	0.5				*	
Di-Isopropyl Ether	ND	0.5	n			"	
Ethyl tert-Butyl Ether	ND	0.5	**	*		*	
tert-Amyl Methyl Ether	ND	0.5			"		
1,2-Dichloroethane	ND	0.5	п	n			
1,2-Dibromoethane (EDB)	ND	0.5	**			u	
Surr. Rec.:		108 %			w.	"	
Surr. Rec.: STMW-2 (K002006-02) Water	Sampled: 10-Feb-10 11:40		b-10 08:07		u	**	
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @	Sampled: 10-Feb-10 11:40 ND		b-10 08:07 ug/L	1	11-Feb-10	EPA 8260B	
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline	ND	Received: 11-Fe	ug/L		11-Feb-10		
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline Benzene	ND ND	Received: 11-Fe 50 0.5	ug/L	1	11-Feb-10		
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline Benzene Toluene	ND ND ND	8	ug/L " "	9	11-Feb-10		
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline Benzene	ND ND ND	8	ug/L		11-Feb-10		
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline Benzene Toluene Xylenes, total Ethyl Benzene	ND ND ND ND	8	ug/L " "	9	11-Feb-10		
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline Benzene Toluene Xylenes, total	ND ND ND	8	ug/L	9	11-Feb-10		
STMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline Benzene Toluene Xylenes, total Ethyl Benzene	ND ND ND ND	8 Received: 11-Fe 50 0.5 0.5 1.0 0.5	ug/L	9	11-Feb-10		
FTMW-2 (K002006-02) Water Total Petroleum Hydrocarbons @ Gasoline Benzene Foluene Kylenes, total Ethyl Benzene Methanol	ND ND ND ND ND	0.5 0.5 0.5 1.0 0.5 50	ug/L	9	11-Feb-10		
FTMW-2 (K002006-02) Water Fotal Petroleum Hydrocarbons @ Gasoline Benzene Foluene Kylenes, total Ethyl Benzene Methanol Ethanol -Butanol	ND ND ND ND ND ND	0.5 0.5 0.5 1.0 0.5 5.0	ug/L	9	11-Feb-10		
FTMW-2 (K002006-02) Water Fotal Petroleum Hydrocarbons @ Gasoline Benzene Foluene Kylenes, total Ethyl Benzene Methanol Ethanol	ND ND ND ND ND ND ND ND	0.5 0.5 0.5 1.0 0.5 5.0 5.0	ug/L		11-Feb-10 " " " " " "		
FTMW-2 (K002006-02) Water Fotal Petroleum Hydrocarbons @ Gasoline Benzene Foluene Kylenes, total Ethyl Benzene Methanol Ethanol Methyl tert-Butyl Ether	ND ND ND ND ND ND ND ND ND	8 Received: 11-Fe 50 0.5 0.5 1.0 0.5 50 5.0 5.0 5.0 0.5	ug/L		11-Feb-10		
Grand Petroleum Hydrocarbons @ Gasoline Benzene Foluene Kylenes, total Ethyl Benzene Methanol Ethanol -Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether	ND	Received: 11-Fe 50 0.5 0.5 1.0 0.5 50 5.0 5.0 0.5	ug/L		11-Feb-10		
Grand Petroleum Hydrocarbons @ Gasoline Benzene Foluene Kylenes, total Ethyl Benzene Methanol Ethanol -Butanol Methyl tert-Butyl Ether Ethyl tert-Butyl Ether Ethyl tert-Butyl Ether	ND N	Received: 11-Fe 50 0.5 0.5 1.0 0.5 50 5.0 5.0 0.5 0.5 0.5	ug/L		11-Feb-10	EPA 8260B	

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.: K002006

TPH-gas & Volatile Organic Compounds by GC/MS

Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
10-Feb-10 12:45	Received: 11-Fe	b-10 08:07				
ND	50	ug/L	1	11-Feb-10	EPA 8260B	
				"	"	
	1.0			".		
ND					,	
ND	50	ii.	"	*		
ND	5.0				"	
610	5.0	w			0.	
44	0.5	W.	**		w.	
ND	0.5	.99			*	
ND	0.5	97	91. (2)		*	
ND	0.5	.0		*		
ND	0.5	**		n		
ND	0.5			п	100	
	106 %			"	*	
o-10 13:45 Recei	ived: 11-Feb-10 0	08:07				
0-10 13:45 Recei	ived: 11-Feb-10 0	08:07 ug/L	5	11-Feb-10	EPA 8260B	
ND	250	ug/L		11-Feb-10		
ND ND	250 2.5	ug/L	n			
ND ND ND	250 2.5 2.5	ug/L	,	n n		
ND ND ND ND	250 2.5 2.5 5.0	ug/L " "	n			
ND ND ND	250 2.5 2.5	ug/L	,	n n		
ND ND ND ND	250 2.5 2.5 5.0	ug/L " "	,	n n		
ND ND ND ND	2.5 2.5 2.5 5.0 2.5	ug/L " " "	" " " "	n n		
ND ND ND ND ND	2.5 2.5 5.0 2.5 250	ug/L	" " " "	9 9 9		
ND ND ND ND ND ND	2.5 2.5 5.0 2.5 250 25	ug/L	n n n	# # # # # # # # # # # # # # # # # # #		
ND	2.5 2.5 2.5 5.0 2.5 250 25	ug/L	0 0 0 0 0	# # # # # # # # # # # # # # # # # # #		
ND ND ND ND ND ND ND 110	2.5 2.5 2.5 5.0 2.5 250 25 25 25	ug/L	9 9 10 10 10 10	# # # # # # # # # # # # # # # # # # #		
ND Toleration	250 2.5 2.5 5.0 2.5 250 25 25 25 2.5 2.5	ug/L	20 10 10 10 10 10 10	# # # # # # # # # # # # # # # # # # #		
ND 5200 110 ND ND	250 2.5 2.5 5.0 2.5 250 25 25 25 2.5 2.5 2.5	ug/L	9 0 0 0 0 0	# # # # # # # # # # # # # # # # # # #		
	ND N	Result Limit 10-Feb-10 12:45 Received: 11-Feb ND 50 ND 0.5 ND 0.5 ND 1.0 ND 0.5 ND 50 ND 5.0 610 5.0 44 0.5 ND 0.5	Result Limit Units 10-Feb-10 12:45 Received: 11-Feb-10 08:07 ND 50 ug/L ND 0.5 " ND 1.0 " ND 0.5 " ND 50 " ND 5.0 " 610 5.0 " 44 0.5 " ND 0.5 "	Result Limit Units Dilution 10-Feb-10 12:45 Received: 11-Feb-10 08:07 ND 50 ug/L 1 ND 0.5 " " ND 0.5 " " ND 0.5 " " ND 50 " " ND 5.0 " " ND 5.0 " " ND 0.5 "	Result Limit Units Dilution Analyzed 10-Feb-10 12:45 Receivel: 11-Feb-10 08:07 ND 50 ug/L 1 11-Feb-10 ND 0.5 " " " ND 0.5 " " " ND 0.5 " " " ND 50 " " " ND 5.0 " " " ND 0.5 " " " ND 0.5	Result Limit Units Dilution Analyzed Method 10-Feb-10 12:45 Received: 11-Feb-10 08:07 ND 50 ug/L 1 11-Feb-10 EPA 8260B ND 0.5 " " " " ND 0.5 " " " " ND 1.0 " " " " ND 0.5 " " " " ND 5.0 " " " " ND 0.5 " " " " ND 0.5 " " " " ND 0.5 " " " "

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

Project Number: 1409.2

1101 7th Street

Modesto, CA 95354

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K002006

TPH-gas & Volatile Organic Compounds by GC/MS - Quality Control

Argon Laboratories

	Repo	rting		Spike	Source		%REC		RPD	
Analyte Re	sult L	imit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Dutter Itooomii - 171 Ft 5050D	Batch	K000211	- EPA	5030B
--------------------------------	-------	---------	-------	-------

Blank (K000211-BLK1)	Prepared & Analyzed: 02/11/10									
Surrogate: Fluorobenzene	50.5		ug/L	50	-	101	70-130			
Total Petroleum Hydrocarbons @ Gasoline	ND	50	96							
Benzene	ND	0.5	**							
Toluene	ND	0.5	**							
Xylenes, total	ND	1.0	**							
Ethyl Benzene	ND	0.5	n							
Methanol	ND	50	X							
Ethanol	ND	5.0	*							
t-Butanol	ND	5.0	*							
Methyl tert-Butyl Ether	ND	0.5	н							
Di-Isopropyl Ether	ND	0.5	*							
Ethyl tert-Butyl Ether	ND	0.5	*							
tert-Amyl Methyl Ether	ND	0.5								
1,2-Dichloroethane	ND	0.5	*							
1,2-Dibromoethane (EDB)	ND	0.5								
LCS (K000211-BS1)				Prepared &	Analyzed:	02/11/10				
Methyl tert-Butyl Ether	28.2		ug/L	25		113	80-120			
LCS Dup (K000211-BSD1)				Prepared &	Analyzed:	02/11/10				
Methyl tert-Butyl Ether	29.9		ug/L	25		120	80-120	6	20	7.
Matrix Spike (K000211-MS1)	Source	Prepared &	Analyzed:	02/11/10						
Toluene	27.1		ug/L	25	ND	108	70-130			
Matrix Spike Dup (K000211-MSD1)	Source	Prepared &	Analyzed:	02/11/10						
Toluene	24.8		ug/L	25	ND	99	70-130	9	20	

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K002006

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix C

	Project Name:	Springtown Gas	s (Blue Bell)			•100	Well I.D.: STMW-1
	Project No.:	1409.2				•	Date: 2/10/2010
	Project Location:	909 Bluebell Di	rive				
		Livermore, CA				·	Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/	g/L) Remarks
12:25	0.0	14.23	1601	7.58	395.1	10.12	Clear, no odor, very few sediments
12:30	2.5	17.26	1643	7.46	536.6	9.16	Clear, no odor, no sediments
12:35	5.0	17.17	1664	7.39	536.5	7.39	Clear, no odor, no sediments
12:40	7.5	17.09	1660	7.35	531.3	6.77	Clear, no odor, no sediments
12:45							Collected samples
	Purge Method: Pumping Rate:	☑ Dedicated V		trifugal pum	np with dedicated to	ubing 🗖 (Other
Well (Constructed TD (ft):			Sample	Containers used:	4	# VOAs preserved non-preserved
	* Well TD (ft):	18.99					# amber liters preserved non-preserved
	Silt Thickness (ft):	1.01					# polys preserved non-preserved
	Initial DTW (ft):				_		# polys preserved non-preserved
Water	column height (ft):	13.83			Notes:		
One o	asing volume (gal):	2.35					$\rightarrow 0000$
	** Final DTW (ft):	5.47			Sampled By:	M. van den l	Enden Muhuel rander Est
Ca	asing diameter (in):	2"					
Sample Me	ethod:	Waterra ⊠ Bail		e es		** = @ sampling	
Gai	ions per root or casing.	2 uia. = 0.17, 3 dia	. = 0.38 4 dia. = 0.6	o, 5 dia. = 1.	.uz, 6 dia. = 1.48		No. of Drums:

Geological Technics, Inc.

Project No.: 1409.2 Date: 2/10/2010 Project Location: 909 Bluebell Drive Livermore, CA Samples sent to: Argon Cumulative Volume Purged	÷
Livermore, CA Samples sent to: Argon Cumulative	
Cumulative	
Time (gal) Temp C° EC (µS/cm) pH ORP (millivolts) DO (mg/L) Remarks	s
11:20 0.0 14.41 1546 7.70 291.9 7.86 Brown, no odor, few sediments	
11:26 2.5 18.57 1603 7.41 415.7 1.20 Clear, no odor, no sediments	
11:31 5.0 18.59 1607 7.35 409.4 1.17 Clear, no odor, no sediments	
11:37 7.5 18.71 1618 7.30 394.4 0.87 Clear, no odor, no sediments	
11:40 Collected samples	
Purge Method: ☑ Dedicated Waterra ☐ Centrifugal pump with dedicated tubing ☐ Other Pumping Rate:	
Well Constructed TD (ft): 20.00 Sample Containers used: 4 # VOAs X preserved	i non-preserved
* Well TD (ft):# amber literspreserved	non-preserved
Silt Thickness (ft): # polys preserved	non-preserved
Initial DTW (th): # polys preserved	non-preserved
Water column height (ft): 12.76 Notes:	
One casing volume (gal): 2.17	1/6//
** Final DTW (ft): 6.97 Sampled By: M. van den Enden / Nuhue V nuck	
Casing diameter (in): 2"	
	er Drummed:

	Project Name:	Springtown Ga	as (Blue Bell)				Well I.D.: STMW-3
	Project No.:	1409.2					Date: 2/10/2010
Project Location: 909 Bluebell Drive							
		Livermore, CA	-				Samples sent to: Argon
							r
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
10:50	0.0	13.33	1515	8.67	159.8	7.16	Brown, mild odor, few sediments
10:55	2.0	17.99	1631	7.51	155.7	2.18	Brown, mild odor, few sediments
11:00	4.0	17.92	1594	7.32	231.9	2.20	Brown, mild odor, few sediments
11:05	6.0	17.99	1642	7.20	469.0	0.89	Brown, mild odor, few sediments
11:10							Collected samples
	Purge Method:	□ Dedicated	Waterra □Cen	trifugal pum	p with dedicated to	ubing 🖵 Oth	er
	Pumping Rate:		gal/min				
			1				
Well (Constructed TD (ft):		-	Sample	Containers used:	4	# VOAsX preserved non-preserved
	* Well TD (ft):		1				# amber liters preserved non-preserved
	Silt Thickness (ft):		-		į		# polys preserved non-preserved
	Initial DTW (ft):		-				# polys preserved non-preserved
Water	column height (ft):	11.20	-		Notes:	Moderately rapid	d charge.
One o	asing volume (gal):	1.90	-				m /// // //
	** Final DTW (ft):	10.00	1		Sampled By:	M. van den En	den Mihal med
Ca	asing diameter (in):	2"]				
Sample Me			iler Other	5, 5° dia. = 1.	* = measured 02, 6* dia. = 1.48	** = @ sampling	Purged Water Drummed:

Geological Technics, Inc.

	Project Name:	Springtow	n Ga	s (Blue Bell)				Well I.D.: P-1
	Project No.:	1409.2						Date: 2/10/2010
	Project Location:	909 Blueb	ell D	rive				
		Livermore	, CA					Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
12:50	0.0	14.96	5	1669	7.68	401.9	7.34	Clear, mild odor, no sediments
13:05	9.0	17.23	3	1649	7.72	177.3	1.26	Clear, mild odor, no sediments
13:20	18.0	17.20)	1656	7.53	158.8	0.67	Clear, mild odor, no sediments
13:35	27.0	17.22	2	1658	7.42	139.0	0.85	Clear, mild odor, no sediments
13:45								Collected samples
Well (Purge Method: Pumping Rate: Constructed TD (ti): * Well TD (ti): Silt Thickness (ti): Initial DTW (ti):	20.00 19.30 0.70	0.60	Vaterra □Cent		p with dedicated to		# VOAs
Water	column height (ft):	13.32				Notes:	Moderately rapid	d recharge.
One o	casing volume (gal):	2.26						
	** Final DTW (ft):	6.85				Sampled By:	M. van den En	nden Muhaul And Sel
C	asing diameter (in):	4"						
Sample Me	ethod:			ler Other	5, 5° dia. = 1.		** = @ sampling	Purged Water Drummed:

Geological Technics Inc.

(209) 522-4119 (Office) * (209) 522-4227 (Fax) 1172 Kansas Avenue, Modesto, CA 95351 gti@gtienv.com

SPRINGTOWN GAS (BLUE BELL) 1409.2 909 BLUE BELL DRIVE, LIVERMORE

MONITORING WELL FIELD SUMMARY LOG 2010 DEPTH TO WATER MEASUREMENTS

	QTR. 1	QTR. 2	QTR. 3	QTR. 4	WELL
DATE	2/10/2010	mm/dd/yy	mm/dd/yy	mm/dd/yy	TD
	(ft)	(ft)	(ft)	(ft)	
LOCATION					
P-1	5.98				20.00
STMW-1	5.16				20.00
STMW-2	6.91				20.00
STMW-3	8.37				20.00

^{*}TD Total Depth

NOTE

ALL MEASUREMENTS ARE MADE FROM THE NORTH SIDE AND TOP EDGE OF THE WELL CASING. THE TOP OF CASING WITH A NOTCH OR PERMANENT MARKINGS, WHICH EVER ONE CONDITION IS APPROPRIATE.